I3 IR I 7~ 151

I R B K CNN M2 DL T BB 2R

openExample('nnet/TrainABasicConvolutionalNeuralNetworkForClassificationExample’)

¥ F GoogLeNet X W& 345 Lk BB AT /%

openExample('nnet/ClassifylmagesFromWebcamUsingDeepLearningExample')

f# F Fi1 %k GoogLeNet X} ¥ B4/ GEB%D)

openExample('nnet/TransferLearningUsingGoogLeNetExample’)

£ FasterRCNN M4 3+ T H a0

openExample('vision/CreateFasterRCNNObjectDetectionNetworkExample')

openExample('deeplearning_shared/DeepLearningFasterRCNNObjectDetectionExample')

f£F Yolov3 F-T Hrkl

openExample('deeplearning_shared/ObjectDetectionUsingYOLOV3DeepLearningExample')

fH SSD AT Hink il

openExample('deeplearning_shared/ObjectDetectionUsingSSDDeepLearningExample’)

Create Simple Deep Learning Network for Classification

This example shows how to create and train a simple convolutional neural network for deep learning
classification. Convolutional neural networks are essential tools for deep learning, and are especially
suited for image recognition.

The example demonstrates how to:

Load and explore image data.

Define the network architecture.

Specify training options.

Train the network.

Predict the labels of new data and calculate the classification accuracy.

For an example showing how to interactively create and train a simple image classification network,
see Create Simple Image Classification Network Using Deep Network Designer.

Load and Explore Image Data

Load the digit sample data as an image datastore. imageDatastore automatically labels the images
based on folder names and stores the data as an ImageDatastore object. An image datastore
enables you to store large image data, including data that does not fit in memory, and efficiently read
batches of images during training of a convolutional neural network.

digitDatasetPath = fullfile(matlabroot, 'toolbox', 'nnet', 'nndemos’,
'nndatasets’, 'DigitDataset’');

imds = imageDatastore(digitDatasetPath,
"IncludeSubfolders’',true, 'LabelSource’, 'foldernames');

Display some of the images in the datastore.

figure;
perm = randperm(10000,20);
for i = 1:20
subplot(4,5,1);
imshow(imds.Files{perm(i)});
end

docid:nnet_gs#mw_a1e3fba3-0eb8-43c7-ae9d-d3e167943fee

EED

HEE N
HEERHAE

Calculate the number of images in each category. 1labelCount is a table that contains the labels and
the number of images having each label. The datastore contains 1000 images for each of the digits
0-9, for a total of 10000 images. You can specify the number of classes in the last fully connected
layer of your network as the OutputSize argument.

labelCount = countEachLabel(imds)

labelCount =
Label Count

0 1000
1 1000
1000
1000
1000
1000
1000
1000
1000
1000

© 00 N O g Hh O N =
© 00 N oo o~ W DN

-
o

You must specify the size of the images in the input layer of the network. Check the size of the first
image in digitData. Each image is 28-by-28-by-1 pixels.

img = readimage(imds,1);
size(img)

ans =

28 28
Specify Training and Validation Sets

Divide the data into training and validation data sets, so that each category in the training set
contains 750 images, and the validation set contains the remaining images from each label.
splitEachLabel splits the datastore digitData into two new datastores, trainDigitData and
valDigitData.

numTrainFiles = 750;
[imdsTrain, imdsValidation] = splitEachLabel(imds,numTrainFiles, 'randomize");

Define Network Architecture

Define the convolutional neural network architecture.

layers = [
imageInputLayer([28 28 1])

convolution2dLayer(3,8, 'Padding"', "same")
batchNormalizationLayer
reluLayer

maxPooling2dLayer(2, 'Stride’',2)

convolution2dLayer(3,16, 'Padding’, 'same")
batchNormalizationLayer
reluLayer

maxPooling2dLayer(2, 'Stride’',2)

convolution2dLayer(3,32, 'Padding’, 'same")
batchNormalizationLayer
reluLayer

fullyConnectedLayer(10)
softmaxLayer
classificationLayer];

Image Input Layer An imagelnputLayer is where you specify the image size, which, in this case, is
28-by-28-by-1. These numbers correspond to the height, width, and the channel size. The digit data
consists of grayscale images, so the channel size (color channel) is 1. For a color image, the
channel size is 3, corresponding to the RGB values. You do not need to shuffle the data because
trainNetwork, by default, shuffles the data at the beginning of training. trainNetwork can also
automatically shuffle the data at the beginning of every epoch during training.

Convolutional Layer In the convolutional layer, the first argument is filterSize, which is the
height and width of the filters the training function uses while scanning along the images. In this

docid:nnet_ref.mw_fcd2d9b1-ce25-49d1-9d06-b7cf41594ff4

example, the number 3 indicates that the filter size is 3-by-3. You can specify different sizes for the
height and width of the filter. The second argument is the number of filters, numFilters, which is the
number of neurons that connect to the same region of the input. This parameter determines the
number of feature maps. Use the 'Padding' name-value pair to add padding to the input feature
map. For a convolutional layer with a default stride of 1, 'same' padding ensures that the spatial
output size is the same as the input size. You can also define the stride and learning rates for this
layer using name-value pair arguments of convolution2dLayer.

Batch Normalization Layer Batch normalization layers normalize the activations and gradients
propagating through a network, making network training an easier optimization problem. Use batch
normalization layers between convolutional layers and nonlinearities, such as RelLU layers, to speed
up network training and reduce the sensitivity to network initialization. Use batchNormalizationLayer
to create a batch normalization layer.

ReLU Layer The batch normalization layer is followed by a nonlinear activation function. The most
common activation function is the rectified linear unit (ReLU). Use reluLayer to create a ReLU layer.

Max Pooling Layer Convolutional layers (with activation functions) are sometimes followed by a
down-sampling operation that reduces the spatial size of the feature map and removes redundant
spatial information. Down-sampling makes it possible to increase the number of filters in deeper
convolutional layers without increasing the required amount of computation per layer. One way of
down-sampling is using a max pooling, which you create using maxPooling2dLayer. The max
pooling layer returns the maximum values of rectangular regions of inputs, specified by the first
argument, poolSize. In this example, the size of the rectangular region is [2,2]. The 'Stride’
name-value pair argument specifies the step size that the training function takes as it scans along
the input.

Fully Connected Layer The convolutional and down-sampling layers are followed by one or more
fully connected layers. As its name suggests, a fully connected layer is a layer in which the neurons
connect to all the neurons in the preceding layer. This layer combines all the features learned by the
previous layers across the image to identify the larger patterns. The last fully connected layer
combines the features to classify the images. Therefore, the OutputSize parameter in the last fully
connected layer is equal to the number of classes in the target data. In this example, the output size
is 10, corresponding to the 10 classes. Use fullyConnectedLayer to create a fully connected layer.

Softmax Layer The softmax activation function normalizes the output of the fully connected layer.
The output of the softmax layer consists of positive numbers that sum to one, which can then be
used as classification probabilities by the classification layer. Create a softmax layer using the
softmaxLayer function after the last fully connected layer.

Classification Layer The final layer is the classification layer. This layer uses the probabilities
returned by the softmax activation function for each input to assign the input to one of the mutually
exclusive classes and compute the loss. To create a classification layer, use classificationLayer.

Specify Training Options

After defining the network structure, specify the training options. Train the network using stochastic
gradient descent with momentum (SGDM) with an initial learning rate of 0.01. Set the maximum
number of epochs to 4. An epoch is a full training cycle on the entire training data set. Monitor the
network accuracy during training by specifying validation data and validation frequency. Shuffle the
data every epoch. The software trains the network on the training data and calculates the accuracy
on the validation data at regular intervals during training. The validation data is not used to update
the network weights. Turn on the training progress plot, and turn off the command window output.

docid:nnet_ref.mw_2d97b6cd-f8aa-4fad-88d6-d34875484820
docid:nnet_ref.mw_b7913af4-3a40-4020-bb2c-18c946f5eadd
docid:nnet_ref.mw_ca5427bd-5cdc-4a58-ba63-302c257d8222
docid:nnet_ref.mw_d2785483-a560-4276-a1c0-daa5f58a1d4b
docid:nnet_ref.mw_1e7fbc56-4746-4f30-8cd9-7048ce806a0d
docid:nnet_ref.mw_a09d3c68-d062-4692-a950-9a7fea5c40c3
docid:nnet_ref.bu5lho8

options = trainingOptions('sgdm’,
'InitiallLearnRate',0.01,
'MaxEpochs',4,
'Shuffle', 'every-epoch’,
'ValidationData',imdsValidation,
'ValidationFrequency', 30,
'Verbose',false,
'"Plots’', 'training-progress');

Train Network Using Training Data

Train the network using the architecture defined by layers, the training data, and the training
options. By default, trainNetwork uses a GPU if one is available, otherwise, it uses a CPU.
Training on a GPU requires Parallel Computing Toolbox™ and a supported GPU device. For
information on supported devices, see GPU Support by Release. You can also specify the execution
environment by using the 'ExecutionEnvironment' name-value pair argument of
trainingOptions.

The training progress plot shows the mini-batch loss and accuracy and the validation loss and
accuracy. For more information on the training progress plot, see Monitor Deep Learning Training
Progress. The loss is the cross-entropy loss. The accuracy is the percentage of images that the
network classifies correctly.

net = trainNetwork(imdsTrain,layers,options);

Training Progress (2022-09-30 22:01:29)

99.24%
Max epochs completed

2022-08-302201:20
45 s8¢

40f4
23201232
58

232

30 terations

Single GPU
Constant

001

Epoch 4

0
0 50 100 150 200
lteration

Epoch 2 Epoch 3

| Epoch 2 | - Lgochd _ ;
50 100 150 200

Classify Validation Images and Compute Accuracy

Predict the labels of the validation data using the trained network, and calculate the final validation
accuracy. Accuracy is the fraction of labels that the network predicts correctly. In this case, more
than 99% of the predicted labels match the true labels of the validation set.

docid:distcomp_ug#mw_57e04559-0b60-42d5-ad55-e77ec5f5865f
docid:nnet_ug.mw_507458b6-14c3-4a31-884c-9f2119ff7e05
docid:nnet_ug.mw_507458b6-14c3-4a31-884c-9f2119ff7e05

YPred = classify(net,imdsValidation);
YValidation = imdsValidation.Labels;

accuracy = sum(YPred == YValidation)/numel(YValidation)

accuracy = 0.9924

Classify Webcam Images Using Deep Learning

This example shows how to classify images from a webcam in real time using the pretrained deep
convolutional neural network GooglLeNet.

Use MATLAB®, a simple webcam, and a deep neural network to identify objects in your
surroundings. This example uses GooglLeNet, a pretrained deep convolutional neural network (CNN
or ConvNet) that has been trained on over a million images and can classify images into 1000 object
categories (such as keyboard, coffee mug, pencil, and many animals). You can download
GooglLeNet and use MATLAB to continuously process the camera images in real time.

GooglLeNet has learned rich feature representations for a wide range of images. It takes the image
as input and provides a label for the object in the image and the probabilities for each of the object
categories. You can experiment with objects in your surroundings to see how accurately GooglLeNet
classifies images. To learn more about the network's object classification, you can show the scores
for the top five classes in real time, instead of just the final class decision.

Load Camera and Pretrained Network

Connect to the camera and load a pretrained GoogLeNet network. You can use any pretrained
network at this step. The example requires MATLAB Support Package for USB Webcams, and Deep
Learning Toolbox™ Model for GooglLeNet Network. If you do not have the required support
packages installed, then the software provides a download link.

camera = webcam;
net = googlenet;

If you want to run the example again, first run the command clear camera where camera is the
connection to the webcam. Otherwise, you see an error because you cannot create another
connection to the same webcam.

Classify Snapshot from Camera

To classify an image, you must resize it to the input size of the network. Get the first two elements of
the InputSize property of the image input layer of the network. The image input layer is the first
layer of the network.

inputSize = net.Layers(1l).InputSize(1:2)

inputSize = 1x2
224 224

Display the image from the camera with the predicted label and its probability. You must resize the
image to the input size of the network before calling classify.

figure

im = snapshot(camera);
image(im)

im = imresize(im, inputSize);

[label,score] = classify(net,im);
title({char(label),num2str(max(score),2)});

punching bag
0.18

100

200 f

300

400

500

600

700

200 400 600 800 1000 1200

Continuously Classify Images from Camera

To classify images from the camera continuously, include the previous steps inside a loop. Run the
loop while the figure is open. To stop the live prediction, simply close the figure. Use drawnow at the
end of each iteration to update the figure.

h = figure;

while ishandle(h)
im = snapshot(camera);
image(im)
im = imresize(im, inputSize);
[label,score] = classify(net,im);
title({char(label), num2str(max(score),2)});
drawnow

end

Display Top Predictions

The predicted classes can change rapidly. Therefore, it can be helpful to display the top predictions
together. You can display the top five predictions and their probabilities by plotting the classes with
the highest prediction scores.

Classify a snapshot from the camera. Display the image from the camera with the predicted label
and its probability. Display a histogram of the probabilities of the top five predictions by using the
score output of the classify function.

Create the figure window. First, resize the window to have twice the width, and create two subplots.

h = figure;

h.Position(3) = 2*h.Position(3);
ax1l = subplot(1,2,1);

ax2 = subplot(1,2,2);

In the left subplot, display the image and classification together.

im = snapshot(camera);

image(ax1,im)

im = imresize(im, inputSize);

[label,score] = classify(net,im);
title(ax1,{char(label),num2str(max(score),2)});

Select the top five predictions by selecting the classes with the highest scores.

[~,idx] = sort(score, 'descend');

idx = idx(5:-1:1);

classes = net.Layers(end).Classes;
classNamesTop = string(classes(idx));
scoreTop = score(idx);

Display the top five predictions as a histogram.

barh(ax2,scoreTop)

xlim(ax2,[0 1])

title(ax2, 'Top 5")

xlabel(ax2, 'Probability")
yticklabels(ax2,classNamesTop)
ax2.YAxislLocation = 'right’;

punching bag
0.52 Top 5

100 F
E punching bag

200

coffee mug
300

dial telephone
400 ¢

beer glass
500
700 ¢ '

200 400 600 800 1000 1200 0 02 04 06 0.8 1
Probability

Continuously Classify Images and Display Top Predictions

To classify images from the camera continuously and display the top predictions, include the
previous steps inside a loop. Run the loop while the figure is open. To stop the live prediction, simply
close the figure. Use drawnow at the end of each iteration to update the figure.

Create the figure window. First resize the window, to have twice the width, and create two subplots.
To prevent the axes from resizing, set the PositionConstraint property to 'innerposition’.

h = figure;

h.Position(3) = 2*h.Position(3);

axl = subplot(1,2,1);

ax2 = subplot(1,2,2);
ax2.PositionConstraint = 'innerposition’;

Continuously display and classify images together with a histogram of the top five predictions.

while ishandle(h)
% Display and classify the image
im = snapshot(camera);
image(ax1,im)
im = imresize(im,inputSize);
[label,score] = classify(net,im);
title(ax1,{char(label),num2str(max(score),2)});

% Select the top five predictions
[~,idx] = sort(score, 'descend');
idx = idx(5:-1:1);

scoreTop = score(idx);
classNamesTop = string(class(idx));

end

% Plot the histogram
barh(ax2,scoreTop)
title(ax2, 'Top 5'")

xlabel(ax2, 'Probability")
xlim(ax2,[0 1])
yticklabels(ax2,classNamesTop)
ax2.YAxislLocation = 'right’;

drawnow

Train Deep Learning Network to Classify New Images

This example shows how to use transfer learning to retrain a convolutional neural network to classify
a new set of images.

Pretrained image classification networks have been trained on over a million images and can
classify images into 1000 object categories, such as keyboard, coffee mug, pencil, and many
animals. The networks have learned rich feature representations for a wide range of images. The
network takes an image as input, and then outputs a label for the object in the image together with
the probabilities for each of the object categories.

Transfer learning is commonly used in deep learning applications. You can take a pretrained
network and use it as a starting point to learn a new task. Fine-tuning a network with transfer
learning is usually much faster and easier than training a network from scratch with randomly
initialized weights. You can quickly transfer learned features to a new task using a smaller number of
training images.

Reuse Pretrained Network

Load pretrained network Replace final layers Train network Predict and Deploy results
assess network accuracy
Training images =1
‘Early‘ \ayT;s thatlearned it it G- . . F Srabssily
low-level features Rk i b “ aTrainmg options - Testimages —
(edges, blobs, colors) o o "
spedific features to your data sst [
—— et it i J l lane | :
']
H | Iu | Trained network]
1 million images Fewer classes 100s of images

10005 classes Learn faster 105 of classes

Improve network

Load Data

Unzip and load the new images as an image datastore. This very small data set contains only 75
images. Divide the data into training and validation data sets. Use 70% of the images for training and
30% for validation.

unzip('MerchData.zip"');

imds = imageDatastore('MerchData’,
'IncludeSubfolders’,true,
"LabelSource’', 'foldernames');

[imdsTrain, imdsValidation] = splitEachlLabel(imds,0.7);

Load Pretrained Network

Load a pretrained GooglLeNet network. If the Deep Learning Toolbox™ Model for GoogLeNet
Network support package is not installed, then the software provides a download link.

To try a different pretrained network, open this example in MATLAB® and select a different network.

For example, you can try squeezenet, a network that is even faster than googlenet. You can run

this example with other pretrained networks. For a list of all available networks, see Load Pretrained

Networks.

net = googlenet;

Use analyzeNetwork to display an interactive visualization of the network architecture and detailed

information about the network layers.

analyzeNetwork(net)

4 Deep Learning Metwork Analyzer

Analysis for trainNetwork usage
Name: net

Analysis date: 28-Oct-2021 16:34:17

') !dataé

v

@ coml-Tx_..
comvl-ral...

poolt-3x...

pooli-na

conv2-rel...
conv2-3x3

.
|
[}
|
[}
'
® conv2-3x...
|
L)
|
.
|
conv2-rel...
Y
A nool2-3x..
W

winception.. @ inception.. W inceptiori=® inception
1 1 T

® inception ception . @ inception._® inception

.
T
® inception.. # inception.. ® inception
T 1
& inception.. # inception..
3 K
Woncepton...
a K W T

#Tception.. & inception . ® inception=® inception 24

-] X
Type Activations Learnable Properties |
Image Input 224(5) = 224(5) = 3(C) x 1(B) -
Convolution 112(5) = 112(5) x 64(C) x 1(B) Weights 7 = 7 x 3 x 64
Bias 11«64
convi-relu_7x7 RelU 112(5) = 112(5) = 64(C) = 1(B)
Max Pooling 56(5) = 56(5) = 64(C) = 1(B)

pool1-3x3_s2

pool1-norm1

zation with 5 chan

Cross Channel Mor..

56(5) = 56(5) * 64(C) x 1(3)

conv2-3x3_reduce

inception_3a-3x3_reduce
A 121 187 ponunlitinns with strida 11 1

Convolution 56(5) = 56(S) * 64(C) = 1(B) Weights 1 =1 x 64 = 64
B4 121284 Bias 1 =1 =64
conv2-relu_3x3_reduce RelU S6(5) = 56(5) = 84(C) = 1(B)
RelU
conv2-3x3 Convolufion 56(5) = 56(5) = 192(C) = 1(B) Weights 3 = 3 x 64 = 192
182 3x3%84 convolutions with stride [1 1 Bias 1x1x 192
conv2-relu_3x3 RelU 56(5) = 56(5) = 192(C) = 1(B)
conv2-norm2 Cross Channel Mor_.. [56(S) = 56(5) = 192(C) = 1(B)
cross channel normalizaion with 5 chan
pool2-3x3_s2 Max Pooling 28(5) = 28(5) = 192(C) = 1(B)
33 max paoling with stride [2 2]
inception_3a-1x1 Convolution 28(5) = 28(5) = 64(C) = 1(8B) Weights 1 =1 = 192 = G4
64 1212 182 convolufions with stride [1 1 Bias 1x1x64
inception_3a-relu_1x1 RelU 28(5) = 28(5) = 64(C) = 1(B)

Convolution 28(5) = 28(S) = 96(C) = 1(B)

Weights 1 =1 = 192 = 96
Riac 1 v

1« 0&

The first element of the Layers property of the network is the image input layer. For a GooglLeNet
network, this layer requires input images of size 224-by-224-by-3, where 3 is the number of color
channels. Other networks can require input images with different sizes. For example, the Xception

network requires images of size 299-by-299-by-3.

net.Layers(1)
inputSize =

Replace Final Layers

net.Layers(1l).InputSize;

The convolutional layers of the network extract image features that the last learnable layer and the

final classification layer use to classify the input image. These two layers, 'loss3-classifier' and

'output' in GooglLeNet, contain information on how to combine the features that the network

docid:nnet_ug.mw_45a8c0b2-26fa-48e9-905a-a7ed7b87bfc8
docid:nnet_ug.mw_45a8c0b2-26fa-48e9-905a-a7ed7b87bfc8

extracts into class probabilities, a loss value, and predicted labels. To retrain a pretrained network to
classify new images, replace these two layers with new layers adapted to the new data set.

Convert the trained network to a layer graph.
lgraph = layerGraph(net);

Find the names of the two layers to replace. You can do this manually or you can use the supporting
function findLayersToReplace to find these layers automatically.

[learnableLayer,classLayer] = findLayersToReplace(lgraph);
[learnablelLayer,classlLayer]

In most networks, the last layer with learnable weights is a fully connected layer. Replace this fully
connected layer with a new fully connected layer with the number of outputs equal to the number of
classes in the new data set (5, in this example). In some networks, such as SqueezeNet, the last
learnable layer is a 1-by-1 convolutional layer instead. In this case, replace the convolutional layer
with a new convolutional layer with the number of filters equal to the number of classes. To learn
faster in the new layer than in the transferred layers, increase the learning rate factors of the layer.

numClasses = numel(categories(imdsTrain.Labels));

if isa(learnablelLayer, 'nnet.cnn.layer.FullyConnectedLayer")
newLearnablelLayer = fullyConnectedLayer(numClasses,
"Name', 'new_fc',
'WeightLearnRateFactor', 10,
'BiasLearnRateFactor',10);

elseif isa(learnablelayer, 'nnet.cnn.layer.Convolution2DLayer")
newLearnablelLayer = convolution2dLayer(1,numClasses,
"Name', 'new_conv',
'WeightLearnRateFactor', 10,
'BiasLearnRateFactor',10);
end

lgraph = replacelLayer(lgraph,learnableLayer.Name,newlLearnablelLayer);

The classification layer specifies the output classes of the network. Replace the classification layer
with a new one without class labels. trainNetwork automatically sets the output classes of the layer
at training time.

newClasslLayer = classificationLayer('Name', 'new_classoutput"');
lgraph = replacelLayer(lgraph,classLayer.Name,newClassLayer);

To check that the new layers are connected correctly, plot the new layer graph and zoom in on the
last layers of the network.

figure('Units', 'normalized’, 'Position',[0.3 0.3 0.4 0.4]);

matlab:edit(fullfile(matlabroot,'examples','nnet','main','findLayersToReplace.m'))

plot(lgraph)
ylim([e,10])

Freeze Initial Layers

The network is now ready to be retrained on the new set of images. Optionally, you can "freeze" the
weights of earlier layers in the network by setting the learning rates in those layers to zero. During
training, trainNetwork does not update the parameters of the frozen layers. Because the gradients
of the frozen layers do not need to be computed, freezing the weights of many initial layers can
significantly speed up network training. If the new data set is small, then freezing earlier network
layers can also prevent those layers from overfitting to the new data set.

Extract the layers and connections of the layer graph and select which layers to freeze. In
GooglLeNet, the first 10 layers make out the initial 'stem’' of the network. Use the supporting function
freezeWeights to set the learning rates to zero in the first 10 layers. Use the supporting function
createLgraphUsingConnections to reconnect all the layers in the original order. The new layer graph
contains the same layers, but with the learning rates of the earlier layers set to zero.

layers = lgraph.Layers;
connections = lgraph.Connections;

layers(1:10) = freezeWeights(layers(1:10));
lgraph = createlLgraphUsingConnections(layers,connections);

Train Network

The network requires input images of size 224-by-224-by-3, but the images in the image datastore
have different sizes. Use an augmented image datastore to automatically resize the training images.
Specify additional augmentation operations to perform on the training images: randomly flip the
training images along the vertical axis and randomly translate them up to 30 pixels and scale them
up to 10% horizontally and vertically. Data augmentation helps prevent the network from overfitting
and memorizing the exact details of the training images.

pixelRange = [-30 30];

scaleRange = [0.9 1.1];

imageAugmenter = imageDataAugmenter(...
'RandXReflection', true,
'RandXTranslation',pixelRange,
'RandYTranslation',pixelRange,
'RandXScale',scaleRange,
'RandYScale',scaleRange);

augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain,
'DataAugmentation’,imageAugmenter);

To automatically resize the validation images without performing further data augmentation, use an
augmented image datastore without specifying any additional preprocessing operations.

augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);

matlab:edit(fullfile(matlabroot,'examples','nnet','main','freezeWeights.m'))
matlab:edit(fullfile(matlabroot,'examples','nnet','main','createLgraphUsingConnections.m'))

Specify the training options. Set InitiallLearnRate to a small value to slow down learning in the

transferred layers that are not already frozen. In the previous step, you increased the learning rate
factors for the last learnable layer to speed up learning in the new final layers. This combination of
learning rate settings results in fast learning in the new layers, slower learning in the middle layers,
and no learning in the earlier, frozen layers.

Specify the number of epochs to train for. When performing transfer learning, you do not need to
train for as many epochs. An epoch is a full training cycle on the entire training data set. Specify the
mini-batch size and validation data. Compute the validation accuracy once per epoch.

miniBatchSize = 10;

valFrequency = floor(numel(augimdsTrain.Files)/miniBatchSize);

options = trainingOptions('sgdm’,
'MiniBatchSize',miniBatchSize,
'MaxEpochs',6,
'InitiallLearnRate’,3e-4,
'Shuffle', 'every-epoch’,
'ValidationData',augimdsValidation,
'ValidationFrequency',valFrequency,
'Verbose',false,
"Plots’', "training-progress');

Train the network using the training data. By default, trainNetwork uses a GPU if one is available.
This requires Parallel Computing Toolbox™ and a supported GPU device. For information on
supported devices, see GPU Support by Release. Otherwise, trainNetwork uses a CPU. You can
also specify the execution environment by using the 'ExecutionEnvironment' name-value pair
argument of trainingOptions. Because the data set is so small, training is fast.

net = trainNetwork(augimdsTrain,lgraph,options);

docid:distcomp_ug#mw_57e04559-0b60-42d5-ad55-e77ec5f5865f

Results
Validation accuracy 90.00%

Training Progress (2022-09-30 22:17.52)

Training finished Max epochs completed
100 —
Training Time
e Start time: 2022-09-30 22:17:52
W—————————— e S W e —-— —@Final
Elapsed time: 31 sec
80— Training Cycle
Epoch 60i6
i~ lieration 300730
lierations per epoch 5
£ 60 Maximum ferations 30
o
s
3 o Validation
requency: iterations
2 F 5 teral
40—
Gther Information
30— Hardware resource. Single GPU
Leaming rate schedule: Constant
20— Learning rate: 0.0003
- [7 Export Training Plot Learn more
Epocty, | Epoch 2 | Epoch 3 | Epoch 4 | Epoch § | Epoch 6 |
0 o
0 5 10 15 20 25 30
lteration
5
4 Aceuracy
Training (smaothed)
23 . Training
= = ~@— - Validation
2l
Loss
Training (smoothed
Py
________ - e — = —————— = —— - ————— — — — — — — —(§Final I
Epoch 1 Epoch 3 , Epoch 4 Epoch 5 Epoch 6 | — 8- - Validation
o i | |
0 5 10 15 20 25 30
Iteration

Classify Validation Images

Classify the validation images using the fine-tuned network, and calculate the classification accuracy.

[YPred,probs] = classify(net,augimdsValidation);
accuracy = mean(YPred == imdsValidation.Labels)

accuracy = 0.9000

Display four sample validation images with predicted labels and the predicted probabilities of the
images having those labels.

idx = randperm(numel(imdsValidation.Files),4);
figure
for i = 1:4
subplot(2,2,1i)
I = readimage(imdsValidation,idx(i));
imshow(I)
label = YPred(idx(i));
title(string(label) + ", " + num2str(100*max(probs(idx(i),:)),3) + "%");
end

MathWorks Screwdriver, 99.9% MathWorks Screwdriver, 88.5%

MathWorks Cap, 11’.)!]‘_3-'5_: MathWorks Torch, 99.6%

Create Faster R-CNN Object Detection Network

This example builds upon the Create Fast R-CNN Object Detection Network example above. It
transforms a pretrained ResNet-50 network into a Faster R-CNN object detection network by adding
an ROI pooling layer, a bounding box regression layer, and a region proposal network (RPN). The
Faster R-CNN network can then be trained using trainFasterRCNNObjectDetector.

Create Fast R-CNN Network

Start by creating Fast R-CNN, which forms the basis of Faster R-CNN. The Create Fast R-CNN
Object Detection Network example explains this section of code in detail.

% Load a pretrained ResNet-5@.
net = resnet5o0;
lgraph = layerGraph(net);

% Remove the last 3 layers.
layersToRemove = {
'fclo00'
'fcl1000_ softmax'
'ClassificationLayer_fc1000'
s

lgraph = removelLayers(lgraph, layersToRemove);

% Specify the number of classes the network should classify.
numClasses = 2;
numClassesPlusBackground = numClasses + 1;

% Define new classification layers.

newLayers = [
fullyConnectedLayer(numClassesPlusBackground, 'Name', 'rcnnFC")
softmaxLayer('Name', 'rcnnSoftmax")
classificationLayer('Name', ‘'rcnnClassification')

15

% Add new object classification layers.
lgraph = addLayers(lgraph, newLayers);

% Connect the new layers to the network.
lgraph = connectLayers(lgraph, 'avg pool', 'rcnnFC');

% Define the number of outputs of the fully connected layer.
numOutputs = 4 * numClasses;

% Create the box regression layers.
boxRegressionLayers = [
fullyConnectedLayer (numOutputs, "Name', 'rcnnBoxFC")

docid:vision_ug#mw_51a5e174-51f2-4da8-892b-16d3ce2278e2
docid:vision_ug#mw_51a5e174-51f2-4da8-892b-16d3ce2278e2
docid:vision_ug#mw_51a5e174-51f2-4da8-892b-16d3ce2278e2

rcnnBoxRegressionLayer('Name', 'rcnnBoxDeltas")

15

% Add the layers to the network.
lgraph = addLayers(lgraph, boxRegressionLayers);

% Connect the regression layers to the layer named 'avg_pool'.
lgraph = connectLayers(lgraph, "avg pool', 'rcnnBoxFC");

% Select a feature extraction layer.
featureExtractionLayer = ‘'activation_40 relu';

% Disconnect the layers attached to the selected feature extraction layer.
lgraph = disconnectLayers(lgraph, featureExtractionLayer, 'res5a_branch2a');
lgraph = disconnectlLayers(lgraph, featureExtractionLayer, 'res5a_branchl");

% Add ROI max pooling layer.

outputSize = [14 14];

roiPool = roiMaxPooling2dLayer (outputSize, ‘Name', ‘roiPool");
lgraph = addLayers(lgraph, roiPool);

% Connect feature extraction layer to ROI max pooling layer.
lgraph = connectLayers(lgraph, featureExtractionLayer, 'roiPool/in");

% Connect the output of ROI max pool to the disconnected layers from above.
lgraph = connectLayers(lgraph, 'roiPool','res5a_branch2a');
lgraph = connectLayers(lgraph, 'roiPool', 'res5a branchl');

Add Region Proposal Network (RPN)

Faster R-CNN uses a region proposal network (RPN) to generate region proposals. An RPN
produces region proposals by predicting the class, “object” or “background”, and box offsets for a set
of predefined bounding box templates known as "anchor boxes". Anchor boxes are specified by
providing their size, which is typically determined based on a priori knowledge of the scale and
aspect ratio of objects in the training dataset.

Learn more about Anchor Box Basics.

Define the anchor boxes and create a regionProposallayer.

% Define anchor boxes.
anchorBoxes = [

16 16

32 16

16 32

15

docid:vision_ug#mw_f9f22f48-0ad0-4f37-8bc1-22a2046637f2

% Create the region proposal layer.
proposallLayer = regionProposallLayer(anchorBoxes, 'Name', 'regionProposal');

lgraph = addLayers(lgraph, proposallayer);

Add the convolution layers for RPN and connect it to the feature extraction layer selected above.

% Number of anchor boxes.
numAnchors = size(anchorBoxes,1);

% Number of feature maps in coming out of the feature extraction layer.
numFilters = 1024;

rpnLayers = [
convolution2dLayer(3, numFilters, 'padding',[1 1], 'Name', 'rpnConv3x3")
reluLayer('Name', 'rpnRelu')

1;
lgraph = addLayers(lgraph, rpnLayers);

% Connect to RPN to feature extraction layer.
lgraph = connectLayers(lgraph, featureExtractionLayer, 'rpnConv3x3');

Add the RPN classification output layers. The classification layer classifies each anchor as "object"
or "background".

% Add RPN classification layers.

rpnClsLayers = [
convolution2dLayer(l, numAnchors*2, 'Name', 'rpnConvlix1ClsScores")
rpnSoftmaxLayer('Name', 'rpnSoftmax')
rpnClassificationLayer('Name', 'rpnClassification")
1;

lgraph = addLayers(lgraph, rpnClsLayers);

% Connect the classification layers to the RPN network.
lgraph = connectLayers(lgraph, 'rpnRelu', 'rpnConvlxl1ClsScores');

Add the RPN regression output layers. The regression layer predicts 4 box offsets for each anchor
box.

% Add RPN regression layers.

rpnReglLayers = [
convolution2dLayer(1l, numAnchors*4, 'Name', 'rpnConvlxlBoxDeltas')
rcnnBoxRegressionLayer('Name', 'rpnBoxDeltas');

15
lgraph = addLayers(lgraph, rpnReglLayers);

% Connect the regression layers to the RPN network.
lgraph = connectLayers(lgraph, 'rpnRelu’, 'rpnConvlxlBoxDeltas');

Finally, connect the classification and regression feature maps to the region proposal layer inputs,
and the ROI pooling layer to the region proposal layer output.

% Connect region proposal network.

lgraph = connectLayers(lgraph, 'rpnConvix1ClsScores', 'regionProposal/scores');
lgraph = connectLayers(lgraph, 'rpnConvlix1BoxDeltas',
'regionProposal/boxDeltas");

% Connect region proposal layer to roi pooling.
lgraph = connectLayers(lgraph, 'regionProposal', 'roiPool/roi');

% Show the network after adding the RPN layers.
figure

plot(lgraph)

ylim([30 42])

" e IE\"' 2 -.._{H-I’ E{."
sl R » 0N,
g "rp_ry..t‘ fong Bltgg -
o g . Oy
n i . e 0
i, -
Clssi, o
tign e =
| "essy S,
15 I ¥ :
I r}ga 1‘356,
|
H%ﬂm‘:a ""b'bﬁ'n']m(??
Bctiy._..
_' o o, i
i rgis:ié[hfw1iv]€¥? {f
1 2L

L]
i adﬂ'_h 13
.a";_ ;_.r_l.l —e
-~ Vg —— e
-~ ba"?._#a T—
| foy “'"E"Lr]
1 -".I;,-‘?xa

activation_40._.
reluLayer

1 rpnConv3x3
3| convolution2dL._

14(5) = 14(5) = 6(C) = 1(B)

i195(s) = 3(5) = 2(C) = 1(B)

|196(S) = 3(S) = 2(C) * 1(B)

rpnConvix1CL
convolution2dL ..

rpnConvix1B.
¥ convolution2dL...

14(5) = 14(5) = 12(C) = 1(B)

‘1' = ".‘ e
v
pnSoftmax

rpnSoftmaxLayer

|83 regionProposal
sal| regionProposal...

roiPool
roiMaxPooling2.._

1(5) = 5(C) = 1(8)

14(5) = 14(S) = 1824(C) = 1(B)

res5a_branch2a
¥ convolution2dL...

ronBoxDeltas |14(s) = 14(S) = 12(C) ~ 1(B)
rennBoxRegres..

h 4

[| avg_pool 1(5) = 1(3) ~ 2048(C) = 1(B)

| globalAverage. ..

A :

‘

rcnnFC ‘E rennBoxFC 1(5) = 1(5) = 8(C) = 1(B)

1{S) = 1(S) = 3(C) = 1(B)

fullyConnected... fullyConnected. ..

h 4 A

rennSoftmax ‘ E rcnnBoxDeltas

A= Sy = n) softmaxLayer rennBoxRegres... [1(5) = 1(5) = 8(C) = 1(B)

v

rennClassifica. .
classificationLa. ..

1(5) = 1(5) = 3(C} = 1(B)

4\ Deep Learning Network Analyzer - x
Analysis for training in Deep Network Designer
Name: Network from Deep Network Designer
Analysis date: 2022-10-02 17:22:24

ertors
| issues ®
enss_snenzo
ANALYSIS RESULT)

acivation_42_relu
Name Type Activations Learnable Prop

Ll

resss_branchzs

22 |bnsb_branch2n Batch Nommalization |7(5) = 7(5) = 512(C) = 1(8) Orfset 1= 1512
i Satohmormatzaton wih 512 hannels i
< 27 [acivation_45_relu ReLU 7(5) = 7(5) = 512(0) = 1(8) 2
e Rell
D E— 152 |ressb_branchac Convolution 7(5) = 7(5) = 2048(C) = 1(8) Vi 1= 1512
L = 204 1517512 convolutons it side Bias 1x1x 2048
fasti_branchza 52 [bnso_branchzc Batch Normalization |7(S) = 7(5) = 2048(C) = 1(8) orfs. 1x1x20.
Satohmormatzaton win 2048 camnels Scale 1120,
orss_branchza
70 |add_15 Addtion 7(5) * 7(5) * 2848(C) = 1(8) E

— Sermentonise adation of 2 s

171 [actvation_46_relu RelU 7(5) = 75) = 2048(0) = 1(8) -
st srannzs Rell
172 |resse_branchza Gonvolution 7(5) x 7(5) * 532(0) * 1(8) el 11+ 204
ok beandith 532 15772045 sonvaistons wih tice Bias 1x1x512
Sctvston 45 res 172 [bnbe_branch2a Batch Normalization |7(s) = 7(5) = 512(C) = 1(8) oFfset 1+ 1x 512
St rorma aaton win 512 hameis Scale 1x1x512
RO 174 |activation_47_relu RelU 7(s) = 7(5) * 512(0) = 1(8) -
ens snenze =
< 175 |resse_branch2b Gonvolution 7(5) * 7(5) % 532(0) * 1(8) el 3 %3512
o i 512 5730512 comvohtions wits s [1 Bios 1x1x512
I _— 7o [bnbe_branchz Batch Normalization |7(5) = 7(5) = 512(C) = 1(8) oFfset 1+ 1x 512
e St orma aaton win 512 hamnes Scale 1x1x512
et branchza | 177 |activation_48_relu RelU 7(3) = 7(5) x 512(0) x 1(B) -
Rell
ense_brancrzs .
= 172 |resse_branchzc Gonvolution 7(5) = 7(5) * 2048(C) = 1(8) el 11+ 512
2042 1215812 convalutions it s Biss 1 1x 2088
actiation_47_rou
7% [bnbe_branchze Batch Normalization |7(5) = 7(5) * 2048(C) * 1(8) oFfs. 1x1x20.
e St rorma st win 2048 ensnnsls Scale 11200
o [add_t6 (Aadiion 7(5) = 75) = 2048(0) = 1(8) -
b Elrmantvis sdsten 22 npute
setvsion 45 res 151 |actvation_49_relu RelU 7(5) = 7(5) * 2048(C) = 1(8) 2
ReLl
st branenze = [avg_pool 2:D Global Average...[1(5) = 1(5) = 2048(C) = 1(8) '
0 ona) sversge posing
ense_orarenze
g s [rennFC Fully Connected |1(5) = 1(5) * 3(0) * 1(8) ueignts 3 * 2088
e =ty cormectd ayer i <1
1 5+ |rennSoftmax Softma 1) = 1(5) = 3(0) * 1(8) - =
setvason 49 res “otma
im oocl s oulput [1(5) = 1(5) = 3(0) * 1(8) z
3 Le crossenvonyex
remnic o rennsae 5o |rcnBoxFC Fully Connected |1(5) = 1(5) * 8(C) * 1(8) ueignts 5 « 2048
i 5ty connactea e : 1
(remBoxDeitas]
9 i e |rennBoxDetas Box Regression Ou__ [1(5) = 1(5) = 8(C) = 1(6) =
ot 1 lozs
rmCiassteston
22 |pnBoxDetas Box Regression Ou___|14(5) x 14(5) = 12(0) * 1(8) 2

4\ Deep Learning Network Analyzer
Analysis for training in Deep Network Designer
Name: Network from Deep Network Designer
Analysis date: 2022-10-02 17:2224

1
o tnée_branenzs
@ sctivaton_30_relu
@ resta_orancnze
1
o onse_brannze
gtz
o activation_37_rel
st brancnza
1
o bnst_branenzs
o sctvston_35_relu
§ resst_branon2s
@ snat_brancnzs
1
@ sctvaton_30_relu
1
o reséi_branchze

1
.on4t_branenze

v

PY activation_40_relu
= .

gonconiaxs
1

SERel
AN 1
TonConvixICisSE e prCon 1x180xD.
g7onSofmax ediagionProposal ® rprSoxDetias
1 -
o renCisssiicstion erPoal

gressa_braneiza

(S (—
setvston 41 res

rassa_srancrzs

]

& bns sranenzs

)

¢ sctvaton_s2_reis

1

I rasta srannzs

ena_branchze

Im,u
acivaton_&3_relu

ISSUES

33M 188 14

(X!]

ANALYSIS RESULT

Name

Type

Activations

Leamable Prope...

bnaf_branch2c
stc normaizton wih 1024 channslz

Batch Normalization

18(5) ~ 14(5)

* 1624(C) * 1(8)

offs. 1x1x10.
Scale 1x1x1le.

0 [add_13 (Addiion 14(5) x 14(5) = 1024(C) * 1(8) e
Sermentovise sdition o2 inpus
741 |activation_40_relu RelU 14(5) * 14(5) = 1024(C) = 1(8) =
ReLU
12 |nConv33 Convolution 18(5) = 14(s) = 1024(C) = 1(8) el 3 %3 162
1024 253 sonvolutions with siide (1 112 Bias 1x1=x1e2d
12 [mnRelu RelU 14(5) x 14(s) = 1024(C) * 1(8) =
ReLU
144 | mnConvix1CisScores Convolution 14(5) * 14(5) * 6(C) x 1(B) leig. 11 x 102,
5 11 convolutans wn svice 1 1]and Bias 1x1x6
rpnSoftmax RPN Softmax 196(5) x 3(5) * 2(0) x 1(B) e
ity

nClassification

RPN Classification

195(5) = 3(5)

* 2(Q) = 1(8)

oss antropy loss wih abject and bac
rpnConvix1BoxDeltas
2 11 convolutons with stide [1 1]and

Convolution

18(5) * 14(5)

= 12(0) * 1(8)

Vel 1x1x 102
Bias 1x1x12

regionProposal
20 propozal wih 3 Snhor boses

Region Proposal

s) = 5(0) *

1s)

ToiPool
RO Max Posing wit pocied ouput sz

ROI Max Pooing

14(5) 14(5)

* 1824(0) * 1(8)

resba_branch2a
24,

512 15771024 convotutions with srice

Comvolution

7(5) = 7(5) =

512() * 1(8)

Vel 1x1x 102
Bias 1x1x512

bnSa_branch2a
i mormaizston with 512 shann

Batch Normalization

7s) = 7(5) *

512(C) * 1(8)

offset 1+ 1x 512
Scale 1x1x512

activation_41_relu ReLU 7(s) = 7(5) x 512(0) = 1(8) -
RalU
resba_branch2h Comvolution 7(5) = 7(5) = 512(0) * 1(B) Vel 3 x3x 512

12 333512 comioitions win e [1

Bias 1x1x512

bnsa_branch2b
s

- mormaizston with 512 shann

Batch Normalization

7(s) = 7(5) *

512(C) = 1(8)

offset 1x 1% 512
scale 1x1x512

122 |activation_42_relu ReLU 7(s) = 7(5) * 512(0) * 1(B) =
ReLU

122 |resba_branch2c Comvolution 7(5) = 7(5) = 2045(C) * 1(8) Vel 1x1x512.
2045 171912 canvolutions withstice Bias 1x1x 2045

127 |resba_brancht Convolution 7(s) = 7(5) * 2048(C) = 1(8) el 11102

2045 1211028 convalutions wih svide

Bias 1x1=x2048

bnsa_branch2c
Sstoh normszaton with 2042 snamels

Batch Normalization

7s) = 7(5) *

2048(C) * 1(8)

offs. 1x1x20.
Scale 1x1x20.

bnsa_branch
Sston normaizston win 2042 nam

Batch Normalization

7(s) = 7(5) *

2045(C) 1(5)

offs. 1x1x20.
Scale 1x1x20.

add_14
Sementuise adition o2 npus

(Addiion

7(5) = 7(5) =

2048(C) * 1(8)

activation_43_relu

ReLU

7s) = 7(s) x

2048(C) x 1(8)

]

RCNNs Evolution

RCNN

Region proposal function

Fast-RCNN

CNN

Classification

oo

-

Bounding box
refinement layer

Feature Extractor Object Classification

Bounding baox
refinement layer

eatures
‘ ROl peol
— on {1
@ Bl e
E i=——
[
Regression ||
Layers -

Ohbject Classification

Bounding box
refinement layer

Object Detection Using Faster R-CNN Deep Learning

This example shows how to train a Faster R-CNN (regions with convolutional neural networks)
object detector.

Deep learning is a powerful machine learning technique that you can use to train robust object
detectors. Several deep learning techniques for object detection exist, including Faster R-CNN and
you only look once (YOLO) v2. This example trains a Faster R-CNN vehicle detector using the
trainFasterRCNNObjectDetector function. For more information, see Object Detection.

Download Pretrained Detector

Download a pretrained detector to avoid having to wait for training to complete. If you want to train
the detector, set the doTraining variable to true.

doTraining = false;
if ~doTraining && ~exist('fasterRCNNResNet50EndToEndVehicleExample.mat', 'file')
disp('Downloading pretrained detector (118 MB)...');
pretrainedURL =
"https://www.mathworks.com/supportfiles/vision/data/fasterRCNNResNet50EndToEndVe
hicleExample.mat"';
websave(' fasterRCNNResNet50EndToEndVehicleExample.mat',pretrainedURL);
end

Load Data Set

This example uses a small labeled dataset that contains 295 images. Many of these images come
from the Caltech Cars 1999 and 2001 data sets, available at the Caltech Computational Vision
website, created by Pietro Perona and used with permission. Each image contains one or two
labeled instances of a vehicle. A small dataset is useful for exploring the Faster R-CNN training
procedure, but in practice, more labeled images are needed to train a robust detector. Unzip the
vehicle images and load the vehicle ground truth data.

unzip vehicleDatasetImages.zip
data = load('vehicleDatasetGroundTruth.mat"');
vehicleDataset = data.vehicleDataset;

The vehicle data is stored in a two-column table, where the first column contains the image file paths
and the second column contains the vehicle bounding boxes.

Split the dataset into training, validation, and test sets. Select 60% of the data for training, 10% for
validation, and the rest for testing the trained detector.

rng(e)
shuffledIndices = randperm(height(vehicleDataset));
idx = floor(@.6 * height(vehicleDataset));

trainingIdx = 1:idx;
trainingDataTbl = vehicleDataset(shuffledIndices(trainingIdx),:);

docid:vision_doccenter#mw_aaf5fff6-de25-40fc-9e3c-d08887a91e90
http://www.vision.caltech.edu/archive.html

validationIdx = idx+1 : idx + 1 + floor(@.1 * length(shuffledIndices));
validationDataTbl = vehicleDataset(shuffledIndices(validationIdx),:);

testIdx = validationIdx(end)+1 : length(shuffledIndices);
testDataTbl = vehicleDataset(shuffledIndices(testIdx),:);

Use imageDatastore and boxLabelDatastore to create datastores for loading the image and label
data during training and evaluation.

imdsTrain = imageDatastore(trainingDataTbl{:, 'imageFilename'});
bldsTrain = boxLabelDatastore(trainingDataTbl(:, 'vehicle'));
imdsValidation = imageDatastore(validationDataTbl{:, 'imageFilename'});
bldsValidation = boxLabelDatastore(validationDataTbl(:, 'vehicle'));
imdsTest = imageDatastore(testDataTbl{:, 'imageFilename'});

bldsTest = boxLabelDatastore(testDataTbl(:, 'vehicle'));

Combine image and box label datastores.

trainingData = combine(imdsTrain,bldsTrain);
validationData = combine(imdsValidation,bldsValidation);
testData = combine(imdsTest,bldsTest);

Display one of the training images and box labels.

data = read(trainingData);

I = data{1};

bbox = data{2};

annotatedImage insertShape(I, 'Rectangle’,bbox);
annotatedImage = imresize(annotatedImage,2);
figure

imshow(annotatedImage)

Create Faster R-CNN Detection Network

A Faster R-CNN object detection network is composed of a feature extraction network followed by
two subnetworks. The feature extraction network is typically a pretrained CNN, such as ResNet-50
or Inception v3. The first subnetwork following the feature extraction network is a region proposal
network (RPN) trained to generate object proposals - areas in the image where objects are likely to
exist. The second subnetwork is trained to predict the actual class of each object proposal.

The feature extraction network is typically a pretrained CNN (for details, see Pretrained Deep Neural
Networks). This example uses ResNet-50 for feature extraction. You can also use other pretrained
networks such as MobileNet v2 or ResNet-18, depending on your application requirements.

Use fasterRCNNLayers to create a Faster R-CNN network automatically given a pretrained feature
extraction network. fasterRCNNLayers requires you to specify several inputs that parameterize a
Faster R-CNN network:

¢ Network input size
¢ Anchor boxes
e Feature extraction network

First, specify the network input size. When choosing the network input size, consider the minimum
size required to run the network itself, the size of the training images, and the computational cost
incurred by processing data at the selected size. When feasible, choose a network input size that is
close to the size of the training image and larger than the input size required for the network. To
reduce the computational cost of running the example, specify a network input size of [224 224 3],
which is the minimum size required to run the network.

docid:nnet_ug#bvf9ych-1
docid:nnet_ug#bvf9ych-1

inputSize = [224 224 3];

Note that the training images used in this example are bigger than 224-by-224 and vary in size, so
you must resize the images in a preprocessing step prior to training.

Next, use estimateAnchorBoxes to estimate anchor boxes based on the size of objects in the
training data. To account for the resizing of the images prior to training, resize the training data for
estimating anchor boxes. Use transform to preprocess the training data, then define the number of
anchor boxes and estimate the anchor boxes.

preprocessedTrainingData = transform(trainingData,
@(data)preprocessData(data,inputSize));

numAnchors = 3;

anchorBoxes = estimateAnchorBoxes(preprocessedTrainingData, numAnchors)

For more information on choosing anchor boxes, see Estimate Anchor Boxes from Training Data
(Computer Vision Toolbox™) and Anchor Box Basics.

Now, use resnet50 to load a pretrained ResNet-50 model.

featureExtractionNetwork = resnet50;

Select 'activation_40 relu' as the feature extraction layer. This feature extraction layer outputs
feature maps that are downsampled by a factor of 16. This amount of downsampling is a good trade-
off between spatial resolution and the strength of the extracted features, as features extracted
further down the network encode stronger image features at the cost of spatial resolution. Choosing
the optimal feature extraction layer requires empirical analysis. You can use analyzeNetwork to find
the names of other potential feature extraction layers within a network.

featureLayer = 'activation_40 relu';
Define the number of classes to detect.

numClasses = width(vehicleDataset)-1;
Create the Faster R-CNN object detection network.

lgraph =
fasterRCNNLayers(inputSize,numClasses,anchorBoxes, featureExtractionNetwork,featu
reLayer);

You can visualize the network using analyzeNetwork or Deep Network Designer from Deep
Learning Toolbox™.

If more control is required over the Faster R-CNN network architecture, use Deep Network Designer
to design the Faster R-CNN detection network manually. For more information, see R-CNN, Fast R-
CNN, and Faster R-CNN Basics.

Data Augmentation

docid:vision_ug#mw_671cb7a6-5a7a-4147-acf3-3e1fd7d3dfd7
docid:vision_ug#mw_f9f22f48-0ad0-4f37-8bc1-22a2046637f2
docid:vision_ug#mw_b13dd767-cabe-43d9-a9ac-1b42716c4294
docid:vision_ug#mw_b13dd767-cabe-43d9-a9ac-1b42716c4294

Data augmentation is used to improve network accuracy by randomly transforming the original data
during training. By using data augmentation, you can add more variety to the training data without
actually having to increase the number of labeled training samples.

Use transform to augment the training data by randomly flipping the image and associated box
labels horizontally. Note that data augmentation is not applied to test and validation data. Ideally,
test and validation data are representative of the original data and are left unmodified for unbiased

evaluation.
augmentedTrainingData = transform(trainingData,@augmentData);
Read the same image multiple times and display the augmented training data.

augmentedData = cell(4,1);

for k = 1:4
data = read(augmentedTrainingData);
augmentedData{k} = insertShape(data{l}, 'Rectangle’',data{2});
reset(augmentedTrainingData);

end

figure

montage(augmentedData, 'BorderSize',10)

Preprocess Training Data

Preprocess the augmented training data, and the validation data to prepare for training.

trainingData =
transform(augmentedTrainingData,@(data)preprocessData(data, inputSize));

validationData =
transform(validationData,@(data)preprocessData(data,inputSize));

Read the preprocessed data.
data = read(trainingData);
Display the image and box bounding boxes.

I = data{1};

bbox = data{2};

annotatedImage = insertShape(I, 'Rectangle’,bbox);
annotatedImage = imresize(annotatedImage,2);
figure

imshow(annotatedImage)

Train Faster R-CNN

Use trainingOptions to specify network training options. Set 'ValidationData' to the
preprocessed validation data. Set 'CheckpointPath' to a temporary location. This enables the

saving of partially trained detectors during the training process. If training is interrupted, such as by a
power outage or system failure, you can resume training from the saved checkpoint.

options = trainingOptions('sgdm',...
'MaxEpochs',10, ...
'MiniBatchSize',2,...
'InitiallLearnRate’,le-3,...
'CheckpointPath’', tempdir,...
'ValidationData',validationData);

Use trainFasterRCNNObjectDetector to train Faster R-CNN object detector if doTraining is
true. Otherwise, load the pretrained network.

if doTraining

% Train the Faster R-CNN detector.

% * Adjust NegativeOverlapRange and PositiveOverlapRange to ensure

% that training samples tightly overlap with ground truth.

[detector, info] =

trainFasterRCNNObjectDetector(trainingData, lgraph,options,
'NegativeOverlapRange',[0 0.3],
"PositiveOverlapRange',[0.6 1]);
else

% Load pretrained detector for the example.

pretrained = load('fasterRCNNResNet50EndToEndVehicleExample.mat');

detector = pretrained.detector;

end

This example was verified on an Nvidia(TM) Titan X GPU with 12 GB of memory. Training the
network took approximately 20 minutes. The training time varies depending on the hardware you use.

As a quick check, run the detector on one test image. Make sure you resize the image to the same
size as the training images.

I = imread(testDataTbl.imageFilename{3});
I = imresize(I,inputSize(1:2));
[bboxes,scores] = detect(detector,I);

Display the results.

I = insertObjectAnnotation(I, 'rectangle’,bboxes,scores);
figure
imshow(I)

Evaluate Detector Using Test Set

Evaluate the trained object detector on a large set of images to measure the performance. Computer
Vision Toolbox™ provides object detector evaluation functions to measure common metrics such as
average precision (evaluateDetectionPrecision) and log-average miss rates
(evaluateDetectionMissRate). For this example, use the average precision metric to evaluate
performance. The average precision provides a single number that incorporates the ability of the
detector to make correct classifications (precision) and the ability of the detector to find all relevant
objects (recall).

Apply the same preprocessing transform to the test data as for the training data.
testData = transform(testData,@(data)preprocessData(data,inputSize));
Run the detector on all the test images.
detectionResults = detect(detector,testData, 'MinibatchSize',4);
Evaluate the object detector using the average precision metric.
[ap, recall, precision] = evaluateDetectionPrecision(detectionResults,testData);

The precision/recall (PR) curve highlights how precise a detector is at varying levels of recall. The
ideal precision is 1 at all recall levels. The use of more data can help improve the average precision
but might require more training time. Plot the PR curve.

figure
plot(recall,precision)
xlabel('Recall’)
ylabel('Precision")
grid on

title(sprintf('Average Precision = %.2f"', ap))

Average Precision =0.76

0.98

0.56

0.94

0.92

0.5

Frecision

0.88

0.86

0.84

0.82

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Recall

Supporting Functions

function data = augmentData(data)

% Randomly flip images and bounding boxes horizontally.
tform = randomAffine2d('XReflection',true);

sz = size(data{1});

rout = affineOutputView(sz,tform);

data{1l} = imwarp(data{1},tform, 'OutputView',rout);

% Sanitize box data, if needed.
data{2} = helperSanitizeBoxes(data{2}, sz);

% Warp boxes.
data{2} = bboxwarp(data{2},tform,rout);
end

function data = preprocessData(data,targetSize)
% Resize image and bounding boxes to targetSize.
sz = size(data{1},[1 2]);

scale = targetSize(1:2)./sz;

data{1} = imresize(data{1},targetSize(1:2));

% Sanitize box data, if needed.
data{2} = helperSanitizeBoxes(data{2}, sz);

% Resize boxes.
data{2} = bboxresize(data{2},scale);
end

References

[11Ren, S., K. He, R. Gershick, and J. Sun. "Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks." IEEE Transactions of Pattern Analysis and Machine Intelligence.
Vol. 39, Issue 6, June 2017, pp. 1137-1149.

[2] Girshick, R., J. Donahue, T. Darrell, and J. Malik. "Rich Feature Hierarchies for Accurate Object
Detection and Semantic Segmentation.” Proceedings of the 2014 IEEE Conference on Computer
Vision and Pattern Recognition. Columbus, OH, June 2014, pp. 580-587.

[3] Girshick, R. "Fast R-CNN." Proceedings of the 2015 IEEE International Conference on Computer
Vision. Santiago, Chile, Dec. 2015, pp. 1440-1448.

[4] Zitnick, C. L., and P. Dollar. "Edge Boxes: Locating Object Proposals from Edges." European
Conference on Computer Vision. Zurich, Switzerland, Sept. 2014, pp. 391-405.

[5] Uijlings, J. R. R,, K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders. "Selective Search
for Object Recognition." International Journal of Computer Vision. Vol. 104, Number 2, Sept. 2013,
pp. 154-171.

Object Detection Using YOLO v3 Deep Learning

This example shows how to train a YOLO v3 object detector.

Deep learning is a powerful machine learning technique that you can use to train robust object
detectors. Several techniques for object detection exist, including Faster R-CNN, you only look once
(YOLO) v2, and single shot detector (SSD). This example shows how to train a YOLO v3 object
detector. YOLO v3 improves upon YOLO v2 by adding detection at multiple scales to help detect
smaller objects. The loss function used for training is separated into mean squared error for
bounding box regression and binary cross-entropy for object classification to help improve detection
accuracy.

Note: This example requires the Computer Vision Toolbox™ Model for YOLO v3 Object Detection.
You can install the Computer Vision Toolbox Model for YOLO v3 Object Detection from Add-On
Explorer. For more information about installing add-ons, see Get and Manage Add-Ons.

Download Pretrained Network

Download a pretrained network using the helper function downloadPretrainedYOLOv3Detector to
avoid having to wait for training to complete. If you want to train the network, set the doTraining
variable to true.

doTraining = false;

if ~doTraining
preTrainedDetector = downloadPretrainedYOLOv3Detector();
end

Load Data

This example uses a small labeled data set that contains 295 images. Many of these images come
from the Caltech Cars 1999 and 2001 data sets, available at the Caltech Computational Vision
website, created by Pietro Perona and used with permission. Each image contains one or two
labeled instances of a vehicle. A small data set is useful for exploring the YOLO v3 training
procedure, but in practice, more labeled images are needed to train a robust network.

Unzip the vehicle images and load the vehicle ground truth data.

unzip vehicleDatasetImages.zip
data = load('vehicleDatasetGroundTruth.mat");
vehicleDataset = data.vehicleDataset;

% Add the full path to the local vehicle data folder.
vehicleDataset.imageFilename = fullfile(pwd, vehicleDataset.imageFilename);

h
docid:matlab_env#buytlwx
http://www.vision.caltech.edu/archive.html

B% Variables - data.vehicleDataset

data.vehicleDataset
data.vehicleDataset
1 2
imageFilename vehicle
1 [vehiclelmages/image_00001.jpg’ [220,136,35,28]
2 [wehiclelmagesfimage 00002,jpg' [175,126,61,45]
3 [wehiclelmages/image 00003.)pg’ [108,120,45,33]
4 |'vehiclelmages/image 00004.jpg' [124,112,38,36]
5 [wehiclelmages/image 00005.)pg’ [257,124,43,31]
6 [wehiclelmagesfimage 00006.pg' [364,108,29,33]
7 |vehiclelmages/image 00007, jpg' [180,124,54,47]
8 [wvehiclelmages/image 00008.jpg' [178,127,40,35]
9 [wehiclelmages/image_00009.pg’ [171,120,38,31]
10 [vehiclelmagesfimage 00010.jpg' [169,117,43,38]
11 [wehiclelmages/image 00011.jpg’ [164,115,57,49]
12 [wehiclelmages/image 00012,jpg' [168,122,49,40]
13 lwehiclelmanesfimans 0001 3inn' M7% 124 56 40

Note: In case of multiple classes, the data can also organized as three columns where the first
column contains the image file names with paths, the second column contains the bounding boxes
and the third column must be a cell vector that contains the label names corresponding to each
bounding box. For more information on how to arrange the bounding boxes and labels, see
boxLabelDatastore.

All the bounding boxes must be in the form [x y width height]. This vector specifies the upper
left corner and the size of the bounding box in pixels.

Split the data set into a training set for training the network, and a test set for evaluating the network.
Use 60% of the data for training set and the rest for the test set.

rng(e);

shuffledIndices randperm(height(vehicleDataset));

idx = floor(@.6 * length(shuffledIndices));

trainingDataTbl = vehicleDataset(shuffledIndices(1:idx), :);
testDataTbl = vehicleDataset(shuffledIndices(idx+l:end), :);

Create an image datastore for loading the images.

imdsTrain = imageDatastore(trainingDataTbl.imageFilename);
imdsTest = imageDatastore(testDataTbl.imageFilename);

Create a datastore for the ground truth bounding boxes.

bldsTrain = boxLabelDatastore(trainingDataTbl(:, 2:end));
bldsTest = boxLabelDatastore(testDataTbl(:, 2:end));

Combine the image and box label datastores.

trainingData = combine(imdsTrain, bldsTrain);

docid:vision_ref#mw_ea7fe152-be5c-4868-acb6-7c5d7fd40b93

testData = combine(imdsTest, bldsTest);
Use validateInputData to detect invalid images, bounding boxes or labels i.e.,

e Samples with invalid image format or containing NaNs
e Bounding boxes containing zeros/NaNs/Infs/empty
¢ Missing/non-categorical labels.

The values of the bounding boxes should be finite, positive, non-fractional, non-NaN and should be
within the image boundary with a positive height and width. Any invalid samples must either be
discarded or fixed for proper training.

validateInputData(trainingData);
validateInputData(testData);

Data Augmentation

Data augmentation is used to improve network accuracy by randomly transforming the original data
during training. By using data augmentation, you can add more variety to the training data without
actually having to increase the number of labeled training samples.

Use transform function to apply custom data augmentations to the training data. The augmentData
helper function, listed at the end of the example, applies the following augmentations to the input
data.

e Color jitter augmentation in HSV space
¢ Random horizontal flip
¢ Random scaling by 10 percent

augmentedTrainingData = transform(trainingData, @augmentData);
Read the same image four times and display the augmented training data.

% Visualize the augmented images.

augmentedData = cell(4,1);

for k = 1:4
data = read(augmentedTrainingData);
augmentedData{k} = insertShape(data{1,1}, 'Rectangle', data{1,2});
reset(augmentedTrainingData);

end

figure

montage(augmentedData, 'BorderSize', 10)

Define YOLO v3 Object Detector

The YOLO v3 detector in this example is based on SqueezeNet, and uses the feature extraction
network in SqueezeNet with the addition of two detection heads at the end. The second detection
head is twice the size of the first detection head, so it is better able to detect small objects. Note that
you can specify any number of detection heads of different sizes based on the size of the objects
that you want to detect. The YOLO v3 detector uses anchor boxes estimated using training data to
have better initial priors corresponding to the type of data set and to help the detector learn to predict
the boxes accurately. For information about anchor boxes, see Anchor Boxes for Object Detection.

The YOLO v3 network present in the YOLO v3 detector is illustrated in the following diagram.

You can use Deep Network Designer to create the network shown in the diagram.

docid:vision_ug#mw_f9f22f48-0ad0-4f37-8bc1-22a2046637f2
docid:nnet_ref#mw_301a3a9d-998a-4668-aec4-f94646b76921

X
N
o,
%,
(Al
%

Output

FeatureExtractionNetwork (SqueezeNet)

M FirstDetectionHead

[l secondDetectionHead
& TR ~ | 1ssves
s Found in Message
[5--1H @ |Network Missing output layer. The network must have at least one output layer.
: fireB-squeeze1x1 @ |customOutputConvi | Unconnected output. Each layer output must be connected to the input of another layer.
: el squdes. @ |customOutpuiConv2 | Unconnected oulput. Each layer output must be connected to the input of another layer.
~ -

#firef-expandix1 8 fireB-expand3xd

T 1

@ firef-relu_expand .8
N -

elu_expand

w freBconeat
Y
® freT-squeezetxi
Y
8 FfraTorely_squssz

@ fireT-axpandix1 @ fre7-expangaxd

T 1 ANALYSIS RESULT

fireT-relu_sxpand... @ freT-rely_sxpand...

- - Name Type Activations Learnable Prope...
wfire7-coneat
v 55 |fire@-concat Depth concatenation |14(5) = 14(5) = 512(C) = 1(B) -
® fir=g-squeezetx1 i gl

T ¥ = Convolution 14(5) = 14(5) = 64(C) = 1(8) Weig. 1 x 1 = 512..
® fred-relu_squeez T Bias 1 =1=x64
. =
wred-expandix] W firef-expanddxd S | eaf-rui squeeze Il RelU 14(5) x 14(S) = 64(C) = 1(B) 3
T 1
& firas.ralu_swpand...8 fraBralu_sxpand == |fireG-expandixt Convolution 14(5) * 14(5) = 256(C) * 1(B) Meig. 1x1x64..

Bias 1 =1 x 256

~ - 258 121334 convolutions wi

wfrad-concat

Y

® firzs-squaszeix]
T 30 |fire9-expand3x3 Convolution 14(5) = 14(5) = 256(C) = 1{B)
® Freserely_squesz . 2583 i -

sz |fire9-relu_expandix1 RelU 14(5) = 14(5) = 256(C) = 1(B) -
B

. 3 x3x64.
1x1x25

= fire9-relu_expand3x3 ReLU 14(5) = 14(5) = 256(C) = 1(B) -

#fire-oxpandix! @ firelexpanddxd
1

fired-rely_expand..® fired-relu_expand 5z |fire- Depth concatenation |14(5) = 14(5) = 512(C) = 1(B) =

i - Depth of 2 inputs
Y P————
“ac|fire9-concat = |customConvi Convolution 14(5) = 14(S) = 1824(C) x 1(B) 3 %3 x 512,
, 1024 2x3x512 convoiutions wi % 1=x=1x 10824
wiustomConvl 9 featureCony2
Y 1 5¢ | customBatchNorm1 Balch Normalization [14(5) = 14(5) = 1824(C) * 1(B) 1%1 % 18.
® customBatchNorm 1@ festureBatchNorm2 Battot naamzizalion W 1x1=18.
1 | = |customRelut ReLU 14(5) = 14(5) = 1824(C) = 1(8) =
customReiut o featureReiu2) ReLU
.
& @ custemOutputC e-featureResize? 83 ?‘customoutpumnnw Convolution 14(5) = 14(5) = 18(C) = 1(B) 1x1 = 162.
% 5 12121024 cony n 1x1x18
WEpCancat?, 7 |featureConv2 Convolution 14(5) = 14(5) = 128(C) = 1({B) 1% 1x512.
Y 123 1x1x512 convolutions 1=1x128

customConv2

¥ 55 |featureBatchNorm: Batch Normalization |14(5) = 14(5) = 128(C) = 1(B) Offset 1 =1 x 128

® customBatenNorm2 Batch nom. Scale 11 x 128
! = |featureRelu2 RelU 14(5) = 14(5) = 128(C) = 1(B) =

® customRelu2 RelU

'

® @ customOutputs: - 70 !E,?W,E,R,ES,L,ZE’?,,,._ o Resize 28(5) = 28(5) = 128(C) = 1(B) -

Specify the network input size. When choosing the network input size, consider the minimum size
required to run the network itself, the size of the training images, and the computational cost incurred
by processing data at the selected size. When feasible, choose a network input size that is close to
the size of the training image and larger than the input size required for the network. To reduce the
computational cost of running the example, specify a network input size of [227 227 3].

networkInputSize = [227 227 3];

First, use transform to preprocess the training data for computing the anchor boxes, as the training
images used in this example are bigger than 227-by-227 and vary in size. Specify the number of
anchors as 6 to achieve a good tradeoff between number of anchors and mean loU. Use the
estimateAnchorBoxes function to estimate the anchor boxes. For details on estimating anchor
boxes, see Estimate Anchor Boxes From Training Data. In case of using a pretrained YOLOv3
object detector, the anchor boxes calculated on that particular training dataset need to be specified.
Note that the estimation process is not deterministic. To prevent the estimated anchor boxes from
changing while tuning other hyperparameters set the random seed prior to estimation using rng.

rng(o)

trainingDataForEstimation = transform(trainingData, @(data)preprocessData(data,
networkInputSize));

numAnchors = 6;

[anchors, meanIoU] = estimateAnchorBoxes(trainingDataForEstimation, numAnchors)

anchors =
41 34
159 131
98 93
143 121
33 23
69 66

Specify anchorBoxes to use in both the detection heads. anchorBoxes is a cell array of [Mx1],
where M denotes the number of detection heads. Each detection head consists of a [Nx2] matrix of
anchors, where N is the number of anchors to use. Select anchorBoxes for each detection head
based on the feature map size. Use larger anchors at lower scale and smaller anchors at higher
scale. To do so, sort the anchors with the larger anchor boxes first and assign the first three to the
first detection head and the next three to the second detection head.

area = anchors(:, 1).*anchors(:, 2);

[~, idx] = sort(area, 'descend');

anchors = anchors(idx, :);

anchorBoxes = {anchors(1:3,:)
anchors(4:6,:)

}s
anchorBoxes =
1
1 [159,131;143,121;98,93]
2 [69,66;41,34;33,23]

Load the SqueezeNet network pretrained on Imagenet data set and then specify the class names.
You can also choose to load a different pretrained network trained on COCO data set such as tiny-

docid:vision_ug#mw_671cb7a6-5a7a-4147-acf3-3e1fd7d3dfd7

yolov3-coco or darknet53-coco or Imagenet data set such as MobileNet-v2 or ResNet-18. YOLO
v3 performs better and trains faster when you use a pretrained network.

baseNetwork = squeezenet;
classNames = trainingDataTbl.Properties.VariableNames(2:end);

Next, create the yolov30ObjectDetector object by adding the detection network source. Choosing
the optimal detection network source requires trial and error, and you can use analyzeNetwork to
find the names of potential detection network source within a network. For this example, use the
fire9-concat and fire5-concat layers as DetectionNetworkSource.

yolov3Detector = yolov3ObjectDetector(baseNetwork, classNames, anchorBoxes,
'DetectionNetworkSource', {'fire9-concat', 'fire5-concat'});

ot squessetxd 2 ﬂrée5—relu_suueeze1x‘i RelLU 28(5) = 28(5) = 32(C) = 1(B)
@ fired-expandix1 # fired-expand3x3 2 fire5-expand1x1 Convolution 28(5) = 28(5) = 128(C) = 1(B) Weig. 1 =1 = 32 .
' | 128 1 nvolutions with stride 1 1 Bias 1 =1 =123
o fired-relu_e 1x1 # firedrelu_expand3x3
ek SR AR 20 |fire5-relu_expandixi ReLU 28(5) = 28(5) = 128(C) = 1(8)
& fred-concat i
Y 3 fire5-expand3x3 Convolution 28(S) = 28(5) = 128(C) = 1(B) Weig. 3 % 3 x 32 .
queezexf 128 3x3+32 convelutions with siride [11 Bias 1 = 1 = 128

lu_squeezetxt

fire5-relu_expand3x3 RelLU 28(S) = 28(5) = 128(C) = 1(B)

@ freS-expandixi ® fire5-expandx3

Depth concatenation |28(5) = 28(5) = 256(C) = 1(B) -

. fireSrely_expandixt # fire5-relu_expand3x3 Max Pooling 14(5) = 14(S) x 256(C) = 1(B)
- Eﬁr‘gﬁicuncm = 2 A 7
i Convolution 14(5) = 14(5) = 48(C) = 1(B) Welg. 1 = 1 = 256..
| = Bias 1 =1 =45
| fire6-relu_squeezeix1 RelU 14(5) = 14(5) = 48(C) = 1(B)
® firs6-squeszeixt RelU
A Gl samezatid a7 ﬂrgﬁ-explanmm) Convolution 14(S) = 14(5) = 192(C) = 1(B) Weig. 1 =1 =48 .
> ol 162 1x1%48 convolulions with stride [1 1 Bias 1 =1 x 192
& fireB-relu_expandix1 4 fireB-rely_expand3x3 = = 7
o ” e Convolution 14(S) = 14(S5) = 256(C) = 1(B) MWeig.. 1 x 1 x 64 ..
- Bias 1 x1 x 256
& fires-concat
RelU 14(S) = 14(5) = 256(C) = 1(B}
o - < Convolution 14(5) = 14(5) = 256(C) = 1(B) Weig. 3 = 3 x 64
& firegorely_squeszeixi fion: Bias 1 =1 x 256
& firel-expandx1 # fire@-expand3x3 & fireS-relu_expand3x3 RelU 14(5) = 14(5) = 256(C) = 1(B)
i | RelU
WARED R Shtind 4 fred-relu_expand3xd sz |fires- Depth concatenation |14(5) = 14(5) = 512(C) = 1(B)
Deqth concatenation of 2 inp

##[fire9-concat|

| Dropout 14(S) = 14(5) = 512(C) = 1(B)
® drop@
! conv10 Convolution 14(5) = 14(5) = 1898(C) = 1(B) Wei. 1 = 1 = 512.
® convid 1000 1x1x512 convolutions with stride ... Bias 1= 1 = 1800
|
@ relu_conviD [elu_convw RelU 14(5) = 14(5) = 1828(C) = 1(B)
! el
@ poolll 5 |pooli0 2-D Global Average... [1({5) = 1(5) = 18@8({C) = 1(B)
t 2D global sverags pooiing

rob
e < |prob Sofimax 1(5) = 1(s) = 1088(C) * 1(B)
® Classificationlayer_predictions ki

ClassificationLayer_predictions Classification Qutput |1(S) = 1(5) = 18@8(C) = 1(B)

Alternatively, instead of the network created above using SqueezeNet, other pretrained YOLOv3
architectures trained using larger datasets like MS-COCO can be used to transfer learn the detector
on custom object detection task. Transfer learning can be realized by changing the classNames and
anchorBoxes.

Preprocess Training Data

Preprocess the augmented training data to prepare for training. The preprocess method in
yolov30ObjectDetector, applies the following preprocessing operations to the input data.

docid:vision_ref#mw_1a017bfe-3e1a-480f-8809-99b30c114bda
docid:vision_ref#mw_0c7c4fdb-8ed2-49bc-8c08-69426d34e866

¢ Resize the images to the network input size by maintaining the aspect ratio.
¢ Scale the image pixels in the range [0 1].

preprocessedTrainingData = transform(augmentedTrainingData,
@(data)preprocess(yolov3Detector, data));

Read the preprocessed training data.
data = read(preprocessedTrainingData);

Display the image with the bounding boxes.

I = data{1,1};

bbox = data{1,2};

annotatedImage = insertShape(I, 'Rectangle', bbox);
annotatedImage = imresize(annotatedImage,2);

figure

imshow(annotatedImage)

Reset the datastore.

reset(preprocessedTrainingData);

Specify Training Options

Specify these training options.

Set the number of epochs to be 80.
Set the mini batch size as 8. Stable training can be possible with higher learning rates when
higher mini batch size is used. Although, this should be set depending on the available
memory.
Set the learning rate to 0.001.
Set the warmup period as 1000 iterations. This parameter denotes the number of iterations
to increase the learning rate exponentially based on the formula

iteration)4
warmupPeriod/ |t helps in stabilizing the gradients at higher learning rates.
Set the L2 regularization factor to 0.0005.
Specify the penalty threshold as 0.5. Detections that overlap less than 0.5 with the ground
truth are penalized.
Initialize the velocity of gradient as []. This is used by SGDM to store the velocity of
gradients.

learningRate X (

numEpochs = 80;
miniBatchSize = 8;
learningRate = 0.001;
warmupPeriod = 1000;
12Regularization = 0.0005;
penaltyThreshold = 0.5;
velocity = [];

Train Model

Train on a GPU, if one is available. Using a GPU requires Parallel Computing Toolbox™ and a
CUDA® enabled NVIDIA® GPU. For information about the supported compute capabilities, see
GPU Support by Release.

Use the minibatchqueue function to split the preprocessed training data into batches with the
supporting function createBatchData which returns the batched images and bounding boxes
combined with the respective class IDs. For faster extraction of the batch data for training,
dispatchInBackground should be set to "true" which ensures the usage of parallel pool.

minibatchqueue automatically detects the availability of a GPU. If you do not have a GPU, or do not
want to use one for training, set the OutputEnvironment parameter to "cpu".

if canUseParallelPool

dispatchInBackground = true;
else
dispatchInBackground = false;

end

docid:distcomp_ug#mw_57e04559-0b60-42d5-ad55-e77ec5f5865f

mbgTrain = minibatchqueue(preprocessedTrainingData, 2,...

"MiniBatchSize", miniBatchSize,...

"MiniBatchFcn", @(images, boxes, labels) createBatchData(images, boxes,
labels, classNames),

"MiniBatchFormat", ["SSCB", ""],...

"DispatchInBackground", dispatchInBackground,...

"OutputCast", ["", "double"]);

Create the training progress plotter using supporting function
configureTrainingProgressPlotter to see the plot while training the detector object with a
custom training loop.

Finally, specify the custom training loop. For each iteration:

¢ Read data from the minibatchqueue. If it doesn't have any more data, reset the
minibatchqueue and shuffle.

¢ Evaluate the model gradients using d1feval and the modelGradients function. The
function modelGradients, listed as a supporting function, returns the gradients of the loss
with respect to the learnable parameters in net, the corresponding mini-batch loss, and the
state of the current batch.

e Apply a weight decay factor to the gradients to regularization for more robust training.

¢ Determine the learning rate based on the iterations using the
piecewiselLearningRateWithWarmup supporting function.

e Update the detector parameters using the sgdmupdate function.

e Update the state parameters of detector with the moving average.

¢ Display the learning rate, total loss, and the individual losses (box loss, object loss and class
loss) for every iteration. These can be used to interpret how the respective losses are
changing in each iteration. For example, a sudden spike in the box loss after few iterations
implies that there are Inf or NaNs in the predictions.

e Update the training progress plot.

The training can also be terminated if the loss has saturated for few epochs.
if doTraining
% Create subplots for the learning rate and mini-batch loss.
fig = figure;
[lossPlotter, learningRatePlotter] = configureTrainingProgressPlotter(fig);
iteration = 0;
% Custom training loop.

for epoch = 1:numEpochs

reset(mbqTrain);
shuffle(mbgTrain);

while(hasdata(mbqTrain))

iteration = iteration + 1;
[XTrain, YTrain] = next(mbqTrain);

% Evaluate the model gradients and loss using dlfeval and the

% modelGradients function.

[gradients, state, lossInfo] = dlfeval(@modelGradients,
yolov3Detector, XTrain, YTrain, penaltyThreshold);

% Apply L2 regularization.

gradients = dlupdate(@(g,w) g + 12Regularization*w, gradients,
yolov3Detector.Learnables);

% Determine the current learning rate value.
currentLR = piecewiselLearningRateWithWarmup(iteration, epoch,
learningRate, warmupPeriod, numEpochs);

% Update the detector learnable parameters using the SGDM optimizer.
[yolov3Detector.Learnables, velocity] =
sgdmupdate(yolov3Detector.Learnables, gradients, velocity, currentLR);

% Update the state parameters of dlnetwork.
yolov3Detector.State = state;

% Display progress.
displayLossInfo(epoch, iteration, currentLR, lossInfo);

% Update training plot with new points.
updatePlots(lossPlotter, learningRatePlotter, iteration, currentLR,
lossInfo.totalloss);
end
end
else
yolov3Detector = preTrainedDetector;
end

Starting parallel pool (parpool) using the 'Processes’ profile ...

Connected to the parallel pool (number of workers: 4).

Epoch: 1| Iteration : 1| Learning Rate: 1e-15 | Total Loss : 2039.7584 | Box Loss : 3.6046 | Object Loss : 2035.6167 | Class Loss : 0.53712
Epoch: 1| Iteration: 2 | Learning Rate : 1.6e-14 | Total Loss : 2039.111 | Box Loss : 1.8679 | Object Loss : 2036.5901 | Class Loss : 0.653

Epoch: 1| Iteration: 3| Learning Rate : 8.1e-14 | Total Loss : 2040,2465 | Box Loss : 40019 | Object Loss : 2035.5315 | Class Loss : 0.71301
Epoch: 1| Iteration : 4 | Learning Rate : 2.56e-13 | Total Loss : 2038.1058 | Box Loss : 6.0349 | Object Loss : 2031.5471 | Class Loss : 0.52376
Epoch: 1| Iteration : 5| Learning Rate : 6.25e-13 | Total Loss : 2036.6228 | Box Loss : 3.2029 | Object Loss : 2032.6777 | Class Loss : 0.74224
Epoch: 1| Iteration : 6 | Learning Rate : 1.296e-12 | Total Loss : 2053.8889 | Box Loss : 2.8815 | Object Loss : 2050.2905 | Class Loss : 0.71679
Epoch: 1| Iteration: 7| Learning Rate : 2.401e-12 | Total Loss : 2049.2183 | Box Loss : 2.0645 | Object Loss : 20464749 | Class Loss : 0.67886
Epoch: 1| Iteration : 8 | Learning Rate : 4.096e-12 | Total Loss : 2043.5309 | Box Loss : 4.4251 | Object Loss : 2038.4241 | Class Loss : 0.68174
Epoch: 1| iteration: 9 | Learning Rate : 6.561e-12 | Total Loss : 2040.01 | Box Loss : 1.9779 | Object Loss : 2037.3914 | Class Loss : 0.64071
Epoch: 1| Iteration : 10 | Learning Rate : le-11 | Total Loss : 2039.1467 | Box Loss : 3.0199 | Object Loss : 2035.7871 | Class Loss : 0.33968
Epoch: 1| iteration: 11 | Learning Rate : 1.4641e-11 | Total Loss : 2033.5656 | Box Loss : 3.3712 | Object Loss : 2029.441 | Class Loss : 0.75325
Epoch: 1| Iteration : 12 | Learning Rate : 2.0736e-11 | Total Loss : 2025.2057 | Box Loss : 2.256 | Object Loss : 2022.5033 | Class Loss : 0.44628
Epoch: 1| Iteration : 13 | Learning Rate : 2.8561e-11 | Total Loss : 2024.9935 | Box Loss : 1.7195 | Object Loss : 2022.5596 | Class Loss : 0.71451
Epoch: 1| Iteration : 14 | Learning Rate : 3.8416e-11 | Total Loss : 2033.99 | Box Loss : 4.2615 | Object Loss : 2028.7534 | Class Loss : 0.97508
Epoch: 1| Iteration : 15 | Learning Rate : 5.0625¢e-11 | Total Loss : 2045.5712 | Box Loss : 5.5158 | Object Loss : 2039.7009 | Class Loss : 0.35435
Epoch: 1] Iteration : 16 | Learning Rate : 6.5536e-11 | Total Loss : 2040.9429 | Box Loss : 2.0156 | Object Loss : 2038.3127 | Class Loss : 0.61456
Epoch: 1| Iteration : 17 | Learning Rate : 8.3521e-11 | Total Loss : 2043.8091 | Box Loss : 3.3074 | Object Loss : 2039.9788 | Class Loss : 0.52297
Frnnrch+ 1 | iteratinn * 1R | | earnino Rate « 1 NAGRa-10 | Tntal | nce + 207/ 72371 | Rnv I ncc - 1 11R1 | Ohiart | nec - 70174 6370 | Clacc | nec - N RRATA

x103

Learning Rate
o o o
= o [

o
o
T

1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Iteration

Total Loss
=
[=]
s

o

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Iteration

Evaluate Model

Computer Vision Toolbox™ provides object detector evaluation functions to measure common
metrics such as average precision (evaluateDetectionPrecision) and log-average miss rates
(evaluateDetectionMissRate). In this example, the average precision metric is used. The average
precision provides a single number that incorporates the ability of the detector to make correct
classifications (precision) and the ability of the detector to find all relevant objects (recall).

results = detect(yolov3Detector,testData, '"MiniBatchSize',8);

% Evaluate the object detector using Average Precision metric.
[ap,recall,precision] = evaluateDetectionPrecision(results,testData);

The precision-recall (PR) curve shows how precise a detector is at varying levels of recall. Ideally,
the precision is 1 at all recall levels.

% Plot precision-recall curve.
figure

plot(recall,precision)

xlabel('Recall")

ylabel('Precision")

grid on

title(sprintf('Average Precision = %.2f"', ap))

Average Precision = 0.80

T L] L] L] L] T T T

0.99

Frecision
L] [}
o o
=] (=]

=

o

&n
T

=]

e

L
T

0.94

093 L L L

0 01 0:2 0.3 0.4 0.5 0.6 0.7
Recall

Detect Objects Using YOLO v3

Use the detector for object detection.

% Read the datastore.
data = read(testData);

% Get the image.
I = data{1};

[bboxes,scores,labels] = detect(yolov3Detector,I);

% Display the detections on image.
I = insertObjectAnnotation(I, 'rectangle’',bboxes,scores);

figure

0.3

0.9

imshow(I)

Supporting Functions
Model Gradients Function

The function modelGradients takes the yolov30ObjectDetector object, a mini-batch of input data
XTrain with corresponding ground truth boxes YTrain, the specified penalty threshold as input
arguments and returns the gradients of the loss with respect to the learnable parameters in
yolov30ObjectDetector, the corresponding mini-batch loss information, and the state of the current
batch.

The model gradients function computes the total loss and gradients by performing these operations.

¢ Generate predictions from the input batch of images using the forward method.

e Collect predictions on the CPU for postprocessing.

e Convert the predictions from the YOLO v3 grid cell coordinates to bounding box coordinates
to allow easy comparison with the ground truth data by using the anchorBoxGenerator
method of yolov30ObjectDetector.

¢ Generate targets for loss computation by using the converted predictions and ground truth
data. These targets are generated for bounding box positions (x, y, width, height), object
confidence, and class probabilities. See the supporting function generateTargets.

¢ Calculates the mean squared error of the predicted bounding box coordinates with target
boxes. See the supporting function bboxOffsetLoss.

e Determines the binary cross-entropy of the predicted object confidence score with target
object confidence score. See the supporting function objectnessLoss.

¢ Determines the binary cross-entropy of the predicted class of object with the target. See the
supporting function classConfidencelLoss.

e Computes the total loss as the sum of all losses.

e Computes the gradients of learnables with respect to the total loss.

function [gradients, state, info] = modelGradients(detector, XTrain, YTrain,
penaltyThreshold)
inputImageSize = size(XTrain,1:2);

% Gather the ground truths in the CPU for post processing
YTrain = gather(extractdata(YTrain));

% Extract the predictions from the detector.
[gatheredPredictions, YPredCell, state] = forward(detector, XTrain);

% Generate target for predictions from the ground truth data.
[boxTarget, objectnessTarget, classTarget, objectMaskTarget, boxErrorScale] =
generateTargets(gatheredPredictions,...
YTrain, inputImageSize, detector.AnchorBoxes, penaltyThreshold);

% Compute the loss.

boxLoss = bboxOffsetLoss(YPredCell(:,[2 3 7
8]),boxTarget,objectMaskTarget,boxErrorScale);

objLoss = objectnessLoss(YPredCell(:,1),objectnessTarget,objectMaskTarget);
clsLoss = classConfidencelLoss(YPredCell(:,6),classTarget,objectMaskTarget);
totalLoss = boxLoss + objLoss + clslLoss;

info.boxLoss = boxLoss;
info.objLoss = objlLoss;
info.clslLoss = clsloss;
info.totallLoss = totalloss;

% Compute gradients of learnables with regard to loss.
gradients = dlgradient(totallLoss, detector.Learnables);
end

function boxLoss = bboxOffsetLoss(boxPredCell, boxDeltaTarget, boxMaskTarget,
boxErrorScaleTarget)

% Mean squared error for bounding box position.

lossX = sum(cellfun(@(a,b,c,d)
mse(a.*c.*d,b.*c.*d),boxPredCell(:,1),boxDeltaTarget(:,1),boxMaskTarget(:,1),box
ErrorScaleTarget));

lossY = sum(cellfun(@(a,b,c,d)
mse(a.*c.*d,b.*c.*d),boxPredCell(:,2),boxDeltaTarget(:,2),boxMaskTarget(:,1),box
ErrorScaleTarget));

lossW = sum(cellfun(@(a,b,c,d)
mse(a.*c.*d,b.*c.*d),boxPredCell(:,3),boxDeltaTarget(:,3),boxMaskTarget(:,1),box
ErrorScaleTarget));

lossH = sum(cellfun(@(a,b,c,d)
mse(a.*c.*d,b.*c.*d),boxPredCell(:,4),boxDeltaTarget(:,4),boxMaskTarget(:,1),box

ErrorScaleTarget));
boxLoss = lossX+lossY+lossW+lossH;
end

function objLoss = objectnessLoss(objectnessPredCell, objectnessDeltaTarget,
boxMaskTarget)

% Binary cross-entropy loss for objectness score.

objLoss = sum(cellfun(@(a,b,c)
crossentropy(a.*c,b.*c, 'TargetCategories', 'independent'),objectnessPredCell,obje
ctnessDeltaTarget,boxMaskTarget(:,2)));

end

function clsLoss = classConfidenceloss(classPredCell, classTarget,
boxMaskTarget)

% Binary cross-entropy loss for class confidence score.

clsLoss = sum(cellfun(@(a,b,c)
crossentropy(a.*c,b.*c, 'TargetCategories', 'independent"'),classPredCell,classTarg
et,boxMaskTarget(:,3)));

end

Augmentation and Data Processing Functions

function data = augmentData(A)

% Apply random horizontal flipping, and random X/Y scaling. Boxes that get
% scaled outside the bounds are clipped if the overlap is above 0.25. Also,
% jitter image color.

data = cell(size(A));

for ii = 1:size(A,1)
I = A{ii,1};
bboxes = A{ii,2};
labels = A{ii,3};
sz = size(I);

if numel(sz) == 3 && sz(3) == 3
I = jitterColorHsSV(I,...
‘Contrast',0.0,...
'Hue',0.1,...
'Saturation',0.2,...
‘Brightness’,0.2);
end

% Randomly flip image.
tform = randomAffine2d('XReflection',true, 'Scale',[1 1.1]);

rout = affineOutputView(sz,tform, 'BoundsStyle', 'centerOutput’);
I = imwarp(I,tform, 'OutputView',rout);

% Apply same transform to boxes.

[bboxes,indices] = bboxwarp(bboxes,tform,rout, 'OverlapThreshold',0.25);
bboxes = round(bboxes);

labels = labels(indices);

% Return original data only when all boxes are removed by warping.
if isempty(indices)
data(ii,:) = A(ii,:);
else
data(ii,:)

{I, bboxes, labels};

end
end
end

function data = preprocessData(data, targetSize)
% Resize the images and scale the pixels to between @ and 1. Also scale the
% corresponding bounding boxes.

for ii = 1:size(data,1)
I = data{ii,1};
imgSize = size(I);

% Convert an input image with single channel to 3 channels.
if numel(imgSize) < 3
I = repmat(I,1,1,3);
end
bboxes = data{ii,2};

I = im2single(imresize(I,targetSize(1:2)));
scale = targetSize(1:2)./imgSize(1:2);
bboxes = bboxresize(bboxes,scale);

data(ii, 1:2) = {I, bboxes};
end
end

function [XTrain, YTrain] = createBatchData(data, groundTruthBoxes,
groundTruthClasses, classNames)

% Returns images combined along the batch dimension in XTrain and
% normalized bounding boxes concatenated with classIDs in YTrain

% Concatenate images along the batch dimension.
XTrain = cat(4, data{:,1});

% Get class IDs from the class names.
classNames = repmat({categorical(classNames')}, size(groundTruthClasses));

[~, classIndices] = cellfun(@(a,b)ismember(a,b), groundTruthClasses, classNames,
'UniformOutput’', false);

% Append the label indexes and training image size to scaled bounding boxes

% and create a single cell array of responses.

combinedResponses = cellfun(@(bbox, classid)[bbox, classid], groundTruthBoxes,
classIndices, 'UniformOutput', false);

len = max(cellfun(@(x)size(x,1), combinedResponses));

paddedBBoxes = cellfun(@(v) padarray(v,[len-size(v,1),0],0, 'post'),
combinedResponses, 'UniformOutput’',false);

YTrain = cat(4, paddedBBoxes{:,1});

end

Learning Rate Schedule Function

function currentLR = piecewiselearningRateWithWarmup(iteration, epoch,
learningRate, warmupPeriod, numEpochs)

% The piecewiselLearningRateWithWarmup function computes the current

% learning rate based on the iteration number.

persistent warmUpEpoch;

if iteration <= warmupPeriod
% Increase the learning rate for number of iterations in warmup period.
currentLR = learningRate * ((iteration/warmupPeriod)”4);
warmUpEpoch = epoch;
elseif iteration >= warmupPeriod && epoch < warmUpEpoch+floor(@.6*(numEpochs-
warmUpEpoch))
% After warm up period, keep the learning rate constant if the remaining
number of epochs is less than 60 percent.
currentLR = learningRate;

elseif epoch >= warmUpEpoch + floor(@.6*(numEpochs-warmUpEpoch)) && epoch <
warmUpEpoch+floor(0.9* (numEpochs-warmUpEpoch))
% If the remaining number of epochs is more than 60 percent but less
% than 90 percent multiply the learning rate by 0.1.
currentLR = learningRate*0.1;

else

% If remaining epochs are more than 90 percent multiply the learning
% rate by 0.01.

currentLR = learningRate*0.01;

end

end

Utility Functions

function [lossPlotter, learningRatePlotter] =
configureTrainingProgressPlotter(f)

% Create the subplots to display the loss and learning rate.
figure(f);

clf

subplot(2,1,1);

ylabel('Learning Rate');

xlabel('Iteration');

learningRatePlotter = animatedline;
subplot(2,1,2);

ylabel('Total Loss');

xlabel('Iteration');

lossPlotter = animatedline;

end

function displayLossInfo(epoch, iteration, currentLR, lossInfo)
% Display loss information for each iteration.

disp("Epoch : " + epoch + " | Iteration : " + iteration + " | Learning Rate : "
+ currentLR + ...

" | Total Loss : " + double(gather(extractdata(lossInfo.totallLoss))) + ...

" | Box Loss : " + double(gather(extractdata(lossInfo.boxLoss))) + ...

" | object Loss : " + double(gather(extractdata(lossInfo.objlLoss))) + ...

" | Class Loss : " + double(gather(extractdata(lossInfo.clslLoss))));

end

function updatePlots(lossPlotter, learningRatePlotter, iteration, currentLR,
totallLoss)

% Update loss and learning rate plots.

addpoints(lossPlotter, iteration, double(extractdata(gather(totallLoss))));
addpoints(learningRatePlotter, iteration, currentLR);

drawnow

end

function detector = downloadPretrainedYOLOv3Detector()
% Download a pretrained yolov3 detector.
if ~exist('yolov3SqueezeNetVehicleExample 21aSPKG.mat', 'file')
if ~exist('yolov3SqueezeNetVehicleExample 21aSPKG.zip', 'file')
disp('Downloading pretrained detector...');

pretrainedURL =
"https://ssd.mathworks.com/supportfiles/vision/data/yolov3SqueezeNetVehicleExamp
le_21aSPKG.zip';
websave('yolov3SqueezeNetVehicleExample 21aSPKG.zip', pretrainedURL);
end
unzip('yolov3SqueezeNetVehicleExample 21aSPKG.zip');
end
pretrained = load("yolov3SqueezeNetVehicleExample 21aSPKG.mat");
detector = pretrained.detector;
end

References

[1] Redmon, Joseph, and Ali Farhadi. “YOLOv3: An Incremental Improvement.” Preprint, submitted
April 8, 2018. https://arxiv.org/abs/1804.02767.

Object Detection Using SSD Deep Learning

This example shows how to train a Single Shot Detector (SSD).

Overview

Deep learning is a powerful machine learning technique that automatically learns image features
required for detection tasks. There are several techniques for object detection using deep learning
such as Faster R-CNN, You Only Look Once (YOLO v2), and SSD. This example trains an SSD
vehicle detector using the trainSSDObjectDetector function. For more information, see Object

Detection.

Download Pretrained Detector

Download a pretrained detector to avoid having to wait for training to complete. If you want to train
the detector, set the doTraining variable to true.

doTraining = false;
if ~doTraining && ~exist('ssdResNet560VehicleExample 2@a.mat’, "‘file')
disp('Downloading pretrained detector (44 MB)...');
pretrainedURL =
"https://www.mathworks.com/supportfiles/vision/data/ssdResNet50VehicleExample_20
a.mat';
websave('ssdResNet50VehicleExample 20a.mat',pretrainedURL);
end

Load Dataset

This example uses a small vehicle data set that contains 295 images. Many of these images come
from the Caltech Cars 1999 and 2001 data sets, available at the Caltech Computational Vision
website, created by Pietro Perona and used with permission. Each image contains one or two
labeled instances of a vehicle. A small data set is useful for exploring the SSD training procedure,
but in practice, more labeled images are needed to train a robust detector.

unzip vehicleDatasetImages.zip
data = load('vehicleDatasetGroundTruth.mat"');
vehicleDataset = data.vehicleDataset;

The training data is stored in a table. The first column contains the path to the image files. The
remaining columns contain the ROI labels for vehicles. Display the first few rows of the data.

vehicleDataset(1:4,:)

ans = 4x2 table
imageFilename vehicle

1'vehiclelmages/image 00001.jpg' [220,136,35,28]

docid:vision_doccenter#mw_aaf5fff6-de25-40fc-9e3c-d08887a91e90
docid:vision_doccenter#mw_aaf5fff6-de25-40fc-9e3c-d08887a91e90
http://www.vision.caltech.edu/archive.html

2'vehiclelmages/image_00002.jpg' [175,126,61,45]
3'vehiclelmages/image_00003.jpg' [108,120,45,33]
4'vehiclelmages/image_00004.jpg' [124,112,38,36]

Split the data set into a training set for training the detector and a test set for evaluating the detector.
Select 60% of the data for training. Use the rest for evaluation.

rng(e);

shuffledIndices = randperm(height(vehicleDataset));

idx = floor(@.6 * length(shuffledIndices));
trainingData = vehicleDataset(shuffledIndices(1:idx),:);
testData = vehicleDataset(shuffledIndices(idx+l:end),:);

Use imageDatastore and boxLabelDatastore to load the image and label data during training and
evaluation.

imdsTrain
bldsTrain

imageDatastore(trainingDataq{:, 'imageFilename'});
boxLabelDatastore(trainingData(:, 'vehicle'));

imdsTest = imageDatastore(testData{:, 'imageFilename'});
bldsTest = boxLabelDatastore(testData(:, 'vehicle'));

Combine image and box label datastores.

trainingData = combine(imdsTrain,bldsTrain);
testData = combine(imdsTest, bldsTest);

Display one of the training images and box labels.

data = read(trainingData);

I = data{1};

bbox = data{2};

annotatedImage = insertShape(I, 'Rectangle’,bbox);
annotatedImage = imresize(annotatedImage,2);
figure

imshow(annotatedImage)

Create a SSD Object Detection Network

The SSD object detection network can be thought of as having two sub-networks. A feature
extraction network, followed by a detection network.

The feature extraction network is typically a pretrained CNN (see pretrained CNN for more details).
This example uses ResNet-50 for feature extraction. Other pretrained networks such as MobileNet
v2 or ResNet-18 can also be used depending on application requirements. The detection sub-
network is a small CNN compared to the feature extraction network and is composed of a few
convolutional layers and layers specific to SSD.

Use the ssdLayers function to automatically modify a pretrained ResNet-50 network into a SSD
object detection network. ssdLayers requires you to specify several inputs that parameterize the
SSD network, including the network input size and the number of classes. When choosing the
network input size, consider the size of the training images, and the computational cost incurred by
processing data at the selected size. When feasible, choose a network input size that is close to the
size of the training image. However, to reduce the computational cost of running this example, the
network input size is chosen to be [300 300 3]. During training, trainSSDObjectDetector
automatically resizes the training images to the network input size.

inputSize = [300 300 3];

Define number of object classes to detect.

docid:nnet_ug#bvf9ych-1

numClasses = width(vehicleDataset)-1;
Create the SSD object detection network.
lgraph = ssdLayers(inputSize, numClasses, 'resnet50');

You can visualize the network using analyzeNetwork or DeepNetworkDesigner from Deep
Learning Toolbox™. Note that you can also create a custom SSD network layer-by-layer. For more
information, see Create SSD Object Detection Network.

Data Augmentation

Data augmentation is used to improve network accuracy by randomly transforming the original data
during training. By using data augmentation, you can add more variety to the training data without
actually having to increase the number of labeled training samples. Use transform to augment the
training data by

¢ Randomly flipping the image and associated box labels horizontally.
¢ Randomly scale the image, associated box labels.
¢ Jitter image color.

Note that data augmentation is not applied to the test data. Ideally, test data should be
representative of the original data and is left unmodified for unbiased evaluation.

augmentedTrainingData = transform(trainingData,@augmentData);
Visualize augmented training data by reading the same image multiple times.

augmentedData = cell(4,1);

for k = 1:4
data = read(augmentedTrainingData);
augmentedData{k} = insertShape(data{l}, 'Rectangle’',data{2});
reset(augmentedTrainingData);

end

figure
montage(augmentedData, 'BorderSize',10)

docid:vision_ug#mw_8dbc8041-7863-4460-a915-bb2de6b55607

Preprocess Training Data

Preprocess the augmented training data to prepare for training.

preprocessedTrainingData =
transform(augmentedTrainingData,@(data)preprocessData(data,inputSize));

Read the preprocessed training data.

data = read(preprocessedTrainingData);
Display the image and bounding boxes.

I = data{1};

bbox = data{2};

annotatedImage = insertShape(I, 'Rectangle’,bbox);
annotatedImage = imresize(annotatedImage,2);

figure
imshow(annotatedImage)

Train SSD Object Detector

Use trainingOptions to specify network training options. Set 'CheckpointPath' to a temporary

location. This enables the saving of partially trained detectors during the training process. If training
is interrupted, such as by a power outage or system failure, you can resume training from the saved
checkpoint.

options = trainingOptions('sgdm',
'MiniBatchSize', 16,
'InitiallLearnRate’,le-1,
'LearnRateSchedule’', 'piecewise’,
'LearnRateDropPeriod', 30,
'LearnRateDropFactor', 0.8,
'MaxEpochs', 300,
'VerboseFrequency', 50,

'CheckpointPath', tempdir,
'Shuffle', 'every-epoch');

Use trainSSDObjectDetector function to train SSD object detector if doTraining to true.
Otherwise, load a pretrained network.

if doTraining
% Train the SSD detector.
[detector, info] =
trainSSDObjectDetector(preprocessedTrainingData, lgraph,options);
else
% Load pretrained detector for the example.
pretrained = load('ssdResNet50VehicleExample_2@a.mat");
detector = pretrained.detector;
end

...

Training an SSD Object Detector for the following object classes:
*vehicle

2 6PU i,
NETATPN S ¢-1E g 1N

® .38 EaelialiE] it BiRE B SR MtB RMSE HEMFnE
(hh: mm: ss)

1 1 00: 00: 02 52. 4445 47. 77% 1. 96 0. 0010
5 50 00: 00: 59 3.7708 99. 80% 1.14 0. 0010
10 100 00: 01: 56 2.6134 99. 84% 0. 88 0. 0010
14 150 00: 02: 50 1. 7091 99. 87% 0.67 0. 0010
19 200 00: 03: 47 1. 2035 99. 92% 0. 48 0. 0010
20 220 00: 04: 06 1. 0571 99. 92% 0. 49 0. 0010

WIES%: ERAEAEH.
Detector training complete.

...

This example is verified on an NVIDIA™ Titan X GPU with 12 GB of memory. If your GPU has less
memory, you may run out of memory. If this happens, lower the 'MiniBatchSize' using the
trainingOptions function. Training this network took approximately 2 hours using this setup.
Training time varies depending on the hardware you use.

As a quick test, run the detector on one test image.

data = read(testData);

I = data{1,1};

I = imresize(I,inputSize(1:2));

[bboxes,scores] = detect(detector,I, 'Threshold', 0.4);

Display the results.
I = insertObjectAnnotation(I, 'rectangle’,bboxes,scores);

figure
imshow(I)

docid:vision_ref#mw_148e066f-76bc-49f7-8185-edea70c9e598

0.80542

Evaluate Detector Using Test Set

Evaluate the trained object detector on a large set of images to measure the performance. Computer
Vision Toolbox™ provides object detector evaluation functions to measure common metrics such as
average precision (evaluateDetectionPrecision) and log-average miss rates
(evaluateDetectionMissRate). For this example, use the average precision metric to evaluate
performance. The average precision provides a single number that incorporates the ability of the
detector to make correct classifications (precision) and the ability of the detector to find all relevant
objects (recall).

Apply the same preprocessing transform to the test data as for the training data. Note that data
augmentation is not applied to the test data. Test data should be representative of the original data
and be left unmodified for unbiased evaluation.

preprocessedTestData =
transform(testData,@(data)preprocessData(data, inputSize));

Run the detector on all the test images.
detectionResults = detect(detector, preprocessedTestData, 'Threshold', 0.4);
Evaluate the object detector using average precision metric.

[ap,recall,precision] = evaluateDetectionPrecision(detectionResults,
preprocessedTestData);

The precision/recall (PR) curve highlights how precise a detector is at varying levels of recall. Ideally,
the precision would be 1 at all recall levels. The use of more data can help improve the average
precision, but might require more training time Plot the PR curve.

figure
plot(recall,precision)

xlabel('Recall’)

ylabel('Precision")

grid on

title(sprintf('Average Precision = %.2f",ap))

Average Precision = 0.83

D9}

Frecision
= =
= (=]

=
[=}]
T

0.5

0.4

0 0.2 0.4 06 0.8 1
Recall

Code Generation

Once the detector is trained and evaluated, you can generate code for the ssdObjectDetector
using GPU Coder™. For more details, see Code Generation For Object Detection Using SSD
example.

Supporting Functions

function B = augmentData(A)

% Apply random horizontal flipping, and random X/Y scaling. Boxes that get
% scaled outside the bounds are clipped if the overlap is above ©.25. Also,
% jitter image color.

B = cell(size(A));

I = A{1};

sz = size(I);

if numel(sz)==3 && sz(3) ==
I = jitterColorHSV(I,...

docid:vision_ug#mw_3571a5d0-b4b8-4965-9a9b-41ac8d8b5360

'Contrast',0.2,...

'Hue',0, ...

'Saturation‘',0.1,...

'Brightness',0.2);
end

% Randomly flip and scale image.

tform = randomAffine2d('XReflection',true, 'Scale',[1 1.1]);
rout = affineOutputView(sz,tform, 'BoundsStyle', 'CenterOutput’);
B{1} = imwarp(I,tform, 'OutputView",rout);

% Sanitize boxes, if needed.
A{2} = helperSanitizeBoxes(A{2}, sz);

% Apply same transform to boxes.
[B{2},indices] = bboxwarp(A{2},tform,rout, 'OverlapThreshold',0.25);
B{3} = A{3}(indices);

% Return original data only when all boxes are removed by warping.
if isempty(indices)
B = A;
end
end

function data = preprocessData(data,targetSize)

% Resize image and bounding boxes to the targetSize.
sz = size(data{1},[1 2]);

scale = targetSize(1:2)./sz;

data{1} = imresize(data{1},targetSize(1:2));

% Sanitize boxes, if needed.
data{2} = helperSanitizeBoxes(data{2}, sz);

% Resize boxes.
data{2} = bboxresize(data{2},scale);
end

References

[1] Liu, Wei, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng Yang Fu,
and Alexander C. Berg. "SSD: Single shot multibox detector." In 14th European Conference on
Computer Vision, ECCV 2016. Springer Verlag, 2016.

	创建简单的CNN网络以用于图像分类
	openExample('nnet/TrainABasicConvolutionalNeuralNe

	使用GoogLeNet对网络摄像头图像进行分类
	openExample('nnet/ClassifyImagesFromWebcamUsingDee

	使用预训练GoogLeNet对新图像进行分类（迁移学习）
	openExample('nnet/TransferLearningUsingGoogLeNetEx

	创建 FasterRCNN 网络并用于目标检测
	openExample('vision/CreateFasterRCNNObjectDetectio
	openExample('deeplearning_shared/DeepLearningFaste

	使用 Yolov3 用于目标检测
	openExample('deeplearning_shared/ObjectDetectionUs

	使用 SSD 用于目标检测
	openExample('deeplearning_shared/ObjectDetectionUs

	Load and Explore Image Data
	Specify Training and Validation Sets
	Define Network Architecture
	Specify Training Options
	Train Network Using Training Data
	Classify Validation Images and Compute Accuracy
	Load Camera and Pretrained Network
	Classify Snapshot from Camera
	Continuously Classify Images from Camera
	Display Top Predictions
	Continuously Classify Images and Display Top Predi
	Load Data
	Load Pretrained Network
	Replace Final Layers
	Freeze Initial Layers
	Train Network
	Classify Validation Images
	Create Fast R-CNN Network
	Add Region Proposal Network (RPN)
	RCNNs Evolution
	Download Pretrained Detector
	Load Data Set
	Create Faster R-CNN Detection Network
	Data Augmentation
	Preprocess Training Data
	Train Faster R-CNN
	Evaluate Detector Using Test Set
	Supporting Functions
	References
	Download Pretrained Network
	Load Data
	Data Augmentation
	Define YOLO v3 Object Detector
	Preprocess Training Data
	Specify Training Options
	Train Model
	Evaluate Model
	Detect Objects Using YOLO v3
	Supporting Functions
	Model Gradients Function
	Augmentation and Data Processing Functions
	Learning Rate Schedule Function
	Utility Functions
	References
	Overview
	Download Pretrained Detector
	Load Dataset
	Create a SSD Object Detection Network
	Data Augmentation
	Preprocess Training Data
	Train SSD Object Detector
	Evaluate Detector Using Test Set
	Code Generation
	Supporting Functions
	References

