Upload VOICES.md
Browse files
VOICES.md
CHANGED
|
@@ -1,12 +1,12 @@
|
|
| 1 |
# Voices
|
| 2 |
|
| 3 |
-
๐บ๐ธ [American English](#american-english): 10F 9M
|
| 4 |
-
๐ฌ๐ง [British English](#british-english): 4F 4M
|
| 5 |
-
๐ซ๐ท [French](#french): 1F
|
| 6 |
-
๐ฎ๐ณ [Hindi](#hindi): 2F 2M
|
| 7 |
-
๐ฎ๐น [Italian](#italian): 1F 1M
|
| 8 |
-
๐ฏ๐ต [Japanese](#japanese): 4F 1M
|
| 9 |
-
๐จ๐ณ [Mandarin Chinese](#mandarin-chinese): 4F 4M
|
| 10 |
|
| 11 |
For each voice, the given grades are intended to be estimates of the **quality and quantity** of its associated training data, both of which impact overall inference quality.
|
| 12 |
|
|
@@ -31,8 +31,8 @@ Most voices perform best on a "goldilocks range" of 100-200 tokens out of ~500 p
|
|
| 31 |
|
| 32 |
### American English
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
| 36 |
|
| 37 |
| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 |
|
| 38 |
| ---- | ------ | -------------- | ----------------- | ------------- | ------ |
|
|
@@ -58,8 +58,8 @@ Most voices perform best on a "goldilocks range" of 100-200 tokens out of ~500 p
|
|
| 58 |
|
| 59 |
### British English
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
|
| 64 |
| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 |
|
| 65 |
| ---- | ------ | -------------- | ----------------- | ------------- | ------ |
|
|
@@ -74,9 +74,9 @@ Most voices perform best on a "goldilocks range" of 100-200 tokens out of ~500 p
|
|
| 74 |
|
| 75 |
### French
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
|
| 81 |
| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 | CC BY |
|
| 82 |
| ---- | ------ | -------------- | ----------------- | ------------- | ------ | ----- |
|
|
@@ -84,9 +84,9 @@ Most voices perform best on a "goldilocks range" of 100-200 tokens out of ~500 p
|
|
| 84 |
|
| 85 |
### Hindi
|
| 86 |
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
|
| 91 |
| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 |
|
| 92 |
| ---- | ------ | -------------- | ----------------- | ------------- | ------ |
|
|
@@ -97,9 +97,9 @@ Most voices perform best on a "goldilocks range" of 100-200 tokens out of ~500 p
|
|
| 97 |
|
| 98 |
### Italian
|
| 99 |
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
|
| 104 |
| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 |
|
| 105 |
| ---- | ------ | -------------- | ----------------- | ------------- | ------ |
|
|
@@ -108,8 +108,8 @@ Most voices perform best on a "goldilocks range" of 100-200 tokens out of ~500 p
|
|
| 108 |
|
| 109 |
### Japanese
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
|
| 114 |
| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 | CC BY |
|
| 115 |
| ---- | ------ | -------------- | ----------------- | ------------- | ------ | ----- |
|
|
@@ -121,8 +121,8 @@ Most voices perform best on a "goldilocks range" of 100-200 tokens out of ~500 p
|
|
| 121 |
|
| 122 |
### Mandarin Chinese
|
| 123 |
|
| 124 |
-
|
| 125 |
-
|
| 126 |
|
| 127 |
| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 |
|
| 128 |
| ---- | ------ | -------------- | ----------------- | ------------- | ------ |
|
|
|
|
| 1 |
# Voices
|
| 2 |
|
| 3 |
+
- ๐บ๐ธ [American English](#american-english): 10F 9M
|
| 4 |
+
- ๐ฌ๐ง [British English](#british-english): 4F 4M
|
| 5 |
+
- ๐ซ๐ท [French](#french): 1F
|
| 6 |
+
- ๐ฎ๐ณ [Hindi](#hindi): 2F 2M
|
| 7 |
+
- ๐ฎ๐น [Italian](#italian): 1F 1M
|
| 8 |
+
- ๐ฏ๐ต [Japanese](#japanese): 4F 1M
|
| 9 |
+
- ๐จ๐ณ [Mandarin Chinese](#mandarin-chinese): 4F 4M
|
| 10 |
|
| 11 |
For each voice, the given grades are intended to be estimates of the **quality and quantity** of its associated training data, both of which impact overall inference quality.
|
| 12 |
|
|
|
|
| 31 |
|
| 32 |
### American English
|
| 33 |
|
| 34 |
+
- `lang_code='a'` in [`misaki[en]`](https://github.com/hexgrad/misaki)
|
| 35 |
+
- espeak-ng `en-us` fallback
|
| 36 |
|
| 37 |
| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 |
|
| 38 |
| ---- | ------ | -------------- | ----------------- | ------------- | ------ |
|
|
|
|
| 58 |
|
| 59 |
### British English
|
| 60 |
|
| 61 |
+
- `lang_code='b'` in [`misaki[en]`](https://github.com/hexgrad/misaki)
|
| 62 |
+
- espeak-ng `en-gb` fallback
|
| 63 |
|
| 64 |
| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 |
|
| 65 |
| ---- | ------ | -------------- | ----------------- | ------------- | ------ |
|
|
|
|
| 74 |
|
| 75 |
### French
|
| 76 |
|
| 77 |
+
- `lang_code='f'` in [`misaki[en]`](https://github.com/hexgrad/misaki)
|
| 78 |
+
- espeak-ng `fr-fr`
|
| 79 |
+
- Total French training data: <11 hours
|
| 80 |
|
| 81 |
| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 | CC BY |
|
| 82 |
| ---- | ------ | -------------- | ----------------- | ------------- | ------ | ----- |
|
|
|
|
| 84 |
|
| 85 |
### Hindi
|
| 86 |
|
| 87 |
+
- `lang_code='h'` in [`misaki[en]`](https://github.com/hexgrad/misaki)
|
| 88 |
+
- espeak-ng `hi`
|
| 89 |
+
- Total Hindi training data: H hours
|
| 90 |
|
| 91 |
| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 |
|
| 92 |
| ---- | ------ | -------------- | ----------------- | ------------- | ------ |
|
|
|
|
| 97 |
|
| 98 |
### Italian
|
| 99 |
|
| 100 |
+
- `lang_code='i'` in [`misaki[en]`](https://github.com/hexgrad/misaki)
|
| 101 |
+
- espeak-ng `it`
|
| 102 |
+
- Total Italian training data: H hours
|
| 103 |
|
| 104 |
| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 |
|
| 105 |
| ---- | ------ | -------------- | ----------------- | ------------- | ------ |
|
|
|
|
| 108 |
|
| 109 |
### Japanese
|
| 110 |
|
| 111 |
+
- `lang_code='j'` in [`misaki[ja]`](https://github.com/hexgrad/misaki)
|
| 112 |
+
- Total Japanese training data: H hours
|
| 113 |
|
| 114 |
| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 | CC BY |
|
| 115 |
| ---- | ------ | -------------- | ----------------- | ------------- | ------ | ----- |
|
|
|
|
| 121 |
|
| 122 |
### Mandarin Chinese
|
| 123 |
|
| 124 |
+
- `lang_code='z'` in [`misaki[zh]`](https://github.com/hexgrad/misaki)
|
| 125 |
+
- Total Mandarin Chinese training data: H hours
|
| 126 |
|
| 127 |
| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 |
|
| 128 |
| ---- | ------ | -------------- | ----------------- | ------------- | ------ |
|