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Motivation and Our Contributions
• Motivation: 
• High-quality annotated data are usually difficult or expensive to obtain.

• The resulting labels may be class-imbalanced, noisy or human biased.

• It is challenging to learn robust and unbiased models from imperfectly annotated 
datasets.
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• Motivation: 
• High-quality annotated data are usually difficult or expensive to obtain.

• The resulting labels may be class-imbalanced, noisy or human biased.

• It is challenging to learn robust and unbiased models from imperfectly annotated 
datasets.

• Our Contributions:
• A theoretically sound, simple yet effective scheme—Prototype-Anchored Learning (PAL).

• For class-imbalanced learning, PAL can implicitly guarantee balanced representations.

• For learning with noisy labels, we extend the classical symmetric condition and reveal 
that PAL can lead to a tighter bound.



Preliminaries
The softmax loss: For a labeled

dataset 𝐷 = 𝑥!, 𝑦! !"#
$ , the softmax

loss for a 𝑘-classification problem is 

formulated as

where 𝑧! = 𝜙" 𝑥! ∈ ℝ# (usually k ≤ 𝑑 + 1 ) 

is the learned feature representation vector , 

𝜙" denotes the feature extraction sub-

network, 𝑊 = 𝑤$, … , 𝑤% ∈ ℝ#×% denotes 

the linear classifier which is implemented 

with a linear layer.

Figure 1. Visualization on MNIST (a) and long-tailed MNIST (b) by the 
Softmax loss. (a) denotes the class-balanced case by CE, where features 
and prototypes are optimized to be perfectly balanced. (b) denotes the 
class-imbalanced case by CE, where the majority classes (“0-3”) occupy 
most of the feature space, the representations of minority classes (“7-9”) 
are narrow, and the majority classes have larger norms and angular 
distance from other prototypes, and the reverse on the minority classes. 



Preliminaries
Margin-based loss: By requiring features 
and prototypes on the unit sphere, 
margin-based  losses[1] introduce a margin 
to obtain strong discriminativeness:

[1] Cao et. al. Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss[J]. Advances in Neural Information Processing Systems, 2019, 32: 1567-1578.

(a) Normalization on features and prototypes (b) PAL–based 



Preliminaries
Margin-based loss: By requiring features 
and prototypes on the unit sphere, 
margin-based  losses[1] introduce a margin 
to obtain strong discriminativeness:

which coincides with the goal of tightening 
a class-balanced generalization error 
bound

where 𝛾% is the sample margin for class 𝑗.
[1] Cao et. al. Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss[J]. Advances in Neural Information Processing Systems, 2019, 32: 1567-1578.

Sample Margin: The sample margin of (𝑥, 𝑦) is defined as

the sample margin for class 𝑗 is 𝛾! = min
"∈$!

𝛾(𝑥" , 𝑦"), and 

the minimal sample margin is 𝛾&'( = min{𝛾#, … , 𝛾)}.

We can maximize 𝛾'() to tighten error bound for each class! 



The optimality of  maximizing 𝛾!"#

[1] Cao et. al. Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss[J]. Advances in Neural Information Processing Systems, 2019, 32: 1567-1578.

Lemma 1. [The Optimality Condition of prototypes to Maximize 𝛾&'(] If 𝑤%, … , 𝑤& , 𝑧%, … , 𝑧'
∈ 𝕊()% (2 ≤ 𝑘 ≤ 𝑑 + 1), then the maximum of the minimal sample margin 𝛾'() is &

&)%
, which is 

uniquely obtained if 𝑧" = 𝑤*" , ∀𝑖, and 𝑤"+𝑤! = − %
&)%

, ∀𝑖 ≠ 𝑗.

Theorem 2. For balanced datasets (i.e., each class has the same number of samples), if 𝑤%, … , 𝑤& ,
𝑧%, … , 𝑧' ∈ 𝕊()% (2 ≤ 𝑘 ≤ 𝑑 + 1), then learning with 𝐿, that has the same per-class margins (i.e., 
𝛼! = 𝛼, ∀𝑗 ∈ 𝑘 ) will deduce 𝑧" = 𝑤*" , ∀𝑖, and 𝑤"+𝑤! = − %

&)%
, ∀𝑖 ≠ 𝑗.
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Theorem 2. For balanced datasets (i.e., each class has the same number of samples), if 𝑤%, … , 𝑤& ,
𝑧%, … , 𝑧' ∈ 𝕊()% (2 ≤ 𝑘 ≤ 𝑑 + 1), then learning with 𝐿, that has the same per-class margins (i.e., 
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&)%
, ∀𝑖 ≠ 𝑗.

Theorem 3. Under class-imbalanced data distribution (where we have different per-class margins), 
LDAM[1] is not classification-calibrated.



Prototype-Anchored Learning (PAL)

• Lemma 1 provides the optimality 
condition of prototypes to maximizing 
the minimal sample margin, that is,

• We then propose to initialize a group of 
prototypes that satisfying the above 
equation, and this method is called as 
prototype-anchored learning (PAL).

• The desired prototypes can be easily 
obtained according Theorem 2. 

𝑤!"𝑤# = − $
%&$, ∀𝑖 ≠ 𝑗.



PAL for Class-imbalanced Learning
Theorem 4. For imbalanced or balanced
datasets, if 𝑤%, … , 𝑤& , 𝑧%, … , 𝑧' ∈ 𝕊()%
(2 ≤ 𝑘 ≤ 𝑑 + 1), where 𝑤%, … , 𝑤& are
anchored and satisfy that 𝑤"+𝑤! = − %

&)%
,

∀𝑖 ≠ 𝑗 , then learning with 𝐿, will
deduce deduce 𝑧" = 𝑤*" , ∀𝑖 , and the

minimal sample margin 𝛾'() will be &
&)%

.
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Theorem 5. For imbalanced or balanced
datasets, if ||𝑧"||- ≤ 𝐵, ∀𝑖 ∈ [𝑁]), and the
prototypes 𝑤%, … , 𝑤& are anchored to satisfy
𝑤"+𝑤! = − %

&)%
, ∀𝑖 ≠ 𝑗, then learning with

the softmax loss will deduce deduce
.#"
$ /"

||.#"||%||/"||%
=1, ∀𝑖, and obtain the maximum

of the minimal sample margin 𝛾'().

Figure 3. Reliability diagrams of ResNet-32 trained by CE on CIFAR-100-LT with 
imbalance ratio 100 under different weight decays (wds). As can be seen, an 
appropriate larger weight decay can improve both accuracy and confidence. 

Figure 2. Illustration of 
prototypes norms and 
feature norms by CE 
trained on CIFAR-100-LT 
with imbalance ratio 100 
under different weight 
decays. As can be seen, 
the larger weight decay 
usually leads to smaller 
prototype norms and 
feature norms. 



PAL for Noise-Tolerant Learning
The most popular family of loss functions is symmetric losses, which satisfies

B
"1%

&

𝐿(𝑓(𝒙), 𝑖) = C, ∀𝑥 ∈ 𝒳, ∀ 𝑓,

where C is a constant. This symmetric condition theoretically guarantees the noise tolerance by 
risk minimization under symmetric label noise, i.e., the global minimizer of the noisy 𝐿-risk 
𝑅2
3 𝑓 = 𝔼𝒙, 6* 𝐿 𝑓 𝑥 , I𝑦 = 𝔼𝒙,* 1 − 𝜂7 𝐿 𝑓 𝑥 , 𝑦 + ∑"8* 𝜂𝒙," 𝐿(𝑓 𝑥 , 𝑖) also minimizes the 

𝐿-risk 𝑅2 𝑓 = 𝔼𝒟𝐿(𝑓 𝑥 , 𝑦), where 𝜂𝒙," denotes noise rates.

Negative-signed Sample Logit Loss (NSL): 𝐿'$2 𝑓 𝑥 , 𝑖 = −𝑓 𝑥 " = −𝑤"+𝜙: 𝑥 .

Proposition 6. If the prototypes 𝑤%, … , 𝑤& ∈ 𝕊()% are anchored to satisfy 𝑤"+𝑤! = − %
&)%

, ∀𝑖 ≠ 𝑗,  
then 𝐿'$2 𝑓 𝑥 , 𝑖 = −𝑤"+𝜙: 𝑥 is symmetric. More specifically, we have. ∑"1%& 𝐿'$2 𝑓 𝑥 , 𝑖 =
0, and learning with 𝐿'$2 will lead to the maximum of 𝛾;<= under symmetric label noise.



PAL for Noise-Tolerant Learning
Theorem 7. In a multi-class classification problem, given 𝑤%, … , 𝑤&, if 𝑧 = 𝜙' 𝑥 is norm-bounded 
by 𝐵, i.e., ||𝑧||- ≤ 𝐵, then for any loss 𝐿(𝑧, 𝑖) satisfying  𝐿> 𝑧 = ∑"1%& 𝐿(𝑊+𝑧, 𝑖) is 𝜆-Lipschitz, we 
have the following risk bound under symmetric label noise with 𝜂 < &'(

& :

𝑅2 Q𝑓 − 𝑅2 𝑓∗ ≤
2𝜂𝜆𝐵

1 − 𝜂 𝑘 − 1 ,

where Q𝑓 and 𝑓∗ denote a global minimizer of 𝑅2
3 𝑓 and 𝑅2 𝑓 , respectively.

Proposition 8. In a multi-class classification problem, let 𝑤%, … , 𝑤& ∈ 𝕊()% (2 ≤ 𝑘 ≤ 𝑑 + 1) satisfy 
𝑤"+𝑤! = − %

&)%
, ∀𝑖 ≠ 𝑗, if 𝑧 = 𝜙' 𝑥 is norm-bounded by 𝐵, i.e., ||𝑧||- ≤ 𝐵, then we have the 

following risk bound for the CE loss under symmetric label noise with 𝜂 < &'(
& :

𝑅2 Q𝑓 − 𝑅2 𝑓∗ ≤
2𝑐𝜂𝑘(1 − 𝑡)𝐵

𝑘 − 1 + 𝑡 𝑘 − 1 - ,

where𝑐 = &)%
%)3 &)%

, 𝑡 = exp(− &)
&'(), Q𝑓 and 𝑓∗ denote a global minimizer of 𝑅2

3 𝑓 and 𝑅2 𝑓 , 

respectively.
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