

POSTER SESSION 1 (10:00 – 11:00)

Gatherly Link for Poster Session: <https://workshopsdayone.event.gatherly.io/>

1

Trojan Signatures in DNN Weights

2

Defending Object Detection Networks Against Adversarial Patch Attacks

3

Impact of Colour on Robustness of Deep Neural Networks

4

Evasion Attack STeganography: Turning Vulnerability Of Machine Learning To Adversarial Attacks Into A Real-world Application

5

Can Targeted Adversarial Examples Transfer When the Source and Target Models Have No Label Space Overlap?

6

A Hierarchical Assessment of Adversarial Severity

7

Detecting and Segmenting Adversarial Graphics Patterns from Images

8

Enhancing Adversarial Robustness via Test-time Transformation Ensembling

9

Countering Adversarial Examples: Combining Input Transformation and Noisy Training

10

On Adversarial Robustness: A Neural Architecture Search perspective

11

Leveraging Test-Time Consensus Prediction for Robustness against Unseen Noise

12

Are socially-aware trajectory prediction models really socially-aware?

POSTER SESSION 2 (16:00 – 17:00)

Gatherly Link for Poster Session: <https://workshopsdayone.event.gatherly.io/>

13

On the Effect of Pruning on Adversarial Robustness

15

An Adversarial Attack on DNN-based Adaptive Cruise Control Systems

17

Towards Achieving Adversarial Robustness Beyond Perceptual Limits

19

Patch Attack Invariance: How Sensitive are Patch Attacks to 3D Pose?

21

Towards Category and Domain Alignment: Category-Invariant Feature Enhancement for Adversarial Domain Adaptation

23

AdvFoolGen: Creating Persistent Troubles for Deep Classifiers

14

Mental Models of Adversarial Machine Learning

16

Encouraging Intra-Class Diversity Through a Reverse Contrastive Loss for Single-Source Domain Generalization

18

Optical Adversarial Attack

20

Can Optical Trojans Assist Adversarial Perturbations?

22

Backdoor Learning Curves: Explaining Backdoor Poisoning Beyond Influence Functions

24

Efficient Training Methods for Achieving Adversarial Robustness Against Sparse Attacks