

Prototype-Anchored Learning For Learning With Imperfect Annotations

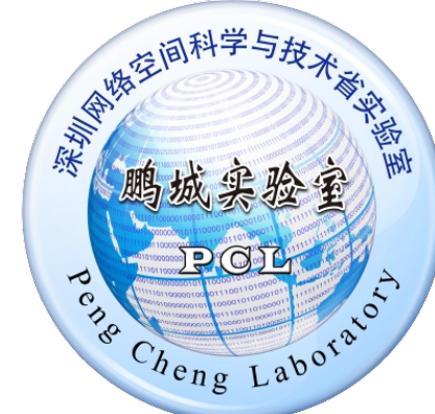
Xiong Zhou¹, Xianming Liu^{1 2}, Deming Zhai¹,
Junjun Jiang^{1 2}, Xin Gao^{3 2}, Xiangyang Ji⁴

¹ Harbin Institute of Technology

² Peng Cheng Laboratory

³ King Abdullah University of Science and Technology

⁴ Tsinghua University



Motivation and Our Contributions

- Motivation:
 - High-quality annotated data are usually difficult or expensive to obtain.
 - The resulting labels may be class-imbalanced, noisy or human biased.
 - It is challenging to learn robust and unbiased models from imperfectly annotated datasets.

Motivation and Our Contributions

- Motivation:
 - High-quality annotated data are usually difficult or expensive to obtain.
 - The resulting labels may be class-imbalanced, noisy or human biased.
 - It is challenging to learn robust and unbiased models from imperfectly annotated datasets.
- Our Contributions:
 - A theoretically sound, simple yet effective scheme—Prototype-Anchored Learning (PAL).
 - For class-imbalanced learning, PAL can implicitly guarantee balanced representations.
 - For learning with noisy labels, we extend the classical symmetric condition and reveal that PAL can lead to a tighter bound.

Preliminaries

The softmax loss: For a labeled dataset $D = \{(x_i, y_i)\}_{i=1}^N$, the softmax loss for a k -classification problem is formulated as

$$L_i = -\log \frac{\exp(\mathbf{w}_{y_i}^\top \mathbf{z}_i)}{\sum_{j=1}^k \exp(\mathbf{w}_j^\top \mathbf{z}_i)},$$

where $\mathbf{z}_i = \phi_\Theta(x_i) \in \mathbb{R}^d$ (usually $k \leq d + 1$) is the learned feature representation vector, ϕ_Θ denotes the feature extraction sub-network, $W = (w_1, \dots, w_k) \in \mathbb{R}^{d \times k}$ denotes the linear classifier which is implemented with a linear layer.

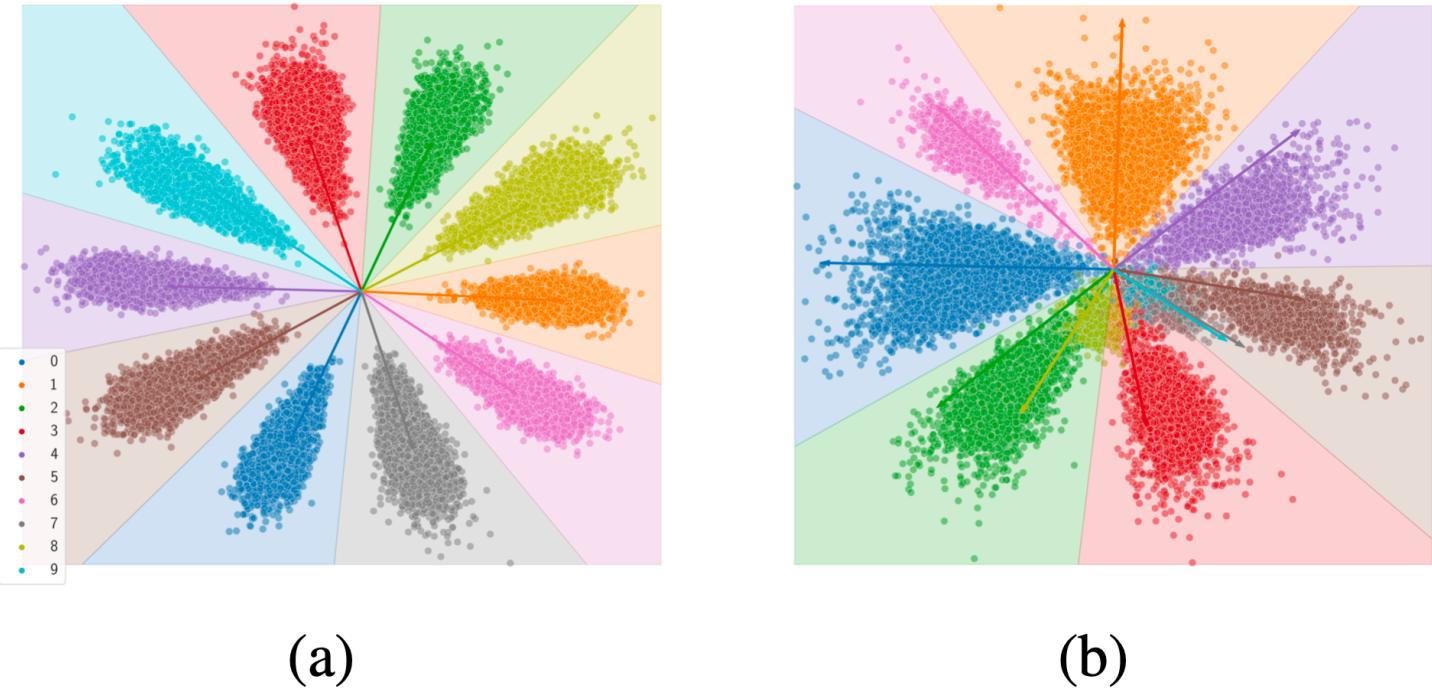
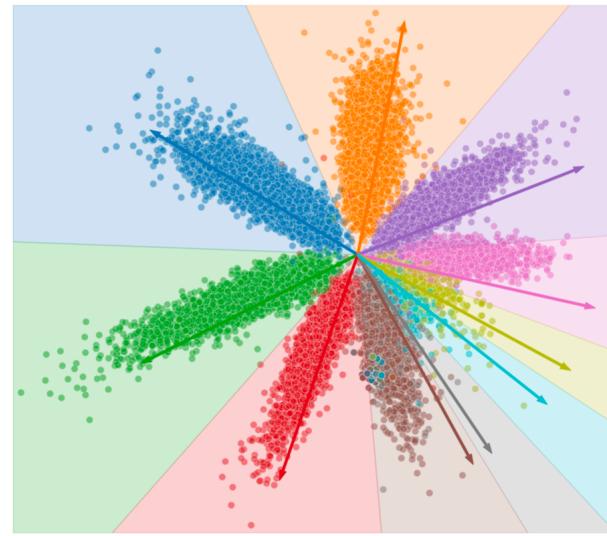


Figure 1. Visualization on MNIST (a) and long-tailed MNIST (b) by the Softmax loss. (a) denotes the class-balanced case by CE, where features and prototypes are optimized to be perfectly balanced. (b) denotes the class-imbalanced case by CE, where the majority classes (“0-3”) occupy most of the feature space, the representations of minority classes (“7-9”) are narrow, and the majority classes have larger norms and angular distance from other prototypes, and the reverse on the minority classes.

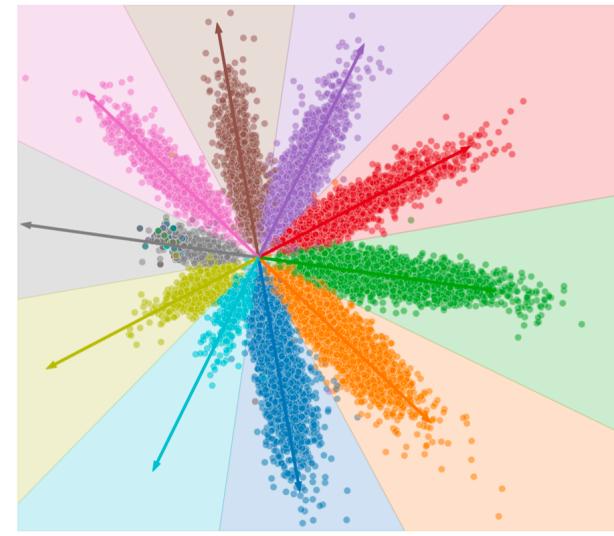
Preliminaries

Margin-based loss: By requiring features and prototypes on the unit sphere, margin-based losses^[1] introduce a margin to obtain strong discriminativeness:

$$L_\alpha = -\log \frac{\exp(s\mathbf{w}_y^T \mathbf{z} + \alpha_y)}{\exp(s\mathbf{w}_y^T \mathbf{z} + \alpha_y) + \sum_{j \neq y} \exp(s\mathbf{w}_j^T \mathbf{z})},$$



(a) Normalization on features and prototypes



(b) PAL-based

Preliminaries

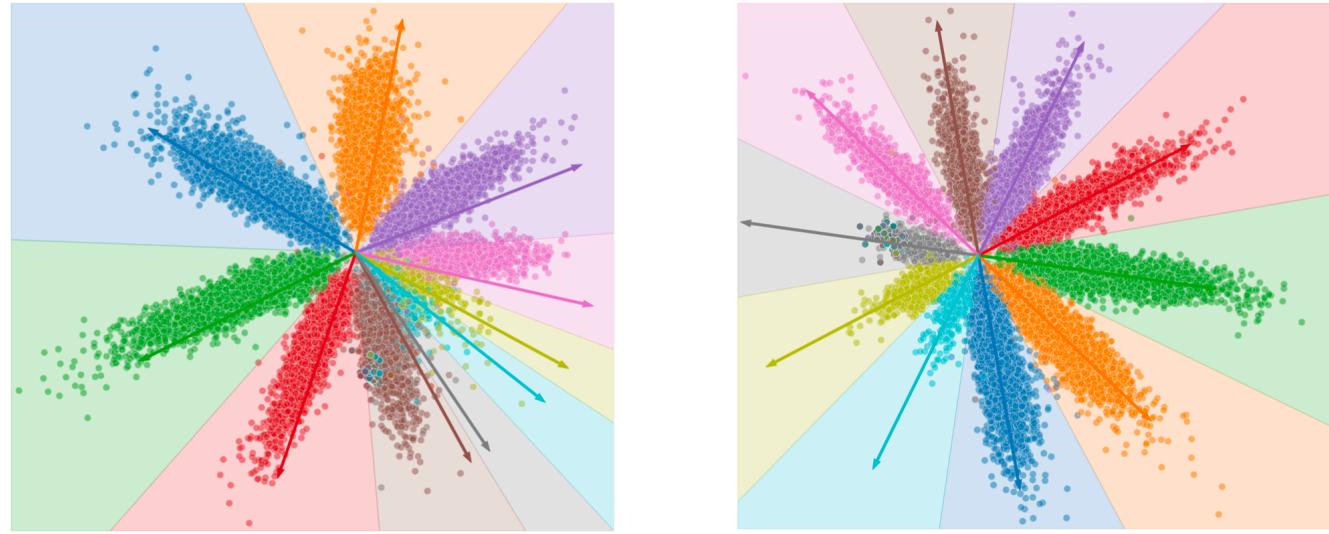
Margin-based loss: By requiring features and prototypes on the unit sphere, margin-based losses^[1] introduce a margin to obtain strong discriminativeness:

$$L_\alpha = -\log \frac{\exp(s\mathbf{w}_y^\top \mathbf{z} + \alpha_y)}{\exp(s\mathbf{w}_y^\top \mathbf{z} + \alpha_y) + \sum_{j \neq y} \exp(s\mathbf{w}_j^\top \mathbf{z})},$$

which coincides with the goal of tightening a class-balanced generalization error bound

$$\begin{aligned} & \mathbb{P}_{(\mathbf{x}, y)}[f(\mathbf{x})_y < \max_{l \neq y} f(\mathbf{x})_l] \\ & \leq \frac{1}{k} \sum_{j=1}^k \left(\hat{L}_{\gamma_j, j}[f] + \frac{4}{\gamma_j} \hat{\mathcal{R}}_j(\mathcal{F}) + \varepsilon_j(\gamma_j) \right) \end{aligned}$$

where γ_j is the sample margin for class j .



Sample Margin: The sample margin of (\mathbf{x}, y) is defined as

$$\gamma(\mathbf{x}, y) = f(\mathbf{x})_y - \max_{j \neq y} f(\mathbf{x})_j = \mathbf{w}_y^\top \mathbf{z} - \max_{j \neq y} \mathbf{w}_j^\top \mathbf{z},$$

the sample margin for class j is $\gamma_j = \min_{i \in S_j} \gamma(\mathbf{x}_i, y_i)$, and

the minimal sample margin is $\gamma_{\min} = \min\{\gamma_1, \dots, \gamma_k\}$.

We can maximize γ_{\min} to tighten error bound for each class!

The optimality of maximizing γ_{\min}

Lemma 1. [The Optimality Condition of prototypes to Maximize γ_{\min}] If $w_1, \dots, w_k, z_1, \dots, z_N \in \mathbb{S}^{d-1}$ ($2 \leq k \leq d + 1$), then the maximum of the minimal sample margin γ_{\min} is $\frac{k}{k-1}$, which is uniquely obtained if $z_i = w_{y_i}$, $\forall i$, and $w_i^T w_j = -\frac{1}{k-1}$, $\forall i \neq j$.

Theorem 2. For balanced datasets (i.e., each class has the same number of samples), if $w_1, \dots, w_k, z_1, \dots, z_N \in \mathbb{S}^{d-1}$ ($2 \leq k \leq d + 1$), then learning with L_α that has the same per-class margins (i.e., $\alpha_j = \alpha$, $\forall j \in [k]$) will deduce $z_i = w_{y_i}$, $\forall i$, and $w_i^T w_j = -\frac{1}{k-1}$, $\forall i \neq j$.

The optimality of maximizing γ_{\min}

Lemma 1. [The Optimality Condition of prototypes to Maximize γ_{\min}] If $w_1, \dots, w_k, z_1, \dots, z_N \in \mathbb{S}^{d-1}$ ($2 \leq k \leq d + 1$), then the maximum of the minimal sample margin γ_{\min} is $\frac{k}{k-1}$, which is uniquely obtained if $z_i = w_{y_i}$, $\forall i$, and $w_i^T w_j = -\frac{1}{k-1}$, $\forall i \neq j$.

Theorem 2. For balanced datasets (i.e., each class has the same number of samples), if $w_1, \dots, w_k, z_1, \dots, z_N \in \mathbb{S}^{d-1}$ ($2 \leq k \leq d + 1$), then learning with L_α that has the same per-class margins (i.e., $\alpha_j = \alpha$, $\forall j \in [k]$) will deduce $z_i = w_{y_i}$, $\forall i$, and $w_i^T w_j = -\frac{1}{k-1}$, $\forall i \neq j$.

Theorem 3. Under class-imbalanced data distribution (where we have different per-class margins), LDAM^[1] is not classification-calibrated.

Prototype-Anchored Learning (PAL)

- Lemma 1 provides the optimality condition of prototypes to maximizing the minimal sample margin, that is,

$$w_i^T w_j = -\frac{1}{k-1}, \forall i \neq j.$$

- We then propose to initialize a group of prototypes that satisfying the above equation, and this method is called as *prototype-anchored learning* (PAL).
- The desired prototypes can be easily obtained according Theorem 2.

```

def generate_weight(n_classes, n_hiddens, use_relu=False):
    n_samples = n_classes
    scale = 5
    Z = torch.randn(n_samples, n_hiddens).cuda()
    Z.requires_grad = True
    W = torch.randn(n_classes, n_hiddens).cuda()
    W.requires_grad = True
    nn.init.kaiming_normal_(W)

    optimizer = SGD([Z, W], lr=0.1, momentum=0.9, weight_decay=1e-4)
    scheduler = CosineAnnealingLR(optimizer, T_max=20000, eta_min=0)

    criterion = nn.CrossEntropyLoss()
    for i in range(epochs):
        if use_relu:
            z = F.relu(Z)
        else:
            z = Z
        w = W
        L2_z = F.normalize(z, dim=1)
        L2_w = F.normalize(w, dim=1)
        out = F.linear(L2_z, L2_w)
        loss = criterion(out * scale, labels)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        scheduler.step()
    return W
  
```

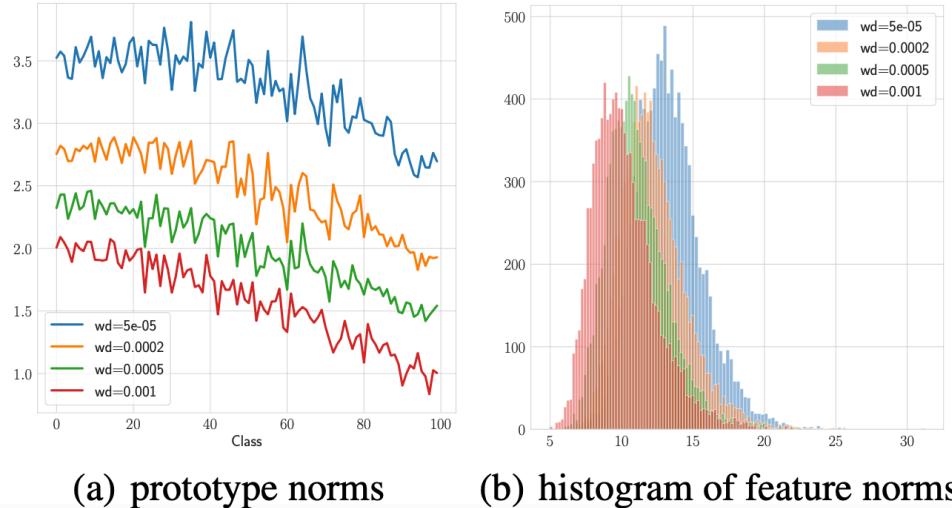
PAL for Class-imbalanced Learning

Theorem 4. For imbalanced or balanced datasets, if $w_1, \dots, w_k, z_1, \dots, z_N \in \mathbb{S}^{d-1}$ ($2 \leq k \leq d + 1$), where w_1, \dots, w_k are anchored and satisfy that $w_i^T w_j = -\frac{1}{k-1}$, $\forall i \neq j$, then learning with L_α will deduce $z_i = w_{y_i}$, $\forall i$, and the minimal sample margin γ_{\min} will be $\frac{k}{k-1}$.

PAL for Class-imbalanced Learning

Theorem 4. For imbalanced or balanced datasets, if $w_1, \dots, w_k, z_1, \dots, z_N \in \mathbb{S}^{d-1}$ ($2 \leq k \leq d+1$), where w_1, \dots, w_k are anchored and satisfy that $w_i^T w_j = -\frac{1}{k-1}$, $\forall i \neq j$, then learning with L_α will deduce $z_i = w_{y_i}$, $\forall i$, and the minimal sample margin γ_{\min} will be $\frac{k}{k-1}$.

Theorem 5. For imbalanced or balanced datasets, if $\|z_i\|_2 \leq B, \forall i \in [N]$, and the prototypes w_1, \dots, w_k are anchored to satisfy $w_i^T w_j = -\frac{1}{k-1}$, $\forall i \neq j$, then learning with the softmax loss will deduce $\frac{w_{y_i}^T z_i}{\|w_{y_i}\|_2 \|z_i\|_2} = 1$, $\forall i$, and obtain the maximum of the minimal sample margin γ_{\min} .



(a) prototype norms

(b) histogram of feature norms

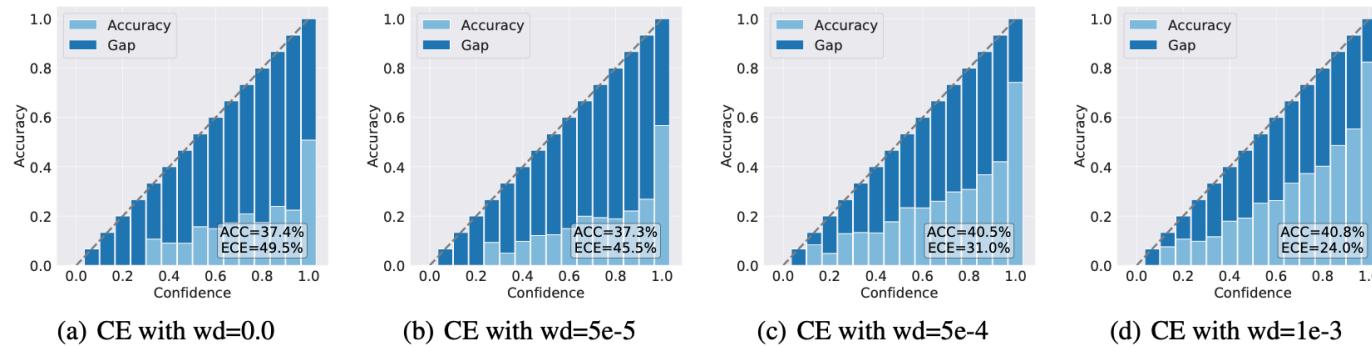


Figure 3. Reliability diagrams of ResNet-32 trained by CE on CIFAR-100-LT with imbalance ratio 100 under different weight decays (wds). As can be seen, an appropriate larger weight decay can improve both accuracy and confidence.

Figure 2. Illustration of prototypes norms and feature norms by CE trained on CIFAR-100-LT with imbalance ratio 100 under different weight decays. As can be seen, the larger weight decay usually leads to smaller prototype norms and feature norms.

PAL for Noise-Tolerant Learning

The most popular family of loss functions is **symmetric losses**, which satisfies

$$\sum_{i=1}^k L(f(x), i) = C, \forall x \in \mathcal{X}, \forall f,$$

where C is a constant. This symmetric condition theoretically guarantees the noise tolerance by risk minimization under symmetric label noise, i.e., the global minimizer of the noisy L -risk

$R_L^\eta(f) = \mathbb{E}_{x, \tilde{y}}[L(f(x), \tilde{y})] = \mathbb{E}_{x, y}[(1 - \eta_x)L(f(x), y) + \sum_{i \neq y} \eta_{x,i} L(f(x), i)]$ also minimizes the L -risk $R_L(f) = \mathbb{E}_{\mathcal{D}} L(f(x), y)$, where $\eta_{x,i}$ denotes noise rates.

Negative-signed Sample Logit Loss (NSL): $L_{NSL}(f(x), i) = -f(x)_i = -w_i^T \phi_\Theta(x)$.

Proposition 6. If the prototypes $w_1, \dots, w_k \in \mathbb{S}^{d-1}$ are anchored to satisfy $w_i^T w_j = -\frac{1}{k-1}$, $\forall i \neq j$, then $L_{NSL}(f(x), i) = -w_i^T \phi_\Theta(x)$ is symmetric. More specifically, we have. $\sum_{i=1}^k L_{NSL}(f(x), i) = 0$, and learning with L_{NSL} will lead to the maximum of γ_{\min} under symmetric label noise.

PAL for Noise-Tolerant Learning

Theorem 7. In a multi-class classification problem, given w_1, \dots, w_k , if $z = \phi_{\Theta}(x)$ is norm-bounded by B , i.e., $\|z\|_2 \leq B$, then for any loss $L(z, i)$ satisfying $L_W(z) = \sum_{i=1}^k L(W^T z, i)$ is λ -Lipschitz, we have the following risk bound under symmetric label noise with $\eta < \frac{k-1}{k}$:

$$R_L(\hat{f}) - R_L(f^*) \leq \frac{2\eta\lambda B}{(1-\eta)k - 1},$$

where \hat{f} and f^* denote a global minimizer of $R_L^\eta(f)$ and $R_L(f)$, respectively.

Proposition 8. In a multi-class classification problem, let $w_1, \dots, w_k \in \mathbb{S}^{d-1}$ ($2 \leq k \leq d+1$) satisfy $w_i^T w_j = -\frac{1}{k-1}$, $\forall i \neq j$, if $z = \phi_{\Theta}(x)$ is norm-bounded by B , i.e., $\|z\|_2 \leq B$, then we have the following risk bound for the CE loss under symmetric label noise with $\eta < \frac{k-1}{k}$:

$$R_L(\hat{f}) - R_L(f^*) \leq \frac{2c\eta k(1-t)B}{k-1 + t(k-1)^2},$$

where $c = \frac{k-1}{(1-\eta)k-1}$, $t = \exp(-\frac{kB}{k-1})$, \hat{f} and f^* denote a global minimizer of $R_L^\eta(f)$ and $R_L(f)$, respectively.

Experimental Results

Table 1. Validation accuracy (%) on ImageNet-LT. The results with positive gains are **boldfaced** and the best one is underlined.

Method	Many	Medium	Few	All
CE	66.8	36.9	7.1	43.6
FL	64.3	37.1	8.2	43.7
OLTR	51.0	40.8	20.8	41.9
Causal Norm	65.2	47.7	29.8	52.0
Balanced Softmax	63.6	48.4	32.9	52.1
LADE	65.1	48.9	33.4	53.0
cRT+mixup	63.9	49.1	30.2	51.7
LWS+mixup	62.9	49.8	31.6	52.0
MiSLAS	61.7	51.3	35.8	52.7
CE+PAL	69.0	42.5	11.0	47.6
MiSLAS+PAL	64.0	51.6	32.4	<u>53.3</u>

Table 5. Top-1 validation accuracies (%) on mini-WebVision.

Method	CE	FL	NCE+RCE	NSL	CE+PAL	CE+FNPAL
Acc	62.60	63.80	66.32	69.56	68.92	69.69

Table 3. Validation accuracies (%) of different methods on benchmark datasets with clean or symmetric label noise ($\eta \in [0.2, 0.4, 0.6, 0.8]$). The results (mean \pm std) are reported over 3 random runs. The results with positive gains are **boldfaced** and the best one is underlined.

Dataset	Method	Clean ($\eta = 0.0$)	Symmetric Noise Rate (η)			
			0.2	0.4	0.6	0.8
MNIST	CE	99.17 \pm 0.04	91.40 \pm 0.11	74.36 \pm 0.29	49.32 \pm 0.70	22.32 \pm 0.15
	FL	99.16 \pm 0.02	91.49 \pm 0.20	75.28 \pm 0.10	50.25 \pm 0.70	22.68 \pm 0.14
	GCE	99.15 \pm 0.02	98.90 \pm 0.03	96.81 \pm 0.23	81.39 \pm 0.64	33.07 \pm 0.31
	SCE	99.28 \pm 0.07	98.91 \pm 0.12	97.60 \pm 0.22	88.00 \pm 0.50	47.32 \pm 0.99
	NCE+MAE	99.42 \pm 0.02	99.18 \pm 0.08	98.47 \pm 0.21	95.52 \pm 0.04	73.05 \pm 0.59
	NCE+RCE	99.40 \pm 0.04	<u>99.24</u> \pm 0.01	98.44 \pm 0.11	95.77 \pm 0.09	74.80 \pm 0.28
	NFL+RCE	99.37 \pm 0.01	99.16 \pm 0.03	98.55 \pm 0.05	95.62 \pm 0.24	74.67 \pm 0.97
	NSL	99.24 \pm 0.03	98.99 \pm 0.03	98.58 \pm 0.11	95.99 \pm 0.24	59.77 \pm 1.98
	CE+FNPAL	99.24 \pm 0.05	99.05 \pm 0.04	98.66 \pm 0.04	97.62 \pm 0.15	79.23 \pm 0.87
	SCE+FNPAL	99.27 \pm 0.04	99.06 \pm 0.05	98.76 \pm 0.09	97.94 \pm 0.07	88.56 \pm 1.07
CIFAR10	NCE+RCE+FNPAL	99.29 \pm 0.04	99.04 \pm 0.07	98.11 \pm 0.09	94.84 \pm 0.08	79.70 \pm 1.06
	NFL+RCE+FNPAL	99.29 \pm 0.06	99.02 \pm 0.05	98.32 \pm 0.14	95.38 \pm 0.11	76.06 \pm 0.58
	CE	90.36 \pm 0.25	74.78 \pm 0.68	57.95 \pm 0.12	38.21 \pm 0.12	18.89 \pm 0.43
	FL	89.69 \pm 0.25	74.19 \pm 0.23	57.35 \pm 0.27	38.11 \pm 0.76	19.39 \pm 0.44
	GCE	89.37 \pm 0.29	87.05 \pm 0.21	82.43 \pm 0.10	68.05 \pm 0.07	25.21 \pm 0.28
	SCE	91.24 \pm 0.19	87.34 \pm 0.01	79.84 \pm 0.43	61.09 \pm 0.19	27.19 \pm 0.34
	NCE+MAE	89.02 \pm 0.09	87.06 \pm 0.17	83.92 \pm 0.16	76.47 \pm 0.25	45.01 \pm 0.31
	NCE+RCE	91.12 \pm 0.14	89.21 \pm 0.00	86.03 \pm 0.14	80.04 \pm 0.26	51.67 \pm 1.38
	NFL+RCE	91.03 \pm 0.15	89.10 \pm 0.16	86.20 \pm 0.19	79.58 \pm 0.08	50.03 \pm 2.78
	NSL	88.07 \pm 0.12	86.46 \pm 0.02	83.27 \pm 0.13	76.17 \pm 0.40	46.74 \pm 0.72
CIFAR100	CE+FNPAL	90.69 \pm 0.11	86.34 \pm 0.37	<u>81.30</u> \pm 0.29	72.77 \pm 0.41	51.46 \pm 1.10
	SCE+FNPAL	91.11 \pm 0.13	87.30 \pm 0.06	82.68 \pm 0.22	73.49 \pm 0.42	51.99 \pm 1.10
	NCE+RCE+FNPAL	90.88 \pm 0.10	89.34 \pm 0.15	86.65 \pm 0.21	80.28 \pm 0.07	57.21 \pm 0.22
	NFL+RCE+FNPAL	91.16 \pm 0.25	89.49 \pm 0.32	86.66 \pm 0.08	80.33 \pm 0.15	56.23 \pm 0.15
	CE	70.41 \pm 1.17	55.64 \pm 0.17	40.39 \pm 0.46	22.00 \pm 1.23	7.37 \pm 0.16
	FL	70.56 \pm 0.59	56.02 \pm 0.80	40.41 \pm 0.39	22.11 \pm 0.30	7.70 \pm 0.20
	GCE	63.06 \pm 1.00	62.15 \pm 0.66	57.11 \pm 1.43	45.99 \pm 1.00	18.32 \pm 0.36
	SCE	70.41 \pm 0.63	55.05 \pm 0.68	39.60 \pm 0.14	21.53 \pm 0.72	7.82 \pm 0.30
	NCE+MAE	67.16 \pm 0.13	52.34 \pm 0.12	35.81 \pm 0.42	19.29 \pm 0.29	7.31 \pm 0.23
	NCE+RCE	68.09 \pm 0.26	64.32 \pm 0.40	58.11 \pm 0.63	45.94 \pm 1.31	25.22 \pm 0.08
mini-WebVision	NFL+RCE	67.58 \pm 0.39	64.48 \pm 0.50	57.86 \pm 0.12	46.74 \pm 0.59	24.55 \pm 0.47
	NSL	70.08 \pm 0.19	65.30 \pm 0.36	56.77 \pm 0.52	41.21 \pm 1.01	12.16 \pm 0.96
	CE+FNPAL	71.69 \pm 0.27	65.38 \pm 0.17	57.24 \pm 0.36	41.35 \pm 0.19	12.12 \pm 0.88
	SCE+FNPAL	70.87 \pm 0.45	65.30 \pm 0.15	55.10 \pm 0.45	39.73 \pm 0.04	11.70 \pm 0.53
	NCE+RCE+FNPAL	69.29 \pm 0.32	65.53 \pm 0.30	60.53 \pm 0.27	49.73 \pm 0.64	24.54 \pm 0.28
ImageNet-LT	NFL+RCE+FNPAL	69.53 \pm 0.05	65.94 \pm 0.32	60.89 \pm 0.60	50.10 \pm 0.40	24.15 \pm 1.06

Thanks for your attention!

Any question? Please contact us!

Xianming Liu: : csxm@hit.edu.cn

Xiong Zhou: cszx@hit.edu.cn