
libconfig
A Library For Processing Structured Configuration Files

Version 1.8.2
14 Dec 2025

Mark A. Lindner

Copyright c© 2004-2025 Mark A Lindner

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

i

Table of Contents

1 Introduction . 1
1.1 Why Another Configuration File Library? . 1
1.2 Using the Library from a C Program . 1
1.3 Using the Library from a C++ Program . 1
1.4 Multithreading Issues . 2
1.5 Internationalization Issues . 2
1.6 Compiling Using pkg-config . 3
1.7 Version Test Macros . 3

2 Configuration Files . 5
2.1 Settings . 6
2.2 Groups . 6
2.3 Arrays . 6
2.4 Lists . 7
2.5 Integer Values . 7
2.6 64-bit Integer Values . 7
2.7 Floating Point Values . 8
2.8 Boolean Values . 8
2.9 String Values . 8
2.10 Comments . 8
2.11 Include Directives . 9

3 The C API . 11

4 The C++ API . 23

5 Example Programs . 37

6 Other Bindings and Implementations 39
6.1 Bourne Shell . 39
6.2 D . 39
6.3 Haskell . 39
6.4 Java . 39
6.5 Lisp . 39
6.6 Perl . 39
6.7 Python . 39
6.8 Ruby . 40
6.9 Rust . 40

Appendix A License . 41

ii

Appendix B Configuration File Grammar 51

Function Index . 53

Type Index . 57

Concept Index . 59

1

1 Introduction

Libconfig is a library for reading, manipulating, and writing structured configuration
files. The library features a fully reentrant parser and includes bindings for both the C and
C++ programming languages.

The library runs on modern POSIX-compilant systems, such as GNU/Linux, FreeBSD,
OpenBSD, and MacOS (Darwin), as well as on Microsoft Windows 2000/XP and later
(with either Microsoft Visual Studio 2005 or later, or the GNU toolchain via the MinGW
environment).

1.1 Why Another Configuration File Library?

There are several open-source configuration file libraries available as of this writing. This
library was written because each of those libraries falls short in one or more ways. The main
features of libconfig that set it apart from the other libraries are:

• A fully reentrant parser. Independent configurations can be parsed in concurrent
threads at the same time.

• Both C and C++ bindings, as well as hooks to allow for the creation of wrappers in
other languages.

• A simple, structured configuration file format that is more readable and compact than
XML and more flexible than the obsolete but prevalent Windows “INI” file format.

• A low-footprint implementation (just 37K for the C library and 76K for the C++ library)
that is suitable for memory-constrained systems.

• Proper documentation.

1.2 Using the Library from a C Program

To use the library from C code, include the following preprocessor directive in your
source files:

#include <libconfig.h>

To link with the library, specify ‘-lconfig’ as an argument to the linker.

1.3 Using the Library from a C++ Program

To use the library from C++, include the following preprocessor directive in your source
files:

#include <libconfig.h++>

Or, alternatively:

#include <libconfig.hh>

2 libconfig

The C++ API classes are defined in the namespace ‘libconfig’, hence the following
statement may optionally be used:

using namespace libconfig;

To link with the library, specify ‘-lconfig++’ as an argument to the linker.

1.4 Multithreading Issues

Libconfig is fully reentrant; the functions in the library do not make use of global variables
and do not maintain state between successive calls. Therefore two independent configura-
tions may be safely manipulated concurrently by two distinct threads.

Libconfig is not thread-safe. The library is not aware of the presence of threads and
knows nothing about the host system’s threading model. Therefore, if an instance of a
configuration is to be accessed from multiple threads, it must be suitably protected by
synchronization mechanisms like read-write locks or mutexes; the standard rules for safe
multithreaded access to shared data must be observed.

Libconfig is not async-safe. Calls should not be made into the library from signal han-
dlers, because some of the C library routines that it uses may not be async-safe.

Libconfig is not guaranteed to be cancel-safe. Since it is not aware of the host system’s
threading model, the library does not contain any thread cancellation points. In most cases
this will not be an issue for multithreaded programs. However, be aware that some of
the routines in the library (namely those that read/write configurations from/to files or
streams) perform I/O using C library routines which may potentially block; whether or not
these C library routines are cancel-safe depends on the host system.

1.5 Internationalization Issues

Libconfig does not natively support Unicode configuration files, but string values may
contain Unicode text encoded in UTF-8; such strings will be treated as ordinary 8-bit ASCII
text by the library. It is the responsibility of the calling program to perform the necessary
conversions to/from wide (wchar_t) strings using the wide string conversion functions such
as mbsrtowcs() and wcsrtombs() or the iconv() function of the libiconv library.

The textual representation of a floating point value varies by locale. However, the
libconfig grammar specifies that floating point values are represented using a period (‘.’)
as the radix symbol; this is consistent with the grammar of most programming languages.
When a configuration is read in or written out, libconfig temporarily changes the LC_NUMERIC
category of the locale of the calling thread to the “C” locale to ensure consistent handling
of floating point values regardless of the locale(s) in use by the calling program.

Note that the MinGW environment does not (as of this writing) provide functions for
changing the locale of the calling thread. Therefore, when using libconfig in that environ-
ment, the calling program is responsible for changing the LC_NUMERIC category of the locale
to the "C" locale before reading or writing a configuration.

Chapter 1: Introduction 3

1.6 Compiling Using pkg-config

On UNIX systems you can use the pkg-config utility (version 0.20 or later) to auto-
matically select the appropriate compiler and linker switches for libconfig. Ensure that the
environment variable PKG_CONFIG_PATH contains the absolute path to the lib/pkgconfig

subdirectory of the libconfig installation. Then, you can compile and link C programs with
libconfig as follows:

gcc `pkg-config --cflags libconfig` myprogram.c -o myprogram \

`pkg-config --libs libconfig`

And similarly, for C++ programs:
g++ `pkg-config --cflags libconfig++` myprogram.cpp -o myprogram \

`pkg-config --libs libconfig++`

Note the backticks in the above examples.

When using autoconf, the PKG_CHECK_MODULES m4 macro may be used to check for the
presence of a given version of libconfig, and set the appropriate Makefile variables automat-
ically. For example:

PKG_CHECK_MODULES([LIBCONFIGXX], [libconfig++ >= 1.4],,

AC_MSG_ERROR([libconfig++ 1.4 or newer not found.])

)

In the above example, if libconfig++ version 1.4 or newer is found, the Makefile variables
LIBCONFIGXX_LIBS and LIBCONFIGXX_CFLAGS will be set to the appropriate compiler and
linker flags for compiling with libconfig, and if it is not found, the configure script will abort
with an error to that effect.

1.7 Version Test Macros

The libconfig.h header declares the following macros:

[Macro]LIBCONFIG_VER_MAJOR
[Macro]LIBCONFIG_VER_MINOR
[Macro]LIBCONFIG_VER_REVISION

These macros represent the major version, minor version, and revision of the libconfig
library. For example, in libconfig 1.4 these are defined as ‘1’, ‘4’, and ‘0’, respectively.
These macros can be used in preprocessor directives to determine which libconfig
features and/or APIs are present. For example:

#if (((LIBCONFIG_VER_MAJOR == 1) && (LIBCONFIG_VER_MINOR >= 4)) \

|| (LIBCONFIG_VER_MAJOR > 1))

/* use features present in libconfig 1.4 and later */

#endif

These macros were introduced in libconfig 1.4.

Similarly, the libconfig.h++ header declares the following macros:

[Macro]LIBCONFIGXX_VER_MAJOR
[Macro]LIBCONFIGXX_VER_MINOR
[Macro]LIBCONFIGXX_VER_REVISION

These macros represent the major version, minor version, and revision of the libcon-
fig++ library.

5

2 Configuration Files

Libconfig supports structured, hierarchical configurations. These configurations can be
read from and written to files and manipulated in memory.

A configuration consists of a group of settings, which associate names with values. A
value can be one of the following:

• A scalar value: integer, 64-bit integer, floating-point number, boolean, or string

• An array, which is a sequence of scalar values, all of which must have the same type

• A group, which is a collection of settings

• A list, which is a sequence of values of any type, including other lists

Consider the following configuration file for a hypothetical GUI application, which illus-
trates all of the elements of the configuration file grammar.

� �
Example application configuration file

version = "1.0";

application:

{

window:

{

title = "My Application";

size = { w = 640; h = 480; };

pos = { x = 350; y = 250; };

};

list = (("abc", 123, true), 1.234, (/* an empty list */));

books = ({ title = "Treasure Island";

author = "Robert Louis Stevenson";

price = 29.95;

qty = 5; },

{ title = "Snow Crash";

author = "Neal Stephenson";

price = 9.99;

qty = 8; });

constants:

{

pi = 3.141592654;

bigint = 9223372036854775807L;

columns = ["Last Name", "First Name", "MI"];

bitmask1 = 0x1FC3; // hex

bitmask2 = 0b1011; // binary

umask = 0o755; // octal

};

};
 	
Settings can be uniquely identified within the configuration by a path. The path is a

dot-separated sequence of names, beginning at a top-level group and ending at the setting

6 libconfig

itself. Each name in the path is the name of a setting; if the setting has no name because
it is an element in a list or array, an integer index in square brackets can be used as the
name.

For example, in our hypothetical configuration file, the path to the x setting is
application.window.pos.x; the path to the version setting is simply version;
and the path to the title setting of the second book in the books list is
application.books.[1].title.

The datatype of a value is determined from the format of the value itself. If the value
is enclosed in double quotes, it is treated as a string. If it looks like an integer or floating
point number, it is treated as such. If it is one of the values TRUE, true, FALSE, or false
(or any other mixed-case version of those tokens, e.g., True or FaLsE), it is treated as a
boolean. If it consists of a comma-separated list of values enclosed in square brackets, it
is treated as an array. And if it consists of a comma-separated list of values enclosed in
parentheses, it is treated as a list. Any value which does not meet any of these criteria is
considered invalid and results in a parse error.

All names are case-sensitive. They may consist only of alphanumeric characters, dashes
(‘-’), underscores (‘_’), and asterisks (‘*’), and must begin with a letter or asterisk. No
other characters are allowed.

In C and C++, integer, 64-bit integer, floating point, and string values are mapped to the
native types int, long long, double, and const char *, respectively. The boolean type is
mapped to int in C and bool in C++.

The following sections describe the elements of the configuration file grammar in addi-
tional detail.

2.1 Settings

A setting has the form:

name = value ;

or:

name : value ;

The trailing semicolon is optional. Whitespace is not significant.

The value may be a scalar value, an array, a group, or a list.

2.2 Groups

A group has the form:

{ settings ... }
Groups can contain any number of settings, but each setting must have a unique name

within the group.

2.3 Arrays

An array has the form:

[value, value ...]

Chapter 2: Configuration Files 7

An array may have zero or more elements, but the elements must all be scalar values of
the same type.

The last element in an array may be followed by a comma, which will be ignored.

2.4 Lists

A list has the form:

(value, value ...)

A list may have zero or more elements, each of which can be a scalar value, an array, a
group, or another list.

The last element in a list may be followed by a comma, which will be ignored.

2.5 Integer Values

Integers can be represented in four ways:

• As a series of one or more decimal digits (‘0’ - ‘9’), with an optional leading sign
character (‘+’ or ‘-’).

• As a binary value consisting of the characters ‘0b’ followed by a series of one or more
binary digits (‘0’ - ‘1’).

• As an octal value consisting of the characters ‘0o’ or ‘0q’ followed by a series of one or
more octal digits (‘0’ - ‘7’). (Since version 1.8.1; prior versions of the library supported
the old octal format of a single leading ‘0’, which is ambiguous.)

• As a hexadecimal value consisting of the characters ‘0x’ followed by a series of one or
more hexadecimal digits (‘0’ - ‘9’, ‘A’ - ‘F’, ‘a’ - ‘f’).

2.6 64-bit Integer Values

Long long (64-bit) integers are represented identically to integers, except that an ‘L’
character is appended to indicate a 64-bit value. For example, ‘0L’ indicates a 64-bit
integer value 0. As of version 1.5 of the library, the trailing ‘L’ is optional; if the integer
value exceeds the range of a 32-bit integer, it will automatically be interpreted as a 64-bit
integer.

As of version 1.8.1 of the library, this behavior also applies to integers expressed in binary
(base 2), octal (base 8), and hexadecimal (base 16). A binary value with 32 or less digits
and no trailing ‘L’ will always be parsed as a 32-bit integer, while a binary value with 33 to
64 digits or with a trailing ‘L’ will always be parsed as a 64-bit integer. Similarly, an octal
value with 10 or less digits and no trailing ‘L’ will always be parsed as a 32-bit integer,
while an octal value with 11 to 21 digits or with a trailing ‘L’ will always be parsed as a
64-bit integer. And finally, a hexadecimal value with 8 or less digits and no trailing ‘L’ will
always be parsed as a 32-bit integer, while a hexadecimal value with 9 to 16 digits or with
a trailing ‘L’ will always be parsed as a 64-bit integer.

The integer and 64-bit integer setting types are interchangeable to the extent that a
conversion between the corresponding native types would not result in an overflow or un-
derflow. For example, a long long value can be written to a setting that has an integer
type, if that value is within the range of an int. This rule applies to every API function or
method that reads a value from or writes a value to a setting: if the type conversion would

8 libconfig

not result in an overflow or underflow, then the call will succeed, and otherwise it will fail.
This behavior was not well-defined prior to version 1.7 of the library.

2.7 Floating Point Values

Floating point values consist of a series of one or more digits, one decimal point, an
optional leading sign character (‘+’ or ‘-’), and an optional exponent. An exponent consists
of the letter ‘E’ or ‘e’, an optional sign character, and a series of one or more digits.

2.8 Boolean Values

Boolean values may have one of the following values: ‘true’, ‘false’, or any mixed-case
variation thereof.

2.9 String Values

String values consist of arbitrary text delimited by double quotes. Literal double quotes
can be escaped by preceding them with a backslash: ‘\"’. The escape sequences ‘\\’, ‘\f’,
‘\n’, ‘\r’, ‘\a’, ‘\b’, ‘\v’ and ‘\t’ are also recognized, and have the usual meaning.

In addition, the ‘\x’ escape sequence is supported; this sequence must be followed by
exactly two hexadecimal digits, which represent an 8-bit ASCII value. For example, ‘\xFF’
represents the character with ASCII code 0xFF.

No other escape sequences are currently supported.

Adjacent strings are automatically concatenated, as in C/C++ source code. This is useful
for formatting very long strings as sequences of shorter strings. For example, the following
constructs are equivalent:

• "The quick brown fox jumped over the lazy dog."

• "The quick brown fox"

" jumped over the lazy dog."

• "The quick" /* comment */ " brown fox " // another comment

"jumped over the lazy dog."

2.10 Comments

Three types of comments are allowed within a configuration:

• Script-style comments. All text beginning with a ‘#’ character to the end of the line is
ignored.

• C-style comments. All text, including line breaks, between a starting ‘/*’ sequence and
an ending ‘*/’ sequence is ignored.

• C++-style comments. All text beginning with a ‘//’ sequence to the end of the line is
ignored.

As expected, comment delimiters appearing within quoted strings are treated as literal
text.

Comments are ignored when the configuration is read in, so they are not treated as part
of the configuration. Therefore if the configuration is written back out to a stream, any
comments that were present in the original configuration will be lost.

Chapter 2: Configuration Files 9

2.11 Include Directives

A configuration file may “include” the contents of other files using an include directive.
This directive has the effect of inlining the contents of the named file(s) at the point of
inclusion.

An include directive must appear on its own line in the input. It has the form:

@include "path"

The interpretation of path depends on the currently registered include function. The
default include function prepends the include directory, if any, to path, and then interprets
the result as a single, literal file path. The application may supply its own include function
which does variable substitution, wildcard expansion, or other transformations, returning a
list of zero or more paths to files whose contents should be inlined at the point of inclusion.

Any backslashes or double quotes in the path must be escaped as ‘\\’ and ‘\"’, respec-
tively.

For example, consider the following two configuration files:� �
file: quote.cfg

quote = "Criticism may not be agreeable, but it is necessary."

" It fulfils the same function as pain in the human"

" body. It calls attention to an unhealthy state of"

" things.\n"

"\t--Winston Churchill";
 	� �
file: test.cfg

info: {

name = "Winston Churchill";

@include "quote.cfg"

country = "UK";

};
 	
The resulting configuration will be equivalent to one in which the contents of the file

‘quote.cfg’ appeared at the point where the include directive is placed.

Include files may be nested to a maximum of 10 levels; exceeding this limit results in a
parse error.

When the path argument to an @include directive is a relative path, then it will be
interpreted as being relative to the include directory that has been been set by means of
config_set_include_dir(). If no include directory has been set, then it will be taken as
being relative to the program’s current working directory.

Like comments, include directives are not part of the configuration file syntax. They
are processed before the configuration itself is parsed. Therefore, they are not preserved
when the configuration is written back out to a stream. There is presently no support for
programmatically inserting include directives into a configuration.

11

3 The C API

This chapter describes the C library API. The type config t represents a configuration,
and the type config setting t represents a configuration setting.

The boolean values CONFIG_TRUE and CONFIG_FALSE are macros defined as (1) and (0),
respectively.

[Function]void config_init (config_t * config)
[Function]void config_destroy (config_t * config)

These functions initialize and destroy the configuration object config.

config_init() initializes the config t structure pointed to by config as a new, empty
configuration.

config_destroy() destroys the configuration config, deallocating all memory associ-
ated with the configuration, but does not attempt to deallocate the config t structure
itself.

[Function]void config_clear (config_t * config)
Since v1.7

This function clears the configuration config. All child settings of the root setting are
recursively destroyed. All other attributes of the configuration are left unchanged.

[Function]int config_read (config_t * config, FILE * stream)
This function reads and parses a configuration from the given stream into the con-
figuration object config. It returns CONFIG_TRUE on success, or CONFIG_FALSE on
failure; the config_error_text(), config_error_file(), config_error_line(),
and config_error_type() functions, described below, can be used to obtain infor-
mation about the error.

[Function]int config_read_file (config_t * config,
const char * filename)

This function reads and parses a configuration from the file named filename into the
configuration object config. It returns CONFIG_TRUE on success, or CONFIG_FALSE on
failure; the config_error_text() and config_error_line() functions, described
below, can be used to obtain information about the error.

[Function]int config_read_string (config_t * config,
const char * str)

This function reads and parses a configuration from the string str into the configura-
tion object config. It returns CONFIG_TRUE on success, or CONFIG_FALSE on failure;
the config_error_text() and config_error_line() functions, described below,
can be used to obtain information about the error.

[Function]void config_write (const config_t * config, FILE * stream)
This function writes the configuration config to the given stream.

[Function]int config_write_file (config_t * config,
const char * filename)

This function writes the configuration config to the file named filename. It returns
CONFIG_TRUE on success, or CONFIG_FALSE on failure.

12 libconfig

[Function]const char * config_error_text (const config_t * config)
[Function]const char * config_error_file (const config_t * config)
[Function]int config_error_line (const config_t * config)

These functions, which are implemented as macros, return the text, filename, and
line number of the parse error, if one occurred during a call to config_read(),
config_read_string(), or config_read_file(). Storage for the strings returned
by config_error_text() and config_error_file() are managed by the library
and released automatically when the configuration is destroyed; these strings must
not be freed by the caller. If the error occurred in text that was read from a string
or stream, config_error_file() will return NULL.

[Function]config_error_t config_error_type (const config_t * config)
This function, which is implemented as a macro, returns the type of error that oc-
curred during the last call to one of the read or write functions. The config error t
type is an enumeration with the following values: CONFIG_ERR_NONE, CONFIG_ERR_
FILE_IO, CONFIG_ERR_PARSE. These represent success, a file I/O error, and a parsing
error, respectively.

[Function]void config_set_fatal_error_func
(config_fatal_error_fn_t func)

Since v1.7.4

Specifies the function func to call when a fatal error is encountered. If func is NULL,
the default fatal error handler function will be reinstated.

The type config fatal error fn t is a type alias for a function whose signature is:

[Function]void func (const char *message)
The function receives an error message message. The function is not expected
to return to the caller; if it does, the resulting behavior is undefined.

Fatal errors are unrecoverable, and the only reasonable course of action is to abort the
calling process. The default fatal error handler function writes a message to standard
error and then calls abort(). One potential alternate implementation would be to call
exit() with an exit status that indicates to the parent process (such as a watchdog
process) that the current process has encountered an unrecoverable condition and
should be respawned.

In the current implementation, the only condition that will produce a fatal error is
a memory allocation failure—that is, a NULL return value from malloc(), calloc(),
or realloc().

[Function]void config_set_include_dir (config_t *config,
const char *include_dir)

[Function]const char * config_get_include_dir
(const config_t *config)

config_set_include_dir() specifies the include directory, include dir, relative to
which the files specified in ‘@include’ directives will be located for the configuration
config. By default, there is no include directory, and all include files are expected
to be relative to the current working directory. If include dir is NULL, the default
behavior is reinstated.

Chapter 3: The C API 13

For example, if the include directory is set to /usr/local/etc, the
include directive ‘@include "configs/extra.cfg"’ would include the file
/usr/local/etc/configs/extra.cfg.

config_get_include_dir() returns the current include directory for the configura-
tion config, or NULL if none is set.

[Function]void config_set_include_func (config_include_fn_t func)
Since v1.7

Specifies the include function func to use when processing include directives. If func
is NULL, the default include function, config_default_include_func(), will be re-
instated.

The type config include fn t is a type alias for a function whose signature is:

[Function]const char ** func (config_t *config,
const char *include_dir, const char *path,
const char **error)

The function receives the configuration config, the configuration’s current in-
clude directory include dir, the argument to the include directive path; and a
pointer at which to return an error message error.

On success, the function should return a NULL-terminated array of paths. Any
relative paths must be relative to the program’s current working directory. The
contents of these files will be inlined at the point of inclusion, in the order that
the paths appear in the array. Both the array and its elements should be heap
allocated; the library will take ownership of and eventually free the strings in
the array and the array itself.

On failure, the function should return NULL and set *error to a static error
string which should be used as the parse error for the configuration; the library
does not take ownership of or free this string.

The default include function, config_default_include_func(), simply re-
turns a NULL-terminated array containing either a copy of path if it’s an absolute
path, or a concatenation of include dir and path if it’s a relative path.

Application-supplied include functions can perform custom tasks like wildcard expan-
sion or variable substitution. For example, consider the include directive:� �

@include "configs/*.cfg"
 	
The include function would be invoked with the path ‘configs/*.cfg’ and could
do wildcard expansion on that path, returning a list of paths to files with the file
extension ‘.cfg’ in the subdirectory ‘configs’. Each of these files would then be
inlined at the location of the include directive.

Tasks like wildcard expansion and variable substitution are non-trivial to implement
and typically require platform-specific code. In the interests of keeping the library
as compact and platform-independent as possible, implementations of such include
functions are not included.

14 libconfig

[Function]unsigned short config_get_float_precision
(config_t *config)

[Function]void config_set_float_precision (config_t *config,
unsigned short digits)

Since v1.6

These functions get and set the number of decimal digits to output after the radix
character when writing the configuration to a file or stream.

Valid values for digits range from 0 (no decimals) to about 15 (implementation de-
fined). This parameter has no effect on parsing.

The default float precision is 6.

[Function]int config_get_options (config_t *config)
[Function]void config_set_options (config_t *config, int options)

These functions get and set the options for the configuration config. The options
affect how configurations are read and written. The following options are defined:

CONFIG_OPTION_AUTOCONVERT

Turning this option on enables number auto-conversion for the configu-
ration. When this feature is enabled, an attempt to retrieve a floating
point setting’s value into an integer (or vice versa), or store an integer
to a floating point setting’s value (or vice versa) will cause the library
to silently perform the necessary conversion (possibly leading to loss of
data), rather than reporting failure. By default this option is turned off.

CONFIG_OPTION_SEMICOLON_SEPARATORS

This option controls whether a semicolon (‘;’) is output after each setting
when the configuration is written to a file or stream. (The semicolon sep-
arators are optional in the configuration syntax.) By default this option
is turned on.

CONFIG_OPTION_COLON_ASSIGNMENT_FOR_GROUPS

This option controls whether a colon (‘:’) is output between each group
setting’s name and its value when the configuration is written to a file
or stream. If the option is turned off, an equals sign (‘=’) is output
instead. (These tokens are interchangeable in the configuration syntax.)
By default this option is turned on.

CONFIG_OPTION_COLON_ASSIGNMENT_FOR_NON_GROUPS

This option controls whether a colon (‘:’) is output between each non-
group setting’s name and its value when the configuration is written to a
file or stream. If the option is turned off, an equals sign (‘=’) is output
instead. (These tokens are interchangeable in the configuration syntax.)
By default this option is turned off.

CONFIG_OPTION_OPEN_BRACE_ON_SEPARATE_LINE

This option controls whether an open brace (‘{’) will be written on its
own line when the configuration is written to a file or stream. If the
option is turned off, the brace will be written at the end of the previous
line. By default this option is turned on.

Chapter 3: The C API 15

CONFIG_OPTION_ALLOW_SCIENTIFIC_NOTATION

(Since v1.7) This option controls whether scientific notation may be
used as appropriate when writing floating point values (corresponding
to printf() ‘%g’ format) or should never be used (corresponding to
printf() ‘%f’ format). By default this option is turned off.

CONFIG_OPTION_FSYNC

(Since v1.7.1) This option controls whether the config_write_file()

function performs an fsync operation after writing the configuration and
before closing the file. By default this option is turned off.

CONFIG_OPTION_ALLOW_OVERRIDES

(Since v1.7.3) This option controls whether duplicate settings override
previous settings with the same name. If this option is turned off, dupli-
cate settings are rejected. By default this option is turned off.

[Function]int config_get_option (config_t *config, int option)
[Function]void config_set_option (config_t *config, int option,

int flag)
Since v1.7

These functions get and set the given option of the configuration config. The option
is enabled if flag is CONFIG_TRUE and disabled if it is CONFIG_FALSE.

See config_set_options() above for the list of available options.

[Function]int config_get_auto_convert (const config_t *config)
[Function]void config_set_auto_convert (config_t *config, int flag)

These functions get and set the CONFIG_OPTION_AUTOCONVERT option. They are ob-
soleted by the config_set_option() and config_get_option() functions described
above.

[Function]unsigned short config_get_default_format
(config_t * config)

[Function]void config_set_default_format (config_t * config,
unsigned short format)

These functions, which are implemented as macros, get and set the default external
format for settings in the configuration config. If a non-default format has not been
set for a setting with config_setting_set_format(), this configuration-wide default
format will be used instead when that setting is written to a file or stream.

[Function]unsigned short config_get_tab_width
(const config_t * config)

[Function]void config_set_tab_width (config_t * config,
unsigned short width)

These functions, which are implemented as macros, get and set the tab width for the
configuration config. The tab width affects the formatting of the configuration when
it is written to a file or stream: each level of nesting is indented by width spaces, or
by a single tab character if width is 0. The tab width has no effect on parsing.

Valid tab widths range from 0 to 15. The default tab width is 2.

16 libconfig

[Function]int config_lookup_int (const config_t * config,
const char * path, int * value)

[Function]int config_lookup_int64 (const config_t * config,
const char * path, long long * value)

[Function]int config_lookup_float (const config_t * config,
const char * path, double * value)

[Function]int config_lookup_bool (const config_t * config,
const char * path, int * value)

[Function]int config_lookup_string (const config_t * config,
const char * path, const char ** value)

These functions look up the value of the setting in the configuration config specified
by the path path. They store the value of the setting at value and return CONFIG_

TRUE on success. If the setting was not found or if the type of the value did not match
the type requested, they leave the data pointed to by value unmodified and return
CONFIG_FALSE.

Storage for the string returned by config_lookup_string() is managed by the li-
brary and released automatically when the setting is destroyed or when the setting’s
value is changed; the string must not be freed by the caller.

[Function]config_setting_t * config_lookup (const config_t * config,
const char * path)

This function locates the setting in the configuration config specified by the path
path. It returns a pointer to the config_setting_t structure on success, or NULL if
the setting was not found.

[Function]const config_setting_t * config_lookup_const
(const config_t * config, const char * path)

Since v1.7.4

This function is identical to config_lookup(), except that the setting is returned as
a const structure.

[Function]config_setting_t * config_setting_lookup
(const config_setting_t * setting, const char * path)

This function locates a setting by a path path relative to the setting setting. It returns
a pointer to the config_setting_t structure on success, or NULL if the setting was
not found.

[Function]const config_setting_t * config_setting_lookup_const
(const config_setting_t * setting, const char * path)

Since v1.7.4

This function is identical to config_setting_lookup(), except that the setting is
returned as a const structure.

[Function]int config_setting_get_int
(const config_setting_t * setting)

[Function]long long config_setting_get_int64
(const config_setting_t * setting)

Chapter 3: The C API 17

[Function]double config_setting_get_float
(const config_setting_t * setting)

[Function]int config_setting_get_bool
(const config_setting_t * setting)

[Function]const char * config_setting_get_string
(const config_setting_t * setting)

These functions return the value of the given setting. If the type of the setting does
not match the type requested, a 0 or NULL value is returned. Storage for the string
returned by config_setting_get_string() is managed by the library and released
automatically when the setting is destroyed or when the setting’s value is changed;
the string must not be freed by the caller.

[Function]int config_setting_get_int_safe
(const config_setting_t * setting, int *value)

[Function]int config_setting_get_int64_safe
(const config_setting_t * setting, long long *value)

[Function]int config_setting_get_float_safe
(const config_setting_t * setting, double *value)

[Function]int config_setting_get_bool_safe
(const config_setting_t * setting, int *value)

[Function]int config_setting_get_string_safe
(const config_setting_t * setting, const char **value)

Since v1.8.1

These functions are “safe” versions of the corresponding functions whose names do not
have the _safe suffix, in that they do not silently return a default value if the setting
is not of the expected type. Specifically, if setting is of the expected type (or its value
can be converted to the expected type, if auto-conversion is enabled), they store its
value at value and return CONFIG_TRUE; otherwise, they return CONFIG_FALSE.

[Function]int config_setting_set_int (config_setting_t * setting,
int value)

[Function]int config_setting_set_int64 (config_setting_t * setting,
long long value)

[Function]int config_setting_set_float (config_setting_t * setting,
double value)

[Function]int config_setting_set_bool (config_setting_t * setting,
int value)

[Function]int config_setting_set_string (config_setting_t * setting,
const char *value)

These functions set the value of the given setting to value. On success, they return
CONFIG_TRUE. If the setting does not match the type of the value, they return CONFIG_

FALSE. config_setting_set_string() makes a copy of the passed string value, so
it may be subsequently freed or modified by the caller without affecting the value of
the setting.

18 libconfig

[Function]int config_setting_lookup_int
(const config_setting_t * setting, const char * name,
int * value)

[Function]int config_setting_lookup_int64
(const config_setting_t * setting, const char * name,
long long * value)

[Function]int config_setting_lookup_float
(const config_setting_t * setting, const char * name,
double * value)

[Function]int config_setting_lookup_bool
(const config_setting_t * setting, const char * name,
int * value)

[Function]int config_setting_lookup_string
(const config_setting_t * setting, const char * name,
const char ** value)

These functions look up the value of the child setting named name of the setting
setting. They store the value at value and return CONFIG_TRUE on success. If the
setting was not found or if the type of the value did not match the type requested,
they leave the data pointed to by value unmodified and return CONFIG_FALSE.

Storage for the string returned by config_setting_lookup_string() is managed
by the library and released automatically when the setting is destroyed or when the
setting’s value is changed; the string must not be freed by the caller.

[Function]unsigned short config_setting_get_format
(config_setting_t * setting)

[Function]int config_setting_set_format (config_setting_t * setting,
unsigned short format)

These functions get and set the external format for the setting setting.

The format must be one of the constants CONFIG_FORMAT_DEFAULT, CONFIG_FORMAT_
BIN (since version 1.8), CONFIG_FORMAT_OCT (since version 1.8.1), or CONFIG_FORMAT_
HEX. All settings support the CONFIG_FORMAT_DEFAULT format. The remaining for-
mats specify base-2, base-8, and base-16 representations, respectively, for integer
values, and hence only apply to settings of type CONFIG_TYPE_INT and CONFIG_TYPE_

INT64. If format is invalid for the given setting, it is ignored.

If a non-default format has not been set for the setting, config_setting_get_

format() returns the default format for the configuration, as set by config_set_

default_format().

config_setting_set_format() returns CONFIG_TRUE on success and CONFIG_FALSE

on failure.

[Function]config_setting_t * config_setting_get_member
(config_setting_t * setting, const char * name)

This function fetches the child setting named name from the group setting. It returns
the requested setting on success, or NULL if the setting was not found or if setting is
not a group.

Chapter 3: The C API 19

[Function]config_setting_t * config_setting_get_elem
(const config_setting_t * setting, unsigned int index)

This function fetches the element at the given index index in the setting setting,
which must be an array, list, or group. It returns the requested setting on success, or
NULL if index is out of range or if setting is not an array, list, or group.

[Function]int config_setting_get_int_elem
(const config_setting_t * setting, int index)

[Function]long long config_setting_get_int64_elem
(const config_setting_t * setting, int index)

[Function]double config_setting_get_float_elem
(const config_setting_t * setting, int index)

[Function]int config_setting_get_bool_elem
(const config_setting_t * setting, int index)

[Function]const char * config_setting_get_string_elem
(const config_setting_t * setting, int index)

These functions return the value at the specified index index in the setting setting.
If the setting is not an array or list, or if the type of the element does not match the
type requested, or if index is out of range, they return 0 or NULL. Storage for the
string returned by config_setting_get_string_elem() is managed by the library
and released automatically when the setting is destroyed or when its value is changed;
the string must not be freed by the caller.

[Function]config_setting_t * config_setting_set_int_elem
(config_setting_t * setting, int index, int value)

[Function]config_setting_t * config_setting_set_int64_elem
(config_setting_t * setting, int index, long long value)

[Function]config_setting_t * config_setting_set_float_elem
(config_setting_t * setting, int index, double value)

[Function]config_setting_t * config_setting_set_bool_elem
(config_setting_t * setting, int index, int value)

[Function]config_setting_t * config_setting_set_string_elem
(config_setting_t * setting, int index, const char * value)

These functions set the value at the specified index index in the setting setting to
value. If index is negative, a new element is added to the end of the array or list. On
success, these functions return a pointer to the setting representing the element. If
the setting is not an array or list, or if the setting is an array and the type of the array
does not match the type of the value, or if index is out of range, they return NULL.
config_setting_set_string_elem() makes a copy of the passed string value, so it
may be subsequently freed or modified by the caller without affecting the value of the
setting.

[Function]config_setting_t * config_setting_add
(config_setting_t * parent, const char * name, int type)

This function adds a new child setting or element to the setting parent, which must
be a group, array, or list. If parent is an array or list, the name parameter is ignored
and may be NULL.

20 libconfig

The function returns the new setting on success, or NULL if parent is not a group,
array, or list; or if there is already a child setting of parent named name; or if type
is invalid. If type is a scalar type, the new setting will have a default value of 0, 0.0,
false, or NULL, as appropriate.

[Function]int config_setting_remove (config_setting_t * parent,
const char * name)

This function removes and destroys the setting named name from the parent setting
parent, which must be a group. Any child settings of the setting are recursively
destroyed as well.

The name parameter can also specify a setting path relative to the provided parent.
(In that case, the setting will be looked up and removed.)

The function returns CONFIG_TRUE on success. If parent is not a group, or if it has
no setting with the given name, it returns CONFIG_FALSE.

[Function]int config_setting_remove_elem (config_setting_t * parent,
unsigned int index)

This function removes the child setting at the given index index from the setting
parent, which must be a group, list, or array. Any child settings of the removed
setting are recursively destroyed as well.

The function returns CONFIG_TRUE on success. If parent is not a group, list, or array,
or if index is out of range, it returns CONFIG_FALSE.

[Function]config_setting_t * config_root_setting
(const config_t * config)

This function, which is implemented as a macro, returns the root setting for the
configuration config. The root setting is a group.

[Function]const char * config_setting_name
(const config_setting_t * setting)

This function returns the name of the given setting, or NULL if the setting has no name.
Storage for the returned string is managed by the library and released automatically
when the setting is destroyed; the string must not be freed by the caller.

[Function]config_setting_t * config_setting_parent
(const config_setting_t * setting)

This function returns the parent setting of the given setting, or NULL if setting is the
root setting.

[Function]int config_setting_is_root
(const config_setting_t * setting)

This function returns CONFIG_TRUE if the given setting is the root setting, and
CONFIG_FALSE otherwise.

[Function]int config_setting_index (const config_setting_t * setting)
This function returns the index of the given setting within its parent setting. If
setting is the root setting, this function returns -1.

Chapter 3: The C API 21

[Function]int config_setting_length
(const config_setting_t * setting)

This function returns the number of settings in a group, or the number of elements
in a list or array. For other types of settings, it returns 0.

[Function]int config_setting_type (const config_setting_t * setting)
This function returns the type of the given setting. The return value is one of the con-
stants CONFIG_TYPE_INT, CONFIG_TYPE_INT64, CONFIG_TYPE_FLOAT, CONFIG_TYPE_
STRING, CONFIG_TYPE_BOOL, CONFIG_TYPE_ARRAY, CONFIG_TYPE_LIST, or CONFIG_

TYPE_GROUP.

[Function]int config_setting_is_group
(const config_setting_t * setting)

[Function]int config_setting_is_array
(const config_setting_t * setting)

[Function]int config_setting_is_list
(const config_setting_t * setting)

These convenience functions, which are implemented as macros, test if the setting
setting is of a given type. They return CONFIG_TRUE or CONFIG_FALSE.

[Function]int config_setting_is_aggregate
(const config_setting_t * setting)

[Function]int config_setting_is_scalar
(const config_setting_t * setting)

[Function]int config_setting_is_number
(const config_setting_t * setting)

These convenience functions, some of which are implemented as macros, test if the
setting setting is of an aggregate type (a group, array, or list), of a scalar type (integer,
64-bit integer, floating point, boolean, or string), and of a number (integer, 64-bit
integer, or floating point), respectively. They return CONFIG_TRUE or CONFIG_FALSE.

[Function]const char * config_setting_source_file
(const config_setting_t * setting)

This function returns the name of the file from which the setting setting was read, or
NULL if the setting was not read from a file. This information is useful for reporting
application-level errors. Storage for the returned string is managed by the library
and released automatically when the configuration is destroyed; the string must not
be freed by the caller.

[Function]unsigned int config_setting_source_line
(const config_setting_t * setting)

This function returns the line number of the configuration file or stream at which the
setting setting was read, or 0 if no line number is available. This information is useful
for reporting application-level errors.

[Function]void config_set_hook (config_t * config, void * hook)
[Function]void * config_get_hook (const config_t * config)

Since v1.7

These functions make it possible to attach arbitrary data to a configuration structure,
for instance a “wrapper” or “peer” object written in another programming language.

22 libconfig

[Function]void config_setting_set_hook (config_setting_t * setting,
void * hook)

[Function]void * config_setting_get_hook
(const config_setting_t * setting)

These functions make it possible to attach arbitrary data to each setting structure, for
instance a “wrapper” or “peer” object written in another programming language. The
destructor function, if one has been supplied via a call to config_set_destructor(),
will be called by the library to dispose of this data when the setting itself is destroyed.
There is no default destructor.

[Function]void config_set_destructor (config_t * config,
void (* destructor)(void *))

This function assigns the destructor function destructor for the configuration config.
This function accepts a single void * argument and has no return value. See config_
setting_set_hook() above for more information.

23

4 The C++ API

This chapter describes the C++ library API. The class Config represents a configuration,
and the class Setting represents a configuration setting. Note that by design, neither of
these classes provides a public copy constructor or assignment operator. Therefore, instances
of these classes may only be passed between functions via references or pointers.

The library defines a group of exceptions, all of which extend the common base exception
ConfigException.

A SettingTypeException is thrown when the type of a setting’s value does not match
the type requested.

[Method on SettingTypeException]SettingTypeException
(const Setting &setting)

[Method on SettingTypeException]SettingTypeException
(const Setting &setting, int index)

[Method on SettingTypeException]SettingTypeException
(const Setting &setting, const char *name)

These methods construct SettingTypeException objects for the given setting and/or
member index or name.

A SettingRangeException is thrown when an attempt is made to read a 64-bit integer
configuration setting into an integer variable, and the value of that setting is outside the
range of an integer.

[Method on SettingRangeException]SettingRangeException
(const Setting &setting)

[Method on SettingRangeException]SettingRangeException
(const Setting &setting, int index)

[Method on SettingRangeException]SettingRangeException
(const Setting &setting, const char *name)

Since v1.7.4

These methods construct SettingRangeException objects for the given setting
and/or member index or name.

A SettingNotFoundException is thrown when a setting is not found.

[Method on SettingNotFoundException]SettingNotFoundException
(const Setting &setting, int index)

[Method on SettingNotFoundException]SettingNotFoundException
(const Setting &setting, const char *name)

[Method on SettingNotFoundException]SettingNotFoundException
(const char *path)

These methods construct SettingTypeException objects for the given setting and
member index or name, or path path.

A SettingNameException is thrown when an attempt is made to add a new setting with
a non-unique or invalid name.

24 libconfig

[Method on SettingNameException]SettingNameException
(const Setting &setting, const char *name)

This method constructs a SettingNameExcpetion object for the given setting and
member name name.

A ParseException is thrown when a parse error occurs while reading a configuration
from a stream.

[Method on ParseException]ParseException (const char *file, int line,
const char *error)

This method constructs a ParseException object with the given filename file, line
number line, and error message error.

A FileIOException is thrown when an I/O error occurs while reading/writing a con-
figuration from/to a file.

SettingTypeException, SettingNotFoundException, and SettingNameException

all extend the common base exception SettingException, which provides the following
method:

[Method on SettingException]const char * getPath () const
This method returns the path to the setting associated with the exception, or NULL
if there is no applicable path.

The remainder of this chapter describes the methods for manipulating configurations
and configuration settings.

[Method on Config]Config ()
[Method on Config]~Config ()

These methods create and destroy Config objects.

[Method on Config]void clear ()
Since v1.7

This method clears the configuration. All child settings of the root setting are recur-
sively destroyed. All other attributes of the configuration are left unchanged.

[Method on Config]void read (FILE * stream)
[Method on Config]void write (FILE * stream) const

The read() method reads and parses a configuration from the given stream. A
ParseException is thrown if a parse error occurs.

The write() method writes the configuration to the given stream.

[Method on Config]void readFile (const char * filename)
[Method on Config]void readFile (const std::string &filename)

The readFile() method reads and parses a configuration from the file named
filename. A ParseException is thrown if a parse error occurs. A FileIOException

is thrown if the file cannot be read.

[Method on Config]void writeFile (const char * filename)
[Method on Config]void writeFile (const std::string &filename)

The writeFile() method writes the configuration to the file named filename. A
FileIOException is thrown if the file cannot be written.

Chapter 4: The C++ API 25

[Method on Config]void readString (const char * str)
[Method on Config]void readString (const std::string &str)

These methods read and parse a configuration from the string str. A ParseException

is thrown if a parse error occurs.

[Method on ParseException]const char * getError () const
[Method on ParseException]const char * getFile () const
[Method on ParseException]int getLine () const

If a call to readFile(), readString(), or read() resulted in a ParseException,
these methods can be called on the exception object to obtain the text, filename, and
line number of the parse error. Storage for the strings returned by getError() and
getFile() are managed by the library; the strings must not be freed by the caller.

[Method on Config]void setIncludeDir (const char *includeDir)
[Method on Config]const char * getIncludeDir () const

The setIncludeDir() method specifies the include directory, includeDir, relative to
which the files specified in ‘@include’ directives will be located for the configuration.
By default, there is no include directory, and all include files are expected to be
relative to the current working directory. If includeDir is NULL, the default behavior
is reinstated.

For example, if the include directory is set to /usr/local/etc, the
include directive ‘@include "configs/extra.cfg"’ would include the file
/usr/local/etc/configs/extra.cfg.

getIncludeDir() returns the current include directory for the configuration, or NULL
if none is set.

[Method on Config]virtual const char ** evaluateIncludePath
(const char * path, const char ** error)

Since v1.7

This method is called to evaluate the path of an @include directive. The path is the
literal path argument of the directive. The method may be overridden in a subclass
to perform tasks like wildcard expansion and variable substitution.

On success, the method should return a NULL-terminated array of paths. Any relative
paths must be relative to the program’s current working directory. The contents of
these files will be inlined at the point of inclusion, in the order that the paths appear
in the array. Both the array and its elements should be heap allocated; the library
will take ownership of and eventually free the strings in the array and the array itself.

On failure, the function should return NULL and set *error to a static error string
which should be used as the parse error for the configuration; the library does not
take ownership of or free this string.

The default implementation simply returns a NULL-terminated array containing either
a copy of path if it’s an absolute path, or a concatenation of the include directory
and path if it’s a relative path.

For more information see config_set_include_func() in the C API.

26 libconfig

[Method on Config]int getOptions () const
[Method on Config]void setOptions (int options)

These methods get and set the options for the configuration. The options affect how
configurations are read and written. The parameter options should be a bitwise-OR
of the following Config::Option enumeration values:

Config::OptionAutoConvert

Turning this option on enables number auto-conversion for the configu-
ration. When this feature is enabled, an attempt to retrieve a floating
point setting’s value into an integer (or vice versa), or store an integer
to a floating point setting’s value (or vice versa) will cause the library
to silently perform the necessary conversion (possibly leading to loss of
data), rather than reporting failure. By default this option is turned off.

Config::OptionSemicolonSeparators

This option controls whether a semicolon (‘;’) is output after each setting
when the configuration is written to a file or stream. (The semicolon sep-
arators are optional in the configuration syntax.) By default this option
is turned on.

Config::OptionColonAssignmentForGroups

This option controls whether a colon (‘:’) is output between each group
setting’s name and its value when the configuration is written to a file
or stream. If the option is turned off, an equals sign (‘=’) is output
instead. (These tokens are interchangeable in the configuration syntax.)
By default this option is turned on.

Config::OptionColonAssignmentForNonGroups

This option controls whether a colon (‘:’) is output between each non-
group setting’s name and its value when the configuration is written to a
file or stream. If the option is turned off, an equals sign (‘=’) is output
instead. (These tokens are interchangeable in the configuration syntax.)
By default this option is turned off.

Config::OptionOpenBraceOnSeparateLine

This option controls whether an open brace (‘{’) will be written on its
own line when the configuration is written to a file or stream. If the
option is turned off, the brace will be written at the end of the previous
line. By default this option is turned on.

Config::OptionAllowScientificNotation

(Since v1.7) This option controls whether scientific notation may be
used as appropriate when writing floating point values (corresponding
to printf() ‘%g’ format) or should never be used (corresponding to
printf() ‘%f’ format). By default this option is turned off.

Config::OptionFsync

(Since v1.7.1) This option controls whether the writeFile() method
performs an fsync operation after writing the configuration and before
closing the file. By default this option is turned off.

Chapter 4: The C++ API 27

Config::OptionAllowOverrides

(Since v1.7.3) This option controls whether duplicate settings override
previous settings with the same name. If this option is turned off, dupli-
cate settings are rejected. By default this option is turned off.

[Method on Config]bool getOption (Config::Option option) const
[Method on Config]void setOption (Config::Option option, bool flag)

Since v1.7

These methods get and set the option option for the configuration. The option is
enabled if flag is true and disabled if it is false.

See setOptions() above for the list of available options.

[Method on Config]bool getAutoConvert () const
[Method on Config]void setAutoConvert (bool flag)

These methods get and set the OptionAutoConvert option. They are obsoleted by
the setOption() and getOption() methods described above.

[Method on Config]Setting::Format getDefaultFormat () const
[Method on Config]void setDefaultFormat (Setting::Format format)

These methods get and set the default external format for settings in the configuration.
If a non-default format has not been set for a setting with Setting::setFormat(),
this configuration-wide default format will be used instead when that setting is written
to a file or stream.

[Method on Config]unsigned short getTabWidth () const
[Method on Config]void setTabWidth (unsigned short width)

These methods get and set the tab width for the configuration. The tab width affects
the formatting of the configuration when it is written to a file or stream: each level
of nesting is indented by width spaces, or by a single tab character if width is 0. The
tab width has no effect on parsing.

Valid tab widths range from 0 to 15. The default tab width is 2.

[Method on Config]unsigned short getFloatPrecision () const
[Method on Config]void setFloatPrecision (unsigned short width)

These methods get and set the float precision for the configuration. This parameter
influences the formatting of floating point settings in the configuration when it is
written to a file or stream. Float precision has no effect on parsing.

Valid precisions range from 0 to about 15 (implementation dependent), though the
library will accept and store values up to 255.

[Method on Config]Setting & getRoot () const
This method returns the root setting for the configuration, which is a group.

[Method on Config]Setting & lookup (const std::string &path) const
[Method on Config]Setting & lookup (const char * path) const

These methods locate the setting specified by the path path. If the requested setting
is not found, a SettingNotFoundException is thrown.

28 libconfig

[Method on Config]bool exists (const std::string &path) const
[Method on Config]bool exists (const char *path) const

These methods test if a setting with the given path exists in the configuration. They
return true if the setting exists, and false otherwise. These methods do not throw
exceptions.

[Method on Config]bool lookupValue (const char *path, bool &value)
const

[Method on Config]bool lookupValue (const std::string &path,
bool &value) const

[Method on Config]bool lookupValue (const char *path, int &value)
const

[Method on Config]bool lookupValue (const std::string &path,
int &value) const

[Method on Config]bool lookupValue (const char *path,
unsigned int &value) const

[Method on Config]bool lookupValue (const std::string &path,
unsigned int &value) const

[Method on Config]bool lookupValue (const char *path,
long long &value) const

[Method on Config]bool lookupValue (const std::string &path,
long long &value) const

[Method on Config]bool lookupValue (const char *path, float &value)
const

[Method on Config]bool lookupValue (const std::string &path,
float &value) const

[Method on Config]bool lookupValue (const char *path, double &value)
const

[Method on Config]bool lookupValue (const std::string &path,
double &value) const

[Method on Config]bool lookupValue (const char *path,
const char *&value) const

[Method on Config]bool lookupValue (const std::string &path,
const char *&value) const

[Method on Config]bool lookupValue (const char *path,
std::string &value) const

[Method on Config]bool lookupValue (const std::string &path,
std::string &value) const

These are convenience methods for looking up the value of a setting with the given
path. If the setting is found and is of an appropriate type, the value is stored in value
and the method returns true. Otherwise, value is left unmodified and the method
returns false. These methods do not throw exceptions.

Storage for const char * values is managed by the library and released automatically
when the setting is destroyed or when its value is changed; the string must not be
freed by the caller. For safety and convenience, always assigning string values to a
std::string is suggested.

Chapter 4: The C++ API 29

Since these methods have boolean return values and do not throw exceptions, they can
be used within boolean logic expressions. The following example presents a concise
way to look up three values at once and perform error handling if any of them are
not found or are of the wrong type:

� �
int var1;

double var2;

const char *var3;

if(config.lookupValue("values.var1", var1)

&& config.lookupValue("values.var2", var2)

&& config.lookupValue("values.var3", var3))

{

// use var1, var2, var3

}

else

{

// error handling here

}
 	
This approach also takes advantage of the short-circuit evaluation rules of C++, e.g.,
if the first lookup fails (returning false), the remaining lookups are skipped entirely.

[Method on Setting]operator bool () const
[Method on Setting]operator int () const
[Method on Setting]operator unsigned int () const
[Method on Setting]operator long () const
[Method on Setting]operator unsigned long () const
[Method on Setting]operator long long () const
[Method on Setting]operator unsigned long long () const
[Method on Setting]operator float () const
[Method on Setting]operator double () const
[Method on Setting]operator const char * () const
[Method on Setting]operator std::string () const
[Method on Setting]const char * c_str () const

These cast operators allow a Setting object to be assigned to a variable of type bool
if it is of type TypeBoolean; int, unsigned int ; long long or unsigned long long if
it is of type TypeInt64, float or double if it is of type TypeFloat; or const char * or
std::string if it is of type TypeString.

Values of type TypeInt or TypeInt64 may be assigned to variables of type long, or
unsigned long, depending on the sizes of those types on the host system.

Storage for const char * return values is managed by the library and released auto-
matically when the setting is destroyed or when its value is changed; the string must
not be freed by the caller. For safety and convenience, always assigning string return
values to a std::string is suggested.

The following examples demonstrate this usage:

30 libconfig

� �
long width = config.lookup("application.window.size.w");

bool splashScreen = config.lookup("application.splash_screen");

std::string title = config.lookup("application.window.title");
 	
Note that certain conversions can lead to loss of precision or clipping of values, e.g.,
assigning a negative value to an unsigned int (in which case the value will be treated
as 0), or a double-precision value to a float. The library does not treat these lossy
conversions as errors.

Perhaps surprisingly, the following code in particular will cause a compiler error:� �
std::string title;

.

.

.

title = config.lookup("application.window.title");
 	
This is because the assignment operator of std::string is being invoked with a
Setting & as an argument. The compiler is unable to make an implicit conversion
because both the const char * and the std::string cast operators of Setting are
equally appropriate. This is not a bug in libconfig ; providing only the const char *

cast operator would resolve this particular ambiguity, but would cause assignments
to std::string like the one in the previous example to produce a compiler error.
(To understand why, see section 11.4.1 of The C++ Programming Language.)

The solution to this problem is to use an explicit conversion that avoids the construc-
tion of an intermediate std::string object, as follows:� �

std::string title;

.

.

.

title = (const char *)config.lookup("application.window.title");
 	
Or, alternatively, use the c_str() method, which has the same effect:� �

std::string title;

.

.

.

title = config.lookup("application.window.title").c_str();
 	
A SettingRangeException is thrown under the following circumstances:

• The setting’s value is a 64-bit integer, and is being cast to a smaller integer type
such as int or unsigned long, but the value is outside the range of that type.

Chapter 4: The C++ API 31

• The setting’s value is a negative integer, and is being cast to an unsigned integer
type such as unsigned int.

If the assignment is invalid due to a type mismatch, a SettingTypeException is
thrown.

[Method on Setting]Setting & operator= (bool value)
[Method on Setting]Setting & operator= (int value)
[Method on Setting]Setting & operator= (long value)
[Method on Setting]Setting & operator= (const long long &value)
[Method on Setting]Setting & operator= (float value)
[Method on Setting]Setting & operator= (const double &value)
[Method on Setting]Setting & operator= (const char *value)
[Method on Setting]Setting & operator= (const std::string &value)

These assignment operators allow values of type bool, int, long, long long, float, double,
const char *, and std::string to be assigned to a setting. In the case of strings, the
library makes a copy of the passed string value, so it may be subsequently freed or
modified by the caller without affecting the value of the setting.

The following example code looks up a (presumably) integer setting and changes its
value:� �

Setting &setting = config.lookup("application.window.size.w");

setting = 1024;
 	
If the assignment is invalid due to a type mismatch, a SettingTypeException is
thrown.

[Method on Setting]Setting & operator[] (int index) const
[Method on Setting]Setting & operator[] (const std::string &name)

const
[Method on Setting]Setting & operator[] (const char *name) const

A Setting object may be subscripted with an integer index index if it is an array
or list, or with either a string name or an integer index index if it is a group. For
example, the following code would produce the string ‘Last Name’ when applied to
the example configuration in Chapter 2 [Configuration Files], page 5.� �

Setting& setting = config.lookup("application.misc");

const char *s = setting["columns"][0];
 	
If the setting is not an array, list, or group, a SettingTypeException is
thrown. If the subscript (index or name) does not refer to a valid element, a
SettingNotFoundException is thrown.

Iterating over a group’s child settings with an integer index will return the settings
in the same order that they appear in the configuration.

32 libconfig

[Method on Setting]Setting & lookup (const char * path) const
[Method on Setting]Setting & lookup (const std::string &path) const

These methods locate a setting by a path path relative to this setting. If requested
setting is not found, a SettingNotFoundException is thrown.

[Method on Setting]bool lookupValue (const char *name, bool &value)
const

[Method on Setting]bool lookupValue (const std::string &name,
bool &value) const

[Method on Setting]bool lookupValue (const char *name, int &value)
const

[Method on Setting]bool lookupValue (const std::string &name,
int &value) const

[Method on Setting]bool lookupValue (const char *name,
unsigned int &value) const

[Method on Setting]bool lookupValue (const std::string &name,
unsigned int &value) const

[Method on Setting]bool lookupValue (const char *name,
long long &value) const

[Method on Setting]bool lookupValue (const std::string &name,
long long &value) const

[Method on Setting]bool lookupValue (const char *name,
unsigned long long &value) const

[Method on Setting]bool lookupValue (const std::string &name,
unsigned long long &value) const

[Method on Setting]bool lookupValue (const char *name, float &value)
const

[Method on Setting]bool lookupValue (const std::string &name,
float &value) const

[Method on Setting]bool lookupValue (const char *name, double &value)
const

[Method on Setting]bool lookupValue (const std::string &name,
double &value) const

[Method on Setting]bool lookupValue (const char *name,
const char *&value) const

[Method on Setting]bool lookupValue (const std::string &name,
const char *&value) const

[Method on Setting]bool lookupValue (const char *name,
std::string &value) const

[Method on Setting]bool lookupValue (const std::string &name,
std::string &value) const

These are convenience methods for looking up the value of a child setting with the
given name. If the setting is found and is of an appropriate type, the value is stored
in value and the method returns true. Otherwise, value is left unmodified and the
method returns false. These methods do not throw exceptions.

Storage for const char * values is managed by the library and released automatically
when the setting is destroyed or when its value is changed; the string must not be

Chapter 4: The C++ API 33

freed by the caller. For safety and convenience, always assigning string values to a
std::string is suggested.

Since these methods have boolean return values and do not throw exceptions, they can
be used within boolean logic expressions. The following example presents a concise
way to look up three values at once and perform error handling if any of them are
not found or are of the wrong type:

� �
int var1;

double var2;

const char *var3;

if(setting.lookupValue("var1", var1)

&& setting.lookupValue("var2", var2)

&& setting.lookupValue("var3", var3))

{

// use var1, var2, var3

}

else

{

// error handling here

}
 	
This approach also takes advantage of the short-circuit evaluation rules of C++, e.g.,
if the first lookup fails (returning false), the remaining lookups are skipped entirely.

[Method on Setting]Setting & add (const std::string &name,
Setting::Type type)

[Method on Setting]Setting & add (const char *name,
Setting::Type type)

These methods add a new child setting with the given name and type to the
setting, which must be a group. They return a reference to the new setting. If
the setting already has a child setting with the given name, or if the name is
invalid, a SettingNameException is thrown. If the setting is not a group, a
SettingTypeException is thrown.

Once a setting has been created, neither its name nor type can be changed.

[Method on Setting]Setting & add (Setting::Type type)
This method adds a new element to the setting, which must be of type TypeArray or
TypeList. If the setting is an array which currently has zero elements, the type pa-
rameter (which must be TypeInt, TypeInt64, TypeFloat, TypeBool, or TypeString)
determines the type for the array; otherwise it must match the type of the existing
elements in the array.

The method returns the new setting on success. If type is a scalar type, the new
setting will have a default value of 0, 0.0, false, or NULL, as appropriate.

The method throws a SettingTypeException if the setting is not an array or list, or
if type is invalid.

34 libconfig

[Method on Setting]void remove (const std::string &name)
[Method on Setting]void remove (const char *name)

These methods remove the child setting with the given name from the setting, which
must be a group. Any child settings of the removed setting are recursively destroyed
as well.

If the setting is not a group, a SettingTypeException is thrown. If the setting
does not have a child setting with the given name, a SettingNotFoundException is
thrown.

[Method on Setting]void remove (unsigned int index)
This method removes the child setting at the given index index from the setting,
which must be a group, list, or array. Any child settings of the removed setting are
recursively destroyed as well.

If the setting is not a group, list, or array, a SettingTypeException is thrown. If
index is out of range, a SettingNotFoundException is thrown.

[Method on Setting]const char * getName () const
This method returns the name of the setting, or NULL if the setting has no name.
Storage for the returned string is managed by the library and released automatically
when the setting is destroyed; the string must not be freed by the caller. For safety
and convenience, consider assigning the return value to a std::string.

[Method on Setting]std::string getPath () const
This method returns the complete dot-separated path to the setting. Settings which
do not have a name (list and array elements) are represented by their index in square
brackets.

[Method on Setting]Setting & getParent () const
This method returns the parent setting of the setting. If the setting is the root setting,
a SettingNotFoundException is thrown.

[Method on Setting]bool isRoot () const
This method returns true if the setting is the root setting, and false otherwise.

[Method on Setting]int getIndex () const
This method returns the index of the setting within its parent setting. When applied
to the root setting, this method returns -1.

[Method on Setting]Setting::Type getType () const
This method returns the type of the setting. The Setting::Type enumeration
consists of the following constants: TypeInt, TypeInt64, TypeFloat, TypeString,
TypeBoolean, TypeArray, TypeList, and TypeGroup.

[Method on Setting]Setting::Format getFormat () const
[Method on Setting]void setFormat (Setting::Format format)

These methods get and set the external format for the setting.

The Setting::Format enumeration consists of the following constants: FormatDefault,
FormatBin (since version 1.8), FormatOct (since version 1.8.1), and FormatHex. All
settings support the FormatDefault format. The remaining formats specify base-2,

Chapter 4: The C++ API 35

base-8, and base-16 representations, respectively, for integer values; hence these only
apply to settings of type TypeInt and TypeInt64. If format is invalid for the given
setting, it is ignored.

[Method on Setting]bool exists (const std::string &name) const
[Method on Setting]bool exists (const char *name) const

These methods test if the setting has a child setting with the given name. They
return true if the setting exists, and false otherwise. These methods do not throw
exceptions.

[Method on Setting]iterator begin ()
[Method on Setting]iterator end ()
[Method on Setting]const_iterator begin ()
[Method on Setting]const_iterator end ()

These methods return STL-style iterators that can be used to enumerate the child
settings of a given setting. If the setting is not an array, list, or group, they throw a
SettingTypeException.

[Method on Setting]int getLength () const
This method returns the number of settings in a group, or the number of elements in
a list or array. For other types of settings, it returns 0.

[Method on Setting]bool isGroup () const
[Method on Setting]bool isArray () const
[Method on Setting]bool isList () const

These convenience methods test if a setting is of a given type.

[Method on Setting]bool isAggregate () const
[Method on Setting]bool isScalar () const
[Method on Setting]bool isNumber () const
[Method on Setting]bool isString () const

These convenience methods test if a setting is of an aggregate type (a group, array,
or list), of a scalar type (integer, 64-bit integer, floating point, boolean, or string), of
a number (integer, 64-bit integer, or floating point), and of a string respectively.

[Method on Setting]const char * getSourceFile () const
This method returns the name of the file from which the setting was read, or NULL
if the setting was not read from a file. This information is useful for reporting
application-level errors. Storage for the returned string is managed by the library
and released automatically when the configuration is destroyed; the string must not
be freed by the caller.

[Method on Setting]unsigned int getSourceLine () const
This method returns the line number of the configuration file or stream at which the
setting setting was read, or 0 if no line number is available. This information is useful
for reporting application-level errors.

37

5 Example Programs

Practical example programs that illustrate how to use libconfig from both C and C++
are included in the examples subdirectory of the distribution. These examples include:

examples/c/example1.c

An example C program that reads a configuration from an existing file
example.cfg (also located in examples/c) and displays some of its contents.

examples/c++/example1.cpp

The C++ equivalent of example1.c.

examples/c/example2.c

An example C program that reads a configuration from an existing file
example.cfg (also located in examples/c), adds new settings to the
configuration, and writes the updated configuration to another file.

examples/c++/example2.cpp

The C++ equivalent of example2.c

examples/c/example3.c

An example C program that constructs a new configuration in memory and
writes it to a file.

examples/c++/example3.cpp

The C++ equivalent of example3.c

examples/c/example4.c

An example C program that uses a custom include function for processing
wildcard includes. Note that this code will not compile on Windows.

39

6 Other Bindings and Implementations

Various open-source libraries have been written that provide access to libconfig-style
configuration files from other programming languages. Some of these libraries are wrappers
which add new language bindings for libconfig while others are syntax-compatible reimple-
mentations in other languages.

Here is a list of some of these implementations.

6.1 Bourne Shell

�ukasz A. Grabowski’s ls-config provides a means to read and write values in libconfig
configuration files from Bourne shell scripts. The implementation is included in the libcon-
fig git repository at https://github.com/hyperrealm/libconfig, in the contrib/ls-

config subdirectory.

6.2 D

Remi Thebault’s libconfig-d is a port of libconfig to the D programming language. It
may be found at https://code.dlang.org/packages/libconfig-d.

6.3 Haskell

Matthew Peddie’s libconfig provides Haskell bindings to libconfig. It may be found at
https://hackage.haskell.org/package/libconfig.

6.4 Java

Andrey V. Pleskach has a pure-Java implementation of libconfig. It may be found on
github at https://github.com/willyborankin/libconfig.

6.5 Lisp

Oleg Shalaev’s cl-libconfig provides Common Lisp bindings for libconfig. It may be found
on github at https://github.com/chalaev/cl-libconfig.

6.6 Perl

The Conf::Libconfig module provides Perl bindings for libconfig. It may be found on
CPAN at http://search.cpan.org/~cnangel/Conf-Libconfig-0.05/ or on github at
https://github.com/cnangel/Conf-Libconfig.

6.7 Python

Heiner Tholen’s pylibconfig2 is a Python library that is syntax-compatible with libconfig.
It may be found at https://pypi.python.org/pypi/pylibconfig2.

Christian Aichinger’s libconf is another pure-Python implementation with a more per-
missive license. It may be found at https://pypi.python.org/pypi/libconf or on github
at https://github.com/Grk0/python-libconf.

https://github.com/hyperrealm/libconfig
https://code.dlang.org/packages/libconfig-d
https://hackage.haskell.org/package/libconfig
https://github.com/willyborankin/libconfig
https://github.com/chalaev/cl-libconfig
http://search.cpan.org/~cnangel/Conf-Libconfig-0.05/
https://github.com/cnangel/Conf-Libconfig
https://pypi.python.org/pypi/pylibconfig2
https://pypi.python.org/pypi/libconf
https://github.com/Grk0/python-libconf

40 libconfig

The python-libconfig wrapper provides Python bindings to libconfig. It may be found on
github at https://github.com/cnangel/python-libconfig/.

6.8 Ruby

Christopher Mark Gore’s ruby-libconfig is a Ruby library that provides Ruby bindings
for libconfig. It may be found at https://rubygems.org/gems/libconfig or on github at
https://github.com/cgore/ruby-libconfig.

There is also another Ruby wrapper, libconfig-ruby, that is included in the libconfig git
repository at https://github.com/hyperrealm/libconfig, in the contrib/libconfig-

ruby subdirectory.

6.9 Rust

Ivan Semenkov’s librustconfig is a Rust library that provides Rust bindings for libconfig.
It may be found on github at https://github.com/isemenkov/librustconfig.

Crate libconfig is a pure-Rust implementation of a configuration file parser that is com-
patible with the syntax of libconfig configuration files. It may be found at https://docs.
rs/libconfig/latest/libconfig/.

https://github.com/cnangel/python-libconfig/
https://rubygems.org/gems/libconfig
https://github.com/cgore/ruby-libconfig
https://github.com/hyperrealm/libconfig
https://github.com/isemenkov/librustconfig
https://docs.rs/libconfig/latest/libconfig/
https://docs.rs/libconfig/latest/libconfig/

41

Appendix A License

GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999

Copyright c© 1991, 1999 Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts as the successor of
the GNU Library Public License, version 2, hence the version number 2.1.]

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public Licenses are intended to guarantee your
freedom to share and change free software–to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated
software packages–typically libraries–of the Free Software Foundation and other authors
who decide to use it. You can use it too, but we suggest you first think carefully about
whether this license or the ordinary General Public License is the better strategy to use in
any particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our
General Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish); that you receive source code
or can get it if you want it; that you can change the software and use pieces of it in new
free programs; and that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you
these rights or to ask you to surrender these rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must
give the recipients all the rights that we gave you. You must make sure that they, too,
receive or can get the source code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them with the library after
making changes to the library and recompiling it. And you must show them these terms so
they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we
offer you this license, which gives you legal permission to copy, distribute and/or modify
the library.

To protect each distributor, we want to make it very clear that there is no warranty for
the free library. Also, if the library is modified by someone else and passed on, the recipients
should know that what they have is not the original version, so that the original author’s
reputation will not be affected by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program.
We wish to make sure that a company cannot effectively restrict the users of a free program

42 libconfig

by obtaining a restrictive license from a patent holder. Therefore, we insist that any patent
license obtained for a version of the library must be consistent with the full freedom of use
specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General
Public License. This license, the GNU Lesser General Public License, applies to certain
designated libraries, and is quite different from the ordinary General Public License. We
use this license for certain libraries in order to permit linking those libraries into non-free
programs.

When a program is linked with a library, whether statically or using a shared library,
the combination of the two is legally speaking a combined work, a derivative of the original
library. The ordinary General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General Public License permits
more lax criteria for linking other code with the library.

We call this license the “Lesser” General Public License because it does Less to protect
the user’s freedom than the ordinary General Public License. It also provides other free
software developers Less of an advantage over competing non-free programs. These dis-
advantages are the reason we use the ordinary General Public License for many libraries.
However, the Lesser license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest
possible use of a certain library, so that it becomes a de-facto standard. To achieve this,
non-free programs must be allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this case, there is little to
gain by limiting the free library to free software only, so we use the Lesser General Public
License.

In other cases, permission to use a particular library in non-free programs enables a
greater number of people to use a large body of free software. For example, permission to
use the GNU C Library in non-free programs enables many more people to use the whole
GNU operating system, as well as its variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users’ freedom, it
does ensure that the user of a program that is linked with the Library has the freedom and
the wherewithal to run that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay
close attention to the difference between a “work based on the library” and a “work that
uses the library”. The former contains code derived from the library, whereas the latter
must be combined with the library in order to run.

Appendix A: License 43

GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program which contains
a notice placed by the copyright holder or other authorized party saying it may be
distributed under the terms of this Lesser General Public License (also called “this
License”). Each licensee is addressed as “you”.

A “library” means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and
data) to form executables.

The “Library”, below, refers to any such software library or work which has been
distributed under these terms. A “work based on the Library” means either the Library
or any derivative work under copyright law: that is to say, a work containing the
Library or a portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is included without
limitation in the term “modification”.)

“Source code” for a work means the preferred form of the work for making modifications
to it. For a library, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running a program using the Library is
not restricted, and output from such a program is covered only if its contents constitute
a work based on the Library (independent of the use of the Library in a tool for writing
it). Whether that is true depends on what the Library does and what the program
that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code
as you receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice and disclaimer of warranty; keep
intact all the notices that refer to this License and to the absence of any warranty; and
distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. The modified work must itself be a software library.

b. You must cause the files modified to carry prominent notices stating that you
changed the files and the date of any change.

c. You must cause the whole of the work to be licensed at no charge to all third
parties under the terms of this License.

44 libconfig

d. If a facility in the modified Library refers to a function or a table of data to
be supplied by an application program that uses the facility, other than as an
argument passed when the facility is invoked, then you must make a good faith
effort to ensure that, in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of its purpose remains
meaningful.

(For example, a function in a library to compute square roots has a purpose that
is entirely well-defined independent of the application. Therefore, Subsection 2d
requires that any application-supplied function or table used by this function must
be optional: if the application does not supply it, the square root function must
still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of
that work are not derived from the Library, and can be reasonably considered indepen-
dent and separate works in themselves, then this License, and its terms, do not apply
to those sections when you distribute them as separate works. But when you distribute
the same sections as part of a whole which is a work based on the Library, the distri-
bution of the whole must be on the terms of this License, whose permissions for other
licensees extend to the entire whole, and thus to each and every part regardless of who
wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the
Library (or with a work based on the Library) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead
of this License to a given copy of the Library. To do this, you must alter all the notices
that refer to this License, so that they refer to the ordinary GNU General Public
License, version 2, instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify that version
instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works made
from that copy.

This option is useful when you wish to copy part of the code of the Library into a
program that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above provided
that you accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies the

Appendix A: License 45

requirement to distribute the source code, even though third parties are not compelled
to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed
to work with the Library by being compiled or linked with it, is called a “work that
uses the Library”. Such a work, in isolation, is not a derivative work of the Library,
and therefore falls outside the scope of this License.

However, linking a “work that uses the Library” with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather
than a “work that uses the library”. The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

When a “work that uses the Library” uses material from a header file that is part of
the Library, the object code for the work may be a derivative work of the Library even
though the source code is not. Whether this is true is especially significant if the work
can be linked without the Library, or if the work is itself a library. The threshold for
this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and ac-
cessors, and small macros and small inline functions (ten lines or less in length), then
the use of the object file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the Library will still
fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code
for the work under the terms of Section 6. Any executables containing that work also
fall under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a “work that
uses the Library” with the Library to produce a work containing portions of the Li-
brary, and distribute that work under terms of your choice, provided that the terms
permit modification of the work for the customer’s own use and reverse engineering for
debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used
in it and that the Library and its use are covered by this License. You must supply
a copy of this License. If the work during execution displays copyright notices, you
must include the copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one of these things:

a. Accompany the work with the complete corresponding machine-readable source
code for the Library including whatever changes were used in the work (which must
be distributed under Sections 1 and 2 above); and, if the work is an executable
linked with the Library, with the complete machine-readable “work that uses the
Library”, as object code and/or source code, so that the user can modify the
Library and then relink to produce a modified executable containing the modified
Library. (It is understood that the user who changes the contents of definitions
files in the Library will not necessarily be able to recompile the application to use
the modified definitions.)

46 libconfig

b. Use a suitable shared library mechanism for linking with the Library. A suitable
mechanism is one that (1) uses at run time a copy of the library already present
on the user’s computer system, rather than copying library functions into the
executable, and (2) will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is interface-compatible with
the version that the work was made with.

c. Accompany the work with a written offer, valid for at least three years, to give the
same user the materials specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.

d. If distribution of the work is made by offering access to copy from a designated
place, offer equivalent access to copy the above specified materials from the same
place.

e. Verify that the user has already received a copy of these materials or that you have
already sent this user a copy.

For an executable, the required form of the “work that uses the Library” must include
any data and utility programs needed for reproducing the executable from it. However,
as a special exception, the materials to be distributed need not include anything that
is normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other pro-
prietary libraries that do not normally accompany the operating system. Such a con-
tradiction means you cannot use both them and the Library together in an executable
that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in
a single library together with other library facilities not covered by this License, and
distribute such a combined library, provided that the separate distribution of the work
based on the Library and of the other library facilities is otherwise permitted, and
provided that you do these two things:

a. Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities. This must be distributed
under the terms of the Sections above.

b. Give prominent notice with the combined library of the fact that part of it is a work
based on the Library, and explaining where to find the accompanying uncombined
form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except
as expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense, link with, or distribute the Library is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights,

Appendix A: License 47

from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Library or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Library (or any work based on the Library), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient
automatically receives a license from the original licensor to copy, distribute, link with
or modify the Library subject to these terms and conditions. You may not impose any
further restrictions on the recipients’ exercise of the rights granted herein. You are not
responsible for enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Library at all. For
example, if a patent license would not permit royalty-free redistribution of the Library
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Library.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Library under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

48 libconfig

13. The Free Software Foundation may publish revised and/or new versions of the Lesser
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Library does not specify a license version
number, you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribu-
tion conditions are incompatible with these, write to the author to ask for permission.
For software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free soft-
ware and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH
YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix A: License 49

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the
public, we recommend making it free software that everyone can redistribute and change.
You can do so by permitting redistribution under these terms (or, alternatively, under the
terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the “copyright” line and a pointer to where the full notice
is found.

<one line to give the library’s name and a brief idea of what it does.>

Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or

modify it under the terms of the GNU Lesser General Public

License as published by the Free Software Foundation; either

version 2 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the library, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the

library ‘Frob’ (a library for tweaking knobs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990

Ty Coon, President of Vice

That’s all there is to it!

51

Appendix B Configuration File Grammar

Below is the BNF grammar for configuration files. Comments and include directives are
not part of the grammar, so they are not included here.

<configuration> ::=

<setting-list>

| <empty>

<setting-list> ::=

<setting>

| <setting-list> <setting>

<setting> ::=

<name> (":" | "=") <value> (";" | "," | <empty>)

<value> ::=

<scalar-value>

| <array>

| <list>

| <group>

<value-list> ::=

<value>

| <value-list> "," <value>

| <value-list> ","

<scalar-value> ::=

<boolean>

| <integer>

| <integer64>

| <bin>

| <bin64>

| <oct>

| <oct64>

| <hex>

| <hex64>

| <float>

| <string>

<scalar-value-list> ::=

<scalar-value>

| <scalar-value-list> "," <scalar-value>

| <scalar-value-list> ","

<array> ::=

"[" (<scalar-value-list> | <empty>) "]"

52 libconfig

<list> ::=

"(" (<value-list> | <empty>) ")"

<group> ::=

"{" (<setting-list> | <empty>) "}"

<empty> ::=

Terminals are defined below as regular expressions:

<boolean> ([Tt][Rr][Uu][Ee])|([Ff][Aa][Ll][Ss][Ee])

<string> \"([^\"\\]|\\.)*\"

<name> [A-Za-z*][-A-Za-z0-9_*]*

<integer> [-+]?[0-9]+

<integer64> [-+]?[0-9]+L(L)?

<bin> 0[bB]([01]){1,32}

<bin64> 0[bB]([01]){1,64}L(L)?

<oct> 0[oOqQ]([0-7]){1,10}

<oct64> 0[oOqQ]([0-7]){1,21}L(L)?

<hex> 0[xX]([0-9A-Fa-f]){1,8}

<hex64> 0[xX]([0-9A-Fa-f]){1,16}L(L)?

<float> ([-+]?([0-9]*)?\.[0-9]*([eE][-+]?[0-9]+)?)|([-+]([0-

9]+)(\.[0-9]*)?[eE][-+]?[0-9]+)

Adjacent strings are automatically concatenated. Non-printable characters can be rep-
resented within strings using the escape sequence ‘\x’ followed by exactly two hex digits
that represent the ASCII value as an 8-bit integer. The following escape sequences are also
supported within strings, and have the conventional meanings: ‘\"’, ‘\\’, ‘\a’, ‘\b’, ‘\f’,
‘\n’, ‘\r’, ‘\t’, ‘\v’.

53

Function Index

~
~Config on Method on Config 24

A
add on Method on Setting . 33

B
begin on Method on Setting 35

C
c_str on Method on Setting 29
clear on Method on Config . 24
Config on Method on Config 24
config_clear . 11
config_destroy . 11
config_error_file . 12
config_error_line . 12
config_error_text . 12
config_error_type . 12
config_get_auto_convert . 15
config_get_default_format 15
config_get_float_precision 14
config_get_hook . 21
config_get_include_dir . 12
config_get_option . 15
config_get_options . 14
config_get_tab_width . 15
config_init . 11
config_lookup . 16
config_lookup_bool . 16
config_lookup_const . 16
config_lookup_float . 16
config_lookup_int . 16
config_lookup_int64 . 16
config_lookup_string . 16
config_read . 11
config_read_file . 11
config_read_string . 11
config_root_setting . 20
config_set_auto_convert . 15
config_set_default_format 15
config_set_destructor . 22
config_set_fatal_error_func 12
config_set_float_precision 14
config_set_hook . 21
config_set_include_dir . 12
config_set_include_func . 13
config_set_option . 15
config_set_options . 14
config_set_tab_width . 15
config_setting_add . 19

config_setting_get_bool . 17
config_setting_get_bool_elem 19
config_setting_get_bool_safe 17
config_setting_get_elem . 19
config_setting_get_float . 16
config_setting_get_float_elem 19
config_setting_get_float_safe 17
config_setting_get_format 18
config_setting_get_hook . 22
config_setting_get_int . 16
config_setting_get_int_elem 19
config_setting_get_int_safe 17
config_setting_get_int64 . 16
config_setting_get_int64_elem 19
config_setting_get_int64_safe 17
config_setting_get_member 18
config_setting_get_string 17
config_setting_get_string_elem 19
config_setting_get_string_safe 17
config_setting_index . 20
config_setting_is_aggregate 21
config_setting_is_array . 21
config_setting_is_group . 21
config_setting_is_list . 21
config_setting_is_number . 21
config_setting_is_root . 20
config_setting_is_scalar . 21
config_setting_length . 21
config_setting_lookup . 16
config_setting_lookup_bool 18
config_setting_lookup_const 16
config_setting_lookup_float 18
config_setting_lookup_int 18
config_setting_lookup_int64 18
config_setting_lookup_string 18
config_setting_name . 20
config_setting_parent . 20
config_setting_remove . 20
config_setting_remove_elem 20
config_setting_set_bool . 17
config_setting_set_bool_elem 19
config_setting_set_float . 17
config_setting_set_float_elem 19
config_setting_set_format 18
config_setting_set_hook . 22
config_setting_set_int . 17
config_setting_set_int_elem 19
config_setting_set_int64 . 17
config_setting_set_int64_elem 19
config_setting_set_string 17
config_setting_set_string_elem 19
config_setting_source_file 21
config_setting_source_line 21
config_setting_type . 21
config_write . 11

54 libconfig

config_write_file . 11

E
end on Method on Setting . 35
evaluateIncludePath on Method on Config 25
exists on Method on Config 28
exists on Method on Setting 35

F
func . 12, 13

G
getAutoConvert on Method on Config 27
getDefaultFormat on Method on Config 27
getError on Method on ParseException 25
getFile on Method on ParseException 25
getFloatPrecision on Method on Config 27
getFormat on Method on Setting 34
getIncludeDir on Method on Config 25
getIndex on Method on Setting 34
getLength on Method on Setting 35
getLine on Method on ParseException 25
getName on Method on Setting 34
getOption on Method on Config 27
getOptions on Method on Config 26
getParent on Method on Setting 34
getPath on Method on Setting 34
getPath on Method on SettingException 24
getRoot on Method on Config 27
getSourceFile on Method on Setting 35
getSourceLine on Method on Setting 35
getTabWidth on Method on Config 27
getType on Method on Setting 34

I
isAggregate on Method on Setting 35
isArray on Method on Setting 35
isGroup on Method on Setting 35
isList on Method on Setting 35
isNumber on Method on Setting 35
isRoot on Method on Setting 34
isScalar on Method on Setting 35
isString on Method on Setting 35

L
LIBCONFIG_VER_MAJOR . 3
LIBCONFIG_VER_MINOR . 3
LIBCONFIG_VER_REVISION . 3
LIBCONFIGXX_VER_MAJOR . 3
LIBCONFIGXX_VER_MINOR . 3
LIBCONFIGXX_VER_REVISION . 3
lookup on Method on Config 27
lookup on Method on Setting 32
lookupValue on Method on Config 28
lookupValue on Method on Setting 32

O
operator bool () on Method on Setting 29
operator const char * () on Method on

Setting . 29
operator double () on Method on Setting 29
operator float () on Method on Setting 29
operator int () on Method on Setting 29
operator long () on Method on Setting 29
operator long long () on Method on Setting . 29
operator std::string () on Method on

Setting . 29
operator unsigned int () on Method on

Setting . 29
operator unsigned long () on Method on

Setting . 29
operator unsigned long long () on Method on

Setting . 29
operator= on Method on Setting 31
operator[] on Method on Setting 31

P
ParseException on Method on ParseException . 24

R
read on Method on Config . 24
readFile on Method on Config 24
readString on Method on Config 25
remove on Method on Setting 34

S
setAutoConvert on Method on Config 27
setDefaultFormat on Method on Config 27
setFloatPrecision on Method on Config 27
setFormat on Method on Setting 34
setIncludeDir on Method on Config 25
setOption on Method on Config 27
setOptions on Method on Config 26
setTabWidth on Method on Config 27
SettingNameException on Method on

SettingNameException . 24

Function Index 55

SettingNotFoundException on Method on

SettingNotFoundException 23
SettingRangeException on Method on

SettingRangeException . 23
SettingTypeException on Method on

SettingTypeException . 23

W
write on Method on Config . 24
writeFile on Method on Config 24

57

Type Index

C
Config . 23
Config::Option . 26
config_error_t . 12
config_fatal_error_fn_t . 12
config_include_fn_t . 13
config_setting_t . 11
config_t . 11
ConfigException . 23

F
FileIOException . 24

P
ParseException . 24

S
Setting . 23
Setting::Format . 34
Setting::Type . 34
SettingException . 24
SettingNameException . 23
SettingNotFoundException . 23
SettingRangeException . 23
SettingTypeException . 23

59

Concept Index

A
aggregate value . 21
array . 5

B
binary integer . 7
boolean value . 8

C
comment . 8
configuration . 5

D
decimal integer . 7
destructor function . 22

E
escape sequence . 8

F
fatal error . 12
floating point value . 8
format . 18

G
group . 5

H
hexadecimal integer . 7
hook . 21, 22

I
include directive . 9
include function . 9

L
list . 5
locale . 2

O
octal integer . 7

P
path . 5
pkg-config . 3

S
scalar value . 5
setting . 5
string . 8

U
Unicode . 2
UTF-8 . 2

V
value . 5

	1 Introduction
	Why Another Configuration File Library?
	Using the Library from a C Program
	Using the Library from a C++ Program
	Multithreading Issues
	Internationalization Issues
	Compiling Using pkg-config
	Version Test Macros

	2 Configuration Files
	Settings
	Groups
	Arrays
	Lists
	Integer Values
	64-bit Integer Values
	Floating Point Values
	Boolean Values
	String Values
	Comments
	Include Directives

	3 The C API
	4 The C++ API
	5 Example Programs
	6 Other Bindings and Implementations
	Bourne Shell
	D
	Haskell
	Java
	Lisp
	Perl
	Python
	Ruby
	Rust

	A License
	B Configuration File Grammar
	Function Index
	Type Index
	Concept Index

