
The Ultimate Guide to
Kubernetes Deployments
with Octopus

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 2 of 73

Prerequisites

Preparing the Octopus Server

What we Will Create

The Feed

The Environments

The Lifecycles

The Kubernetes Admin Target

The HTTPD Development Service Account

The HTTPD Development Target

1
2
3
4
5
6
7
8
9

20
21
22
23
24
25

Migrating to Ingress

Configuring Helm

Install Helm in the Kubernetes Cluster

Helm Feed

Ingress Controllers and Multiple Environments

Configuring Helm Variables

Contents

The HTTPD Application

The Deployment Strategy

Volumes and ConfigMaps

The Container

The ConfigMap

The Service

The First Deployment

So What Happens When Things go

Wrong?

Promoting to Production

10
11
12
13
14
15
16
17
18
19

26
27
28

Configuring Ingress

Managing URL Mappings

Output Variables

29
30
31
32

Some Useful Tips and Tricks

Viewing the Resource YAML

Adhoc Scripts

Scripting Kubernetes Targets

Summary

S1

S2

S3

S4
S5

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 3 of 73

Octopus 2018.8 previews a number of new features that make
managing Kubernetes deployments easy.

These Kubernetes steps and targets have been designed to allow teams to

deploy applications to Kubernetes taking advantage of Octopus environments,

dashboards, security, account management, variable management and

integration with other platforms and services.

•	 Configure Service Accounts and Namespaces with the principal

of least privilege in mind.

•	 Deploy a functioning web server in Kubernetes

•	 Perform blue/green updates of Kubernetes Deployments, with

simulated failures

•	 Access applications through a public network load balancer

•	 Direct traffic with a multiple Nginx Ingress Controllers

•	 Deploy applications using Helm And do all of that across a

development and production environment.

This ebook will take you from a blank Kubernetes cluster to a functional
multi-environment cluster with repeatable deployments using patterns
that will scale as your teams and applications grow.

At the end of this
ebook you will learn
how to:

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 4 of 73

Prepare your Octopus
Infrastructure

SECTION ONE

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 5 of 73

To follow along with this guide, you will need to have an Octopus
instance, a Kubernetes cluster already configured, and with Helm
installed. This guide uses the Kubernetes service provided by
Google Cloud, but any Kubernetes cluster will do.

Helm is a package manager for Kubernetes, and we’ll use it to
install some third party services into the Kubernetes cluster.

Google Cloud provides documentation describing how to install
Helm in their cloud, and other cloud providers will provide similar
documentation.

The Prerequisites

New to Octopus? Spin up a FREE trial to
learn more, or explore our demo site to
see more working examples.

https://octopus.com/account/register
https://demo.octopus.com/app

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 6 of 73

The Kubernetes steps in Octopus require that the kubectl
executable be available on the path. Likewise the Helm steps require
the helm executable to be available on the path.

If you run the Kubernetes steps from Octopus workers, you can
install the kubectl executable using the instructions on the
Kubernetes website, and the helm executable using the instructions
on the Helm project page.

Because the Kubernetes functionality in Octopus is in a preview
state, the steps discussed in this book need to be enabled in the
Features section.

Preparing the
Octopus Server

https://octopus.com/docs/administration/workers
https://kubernetes.io/docs/tasks/tools/install-kubectl/#install-kubectl-binary-via-native-package-management
https://github.com/helm/helm#install

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 7 of 73

Before we dive into the specifics of deploying a Kubernetes
application, it is worth understanding what we are trying to achieve
with this example.

Our infrastructure has the following requirements:
•	 Two environments: Development and Production
•	 One Kubernetes cluster
•	 A single application (we’re deploying the HTTPD Docker image as

an example here)
•	 The application is exposed by a custom URL path like

http://myapp/httpd
•	 Zero downtime deployments

What we will create

Don’t worry if this diagram looks intimidating, as we’ll build up each of these
elements step by step.

At a high level, this is what we will end up with.

https://hub.docker.com/_/httpd/

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 8 of 73

The Kubernetes support in Octopus relies on having a Docker
feed defined. Because the HTTPD image we are deploying can be
found in the main Docker repository, we’ll create a feed against the
https://index.docker.io URL.

The Feed

Although we listed two environments as requirements, we’ll actually
create three. The additional environment, called Kubernetes Admin,
will be where we run utility scripts to create user accounts.

The Environments

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 9 of 73

The default lifecycle in Octopus assumes that all environments will be
deployed to, one after the other. This is not the case for us. We have
two distinct lifecycles: Development -> Production, and Kubernetes
Admin as a standalone environment where utility scripts are run.

To model the progression from Development to Production, we’ll
create a lifecycle called Application. It will contain two phases, the
first for deployments to the Development environment, and the
second for deployments to the Production environment.

The Lifecycles

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 10 of 73

To model the scripts run against the Kubernetes cluster, we’ll
create a lifecycle called Kubernetes Admin. It will contain a single
phase for deployments to the Kubernetes Admin environment.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 11 of 73

A Kubernetes target in Octopus is conceptually a permission
boundary within a Kubernetes cluster. It defines this boundary using a
Kubernetes namespace and a Kubernetes account.

As the number of environments, teams, applications and services
being deployed to a Kubernetes cluster grows, it is important to
keep them isolated to prevent resources from accidentally being
overwritten or deleted, or to prevent resources like CPU and memory
being consumed by rogue deployments.

Permissions and resource limits can be enforced by applying them to
Kubernetes namespaces, and those restrictions are then applied to
any deployment that is placed in the namespace.

In keeping with the practise of least privilege, each namespace will
have a corresponding system account that only has privileges to that
single namespace.

The combination of a namespace and a service account that is limited
to the namespace makes up a typical Octopus Kubernetes target.

The Kubernetes
Admin Target

Having said that, we need some place to start in order to create the namespaces
and service accounts, and for that we will create a Kubernetes target with the
administrator credentials that deploys to the Kubernetes Admin environment.

First, we need to create an account that holds the administrator user credentials.
The Kubernetes cluster in Google Cloud provides a user called admin with a
randomly generated password that we can use.

These credentials are saved in a username/password Octopus account.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 12 of 73

Most Kubernetes clusters expose their API over HTTPS, but will
often do so using an untrusted certificate.

In order to communicate with the Kubernetes cluster, we can either
disable any validation of the certificate, or provide the certificate as
part of the Kubernetes target. Disabling certificate validation is not
considered best practise, so we will instead upload the Kubernetes
cluster certificate to Octopus.

The certificate is provided by Google as a PEM file, like this
(copied from the Cluster CA certificate field in the Cluster
credentials dialog):

This text is then saved to a file called k8s.pem, and uploaded to
Octopus.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 13 of 73

With the user account and the certificate saved, we can now create the
Kubernetes target called Kubernetes Admin.

This target will deploy to the Kubernetes Admin environment, and
take on a role that is called Admin. The account will be the Kubernetes
Admin account we created above, and the cluster certificate will
reference the certificate we saved above.

Because this Kubernetes Admin target will be used to run utility
scripts, we don’t want to have it target a Kubernetes namespace, so
that field is left blank.

We now have a target that we can use to prepare the service accounts
for the other namespaces.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 14 of 73

Your first Kubernetes
Deployment

SECTION TWO

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 15 of 73

We now have a Kubernetes target, but this target is configured with
the cluster administrator account. It is not a good idea to be running
deployments with an administrator account, so what we need to
do is create a namespace and service account that will allow us to
deploy only the resources we need for our application in an isolated
area in the Kubernetes cluster.

To do this, we need to create four resources in the Kubernetes
cluster: a namespace, a service account, a role and a role binding.
We’ve already discussed namespaces and service accounts. A role
defines the actions that can be applied and the resources they can
be applied to. A role binding associates a service account with the
role, granting the service account the permissions that were defined
in the role.

Kubernetes can represent these resources as YAML, and YAML can
represent multiple documents in a single file by separating them
with a triple dash. So the YAML document below defines these four
resources .

The HTTPD
Development Service
Account

kind: Namespace
apiVersion: v1
metadata:
 name: httpd-development

apiVersion: v1
kind: ServiceAccount
metadata:
 name: httpd-deployer
 namespace: httpd-development

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 namespace: httpd-development
 name: httpd-deployer-role
rules:
- apiGroups: [“”, “extensions”, “apps”]
 resources: [“deployments”, “replicasets”, “pods”, “services”,
“ingresses”, “secrets”, “configmaps”]
 verbs: [“get”, “list”, “watch”, “create”, “update”, “patch”,
“delete”]
- apiGroups: [“”]
 resources: [“namespaces”]
 verbs: [“get”]

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: httpd-deployer-binding
 namespace: httpd-development
subjects:
- kind: ServiceAccount
 name: httpd-deployer
 apiGroup: “”
roleRef:
 kind: Role
 name: httpd-deployer-role
 apiGroup: “”

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 16 of 73

To create these resources, we need to save the YAML as a file, and
then use kubectl to create them in the cluster. To do this, we use the
Run a kubectl CLI Script step.

This step will then target the Kubernetes Admin target, and run the
following script, which saves the YAML to a file and then uses kubectl
to apply the YAML.

Set-Content -Path serviceaccount.yml -Value @”

kind: Namespace
apiVersion: v1
metadata:
 name: httpd-development

apiVersion: v1
kind: ServiceAccount
metadata:
 name: httpd-deployer
 namespace: httpd-development

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 namespace: httpd-development
 name: httpd-deployer-role
rules:
- apiGroups: [“”, “extensions”, “apps”]
 resources: [“deployments”, “replicasets”, “pods”, “services”,
“ingresses”, “secrets”, “configmaps”]
 verbs: [“get”, “list”, “watch”, “create”, “update”, “patch”, “delete”]
- apiGroups: [“”]
 resources: [“namespaces”]
 verbs: [“get”]

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: httpd-deployer-binding
 namespace: httpd-development
subjects:
- kind: ServiceAccount
 name: httpd-deployer
 apiGroup: “”
roleRef:
 kind: Role
 name: httpd-deployer-role
 apiGroup: “”
“@

kubectl apply -f serviceaccount.yml

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 17 of 73

Set-Content -Path serviceaccount.yml -Value @”

kind: Namespace
apiVersion: v1
metadata:
 name: httpd-development

apiVersion: v1
kind: ServiceAccount
metadata:
 name: httpd-deployer
 namespace: httpd-development

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 namespace: httpd-development
 name: httpd-deployer-role
rules:
- apiGroups: [“”, “extensions”, “apps”]
 resources: [“deployments”, “replicasets”, “pods”, “services”,
“ingresses”, “secrets”, “configmaps”]
 verbs: [“get”, “list”, “watch”, “create”, “update”, “patch”,
“delete”]
- apiGroups: [“”]
 resources: [“namespaces”]
 verbs: [“get”]

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: httpd-deployer-binding
 namespace: httpd-development
subjects:
- kind: ServiceAccount
 name: httpd-deployer
 apiGroup: “”
roleRef:
 kind: Role
 name: httpd-deployer-role
 apiGroup: “”
“@

kubectl apply -f serviceaccount.yml

The bash script is very similar.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 18 of 73

Once this script is run, a service account called httpd-deployer
will be created. This service account is automatically assigned a
token that we can use to authenticate with the Kubernetes cluster.
We can run a second script to get this token.

The same functionality can be run in bash with the following script.

$user=”httpd-deployer”
$namespace=”httpd-development”
$data = kubectl get secret $(kubectl get serviceaccount $user
-o jsonpath=”{.secrets[0].name}” --namespace=$namespace) -o
jsonpath=”{.data.token}” --namespace=$namespace
[System.Text.Encoding]::ASCII.GetString([System.
Convert]::FromBase64String($data))

user=”httpd-deployer”
namespace=”httpd-development”
kubectl get secret $(kubectl get serviceaccount $user -o
jsonpath=”{.secrets[0].name}” --namespace=$namespace) -o
jsonpath=”{.data.token}” --namespace=$namespace | base64
--decode

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 19 of 73

Before we deploy the script, we need to make sure the project is
using the Kubernetes Admin lifecycle.

We can now run the script, which will create the service account
and display the token. The token looks like this:

eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJrdWJlcm5ldGVzL3N-
lcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uY-
W1lc3BhY2UiOiJodHRwZC1kZXZlbG9wbWVudCIsImt1YmVybmV0ZXMuaW8vc2Vyd-
mljZWFjY291bnQvc2VjcmV0Lm5hbWUiOiJodHRwZC1kZXBsb3llci10b2tlbi0y-
cG1ndCIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2N-
vdW50Lm5hbWUiOiJodHRwZC1kZXBsb3llciIsImt1YmVybmV0ZXMuaW8vc2Vyd-
mljZWFjY291bnQvc2VydmljZS1hY2NvdW50LnVpZCI6IjliZGQzYWQ0LTk5ZT-
ktMTFlOC04ODdmLTQyMDEwYTgwMDA5MyIsInN1YiI6InN5c3RlbTpzZXJ2aWN-
lYWNjb3VudDpodHRwZC1kZXZlbG9wbWVudDpodHRwZC1kZXBsb3llciJ9.
DDiMDOmznf4S8ClHO30RvSZNGHN_7WYk9-FABaLkSC-mIunWtJHiT_lEovbUToogM-
0fnG1ISueundAZ6tsRRY-eVwefLvhgy1Ync2QlLwaqeoUenGt1d36lH5YFb7gYmon-
2UD54DGEdYNzafI1TLWi3DS1apjSUc3kWh54HfZXSeQmCE7fGu4wNoJz3WU1MEQZx-
8KqM9__lVDxtPGmE2pyZX6OYBXoAQv9-cfs_1GP009exfkVWbVYdDFDoEko21KD-
AORjyKu4ow4KvVXOXzcfgCKe_UlYyuLg0A6NRyc8lDj4D34R1crIPvqWmXVy5BM-
K4ENchhYEC62nsInptZAg

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 20 of 73

The HTTPD
Development
Target
We now have everything we need to create a target that will
be used to deploy the HTTPD application in the Development
environment.

We start by creating a token account in Octopus with the
token that was returned above.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 21 of 73

We then use this token in a new Kubernetes target called Httpd-
Development.

Notice here that the Target Roles includes a role called Httpd that
matches the name of the application being deployed, and that the
Kubernetes namespace is set to httpd-development. The service
account we created only has permissions to deploy into the httpd-
development namespace, and will only be used to deploy the HTTPD
application into the Development environment.

Therefore this target represents the intersection of an application and
an environment, using a namespace and a limited service account to
enforce the permission boundary. This is a pattern we’ll repeat over
and over with each application and environment.

Now that we have a target to deploy to, let’s deploy our first
application!

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 22 of 73

The HTTPD Application
The Deploy Kubernetes containers step provides an opinionated
process for deploying applications to a Kubernetes cluster. This step
implements a standard pattern for creating a collection of Kubernetes
resources that work together to provide repeatable and resilient
deployments.

The application we’ll be deploying is HTTPD. This is a popular web
server from Apache, and while we won’t be doing anything more than
displaying static text as a web page with it, HTTPD is a useful example
given most applications deployed to Kubernetes will expose HTTP
ports just like HTTPD does.

The step is given a name, and targets a role. The role that we target
here is the one that was created to match the name of the application
we are deploying. In selecting the Httpd role, we ensure that the step
will use our Kubernetes target that was configured to deploy the
HTTPD application.

The Deployment section is used to configure the details of the
Deployment resource that will be created in Kubernetes.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 23 of 73

I’ll use the term “resource” (e.g. Deployment resource or Pod resource)
from now on to distinguish between the resources that are created in
the Kubernetes cluster (which is to say the resources that you would
work with if you used the kubectl tool directly) and Octopus concepts
or general actions like deploying things. This may lead to sentences like
“Click the Deploy button to deploy the Deployment resource”, but please
don’t hold that against me.

The Deployment name field defines the name that is assigned to the
Deployment resource. These names are the unique identifies for
Kubernetes resources within a Namespace resource. This is significant,
because it means that to create a new and distinct resource in
Kubernetes, it must have a unique name. This will be important when we
select a deployment strategy later on, so keep this in the back of your
mind.

The Replicas field defines how many copies of the Pod resources this
Deployment resource will create. We’ll keep this at 1 for this example.

The Progression deadline in seconds field configures how long
Kubernetes will wait for the Deployment resource to complete. If the
Deployment resource has not completed in this time (this could be
because of slow Docker image downloads, failed readiness checks on
the Pod resources, insufficient resources in the cluster etc) then the
deployment of the Deployment resource will be considered to be a
failure.

The Labels field allows general key/value pairs to be assigned to the
resources created by the step. Behind the scene these labels will be

applied to the Deployment, Pod, Service, Ingress, ConfigMap, Secret and
Container resources created by the step. As we mentioned earlier, this step
is opinionated, and one of those opinions is that labels should be defined
once and applied to all resources created as part of the deployment.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 24 of 73

The Deployment
Strategy
Kubernetes provides a powerful declarative model for the resources
that it manages. When using the kubectl command directly, it is
possible to describe the desired state of a resource (usually in YAML)
and “apply” that resource into the Kubernetes cluster. Kubernetes will
then compare the desired state of the resource to the current state
of the resource in the cluster, and make the necessary changes to
update the cluster resources to the desired state.

Sometimes this change is as simple as updating a property like a
label. But in other cases the desired state requires redeploying entire
applications.

Kubernetes natively provides two deployment strategies to make
redeploying applications as smooth as possible: recreate and rolling
updates.

The recreate strategy will remove any existing Pod resources before
creating the new ones. The rolling update strategy will incrementally
replace Pods resources. You can read more about these deployment
strategies in the Octopus documentation.

Octopus provides a third deployment strategy called blue/green. This strategy
will create entirely new Deployment resources with each deployment, and
when the Deployment resource has succeeded, traffic is switched over.

The blue/green deployment strategy provides some interesting possibilities
for those tasked with managing Kubernetes deployments, so we’ll select this
strategy.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 25 of 73

Volumes and
ConfigMaps
Volumes provide a way for Container resources to access external data.
Kubernetes provides a lot of flexibility with volumes, and they could be
disks, network shares, directories on nodes, GIT repositories and more.

For this example, we want to take the data stored in a ConfigMap
resource, and expose it as a file within our Container resource.
ConfigMap resources are convenient because Kubernetes ensures they
are highly available, they can be shared across Container resources,
and they are easy to create.

Because they are so convenient, the step can treat a ConfigMap
resource as part of the deployment. This ensures that the Container
resources that make up a deployment always have access to the
ConfigMap resource that was associated with them.

This is important, because you don’t want to be in a position where
version 1 of your application is referencing version 2 of your ConfigMap
resource while version 2 of your application is in the process of being
rolled out. Don’t worry if that doesn’t make much sense though, we’ll
see this in action later on.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 26 of 73

And this is exactly what we will configure for this demo. The Volume
type is set to Config Map, it is given a Name, and we select the
Reference the config map created as port of this step option
to indicate that the ConfigMap resource that will be defined later on in
the step is what the volume is pointing to.

The ConfigMap Volume items provide a way to map a ConfigMap
resource value to a filename. In this example we have set the Key to
index and the path to index.html, meaning that we want to expose
the ConfigMap resource value called index as a file with the name
index.html when this volume is mounted in a Container resource.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 27 of 73

The Container
The next step is to configure the Container resources. This is where
we will configure the HTTPD application.

We start by configuring the Docker image that will be used by the
Container resource. Here we have selected the httpd image from
the Docker feed we created previously.

In order to access HTTPD we need to expose a port. Being a web
server, HTTPD accepts traffic on port 80. Ports can be named to
make them easier to work with, and so we’ll call this port web.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 28 of 73

The last piece of configuration is to mount the ConfigMap
volume we defined earlier in a directory. The HTTPD Docker
image has been built to serve content from the /usr/local/
apache2/htdocs directory. If you recall, we configured the
ConfigMap Volume to expose the value of the ConfigMap
resource called index as a file called index.html. So by
mounting the volume under the /usr/local/apache2/htdocs
directory, this Container resource will have a file called /usr/
local/apache2/htdocs/index.html with the contents of the
value in the ConfigMap resource.

The configuration of each container is summarized in the main
step UI, so you can review it at a glance.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 29 of 73

The ConfigMap
We have talked a lot about the ConfigMap resource that is created
by the step, so now it is time to configure it.

The Config Map Name section defines the name (or, technically, part
of the name - more on that later) of the ConfigMap resource. The
Config Map Items defines the key/value pairs that make up the
ConfigMap resource.

If you remember, we exposed this ConfigMap resource as a volume,
and that volume defined an item that mapped the ConfigMap
resource value called index to the file called index.html. So here
we create an item called index, and the value of the item is what will
eventually become the contents of the index.html file.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 30 of 73

The Service
We’re close now to having an application deployed and accessible.
Because it is nice to see some progress, we’ll take a little shortcut
here and expose our application to the world with the quickest option
available to us.

To communicate with the HTTPD application, we need to take the port
that we exposed on the Container resource (port 80, which we called
web) through a Service resource. And to access that Service resource
from the outside world, we’ll create a Load balancer Service resource.

By deploying a Load balancer Service resource, our cloud provider
will create a network load balancer for us. What kind of network load
balancer is created and how it is configured differs from one cloud
provider to the next, but generally speaking the default is to create a
network load balancer with a public IP address.

The Service Name section defines the name of the Service resource.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 31 of 73

The Service Type section is where we configure the Service
resource as a Load balancer. The other fields can be left blank
in this section.

The Service Ports section is where incoming ports are mapped to
the Container resource ports. In this case we are exposing port 80
on the Service resource, and directing that to the web port (also port
80, but those values are not required to match) on the Container
resource.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 32 of 73

The ports are summarized in the main UI so they can be quickly
reviewed.

At this point, all the groundwork has been laid, and we can deploy
the application.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 33 of 73

The First Deployment
When you create a deployment of this project, Octopus allows you
to define the version of the Docker image that will be included. If you
look back at the configuration of the Container resource, you will
notice that we never specified a version, just the image name.

This is by design, as Octopus expects that most deployments will
involve new Docker image versions, whereas the configuration of the
Kubernetes resources will remain mostly static.

This means the only decision to make with day to day deployments
is the version of the Docker images, and you can take advantage
of Octopus features like channels to further customize how image
versions are selected during deployment.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 34 of 73

And with that our deployment has succeeded.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 35 of 73

Jumping into the Google Cloud console we can see that a Deployment
resource called httpd-deployments-841 has been created.

The name is a combination of the Deployment resource name we
defined in the step of httpd and a unique identifier for the Octopus
deployment of deployments-841.

This name was created because the blue/green deployment strategy
requires that the Deployment resource created with each deployment
be unique.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 36 of 73

The deployment also created a Service resource called httpd. Notice that it
is of type Load balancer, and that it has a public IP address.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 37 of 73

The ConfigMap resource called configmap-deployments-841 was also
created. Like the Deployment resource, the name of the ConfigMap
resource is a combination of the name we defined in the step and the
unique deployment name added by Octopus.

Unlike the Deployment resource, ConfigMaps created by the step will
always have unique names like this (the Deployment resource only has
the unique deployment name appended for blue/green deployments).

All of which results in HTTPD serving the contents of the ConfigMap
resource as a web page under the public IP address of the Service
resource.

If you have made it this far - congratulations! But you may be
wondering why we had to configure so many things just to get to the
point of displaying a static web page. Reading any other Kubernetes
tutorial on the internet would have had you at this point 1000 words
ago...

In developing these Kubernetes steps for Octopus we found
that everyone loves to show how quickly you can spin up a single
application deployed to a single environment using the admin account
and exposing everything on a dedicated load balancer. Which is
great, but doesn’t represent that kind of challenges that real world
deployments face.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 38 of 73

What we have achieved here is to lay the groundwork for deployments
of multiple applications across multiple environments separating
concerns with namespaces and service accounts with limited
permissions.

So, take a breath, because we’re only half done. Having reached the
point of deploying a single application to a single environment with a
single load balancer, we’re going to take the next step and make this a
multi-environment deployment.

So What Happens
When Things go
Wrong?
Deployments will sometimes fail. This is not only to be expected, but
celebrated, as long as it happens in the Development environment.
Failing quickly is a key component to a robust CD pipeline.

Let’s review what we have got deployed now. We have a load balancer
pointing to a Service resource, which in turn is pointing to the
Deployment resource.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 39 of 73

Let’s simulate a failed deployment. We can do this by configuring
the Container resource readiness probe to run a command that
does not exist. Readiness probes are used by Kubernetes to
determine when a Container resource is ready to start accepting
traffic, and by deliberately configuring a test that can not pass, we
can simulate a failed deployment.

As part of this failed deployment, we’ll also change the value of
the ConfigMap. Remember that this value is what is displayed in
the web page.

As expected, the deployment fails.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 40 of 73

So what does it mean to have a failed deployment?

Because we are using the blue/green deployment strategy, we now
have two Deployment resources. Because the latest one called
httpd-deployments-842 has failed, the previous one called httpd-
deployments-841 has not been removed.

We also have two ConfigMap resources. Again, because the last
deployment failed, the previous ConfigMap resource has not been
removed.

In essence the failed deployment resource and its associated
ConfigMap resource are orphaned. They are not accessible from the
Service resource, meaning to the outside world the new deployment
is invisible.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 41 of 73

Because the old resources were not edited during deployment and
were not removed due the deployment failed, our last deployment is
still live, accessible, and displays the same text that was defined with
the last successful deployment.

This again is one of the opinions that this step has about what a
Kubernetes deployment should be. Failed deployments should not
take down an environment, but instead give you the opportunity to
resolve the issue while leaving the previous deployment in place.

Go ahead and remove the bad readiness check from the Container
resource. Also change the value of the ConfigMap resource to
display a new message.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 42 of 73

This time the deployment succeeds. Because the deployment
succeeded, the previous Deployment and ConfigMap resources have
been cleaned up, and the new message is displayed on the webpage.

By creating new Deployment resources with each blue/green
deployment, and by creating new ConfigMap resources with each
deployment, we can be sure that our Kubernetes cluster is not left in
an undefined state during an update or after a failed deployment.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 43 of 73

Promoting to
Production
I promised you an example of a multi-environment deployment, so
let’s go ahead and configure our Production environment.

First, create a service account for the production environment. This
YAML is the same code we used to create the service account for the
Development environment, only with the text development replaced
with production.

kind: Namespace
apiVersion: v1
metadata:
 name: httpd-production

apiVersion: v1
kind: ServiceAccount
metadata:
 name: httpd-deployer
 namespace: httpd-production

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 namespace: httpd-production
 name: httpd-deployer-role
rules:
- apiGroups: [“”, “extensions”, “apps”]
 resources: [“deployments”, “replicasets”, “pods”, “services”, “ingresses”,
“secrets”, “configmaps”]
 verbs: [“get”, “list”, “watch”, “create”, “update”, “patch”, “delete”]
- apiGroups: [“”]
 resources: [“namespaces”]
 verbs: [“get”]

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: httpd-deployer-binding
 namespace: httpd-production
subjects:
- kind: ServiceAccount
 name: httpd-deployer
 apiGroup: “”
roleRef:
 kind: Role
 name: httpd-deployer-role
 apiGroup: “”

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 44 of 73

Likewise the Powershell to get the token is the same except
development is now production.

$user=”httpd-deployer”
$namespace=”httpd-production”
$data = kubectl get secret $(kubectl get
serviceaccount $user -o jsonpath=”{.secrets[0].name}”
--namespace=$namespace) -o jsonpath=”{.data.token}”
--namespace=$namespace
[System.Text.Encoding]::ASCII.GetString([System.
Convert]::FromBase64String($data))
The same is true of the bash script.

The same is true of the bash script.

user=”httpd-deployer”
namespace=”httpd-production”
kubectl get secret $(kubectl get serviceaccount
$user -o jsonpath=”{.secrets[0].name}”
--namespace=$namespace) -o jsonpath=”{.data.token}”
--namespace=$namespace | base64 --decode

I won’t repeat the details of running these scripts, creating the
token account or creating the target, so refer back to The HTTPD
Development Service Account for more details.

You want to end up with a target like the one shown below configured.

https://octopus.com/blog/deploying-applications-to-kubernetes#the-httpd-development-service-account
https://octopus.com/blog/deploying-applications-to-kubernetes#the-httpd-development-service-account

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 45 of 73

Now go ahead and promote the Octopus deployment to the
Production environment.

This will result in a second Load balancer Service resource being
created with a new public IP address.

And our production instance can be viewed in a web browser.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 46 of 73

Let’s have some fun and use a variable for the value of the ConfigMap
resource. By setting the value to the variable #{Octopus.Environment.
Name}, we will display the environment name in the web page.

Pushing this change through to production results in the environment
name being displayed on the page.

That was a trivial example, but does highlight the power that is
available by configuring multi-environment deployments. Once
your accounts, targets and environments are configured, moving
applications through environments is easy, secure and highly
configurable.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 47 of 73

Installing Nginx w/ Helm
SECTION THREE

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 48 of 73

Migrating to Ingress
For convenience we have exposed our HTTPD application via a Load
balancer Service resource. This was the quick solution, because Google
Cloud took care of building a network load balancer with a public IP
address.

Unfortunately this solution will not scale with more applications. Each
of those network load balancers costs money, and keeping track of
multiple public IP addresses can be a pain when it comes to security
and auditing.

The solution is to have a single Load balancer Service that accepts
all incoming requests and then directs the traffic to the appropriate
Pod resources based on the request. For example https://myapp/
userservice traffic would be directed to the user microservice,
and https://myapp/cartservice traffic would be directed to the cart
microservice.

This is exactly what the Ingress resource does for us. A single Load
balancer Service resource will direct traffic to an Ingress Controller
resource, which in turn will direct traffic to other internal Service
resources that don’t incur any additional infrastructure costs.

Configuring Helm
Helm is to Kubernetes what Chocolatey is to Windows or Apt/Yum
is to Linux. Helm provides a way to deploy both simple and complex
applications to a Kubernetes cluster, taking care of all the dependencies
and exposing the available options, and providing commands for upgrading
and removing existing deployments.

The great thing about Helm is that there is a huge catalogue of applications
already packaged into what Helm calls charts. We will use one of those
charts to install the Nginx Ingress Controller.

Unlike most Kubernetes resources, Ingress Controllers are provided by a
third party. Some cloud providers have their own Ingress Controllers, but we’ll
use the Nginx Ingress controller as it is the most popular and can be ported
between cloud providers.

But to configure the Nginx Ingress Controller, we first need to set up Helm.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 49 of 73

Install Helm in the
Kubernetes Cluster
Helm has a server side component that must first be installed on
the Kubernetes cluster itself. Cloud providers have instructions for
setting up the server side component, so hit up those docs to get the
instructions for preparing your Kubernetes cluster with Helm.

Helm Feed
To make use of Helm we need to configure a Helm feed. Since we will
use the standard public Helm repository, we configure the feed to
access https://kubernetes-charts.storage.googleapis.com/.

https://kubernetes-charts.storage.googleapis.com/

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 50 of 73

Ingress Controllers
and Multiple
Environments
At this point we have a decision to make about how to deploy the
Ingress Controllers resources.

We can have one Load Balancer Service resource directing traffic
to one Ingress Controller resource, which in turn can direct traffic
across environments. Ingress Controller resources can direct traffic
based on the hostname of the request, so traffic sent to https://
myproductionapp/userservice can be sent to the Production
environment, while https://mydevelopmentapp/userservice can be sent
to the Development environment.

The other option is to have an Ingress Controller resource per
environment. In this case, an Ingress Controller resource in the
Development environment would only send traffic to other services in
the Development environment, and a Ingress Controller resource in the
Production environment would send traffic to Production services.

Either approach is valid, with its own pros and cons. For this example though
we’ll deploy an Ingress Controller resource to each environment.

We will treat the Nginx Ingress Controller resource as an application
deployment. This means, like we did with the HTTPD deployment, a service
account and target will be created for each environment.

The Service Account, Role and RoleBinding resources need to be tweaked when
deploying Helm charts. Deploying a Helm chart involves listing and creating
resources in the kube-system namespace.

To support this, we create an additional Role resource with the permissions that
are required in the kube-system namespace, and bind that Role resource to
the Service account resource with another RoleBinding resource.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 51 of 73

kind: Namespace
apiVersion: v1
metadata:
 name: nginx-development

apiVersion: v1
kind: ServiceAccount
metadata:
 name: nginx-deployer
 namespace: nginx-development

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 namespace: nginx-development
 name: nginx-deployer-role
rules:
- apiGroups: [“”, “extensions”, “apps”]
 resources: [“deployments”, “replicasets”, “pods”, “services”, “ingresses”, “secrets”, “configmaps”]
 verbs: [“get”, “list”, “watch”, “create”, “update”, “patch”, “delete”]
- apiGroups: [“”]
 resources: [“namespaces”]
 verbs: [“get”]

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: nginx-deployer-binding
 namespace: nginx-development
subjects:
- kind: ServiceAccount
 name: nginx-deployer
 apiGroup: “”
roleRef:
 kind: Role
 name: nginx-deployer-role
 apiGroup: “”

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 namespace: kube-system
 name: nginx-deployer-role
rules:
- apiGroups: [“”]
 resources: [“pods”, “pods/portforward”]
 verbs: [“list”, “create”]

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: nginx-deployer-development-binding
 namespace: kube-system
subjects:
- kind: ServiceAccount
 name: nginx-deployer
 apiGroup: “”
 namespace: nginx-development
roleRef:
 kind: Role
 name: nginx-deployer-role
 apiGroup: “”

This is the YAML that creates the nginx-deployer Service
Account resource in the nginx-development namespace.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 52 of 73

kind: Namespace
apiVersion: v1
metadata:
 name: nginx-production

apiVersion: v1
kind: ServiceAccount
metadata:
 name: nginx-deployer
 namespace: nginx-production

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 namespace: nginx-production
 name: nginx-deployer-role
rules:
- apiGroups: [“”, “extensions”, “apps”]
 resources: [“deployments”, “replicasets”, “pods”, “services”, “ingresses”, “secrets”, “configmaps”]
 verbs: [“get”, “list”, “watch”, “create”, “update”, “patch”, “delete”]
- apiGroups: [“”]
 resources: [“namespaces”]
 verbs: [“get”]

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: nginx-deployer-binding
 namespace: nginx-production
subjects:
- kind: ServiceAccount
 name: nginx-deployer
 apiGroup: “”
roleRef:
 kind: Role
 name: nginx-deployer-role
 apiGroup: “”

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 namespace: kube-system
 name: nginx-deployer-role
rules:
- apiGroups: [“”]
 resources: [“pods”, “pods/portforward”]
 verbs: [“list”, “create”]

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: nginx-deployer-production-binding
 namespace: kube-system
subjects:
- kind: ServiceAccount
 name: nginx-deployer
 apiGroup: “”
 namespace: nginx-production
roleRef:
 kind: Role
 name: nginx-deployer-role
 apiGroup: “”

This is the YAML for creating the nginx-deployer Service
Account resource in the nginx-production namespace.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 53 of 73

The process of getting the token for the service account is the
same, as is creating the token Octopus account and target.

After creating the accounts, namespaces and targets, we’ll have the
following list of targets configured in Octopus.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 54 of 73

Configuring Helm
Variables
We can deploy the Nginx Helm chart with the Run a Helm Update step.

Select the nginx-ingress chart from the helm feed.

Set the Kubernetes Release Name to nginx-#{Octopus.Environ-
ment.Name | ToLower}. We have taken advantage of the Octopus
variable substitution to ensure that the Helm release has a unique name
in each environment.

Helm charts can be customized with parameters. The Nginx Helm chart
has documented the parameters that it supports here. In particular, we
want to define the controller.ingressClass parameter, and change
it for each environment. The Ingress class is used as a way of determin-
ing which Ingress Controller will be configured with which rule, and we’ll
use this to distinguish between Ingress resource rules for traffic in the
Development environment from those in the Production environment.

In the Raw Values YAML section, add the following YAML. Note that
we have again used variable substitution to ensure each environment
has a unique value applied to it.

controller:
 ingressClass: “nginx-#{Octopus.Environment.Name | ToLower}”

https://github.com/helm/charts/tree/master/stable/nginx-ingress#configuration

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 55 of 73

Now deploy the Helm chart to the Development environment.

Save those changes, and remember to change the lifecycle to
Application.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 56 of 73

Helm helpfully gives us an example of how to create Ingress resources
that work with the newly deployed Ingress Controller resource.

The nginx-ingress controller has been installed.
It may take a few minutes for the LoadBalancer IP to be available.
You can watch the status by running ‘kubectl --namespace nginx-
development get services -o wide -w nginx-development-nginx-ingress-
controller’
An example Ingress that makes use of the controller:
 apiVersion: extensions/v1beta1
 kind: Ingress
 metadata:
 annotations:
 kubernetes.io/ingress.class: nginx-development
 name: example
 namespace: foo
 spec:
 rules:
 - host: www.example.com
 http:
 paths:
 - backend:
 serviceName: exampleService
 servicePort: 80
 path: /
 # This section is only required if TLS is to be enabled for the
Ingress
 tls:
 - hosts:
 - www.example.com
 secretName: example-tls

In particular, the annotations are important.

annotations:
 kubernetes.io/ingress.class: nginx-development

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 57 of 73

Those Nginx Deployment resources are accessible from new Load
balancer Service resources.

We’re now ready to connect to the HTTPD application through
the Ingress Controllers instead of through their own network load
balancers.

Remember how we set the controller.ingressClass parameter
when deploying the Helm chart? This annotation is what that property
controls. It means that an Ingress resource must specifically set the
kubernetes.io/ingress.class: nginx-development annotation
to be considered by this Ingress Controller resource. This is how
we distinguish between rules for the development and production
Ingress Controller resources.

Go ahead and push the deployment to the Production environment.

We can now see the Nginx Deployment resources in the Kubernetes
cluster.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 58 of 73

Going Deeper with
Kubernetes

SECTION FOUR

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 59 of 73

Configuring Ingress
Back in the HTTPD Container Deployment step, we need to change
the Service Type from Load balancer to Cluster IP. This is
because an Ingress Controller resource can direct traffic to the
HTTPD Service resource internally.

There is no longer a need for the HTTPD Service resource to be
publicly accessible, and a Cluster IP Service resource provides
everything we need.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 60 of 73

We now need to configure the Ingress resource.

Start by defining the Ingress Name.

The Ingress resources support the many different Ingress Controllers
that are available via annotations. These are key/value pairs that
often contain implementation specific values. Because we have
deployed the Nginx ingress controller, a number of the annotations
we are defining are specific to Nginx.

The first annotation is shared across Ingress Controller resource
implementations though. It is the kubernetes.io/ingress.class
annotation that we talked about earlier. We set this annotation to
nginx-#{Octopus.Environment.Name | ToLower}.

This means that when deploying in the Development environment,
this annotation will be set to nginx-development, and when
deploying to the Production environment it will be set to nginx-
production. This is how we target the environment specific Ingress
Controller resources.

The kubernetes.io/ingress.allow-http annotation is set to true
to allow unsecure HTTP traffic, and nginx.ingress.kubernetes.
io/ssl-redirect is set to false to prevent Nginx from redirecting
HTTP traffic to HTTPS.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 61 of 73

The last section to configure is the Ingress Host Rules. This is
where we map incoming requests to the Service resource that
exposes our Container resources. In our case we want to expose
the /httpd path to the Service resource port that maps to port 80 on
our Container resource.

The Host field is left blank, which means it will capture requests for
all hosts.

Go ahead and deploy this to the Development environment. You
will get an error like this.

The Service “httpd” is invalid: spec.ports[0].nodePort:
Invalid value: 30245: may not be used when `type` is
‘ClusterIP’

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 62 of 73

This error is thrown because we changed a Load balancer Service
resource, which defined a nodePort property, to a Cluster IP
Service resource, which does not support the nodePort property.
Kubernetes is pretty good at knowing how to update an existing
resource to match a new configuration, but in this case it doesn’t
know how to perform this change.

The easiest solution is to delete the Service resource and rerun the
deployment. Because we have completely defined the deployment
process in Octopus, we can delete and recreate these resources
safe in the knowledge that there are no undocumented settings that
have been applied to the cluster that we might be removing.

This time the deployment succeeds, and we have successfully
deployed the Ingress resource.

Let’s open up the URL that we exposed via the Ingress Controller
resource.

And we get a 404. What is wrong here?

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 63 of 73

Managing URL
Mappings
The issue here is that we opened a URL like http://35.193.149.6/
httpd, and then passed that same path down to the HTTPD ser-
vice. Our HTTPD service has no content to serve under the httpd
path. It only has the index.html file in the root path the mapped
from a ConfigMap resource.

Fortunately this path mismatch is quite easy to solve. By setting
the nginx.ingress.kubernetes.io/rewrite-target annotation
to /, we can configure Nginx to pass the request that it receives
on path /httpd along to the path /. So while we access the URL
http://35.193.149.6/httpd in the browser, the HTTPD service sees a
request to the root path.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 64 of 73

Redeploy the project to the Development environment. Once
the deployment is finished, the URL http://35.193.149.6/httpd
will return our custom web page displaying the name of the
environment.

Now that we have the Development environment working as we
expect, push the deployment to the Production environment
(remembering to delete the old Service resource, otherwise the
nodePort error will be thrown again). This time the deployment
works straight away.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 65 of 73

Output Variables
One of the benefits of using Octopus to perform Kubernetes
deployments is that your deployment process can integrate with
a much wider ecosystem. This is done by accessing the output
variables that are generated for each resource created by this
step. These parameters can then be consumed in later steps.

In our case, the output variables are (replace step name, with the
name of the step):

•	 Octopus.Action[step name].Output.Ingress
•	 Octopus.Action[step name].Output.ConfigMap
•	 Octopus.Action[step name].Output.Deployment
•	 Octopus.Action[step name].Output.Service

These variables contain the JSON representation of the Kubernetes
resources that were created. By parsing these JSON strings in a
script step, we can for example display a link to the network load
balancer that is exposing our Kubernetes services.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 66 of 73

Tips and Tricks
SECTION FIVE

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 67 of 73

You may have noticed that the Octopus step does expose every
possible option that can be defined on a Deployment resource.

If you need a level of customization that the step does not provide,
you can find the YAML for the resources that are created in the
log files. These YAML files can be copied out, edited and deployed
manually through the Run a kubectl CLI script step.

Viewing the
Resource YAML

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 68 of 73

Adhoc Scripts
One of the challenges with managing multiple Kubernetes accounts
and clusters is constantly switching between them when running
quick queries and one off maintenance scripts. It is always best
practise not to run scripts with an admin user, but I think we have
all run that sneaky command as admin just to get the job done. And
more than a few have been burned with a delete command that was
just a bit too broad...

Fortunately, once targets have been configured in Octopus as
described in this guide, it becomes easy to run these adhoc scripts
limited to a single namespace using the Script Console.

You can access the Script Console through Tasks -> Script
Console. Select the Kubernetes target that reflects the namespace
that you are working with, and write a script in the supplied editor.

The script will be run in the same kubectl context that is created when
running the Run a kubectl CLI Script step. This means you adhoc
scripts will be contained to the namespace of the target (assuming if
course the service account has the correct permissions), limiting the
potential damage of a wayward command.

The script console also has the advantage of saving a history of what
commands were run by whom, providing an audit trail for mission
critical systems.

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 69 of 73

Scripting Kubernetes
Targets
Creating accounts and targets can be time consuming if you are
managing a large Kubernetes cluster. Fortunately the process can
be automated so the Kubernetes Namespace and Service Account
resources along with the Octopus Account and Targets are created
with a single script.

Create a Run a kubectl CLI Script step that targets an existing
Kubernetes admin target (i.e. a target that was set up with the
Kubernetes admin credentials).

Define the following project variables:

•	 KubernetesUrl - The Kubernetes cluster URL.

Click here to download the PowerShell script in the image to the right.
Copy and paste it as the script body.

This script will then create the Kubernetes resources, get the token, and
create the Octopus token account and Kubernetes target.

You could also allow the project variables to be supplied during deploy-
ment, or save this script as a step template to make it easier to reuse.

https://cdn2.hubspot.net/hubfs/4676868/eBooks/Ultimate%20Guide%20to%20Kubernetes/kubernetes-final-step.zip

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 70 of 73

Summary
In this eBook we have seen how to manage multi-environment
deployments within a Kubernetes cluster using Octopus.

Each application and environment was configured in as a separate
namespace, with a matching service account that had permissions only to
that single namespace. The namespaces and service accounts were then
configured as Kubernetes targets, which represent a permission boundary
in a Kubernetes cluster.

The deployments were then performed using the blue/green strategy, and
we saw how failed deployments leave the last successful deployment in
place while the failed resources can be debugged.

We also looked at how to deploy applications with Helm across
environments, which we implemented by deploying the nginx-ingress chart.

The end result was a repeatable deployment process that emphasises
testing changes in a Development environment, and pushing the changes
to a Production environment when ready.

I hope you have enjoyed this eBook, and if you have any suggestions or
comments about the Kubernetes functionality please get in touch via
hello@octopus.com

Your feedback is appreciated.

mailto:hello%40octopus.com?subject=enquiry%20via%20K8%20eBook

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

 Page 71 of 73

By Matthew Casperson
Senior Software Engineer, Octopus Deploy.

octopus.com

The Ultimate Guide to
Kubernetes Deployments
with Octopus

https://octopus.com
https://octopus.com

