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* Motivation:
* High-quality annotated data are usually difficult or expensive to obtain.
* The resulting labels may be class-imbalanced, noisy or human biased.

* It is challenging to learn robust and unbiased models from imperfectly annotated

datasets.
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* Motivation:
* High-quality annotated data are usually difficult or expensive to obtain.
* The resulting labels may be class-imbalanced, noisy or human biased.
* It is challenging to learn robust and unbiased models from imperfectly annotated
datasets.
* Our Contributions:
* A theoretically sound, simple yet effective scheme—Prototype-Anchored Learning (PAL).
* For class-imbalanced learning, PAL can implicitly guarantee balanced representations.

* For learning with noisy labels, we extend the classical symmetric condition and reveal
that PAL can lead to a tighter bound.
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Preliminaries

The softmax loss: For a labeled

dataset D = {(x;, y;)}i=,, the softmax

loss for a k-classification problem is

formulated as

ex wT Z; z
Li — _10 L p( L —2 ) Z
-1 exp(w; z;) ;

where z; = ¢p(x;) € RY (usuallyk < d + 1) (a) (b)

is the learned feature representation vector, Figure 1. Visualization on MNIST (a) and long-tailed MNIST (b) by the
Softmax loss. (a) denotes the class-balanced case by CE, where features
¢e denotes the feature extraction sub- and prototypes are optimized to be perfectly balanced. (b) denotes the
class-imbalanced case by CE, where the majority classes (“0-3”) occupy
most of the feature space, the representations of minority classes (“7-9”)
the linear classifier which is implemented are narrow, and the majority classes have larger norms and angular
distance from other prototypes, and the reverse on the minority classes.

network, W = (W, ..., wy) € R?*¥ denotes

with a linear layer.
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Preliminaries

Margin-based loss: By requiring features
and prototypes on the unit sphere,
margin-based losses!!l introduce a margin
to obtain strong discriminativeness:
exp(sw, z + ay)

exp(swy z + ay) + ; exp(swy z)’
iy

Lo = —log

(a) Normalization on features and prototypes (b) PAL-based

[1] Cao et. al. Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss[J]. Advances in Neural Information Processing Systems, 2019, 32: 1567-1578.
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Preliminaries

Margin-based loss: By requiring features
and prototypes on the unit sphere,
margin-based losses!!l introduce a margin

to obtain strong discriminativeness:
exp(sw, z + o)

L, =—-1o :
« - exp(swlz + ay) + Y exp(sw; z)
J7Y

which coincides with the. go?' of tightening Sample Margin: The sample margin of (x, y) is defined as
a class-balanced generalization error

= — —aw ! z— T
bound Y(x,y) = f(w)y Iﬁ?;( f(a’)y w, =z rﬁ?;( w; =z,
Play)lf(®)y < max f ()] _ . .
) Y the sample margin for class j is y; = min v(x;,y;), and
1 . 4 . J
SE; (L”’jm i y_j%j(ﬂ +€j(7j)) the minimal sample margin is Ymin = min{y4, ..., Yx }-

where y; is the sample margin for class j.  We can maximize yy;, to tighten error bound for each class!

[1] Cao et. al. Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss[J]. Advances in Neural Information Processing Systems, 2019, 32: 1567-1578.
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The optimality of maximizing y,in

Lemma 1. [The Optimality Condition of prototypes to Maximize Y inl If Wy, ..., Wy, 24, ..., Zy
k

€ S 1 (2 < k < d + 1), then the maximum of the minimal sample margin yi,, is —, which is
. k—1

uniquely obtained if z; = w,,, Vi, and WlTWj ==y Vi # .

Theorem 2. For balanced datasets (i.e., each class has the same number of samples), if wy, ..., wy,

Z1, .., Zy € $*71 (2 < k < d + 1), then learning with L, that has the same per-class margins (i.e.,
1

aj = a, Vj € |k]) will deduce z; = wy,, Vi, and WlTWj == Vi +j.

[1] Cao et. al. Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss[J]. Advances in Neural Information Processing Systems, 2019, 32: 1567-1578.
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Lemma 1. [The Optimality Condition of prototypes to Maximize Y inl If Wy, ..., Wy, 24, ..., Zy
€ $91 (2 < k < d + 1), then the maximum of the minimal sample margin yi, is i, which is

1

uniquely obtained if z; = w,,, Vi, and WlTWj ==y Vi # .

Theorem 2. For balanced datasets (i.e., each class has the same number of samples), if wy, ..., wy,

Z1, .., Zy € $*71 (2 < k < d + 1), then learning with L, that has the same per-class margins (i.e.,

1

aj = a, Vj € |k]) will deduce z; = wy,, Vi, and WlTWj == Vi +j.

Theorem 3. Under class-imbalanced data distribution (where we have different per-class margins),
LDAM is not classification-calibrated.

[1] Cao et. al. Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss[J]. Advances in Neural Information Processing Systems, 2019, 32: 1567-1578.



Prototype-Anchored Learning (PAL)

Lemma 1 provides the optimality
condition of prototypes to maximizing
the minimal sample margin, that is,
T = ——— \fj = |

Wi Wj = ==, Vi # J.
We then propose to initialize a group of
prototypes that satisfying the above
equation, and this method is called as
prototype-anchored learning (PAL).

The desired prototypes can be easily
obtained according Theorem 2.

def generate_weight (n_classes, n_hiddens,

n_samples = n_classes
scale = 5
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use_relu=False) :

Z = torch.randn(n_samples, n_hiddens) .cuda ()

Z.requires_grad = True

W = torch.randn (n_classes, n_hiddens) .cuda()

W.requires_grad = True
nn.init.kaiming_normal_ (W)

optimizer
scheduler

criterion = nn.CrossEntropyLoss ()
for i in range (epochs) :
if use_relu:

z = F.relu(2)
else:

z = %
w =W
L2_z = F.normalize(z, dim=1)
L2_w = F.normalize(w, dim=1)
out = F.linear(L2_z, L2_w)
loss = criterion(out = scale,

optimizer.zero_grad()

loss.backward()

optimizer.step ()

scheduler.step ()
return W

SGD([Z, W], 1lr=0.1, momentum=0.9, weight_decay=le-4)
CosineAnnealingLR(optimizer, T_max=20000, eta_min=0)

labels)
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Theorem 4. For imbalanced or balanced
datasets, if Wy, ...,Wg, Zq,...,zy € S¢71
(2<k<d+1) where wy,..,wy, are
1
k-1
Vi #j, then learning with L, will
deduce deduce z; = Wy, Vi, and the
. . . k
minimal sample margin y,i, Will be P

anchored and satisfy that Wlij =



PAL for Class-imbalanced Learning

Theorem 4. For imbalanced or balanced
datasets, if Wy, ...,Wg, Zq,...,zy € S¢71
(2<k<d+1) where wy,..,wy, are
anchored and satisfy that Wlij = —i,
Vi #j, then learning with L, will
deduce deduce z; = Wy, Vi, and the

. . . k
minimal sample margin y,i, Will be P

Theorem 5. For imbalanced or balanced
datasets, if ||z;||, < B,Vi € [N]), and the
prototypes wy, ..., Wy are anchored to satisfy

1 . . . :
Wl-TWj =—p ViF) then learning with
the softmax loss will deduce deduce
WT Zi
Yyi“tl

——L—-=1, vi, and obtain the maximum
yillzll4illz2

of the minimal sample margin ynpin-

1.0
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Figure 2. lllustration of
prototypes norms and
feature norms by CE
trained on CIFAR-100-LT
with imbalance ratio 100
under different weight
decays. As can be seen,
the larger weight decay

’w
’ B prototype norms and

(b) histogram of feature norms feature NOrmMs
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Figure 3. Reliability diagrams of ResNet-32 trained by CE on CIFAR-100-LT with
imbalance ratio 100 under different weight decays (wds). As can be seen, an
appropriate larger weight decay can improve both accuracy and confidence.
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The most popular family of loss functions is symmetric losses, which satisfies

k
Z L(F(x),0) = C,¥x € X,V f,
=1

where C is a constant. This symmetric condition theoretically guarantees the noise tolerance by
risk minimization under symmetric label noise, i.e., the global minimizer of the noisy L-risk

RI(F) = EyglL(FGO, )] = Eyy [(1 = n)L(F (0, ) + Sty s LIFG6), 0)] also minimizes the
L-risk R, (f) = EpL(f(x),y), where 1, ; denotes noise rates.

Negative-signed Sample Logit Loss (NSL): Lyg, (f(x),1) = —f(x); = —w] ¢ (x).

... _ : 1 Co
Proposition 6. If the prototypes wy, ..., w;, € S9-1 are anchored to satisfy WlTWj == Vi # J,

then Lyg, (f (x),1) = —w] ¢ (x) is symmetric. More specifically, we have. Y, Lys. (f (%), 1) =
0, and learning with Lyg; will lead to the maximum of y,i, under symmetric label noise.
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Theorem 7. In a multi-class classification problem, given wy, ..., wy, if Z = ¢g(x) is norm-bounded
by B, i.e., ||z||2 < B, then for any loss L(z, i) satisfying Ly, (z) = Y%, L(WTz,1) is A-Lipschitz, we
have the following risk bound under symmetric label noise withn < %:
A 2nAB
R - R * < )
where f and f* denote a global minimizer of RZ (f) and R;(f), respectively.

Proposition 8. In a multi-class classification problem, let wy, ..., wy, € S41(2 < k <d + 1) satisfy
Wl-TWj = —i, Vi # j,if z = ¢pg(x) is norm-bounded by B, i.e., ||z||, < B, then we have the
following risk bound for the CE loss under symmetric label noise with n < %z

D) -G < o
wherec = (1_’;—)]1_1, t = exp(—:%), f and f* denote a global minimizer of RZ(f) and R; (f),
respectively.
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Experimental Results

Table 3. Validation accuracies (%) of different methods on benchmark datasets with clean or symmetric label noise (n € [0.2, 0.4, 0.6, 0.8]).

Table 1. Validation accuracy (%) on ImageNet—LT. The results with The results (mean =+ std) are reported over 3 random runs. The results with positive gains are boldfaced and the best one is underlined.
.. ) ) ) S tric Noise Rat
positive gains are boldfaced and the best one is underlined. Dataset Method Clean (1 = 0.0) 02 yrometric Noise Rate (1) 0.8
Method | Many Medium Few | All CE 99.17£0.04 | 91.40£0.11 7436+029 4932+£0.70 22.32+0.15
FL 99.16 £0.02 | 91494020 7528 +0.10 50254070 22.68+0.14
CE 66.8 36. 71 43.6 GCE 99.15+0.02 | 9890+ 0.03 96.81+023 81.394+0.64 33.07+0.31
9 SCE 9928 +£0.07 | 98914+0.12 97.60+£022 88.00+0.50 47.32+0.99
FL 64.3 37.1 8.2 | 43.7 MNIST NCE+MAE 9942+ 0.02 | 99.18 £ 0.08 9847 +021 9552+ 0.04 73.05+ 0.59
OLIR | 510 408 208 | 413 NTac | phite |puis il mpiom msa
Causal Norm 65.2 47.7 29.8 | 52.0 ) - ' ' ' ' ' ' ' '
NSL 99.24 +£0.03 | 98.994+0.03 9858-+0.11 95994024 59.77+1.98
Balanced Softmax | 63.6 48.4 329 | 52.1 CE+FNPAL 99.24 + 005 | 99.05+0.04 98.66+0.04 97.62+0.15 79.23 + 0.87
LADE 65.1 48.9 334 | 53.0 SCE+FNPAL 99.27 £ 0.04 | 99.06 + 0.05 98.76 - 0.09 97.94 +0.07 88.56 + 1.07
) NCE+RCE+FNPAL | 99.29 +0.04 | 99.04+0.07 98.11+£0.09 94.84 008 79.70 + 1.06
cRT+mixup 63.9 49.1 302 | 51.7 NFL+RCE+FNPAL | 99.29 +£0.06 | 99.02+0.05 98.32+0.14 9538+0.11 76.06 + 0.58
LWS+mixup 62.9 49.8 31.6 | 52.0 CE 90.36 + 025 | 7478 £0.68 57.95+0.12 3821+0.12 18.89 + 0.43
MiSLAS 61.7 51.3 358 | 52.7 FL 89.69 + 025 | 74.194+023 57354027 38.11+0.76 19.39 +0.44
GCE 8937+ 029 | 87.054+021 8243+0.10 68.0540.07 2521+ 0.28
SCE 9124 4+0.19 | 87.34+£001 79.84+043 61.09+0.19 27.19+0.34
,CE"'PAL 69.0 42.5 11.0 | 47.6 CIFARI0 NCE+MAE 89.02+0.09 | 87.06+0.17 83924016 76474025 4501+ 0.31
MiSLAS+PAL 64.0 51.6 324 | 53.3 NCE+RCE 91.124+0.14 | 8921 +0.00 86.03+0.14 80.04+026 51.67+ 1.38
NFL+RCE 91.03+0.15 | 89.104+0.16 8620+0.19 79.58 +0.08 50.03 + 2.78
NSL 88.07+0.12 | 86.464+0.02 8327+0.13 76.17+0.40 46744072
CE+FNPAL 90.69 +£0.11 | 86.3¢+0.37 8130029 7277 +0.41 5146+ 1.10
SCE+FNPAL 91.11+£0.13 | 8730+ 0.06 82.68+022 73.49+0.42 51.99+1.10
S ) o o NCE+RCE+FNPAL | 90.88+0.10 | 89.3¢+0.15 86.65-+0.21 80.28 +0.07 57.21 + 0.22
Table 5 . Top_ 1 Vahdatlon accuracies (%) on Inlnl-WebVISIOH. NFL+RCE+FNPAL 91.16 £+ 0.25 89.49 +0.32 86.66 +=0.08 80.33 +0.15 56.23 + 0.15
CE 70.41 £ 1.17 | 5564 +0.17 4039+046 2200+123 7.37+0.16
Method | CE FL NCE+RCE NSL CE+PAL CE+FNPAL FL 7056 +0.59 | 56.024+0.80 40.41+039 22.11+030 7.70 + 0.20
GCE 63.06 £1.00 | 62.154+0.66 57.11+143 45994+1.00 18.32+0.36
SCE 70.41 £0.63 | 5505+0.68 39.60+£0.14 21.53+072 7.82+0.30
Acc ’ 62.60 63.80 66.32 69.56 68.92 69.69 CIFAR100 NCE+MAE 67.16 £ 0.13 | 5234+0.12 35814042 1929+029 7.31+0.23
NCE+RCE 68.09+£ 026 | 6432+040 58.114+0.63 4594+131 2522+0.08
NFL+RCE 67.58 £ 039 | 64.48£0.50 57.86+0.12 4674 £0.59 24.55 L 0.47
NSL 70.08 £ 0.19 | 6530+£036 56774052 4121+1.01 12.16+0.96
CE+FNPAL 71.69 £ 027 | 6538 +£0.17 57244036 41.35+0.19 12.12+0.88
SCE+FNPAL 70.87 £ 0.45 | 6530 +0.15 55.10+0.45 39.73+0.04 11.70 + 0.53
NCE+RCE+FNPAL | 6929 +032 | 65.534+0.30 60.53+027 49.7340.64 24.54+ 028
NFL+RCE+FNPAL | 69.534+0.05 | 65.94+0.32 60.89+0.60 50.10+0.40 24.15+ 1.06




Thanks for your attention!

Any question? Please contact us!

Xianming Liu: : csxm@hit.edu.cn
Xiong Zhou: cszx@hit.edu.cn



