
BMC for Weak Memory Models:
Relation Analysis for Compact SMT Encodings

Natalia Gavrilenko1,4, Hernán Ponce-de-León2, Florian Furbach3,
Keijo Heljanko4, and Roland Meyer3

1Aalto University, 2fortiss, 3TU Braunschweig, 4University of Helsinki and HIIT

Abstract. We present Dartagnan, a bounded model checker (BMC)
for concurrent programs under weak memory models. Its distinguishing
feature is that the memory model is not implemented inside the tool but
taken as part of the input. Dartagnan reads CAT, the standard language
for memory models, which allows to define x86/TSO, ARMv7, ARMv8,
Power, C/C++, and Linux kernel concurrency primitives. BMC with
memory models as inputs is challenging. One has to encode into SMT not
only the program but also its semantics as defined by the memory model.
What makes Dartagnan scale is its relation analysis, a novel static
analysis that significantly reduces the size of the encoding. Dartagnan
matches or even exceeds the performance of the model-specific verification
tools Nidhugg and CBMC, as well as the performance of Herd, a CAT-
compatible litmus testing tool. Compared to the unoptimized encoding,
the speed-up is often more than two orders of magnitude.

Keywords: Weak Memory Models · CAT · Concurrency · BMC · SMT

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

1 Introduction

When developing concurrency libraries or operating system kernels, performance
and scalability of the concurrency primitives is of paramount importance. These
primitives rely on the synchronization guarantees of the underlying hardware
and the programming language runtime environment. The formal semantics
of these guarantees are often defined in terms of weak memory models. There
is considerable interest in verification tools that take memory models into ac-
count [5,9,13,22].

A successful approach to formalizing weak memory models is CAT [11,12,16],
a flexible specification language in which all memory models considered so far
can be expressed succinctly. CAT, together with its accompanying tool Herd [4],
has been used to formalize the semantics not only of assembly for x86/TSO,
Power, ARMv7 and ARMv8, but also high-level programming languages, such
as C/C++, transactional memory extensions, and recently the Linux kernel
concurrency primitives [11,15,16,18,20,24,29]. This success indicates the need for
universal verification tools that are not limited to a specific memory model.

We present Dartagnan [3], a bounded model checker that takes memory
models as inputs. Dartagnan expects a concurrent program annotated with an
assertion and a memory model for which the verification should be conducted. It
verifies the assertion on those executions of the program that are valid under the

2 Gavrilenko, Ponce-de-León, Furbach, Heljanko, and Meyer

given memory model and returns a counterexample execution if the verification
fails. As is typical of BMC, the verification results hold relative to an unrolling
bound [21]. The encoding phase, however, is new. Not only the program but also
its semantics as defined by the CAT model are translated into an SMT formula.

Having to take into account the semantics quickly leads to large encodings.
To overcome this problem, Dartagnan implements a novel relation analysis,
which can be understood as a static analysis of the program semantics as defined
by the memory model. More precisely, CAT defines the program semantics in
terms of relations between the events that may occur in an execution. Depending
on constraints over these relations, an execution is considered valid or invalid.
Relation analysis determines the pairs of events that may influence a constraint
of the memory model. Any remaining pair can be dropped from the encoding.
The analysis is compatible with optimized fixpoint encodings presented in [27,28].

The second novelty is the support for advanced programming constructs.
We redesigned Dartagnan’s heap model, which now has pointers and arrays.
Furthermore, we enriched the set of synchronization primitives, including read-
modify-write and read-copy-update (RCU) instructions [26]. One motivation for
this richer set of programming constructs is the Linux kernel memory model [15]
that has recently been added to the kernel documentation [2]. This model has
already been used by kernel developers to find bugs in and clarify details of the
concurrency primitives. Since the model is expected to be refined with further
development of the kernel, verification tools will need to quickly accommodate
updates in the specification. So far, only Herd [4] has satisfied this requirement.
Unfortunately, it is limited to fairly small programs (litmus tests). The present
version of Dartagnan offers an alternative with substantially better performance.

We present experiments on a series of benchmarks consisting of 4751 Linux
litmus tests and 7 mutual exclusion algorithms executed on TSO, ARM, and
Linux. Despite the flexibility of taking memory models as inputs, Dartagnan’s
performance is comparable to CBMC [13] and considerably better than that of
Nidhugg [5,9]. Both are model-specific tools. Compared to the previous version
of Dartagnan [28] and compared to Herd [4], we gain a speed-up of more than
two orders of magnitude, thanks to the relation analysis.

Related Work. In terms of the verification task to be solved, the following
tools are the closest to ours. CBMC [13] is a scalable bounded model checker
supporting TSO, but not ARM. An earlier version also supported Power.
Nidhugg [5,9] is a stateless model checker supporting TSO, Power, and a
subset of ARMv7. It is excellent for programs with a small number of executions.
RCMC [22] implements a stateless model checking algorithm targeting C11.
We cannot directly benchmark against it because the source code of the tool
is not yet publicly available, nor do we fully support C11. Herd [4] is the
only tool aside from ours that takes a CAT memory model as input. Herd
does not scale well to programs with a large number of executions, including
some of the Linux kernel tests. Other verification tasks (e.g., fence insertion to
restore sequential consistency) are tackled by Memorax [6,7,8], offence [14],
Fender [23], DFence [25], and trencher [19].

Relation Analysis for Compact SMT Encodings 3

Relation Analysis on an Example. Consider the program (in the .litmus
format) given to the left in the figure below. The assertion asks whether there is
a reachable state with final values EBX = 1, ECX = 0. We analyze the program
under the x86-TSO memory model shown below the program. The semantics of
the program under TSO is a set of executions. An execution is a graph, similar to
the one given below, where the nodes are events and the edges correspond to the
relations defined by the memory model. Events are instances of instructions that
access the shared memory: R (loads), W (stores, including initial stores), and M
(the union of both). The atomic exchange instruction xchg(x, r0) gives rise to a
pair of read and write events related by a (dashed) rmw edge. Such reads and
writes belong to the set A of atomic read-modify-write events.

X86

{x = 0; y = 0; P0:EAX = 1;}
P0 | P1 ;

xchg [x], EAX | mov EBX, [y] ;

mov [y], 1 | mov ECX, [x] ;

exists (P1:EBX = 1 ∧ P1:ECX = 0)

f : Winit x = 0 g : Winit y = 0

a : Rx d : Ry

b : Wx = 1 e : Rx

c : Wy = 1

rfe

rfe

co

rfe

co

po-tso fr
rmw

po-tso

po-tso
fr

po-tso
rfe

fr

rfe

acyclic po-loc ∪ com acyclic ghb-tso empty rmw ∩ (fre ; coe)
com = co ∪ fr ∪ rf com-tso = co ∪ fr ∪ rfe po-tso = (po \W× R) ∪mfence
implied = po ∩ (W× R) ∩ ((M× A) ∪ (A×M)) ghb-tso = po-tso ∪ com-tso ∪ implied

x86-TSO

The relations rf, co, and fr model the communication of instructions via
the shared memory (reading from a write, coherence, overwriting a read). Their
restrictions rfe, coe, and fre denote (external) communication between instructions
from different threads. Relation po is the program order within the same thread
and po-loc is its restriction to events addressing the same memory location. Edges
of mfence relate events separated by a fence. Further relations are derived from
these base relations. To belong to the TSO semantics of the program, an execution
has to satisfy the constraints of the memory model: empty rmw∩ (fre ; coe), which
enforces atomicity of read-modify-write events, and the two acyclicity constraints.

Dartagnan encodes the semantics of the given program under the given
memory model into an SMT formula. The problem is that each edge (a, b) that
may be present in a relation r gives rise to a variable r(a, b). The goal of our
relation analysis is to reduce the number of edges that need to be encoded. We
illustrate this on the constraint acyclic ghb-tso. The graph next to the program
shows the 14 (dotted and solid) edges which may contribute to the relation
ghb-tso. Of those, only the 6 solid edges can occur in a cycle. The dotted edges
can be dropped from the SMT encoding. Our relation analysis determines the
solid edges — edges that may have an influence on a constraint of the memory
model. Additionally, ghb-tso is a composition of various subrelations (e.g., po-tso
or co ∪ fr) that also require encoding into SMT. Relation analysis applies to
subrelations as well. Applied to all constraints, it reduces the number of encoded
edges for all (sub)relations from 221 to 58.

4 Gavrilenko, Ponce-de-León, Furbach, Heljanko, and Meyer

2 Input, Functionality, and Implementation

Dartagnan has the ambition of being widely applicable, from assembly over
operating system code written in C/C++ to lock-free data structures. The tool
accepts programs in PPC, x86, AArch64 assembly, and a subset of C11, all
limited to the subsets supported by Herd’s .litmus format. It also reads our own
.pts format with C11-like syntax [28]. We refer to global variables as memory
locations and to local variables as registers. We support pointers, i.e., a register
may hold the address of a location. Addresses and values are integers, and
we allow the same arithmetic operations for addresses as for regular integer
values. Different synchronization mechanisms are available, including variants of
read-modify-write, various fences, and RCU instructions [26].

We support the assertion language of Herd. Assertions define inequalities
over the values of registers and locations. They come with quantifiers over the
reachable states that should satisfy the inequalities.

We use the CAT language [11,12,16] to define memory models. A memory
model consists of named relations between events that may occur in an execution.
Whether or not an execution is valid is defined by constraints over these relations:

〈MM 〉 ::= 〈const〉 | 〈rel〉 | 〈MM 〉 ∧ 〈MM 〉 〈r〉 ::= 〈b〉 | 〈name〉 | 〈r〉 ∪ 〈r〉 | 〈r〉 \ 〈r〉
〈const〉 ::= acyclic(〈r〉) | irreflexive(〈r〉) | 〈r〉 ∩ 〈r〉 | 〈r〉−1 | 〈r〉+ | 〈r〉∗ | 〈r〉; 〈r〉

| empty(〈r〉) 〈b〉 ::= id | int | ext | po | fencerel(fence)

〈rel〉 ::= 〈name〉 := 〈r〉 | rmw | ctrl | data | addr | loc | rf | co.

CAT has a rich relational language, and we only show an excerpt above. So-
called base relations 〈b〉 model the control flow, data flow, and synchronization
constraints. The language provides intuitive operators to derive further relations.
One may define relations recursively by referencing named relations. Their
semantics is the least fixpoint.

Dartagnan is invoked with two inputs: the program, annotated with an
assertion over the final states, and the memory model. There are two optional
parameters related to the verification. The SMT encoding technique for recursive
relations is defined by mode chosen between knastertarski (default) and idl (see
below). The parameter alias, chosen between none and andersen (default), defines
whether to use an alias analysis for our relation analysis (cf. Section 3).

Being a bounded model checker, Dartagnan computes an unrolled program
with conditionals but no loops. It encodes this acyclic program together with the
memory model into an SMT formula and passes it to the Z3 solver. The formula
has the form ψprog ∧ ψassert ∧ ψmm , where ψprog encodes the program, ψassert

the assertion, and ψmm the memory model. We elaborate on the encoding of the
program and the memory model. The assertion is already given as a formula.

We model the heap by encoding a new memory location for each variable and
a set of locations for each memory allocation of an array. Every location has an
address encoded as an integer variable whose value is chosen by the solver. In
an array, the locations are required to have consecutive addresses. Instances of
instructions are modeled as events, most notably stores (to the shared memory)
and loads (from the shared memory).

Relation Analysis for Compact SMT Encodings 5

We encode relations by associating pairs of events with Boolean variables.
Whether the pair (e1, e2) is contained in relation r is indicated by the variable
r(e1, e2). Encoding the relations r1 ∩ r2, r1 ∪ r2, r1 ; r2, r1 \ r2 and r−1 is straight-
forward [27]. For recursively defined and (reflexive and) transitive relations,
Dartagnan lets the user choose between two methods for computing fixed
points by setting the appropriate parameter. The integer-difference logic (IDL)
method encodes a Kleene iteration by means of integer variables (one for each pair
of events) representing the step in which the pair was added to the relation [27].
The Knaster-Tarski encoding simply looks for a post fixpoint. We have shown
in [28] that this is sufficient for reachability analysis.

3 Relation Analysis

To optimize the size of the encoding (and the solving times), we found it essential
to reduce the domains of the relations. We determine for each relation a static
over-approximation of the pairs of events that may be in this relation. Even more,
we restrict the relation to the set of pairs that may influence a constraint of the
given memory model. These restricted sets are the relation analysis information
(of the program relative to the memory model). Technically, we compute, for each
relation r, two sets of event pairs, M (r) and A(r). The former contains so-called
may pairs, pairs of events that may be in relation r. This does not yet take into
account whether the may pairs occur in some constraint of the memory model.
The active pairs A(r) incorporate this information, and hence restrict the set of
may pairs. As a consequence of the relation analysis, we only introduce Boolean
variables r(e1, e2) for the pairs (e1, e2) ∈ A(r) to the SMT encoding.

The algorithm for constructing the may set and the active set is a fixpoint
computation. What is unconventional is that the two sets propagate their in-
formation in different directions. For A(r), the computation proceeds from the
constraints and propagates information down the syntax tree of the CAT memory
model. The sets M (r) are computed bottom-up the syntax tree. Interestingly, in
our implementation, we do not compute the full fixpoint but let the top-down
process trigger the required bottom-up computation.

Both sets are computed as least solutions to a common system of inequalities.
As we work over powerset lattices (relations are sets after all), the order of the
system will be inclusion. We understand each set M (r) and A(r) as a variable,
thereby identifying it with its least solution. To begin with, we give the definition
for A(r). In the base case, we have a relation r that occurs in a constraint of the
memory model. The inequality is defined based on the shape of the constraint:

A(r) ⊇ M (r) (empty) A(r) ⊇ M (r) ∩ id (irrefl .) A(r) ⊇ M (r) ∩M (r+)−1 (acyclic).

For the emptiness constraint, all pairs of events that may be contained in the
relation are relevant. If the constraint requires irreflexivity, what matters are
the pairs (e, e). If the constraint requires acyclicity, we concentrate on the pairs
(e1, e2), where (e1, e2) may be in relation r and (e2, e1) may be in relation r+.
Note how the definition of active pairs triggers the computation of may pairs.

6 Gavrilenko, Ponce-de-León, Furbach, Heljanko, and Meyer

If the relation in the constraint is a composed one, the following inequalities
propagate the information about the active pairs down the syntax tree of the
CAT memory model:

A(r1) ⊇ A(r)−1 if r = r−1
1

A(r1) ⊇ A(r) if r = r1 ∩ r2 or r = r1 \ r2
A(r1) ⊇ A(r) ∩M (r1) if r = r1 ∪ r2 or r = r2 \ r1
A(r1) ⊇ {x ∈ M (r1) | x; M (r2) ∩A(r) 6= ∅} if r = r1; r2

A(r1) ⊇ {x ∈ M (r1) | M (r∗1);x; M (r∗1) ∩A(r) 6= ∅} if r = r+1 or r = r∗1.

The definition maintains the invariant A(r) ⊆ M (r). If a pair (e1, e2) is relevant
to relation r = r−11 , then (e2, e1) will be relevant to r1. We do not have to
intersect A(r)−1 with M (r)−1 because A(r) ⊆ M (r) ensures A(r)−1 ⊆ M (r)−1.
We can avoid the intersection with the may pairs for the next case as well. There,
A(r) ⊆ M (r) holds by the invariant and M (r) = M (r1) ∩M (r2) by definition
(see below). For union and the other case of subtraction, the intersection with
M (r1) is necessary. There are symmetric definitions for union and intersection for
r2. For a relation r1 that occurs in a relational composition r = r1; r2, the pairs
(e1, e3) become relevant if they may be composed with a pair (e3, e2) in r2 to
obtain a pair (e1, e2) relevant to r. Note that for r2 we again need the may pairs.
The definition for r2 is similar. The definition for the (reflexive and) transitive
closure follows the ideas for relational composition.

The definition of the may sets follows the syntax of the CAT memory model
bottom-up. With ⊕ ∈ {∪,∩, ; } and ⊗ ∈ {+, ∗,−1}, we have

M (r1 ⊕ r2) ⊇ M (r1)⊕M (r2) M (r⊗) ⊇ M (r)⊗ M (r1 \ r2) ⊇ M (r1).

This simply executes the operator of the relation on the corresponding may sets.
Subtraction (r1 \ r2) is the exception, it is not sound to over-approximate r2.

At the bottom level, the may sets are determined by the base relations. They
depend on the shape of the relations and the positions of the events in the
control flow. The relations loc, co and rf are concerned with memory accesses.
What makes it difficult to approximate these relations is our support for pointers
and pointer arithmetic. Without further information, we have to conservatively
assume that a memory event may access any address. To improve the precision of
the may sets for loc, co, and rf, our fixpoint computation incorporates a may-alias
analysis. We use a control-flow insensitive Andersen-style analysis [17]. It incurs
only a small overhead and produces a close over-approximation of the may sets.
The analysis returns1 a set of pairs of memory events PTS ⊆ (W∪R)× (W∪R)
such that every pair of events outside PTS definitely accesses different addresses.
Here, W are the store events in the program and R are the loads. Note that the
analysis has to be control-flow insensitive as the given memory model may be
very weak [10]. We have M (loc) ⊇ PTS. Similarly, M (co) and M (rf) are defined
by PTS restricted to (W×W) and (W× R), respectively.

1 This is a simplification, Andersen returns points-to sets, and we check by an intersec-
tion PTS(r1) ∩ PTS(r2) whether two registers may alias.

Relation Analysis for Compact SMT Encodings 7

1 10 20 30 40 50 60 70

1 min

2 min

3 min

4 min

5 min

Parker

1 10 20 30 40 50 60 70

1 min

2 min

3 min

4 min

Peterson

1 2 3 4 5 6 7 8 9 10

1 min

2 min

3 min

4 min

5 min

Dekker

CBMC-TSO
Nidhugg-TSO
Nidhugg-ARM
Dartagnan-TSO
Dartagnan-ARM
FMCAD-TSO
FMCAD-ARM

1 2 3 4 5 6 7 8 9 10

5 min

10 min

15 min

20 min

25 min

30 min

Burns

1 2 3 4 5

5 min

10 min

15 min

20 min

25 min

30 min

Bakery

1 2 3 4 5

5 min

10 min

15 min

20 min

25 min

30 min

Lamport

1 2 3 4 5

5 min

10 min

15 min

20 min

25 min

30 min

Szymanski

Fig. 1: Impact of the unrolling bound (x-axis) on the verification time (y-axis).

We stress the importance of the alias analysis for our relation analysis: loc,
co, and rf are frequently used as building blocks of composite relations. Excessive
may sets will therefore negatively affect the over-approximations of virtually all
relations in a memory model, and keep the overall encoding unnecessarily large.

Illustration. We illustrate the relation analysis on the example from the in-
troduction. Consider constraint acyclic ghb-tso. The computation of the active
set for the relation ghb-tso triggers the calculation of the may set, following
the inequality A(ghb-tso) ⊇ M (ghb-tso) ∩M (ghb-tso+)−1. The may set is the
union of the may sets for the subrelations, shown by colored (dotted and solid)
edges. The intersection yields the edges that may lie on cycles of ghb-tso. They
are drawn in solid. These solid edges in A(ghb-tso) are propagated down to the
subrelations. For example, A(po-tso) ⊇ A(ghb-tso) ∩M (po-tso) yields the solid
black edges.

4 Experiments

We compare Dartagnan to CBMC [13] and Nidhugg [5,9], both model-specific
tools, and to Herd [4,16] and the Dartagnan FMCAD-18 version [3,28] (without
relation analysis), both taking CAT models as inputs. We also evaluate the impact
of the alias analysis on the execution time.

Benchmarks. For CBMC, Nidhugg, and the FMCAD-18 Dartagnan, we
evaluate the performance on 7 mutual exclusion benchmarks executed on TSO
(all tools) and a subset of ARMv7 (only Nidhugg and Dartagnan). The results
on Power are similar to those on ARM and thus omitted. We excluded Herd
from this experiment since it did not scale even for small unrolling bounds [28].
We set a 5 min timeout for Parker, Dekker, and Peterson as this is sufficient
to show the trends in the runtimes, and a 30 min timeout for the remaining
benchmarks. To compare against Herd, and to evaluate the impact of the alias
analysis, we run 4751 Linux kernel litmus tests (all tests from [1] without Linux

8 Gavrilenko, Ponce-de-León, Furbach, Heljanko, and Meyer

1
0

m
s

1
0
0

m
s

1
s

1
0

s

1
m

in

1
0

m
in

3
0

m
in

10 ms

100 ms

1 s

10 s

1 min

10 min
30 min

No Alias

A
li
a
s

1
0

m
s

1
0
0

m
s

1
s

1
0

s

1
m

in

1
0

m
in

3
0

m
in

10 ms

100 ms

1 s

10 s

1 min

10 min
30 min

Herd

D
a
r
t
a
g
n
a
n

Fig. 2: Execution times (logarithmic scale) on Linux kernel litmus tests: impact
of alias analysis (left) and comparison against Herd (right).

spinlocks). The tests contain kernel primitives, such as RCU, on the Linux kernel
model. We set a 30 minutes timeout.

Evaluation. The times for CBMC, Nidhugg-ARM, and the FMCAD-2018
version of Dartagnan grow exponentially for Parker (see Fig. 1). The growth
in CBMC and FMCAD-2018 is due to the explosion of the encoding. For the
latter, the solver runs out of memory with unrolling bounds 20 (TSO) and 10
(ARM). For Nidhugg-ARM, the tool explores many unnecessary executions.
The verification times for Nidhugg-TSO and the current version of Dartagnan
grow linearly. The latter is due to the relation analysis. For Peterson, the results
are similar except for CBMC, which matches Dartagnan’s performance.

For Dekker, Nidhugg outperforms both CBMC and Dartagnan. This is
because the number of executions grows slowly compared to the explosion of
the number of instructions. The executions in both memory models coincide,
making the performance on ARM comparable to that on TSO for Nidhugg. The
difference is due to the optimal exploration in TSO, but not in ARM. Relation
analysis has some impact on the performance (see FMCAD-2018 vs. Dartagnan),
but the encoding size still grows faster than the number of executions.

The benchmarks Burns, Bakery, and Lamport demonstrate the opposite
trend: the number of executions grows much faster than the size of the encoding.
Here, CBMC and Dartagnan outperform Nidhugg. Notice that for Burns,
Nidhugg performs better on ARM than on TSO with unrolling bound 5. This
is counter-intuitive since one expects more executions on ARM. Although the
number of executions coincide, the exploration time is higher on TSO due
to a different search algorithm. For Szymanski, similar results hold except for
Dartagnan-ARM where the encoding grows exponentially.

Fig. 2 (left) shows the verification times for the current version of Dartagnan
with and without alias analysis. The alias analysis results in a speed-up of more
than two orders of magnitude in benchmarks with several threads accessing up
to 18 locations. Fig. 2 (right) compares the performance of Dartagnan against
Herd. We used the Knaster-Tarski encoding and alias analysis since they yield
the best performance. Herd outperforms Dartagnan on small test instances
(less than 1 second execution time). This is due to the JVM startup time and
the preprocessing costs of Dartagnan. However, on large benchmarks, Herd
times out while Dartagnan takes less than 10 secs.

Relation Analysis for Compact SMT Encodings 9

References

1. Linux kernel litmus test suite. https://github.com/paulmckrcu/litmus.
2. Linux Memory Model. https://github.com/torvalds/linux/tree/master/

tools/memory-model.
3. The Dat3M tool suite. https://github.com/hernanponcedeleon/Dat3M.
4. The herdtools7 tool suite. https://github.com/herd/herdtools7.
5. Parosh A. Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt Jonsson, Carl

Leonardsson, and Konstantinos F. Sagonas. Stateless model checking for TSO and
PSO. In TACAS, volume 9035 of LNCS, pages 353–367. Springer, 2015.

6. Parosh A. Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Carl Leonardsson,
and Ahmed Rezine. Automatic fence insertion in integer programs via predicate
abstraction. In SAS, volume 7460 of LNCS, pages 164–180. Springer, 2012.

7. Parosh A. Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Carl Leonardsson, and
Ahmed Rezine. Counter-example guided fence insertion under TSO. In TACAS,
volume 7214 of LNCS, pages 204–219. Springer, 2012.

8. Parosh A. Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Carl Leonardsson, and
Ahmed Rezine. Memorax, a precise and sound tool for automatic fence insertion
under TSO. In TACAS, volume 7795 of LNCS, pages 530–536. Springer, 2013.

9. Parosh A. Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Carl Leonardsson.
Stateless model checking for POWER. In CAV, volume 9780 of LNCS, pages
134–156. Springer, 2016.

10. J. Alglave, D. Kroening, J. Lugton, V. Nimal, and M. Tautschnig. Soundness of
data flow analyses for weak memory models. In APLAS, volume 7078 of LNCS,
pages 272–288. Springer, 2011.

11. Jade Alglave. A Shared Memory Poetics. Thèse de doctorat, L’université Paris
Denis Diderot, 2010.

12. Jade Alglave, Patrick Cousot, and Luc Maranget. Syntax and semantics of the
weak consistency model specification language CAT. CoRR, abs/1608.07531, 2016.

13. Jade Alglave, Daniel Kroening, and Michael Tautschnig. Partial orders for efficient
bounded model checking of concurrent software. In CAV, volume 8044 of LNCS,
pages 141–157. Springer, 2013.

14. Jade Alglave and Luc Maranget. Stability in weak memory models. In CAV, volume
6806 of LNCS, pages 50–66. Springer, 2011.

15. Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and Alan S. Stern.
Frightening small children and disconcerting grown-ups: Concurrency in the Linux
kernel. In ASPLOS, pages 405–418. ACM, 2018.

16. Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Modelling,
simulation, testing, and data mining for weak memory. ACM Trans. Program. Lang.
Syst., 36(2):7:1–7:74, 2014.

17. L.O. Andersen. Program Analysis and Specialization for the C Programming
Language. PhD thesis, University of Copenhagen, 1994.

18. Mark Batty, Alastair F. Donaldson, and John Wickerson. Overhauling SC atomics
in C11 and OpenCL. In POPL, pages 634–648. ACM, 2016.

19. Ahmed Bouajjani, Egor Derevenetc, and Roland Meyer. Checking and enforcing
robustness against TSO. In ESOP, volume 7792 of LNCS, pages 533–553. Springer,
2013.

20. Nathan Chong, Tyler Sorensen, and John Wickerson. The semantics of transactions
and weak memory in x86, Power, ARM, and C++. In PLDI, pages 211–225. ACM,
2018.

https://github.com/paulmckrcu/litmus
https://github.com/torvalds/linux/tree/master/tools/memory-model
https://github.com/torvalds/linux/tree/master/tools/memory-model
https://github.com/hernanponcedeleon/Dat3M
https://github.com/herd/herdtools7

10 Gavrilenko, Ponce-de-León, Furbach, Heljanko, and Meyer

21. Edmund M. Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded
model checking using satisfiability solving. Formal Methods in System Design,
19(1):7–34, 2001.

22. Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor
Vafeiadis. Effective stateless model checking for C/C++ concurrency. PACMPL,
2(POPL):17:1–17:32, 2018.

23. Michael Kuperstein, Martin T. Vechev, and Eran Yahav. Automatic inference of
memory fences. SIGACT News, 43(2):108–123, 2012.

24. Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer.
Repairing sequential consistency in C/C++11. In PLDI, pages 618–632. ACM,
2017.

25. Feng Liu, Nayden Nedev, Nedyalko Prisadnikov, Martin T. Vechev, and Eran Yahav.
Dynamic synthesis for relaxed memory models. In PLDI, pages 429–440. ACM,
2012.

26. Paul E. McKenney and Jack Slingwine. Read-copy update: Using execution history
to solve concurrency problems. Parallel and Distributed Computing and Systems,
pages 509–518, 1998.

27. Hernán Ponce de León, Florian Furbach, Keijo Heljanko, and Roland Meyer.
Portability analysis for weak memory models. PORTHOS: One tool for all models.
In SAS, volume 10422 of LNCS, pages 299–320. Springer, 2017.

28. Hernán Ponce de León, Florian Furbach, Keijo Heljanko, and Roland Meyer. BMC
with memory models as modules. In FMCAD, pages 1–9. IEEE, 2018.

29. Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter
Sewell. Simplifying ARM concurrency: multicopy-atomic axiomatic and operational
models for ARMv8. PACMPL, 2(POPL):19:1–19:29, 2018.

	BMC for Weak Memory Models: Relation Analysis for Compact SMT Encodings

