
Portability Analysis for Weak Memory Models
porthos: One Tool for all Models

Hernán Ponce-de-León1?, Florian Furbach2, Keijo Heljanko3, and Roland Meyer4?

1fortiss GmbH, Germany 2TU Kaiserslautern, Germany 3Aalto University and
HIIT, Finland 4TU Braunschweig, Germany

ponce@fortiss.org, furbach@cs.uni-kl.de, keijo.heljanko@aalto.fi,
roland.meyer@tu-braunschweig.de

Abstract. We present porthos, the first tool that discovers porting
bugs in performance-critical code. porthos takes as input a program
and the memory models of the source architecture for which the program
has been developed and the target model to which it is ported. If the
code is not portable, porthos finds a bug in the form of an unexpected
execution — an execution that is consistent with the target but inconsis-
tent with the source memory model. Technically, porthos implements
a bounded model checking method that reduces the portability analysis
problem to satisfiability modulo theories (SMT). There are two main
problems in the reduction that we present novel and efficient solutions
for. First, the formulation of the portability problem contains a quanti-
fier alternation (consistent + inconsistent). We introduce a formula that
encodes both in a single existential query. Second, the supported mem-
ory models (e.g., Power) contain recursive definitions. We compute the
required least fixed point semantics for recursion (a problem that was left
open in [48]) efficiently in SMT. Finally we present the first experimental
analysis of portability from TSO to Power.

1 Introduction

Porting code from one architecture to another is a routine task in system devel-
opment. Given that no functionality has to be added, porting is rarely consid-
ered interesting from a programming point of view. At the same time, porting
is non-trivial as the hardware influences both the semantics and the compila-
tion of the code in subtle ways. The unfortunate combination of being routine
and yet subtle makes porting prone to mistakes. This is particularly true for
performance-critical code that interacts closely with the execution environment.
Such code often has data races and thus exposes the programmer to the details
of the underlying hardware. When the architecture is changed, the code may
have to be adapted to the primitives of the target hardware.

We tackle the problem of porting performance-critical code among hardware
architectures. Our contribution is the new (and to the best of our knowledge
first) tool porthos to fight porting bugs. The tool takes as input a piece of

? This work was carried out when the author was at Aalto University.



code, a model of the source architecture for which the code has been devel-
oped, and a model of the target architecture to which the code is to be ported.
porthos automatically checks whether every behaviour of the code on the tar-
get architecture is also allowed on the source platform. This guarantees that
correctness of the program in terms of safety properties (in particular properties
like mutual exclusion) carries over to the targeted hardware, and the program
remains correct after porting.

Portability requires an analysis method that is hardware-architecture-aware
in the sense that a description of the memory models of source and target plat-
forms has to be part of the input. A language for memory models, called CAT [4],
has been developed only recently. In CAT, memory models are defined in terms
of relations between memory operations of a program. There are some base re-
lations (program order, reads from, coherence) that are common to all memory
models. A memory model may define further so-called derived relations by re-
stricting and composing base relations. The memory model specifies axioms in
the form of acyclicity and irreflexivity constraints over relations. An execution
is consistent if it satisfies all axioms. Our work builds on the CAT language.

There are three problems that make portability different from most common
verification tasks.

(i) We have to deal with user-defined memory models. These models may define
derived relations as least fixed points.

(ii) The formulation of portability involves an alternation (consistent + incon-
sistent) of quantifiers.

(iii) High-level code may be compiled into different low-level code depending on
the architecture (see, e.g., Fig. 1).

Concerning the first problem, we implement in SMT the operations that CAT
defines on relations. Notably, we propose an encoding for derived relations that
are defined as least fixed points. Such least fixed points are prominently used
in the Power memory model [8] and their computation was identified as a key
problem in [48]. To quote the authors [...] the proper fixpoint construction [...] is
much more expensive than a fixed unrolling. We show that, with our encoding,
this is not the case. A naive approach would implement the Kleene iteration in
SAT by introducing copies of the variables for each iteration step, resulting in a
very large encoding. We show how to employ SAT + integer difference logic [19]
to compactly encode the Kleene iteration process. Notably, every bounded model
checking technique reasoning about complex memory models defined in CAT
(e.g., Power) will face the problem of dealing with recursive definitions and can
make use of our technique to solve it efficiently.

The second problem is to encode the quantifier alternation underlying the
definition of portability. A porting bug is an execution that is consistent with the
target but inconsistent with the source memory model. We capture this alterna-
tion with a single existential query. Consistency is specified in terms of acyclicity
(and irreflexivity) of relations. Hence, an execution is inconsistent if a derived
relation of the (source) memory model contains a cycle (or is not irreflexive).



The naive idea would be to model cyclicity by unsatisfiability. Instead, we reduce
cyclicity to satisfiability by introducing auxiliary variables that guess the cycle.

The reader may criticise our definition of portability: one could claim that all
that matters is whether safety is preserved, even if the executions differ. To be
precise, a state-based notion of portability requires that every state computable
under the target architecture is already computable on the source platform. We
study state portability and come up with two results.

(a) Algorithmically, state portability is beyond SAT.
(b) Empirically, there is little difference between state portability and our notion.

The third problem is that the same high-level program is compiled to dif-
ferent assembly programs depending on the source and the target architec-
tures. Even the number of registers and the semantics of the synchronisation
primitives provided by those architectures usually differ. Consider the program
from Fig. 1, written in C++11 and compiled to x86 and Power. The observa-
tion is this. Even if the assembly programs differ, one can map every assem-
bly memory access to the corresponding read or write operation in the high-
level code. In the example, clearly “MOV [y],$1” and “stw r1,y” correspond to
“y.store(memory order relaxed, 1)”. This allows us to relate low-level and
high-level executions and to compare executions of both assembly programs by
checking if they map to the same high-level execution. With this observation, our
analysis can be extended by translating an input program into two correspond-
ing assembly programs and making explicit the relation among the low-level and
high-level executions. While this relation among executions is not studied in the
present paper, details of how to construct it and how to incorporate it into our
approach can be found in [38].

In summary, we make the following contributions.

1. We present the first SMT-based implementation of a core subset of CAT
which can handle recursive definitions efficiently.

2. We formulate the portability problem based on the CAT language.
3. We develop a bounded analysis for portability. Despite the apparent alterna-

tion of quantifiers, our SMT encoding is a satisfiability query of polynomial
size and optimal in the complexity sense.

4. We compare our notion of portability to a state-based notion and show that
the latter does not afford a polynomial SAT encoding.

5. We present experiments showing that (i) in a large majority of cases both
notions of portability coincide, and (ii) mutual exclusion algorithms are often
not portable, particularly we perform the first analysis from TSO to Power.

2 Portability Analysis on an Example

Consider program IRIW in Fig. 1, written in C++11 and using the atomic
operator memory order relaxed which provides no guarantees on how memory



thread t0 thread t1
y.store(memory order relaxed, 1) x.store(memory order relaxed, 1)

thread t2 thread t3
r1 = x.load(memory order relaxed); r1 = y.load(memory order relaxed);
r2 = y.load(memory order relaxed) r2 = x.load(memory order relaxed)

x86 Assembly

thread t0 thread t1 thread t2 thread t3
MOV [y],$1 MOV [x],$1 MOV EAX,[x] MOV EAX,[y]

MOV EAX,[y] MOV EAX,[x]

Power Assembly

thread t0 thread t1 thread t2 thread t3
li r1,1 li r1,1 lwz r1,x lwz r1,y

stw r1,y stw r1,x lwz r3,y lwz r3,x

Rx1

Ry0

Ry1

Rx0

Wx1 Ix0Wy1Iy0

po

fr

co

po
fr

co

rf rf

rferfe

Fig. 1: Portability of program IRIW from TSO to Power.

accesses are ordered. When porting, the program is compiled to two different ar-
chitectures. The corresponding low-level programs behave differently on x86 and
on IBM’s Power. On TSO, the memory model implemented by x86, each thread
has a store buffer of pending writes. A thread can see its own writes before they
become visible to other threads (by reading them from its buffer), but once a
write hits the memory it becomes visible to all other threads simultaneously:
TSO is a multi-copy-atomic model [18]. Power on the other hand does not guar-
antee that writes become visible to all threads at the same point in time. Think
of each thread as having its own copy of the memory. With these two architec-
tures in mind, consider the execution in Fig. 1. Thread t2 reads x = 1, y = 0 and
thread t3 reads x = 0, y = 1, indicated by the solid edges rfe and rf . Since under
TSO every execution has a unique global view of all operations, no interleaving
allows both threads to read the above values of the variables. Under Power, this
is possible. Our goal is to automatically detect such differences when porting a
program from one architecture to another, here from TSO to Power.

Our tool porthos applies to various architectures, and we not only have a
language for programs but also a language for memory models. The semantics of a
program on a memory model is defined axiomatically, following two steps [8,48].
We first associate with the program (and independent of the memory model)
a set of executions which are candidates for the semantics. An execution is a
graph (Fig. 1) whose nodes (events) are program instructions and whose edges
are basic dependencies: the program order po, the reads-from relation rf (giving



ConsistentTSO

1 acyclic((po ∩ sloc) ∪ rf ∪ fr ∪ co)
2 acyclic(rfe ∪ co ∪ fr ∪ (po \ (W× R)) ∪mfence)

fr := rf −1; co
rfe := rf \ sthd

Fig. 2: TSO.

the write that a load reads from), and the coherence order co (stating the order
in which writes take effect). The memory model then defines which executions
are consistent and thus form the semantics of the program on that model.

We describe memory models in the recently proposed language CAT [4].
Besides the base relations, a model may define so-called derived relations. The
consistency requirements are stated in terms of acyclicity and irreflexivity axioms
over these (base and derived) relations. The CAT formalisation of TSO is given
in Fig. 2. It forbids executions forming a cycle over rfe ∪ fr ∪ (po \ (W× R)).
The red edges in Fig. 1 yield such a cycle; the execution is not consistent with
TSO. Power further relaxes the program order (Fig. 6), the relations denoted
by the dotted lines are no longer considered for cycles and thus the execution
is consistent. Hence, IRIW has executions consistent with Power but not with
TSO and is therefore not portable.

Our contribution is a bounded analysis for portability implemented in the
porthos tool (http://github.com/hernanponcedeleon/PORTHOS). First, the
program is unrolled up to a user-specified bound. Within this bound, porthos
is guaranteed to find all portability bugs. It will neither see bugs beyond the
bound nor will it be able to prove a cyclic program portable. The unrolled
program, together with the CAT models, is transformed into an SMT formula
where satisfying assignments correspond to bugs.

A bug is an execution consistent with the target memory model MT but
inconsistent with the source MS . We express this combination of consistency
and inconsistency with only one existential quantification. The key observation
is that the derived relations, which may differ in MT and MS , are fully de-
fined by the execution. Hence, by guessing an execution we also obtain the
derived relations (there is nothing more to guess). Checking consistency for
MT is then an acyclicity (or irreflexivity) constraint on the derived relations
that immediately yields an SMT query. Inconsistency for MS requires cyclic-
ity. The trick is to explicitly guess the cycle. We introduce Boolean variables
for every event and every edge that could be part of the cycle. In Fig. 1,
if Rx1 is on the cycle, indicated by the variable C(Rx1) being set, then
there should be one incoming and one outgoing edge also in the cycle. Be-
sides the incoming edge shown in the graph, Rx1 could read from the initial
value Ix0. Since there are two possible incoming edges but only one outgoing
edge, we obtain C(Rx1)⇒ ((Crfe(Wx1, Rx1) ∨ Crf (Ix0, Rx1))∧Cpo(Rx1, Ry0)).
If a relation is on the cycle, then also both end-points should be part of
the cycle and the relation should belong to the execution: Cpo(Rx1, Ry0) ⇒
(C(Rx1) ∧ C(Ry0) ∧ po(Rx1, Ry0)). Finally, at least one event has to be part of



the cycle: C(Ix0)∨C(Wx1)∨C(Rx1)∨C(Rx0)∨C(Iy0)∨C(Wy1)∨C(Ry1)∨C(Ry0).
The execution in Fig. 1 contains the relations marked in red and forms a cycle
which violates Axiom 2 in TSO. The execution respects the axioms of Power
(Fig. 6), showing the existence of a portability bug in IRIW from TSO to Power.

The other challenge is to capture relations that are defined recursively. The
Kleene iteration process [43] starts with the empty relation and repeatedly
adds pairs of events according to the recursive definitions. We encode this into
(quantifier-free) integer difference logic [19]. For every recursive relation r and
every pair of events (e1, e2), we introduce an integer variable Φr

e1,e2 representing
the iteration step in which the pair entered the value of r. A Kleene iteration
then corresponds to a total ordering on these integer variables. Crucially, we
only have one Boolean variable r(e1, e2) per pair rather than one per iteration
step. We illustrate the encoding on a simplified version of the preserved program
order for Power defined as ppo := ii ∪ ic (cf. Fig. 6 for the full definition).
The relation is derived from the mutually recursive relations ii := dd ∪ ic and
ic := cd ∪ ii , where dd and cd represent data and control dependencies. Call
Rx1 and Ry0 respectively e1 and e2. The encoding is

ii(e1, e2) ⇔ (dd(e1, e2) ∧ (Φii
e1,e2 > Φdd

e1,e2)) ∨ (ic(e1, e2) ∧ (Φii
e1,e2 > Φic

e1,e2))

ic(e1, e2) ⇔ (cd(e1, e2) ∧ (Φic
e1,e2 > Φcd

e1,e2)) ∨ (ii(e1, e2) ∧ (Φic
e1,e2 > Φii

e1,e2)).

The pair (e1, e2) that belongs to relation dd in step Φdd
e1,e2 of the Kleene iteration

can be added to relation ii at a later step Φii
e1,e2 > Φdd

e1,e2 . As ii := dd ∪ ic, the
disjunction allows us to also add the elements of ic to ii . Since dd and cd are
empty for IRIW, the relations ii and ic have to be identical. Identical non-
empty relations will not yield a solution: the integer variables cannot satisfy
(Φii
e1,e2 > Φic

e1,e2) and (Φic
e1,e2 > Φii

e1,e2) at the same time. Hence, the only satis-
fying assignment is the one where both ii and ic are the empty relation, which
implies that ppo is empty. This is consistent with the preserved program order
of Power for IRIW.

3 Programs and Memory Models

We introduce our language for programs and the core of the language CAT. The
presentation follows [4,48] and we refer the reader to those works for details.

Programs. Our language for shared memory concurrent programs is given
in Fig. 3. Programs consist of a finite number of threads from a while-language.
The threads operate on assembly level, which means they explicitly read from
the shared memory into registers, write from registers into memory, and support
local computations on the registers. The language has various fence instructions
(sync, lwsync, and isync on Power and mfence on x86) that enforce ordering
and visibility constraints among instructions. We refrain from explicitly defining
the expressions and predicates used in assignments and conditionals. They will
depend on the data domain. For our analysis, we only require the domain to



〈prog〉 ::= program 〈thrd〉∗

〈thrd〉 ::= thread 〈tid〉 〈inst〉
〈inst〉 ::= 〈atom〉 | 〈inst〉; 〈inst〉

| while 〈pred〉 〈inst〉
| if 〈pred〉 then 〈inst〉

else 〈inst〉
〈atom〉 ::= 〈reg〉 ← 〈exp〉 | 〈reg〉 ← 〈loc〉

| 〈loc〉 := 〈reg〉 | 〈mfence〉
| 〈sync〉 | 〈lwsync〉 | 〈isync〉

Fig. 3: Programming language.

〈MCM 〉 ::= 〈assert〉 | 〈rel〉 | 〈MCM 〉 ∧ 〈MCM 〉
〈assert〉 ::= acyclic(〈r〉) | irreflexive(〈r〉)

〈r〉 ::= 〈b〉 | 〈r〉 ∪ 〈r〉 | 〈r〉 ∩ 〈r〉 | 〈r〉 \ 〈r〉

| 〈r〉−1 | 〈r〉+ | 〈r〉∗ | 〈r〉; 〈r〉
〈b〉 ::= po | rf | co | ad | dd | cd | sthd | sloc

| mfence | sync | lwsync | isync

| id(〈set〉) | 〈set〉 × 〈set〉 | 〈name〉
〈set〉 ::= E |W | R
〈rel〉 ::= 〈name〉 := 〈r〉

Fig. 4: Core of CAT [4].

admit an SMT encoding in a logic which has its satisfiability problem in NP.
For the rest of the paper we will assume that programs are acyclic: any while
statement is removed by unrolling the program to a depth specified by the user.
Since verification is generally undecidable for while-programs [39], this under-
approximation is necessary for cyclic programs.

Executions. The semantics of a program is given in terms of executions, partial
orders where the events represent occurrences of the instructions and the order-
ing edges represent dependencies. The definition is given in Fig. 5. An execution
consists of a set X of executed events and so-called base and induced relations
satisfying the Axioms 3 - 18 . Base relations rf and co and the set X define an
execution (they are the ones to be guessed). Induced relations can be extracted
directly from the source code of the program. The axioms in Fig. 5 are common
to all memory models and natively implemented by our tool. To state them,
let E represents memory events coming from program instructions accessing the
memory. Memory accesses are either reads or writes E := R ∪W. By Rl and Wl

we refer respectively to the reads and writes that access location l. The events
of thread t form the set Et. Relations sthd and sloc are equivalences relating
events belonging to the same thread 3 and accessing the same location 4 . Re-
lations po, ad , dd and cd represent program order and address/data/control de-
pendencies. Axiom 5 states that the program order po is an intra-thread relation
which 6 forms a total order when projected to events in the same thread (predi-
cate total(r,A) holds if r is a total order on the set A). Address dependencies are
either read-to-read or read-to-write 7 , data dependencies are read-to-write 8 ,
and control dependencies originate from reads 9 . Fence relations are architec-
ture specific and relate only events in program order 10 - 13 . Axiom 14 , which
we do not make explicit, requires the executed events X to form a path in the
threads’ control flow. By Axioms 15 and 16 , the reads-from relation rf gives for
each read a unique write to the same location from which the read obtains its
value. Here, r1; r2 := {(x, y) | ∃z : (x, z) ∈ r1 and (z, y) ∈ r2} is the composition
of the relations r1 and r2. We write r−1 := {(y, x) | (x, y) ∈ r} for the inverse



sloc, sthd ⊆ E× E same location, same thread
po, ad , dd , cd ⊆ E× E program order, address/data/control dependency
mfence ⊆ E× E fences in x86
sync, lwsync, isync ⊆ E× E fences in Power

3 equiv(sthd ,E) 4 equiv(sloc,M) 5 po ⊆ sthd 6 total(po,Et)

7 ad ⊆ (R×M) ∩ po 8 dd ⊆ (R×W) ∩ po 9 cd ⊆ (R× E) ∩ po

10 sync ⊆ po 11 lwsync ⊆ po 12 isync ⊆ po 13 mfence ⊆ po

X ⊆ E executed events rf , co ⊆ E× E reads-from, coherence order

14 path 15 rf ⊆ (W× R) ∩ sloc 16 rf ; rf −1 = id(E)

17 co ⊆ ((W×W) ∩ sloc) \ id(E) 18 total(co,Wl)

Fig. 5: Executions; adapted from [48].

of relation r. Finally, id(A) is the identity relation on A. By Axioms 17 and 18 ,
the coherence relation co relates writes to the same location, and it forms a total
order for each location. We will assume the existence of an initial write event
for each location which assigns value 0 to the location. This event is first in the
coherence order.

Memory Consistency Models. We give in Fig. 4 a core subset of the CAT
language for memory consistency models (MCMs). A memory model is a con-
straint system over so-called derived relations. Derived relations are built from
the base and induced relations in an execution, hand-defined relations that refer
to the different sets of events, and named relations that we will explain in a
moment. The assertions are acyclicity and irreflexivity constraints over derived
relations. CAT also supports recursive definitions of relations. We assume a set
〈name〉 of relation names (different from the predefined relations) and require
that each name used in the memory model has associated a defining equation
〈name〉 := 〈r〉. Notably, 〈r〉 may again contain relation names, making the sys-
tem of defining equations recursive. The actual relations that are denoted by the
names are defined to be the least solution to this system of equations. We can
compute the least solution with a standard Kleene iteration [43] starting from
the empty relations and iterating until the least fixed point is reached.

In Section 6 we study portability to Power; we use its formalization [8] in the
core of CAT as given in Fig. 6. Power is a highly relaxed memory model that sup-
ports program-order relaxations depending on address and data dependencies,
that is not multi-copy atomic, and that has a complex set of fence instructions.
The axioms defining Power are uniproc 1 and the constraints 19 to 21 . The
model relies on the recursively defined relations ii , ci , ic, and cc.



ConsistentPower

1 acyclic((po ∩ sloc) ∪ rf ∪ fr ∪ co) 19 acyclic(hb)
20 irreflexive(fre; prop; hb∗) 21 acyclic(co ∪ prop)

dp := ad ∪ dd rdw := (po ∩ sloc) ∩ (fre; rfe) detour := (po ∩ sloc) ∩ (coe; rfe)
ii0 := dp ∪ rdw ∪ rfi ci0 := cd-isync ∪ detour
ic0 := ∅ cc0 := dp ∪ (po ∩ sloc) ∪ cd ∪ (ad; po)

ii := ii0 ∪ ci ∪ (ic; ci) ∪ (ii ; ii) ci := ci0 ∪ (ci ; ii) ∪ (cc; ci)
ic := ic0 ∪ ii ∪ cc ∪ (ic; cc) ∪ (ii ; ic) cc := cc0 ∪ ci ∪ (ci ; ic) ∪ (cc; cc)

ppo := ((R× R) ∩ ii) ∪ ((R×W) ∩ ic)

Preserved Program Order

fence := sync ∪ (lwsync \ (W× R))
Fences

hb := ppo ∪ fence ∪ rfe
Thin Air

prop-base := (fence ∪ (rfe; fence)); hb∗

prop := ((W×W) ∩ prop-base) ∪ (com∗; prop-base∗; sync; hb∗)

Propagation

Fig. 6: Power [8].

4 Portability Analysis

Let consM(P ) be the set of executions of program P consistent with M. Given
a program P and two MCMs MS and MT , our goal is to find an execution X
which is consistent with the target (X ∈ consMT

(P )) but not with the source
(X 6∈ consMS

(P )). In such a case P is not portable from MS to MT .

Definition 1 (Portability). Let MS, MT be two MCMs. A program P is
portable from MS to MT if consMT

(P ) ⊆ consMS
(P ).

Our method finds non-portable executions as satisfying assignments to an
SMT formula. Recall that an execution is uniquely represented by the set X
and the relations rf and co, which need to be guessed by the solver. All other
relations are derived from these guesses, the source code of the program, and the
MCMs in question. Therefore, we also have to encode the derived relations of
the two MCMs defined in the language of Fig. 4. As the last part, we encode the
assertions expressed in the language of Fig. 4 on these relations in such a way that
the guessed execution is allowed byMT (all the assertions stated forMT hold)
while the same execution is not allowed byMS (at least one of the axioms ofMS

is violated). The full SMT formula is of the form φCF ∧ φDF ∧ φMT
∧ φ¬MS

.
Here, φCF and φDF encode the control flow and data flow of the executions,
φMT

encodes the derived relations and all assertions ofMT , and φ¬MS
encodes

the derived relations ofMS and a violation of at least one of the assertions of the
source memory model. The control-flow and data-flow encodings are standard for
bounded model checking [17]. The rest of the section focuses on how to encode the
derived relations needed for representing both MCMs, how to encode assertions



for the target memory model and how to encode an assertion violation in the
source memory model. The encoding for assertions in the target memory model
and the encoding for most of the relations is similar to [6], the most notable
difference being that they do not discuss how to handle mutually recursively
defined relations while we do so in an efficient way.

Encoding Derived Relations. For any pair of events e1, e2 ∈ E and relation
r ⊆ E×E we use a Boolean variable r(e1, e2) representing the fact that e1

r→ e2
holds. We similarly use fresh Boolean variables to represent the derived relations,
using the encoding to force their values as follows. For the union (resp. intersec-
tion) of two relations, at least one of them (resp. both of them) should hold; set
difference requires that the first relation holds and the second one does not; for
the composition of relations we iterate over a third event and check if it belongs
to the range of the first relation and the domain of the second. Computing a
reverse relation requires reversing the events. We define the transitive closure of
r recursively where the base case tc0 holds if events are related according to r
and the recursive case uses a relation composition. This is computed with the
iterative squaring technique using the relation composition. Finally reflexive and
transitive closure checks if the events are the same or are related by r+. The
encodings are summarized below.

r1∪r2(e1, e2)⇔ r1(e1, e2) ∨ r2(e1, e2) r1∩r2(e1, e2)⇔ r1(e1, e2) ∧ r2(e1, e2)
r1\r2(e1, e2)⇔ r1(e1, e2) ∧ ¬r2(e1, e2) r−1(e1, e2)⇔ r(e2, e1)
r1;r2(e1, e2)⇔

∨
e3∈E

r1(e1, e3) ∧ r2(e3, e2) r∗(e1, e2)⇔ r+(e1, e2) ∨ (e1 = e2)

r+(e1, e2)⇔ tcdlog |E|e(e1, e2),where
tc0(e1, e2)⇔ r(e1, e2), and

tci+1(e1, e2)⇔ r(e1, e2) ∨ (tci;tci(e1, e2)).

Recall that some of the relations (e.g., ii and ic of Power) can be defined
mutually recursively, and that we are using the least fixed point (smallest so-
lution) semantics for cyclic definitions. A classical algorithm for solving such
equations is the Kleene fixpoint iteration. The iteration starts from the empty
relations as initial approximation and on each round computes a new approxi-
mation until the (least) fixed point is reached. Such an iterative algorithm can
be easily encoded into SAT. The problem of such an encoding is the potentially
large number of iterations needed, and thus the resulting formula size can grow
to be very large. A more clever way to encode this is an approach that has been
already used in earlier work on encoding mutually recursive monotone equation
systems with nested least and greatest fixpoints [30]. The encoding of this paper
uses an extension of SAT with integer difference logic (IDL), a logic that is still
NP complete. A SAT encoding is also possible but incurs an overhead in the
encoding size: if the SMT encoding is of size O(n), the SAT encoding is of size
O(n log n) [30]. We chose IDL since our experiments showed the encoding to be
the most time consuming of the tasks.

Here, the basic idea is to guess a certificate that contains the iteration number
in which a pair would be added to the relation in the Kleene iteration. For



this we use additional integer variables and enforce that they locally follow the
propagations made by the fixed point iteration algorithm. Thus, for any pair
of events e1, e2 ∈ E and relation r ⊆ E × E we introduce an integer variable
Φr
e1,e2 representing the round in which r(e1, e2) would be set by the Kleene

iteration algorithm. Using these new variables we guess the execution of the
Kleene fixed point iteration algorithm, and then locally check that every guess
that was made is also a valid propagation of the fixed point iteration algorithm.
To give an example, consider a definition where r1 := r2 ∪ r3 and r2 := r1 ∪ r4.
The encoding is as follows

r1(e1, e2) ⇔ (r2(e1, e2) ∧ (Φr1
e1,e2 > Φr2

e1,e2)) ∨ (r3(e1, e2) ∧ (Φr1
e1,e2 > Φr3

e1,e2))

r2(e1, e2) ⇔ (r1(e1, e2) ∧ (Φr2
e1,e2 > Φr1

e1,e2)) ∨ (r4(e1, e2) ∧ (Φr2
e1,e2 > Φr4

e1,e2)).

A pair (e1, e2) is added to r1 by the Kleene iteration in step Φr1
e1,e2 . It comes

from either r2 or r3. If it came from r2 then it is of course also in r2 and it was
added to r2 in an earlier iteration Φr2

e1,e2 and thus (Φr1
e1,e2 > Φr2

e1,e2). It is similar
if it came from r3. The only satisfying assignment for the encoding is one where
both r1 and r2 are the union of r3 and r4.

Encoding Target MCM Assertions. For the target architecture we need to
encode all acyclicity and irreflexivity assertions of the memory model. For han-
dling acyclicity we again use non-Boolean variables in our SMT encoding for com-
pactness reasons. One can encode that a relation is acyclic by adding a numeri-
cal variable Ψe ∈ N for each event e in the relation we want to be acyclic. Then
acyclicity of relation r is encoded as acyclic(r)⇔

∧
e1,e2∈E

(r(e1, e2)⇒ (Ψe1 < Ψe2)).

Notice that we can impose a total order with all Ψe1 < Ψe2 constraints iff there is
no cycle. Our encoding is the same as the SAT + IDL encoding in [28] where more
discussion of SAT modulo acyclicity can be found. The irreflexive constraint is
simply encoded as: irreflexive(r)⇔

∧
e∈E
¬r(e, e).

Encoding Source MCM Assertions. For the source architecture we have to
encode that one of the derived relations does not fulfill its assertions. On the
top level this can be encoded as a simple disjunction over all the assertions of
the source memory model, forcing at least one of the irreflexivity or acyclicity
constraints to be violated.

For the irreflexivity violation, we can reuse the same encoding as for the
target memory model simply as ¬irreflexive(r). What remains to be encoded is
cyclic(r), which requires the relation r to be cyclic. Here, we give an encoding
that uses only Boolean variables. We add Boolean variables C(e) and Cr(e1, e2),
which guess the edges and nodes constituting the cycle. We ensure that for every
event in the cycle, there should be at least one incoming edge and at least one
outgoing edge that are also in the cycle:

cn =
∧
e1∈E

(C(e1)⇒ (
∨

e2
r→e1

Cr(e2, e1) ∧
∨

e1
r→e2)

Cr(e1, e2))).



If an edge is guessed to be in a cycle, the edge must belong to relation r, and
both events must also be guessed to be on the cycle:

ce =
∧

e1,e2∈E
(Cr(e1, e2)⇒ (r(e1, e2) ∧ C(e1) ∧ C(e2))).

A cycle exists, if these formulas hold and there is an event in the cycle:

cyclic(r)⇔ (ce ∧ cn ∧
∨
e∈E

C(e)).

5 State Portability

Portability from MS to MT requires that there are no new executions in MT

that did not occur in MS . One motivation to check portability is to make sure
that safety properties of MS carry over to MT . Safety properties only depend
on the values that can be computed, not on the actual executions. Therefore, we
now study a more liberal notion of so-called state portability : MT may admit
new executions as long as they do not compute new states. Admitting more
executions means we require less synchronization (fences) to consider a ported
program correct, and thus state portability promises more efficient code. This
notion has been used in [31].

The main finding in this section is negative: a polynomial encoding of state
portability to SAT does not exist (unless the polynomial hierarchy collapses).
Phrased differently, state portability does not admit an efficient bounded analysis
(like our method for portability). Fortunately, our experiments indicate that
new executions often compute new states. This means portability is not only a
sufficient condition for state portability but, in practice, the two are equivalent.
Combined with the better algorithmics of portability, we do not see a good
motivation to move to state portability. Proofs of all stated results can be found
in [38]. We remind the reader that we restrict our input to acyclic programs
(that can be obtained from while-programs with bounded unrolling); for while-
programs, verification tasks are generally undecidable [39].

A state is a function that assigns a value to each location and register. An
execution X computes the state state(X) defined as follows: a location receives
the value of the last write event (according to co) accessing it; for a register, its
value depends on the last event in po that writes to it. The relationship between
the notions is as in Lemma 1.

Definition 2 (State Portability). Let MS, MT be MCMs. Program P is
state portable from MS to MT if state(consMT

(P )) ⊆ state(consMS
(P )).

Lemma 1. (1) Portability implies state portability. (2) State portability does
not imply portability.



For Lemma 1.(2), consider a variant of IRIW (Fig. 1) where all written values
are 0. The program is trivially state portable from Power to TSO, but like IRIW,
not portable.

We turn to the hardness argumentation. To check state portability, every
MT -computable state seems to need a formula checking whether some MS-
consistent execution computes it. The result would be an exponential blow-up
or a quantified Boolean formula, which is not practical. But can this exponential
blow-up or quantification be avoided by some clever encoding trick? The answer
is no! Theorem 1 shows that state portability is in a higher class of the polynomial
hierarchy than portability. It is indeed harder to check than portability.

The polynomial hierarchy [42] contains complexity classes between NP and
PSPACE. Each class is represented by the problem of checking validity of a
Boolean formula with a fixed number of quantifier alternations. We need here
the classes co-NP = ΠP

1 ⊆ ΠP
2 . The tautology problem (validity of a closed

Boolean formula with a universal quantifier ∀x1 . . . xn : ψ ) is a ΠP
1 -complete

problem. The higher class ΠP
2 allows for a second quantifier: validity of a formula

(∀x1 . . . xn∃y1 . . . yn : ψ) is a ΠP
2 -complete problem. Theorem 1 refers to a class

of common memory models that we define in a moment. Moreover, we assume
that the given pair of memory models MS and MT is non-trivial in the sense
that consMT

(P ) ⊆ consMS
(P ) fails for some program, and similar for state

portability.

Theorem 1. Let MS ,MT be a non-trivial pair of common MCMs. (1) Porta-
bility from MS to MT is ΠP

1 -complete. (2) State portability is ΠP
2 -complete.

By Theorem 1.(2), state portability cannot be solved efficiently. The first
part says that our portability analysis is optimal. We focus on this lower bound
to give a taste of the argumentation: given a non-trivial pair of memory models,
we know there is a program that is not portable. Crucially, we do not know
the program but give a construction that works for any program. The proof of
Theorem 1.(2) is along similar lines but more involved.

Definition 3. We call an MCM common1 if

(i) the inverse operator is only used in the definition of fr ,
(ii) the constructs sthd, sloc, and 〈set〉 × 〈set〉 are only used to restrict (in a

conjunction) other relations,
(iii) it satisfies uniproc (Axiom 1 ) , and
(iv) every program is portable from this MCM to SC.

We explain the definition. When formulating an MCM, one typically forbids
well-chosen cycles of base relations (and fr). To this end, derived relations are
introduced that capture the paths of interest, and acyclicity constraints are im-
posed on the derived relations. The operators inverse and 〈set〉 × 〈set〉 may do
the opposite, they add relations that do not correspond to paths of base relations
(and fr). Besides stating what is common in MCMs, Properties (i) and (ii) help

1 Notice that all memory models considered in [8] and in this paper are common ones.



us compose programs (cf. next paragraph). Uniproc is a fundamental property
without which an MCM is hard to program. Since the purpose of an MCM is to
capture SC relaxations, we can assume MCMs to be weaker than SC. Proper-
ties (iii) and (iv) guarantee that the program Pψ given below is portable between
any common MCMs.

The crucial property of common MCMs is the following. For every pair of
events e1, e2 in a derived relation, (1) there are (potentially several) sequences of
base relations (and fr) that connect e1 and e2, and (2) the derived relation only
depends on these sequences. The property ensures that if we append a program
P ′ to a location-disjoint program P , any executions composed from consistent
executions of P and P ′ is also consistent.

It remains to prove ΠP
1 -hardness of portability by constructing a program

that is portable iff a formula ψ is a tautology. We first introduce the program
Pψ that generates some assignment and checks if it satisfies the Boolean formula
ψ(x1 . . . xm) (over the variables x1 . . . xm). The program Pψ := t1 ‖ t2 consists
of the two threads t1 and t2 defined below. Note that we cannot directly write
a constant i to a location, so we first assign i to register rc,i.

thread t1 thread t2
rc,0 ← 0; rc,1 ← 1; rc,2 ← 2 rc,1 ← 1;
x1 := rc,0 . . . xm := rc,0; x1 := rc,1 . . . xm := rc,1;
r1 ← x1 . . . rm ← xm;
if ψ(r1 . . . rm) then

y := rc,2;
else y := rc,1;

We reduce checking whether ∀x1 . . . xm : ψ(x1 . . . xm) holds to portability of a
program P∀ψ. The idea for P∀ψ is this. First Pψ is run, it guesses and evaluates an
assignment for ψ. If ψ is not satisfied (y = 1), then some non-portable program
Pnp is executed. The program P∀ψ is portable iff the non-portable part is never
executed. This is the case iff ψ is satisfied by all assignments.

Let MS , MT be common and non-trivial. By non-triviality, there is a pro-
gram Pnp = t′1 ‖ · · · ‖ t′k that is not portable from MS to MT . We can assume
Pnp has no registers or locations in common with Pψ. Program P∀ψ prepends
Pψ to the first two threads of Pnp . Once y = 1, Pnp starts running. Formally,
let t1 and t2 be the threads in Pψ and let ti := skip for 3 ≤ i ≤ k. We define
P∀ψ := t′′1 ‖ · · · ‖ t′′k with t′′i := ti; r ← y; if(r = 1) then t′i.

We show that P∀ψ is portable iff ψ is satisfied for every assignment.

6 Experiments

The encoding from Section 4 has been implemented in a tool called porthos.
We evaluate porthos on benchmark programs and a wide range of well-known
MCMs. For SC, TSO, PSO, RMO and Alpha (henceforth called traditional ar-
chitectures) we use the formalizations from [3]; for Power the one in Fig. 6.



Benchmark SC
-T
SO

SC
-P
ow
er

TS
O-
Po
we
r

Bakery 7 7 7
Bakery x86 4 7 7
Bakery Power 4 4 4
Burns 7 7 7
Burns x86 4 7 7
Burns Power 4 4 4
Dekker 7 7 7
Dekker x86 4 7 7
Dekker Power 4 4 4
Lamport 7 7 7
Lamport x86 4 7 7
Lamport Power 4 4 4
Peterson 7 7 7
Peterson x86 4 7 7
Peterson Power 4 4 4
Szymanski 7 7 7
Szymanski x86 4 7 7
Szymanski Power 4 4 4

Deadness

77 44 74 44 74

SC-TSO 27 898 75 933 40
SC-PSO 27 777 196 836 137
SC-RMO 27 737 236 780 193
SC-Alpha 27 846 127 887 86
TSO-PSO 0 833 67 883 27
TSO-RMO 0 760 240 798 202
TSO-Alpha 0 877 133 912 88
PSO-RMO 0 831 169 844 156
PSO-Alpha 0 968 32 973 27
RMO-Alpha 0 999 1 999 1
Alpha-RMO 0 856 144 864 136

0.98% 85.29% 13.73% 88.26% 10.73%
SC-Power 1477 898 52 936 14
TSO-Power 917 1132 378 1166 344
PSO-Power 502 1880 45 1892 33
RMO-Power 40 2227 160 2239 148
Alpha-Power 0 2427 0 2427 0

24.20% 70.57% 5.23% 71.35% 4.45%

Table 1: (Left) Bounded portability analysis of mutual exclusion algorithms: portable
(4), non-portable (7). (Right) Portability vs. State Portability on litmus tests.

We divide our results into three categories: portability of mutual exclusion al-
gorithms, empirical comparison between portability and state portability, and
performance of the tool.

Portability of Mutual Exclusion Algorithms. Most of the tools that are
MCM-aware [8,35,45,48,49] accept only litmus tests as inputs. porthos, how-
ever, can analyze cyclic programs with control flow branching and merging by
unrolling them into acyclic form. In order to show the broad applicability of our
method, we tested portability of several mutual exclusion algorithms: Lamport’s
bakery [32], Burns’ protocol [15], Dekker’s [23], Lamport’s fast mutex [33], Peter-
son’s [37] and Szymanski’s [44]. The benchmarks also include previously known
fenced versions for TSO taken from [12] (marked as x86) and new versions we
introduced using Power fences (marked as Power). The loops were unrolled
once in all the experiments to obtain an acyclic program, and the discussion in
what follows is for the portability analysis of this acyclic program.

While these algorithms have been proven correct for SC, it is well known that
they do not guarantee mutual exclusion when ported to weaker architectures.
The effects of relaxing the program order have been widely studied; there are
techniques that even place fences automatically to guarantee portability, but
they assume SC as the source architecture [5,12]. In Table 1 (left) we do not
only confirm that fenceless versions of the benchmarks are not portable from
SC to TSO and fenced versions of them are, we also show that those fences are
not enough to guarantee mutual exclusion when porting from TSO to Power.
We have used porthos to find portability bugs when porting from TSO to
Power and manually added fences to forbid such executions (see benchmarks
marked as Power). To the best of our knowledge these are the first results



22 domain(cd) ⊆ range(rf )

23 imm(co); imm(co); imm(co−1) ⊆ rf ?; (po; (rf −1)?)? imm(r) := r\(r; r+)

Fig. 7: Syntactic Deadness [48].

about portability of mutual exclusion algorithms from memory models weaker
than SC to the Power architecture.

Portability vs State Portability. We empirically compare both notions
of portability by using porthos (which implements portability) and the
Herd7 tool (http://diy.inria.fr/herd) which reasons about state reacha-
bility. Herd7 systematically constructs all consistent executions of the program
and exhaustively enumerates all possible computable states. Such enumeration
can be very expensive for programs with lots of computable states, e.g., for
programs with a very large level of concurrency. Since Herd7 only allows to
reason about one memory model at a time, for each test we run the tool twice
(once for each MCM) and compare the set of computable states. The program is
not state portable if the target MCM generates computable states that are not
computable states of the source MCM.

Our experiments contain two test suites: TS 1 contains 1000 randomly gen-
erated litmus tests in x86 assembly (to test traditional architectures) and TS 2

contains 2427 litmus tests in Power assembly taken from [36]. Each test contains
between 2 and 4 threads and between 4 and 20 instructions. Table 1 (right)
reports the number of non-portable (w.r.t. both definitions) litmus tests (77),
the number of portable and state portable litmus tests (44) and the number of
litmus tests that are not portable but are still state portable (74). In the last
case the new executions allowed by the target memory model do not result in
new computable states of the program. We show that in many cases both notions
of portability coincide. On traditional architectures, TS 1 contains very few non
state portable tests (0.98%). Here, a non portable program is state portable in
only 13.73% of the cases. For TS 2 from traditional architectures to Power, the
number of non state portable litmus tests rises to 24.20%, while only in 5.24% of
the cases the two notions of portability do not match because the new executions
do not result in a new computable state for the program.

In order to remove some executions that do not lead to new computable
states, porthos optionally supports the use of syntactic deadness which has
been recently proposed in [48]. Dead executions are either consistent or lead to
not computable states. Formally an execution X is dead if X 6∈ consM(P ) im-
plies that state(X) 6= state(Y ) for all Y ∈ consM(P ). Instead of looking for any
execution which is not consistent for the source architecture, we want to restrict
the search to non-consistent and dead executions of MS . This is equivalent to
checking state portability. As shown by Wickerson et al. [48], dead executions
can be approximated with constraints 22 and 23 given in Fig. 7 where r? is the
reflexive closure of r . These constraints can be easily encoded into SAT. Our
tool has an implementation which rules out quite a few executions not comput-



B
ak

er
y

B
ak

er
y

x8
6

B
ak

er
y

Pow
er

B
ur

ns

B
ur

ns
x8

6

B
ur

ns
Pow

er

D
ek

ke
r

D
ek

ke
r
x8

6

D
ek

ke
r
Pow

er

Lam
po

rt

Lam
po

rt
x8

6

Lam
po

rt
Pow

er

Pet
er

so
n

Pet
er

so
n

x8
6

Pet
er

so
n

Pow
er

Sz
ym

an
sk

i

Sz
ym

an
sk

i x8
6

Sz
ym

an
sk

i Pow
er

0

5

10

15

20

25

30
SC-TSO

SC-Power

TSO-Power

Fig. 8: Solving times (in secs.) for portability of mutual exclusion algorithms.

ing new states. The last two columns of Table 1 (right) show that by restricting
the search to (syntactic) dead executions, the ratio of litmus tests the tool re-
ports as non portable, but are actually state portable (due to syntactic dead
executions that are not semantically dead) is reduced to 10.73% for traditional
architectures and to 4.44% for Power.

The experiments above show that in most of the cases both notions of porta-
bility coincide, especially when using dead executions or porting to Power. To
test state portability, our method can be complemented with an extra query to
check if the final state of the counter-example execution is also reachable in the
source model by another execution. As shown in Section 5, the price to obtain
such a result is to go one level higher in the polynomial hierarchy which affects
the performance. However, once an execution is found that disproves portabil-
ity, one could check if the execution implies non state portability with a single
existential query.

Performance. We evaluate the solving times of our tool on the mutual exclusion
benchmarks as shown in Fig. 8. Our prototype encoding implementation is done
in Python; the encoding times have a minimum of 13 seconds and a maximum
of 303 seconds. The encodings involving Power are usually more time consuming
than traditional models since Power has both transitive closures and least fixed
points in its encoding. For the mutual exclusion algorithms, the solving times are
actually much lower than the encoding times of our prototype implementation.
We expect that the encoding times could be vastly improved by a careful C/C++
implementation of the encoding.

We acknowledge that for small litmus test, the running times of Herd7
outperform our prototype implementation. However, as soon as the programs
become bigger, Herd7 does not perform as well as porthos. We believe this is
due to the use of efficient search techniques in the SMT solver. In contrast, the
number of executions Herd7 has to enumerate explicitly grows exponentially
with the test size.



7 Related Work

Semantics and verification under weak memory models have been the subject of
study at least since 2007. Initially, the behavior of x86 and TSO has been clari-
fied [13,41], then the Power architecture has been addressed [36,40], now ARM is
being tackled [26]. The study also looks beyond hardware, in particular C++11
received considerable attention [10,11]. Research in semantics goes hand in hand
with the development of verification methods. They come in two flavors: pro-
gram logics [46,47] and algorithmic approaches [1,2,6,8,9,12,14,20,21]. Notably,
each of these methods and tools is designed for a specific memory model and
hence is not directly able to handle porting tasks.

The problem of verifying consistency under weak memory models has been
extensively studied. Multiple formalisations and variations of the problem and
their complexity have been analyzed [16,24,25]. A prominent approach is testing
where an execution is (partially) given and consistency is tested for a speci-
fied model [27,29]. In this line we showed that state portability (formulated as
a bounded analysis for cyclic programs) is Πp

2 -complete. This means there is
no hope for a polynomial encoding into SAT (unless the polynomial hierarchy
collapses). In contrast, our execution-based notion of portability is co-NP com-
plete (we look for a violation to portability), which in particular means that our
portability analysis is optimal in the complexity sense. Our experiments show
that in most of the cases both notions of portability coincide.

A problem less general than portability is solved in [12] where non-portable
traces from SC to TSO are characterized. The problem is reduced to state reacha-
bility under the SC semantics in an instrumented program and a minimal number
of fences is synthesized to enforce portability. One step further, one can enforce
portability not only to TSO, but also to weaker memory models [22]. The of-
fence tool [7] does this, but can only analyze litmus test and is limited to
restoring SC. Checking the existence of critical cycles (i.e. portability bugs) on
complex programs has been tackled in [5], where such cycles are broken by au-
tomatically introducing fences. The cost of different types of fences is considered
and the task is encoded as an optimization problem. The musketeer tool ana-
lyzes C programs and has shown to scale up to programs with thousands of lines
of code, but the implementation is also restricted to the case were the source
model is SC. Fence insertion can also be used to guarantee safety properties
(rather than restoring SC behaviors). The Fender and DFence tools [31,34]
can verify real-world C code, but they are restricted to TSO, PSO, and RMO.

8 Conclusion and Outlook

We introduce the first method that tests portability between any two axiomatic
memory models defined in the CAT language. The method reduces portability
analysis to satisfiability of an SMT formula in SAT + integer difference logic.
We propose efficient solutions for two crucial tasks: reasoning about two user-
defined MCMs at the same time and encoding mutually recursively defined rela-
tions (needed for Power) into SMT. The latter technique can be re-used by any



bounded model checking technique reasoning about complex memory models
such as Power.

Our complexity analysis and experimental results both suggest that our def-
inition of portability is preferable over the state-based notion of portability. The
complexity results show that checking for state-based portability cannot be done
with a single SMT solver query, unlike the approach to portability analysis sug-
gested in this paper. We also show that our method is not restricted to litmus
tests and present an automated tool-based portability analysis of mutual exclu-
sions algorithms from several axiomatic memory models to Power.

Acknowledgements

We thank John Wickerson for his explanations about dead executions, Luc
Maranget for several discussions about CAT models, and Egor Derevenetc for
providing help with the mutual exclusion benchmarks. This work has been par-
tially developed under contracting of Liebherr Aerospace Lindenberg GmbH and
supported by the Academy of Finland project 277522. Florian Furbach was sup-
ported by the DFG project R2M2: Robustness against Relaxed Memory Models.

References

1. Parosh A. Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt Jonsson, Carl
Leonardsson, and Konstantinos F. Sagonas. Stateless model checking for TSO and
PSO. In TACAS, volume 9035 of LNCS, pages 353–367. Springer, 2015.

2. Parosh A. Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Carl Leonardsson.
Stateless model checking for POWER. In CAV, volume 9780 of LNCS, pages
134–156. Springer, 2016.

3. Jade Alglave. A Shared Memory Poetics. Thèse de doctorat, L’université Paris
Denis Diderot, 2010.

4. Jade Alglave, Patrick Cousot, and Luc Maranget. Syntax and semantics of the weak
consistency model specification language CAT. CoRR, abs/1608.07531, 2016.

5. Jade Alglave, Daniel Kroening, Vincent Nimal, and Daniel Poetzl. Don’t sit on the
fence - A static analysis approach to automatic fence insertion. In CAV, volume
8559 of LNCS, pages 508–524. Springer, 2014.

6. Jade Alglave, Daniel Kroening, and Michael Tautschnig. Partial orders for efficient
bounded model checking of concurrent software. In CAV, volume 8044 of LNCS,
pages 141–157. Springer, 2013.

7. Jade Alglave and Luc Maranget. Stability in weak memory models. In CAV,
volume 6806 of LNCS, pages 50–66. Springer, 2011.

8. Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Modelling,
simulation, testing, and data mining for weak memory. ACM Trans. Program.
Lang. Syst., 36(2):7:1–7:74, 2014.

9. Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madanlal
Musuvathi. On the verification problem for weak memory models. In POPL,
pages 7–18. ACM, 2010.

10. Mark Batty, Alastair F. Donaldson, and John Wickerson. Overhauling SC atomics
in C11 and OpenCL. In POPL, pages 634–648. ACM, 2016.



11. Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. Mathe-
matizing C++ concurrency. In POPL, pages 55–66. ACM, 2011.

12. Ahmed Bouajjani, Egor Derevenetc, and Roland Meyer. Checking and enforcing
robustness against TSO. In ESOP, volume 7792 of LNCS, pages 533–553. Springer,
2013.

13. Sebastian Burckhardt, Rajeev Alur, and Milo M. K. Martin. CheckFence: Checking
consistency of concurrent data types on relaxed memory models. In PLDI, pages
12–21. ACM, 2007.

14. Sebastian Burckhardt and Madanlal Musuvathi. Effective program verification for
relaxed memory models. In CAV, volume 5123 of LNCS, pages 107–120. Springer,
2008.

15. James E. Burns and Nancy A. Lynch. Bounds on shared memory for mutual
exclusion. Information and Computation, 107(2):171 – 184, 1993.

16. Jason F. Cantin, Mikko H. Lipasti, and James E. Smith. The complexity of ver-
ifying memory coherence and consistency. IEEE Trans. Parallel Distrib. Syst.,
16(7):663–671, 2005.

17. Hélène Collavizza and Michel Rueher. Exploration of the capabilities of constraint
programming for software verification. In TACAS, volume 3920 of LNCS, pages
182–196. Springer, 2006.

18. William W. Collier. Reasoning about parallel architectures. Prentice Hall, 1992.
19. Scott Cotton, Eugene Asarin, Oded Maler, and Peter Niebert. Some progress in

satisfiability checking for difference logic. In FORMATS, volume 3253 of LNCS,
pages 263–276. Springer, 2004.

20. Andrei M. Dan, Yuri Meshman, Martin T. Vechev, and Eran Yahav. Predicate
abstraction for relaxed memory models. In SAS, volume 7935 of LNCS, pages
84–104. Springer, 2013.

21. Andrei M. Dan, Yuri Meshman, Martin T. Vechev, and Eran Yahav. Effective
abstractions for verification under relaxed memory models. In VMCAI, volume
8931 of LNCS, pages 449–466. Springer, 2015.

22. Egor Derevenetc and Roland Meyer. Robustness against power is pspace-complete.
In ICALP, volume 8573 of LNCS, pages 158–170. Springer, 2014.

23. Edsger W. Dijkstra. Cooperating sequential processes. In The Origin of Concurrent
Programming, pages 65–138. Springer-Verlag New York, Inc., 2002.

24. Constantin Enea and Azadeh Farzan. On atomicity in presence of non-atomic
writes. In TACAS, volume 9636 of LNCS, pages 497–514. Springer, 2016.

25. Azadeh Farzan and P. Madhusudan. Monitoring atomicity in concurrent programs.
In CAV, volume 5123 of LNCS, pages 52–65. Springer, 2008.

26. Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali Sezgin, Luc
Maranget, Will Deacon, and Peter Sewell. Modelling the ARMv8 architecture,
operationally: Concurrency and ISA. In POPL, pages 608–621. ACM, 2016.

27. Florian Furbach, Roland Meyer, Klaus Schneider, and Maximilian Senftleben.
Memory-model-aware testing: A unified complexity analysis. ACM Trans. Em-
bedded Comput. Syst., 14(4):63, 2015.

28. Martin Gebser, Tomi Janhunen, and Jussi Rintanen. SAT modulo graphs: Acyclic-
ity. In JELIA, pages 137–151, 2014.

29. Phillip B. Gibbons and Ephraim Korach. Testing shared memories. SIAM Journal
on Computing, 26:1208–1244, 1997.

30. Keijo Heljanko, Misa Keinänen, Martin Lange, and Ilkka Niemelä. Solving parity
games by a reduction to SAT. J. Comput. Syst. Sci., 78(2):430–440, 2012.

31. Michael Kuperstein, Martin T. Vechev, and Eran Yahav. Automatic inference of
memory fences. SIGACT News, 43(2):108–123, 2012.



32. Leslie Lamport. A new solution of Dijkstra’s concurrent programming problem.
Commun. ACM, 17(8):453–455, 1974.

33. Leslie Lamport. A fast mutual exclusion algorithm. ACM Trans. Comput. Syst.,
5(1):1–11, 1987.

34. Feng Liu, Nayden Nedev, Nedyalko Prisadnikov, Martin T. Vechev, and Eran Ya-
hav. Dynamic synthesis for relaxed memory models. In PLDI, pages 429–440.
ACM, 2012.

35. Sela Mador-Haim, Rajeev Alur, and Milo M. K. Martin. Generating litmus tests
for contrasting memory consistency models. In CAV, volume 6174 of Lecture Notes
in Computer Science, pages 273–287. Springer, 2010.

36. Sela Mador-Haim, Luc Maranget, Susmit Sarkar, Kayvan Memarian, Jade Alglave,
Scott Owens, Rajeev Alur, Milo M. K. Martin, Peter Sewell, and Derek Williams.
An axiomatic memory model for POWER multiprocessors. In CAV, volume 7358
of LNCS, pages 495–512. Springer, 2012.

37. Gary L. Peterson. Myths about the mutual exclusion problem. Inf. Process. Lett.,
12(3):115–116, 1981.

38. Hernán Ponce de León, Florian Furbach, Keijo Heljanko, and Roland Meyer. Porta-
bility analysis for axiomatic memory models. PORTHOS: One tool for all models.
CoRR, abs/1702.06704, 2017.

39. Henry G. Rice. Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society, 74(2):358–366, 1953.

40. Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams.
Understanding POWER multiprocessors. In PLDI, pages 175–186. ACM, 2011.

41. Susmit Sarkar, Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Tom Ridge,
Thomas Braibant, Magnus O. Myreen, and Jade Alglave. The semantics of x86-CC
multiprocessor machine code. In POPL, pages 379–391. ACM, 2009.

42. Larry J. Stockmeyer. The polynomial-time hierarchy. Theor. Comput. Sci., 3(1):1–
22, 1976.

43. Viggo Stoltenberg-Hansen, Edward R. Griffor, and Ingrid Lindstrom. Mathemati-
cal Theory of Domains. Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press, 1994.

44. Boleslaw K. Szymanski. A simple solution to Lamport’s concurrent programming
problem with linear wait. In ICS, pages 621–626. ACM, 1988.

45. Emina Torlak, Mandana Vaziri, and Julian Dolby. MemSAT: Checking axiomatic
specifications of memory models. In PLDI, pages 341–350. ACM, 2010.

46. Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. GPS: Navigating weak memory
with ghosts, protocols, and separation. In OOPSLA, pages 691–707. ACM, 2014.

47. Viktor Vafeiadis and Chinmay Narayan. Relaxed separation logic: A program logic
for C11 concurrency. In OOPSLA, pages 867–884. ACM, 2013.

48. John Wickerson, Mark Batty, Tyler Sorensen, and George A. Constantinides. Au-
tomatically comparing memory consistency models. In POPL, pages 190–204.
ACM, 2017.

49. Yue Yang, Ganesh Gopalakrishnan, Gary Lindstrom, and Konrad Slind. Nemos:
A framework for axiomatic and executable specifications of memory consistency
models. In IPDPS. IEEE Computer Society, 2004.

View publication statsView publication stats

https://www.researchgate.net/publication/318960349

