
Dartagnan: Bounded Model Checking for
Weak Memory Models

(Competition Contribution)

Hernán Ponce-de-León?1, Florian Furbach2,
Keijo Heljanko3, and Roland Meyer2

1University of the Bundeswehr Munich, 2TU Braunschweig,
3University of Helsinki and HIIT

Abstract. Dartagnan is a bounded model checker for concurrent pro-
grams under weak memory models. What makes it different from other
tools is that the memory model is not hard-coded inside Dartagnan
but taken as part of the input. For SV-COMP’20, we take as input
sequential consistency (i.e. the standard interleaving memory model) ex-
tended by support for atomic blocks. Our point is to demonstrate that
a universal tool can be competitive and perform well in SV-COMP.
Being a bounded model checker, Dartagnan’s focus is on disproving
safety properties by finding counterexample executions. For programs
with bounded loops, Dartagnan performs an iterative unwinding that
results in a complete analysis. The SV-COMP’20 version of Dartag-
nan works on Boogie code. The C programs of the competition are
translated internally to Boogie using SMACK.

1 Overview and Software Architecture

Dartagnan is a bounded model checker for concurrent programs under weak
memory models. It expects as input a program P annotated with a reachability
condition S, a memory modelM, and an unrolling bound k. It recursively un-
winds all loops in P up to the bound k. The unwound program is converted into
an SMT formula that symbolically represents all candidate executions. The mem-
ory model will filter out some candidates using a second formula, we explain this
below. Events of a candidate execution model (instances of) program instruc-
tions, like memory accesses, local computations, and conditional/unconditional
jumps. Edges model relations between events, including program order (the or-
der within a thread), data-dependencies (an assigned variable is used within an
expression), reads-from (matching each read with the write from which it takes
its value), and coherence (the order in which writes commit to the memory).

A memory model can be understood as a predicate over candidate execu-
tions that declares some of them valid. We describe memory models in the CAT
language [2]. A memory model is defined as a set of relations (those mentioned
above and others derived as unions, transitive/reflexive closures, compositions,
? Jury member.



2 Hernán Ponce-de-León, Florian Furbach, Keijo Heljanko, and Roland Meyer

com = co ∪ fr ∪ rf come = com ∩ ext
acyclic po ∪ com empty rmw ∩ (come ; (po ∪ com)∗ ; come)

SC+atomicity

Fig. 1. CAT model used for SV-COMP’20.

etc.) and constraints over them (emptiness, acyclicity and irreflexivity). Given
a memory model, we construct a formula that evaluates to true precisely un-
der the candidate executions that are valid according to the memory model.
Figure 1 shows the memory model used for SV-COMP’20. To support atomic
blocks, Dartagnan adds a specific edge (rmw) for every pair of events be-
tween VERIFIER_atomic_begin() and its matching VERIFIER_atomic_end()
or in a VERIFIER_atomic_ function. We encode atomicity for sequential consis-
tency (SC) as the empty intersection of rwm and paths starting and ending with
an external communication (i.e. between different threads). This means once an
atomic block starts, external communications with the block are forbidden until
all events in the block have been executed.

Dartagnan comes with a rich assertion language inspired by Herd [1].
Assertions define inequalities over the values of local and global variables. They
can be used freely throughout the code, rather than being limited to the end
of the execution. Semantically, our assertions do not stop the execution but
record the failure and continue. To achieve this, each instructions assert(exp)
is transformed to a local computation f ← exp where the fresh variable f ∈ F
stores the value of exp at the corresponding point of the execution. We refer to
the formula

∨
f∈F ¬f as the reachability condition.

The formula for candidate executions of the program, the formula for valid-
ity under the given memory model, and the reachability condition together (in
conjunction) yield the SMT encoding of the reachability problem at hand. Any
solution to the conjunction corresponds to an execution that is valid according
to the memory model and violates at least one assertion. Details on the encoding
can be found in [8,9].

Dartagnan implements a may-alias analysis to improve pointer precision
and a novel relation analysis. The latter technique reduces the SMT encoding to
those parts of the relations that might affect the consistency with the memory
model, resulting in a considerably smaller formula. Relation analysis improves
the performance up to two orders of magnitude [4,5]. We remark that related
approaches represent each candidate execution explicitly [1,6]. Thanks to the
symbolic representation of executions and static analysis techniques such as re-
lation analysis, Dartagnan is often more efficient [4,5].

Figure 2 shows the overall architecture of Dartagnan. It reads programs
written in the litmus format of Herd [1] or the intermediate verification language
Boogie [7]. For the competition, C programs are compiled to LLVM and then
translated internally to Boogie using the SMACK tool [10]. The SMT solver
is Z3 [3]. When a violation is found, Dartagnan returns a witness execution.



Title Suppressed Due to Excessive Length 3

Fig. 2. Dartagnan’s architecture.

2 Strengths and Weaknesses

The main strength of Dartagnan is its fully configurable memory model. Un-
fortunately, in SV-COMP’20 there is no category for verification tasks under
weak memory models. On the SV-COMP’20 benchmarks, Dartagnan reports
only one incorrect result, being beaten in that aspect only by CPAchecker,
DIVINE, Lazy-CSeq and Yogar-CBMC; three of them category winners.
The incorrect result is related to the use of pointer arithmetic which is currently
not supported by our alias analysis.

Its main strength is also its main weakness: Dartagnan’s performance can-
not quite match that of other verifiers that were developed specifically for se-
quential consistency. Dartagnan performs particularly poor on benchmarks
with big atomics blocks. This is the case for most of the verification tasks in
the pthread-wmm group which represent 83% of the ConcurrencySafety cate-
gory. The problem is that Dartagnan adds rmw edges for all pairs in an atomic
block. This results in a large encoding (even using relation analysis) and highly
impacts its performance.

3 Tool Setup and Configuration

Besides the program to be verified, Dartagnan expects a CAT file containing
the memory model of interest. For SV-COMP’20, this is the extension of se-
quential consistency given in Figure 1. The tool is run by executing the following
command:
$ java -jar dartagnan/target/dartagnan-V-jar-with-dependencies.jar

-cat <CAT file> -i <program file> [options]

Placeholder V is the tool version (currently 2.0.5) and options is used to config-
ure the unrolling bound, the alias analysis, and the fixpoint encoding. The full
list of options can be found on the project website (see Section 4).



4 Hernán Ponce-de-León, Florian Furbach, Keijo Heljanko, and Roland Meyer

To make sure not to miss a violation, the competition version of Dartag-
nan implements an iterative approach. Initially, the bounded model checking
algorithm is called with an unrolling bound of one. If it finds a violation or can
prove that all loops have been unrolled completely (this is done using unwinding
assertions), the verification process terminates with a conclusive answer. If not,
Dartagnan increases the bound by one and repeats the process. For program
with an infinite state space, our tool does not terminate.

Dartagnan participates in the ConcurrencySafety category. No specification
file is required. To reproduce the results of the competition, the tool can be
executed with the following wrapper script:
$ Dartagnan-SVCOMP.sh <program file>

4 Software Project and Contributors

The project home page is https://github.com/hernanponcedeleon/Dat3M.
Dartagnan is open source software distributed under the MIT license.

Acknowledgement: We thank Dirk Beyer and Philipp Wendler for their help
during the process of integrating Dartagnan into the competition framework.
We also thank Natalia Gavrilenko for her contributions to the development of
the bounded model checking engine of the tool [4,5].

References

1. The herdtools7 tool suite. https://github.com/herd/herdtools7.
2. Jade Alglave, Patrick Cousot, and Luc Maranget. Syntax and semantics of the weak

consistency model specification language CAT. CoRR, abs/1608.07531, 2016.
3. Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In TACAS,

volume 4963 of LNCS, pages 337–340. Springer, 2008.
4. Natalia Gavrilenko. Improving scalability of bounded model checking for weak

memory models. Master’s thesis, Aalto University, Department of Computer Sci-
ence, 2019.

5. Natalia Gavrilenko, Hernán Ponce de León, Florian Furbach, Keijo Heljanko, and
Roland Meyer. BMC for weak memory models: Relation analysis for compact SMT
encodings. In CAV, volume 11561 of LNCS, pages 355–365. Springer, 2019.

6. Stella Lau, Victor B. F. Gomes, Kayvan Memarian, Jean Pichon-Pharabod, and
Peter Sewell. Cerberus-BMC: A principled reference semantics and exploration tool
for concurrent and sequential C. In CAV, volume 11561 of LNCS, pages 387–397.
Springer, 2019.

7. K. Rustan M. Leino. This is Boogie 2. 2008.
8. Hernán Ponce de León, Florian Furbach, Keijo Heljanko, and Roland Meyer. Porta-

bility analysis for weak memory models. PORTHOS: One tool for all models. In
SAS, volume 10422 of LNCS, pages 299–320. Springer, 2017.

9. Hernán Ponce de León, Florian Furbach, Keijo Heljanko, and Roland Meyer. BMC
with memory models as modules. In FMCAD, pages 1–9. IEEE, 2018.

10. Zvonimir Rakamaric and Michael Emmi. SMACK: Decoupling source language
details from verifier implementations. In CAV, volume 8559 of LNCS, pages 106–
113. Springer, 2014.

https://github.com/hernanponcedeleon/Dat3M
https://github.com/herd/herdtools7

	Dartagnan: Bounded Model Checking for Weak Memory Models (Competition Contribution)

