The Ultimate Guide to

Kubernetes Deployments
with Octopus

ﬂOctopus Deploy

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy

Contents

1 Prerequisites 20 Migrating to Ingress
S /‘ 2 Preparing the Octopus Server 21 Configuring Helm
3 What we Will Create 22 Install Helm in the Kubernetes Cluster
4 The Feed 23 Helm Feed
5 The Environments 24 Ingress Controllers and Multiple Environments
6 The Lifecycles 25 Configuring Helm Variables
7 The Kubernetes Admin Target
8
9

The HTTPD Development Service Account 26 Configuring Ingress
The HTTPD Development Target 4 27 Managing URL Mappings
S 28 Output Variables

10 The HTTPD Application
11 The Deployment Strategy

12 Volumes and ConfigMaps ‘— 29 Some Useful Tips and Tricks
13 The Container :) 30 Viewingthe Resource YAML

14 The ConfigMap 31 Adhoc Scripts
15 The Service 32
16 The First Deployment

17 So What Happens When Things go

18 Wrong?

19 Promoting to Production

Scripting Kubernetes Targets

Summary

Page 2 of 73

The Ultimate Guide to Kubernetes Dey 1ents with Octopus 5 us Deploy

Configure Service Accounts and Namespaces with the principal

Octopus 2018.8 previews a number of new features that make
managing Kubernetes deployments easy. of least privilege in mind.

Deploy a functioning web server in Kubernetes

These Kubernetes steps and targets have been designed to allow teams to .
P ° 5 Perform blue/green updates of Kubernetes Deployments, with
deploy applications to Kubernetes taking advantage of Octopus environments,

dashboards, security, account management, variable management and S iz S
integration with other platforms and services. Access applications through a public network load balancer
Direct traffic with a multiple Nginx Ingress Controllers
Deploy applications using Helm And do all of that across a

development and production environment.

This ebook will take you from a blank Kubernetes cluster to a functional
multi-environment cluster with repeatable deployments using patterns
that will scale as your teams and applications grow.

Prepare your Octopus

Infrastructure

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

The Prerequisites

To follow along with this guide, you will need to have an Octopus
instance, a Kubernetes cluster already configured, and with Helm
installed. This guide uses the Kubernetes service provided by
Google Cloud, but any Kubernetes cluster will do.

Helm is a package manager for Kubernetes, and we'll use it to
install some third party services into the Kubernetes cluster.

Google Cloud provides documentation describing how to install
Helm in their cloud, and other cloud providers will provide similar
documentation.

New to Octopus? Spin up a FREE trial to
learn more, or explore our demo site to
see more working examples.

*Octopus Deploy Features Downloads Company Docs

Fast, repeatable, reliable
deployments

Octopus takes over where your Continuous

Support

Integration server ends, enabling you to easily ‘

automate even the most complicated application
deployments, whether on-premises or in the
cloud.

& Try for free ‘ | © Watch video

Pricing

Blog

Tryforfree €Y

New!l Octopus Cloud is now available. Spin up a new instance with just a few clicks and try for freel

Page 5 of 73

https://octopus.com/account/register
https://demo.octopus.com/app

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

Preparing the
Octopus Server

The Kubernetes steps in Octopus require that the kubectl
executable be available on the path. Likewise the Helm steps require
the helm executable to be available on the path.

If you run the Kubernetes steps from Octopus workers, you can
install the kubectl executable using the instructions on the
Kubernetes website, and the helm executable using the instructions

on the Helm project page.

Because the Kubernetes functionality in Octopus is in a preview
state, the steps discussed in this book need to be enabled in the
Features section.

AR Dashboard Projects Infrastructure Tenants Library Tasks Configuration

Configuration

AUk Features
Backup
Diagnostics
Octopus Community Step

Features. Templates
Let's Encrypt

Steps can run on the Octopus
License server
Maintenance Kubernetes
Nodes
Performance
Settings
SMTP
Subscriptions
Teams
Test Permissions
Thumbprint
Users
User Invites.

User Roles

Enabled (defaull) "

Enabled (defaul) v

Specify whether Kubemetes features are enabled. ~
© Waming - Alpha Feature

Kubernetes functionalty has been released as an alpha. These features are intended for
testing and feedback onl

deleted and recreated bugs
that could lead loss. Do not enable this
servers, and do not use these steps for production deployments.

@ Enabled
O Disabled

Page 6 of 73

https://octopus.com/docs/administration/workers
https://kubernetes.io/docs/tasks/tools/install-kubectl/#install-kubectl-binary-via-native-package-management
https://github.com/helm/helm#install

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy

What we will create

Before we dive into the specifics of deploying a Kubernetes
application, it is worth understanding what we are trying to achieve
with this example.

Our infrastructure has the following requirements:
Two environments: Development and Production
One Kubernetes cluster
A single application (we're deploying the HTTPD Docker image as
an example here)
The application is exposed by a custom URL path like
http://myapp/httpd
Zero downtime deployments

At a high level, this is what we will end up with.

Dev
LomoBALAM CeR
\J
Oev

/

IPErESS ConitRocLel
ul
OV HTIPD
SRV
Dev PROD HTIPD f'l°DQ
A o B
Y \Come e DEPLo NE T AP

(AN

Don't worry if this diagram looks intimidating, as we'll build up each of these
elements step by step.

Page 7 of 73

https://hub.docker.com/_/httpd/

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

The Feed

The Kubernetes support in Octopus relies on having a Docker
feed defined. Because the HTTPD image we are deploying can be
found in the main Docker repository, we'll create a feed against the
https://index.docker.io URL.

The Environments

Although we listed two environments as requirements, we'll actually
create three. The additional environment, called Kubernetes Admin,
will be where we run utility scripts to create user accounts.

R Dashboard Projects @&

Library

Certificates
External Feeds
Lifecycles
Packages
Script Modules
Step Templates

Variable Sets

A Dashboard Projects @&

Infrastructure

Overview
Deployment Targets
Environments
Workers

Worker Pools
Machine Policies
Proxies

Accounts

Infrastructure Tenants Library ~ Tasks Configuration

Infrastructure

Extemal Feeds
Docker

Feed Type

Name

Registry Path

Credentials

feeds-docker

Select the type of the feed.

Enter a name for the external feed
Fead name
Docker

A short, memorable, uiqus

i feea. Exa

Provide the location of the feed.
Feedurl

https://index.docker.io

o use the pubiic Docker Hub registr, set the url o https: //index. docker. io

Please enter the path of the registry

Add authentication details if you feed requires authentication

Tenants Library ~ Tasks Configuration

Environments

Environments help you organize your deployment targets (because software is typically deployed to more than one machine/service)

Search environments. Q

& Development (3)

= Production (2)

£ Kubernetes Admin (1)

= SHOW ADVANCED FILTERS

£ Qumn -

A Qoadmin ~

JULLIZTVEN S /LI ADD ENVIRONMENT i

EXPAND ALL
@3meatHY § v
@2meamhY § v

@iueaTHY] v

Page 8 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus

Octopus Deploy.

The Lifecycles

The default lifecycle in Octopus assumes that all environments will be
deployed to, one after the other. This is not the case for us. We have
two distinct lifecycles: Development -> Production, and Kubernetes
Admin as a standalone environment where utility scripts are run.

To model the progression from Development to Production, we'll
create a lifecycle called Application. It will contain two phases, the
first for deployments to the Development environment, and the
second for deployments to the Production environment.

R Dashboard Projects

Library

Certificates
Extemal Feeds
Lifecycles
Packages
Script Modules
Step Templates

Variable Sets.

@0 infrastructure Tenants Library Tasks Configuration

Ufecycles
Create Lifecycle

Phases.

Projects that use this lifecycle can only be deployed according to the phases below.

Name Enter a name for your lifecycle.

Application

Description Enter a description for your lifecycle.

Lifecycle description

O®: 0®:

Phase 1
Development

Environments

I Development

Required to progress
@ Allmust complete (default)

O Aminimumof © - mustcomplete
O Optional phase

Retention policy

@ Keepall (default)

O Keepa limited number

How lang should we k
@ Keepall cer
O Keepa limited number

e kept for. For mr

ADD PHASE

ADD ENVIRONMENT

X

Phase 2

Production

Environments

B Production

Required to progress

@® Allmust complete (default)

O Aminimum of = must complete
O Optional phase

Retention policy

ADD ENVIRONMENT

X

4 Qumn -

REORDER PHASES

Page 9 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus

Octopus Deploy.

To model the scripts run against the Kubernetes cluster, we'll

create a lifecycle called Kubernetes Admin. It will contain a single

phase for deployments to the Kubernetes Admin environment.

Dashboard ~ Projects @@ Infrastructure Tenants Library
Library
Certificates Lifecycles

Kubernetes Admin
External Feeds

Lifecycles
Packages Name
Script Modules
Step Templates

Variable Sets Description

Retention Policy

Phases

ks Configuration

Enter a name for your lifecycle.

Kubernetes Admin

€ admin

No lifecycle description provided

Releases: Keep all. Files on Tentacle: Keep all.

Projects that use this lifecycle can only be deployed according to the phases below.

Phase 1

Lifecycle Preview

8 Admin

0 kubernetes Admin

Projects Using This Lifecycle

E Create Kubernetes Users

Admin

EXPANDALL COLLAPSE ALL
~
v
ADD PHASE
~

Environments

W Kubernetes Admin

Required to progress

@ Allmust complete (default)
Q A minimum of
Q Optional phase

must complete

Retention policy

How long should we keep releases?

@ Keepall (defaul)

QO Keep a limited number

How long should we keep extracted packages and files on disk
@ Keepall (defaul)

O Keep a limited number

ADD ENVIRONMENT

X

on Tentacles?

dictate how long
retention policies G documentation

Kept for For

please see

Page 10 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

T h e K u b e r n ete S Having said that, we need some place to start in order to create the namespaces

and service accounts, and for that we will create a Kubernetes target with the

L]
Ad ' I l I n Ta rget administrator credentials that deploys to the Kubernetes Admin environment.

First, we need to create an account that holds the administrator user credentials.

A Kubernetes target in Octopus is conceptually a permission The Kubernetes cluster in Google Cloud provides a user called admin with a

boundary within a Kubernetes cluster. It defines this boundary using a

randomly generated password that we can use.

Kubernetes namespace and a Kubernetes account.

As the number of environments, teams, applications and services
being deployed to a Kubernetes cluster grows, it is important to

keep them isolated to prevent resources from accidentally being luster redentias
overwritten or deleted, or to prevent resources like CPU and memory

being consumed by rogue deployments.

Permissions and resource limits can be enforced by applying them to

Kubernetes namespaces, and those restrictions are then applied to
any deployment that is placed in the namespace.

In keeping with the practise of least privilege, each namespace will
have a corresponding system account that only has privileges to that

single namespace.

The combination of a namespace and a service account that is limited These credentials are saved in a username/password Octopus account.

to the namespace makes up a typical Octopus Kubernetes target.

Page 11 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus

Oc

Most Kubernetes clusters expose their APl over HTTPS, but will
often do so using an untrusted certificate.

In order to communicate with the Kubernetes cluster, we can either
disable any validation of the certificate, or provide the certificate as
part of the Kubernetes target. Disabling certificate validation is not
considered best practise, so we will instead upload the Kubernetes
cluster certificate to Octopus.

The certificate is provided by Google as a PEM file, like this
(copied from the Cluster CA certificate field in the Cluster
credentials dialog):

This text is then saved to a file called k8s . pem, and uploaded to
Octopus.

M Dashboard Projects @ Infrastructure Temants Library Tasks Configuration

Infrastructure

Overview
Deployment Targets
Environments
Workers

Worker Pools
Machine Policies
Proxies

Accounts

Account

Guoél; B3 :

Name A short, memorable, unique name for this account. ~

Admin

Description v
Usage

LOAD ACCOUNT USAGE
Credentials

Username The usemame to use when authenticating against the remote host ~

admin a

Password The password to s to when authenticating against the remote host. ~

Restrictions

Environments Available for deployments to any environment v

Other cloud providers use different authentication schemes for their administrator users. See

the documentation for details on using account types other than a username and password.

MIIDCzCCAfOgAWIBAgIQMufY5zcMoXLTKHXY2e5hDTANBgkghkiGOw@BAQsFADAv
MS@wKwYDVQQDEyYQwMj kwMTUZzZS@5ZGYWLTQzNjAtYmI jMCOXZTFhY jkxMzQwYTgw
HhcNMTgwNzI1MDEyMDAZWhcNMjMwNzI@MDIyMDAZWjAvMS@wKwYDVQQDEYQwMjkw
MTUzZS@5ZGYWLTQzNjAtYmIjMCOXZTFhY jkxMzQwYTgwggEiMA@GCSqGSIb3DQEB
AQUAA4IBDWAWggEKA0IBAQDDYKNTRbHMVQlh2mvjdBEeIXwAI40t6MBm8K3wGqiF
D/S1Y2AsKjsMq/5VR+z1KrbFJUkxQGdAN@Dm7tSUpzgkr7DaPTT/FLKPidFNECG6Z
ZpiengESWLWXT2g807yRIfAaFBASzZ6@UeUs1VYTLSWdgNSIW96]ID1WzNj7Fwd/
ImlLiZVV1QLN4Yz2yf99wCX4Mg3jCaKLQF4/f7/e+d1PkAROSjG5tRgOpHBDkgqL
ewDBpT5p1tuIBKN6ZyQbMkLRcTU821iFpnDLIwWlkXfmhVv3RXBtM/VcK/LD/VuGH+
Rko8xY9+ckrUyY1PU5CxL4WS@3pbHF05JxjPhNeEpfZPAgGMBAAGjIzAhMA4GALUd
DwEB/wWQEAWICBDAPBgNVHRMBAf8EBTADAQH/MAGGCSqGSIb3DQEBCWUAA4IBAQAd
@BI9H5JuQSW/506hoW9bvoMAdga9mwrY jMQ1ErSkHpI94K7@CFmnh3vAogbUGkGkb
RN5S0jpgaliYwAoBUECPWV8VBotsJ17W67B5214w37zYDgT6WT 1g@s@urdRSvAGs
EHHTTzNaHoeVBArUvFb@NprL7UH3K0QJG+VKhsxSvTYIWddptfpo+Da720EtGRbs
F1g3GhuAICmyCQnDQ6LgxPRg5/WCCiea43c7hPs2AK3SIAsoA@DTy311gpoggKVn
Cods8yRwx6GPC619nmmygAjma@ai@6N/oUtWZQhX20YzAKsgdzulP+D1QfDbmv5u
Jash2XeDyUqUFUEsH+0+

————— END CERTIFICATE-----

4 Qamn -

Page 12 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

With the user account and the certificate saved, we can now create the
Kubernetes target called Kubernetes Admin.

This target will deploy to the Kubernetes Admin environment, and
take on a role that is called Admin. The account will be the Kubernetes
Admin account we created above, and the cluster certificate will
reference the certificate we saved above.

Because this Kubernetes Admin target will be used to run utility
scripts, we don't want to have it target a Kubernetes namespace, so
that field is left blank.

We now have a target that we can use to prepare the service accounts
for the other namespaces.

R Dashboard Projects @Q Infrastructure Tenants Library ~ Tasks Configuration A Q admin

Library

Certificates Certificates

Kubernetes
External Feeds
Lifeoycles
Packages Name
Script Modules Notes
Step Templates
Details
Variable Sets
Usage
Restrictions

Environments

Kubernetes.

Notes not provided

@ 0290153¢-90f0-4360-bbc0-1¢12b9134028 [Self-Signed (Expies 15 vears)

This certificate is not used anywhere

Available for deployments to any environment (default)

A Dashboard Projects @& Infrastructure Tenants Library Tasks Configuration

nfrastructure
Deployment Targets

Kubernetes Admin

Settings Display Name
Connectivity Is Disabled
Deployments BEE D
Events

Environments

Target Roles

Communication

Account

Kubernetes Details

Worker Pool

Kubernetes Admin

No (default)

Choose at least one environment for the deployment target.
Select environments

& rovermetes acmin @)

Select environments

Choose at least one role that this deployment target will provide.
Roles (tye to add anew ole)

® aamin @

Roles (type to add a new role)

Specify the communication style.

This value cannot be modified once the deployment target has been added. To change
target the

desired communication style.

Choose

Select the account o certificate that identifies the Kubernetes user.

Select accourt
2 Kubemnetes Admin x - C +

Select certificate

The cert fentiiesthe user.

Enter the Kubernetes URL and namespace.
Kubernates cluster URL

hitps://35.232.148.138

et criate
B Kuvemetes X - Q

The optonal custer certfcate authorty.

Kubernetes namespace

No pool selected - default pool

EXPAND ALL

& Quaimn -

EXPANDALL COLLAPSEALL

Page 13 of 73

Your first Kubernetes
Deployment

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy

The HTTPD
Development Service
Account

We now have a Kubernetes target, but this target is configured with
the cluster administrator account. It is not a good idea to be running
deployments with an administrator account, so what we need to

do is create a namespace and service account that will allow us to
deploy only the resources we need for our application in an isolated
area in the Kubernetes cluster.

To do this, we need to create four resources in the Kubernetes
cluster: a namespace, a service account, a role and a role binding.
We've already discussed namespaces and service accounts. A role
defines the actions that can be applied and the resources they can
be applied to. A role binding associates a service account with the
role, granting the service account the permissions that were defined
in the role.

Kubernetes can represent these resources as YAML, and YAML can
represent multiple documents in a single file by separating them
with a triple dash. So the YAML document below defines these four
resources .

kind: Namespace
apiVersion: v1
metadata:
name: httpd-development
apiVersion: v1
kind: ServiceAccount
metadata:
name: httpd-deployer
namespace: httpd-development
kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
namespace: httpd-development
name: httpd-deployer-role
rules:
- apiGroups: [“”, “extensions”, “apps”]
resources: [“deployments”, “replicasets”, “pods”, “services”,
“ingresses”, “secrets”, “configmaps”]
verbs: [“get”, “list”, “watch”, “create”, “update”, “patch”,
“delete”]
- apiGroups: [“”]
resources: [“namespaces”]
verbs: [“get”]
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: httpd-deployer-binding
namespace: httpd-development
subjects:
- kind: ServiceAccount
name: httpd-deployer
apiGroup: “”
roleRef:
kind: Role
name: httpd-deployer-role
apiGroup: “”

Page 15 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

To create these resources, we need to save the YAML as a file, and
then use kubectl to create them in the cluster. To do this, we use the
Run a kubectl CLI Script step.

Run a kubectl CLI
Script

Runs a custom script with
kubectl context pre-set

by Octopus Deploy

This step will then target the Kubernetes Admin target, and run the
following script, which saves the YAML to a file and then uses kubectl
to apply the YAML.

Set-Content -Path serviceaccount.yml -Value @”

kind: Namespace
apiVersion: vi
metadata:
name: httpd-development
apiVersion: vi
kind: ServiceAccount
metadata:
name: httpd-deployer
namespace: httpd-development
kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
namespace: httpd-development
name: httpd-deployer-role
rules:
- apiGroups: [“”, “extensions”, “apps”]

resources: [“deployments”, “replicasets”, “pods”, “services”,

“ingresses”, “secrets”, “configmaps”]

verbs: [“get”, “list”, “watch”, “create”, “update”, “patch”, “delete”]

- apiGroups: [“”]
resources: [“namespaces”]
verbs: [“get”]
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: httpd-deployer-binding
namespace: httpd-development
subjects:
- kind: ServiceAccount
name: httpd-deployer
apiGroup: “”
roleRef:
kind: Role
name: httpd-deployer-role
apiGroup: “”

fl@

kubectl apply -f serviceaccount.yml

Page 16 of 73

The Ultimate Guide to Kubernetes Deployments w

The bash script is very similar.

th Octopus

Set-Content -Path serviceaccount.yml -Value @”
kind: Namespace
apiVersion: vi
metadata:
name: httpd-development
apiVersion: vi
kind: ServiceAccount
metadata:
name: httpd-deployer
namespace: httpd-development
kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
namespace: httpd-development
name: httpd-deployer-role
rules:
- apiGroups: [“”, “extensions”, “apps”]

resources: [“deployments”, “replicasets”, “pods”, “services”,

“ingresses”, “secrets”, “configmaps”]

verbs: [“get”, “list”, “watch”, “create”, “update”, “patch”,

“delete”]
- apiGroups: [“”]
resources: [“namespaces”]
verbs: [“get”]
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: httpd-deployer-binding
namespace: httpd-development
subjects:
- kind: ServiceAccount
name: httpd-deployer
apiGroup: “”
roleRef:
kind: Role
name: httpd-deployer-role
apiGroup: “”

rr@

kubectl apply -f serviceaccount.yml

Page 17 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy

A Dashboard Projects @ Infrastructure Tenants Library Tasks Configuration

Projects
e Step Templates.
E 1. Create Service Accounts CoNRIGURE FEATLRES m
Once this script is run, a service account called httpd-deployer Crente Semvice
. Accounts Step Name A short, memorable, unique name for this step. ~
will be created. This service account is automatically assigned a e
token that we can use to authenticate with the Kubernetes cluster. I — .
We can run a second script to get this token. :
Settings
Script
$user="httpd-deployer” - @Swdp o
$namespace="httpd-development” N —
$data = kubectl get secret $(kubectl get serviceaccount $user
-0 jsonpath="{.secrets[@].name}” --namespace=$namespace) -o Packages Nopackages v
jsonpath=”{ . data . token }” - namespace=$namespace Script Content Select the script language and enter the body of the script that will be executed. ~
[System.Text.Encoding]: :ASCII.GetString([System. © s O
Convert]::FromBase64String($data)) 5 ¢
The same functionality can be run in bash with the following script.
user="httpd-deployer”
namespace="httpd-development”
kubectl get secret $(kubectl get serviceaccount $user -o
jsonpath="{.secrets[0].name}” --namespace=$namespace) -o)))
jsonpath="{.data.token}” --namespace=$namespace | base64 We have retrieved the token as part of a script step here for demonstration purposes only.
--decode Displaying the token in the log output is a security risk, and should be done with caution. These

same scripts can be run locally instead to prevent the tokens being saved in a log file.

See the section Scripting Kubernetes Targets for a solution that automates the process of

creating these accounts, without leaving tokens in the log file.

Page 18 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy

Change lifecycle
Before we deploy the script, we need to make sure the project is

using the Kubernetes Admin lifecycle. LK_b : Ad
ubernetes Admin -

I-_:;imin
| Kubernetes Admin

A Dashboard Projects Infrastructure ~ Tenants Library Tasks Configuration

Projects

We can now run the script, which will create the service account B L R -~ |
and display the token. The token looks like this: ieale S

Accounts StepName A short, memorable, unique name for this step. ~

Create Service Accounts
Overview

Execution Plan Where should this step run? ~

eyJhbGci0iJSUzIINiIsINR5cCI6IkpXVCI9.eyIpc3MiOiJrdWIlcm51dGVzL3N- ieles
1cnZpY2VhY2NvdW5@Iiwia3VizXJuZXR1cy5pby9zZXI2aWNIYWNjb3VudCouY- -

Run on the Octopus Server

W11c3BhY2UiO0iJodHRWZC1kZXZ1bGOwbWVudCIsImt1YmVybmVOZXMuaW8vc2Vyd- Releases st "
ml1jZWFjY291bnQvc2VjcmvOLm5hbWUiOiJodHRwZC1kZXBsb311cil@b2tlbioy- senes

Seript

cG1ndCIsImt1lYmVybmVOZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2N-
vdW50Lm5hbWUi0iJodHRwWZC1kZXBsb311ciIsImt1YmVybmVOZXMuaW8vc2Vyd-
m1jZWFjY291bnQvc2VydmljZS1hY2NvdW50LnVpZCI6Ij1iZGQzYWQOLTKSZT-
ktMTF10C@40DdmLTQyMDEWYTgWMDASMyIsInN1YiI6InN5c3R1bTpzZXJ2akWN-
1YWNjb3VudDpodHRWZC1kZXZ1bGOwbWVudDpodHRWZC1kZXBsb311ciJ9. -
DDiMDOmMznf4S8C1HO30RVSZNGHN_7WYk9-FABaLkSC-mIunWtIHiT_1EovbUToogM- S
0fnG1lISueundAZ6tsRRY-eVwefLvhgylYnc2QlLwageoUenGt1d361H5YFb7gYmon-
2UD54DGEdYNzafI1TLWi3DS1apjSUc3kWh54HfZXSeQmCE7fGudwNoIz3WUIMEQZxX -
8KgM9__1VDxtPGME2pyZX60YBX0AQV9-cfs_1GP@@9exfkVbVYdDFDoEko21KD-
AORjyKudowdKvVX0XzcfgCKe_UlYyulLg@A6NRyc81Dj4D34R1crIPvgWmXVy5BM-

K4ENchhYEC62nsInptZAg

Script Source Select where the script is defined. ~

® soucecode

0

Conditions

Page 19 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

R Dashboard Projects @@ Infrastructure Tenants Library ~ Tasks Configuration A Qadmin ~
Infrastructure
(! Overview Accounts
Create Account sAvE

Deployment Targets

Environments. OLLAPSE ALL
Workers Name A short, memorable, unique name for this account. ~
Machine Policies
Proxies Description A summary explaining the use of the account to other users. ”~
Accounts B I = =5 @ % & &
Credentials
Token P 1o use to when against 3 -~
R
We now have everything we need to create a target that will i

be used to deploy the HTTPD application in the Development e T T .
environment. .

Select environments

We start by creating a token account in Octopus with the
token that was returned above.

Page 20 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

2 Qumn -

v\/e then use thls tOken Iﬂ a new Kubernetes target Ca”ed Httpd_ R Dashboard Projects @@ Infrastructure Tenants Library Tasks Configuration

Infrastructure
Deployment Targets

Deve].Opme nt. Create deployment target Ex

Notice here that the Target Roles includes a role called Httpd that ’
matches the name of the application being deployed, and that the
Kubernetes namespace is set to httpd-development. The service - . ’
account we created only has permissions to deploy into the httpd-
development namespace, and will only be used to deploy the HTTPD T ——— ’
application into the Development environment.

o Style Specify the communication style. ~
Therefore this target represents the intersection of an application and R
an environment, using a namespace and a limited service account to
enforce the permission boundary. This is a pattern we'll repeat over -
and over with each application and environment. '" = e;

Now that we have a target to deploy to, let's deploy our first
application!

httpd-development

Page 21 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

The HTTPD Application

The Deploy Kubernetes containers step provides an opinionated
process for deploying applications to a Kubernetes cluster. This step
implements a standard pattern for creating a collection of Kubernetes
resources that work together to provide repeatable and resilient
deployments.

The application we'll be deploying is HTTPD. This is a popular web

server from Apache, and while we won't be doing anything more than

displaying static text as a web page with it, HTTPD is a useful example

given most applications deployed to Kubernetes will expose HTTP

ports just like HTTPD does.

The step is given a name, and targets a role. The role that we target

here is the one that was created to match the name of the application .
we are deploying. In selecting the Httpd role, we ensure that the step

will use our Kubernetes target that was configured to deploy the

HTTPD application.

The Deployment section is used to configure the details of the
Deployment resource that will be created in Kubernetes.

Deploy Kubernetes

containers

Deploys containers to a
Kubernetes cluster

by Octopus Deploy i

A short, memorable, unique name for this step.

Step name

Deploy Httpd

Where should this step run?

Run on the Octopus Server
On behalf of target roles

® Htd)

0On behalf of target roles

This step will be run on the Octopus Server on behalf of all deployment targets in parallel. Configure a rollin

deployment.

Page 22 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy

Il use the term “resource” (e.g. Deployment resource or Pod resource)
from now on to distinguish between the resources that are created in
the Kubernetes cluster (which is to say the resources that you would
work with if you used the kubect1 tool directly) and Octopus concepts
or general actions like deploying things. This may lead to sentences like
“Click the Deploy button to deploy the Deployment resource”, but please
don't hold that against me.

The Deployment name field defines the name that is assigned to the
Deployment resource. These names are the unique identifies for
Kubernetes resources within a Namespace resource. This is significant,
because it means that to create a new and distinct resource in
Kubernetes, it must have a unique name. This will be important when we
select a deployment strategy later on, so keep this in the back of your
mind.

The Replicas field defines how many copies of the Pod resources this
Deployment resource will create. We'll keep this at 1 for this example.

The Progression deadline in seconds field configures how long
Kubernetes will wait for the Deployment resource to complete. If the
Deployment resource has not completed in this time (this could be
because of slow Docker image downloads, failed readiness checks on
the Pod resources, insufficient resources in the cluster etc) then the
deployment of the Deployment resource will be considered to be a
failure.

The Labels field allows general key/value pairs to be assigned to the
resources created by the step. Behind the scene these labels will be

Deployment Enter the details for the deployment.

[:E:'C:.'I"’i"'. name

#}
httpd
The name of the deployment must be unigue, and is used by Kubemetes when updating an existing
deployment.
Learn more about deployment names G

Blue/green deployment strategies create a new uniguely named deployment rescurce each time, and directs
the service to the new pods. The Octopus deployment 1D will be appended to the deployment name e.g. my-
deployment will become my-deployment-deployments-981

Learn more about blue/green deployments (£

Replicas

#}
1
The number of pod replicas to create from this deployment
Learn more about replicas (.
Progression deadline in seconds

#}
60

The maximum time for & deployment to make progress before it's considered to be failed. Blue/Green

deployments will point the service to the new deployment only once the new deployments has succeeded.

Learn more about progression deadlines (£

Labels
Add labels to be applied to the deployment resource, pods managed by the
deployment resource, the service and the ingress.

Learn more about labels £

ADD LABEL

X

Name Value

#(}

Value N
app httpd U

ADD LABEL

applied to the Deployment, Pod, Service, Ingress, ConfigMap, Secret and
Container resources created by the step. As we mentioned earlier, this step
is opinionated, and one of those opinions is that labels should be defined
once and applied to all resources created as part of the deployment.

Page 23 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy

The Deployment
Strategy

Kubernetes provides a powerful declarative model for the resources
Deployment Strategy Choose how the deployment will be updated.

that it manages. When using the kubectl command directly, it is

. .) . O Recreate deployments delete existing pods before creating new pods
pOSSIb|e tO dESCrI be the deSI red State Of a reSOU rce (USUa | |y Iﬂ YAM |_) Use this option when container versions can not be mixed. This strategy does result in downtime,
Learn more about the recreate strategy £

and “apply” that resource into the Kubernetes cluster. Kubernetes will

O Rolling update deployments deploys new pods while remove older pods

then Compare the deSIred State Of the resource to the Curr—ent State This option requires that two container versions can run side by side, and avoids downtime.

Learn more about the rolling update strategy &'

of the resource in the cluster, and make the necessary changes to ®

Blue/Green deployments create a new deployment resource and points
the service to new pods

update the cluster resources to the desired state.

This strategy requires that two container versions can run side by side, and ensures that traffic is cut
over 1o the new pods in a single operation with no downtime.

Learn more about the blue/green strategy &

Sometimes this change is as simple as updating a property like a
label. But in other cases the desired state requires redeploying entire
applications.

Kubernetes natively provides two deployment strategies to make

redeploying applications as smooth as possible: recreate and rolling Octopus provides a third deployment strategy called blue/green. This strategy
updates. will create entirely new Deployment resources with each deployment, and

when the Deployment resource has succeeded, traffic is switched over.

The recreate strategy will remove any existing Pod resources before

creating the new ones. The rolling update strategy will incrementally The blue/green deployment strategy provides some interesting possibilities
replace Pods resources. You can read more about these deployment for those tasked with managing Kubernetes deployments, so we'll select this
strategies in the Octopus documentation. strategy.

Page 24 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

Volumes and
ConfigMaps

Volumes provide a way for Container resources to access external data.
Kubernetes provides a lot of flexibility with volumes, and they could be
disks, network shares, directories on nodes, GIT repositories and more.

For this example, we want to take the data stored in a ConfigMap
resource, and expose it as a file within our Container resource.
ConfigMap resources are convenient because Kubernetes ensures they
are highly available, they can be shared across Container resources,
and they are easy to create.

Because they are so convenient, the step can treat a ConfigMap
resource as part of the deployment. This ensures that the Container
resources that make up a deployment always have access to the
ConfigMap resource that was associated with them.

This is important, because you don't want to be in a position where
version 1 of your application is referencing version 2 of your ConfigMap
resource while version 2 of your application is in the process of being
rolled out. Don't worry if that doesn't make much sense though, we'll
see this in action later on.

Add Volume

Volume type

Config Map hd

Name
#{
httpd-config !

Config map resource name

The volume can be linked to the config map resource created by the feature in this step, or linked to an external
config map that was created outside the step.

@ Reference the config map created as part of this step
O Reference an external config map resource

Items

ADD ITEM

Key o X
#
index

Path 40
index.html

ADD ITEM

Page 25 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

And this is exactly what we will configure for this demo. The Volume
type is set to Config Map, it is given a Name, and we select the
Reference the config map created as port of this step option
to indicate that the ConfigMap resource that will be defined later on in
the step is what the volume is pointing to.

The ConfigMap Volume items provide a way to map a ConfigMap
resource value to a filename. In this example we have set the Key to
index and the path to index.html, meaning that we want to expose
the ConfigMap resource value called index as a file with the name
index.html when this volume is mounted in a Container resource.

Add Volume

Volume type

Config Map i
Name #{}
httpd-config

Config map resource name

The volume can be linked to the config map resource created by the feature in this step, or linked to an external
config map that was created outside the step.

@ Reference the config map created as part of this step

(O Reference an external config map resource

Items
ADD ITEM
Key " X
#
index
Path
. #}
index.html
ADD ITEM

Page 26 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

The Container

The next step is to configure the Container resources. This is where ~

Image Details
we will conﬂgure the HTTPD appl|cat|on. Provide a name and a package image for the container.

Name

- , . #{
We start by configuring the Docker image that will be used by the httpd !
Container resource. Here we have selected the httpd image from
) Package Image
the Docker feed we created previously.
Package feed
Docker - @@
In order to access HTTPD we need to expose a port. Being a web
. Select the feed that this package will be found in or bind one dynamically. See our documentation &' for more info en dynamic
server, HTTPD accepts traffic on port 80. Ports can be named to binding.
make them easier to work with, and so we'll call this port web. Package ID
hitpd X -

Enter the |ID of the package.

Page 27 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

el
Ports
Add ports to be referenced by the target node in the associated service.
Containers expose network services through their ports. Learn more about ports (4.
ADD PORT
Name 0 X
The last piece of configuration is to mount the ConfigMap web
volume we defined earlier in a directory. The HTTPD Docker Fort 0
image has been built to serve content from the /usr/local/ 80
apache2/htdocs directory. If you recall, we configured the Protoce -
)) TCP -
ConfigMap Volume to expose the value of the ConfigMap
resource called index as a file called index.html. So by
mounting the volume under the /usr/local/apache2/htdocs
~
directory, this Container resource will have a file called /usr/ Volume Mounts
local/apache2/htdocs/index.html with the contents of the Include volume mount points to be exposed on the container.

value in the Conﬂgl\/lap resource. Volumes that were exposed to the containers are mounted to the container filesystem here. Learn more

about volume mounts (4.

The configuration of each container is summarized in the main

ADD VOLUME MOUNT
step Ul, so you can review it at a glance.
MName X
#{}
httpd-config X
Mount path
#{}
/usr/local/apache2/htdocs/
#
Sub path X}
. o
Read only

Page 28 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

The ConfigMap

We have talked a lot about the ConfigMap resource that is created
by the step, so now it is time to configure it.

The Config Map Name section defines the name (or, technically, part
of the name - more on that later) of the ConfigMap resource. The
Config Map Items defines the key/value pairs that make up the
ConfigMap resource.

If you remember, we exposed this ConfigMap resource as a volume,
and that volume defined an item that mapped the ConfigMap
resource value called index to the file called index.html. So here
we create an item called index, and the value of the item is what will
eventually become the contents of the index.html file.

Containers Add containers that make up the pod managed by this deployment ~
ADD CONTAINER
httpd X
Configuring the httpd container from feed Docker
Ports
web: 80/TCP
Volume Mounts
Name httpd-config
Path /Jusr/local/apache2/htdocs/
Read Only False

Config Map Name The name of the config map resource
Config Map name

configmap

ADD CONTAINER

#(}

Config Map Items The config map resource values

Key Value

index Hello from Octopus!

ADD CONFIG MAP ITEM

X
#}

Page 29 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy

The Service

We're close now to having an application deployed and accessible.
Because it is nice to see some progress, we'll take a little shortcut Whenever you expose applications to the outside world, you must consider adding security like
here and expose our application to the world with the quickest option firewalls.
available to us.
The Service Name section defines the name of the Service resource.
To communicate with the HTTPD application, we need to take the port
that we exposed on the Container resource (port 80, which we called
web) through a Service resource. And to access that Service resource

from the outside world, we'll create a Load balancer Service resource. Service Name Enter the service exposing the deployment.
The unigue name of the Kubernetes service resource.
. . . Learn more about service name .
By deploying a Load balancer Service resource, our cloud provider
Service name
will create a network load balancer for us. What kind of network load httpd #}

balancer is created and how it is configured differs from one cloud
provider to the next, but generally speaking the default is to create a
network load balancer with a public IP address.

Page 30 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

The Service Type section is where we configure the Service

resource as a Load balancer. The other fields can be left blank
in this section.

Service Type

Select the service type.

QO ClusterIP
The cluster IP service resource is accessible to other resources in the Kubernetes cluster.
Learn more about cluster IP services (.

(O Node port

The node port service resource is accessible to other resources in the Kubernetes cluster, and also via
ports exposed on the Kubernetes nodes.

Learn more about nade port services .

(® Load balancer

The load balancer service resource is accessible to other resources in the Kubernetes cluster, also via
ports exposed on the Kubernetes nodes, and also through an external load balancer device.

Learn more about load balancer services (21

Annotations
Add annotations to configure the load balancer.

ADD ANNOTATION

ADD ANNOTATION

Cluster IP address i

An optional value that defines the internal IP address of the service. If left blank, Kubernetes will assign a
private IP address to the service

Load balancer IP address o

The Service Ports section is where incoming ports are mapped to
the Container resource ports. In this case we are exposing port 80
on the Service resource, and directing that to the web port (also port
80, but those values are not required to match) on the Container
resource.

Add Service Port

Name

. #{}
service-web

The optional name of the port. This name can be referenced in the ingress path.

Port
80 X

The port internal Kubernetes workloads use to access the service

#{}

Target Port

#
web X N

An optional value set to a port exposed by the container. This can be the name of the port, or
the port number. If left blank, it will default to the value of the Port above.

#{}
Node Port
An optional value that defines the publicly accessible port exposed on all nodes used to
access the service. If left blank, Kubernetes will assign a port.
Protocol
TCcP v @

The protocol used by the service.

Page 31 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy

Service Ports Add service ports that are exposed by the service.

Ports must be configured with the ports that the service exposes, and the port that the service directs traffic

The ports are summarized in the main Ul so they can be quickly ©
. Learn more about parts (£
reviewed.
ADD PORT
. X
Name: service-web
Port: 80
At this point, all the groundwork has been laid, and we can deploy Target Port: web
the a pplication. Node Port: Automatically assigned
Protocol: TCP
ADD PORT

Page 32 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

The First Deployment

When you create a deployment of this project, Octopus allows you

A Dashboard Projects @ Infrastructure Tenants

Projects

Releases
Create release for HTTPD “

HTTPD Version 0.0.9 v

to define the version of the Docker image that will be included. If you
look back at the configuration of the Container resource, you will

Packages Select package(s) for this release ~

Latest Last

notice that we never specified a version, just the image name. - o o e o e o

Variables

Triggers. Release Notes o release notes provided v

Channels

This is by design, as Octopus expects that most deployments will
involve new Docker image versions, whereas the configuration of the
Kubernetes resources will remain mostly static.

This means the only decision to make with day to day deployments
is the version of the Docker images, and you can take advantage
of Octopus features like channels to further customize how image
versions are selected during deployment.

Page 33 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

A Dashboal

Projects
=

HTTPD

CREATE RELEASE

Overview
Process
Variables
Triggers
Channels
Releases

Settings

Projects

®

Infrastructure Tenants

Release 0.0.10

sks Configuration

Deploy HTTPD release 0.0.10 to Development

© 0 admin

TO PRODUCTION

TASK SUMMARY TASK LOG
Expand Log level Log tail
Custom ~ Info v Last20 - RAW DOWNLOAD

This task started 5 minutes ago and ran for 31 seconds

& Deploy HTTPD release 0.0.10 to Development

The deployment completed successfully.

& Acquire packages

Acquiring packages
Making a list of packages to acquire

Mo packages are required by any steps

All packages have been acquired

& Step 1: Httpd

& Octopus Server on behalf of Httpd Development

configmap "configmap-deployments-841" created
configmap "configmap-deployments-841" labeled
configmap "configmap-deployments-841" labeled
configmap "configmap-deployments-841" labeled
configmap "configmap-deployments-841" labeled
deployment.apps "httpd-deployments-841" created

deployment "httpd-deployments-841"

service "httpd" created
Mo resources found
No resources found
No resources found

successfully rolled out

Info

Info
Info
Info
Info

Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info

Ran for 31 seconds

August 8th 2818 ©8:89:59

August
August
August
August

August
August
August
August
August
August
August
August
August
August
August

Ran for 1 second

2818 88:89: 29
2918 ® 9
2018 @ 9
2818 88:89:29

Ran for 29 seconds

Ran for 29 seconds

2018 88:09:39
2018 88:09:48
2918 ©8:09:41
2918 ©8:99:43
2018 88:09:44
2818 88:09:47
2818 88:89:51
2018 88:09:54
2018 88:89:56
2818 88:89:57
20818 88:089:58

And with that our deployment has succeeded.

Page 34 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

Jumping into the Google Cloud console we can see that a Deployment = CopCnlmwam & iEEmEim =
resource called httpd-deployments-841 has been created. @ Kubemetes Engine Workloads Greeresn [oepLov
Clusters Workloads are deployable units of that can be created and managed
The name is a combination of the Deployment resource name we B Wit o
defined in the step of httpd and a unique identifier for the Octopus & ;pH - A'”’S'em”“”:ra'“° . | e
deployment of deployments-841. B configuation wossmomassn @0 o e
B storage

This name was created because the blue/green deployment strategy
requires that the Deployment resource created with each deployment
be unique.

Page 35 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

The deployment also created a Service resource called httpd. Notice that it
is of type Load balancer, and that it has a public IP address.

Google Cloud Platform e Kubernetes Demo

@ Kubernetes Engine Services C REFRESH

% Clusters Kubemetes services Brokered services

& Workloads Services are sets of pods with a network endpoint that can be used for discovery
and load balancing. Ingresses are collections of rules for routing external
F Services HTTP(S) traffic to services.

Applications

= |z system object : False 0 Cluster : gaek8s Q Filter resources X
Configuration
Name - Status Service Type Endpoints Pods Namespace Cluster
B storage
httpd Q Ok Load balancer 35.232.119.80:80 [7 1/1 hitpd-development gaekBs

Page 36 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy

The ConfigMap resource called configmap-deployments-841 was also
created. Like the Deployment resource, the name of the ConfigMap
resource is a combination of the name we defined in the step and the
unigue deployment name added by Octopus.

Unlike the Deployment resource, ConfigMaps created by the step will
always have unique names like this (the Deployment resource only has
the unique deployment name appended for blue/green deployments).

All of which results in HTTPD serving the contents of the ConfigMap

B 35.232.119.80 X |+ = - 0 X

resource as a web page under the public IP address of the Service
< C = @ 35.232.119.80 0@r=Q
resource.
'Hello from Octopus!'
If you have made it this far - congratulations! But you may be

wondering why we had to configure so many things just to get to the
point of displaying a static web page. Reading any other Kubernetes
tutorial on the internet would have had you at this point 1000 words

ago...

In developing these Kubernetes steps for Octopus we found

that everyone loves to show how quickly you can spin up a single
application deployed to a single environment using the admin account
and exposing everything on a dedicated load balancer. Which is

great, but doesn't represent that kind of challenges that real world
deployments face.

Page 37 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy

What we have achieved here is to lay the groundwork for deployments
of multiple applications across multiple environments separating
concerns with namespaces and service accounts with limited
permissions.

So, take a breath, because we're only half done. Having reached the
point of deploying a single application to a single environment with a
single load balancer, we're going to take the next step and make this a

_—
multi-environment deployment. E'OAD BALAA)CQ'()

So What Happens
When Things go
Wrong?

Deployments will sometimes fail. This is not only to be expected, but

\\ca,u ELGMAP

celebrated, as long as it happens in the Development environment.
Failing quickly is a key component to a robust CD pipeline.

Let's review what we have got deployed now. We have a load balancer

pointing to a Service resource, which in turn is pointing to the
Deployment resource.

Page 38 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

Let's simulate a failed deployment. We can do this by configuring
the Container resource readiness probe to run a command that
does not exist. Readiness probes are used by Kubernetes to
determine when a Container resource is ready to start accepting
traffic, and by deliberately configuring a test that can not pass, we
can simulate a failed deployment.

As part of this failed deployment, we'll also change the value of
the ConfigMap. Remember that this value is what is displayed in
the web page.

As expected, the deployment fails.

Readiness Probe Type

Select the readiness probe type.

Readiness probe type
Command

Health check commands

/this-command-doesnt-exist

#{}

These commands are run in the container, and if the return value is zero, the container is considered to be healthy.

Config Map ltems

step 1: Hitpd

1e step failed: Activity Httpd on Httpd Development failed with error 'The remote script failed with exit code 1'.

The config map resource values

#}

index

B Octopus Server on behalf of Httpd Development

Error from server (Forbidden): namespaces is forbidden: User "system:serviceaccount:httpd-development:httpd-deployer”

ADD CONFIG MAP ITEM

Value

| am a failed deployment

ADD CONFIG MAP ITEM

the cluster scope: Unknoun user "system:serviceaccount:httpd-development:httpd-deployer”

confignap
confignap
confignap
confignap
confignap

“confignap-deployments-842"
“confignap-deployments-842"
“confignap-deployments-842"
“confignap-deployments-842"
“confignap-deployments-842"

created
labeled
labeled
labeled
labeled

deployment .apps "httpd-deployments-842" created
uaiting for rollout to finish: @ of 1 updated replicas are available...
error: deployment "httpd-deployments-842" exceeded its progress deadline
The deployment httpd-deployments-842 failed.
The service httpd was not updated, and does not point to the failed deployment, meaning the blue/green swap was not performed.
The previous deployments were not removed.

The previous config maps were not removed.

The previous secrets were not removed
The deployment process failed.

The remote script failed with exit code 1
The action Httpd on Httpd Development failed

#{}

X

cannot create namespaces at

Fatal

Error

Info
Info
Info
1Info
Info
1Info
1Info
Error
Error
Error
Error
Error
Error
Error
Fatal
Fatal

Ran for 1 minute and 26 seconds

August 8th 2018 08:43:28

Ran for 1 minute and 25 seconds.

August 8th 2018 08:42:15

August 8th 2018 08:42:17
August 8th 2018 08:42:18
August 8th 2018 08:42:19
August 8th 2018 08:42:20
August 8th 2018 08:42:22
August 8th 2018 08:42:25
August 8th 2018 08:42:28
August 8th 2018 08:43:26
August 8th 2018 08:43:26
August 8th 2018 08:43:27
August 8th 2018 08:43:28
August 8th 2018 08:43:28
August 8th 2018 08:43:28
August 8th 2018 08:43:28
August 8th 2018 08:43:28
August 8th 2018 08:43:28

Page 39 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

So what does it mean to have a failed deployment?

Because we are using the blue/green deployment strategy, we now
have two Deployment resources. Because the latest one called
httpd-deployments-842 has failed, the previous one called httpd-
deployments-841 has not been removed.

We also have two ConfigMap resources. Again, because the last

deployment failed, the previous ConfigMap resource has not been
removed.

In essence the failed deployment resource and its associated
ConfigMap resource are orphaned. They are not accessible from the
Service resource, meaning to the outside world the new deployment
is invisible.

TE%HDCNMAuCéﬁy

DePLovmerh
(PaLeD)

1-‘
(G

= Google Cloud Platform 2 kubemetes Demo v Q
@ Kubernetes Engine Workloads C REFRESH DEPLOY
Clusters Workloads are deployable units of computing that can be created and managed

ina cluster
" Workloads

& Services = lssystemobject : False € Cluster : gackBs @ Fiter workloads X Columns ~

= Applications Name ~ Status. Type Pods Namespace Cluster

H configuration hitpd-deployments-841 @ 0K Deployment 171 hitpc-development gackés
storage hitpd-deployments-842 @ Does not have minimum availabiity Deployment 1/1 hitpd-development gackés

Google Cloud Platform 2 Kuberetes Demo +

@ Kubemetes Engine Configuration C ReFResH

% Workoad
A sovces
H Appications
B configuat = © or tam o x
Q st om ™ Namespace s
Configap geeias
Confio Map geeias

Page 40 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus Octopus Deploy

b 35.232.119.80 X+ = _
< B8 | [l @ 3523211980 [~]

'Hello from Octopus!'

Because the old resources were not edited during deployment and
were not removed due the deployment failed, our last deployment is
still live, accessible, and displays the same text that was defined with
the last successful deployment.

This again is one of the opinions that this step has about what a
Kubernetes deployment should be. Failed deployments should not
take down an environment, but instead give you the opportunity to
resolve the issue while leaving the previous deployment in place.

Go ahead and remove the bad readiness check from the Container

resource. Also change the value of the ConfigMap resource to
x

Config Map Items The config map resource values

display a new message. *0 *0

index | am a successful deployment

ADD CONFIG MAP ITEM

Page 41 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy

This time the deployment succeeds. Because the deployment
succeeded, the previous Deployment and ConfigMap resources have
been cleaned up, and the new message is displayed on the webpage.

EOAD BALAND c@

SeRwnwwe e

DePLovyMerh

?

By creating new Deployment resources with each blue/green
deployment, and by creating new ConfigMap resources with each
deployment, we can be sure that our Kubernetes cluster is not left in
an undefined state during an update or after a failed deployment.

B 35.232.11930 x [+
< C 88 [@ 35232119.80

'l am a successful deployment’

Page 42 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy

kind: Namespace
apiVersion: vi1
metadata:

name: httpd-production
apiVersion: vi
kind: ServiceAccount
metadata:

name: httpd-deployer

Promoting to

kind: Role
apiVersion: rbac.authorization.k8s.io/v1

I::) °
rO d u Ctl O I l metadata:
namespace: httpd-production

name: httpd-deployer-role

. . . les:
| promised you an example of a multi-environment deployment, so e o« e e o
- apiGroups: [“’, “extensions”, “apps”]
let's g0 ahead and conﬂgure our Production environment. resources: [“deployments”, “replicasets”, “pods”, “services”, “ingresses”,

“secrets”, “configmaps”]
verbs: [“get”, “list”, “watch”, “create”, “update”, “patch”, “delete”]
- apiGroups: [“’]

First, create a service account for the production environment. This
resources: [“namespaces”]

YAML is the same code we used to create the service account for the verbs: [“get”]

Development environment, only with the text development replaced A

With pI"OdUCtiOI’l. apiVersion: rbac.authorization.k8s.io/v1
metadata:

name: httpd-deployer-binding
namespace: httpd-production
subjects:
- kind: ServiceAccount
name: httpd-deployer
apiGroup: “”
roleRef:
kind: Role
name: httpd-deployer-role
apiGroup: “”

Page 43 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy

Likewise the Powershell to get the token is the same except

development is now production.

$user="httpd-deployer”

$namespace="httpd-production”

$data = kubectl get secret $(kubectl get
serviceaccount $user -o jsonpath="{.secrets[@].name}”
--namespace=$namespace) -o jsonpath="{.data.token}”
--namespace=$namespace
[System.Text.Encoding]::ASCII.GetString([System.
Convert]::FromBase64String($data))

The same is true of the bash script.

The same is true of the bash script.

user="httpd-deployer”

namespace="httpd-production”

kubectl get secret $(kubectl get serviceaccount
$user -o jsonpath="{.secrets[@].name}”
--namespace=$namespace) -o jsonpath="{.data.token}”
--namespace=$namespace | base64 --decode

I won't repeat the details of running these scripts, creating the
token account or creating the target, so refer back to The HTTPD

Development Service Account for more details.

You want to end up with a target like the one shown below configured.

A Dashboard Projects.

Infrastructure
Deployment Targets

@ infrastructure

Tenants Library Tasks Configuration

Create deployment target

Display Name

Deployment

Environments

Target Roles

Communication

Style

Account

Kubernetes Details

A short, memorable, unique name for this deployment target.

Httpd-Production

t one environment for the deployment target.

Choose at least one fole that this deployment target will provide.
Roles (iype o 36 anew o)

® vips

Specify the communication style.

e

Select the account or certificate that identifies the Kubernetes user.

©+ Htpd-Production x- C +

Enter the Kubernetes URL and namespace.

htps://35.232.148.138

8 Kuvemetes x-Q

a1 custer carticate autor

httpd-production

£ Quamn -

Page 44 of 73

https://octopus.com/blog/deploying-applications-to-kubernetes#the-httpd-development-service-account
https://octopus.com/blog/deploying-applications-to-kubernetes#the-httpd-development-service-account

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy

Now go ahead and promote the Octopus deployment to the
Production environment.

This will result in a second Load balancer Service resource being
created with a new public IP address.

And our production instance can be viewed in a web browser.

= Google Cloud Platform e kubemetes Demo +

Q
@ Kubernetes Engine Services C REFRESH
i Clusters Kubemetes services Brokered services (EEER
®s Workloads Services are sets of pods with a network endpoint that can be used for discovery
and load balancing. Ingresses are collections of rules for routing external
& services HTTP(S) traffic to services.
@ Applications
= Issystem object : False €) Cluster : gaek8s € Filter resources
B configuration
Neme ~ Staws SeviceType Encpoints Pods Namespace Cluster
B storage
httpd @Ok Loadbalancer 35225122080 (7 1/1 htipdproduction gaekfs
nttpd @O0k Loadbalncer 35.232.119.80:80 (7 1/1 ntipddevelopment gaekss
B 35.225.1220 X+ ~ - b X
< C 8 [& 352251220 PO

'Tam a successful deployment’

Page 45 of 73

The Ultimate Guide to Kubernetes Deployments w

1 Octopus Octopus Deploy

Let's have some fun and use a variable for the value of the ConfigMap .
fj 352251220 X |+
resource. By setting the value to the variable #{Octopus.Environment. . = [© |sers1220 o

'Production’

Name}, we will display the environment name in the web page.

ConfigMap ltems The config map resource values ~

ADD CONFIG MAP ITEM

X

) #) #)
index #{Octopus.Environment.Name}

ADD CONFIG MAP ITEM

Pushing this change through to production results in the environment
name being displayed on the page.

That was a trivial example, but does highlight the power that is
available by configuring multi-environment deployments. Once
your accounts, targets and environments are configured, moving
applications through environments is easy, secure and highly
configurable.

Page 46 of 73

EEEEEEEEEEEE

Installing Nginx w/ Helm

The Ultimate Guide to Kubernetes Deployments with Octopus Octopus Deploy

Migrating to Ingress

For convenience we have exposed our HTTPD application via a Load

Unlike most Kubernetes resources, Ingress Controllers are provided by a
third party. Some cloud providers have their own Ingress Controllers, but we'll
: . . . use the Nginx Ingress controller as it is the most popular and can be ported
balancer Service resource. This was the quick solution, because Google N g| . 8 N Pop P
. . . etween clouad proviaers.
Cloud took care of building a network load balancer with a public IP P

address.
But to configure the Nginx Ingress Controller, we first need to set up Helm.

Unfortunately this solution will not scale with more applications. Each

of those network load balancers costs money, and keeping track of
multiple public IP addresses can be a pain when it comes to security

and auditing. Conflgu rlng HElm

The solution is to have a single Load balancer Service that accepts . . '
Helm is to Kubernetes what Chocolatey is to Windows or Apt/Yum

is to Linux. Helm provides a way to deploy both simple and complex
applications to a Kubernetes cluster, taking care of all the dependencies
userservice traffic would be directed to the user microservice, and exposing the available options, and providing commands for upgrading
and https://myapp/cartservice traffic would be directed to the cart and removing existing deployments.

allincoming requests and then directs the traffic to the appropriate
Pod resources based on the request. For example https://myapp/

microservice.
The great thing about Helm is that there is a huge catalogue of applications

already packaged into what Helm calls charts. We will use one of those

This is exactly what the Ingress resource does for us. A single Load ' '
charts to install the Nginx Ingress Controller.

balancer Service resource will direct traffic to an Ingress Controller
resource, which in turn will direct traffic to other internal Service
resources that don't incur any additional infrastructure costs.

Page 48 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

Install Helm in the
Kubernetes Cluster

AR Dashboard Projects @0 Infrastructure

Library

Helm has a server side component that must first be installed on S s w
the Kubernetes cluster itself. Cloud providers have instructions for — o
setting up the server side component, so hit up those docs to get the S SUS—— .
instructions for preparing your Kubernetes cluster with Helm. — -

URL Provide the location of the feed, ~

hitps://kubemetes-charts.storage.googleapis.com/

Credentials Add a1

Helm Feed

To make use of Helm we need to configure a Helm feed. Since we will
use the standard public Helm repository, we configure the feed to
access https://kubernetes-charts.storage.googleapis.com/.

Page 49 of 73

https://kubernetes-charts.storage.googleapis.com/

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy

Ingress Controllers
and Multiple
Environments

At this point we have a decision to make about how to deploy the
Ingress Controllers resources.

We can have one Load Balancer Service resource directing traffic

to one Ingress Controller resource, which in turn can direct traffic
across environments. Ingress Controller resources can direct traffic
based on the hostname of the request, so traffic sent to https://
myproductionapp/userservice can be sent to the Production
environment, while https://mydevelopmentapp/userservice can be sent
to the Development environment.

The other option is to have an Ingress Controller resource per
environment. In this case, an Ingress Controller resource in the
Development environment would only send traffic to other services in
the Development environment, and a Ingress Controller resource in the
Production environment would send traffic to Production services.

Either approach is valid, with its own pros and cons. For this example though
we'll deploy an Ingress Controller resource to each environment.

We will treat the Nginx Ingress Controller resource as an application
deployment. This means, like we did with the HTTPD deployment, a service
account and target will be created for each environment.

The Service Account, Role and RoleBinding resources need to be tweaked when
deploying Helm charts. Deploying a Helm chart involves listing and creating
resources in the kube-system namespace.

To support this, we create an additional Role resource with the permissions that

are required in the kube-system namespace, and bind that Role resource to
the Service account resource with another RoleBinding resource.

Page 50 of 73

The Ultimat

This is the YAML that creates the nginx-deployer Service
Account resource in the nginx-development namespace.

kind: Namespace
apiVersion: vi
metadata:
name: nginx-development
apiVersion: vi
kind: ServiceAccount
metadata:
name: nginx-deployer
namespace: nginx-development
kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
namespace: nginx-development
name: nginx-deployer-role
rules:
- apiGroups: [“”, “extensions”, “apps”]

resources: [“deployments”, “replicasets”, “pods”, “services”, “ingresses”, “secrets”, “configmaps”]

verbs: [“get”, “list”, “watch”, “create”, “update”, “patch”, “delete”]

- apiGroups: [“”]
resources: [“namespaces”]
verbs: [“get”]
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1l
metadata:
name: nginx-deployer-binding
namespace: nginx-development
subjects:
- kind: ServiceAccount
name: nginx-deployer
apiGroup: “”
roleRef:
kind: Role
name: nginx-deployer-role
apiGroup: “”
kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
namespace: kube-system
name: nginx-deployer-role
rules:
- apiGroups: [“”]
resources: [“pods”, “pods/portforward”]
verbs: [“list”, “create”]
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1l
metadata:
name: nginx-deployer-development-binding
namespace: kube-system
subjects:
- kind: ServiceAccount
name: nginx-deployer
apiGroup: “”
namespace: nginx-development
roleRef:
kind: Role
name: nginx-deployer-role
apiGroup: “”

Page 51 of 73

The Ultimate

Deploy

This is the YAML for creating the nginx-deployer Service
Account resource in the nginx-production namespace.

kind: Namespace
apiVersion: vi1
metadata:
name: nginx-production
apivVersion: vi1
kind: ServiceAccount
metadata:
name: nginx-deployer
namespace: nginx-production
kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
namespace: nginx-production
name: nginx-deployer-role
rules:
- apiGroups: [“”, “extensions”, “apps”]

resources: [“deployments”, “replicasets”, “pods”, “services”, “ingresses”, “secrets”, “configmaps”]

verbs: [“get”, “list”, “watch”, “create”, “update”, “patch”, “delete”]
apiGroups: [“”]
resources: [“namespaces”]
verbs: [“get”]
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: nginx-deployer-binding
namespace: nginx-production
subjects:
- kind: ServiceAccount
name: nginx-deployer
apiGroup: “”
roleRef:
kind: Role
name: nginx-deployer-role
apiGroup: “”
kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
namespace: kube-system
name: nginx-deployer-role
rules:
- apiGroups: [“”]
resources: [“pods”, “pods/portforward”]
verbs: [“list”, “create”]
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: nginx-deployer-production-binding
namespace: kube-system
subjects:
- kind: ServiceAccount
name: nginx-deployer
apiGroup: “”
namespace: nginx-production
roleRef:
kind: Role
name: nginx-deployer-role
apiGroup: “”

Page 52 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

A Dashboard Projects @@ Infrastructure Temants Library Tasks Configuration £ Qadmn -

Infrastructure

Overview

Deployment Targets
Deployment Targets
The process of getting the token for the service account is the

Search deployment targets... Q= SHOW ADVANCED FILTERS

same, as is creating the token Octopus account and target. — @ oepoymentages P
Machine Policies © HEALTHY (5

Proxies

After creating the accounts, namespaces and targets, we'll have the B

€ s @) Admin

following list of targets configured in Octopus. S e
[_:a ﬂ"f"'!’!'i‘,’:"‘,‘,'?";; £ Production (@) Httod
g Ngicpevlopment € vevciopment (@) Noims

g Ngin

roducion @ roicin @ v

Page 53 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

Configuring Helm

Package feed

Variables :

Select the feed that this package will be found in or bind one dynamically. See ocur documentation (&° for more
info on dynamic binding.

L=

Package ID

We can deploy the Nginx Helm chart with the Run a Helm Update step. nginx-ingress X =

Enter the ID of the package.

Select the nginx-ingress chart from the helm feed.

Set the Kubernetes Release Name to nginx-#{Octopus.Environ-

ment.Name | ToLower}. We have taken advantage of the Octopus
. . . Kubernetes Release if a release by this name doesn't already exist, run an install
variable substitution to ensure that the Helm release has a unique name Y y

in each environment.

Kubernetes Release Name

nginx-#{0Octopus.Environment.Name | TolL.ower}

Due o Helm limitations, the release name must be unigue across a cluster as the name is shared across
namespace boundaries.

Helm Charts can be CUStomized Wlth parameters' The NginX Helm Chart The Octopus variable syntax is supported however the final release name must consist of enly lower case
has documented the parameters that it supports here. In particular, we FIEE pumee ErarReiErs Ang cRsn cnrEeie,

want to define the controller.ingressClass parameter, and change

it for each environment. The Ingress class is used as a way of determin-

ing which Ingress Controller will be configured with which rule, and we'll

use this to distinguish between Ingress resource rules for traffic in the Template Values

Development environment from those in the Production environment. Explicit Key Values Mo explicit value overrides supplied

Raw Values YAML

1 controller:

In the Raw Values YAML section, add the following YAML. Note that 2| ingressClass: "ngink-#{Octopus.Envirorment.Name | Tolower}”
we have again used variable substitution to ensure each environment
has a unique value applied to it.

controller:
ingressClass: “nginx-#{Octopus.Environment.Name | ToLower}”

Enter the raw YAML that will be provided as a values file. This field supports the extended template syntax (£

Page 54 of 73

https://github.com/helm/charts/tree/master/stable/nginx-ingress#configuration

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

Change lifecycle

Application

W oevelopment

B production

Save those changes, and remember to change the lifecycle to o 2]
Application.

B Deploy g reease 0,02 t Development

Now deploy the Helm chart to the Development environment.

Page 55 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus Octopus Deploy

Helm helpfully gives us an example of how to create Ingress resources The nginx-ingress controller has been installed.
hat work with the newlv deploved Ineress Controller resource It may take a few minutes for the LoadBalancer IP to be available.
tha y aeploy & ’ You can watch the status by running €‘kubectl --namespace nginx-
development get services -o wide -w nginx-development-nginx-ingress-
controller’
An example Ingress that makes use of the controller:
apiVersion: extensions/vlbetal
kind: Ingress
metadata:
annotations:
kubernetes.io/ingress.class: nginx-development
name: example
namespace: foo
spec:
rules:
- host: www.example.com
http:
paths:
- backend:
serviceName: exampleService
servicePort: 80
path: /
This section is only required if TLS is to be enabled for the
In particular, the annotations are important. I”g"iis
s:
- hosts:
annotations: - www.example.com
kubernetes.io/ingress.class: nginx-development secretName: example-tls

Page 56 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

Remember how we set the controller.ingressClass parameter e —

2 Kubernetes Demo

when deploying the Helm chart? This annotation is what that property el " omm= W

na cluser.

controls. It means that an Ingress resource must specifically set the -.

F T lssystemobject - Faise @ Custer - gaek8s @ Fterorkoscs x Columas +
kubernetes.io/ingress.class: nginx-development annotation .
B con itpe-deployments-285 @ox gaekss
to be considered by this Ingress Controller resource. This is how B o e o -
. . . . nginx-development-ngink-ingress-defaultbackend @ OK. gaekds
we distinguish between rules for the development and production ———————
‘nginx-production-ngin:ingress-default-backend Qo gaskes
Ingress Controller resources.
Go ahead and push the deployment to the Production environment.
We can now see the Nginx Deployment resources in the Kubernetes o
cluster. «
Kubenetes-demo-198002 X - z - g x

Google Cloud Platform & Kubernetes Demo +

@ Kubemetes Engine Services C rerresH

Those Nginx Deployment resources are accessible from new Load T

% Vorkoads

balancer Service resources. S T

B contigrms = Issystem object : False € Cluster : gaekBs @ Fiter re- es X
D em - on e
httpd Qo 52321198080 7 1/1 gaekes
o I e -
Qo Cluster P 105524377 11 ngn ot gaskss
@O0k Load balancer 2:;;:2::;::;’ 11 ngim gaekds.
‘nginx-production-nginx-ingress-defaut-backend Qo Cluster IP 1055251212 1/1 nginxproduction gaekes
We're now ready to connect to the HTTPD application through
the Ingress Controllers instead of through their own network load
balancers.
Kubemetes-demo-198002 X - z P - B x

Page 57 of 73

OOOOOOOOOOO

Going Deeper with
Kubernetes

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

Configuring Ingress

Back in the HTTPD Container Deployment step, we need to change B ——
the Service Type from Load balancer to Cluster IP.Thisis O Node por

The node port service resource is accessible to other resources in the Kubernetes cluster, and also via
ports exposed on the Kubernetes nodes.

Service Type Select the service type. ~

(® ClusterIP

The cluster IP service resource is accessible to other resources in the Kubernetes cluster.

Learn more about node port services (.

because an Ingress Controller resource can direct traffic to the

HTTPD Service resource internally. O Load balancer

The load balancer service resource is accessible to other resources in the Kubernetes cluster, also via
ports exposed on the Kubernetes nodes, and also through an external load balancer device

Learn more about load balancer services (2

There is no longer a need for the HTTPD Service resource to be #0

Cluster IP address

pubhdy accessib|e, and a C|uster P Service resource prov]des An optional value that defines the internal IP address of the service. If left blank, Kubernetes will assign a

private IP address to the service.

everything we need.

Page 59 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

We now need to configure the Ingress resource.

Ingress Name Enter the service name exposing the deployment.

Start by defining the Ingress Name. Tre e o e nress resurce

Learn more about ingress name (2.

Ingress name

hipd #0)

The Ingress resources support the many different Ingress Controllers
that are available via annotations. These are key/value pairs that
often contain implementation specific values. Because we have

Ingress Annotations Add annotations to configure the ingress controller.

deployed the Nginx ingress controller, a number of the annotations
L. - X suggested annotation keys are not exhaustive.
we are defining are specific to Nginx. Leom mre st e aottons
ADD ANNOTATION
) . . e X
The first annotation is shared across Ingress Controller resource o aress kubernetes fosslsediect . ®
implementations though. It is the kubernetes.io/ingress.class vaue w0
false
annotation that we talked about earlier. We set this annotation to
5 5 ame X
nginx-#{Octopus.Environment.Name | TolLower}. ’;;bememmmgress‘a”nw,h“p w.
Value #0
true
This means that when deploying in the Development environment,
. . . . Name X
this annotation will be set to nginx-development, and when ubernetes fo/ingres lsss . "
deploying to the Production environment it will be set to nginx- 50

nginx-#{Octopus.Environment.Name | ToLower}

production. This is how we target the environment specific Ingress
ADD ANNOTATION

Controller resources.

The kubernetes.io/ingress.allow-http annotation is set to true
to allow unsecure HTTP traffic, and nginx.ingress.kubernetes.
io/ssl-redirect is set to false to prevent Nginx from redirecting
HTTP traffic to HTTPS.

Enabling HTTP traffic is a security risk and is shown here for demonstration purposes only.

Page 60 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

The last section to configure is the Ingress Host Rules.Thisis
where we map incoming requests to the Service resource that
exposes our Container resources. In our case we want to expose
the /httpd path to the Service resource port that maps to port 80 on
our Container resource.

The Host field is left blank, which means it will capture requests for
all hosts.

Go ahead and deploy this to the Development environment. You
will get an error like this.

The Service “httpd” is invalid: spec.ports[@].nodePort:
Invalid value: 30245: may not be used when “type’ is
‘ClusterIP’

Add Host Rule

Host

#{}

An optional value that defines the host that this ingress rule applies to. If left blank, this rule

will apply to all hosts.

Paths

Include the URL path and the service Port this ingress path directs traffic to.
The service port can be the service name, or the port number.

Path
/httpd

ADD PATH

X
#{)

Service port

service-web

#}

© Octopus Server on behalf of Httpd Development

ADD PATH

configmap "configmap-deployments-961" created Info
configmap "configmap-deployments-961" labeled Info
configmap "configmap-deployments-961” labeled Info
configmap "configmap-deployments-961” labeled Info
configmap "configmap-deployments-961" labeled Info
deployment .apps “httpd-deployments-961" created Info
deployment “httpd-deployments-961" successfully rolled out Info
The Service "httpd” is invalid: spec.ports[6].nodePort: Invalid value: 30245: may not be used when “type’ is 'ClusterIP’ Error
The ingress rules for httpd were not updated. Error
kubectl.exe : Error from server (NotFound): ingresses.extensions “httpd” not found Error
At C:\Octopus\Work\20186808631334-1839-86\Script.ps1:259 char:48 Error
+ ... ngress” -value $(& $Kubectl_Exe get ingress "httpd” -o=json 2> $null) Error
+ Error
+ CategoryInfo : Notspecified: (Error from serv...ttpd” not found:String) [], RemoteException Error

+ FullyQualifiederrorId : NativeCommandError Error
Error

The remote script failed with exit code 1 Fatal
The action Httpd on Httpd Development failed Fatal

Ran for 29 seconds

August 8th 2018 13:13:45
August 8th 2018 13:13:46
August 8th 2018 13:13:48
August 8th 2018 13:13:49
August 8th 2018
August 8th 2018 13:
August 8th 2018 13:13:57
August 8th 2018 13:14:01

August 8th 2018
August 8th 2018 13:
August 8th 2018 13:14:03
August 8th 2018 13:14:03

August 8th 2018
August 8th 2018 13:
August 8th 2018 13:14:03
August 8th 2018 13:14:03

Page 61 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

This error is thrown because we changed a Load balancer Service
resource, which defined a nodePort property, to a Cluster IP
Service resource, which does not support the nodePort property.
Kubernetes is pretty good at knowing how to update an existing
resource to match a new configuration, but in this case it doesn't
know how to perform this change.

The easiest solution is to delete the Service resource and rerun the
deployment. Because we have completely defined the deployment

process in Octopus, we can delete and recreate these resources
safe in the knowledge that there are no undocumented settings that
have been applied to the cluster that we might be removing.

I 404 Not Found X |k = - O X

< C B @ 35192.149.6/11pd @

Not Found

The requested URL /hitpd was not found on this server.
This time the deployment succeeds, and we have successfully

deployed the Ingress resource.

Let's open up the URL that we exposed via the Ingress Controller
resource.

And we get a 404. What is wrong here?

Page 62 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

htte:/laPe/ httpd
Managing URL
Mappings

The issue here is that we opened a URL like http://35.193.149.6/
httpd, and then passed that same path down to the HTTPD ser-
vice. Our HTTPD service has no content to serve under the httpd
path. It only has the index. html file in the root path the mapped
from a ConfigMap resource.

Fortunately this path mismatch is quite easy to solve. By setting
the nginx.ingress.kubernetes.io/rewrite-target annotation
to /, we can configure Nginx to pass the request that it receives

on path /httpd along to the path /. So while we access the URL
http://35.193.149.6/httpd in the browser, the HTTPD service sees a
request to the root path.

Page 63 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

Ingress Annotations Add annotations to configure the ingress controller.

Ingress annotations can be specific to the type of ingress controller used by the Kubernetes cluster, and the
suggested annotation keys are not exhaustive.

Learn more about ingress annotations ('

ADD ANNOTATION

Name X
nginx.ingress.kubernetes.io/rewrite-target > w0

Redeploy the project to the Development environment. Once / w

the deployment is finished, the URL http://35.193.149.6/httpd

will return our custom web page displaying the name of the

environment. v S e <o

Py Devetopment Production

Now that we have the Development environment working as we
expect, push the deployment to the Production environment
(remembering to delete the old Service resource, otherwise the

nodePort error will be thrown again). This time the deployment The nginx.ingress.kubernetes.io/rewrite-target annotation works insimple

works straight away. cases, but when the returned content is a HTML page that has links to CSS and JavaScript file,
those links may be relative to the base path, because the application serving the content has

no idea about the original path that was used.
In some cases this can be rectified with the nginx.ingress.kubernetes.io/add-
base-url: true annotation. This willinserta <base> element into the header of the

HTML being returned. See the Nginx documentation for more information.

Page 64 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

Output Variables

One of the benefits of using Octopus to perform Kubernetes

deployments is that your deployment process can integrate with

a much wider ecosystem. This is done by accessing the output

variables that are generated for each resource created by this B
step. These parameters can then be consumed in later steps. ot

=

HTTPD

cntn[RELEASE

Overview

By setting the OctopusPrintEvaluatedVariables variable to True inthe Octopus
project, it is possible to see all the variables that are available during deployment. See the

documentation for more details.

Process
Variables
Triggers

Channels
Releases.

Settings.

In our case, the output variables are (replace step name, with the
name of the step):

+ Octopus.Action[step name].Output.Ingress

- Octopus.Action[step name].Output.ConfigMap

+ Octopus.Action[step name].Output.Deployment
+ Octopus.Action[step name].Output.Service

These variables contain the JSON representation of the Kubernetes
resources that were created. By parsing these JSON strings in a
script step, we can for example display a link to the network load
balancer that is exposing our Kubernetes services.

$IngressParsed = ConvertFrom-Json -InputObject $0ctopusParameters["Octopus..
Write-Host "Access the ingress load balancer at http://$($IngressParsed.sta

@8 Infrastructure Tenants Library Tasks Configuration

B 2 pisplay summary

Step Name

Execution Plan

Script
Script Source
Packages
Script Content
Conditions

Environments.

Run Condition

Start Trigger

Required

£ Qumn -

A short, memorable, unique name for this step.
Stepname
Display Summary

“This step will un on the Octopus Server

The script s defined below (default)
No packages
Select the script language and enter the body of the script that will be executed.

@® Powershel O ct O F#

1/ $Ingressparsed = ConvertFron-dson -Inputobject $0ctopusParameters["Octopus.Action[Httpd].Output
balancer at http://$($IngressParsed.status. ing

2 Write-Host "Access the ingress load

CONFIGURE FEATURES

You can aad or manage aaional features used by s tep.

‘This step will run for all applicable Lifecycle environments (default)

Success: only run when previous steps succeed (dzfzult)

Wait for the previous step to complete, then start (default)

“This step is not required and can be skipped

loadBalancer.

EXPANDALL COLLAPSE ALL

g 0

Page 65 of 73

EEEEEEEEEEE

Tips and Tricks

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

[] [] A Dashboard @0 Infrastructure Tenants Library Tasks Configuration 2 Qamin
Deploy Httpd release 0.0.21 to Development
Verbose August 22nd
/erbosel
Jrerbose]
Juerbose]
hugust_22nd 2618
Jverboseliliaugust 22nd 2018
% h ti d th t th Oct t d erbosclliugust 22nd 2015
/er bose]
possible option that can be defined on a Deployment resource. B e
hugust 22nd 2015
fugust 22nd 2018
. . . pugust_22nd 2015
If you need a level of customization that the step does not provide, T e e o
. H sefiliaugust 22nd 2018 16:20: 24}
you can find the YAML for the resources that are created in the e e ot e O mmesememmr
, _ _ 4 S R
log files. These YAML files can be copied out, edited and deployed i E Eeas
fugust 22nd 2018
manually through the Run a kubectl CLI script step. i Sond go1
ugust 22nd 2018
fugust 22nd 2018
ferbose]

Page 67 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

Adhoc Scripts

One of the challenges with managing multiple Kubernetes accounts

A Dashboard Projects @@ Infrastructure Tenants Library Tasks Configuration

Tasks

and clusters is constantly switching between them when running sorptConsole ==
quick queries and one off maintenance scripts. It is always best — T
practise not to run scripts with an admin user, but | think we have S — .

@ Select Indvidual deployment tagets to run the script on (defaul)

all run that sneaky command as admin just to get the job done. And
more than a few have been burned with a delete command that was
just a bit too broad...

@ Powershell O o O Bash O F#

1 kubect] get deployments

Fortunately, once targets have been configured in Octopus as
described in this guide, it becomes easy to run these adhoc scripts
limited to a single namespace using the Script Console.

You can access the Script Console through Tasks -> Script
Console. Select the Kubernetes target that reflects the namespace
that you are working with, and write a script in the supplied editor. Toske

R Dashboard Projects

Script run from management console

TASK SUMMARY. TASKL0G SCRIPT BODY

The script will be run in the same kubectl context that is created when ; . T e
running the Run a kubectl CLI Script step. This means you adhoc
scripts will be contained to the namespace of the target (assuming if

course the service account has the correct permissions), limiting the

potential damage of a wayward command.

The script console also has the advantage of saving a history of what
commands were run by whom, providing an audit trail for mission
critical systems.

Page 68 of 73

The Ultimate Guide to Kubernetes Deployments with Octopus | Octopus Deploy.

tprojectNameSafe = $($0ctopusParameters["Octopus.Project.Name"].ToLower() -replace
taccountName = if (![string]::IsNullOrEmpty($0ctopusParameters["Octopus.Deployment

$($0ctopusParameters["Octopus.Project.Name"] -replace "[*A-Za-zB-9]","") + "-"
a rge S $(t0ctopusParameters["Octopus.Deployment. Tenant.Name"] -replace "["A-Za-z@-9]"

Scripting Kubernetes e o e

$($0ctopusParameters["Octopus.Environment.Name"] -replace "["A-Za-z@-9]","")
} else {
Creating accounts and targets can be time consuming if you are $($0ctopusParameters["Octopus.Project.Name"] -replace "[*A-Za-z8-9]","") + "-"

) $(30ctopusParameters["Octopus.Environment .Name"] -replace "["A-Za-2z8-9]","")
managing a large Kubernetes cluster. Fortunately the process can }

be automated so the Kubernetes Namespace and Service Account
The namespace is the acocunt name, but lowercase

resources along with the Octopus Account and Targets are created $namespace - $accountName.Tolower()
ith . | . #Save the namespace for other steps
with a Slﬂg e SCI’Ipt. Set-OctopusVariable -name “MNamespace” -value $namespace

Set-OctopusVariable -name “AccountName" -value faccountName

Create aRun a kubectl CLI Script step that targets an existing Set-Content -Path serviceaccount.yml -Value @"
Kubernetes admin target (i.e. a target that was set up with the Cing:

ind: Namespace
Kubernetes admin credentials). apiVersion: vi

metadata:

name : $namespace

apiVersion: vl

Define the following project variables: kind: ServiceAccount
metadata:

name: %projectNameSafe-deployer

« KubernetesUrl - The Kubernetes cluster URL. namespace; $namespace

This script will then create the Kubernetes resources, get the token, and
Click here to download the PowerShell script in the image to the right. create the Octopus token account and Kubernetes target.
Copy and paste it as the script body.
You could also allow the project variables to be supplied during deploy-
ment, or save this script as a step template to make it easier to reuse.

Page 69 of 73

https://cdn2.hubspot.net/hubfs/4676868/eBooks/Ultimate%20Guide%20to%20Kubernetes/kubernetes-final-step.zip

In this eBook we have seen how to manage multi-environment
deployments within a Kubernetes cluster using Octopus.

Each application and environment was configured in as a separate
namespace, with a matching service account that had permissions only to
that single namespace. The namespaces and service accounts were then
configured as Kubernetes targets, which represent a permission boundary
in a Kubernetes cluster.

The deployments were then performed using the blue/green strategy, and
we saw how failed deployments leave the last successful deployment in
place while the failed resources can be debugged.

We also looked at how to deploy applications with Helm across
environments, which we implemented by deploying the nginx-ingress chart.

The end result was a repeatable deployment process that emphasises
testing changes in a Development environment, and pushing the changes
to a Production environment when ready.

| hope you have enjoyed this eBook, and if you have any suggestions or

comments about the Kubernetes functionality please get in touch via

Your feedback is appreciated.

mailto:hello%40octopus.com?subject=enquiry%20via%20K8%20eBook

The Ultimate Guide to

Kubernetes Deployments
with Octopus

octopus.com

#R Octopus Deploy

https://octopus.com
https://octopus.com

