Text-to-Speech
English
hexgrad commited on
Commit
a04ef58
·
verified ·
1 Parent(s): 02656fe

Delete kokoro.py

Browse files
Files changed (1) hide show
  1. kokoro.py +0 -165
kokoro.py DELETED
@@ -1,165 +0,0 @@
1
- import phonemizer
2
- import re
3
- import torch
4
- import numpy as np
5
-
6
- def split_num(num):
7
- num = num.group()
8
- if '.' in num:
9
- return num
10
- elif ':' in num:
11
- h, m = [int(n) for n in num.split(':')]
12
- if m == 0:
13
- return f"{h} o'clock"
14
- elif m < 10:
15
- return f'{h} oh {m}'
16
- return f'{h} {m}'
17
- year = int(num[:4])
18
- if year < 1100 or year % 1000 < 10:
19
- return num
20
- left, right = num[:2], int(num[2:4])
21
- s = 's' if num.endswith('s') else ''
22
- if 100 <= year % 1000 <= 999:
23
- if right == 0:
24
- return f'{left} hundred{s}'
25
- elif right < 10:
26
- return f'{left} oh {right}{s}'
27
- return f'{left} {right}{s}'
28
-
29
- def flip_money(m):
30
- m = m.group()
31
- bill = 'dollar' if m[0] == '$' else 'pound'
32
- if m[-1].isalpha():
33
- return f'{m[1:]} {bill}s'
34
- elif '.' not in m:
35
- s = '' if m[1:] == '1' else 's'
36
- return f'{m[1:]} {bill}{s}'
37
- b, c = m[1:].split('.')
38
- s = '' if b == '1' else 's'
39
- c = int(c.ljust(2, '0'))
40
- coins = f"cent{'' if c == 1 else 's'}" if m[0] == '$' else ('penny' if c == 1 else 'pence')
41
- return f'{b} {bill}{s} and {c} {coins}'
42
-
43
- def point_num(num):
44
- a, b = num.group().split('.')
45
- return ' point '.join([a, ' '.join(b)])
46
-
47
- def normalize_text(text):
48
- text = text.replace(chr(8216), "'").replace(chr(8217), "'")
49
- text = text.replace('«', chr(8220)).replace('»', chr(8221))
50
- text = text.replace(chr(8220), '"').replace(chr(8221), '"')
51
- text = text.replace('(', '«').replace(')', '»')
52
- for a, b in zip('、。!,:;?', ',.!,:;?'):
53
- text = text.replace(a, b+' ')
54
- text = re.sub(r'[^\S \n]', ' ', text)
55
- text = re.sub(r' +', ' ', text)
56
- text = re.sub(r'(?<=\n) +(?=\n)', '', text)
57
- text = re.sub(r'\bD[Rr]\.(?= [A-Z])', 'Doctor', text)
58
- text = re.sub(r'\b(?:Mr\.|MR\.(?= [A-Z]))', 'Mister', text)
59
- text = re.sub(r'\b(?:Ms\.|MS\.(?= [A-Z]))', 'Miss', text)
60
- text = re.sub(r'\b(?:Mrs\.|MRS\.(?= [A-Z]))', 'Mrs', text)
61
- text = re.sub(r'\betc\.(?! [A-Z])', 'etc', text)
62
- text = re.sub(r'(?i)\b(y)eah?\b', r"\1e'a", text)
63
- text = re.sub(r'\d*\.\d+|\b\d{4}s?\b|(?<!:)\b(?:[1-9]|1[0-2]):[0-5]\d\b(?!:)', split_num, text)
64
- text = re.sub(r'(?<=\d),(?=\d)', '', text)
65
- text = re.sub(r'(?i)[$£]\d+(?:\.\d+)?(?: hundred| thousand| (?:[bm]|tr)illion)*\b|[$£]\d+\.\d\d?\b', flip_money, text)
66
- text = re.sub(r'\d*\.\d+', point_num, text)
67
- text = re.sub(r'(?<=\d)-(?=\d)', ' to ', text)
68
- text = re.sub(r'(?<=\d)S', ' S', text)
69
- text = re.sub(r"(?<=[BCDFGHJ-NP-TV-Z])'?s\b", "'S", text)
70
- text = re.sub(r"(?<=X')S\b", 's', text)
71
- text = re.sub(r'(?:[A-Za-z]\.){2,} [a-z]', lambda m: m.group().replace('.', '-'), text)
72
- text = re.sub(r'(?i)(?<=[A-Z])\.(?=[A-Z])', '-', text)
73
- return text.strip()
74
-
75
- def get_vocab():
76
- _pad = "$"
77
- _punctuation = ';:,.!?¡¿—…"«»“” '
78
- _letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
79
- _letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
80
- symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
81
- dicts = {}
82
- for i in range(len((symbols))):
83
- dicts[symbols[i]] = i
84
- return dicts
85
-
86
- VOCAB = get_vocab()
87
- def tokenize(ps):
88
- return [i for i in map(VOCAB.get, ps) if i is not None]
89
-
90
- phonemizers = dict(
91
- a=phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True),
92
- b=phonemizer.backend.EspeakBackend(language='en-gb', preserve_punctuation=True, with_stress=True),
93
- )
94
- def phonemize(text, lang, norm=True):
95
- if norm:
96
- text = normalize_text(text)
97
- ps = phonemizers[lang].phonemize([text])
98
- ps = ps[0] if ps else ''
99
- # https://en.wiktionary.org/wiki/kokoro#English
100
- ps = ps.replace('kəkˈoːɹoʊ', 'kˈoʊkəɹoʊ').replace('kəkˈɔːɹəʊ', 'kˈəʊkəɹəʊ')
101
- ps = ps.replace('ʲ', 'j').replace('r', 'ɹ').replace('x', 'k').replace('ɬ', 'l')
102
- ps = re.sub(r'(?<=[a-zɹː])(?=hˈʌndɹɪd)', ' ', ps)
103
- ps = re.sub(r' z(?=[;:,.!?¡¿—…"«»“” ]|$)', 'z', ps)
104
- if lang == 'a':
105
- ps = re.sub(r'(?<=nˈaɪn)ti(?!ː)', 'di', ps)
106
- ps = ''.join(filter(lambda p: p in VOCAB, ps))
107
- return ps.strip()
108
-
109
- def length_to_mask(lengths):
110
- mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
111
- mask = torch.gt(mask+1, lengths.unsqueeze(1))
112
- return mask
113
-
114
- @torch.no_grad()
115
- def forward(model, tokens, ref_s, speed):
116
- device = ref_s.device
117
- tokens = torch.LongTensor([[0, *tokens, 0]]).to(device)
118
- input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
119
- text_mask = length_to_mask(input_lengths).to(device)
120
- bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
121
- d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
122
- s = ref_s[:, 128:]
123
- d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)
124
- x, _ = model.predictor.lstm(d)
125
- duration = model.predictor.duration_proj(x)
126
- duration = torch.sigmoid(duration).sum(axis=-1) / speed
127
- pred_dur = torch.round(duration).clamp(min=1).long()
128
- pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item())
129
- c_frame = 0
130
- for i in range(pred_aln_trg.size(0)):
131
- pred_aln_trg[i, c_frame:c_frame + pred_dur[0,i].item()] = 1
132
- c_frame += pred_dur[0,i].item()
133
- en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)
134
- F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
135
- t_en = model.text_encoder(tokens, input_lengths, text_mask)
136
- asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
137
- return model.decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy()
138
-
139
- def generate(model, text, voicepack, lang='a', speed=1, ps=None):
140
- ps = ps or phonemize(text, lang)
141
- tokens = tokenize(ps)
142
- if not tokens:
143
- return None
144
- elif len(tokens) > 510:
145
- tokens = tokens[:510]
146
- print('Truncated to 510 tokens')
147
- ref_s = voicepack[len(tokens)]
148
- out = forward(model, tokens, ref_s, speed)
149
- ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens)
150
- return out, ps
151
-
152
- def generate_full(model, text, voicepack, lang='a', speed=1, ps=None):
153
- ps = ps or phonemize(text, lang)
154
- tokens = tokenize(ps)
155
- if not tokens:
156
- return None
157
- outs = []
158
- loop_count = len(tokens)//510 + (1 if len(tokens) % 510 != 0 else 0)
159
- for i in range(loop_count):
160
- ref_s = voicepack[len(tokens[i*510:(i+1)*510])]
161
- out = forward(model, tokens[i*510:(i+1)*510], ref_s, speed)
162
- outs.append(out)
163
- outs = np.concatenate(outs)
164
- ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens)
165
- return outs, ps