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Preface

This volume of EPTCS contains the proceedings of the Firgkg¥mp on Hammers for Type Theories
(HaTT 2016), held on 1 July 2016 as part of the Internation&tIConference on Automated Reasoning
(IJCAR 2016) in Coimbra, Portugal.

HOLyHammer for HOL Light and HOL4, Sledgehammer for Isaé&#llOL, and other similar tools
can have a huge impact on user productivity. These integtatematic theorem provers (including SMT
solvers) with proof assistants. However, users of prods&sys based on type theories, such as Agda,
Coq, Lean, and Matita, currently miss out on this convergefitie expressive, constructive logic is often
seen as an insurmountable obstacle, but large developnreitaling the CompCert compiler, typically
postulate the classical axioms and use dependent typasgpar

The workshop features four regular papers, three regukseptations, and two invited talks by
Pierre Corbineau (Verimag, France) and Aleksy Schuberiv@dsity of Warsaw, Poland).

We would like to thank the authors for submitting papers ghhjuality to these proceedings, the
program committee and external reviewers for diligentljie®ing the submissions, and the local orga-
nizers of IJCAR 2016 for their help in organizing HaTT 2016.

6 June 2016 Jasmin Christian Blanchette
Cezary Kaliszyk
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Generic Automation for the Coq Proof Assistant:
Design and Principles

Pierre Corbineau
Verimag, Université Grenoble Alpes, France

Proof-editing in the Coq proof assistant is conducted uainipe variety of procedures called tactics.
Several of these tactics host automated proof-search guoee addressing generic or specific logical
problems.

Generic automation tactics try to provide help without iredlyon the existence of a specific theory
or axiom, whereas specialised tactics address logicalgmabexpressed in specific object-level theories
such as linear arithmetic, rings, fields, ...

In this talk, we will focus on several examples of genericomadtion procedures. We will first
describe how they work, and then show how they can interattt @dch other and other Coq features.
Finally we will discuss their usefulness and weaknesseasttapertinence of the generic approach.

J.C. Blanchette and C. Kaliszyk:
Hammers for Type Theories (HaTT'16)
EPTCS 210, 2016, pp. 1-1, doi:10.4204/EPTCS.210.1



Proof Generation in Propositional I ntuitionistic Logic
Based upon Automata Theory

Aleksy Schubert and Maciej Zielenkiewicz
Institute of Informatics, University of Warsaw, Poland

The process of proof construction in constructive logiasesponds very naturally to runs of a certain
kind of automata. This idea was used as a presentation mathredent book on lambda calculi with
types by Barendregt, Dekkers, and Statman. However, thi adso gives the opportunity to bring the
refined techniques of automata theory to proof generati@omstructive logics.

In the talk a model of automata will be presented that can legmdof construction in full intuition-
istic first-order logic. The automata are constructed irhsaevay that any successful run corresponds
directly to a cut-free proof in the logic. This makes it pasito discuss formal languages of proofs and
the closure properties of the automata and their connexctiatih the traditional logical connectives.

It turns out that one can devise two natural notions of autamghe first one that is able to recognise
the language of all the normal forms and one that is able togrdse only proofs in so called total dis-
charge form. This difference will be discussed during tltle aa well as a number of decision problems
around the automata. Of course, the emptiness problem fomaia in their most general presentation
is undecidable, but a number of interesting decidable cakse presented during the talk.

The languages of proofs discussed so far are languages-fseeytroofs. However, proofs in proof
assistants are usually constructed with help of lemmas laaut rule is used there extensively. An
automata theoretic approach to proofs with cuts will alsdibeussed during the talk.

J.C. Blanchette and C. Kaliszyk:
Hammers for Type Theories (HaTT'16)
EPTCS 210, 2016, pp. 2—-2, doi:10.4204/EPTCS.210.2



Extending Nunchaku to Dependent Type Theory

Simon Cruanes Jasmin Christian Blanchette

Inria Nancy — Grand Est, France Inria Nancy — Grand Est, France
Max-Planck-Institut fur Informatik, Saarbriicken, Geny

jasmin.blanchette@inria.fr

simon.cruanes@inria.fr

Nunchaku is a new higher-order counterexample generasatban a sequence of transformations
from polymorphic higher-order logic to first-order logicnlike its predecessor Nitpick for Isabelle,
it is designed as a stand-alone tool, with frontends foroteriproof assistants. In this short paper,
we present some ideas to extend Nunchaku with partial stfipatependent types and type classes,
to make frontends for Coq and other systems based on depapdenheory more useful.

1 Introduction

In recent years, we have seen the emergence of “hammer®graitons of automatic theorem provers
in proof assistants, such as Sledgehammer and HOLyHaminé&diseful as they might be, these tools
are mostly helpless in the face of an invalid conjecture. ibesvand experts alike can enter invalid for-
mulas and find themselves wasting hours (or days) on an inipp@gsoof; once they identify and correct
the error, the proof is often easy. To discover flaws earlyjesproof assistants include counterexample
generators to debug putative theorems or specific subgoas interactive proof. When formalizing
algebraic results in Isabelle/HOL, Guttmann et al. [21] aeked that

Counterexample generators such as Nitpick complementTRe&utomatic theorem prov-
ing] systems and allow a proof and refutation game which efulsor developing and
debugging formal specifications.

Nunchaku is a new fully automatic counterexample genetatohigher-order logic (simple type
theory) designed to be integrated into several proof asgist It supports polymorphism, (co)algebraic
datatypes, (co)recursive functions, and (co)inductivedimates. The tool is undergoing considerable
development, and we expect that it will soon be sufficiendgful to mostly replace Nitpick [8] for
Isabelle/HOL. The source code is freely available ontine.

A Nunchaku frontend in a proof assistant providesumchaku command that can be invoked on
conjectures to debug them. It collects the relevant defimitand axioms, translates them to higher-order
logic along with the negated conjecture, invokes Nunchakul, translates any model found to higher-
order logic. We have developed a frontend for Isabelle/H8R].[We are also working on a frontend for
the set-theoretic TLAProof System [18] and plan to develop frontends for otheofagsistants.

This short paper discusses some of the issues that must Essed to make frontends for Coq [4]
and other systems based on dependent type theory (e.g., beata and Matita) applicable beyond their
simple type theory fragment. We plan to elaborate and imetgrthe approach in a Coq frontend, as
part of the Inria technological development action “Corexemples utilisables par Isabelle et Coq.”

Ihttps://github. com/nunchaku-inria/nunchaku

J.C. Blanchette and C. Kaliszyk: © S. Cruanes and J. C. Blanchette
Hammers for Type Theories (HaTT'16) This work is licensed under the
EPTCS 210, 2016, pp. 3-12, doi:10.4204/EPTCS.210.3 Creative Commons Attribution License.
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2 Overview of Nunchaku

Nunchaku is the spiritual successor to Nitpick but is desigas a stand-alone OCaml program, with
its own input language. Whereas Nitpick generates a suocestfinite problems for increasing car-
dinalities, Nunchaku translates its input to one first-ordgic program that targets the finite model
finding fragment of CVC4 [2], a state-of-the-art SMT (sa#ibility modulo theories) solver. Using
CVC4 as a backend allows Nunchaku to reason efficiently aithimetic constraints and (co)algebraic
datatypes [36] and to detect unsatisfiability in additiorsatisfiability. Support for other backends, in-
cluding Kodkod [43] (used by Nitpick) and Paradox [16], istire works. We also plan to integrate
backends based on code execution and narrowing, as prawd@dickcheck for Isabelle/HOL [10], to
further increase the likelihood of finding counterexamples

Nunchaku’s input syntax is inspired by that of proof assitstebased on higher-order logic (e.g.,
Isabelle/HOL) and by typed functional programming langesa¢e.g., OCaml). The following problem
gives a flavor of the syntax:

data nat := Zero | Suc nat.

pred even : nat — prop :=

even Zero;

Vn. odd n = even (Sucn)
and odd : nat — prop :=

Vn. even n=- odd (Sucn).
val m: nat.

goal even mA — (m= Zero).

The problem defines a datatypef) and two mutually recursive inductive predicategeq andodd), it
declares a constamy, and it specifies a goal to satisfynf‘is even and nonzero”). For counterexample
generation, the negated conjecture must be specified asuhehllku goal. For the example above,
Nunchaku outputs the model

val even := A(n:nat). IF n= Zero V n= Suc (Suc Zero) THEN true ELSE?__n.
val odd := A(n:nat). IF n= Suc Zero THEN true ELSE?__n.
valm  := Suc (Suc Zero).

The output is a finite fragment of an infinite model. The notati?__' is a placeholder for an unknown
value or function. To most users, the interesting part isriterpretation ofn; but it may help to inspect
the partial model oéven andodd to check if they have the expected semantics.

Given an input problem, Nunchaku parses it before applyiagaaence of translations, each reduc-
ing the distance to the target fragment. In our example, thdigateseven andodd are translated to
recursive functions, then the recursive functions are é@eddo allow finite model finding, by limiting
their domains to an unspecified finite fragment. If Nunchakddia model of the goal, it translates it
back to the input language, reversing each phase.

The translation pipeline includes the following phasesfaed from a previous paper [37]):

Typeinference infers types and checks definitions;
Type skolemization replacesia. ¢[a] with ¢[7], wherer is a fresh type;

Monomor phization specializes polymorphic definitions on their type argursearid removes unused
definitions;
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Elimination of equations translates multiple-equation definitions of recursivections into a single
nested pattern matching;

Specialization creates instances of functions with static arguments, @e.argument that is passed
unchanged to all recursive calls);

Polarization specializes predicates into a version used in positiveipasiand a version used in nega-
tive positions;

Unrolling adds a decreasing argument to possibly ill-founded prestica
Skolemization introduces Skolem symbols for term variables;

Elimination of (co)inductive predicates recasts a multiple-clause (co)inductive predicate deimihto
a recursive equation;

A-Lifting eliminatest-abstractions by introducing named functions;
Elimination of higher-order constructs substitutes SMT-style arrays for higher-order functions;
Elimination of recursive functions encodes recursive functions to allow finite model finding;

Elimination of pattern matching rewrites pattern-matching expressions using datatypeidisators
and selectors;

Elimination of assertions encodessSSERTING operator using logical connectives;

CVC4invocation runs CVC4 to obtain a model.

Although our examples use datatypes and well-founded {@ting) recursion, Nunchaku also sup-
ports codatatypes and productive corecursion. In additidimite values, cyclicr-regular codatatype
values can arise in models (e.qg., the infinite strea®910,9,0,9,...) [36].

While most of Nunchaku’s constructs are fairly conventlpmae is idiosyncratic and plays a key
role in the translations described here: TA®SERTING operator, writtert ASSERTING ¢, attaches a
formula o—the guard—to a termt. It allows the evaluation of only if ¢ is satisfied. The construct
is equivalent toF ¢ THEN t ELSE UNREACHABLE in other specification languages (e.g., the Haskell
Bounded Model Checker [14]). Internally, Nunchaku pulls AsSERTING guards outside of terms into
the surrounding logical context, carefully distinguighipositive and negative contexts.

Nunchaku can only find classical models with functional egienality, which are a subset of the
models of constructive type theory. This means the tookttugy with the envisioned encoding, will be
sound but incomplete: All counterexamples will be genumg, no counterexamples will be produced
for classical theorems that do not hold intuitionisticalyWe doubt that this will seriously impair the
usefulness of Nunchaku in practice.

3 Encoding Recursive Functions

When using finite model finding to generate counterexamplesgntral issue is to translate infinite posi-
tive universal quantifiers in a sound way. The situation {gdhess for arbitrary axioms or hypotheses, but
infinite quantifiers arising in well-behaved definitions ¢enencoded soundly. We describe Nunchaku’s
encoding of recursive functions [37], because it is one ef ost crucial phases of the translation
pipeline and it illustrates theSSERTING construct in a comparatively simple setting.

Consider the following factorial example:



6 Extending Nunchaku to Type Theory

rec fact:int —int :=
vn. factn= (IF N <0 THEN 1 ELSE n « fact (n—1)).

val m:int.

goal fact m> 100,
(We conveniently assume that Nunchaku has a standard raftioteger arithmetic, as provided by its
backend CVC4.) The encoding restricts quantificatiofieatis domain to an unspecified, but potentially
finite, typeas.: that is isomorphic to a subset fafct’s argument type and introduces projections. :
@fact — int aNdASSERTING guards throughout the problem, as follows:

val fact:int — int.
axiom V(a: @fact). fact (Yfact @) = (IF Yfact a< O THEN 1
ELSE ¥fact @* (fact (Yfact @— 1) ASSERTING 3(D: @fact)- Yact D= Yfact 2a— 1)).
val m:int.
goal (fact m ASSERTING 3(b: @fact)- Yfact b=m) > 100
The guards are propagated outward until they reach a pethdontext, at which point they can be
asserted using standard connectives:
val fact :int — int.
axiom V(a: afact)- fact (Yfact @) = (IF Yfact @ < O THEN 1 ELSE Yfact @ * fact (yfact a— 1)
A=Y A< OA (D @fact)- Yfact D= Yract a—1).
val m:int.
goal fact m> 100A 3(b: @fact)- Yfact b=m.

The guards ensure that the result of recursive functiors taihspected (i.e., influences the truth value
of the problem) only if the arguments are in the sulaggt, for which the function is axiomatized.

4 Encoding Dependent Datatypes

We propose an extension to Nunchaku's type system with alsiftgvor of dependent types. We as-
sume a finite hierarchy of sorts. A Coq frontend would needuadate the problem’s hierarchy of
universes. Our encoding is similar to the one proposed bgb¥aand Melham [24]. We, too, erase
dependent parameters from types and use additional pteglittaenforce constraints that would be lost
otherwise—with the addition of dependent (co)datatypes(cb)datatypes, we allow term parameters
(such as the length of a list, of typet) to occur as uniform parameters or as indices (i.e., eacstiaan
tor can have a different value for this parameter), but tygemeters should occur uniformly. We only
forbid polymorphic recursion (type indices), because idas compatible with the monomorphization
step Nunchaku currently relies on.

In general, we consider dependent (co)datatype definitbtise form

(co)datat X @ :=
ciiol=srtla

| c:ok—rtka
whereX := (X)), is the tuple of term variables on whiehdependsg := («;)' ; is the tuple of type

variables, the typeso¥)*™(% are the types of the arguments of tkiéa constructor, and the terms



S. Cruanes and J. C. Blanchette 7

tk := ()™, are the term arguments of tfkéh constructor’s return type. More elaborate definitions,
such as those interleaving type and term parameters in mivigaie ways, are beyond the scope of this
approach. We are aiming for a practical balance betweeresspeness and ease of implementation.

Let 7’ @ be the encoding af where all term arguments have been removed. We introducedicpte
inv;, defined inductively (ifr is a datatype) or coinductively (if is a codatatype), that enforces the
correspondence betwegmandr’ a@:

(co)pred inv, : Ma. @ — 7' @ — prop :=
kK [VX(yirag) ... (Yk: agrity(ck))‘
A (/\a”‘y(ck) inv, @ yjk> = inv, @ (a@y)

i=1 j:l,y‘]f:‘r

The predicaténv, has one clause per constructgrof 7, which ensures that if the invariant holds for
every argumen(yj)?f{' (©) of Ck that has typer (a recursive instance @, it also holds forck @ y.

When encoding terms, we process binders on dependentgttyariables recursively as follows:
WYW:t T U ¢ becomesvv: 7 U inv; T v= ¢, and a functiond(x: = T 0). v is translated tol(x :

7/ ). (Vv ASSERTING inv, T X).

Functions whose type depends on terms remain parametdrjztitbse terms after the translation,
but their definition specifies a precondition that links tert parameters to the encoded dependent type.
The use ofASSERTING to encode the precondition ensures that the function isuated only if the
condition is met, irrespective of the context (positivegaiive, or unpolarized) of the function. Finally,
some specific constructs such as equality (in Coq, equaléydependent datatype) are translated directly
into Nunchaku counterparts.

As an example, consider the type of vectors of lemgthlere,n is an index, and is a uniform type
parameter:

data vec : nat — type — type :=
nila : vec 0 @
| V(n:nat) (X:a)(l:vecna).consa x|:vec (Sn) e.

The encoded typeec’ corresponds to the datatype of finite lists, and the invaigan

pred invyec : nat — vec’ @ — prop =
inVyec O (nil @)
| V(n:nat) (X: @) (l:vec @). invyec N1 = invyec (SN) (consa x1).

A formula V(v : vec n 7). ¢ is translated to/(v: vec’ 7). invyec NV=-¢. A functionA(v:vecnr).tis
translated tol(v: vec’ 7). (t ASSERTING invyec NV).
Thus, the function returning the length of a vector(l : vec n @). n, becomes

an(l:vec @). (N ASSERTING invyec N)
Theappend functionAmn(ly : vec ma) (I2 : vec na). t (omitting the body) becomes
amn(ly: vec @) (I2: vec @). (t ASSERTING invyec M Iy Ainvyec N )

And themult function that multiplies two matricedm nk(A : matrix m n) (B : matrix n k). t, returning
a value of typematrix m k becomes

Amn k(A: matrix') (B : matrix’). (t ASSERTING inVmatrix M N AA inViatrix N K B)
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5 Encoding Dependent Records and Type Classes

Type classes are a powerful tool for abstraction in CoqdiéatHOL, and other proof assistants [41,45].
However, in dependently typed proofs assistants such as theg are usually encoded as dependent
records combining types, values, and proofs. We assum¢yphatlasses have been explicitly resolved
by the frontend’s type inference and focus on their reptasiem as a record of values and propositions.
Consider the following example from basic algebra:
class monoid awhere

e:a

op:a—a—a

left_neutral : VX. op e X=X

assoc : VXyz op (op Xy) Zz=op X (opy 2.
This definition of monoids can be encoded in a straightfodwaay as a dependent record—that is, a
datatype with a single four-argument constructor. The dimgpfrom Section 4 could then be applied.
Here, we propose a more specific encoding that avoids intingwan inductive predicat@vmoncid- This
transformation does not use dependent types, and its stdluttontains the required invariants of each
type class, thereby requiring models to satisfy them.

Following our proposed scheme, a type class is translatedaimondependent datatype with one
constructor whose arguments are the data fields ©@andop for monoid). The proofs of the axioms
can be erased, since they serve no purpose for model findidgha additional propertidsft_neutral
andassoc are directly inserted at appropriate places in the problem.

The definition ofmonoid is translated to

iNstmonoid - MNa. a— (a— a— a) — monoid a.

pred left_neutralmenoid : @ monoid a — prop :=
Ve op (VX. op e X= X) = left_neutralmonoid & (iNStmonoid & € 0P .

pred assoCmonoid : & monoid a — prop =
Ve op (YXyzop(op XYy z=0p X(0PY 2) = assOCmonoid & (iNStmonoid & € OP.
A function definition
recf:Ma monoida=a—r71:
V(x:a).fx=t.
is translated to
recf:Ma monoida—a—r7:
V(x:a).fXx=(t ASSERTING left_neutralmonoid & A aSSOCmonoid &) -
In a proof assistant, users must explicitly register typefmatances of type classes. For example,
registeringnat as amonoid instance might involve some syntax such as
instance monoid nat where
e=0
op = (+)
left_neutral = (proof of left_neutral)
assoc = (proof of assoc).
These would not have to be specified to Nunchaku; in a semsatting, any type that satisfies the type
class axioms would be considered a member of the type clsise¢sentially the same reason, only defi-
nitions and axioms need to be specified in Nunchaku problantsnot derived lemmas.) Nonetheless, it
might be more efficient to provide the instantiations to Nalal, so that it can eliminate true conditions
such ageft_neutralmenoid Nat A assocmenoid Nat that can arise as a result of its monomorphization phase.
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6 Reated Work

There are many competing approaches to refuting logicalditas. The main ones afimite model find-
ing andcode executianAlternatives include infinite model generation [11], ctenexample-producing
decision procedures [13], model checking [17], and satmat[1].

Finite model finding consists of enumerating all potentiaité models, starting with a cardinality of
one for the domains. Some model finders explore the searde sjpectly; FINDER [40], SEM [46],
Alloy’s precursor [22], and Mace versions 3 and 4 [30] arehid type. Other tools reduce the problem
to propositional satisfiability and invoke a SAT solver;gbenclude early versions of Mace (or MACE)
[31], Paradox [16], Kodkod [43] and its frontend Alloy [23]nd FM-Darwin [3]. Finally, some theorem
provers implement finite model finding on top of their proofccdus; this is the case for KIV [35],
iProver [25], and CVC4 [38]. To make finite model finding moeeful, techniques have been developed
to search for partial fragments of infinite models [6, 19.32642].

The idea with code execution is to generate test inputs aalliae the goal, seen as a functional
program. For Haskell, QuickCheck [15] generates randontg)BmallCheck [39] systematically enu-
merates inputs starting with small ones, and Lazy SmalliCf@&e] relies on narrowing to avoid eval-
uating irrelevant subterms. A promising combination of ted model checking and narrowing is
implemented in HBMC, the Haskell Bounded Model Checker [14]

In proof assistants, Refute [44] and Nitpick [8] for Isak&HOL are based on finite model finding.
QuickCheck-like systems have been developed for Agda [28helle/HOL [10], PVS [33], FoCaLiZe
[12], and now Coq with QuickChick [34]. Agsy for Agda [27] efogs narrowing. Isabelle’s Quickcheck
combines random testing, bounded exhaustive testing,amowing in one tool [10]. Finally, ACL2 [29]
combines random testing and theorem proving.

Our experience with Isabelle is that Nitpick and Quickchéelke complementary strengths and
weaknesses [5, Section 3.6] and that it would be a mistakelyoon a single strategy. For example,
debugging the axiomatic specification of the#Cmemory model [9] was a heavy combinatorial task
where Nitpick's SAT solving excelled, whereas for the folizetion of a Java-like language [28] it
made more sense to develop an executable specification asiceiQuickcheck. Nunchaku currently
stands firmly in the finite model finding world, but we plan tovelep an alternative translation pipeline
to generate Haskell code and invoke QuickCheck, SmallChesdy SmallCheck, and HBMC.

7 Conclusion

Nunchaku supports polymorphic higher-order logic by aeseoif transformations that yield a first-order
problem suitable for finite model finding. This paper introdd further transformations that extend the
translation pipeline to support dependent types and tyagsek as found in Cog and similar systems.
More work is necessary to fully specify these transfornregjgrove them correct, and implement them.
We plan an integration in Coq but will happily collaboratettwihe developers of other systems to build
further frontends; in particular, we are already in contaith the developers of Lean, a promising new
proof assistant based on type theory.

We generally contend that too much work has gone into engirgeéhe individual proof assistants,
and too little into developing compositional methods aralgevith a broad applicability across systems.
Nunchaku is our attempt at changing this state of affairefamterexample generation.
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Hammers are tools that provide general purpose automatidorfmal proof assistants. Despite the
gaining popularity of the more advanced versions of typemeéhere are no hammers for such sys-
tems. We present an extension of the various hammer comfzoioegpe theory: (i) a translation of
a significant part of the Coq logic into the format of autondgieoof systems; (ii) a proof reconstruc-
tion mechanism based on a Ben-Yelles-type algorithm coetbivith limited rewriting, congruence
closure and a first-order generalization of the left ruleBypékhoff’s system LJT.

1 Introduction

Justifying small proof steps is usually a significant parthe process of formalizing proofs in am
teractive theorem provin@TP), or proof assistantsystem. Many of such goals would be considered
trivial by mathematicians. Still, state-of-the-art ITRguire the user to spend an important part of the
formalization effort on them. The main points that conssttinis effort are usually library search, minor
transformations on the already proved theorems (such adeamag assumptions or reasoning modulo
associativity-commutativity), as well as combining a dmaimber of simple known lemmas. To reduce
this effort various automation techniques have been ceedeincluding technigues from automated rea-
soning and domain specific decision procedures. The stsbiggmeral propose automation technique,
available for various interactive theorem provers todgyavided by “hammers” [10].

Hammers are proof assistant tools that employ externahzatex theorem provers (ATPs) in order
to automatically find proofs of user given conjectures. €hae three main components of a hammer:

e Lemma selection (also called relevance filtering or preraéection) that heuristically chooses a
subset of the accessible lemmas that are likely useful #ogiven conjecture.

e Translation (encoding) of the user given conjecture tograthith the selected lemmas to the logics
and input formats of automated theorem provers (ATPs). dhed is usually on first-order logic
as the majority of the most efficient ATPs today support thigfation. The automated systems
are in turn used to either find an ATP proof or just further aardown the subset of lemmas to
precisely those that are necessary in the proof.

e Proof reconstruction, which uses the obtained informdtiom the successful ATP run, to reprove
the lemma in the logic of the proof assistant.

Robust hammers exist for proof assistants based on higter-togic (Sledgehammer [27] for Is-
abelle/HOL [33], HOLyHammer [20] for HOL Light [18] and HOLEB1]) or dependently typed set
theory (MizAR [21] for Mizar [7, 34, 6]). The general-purposutomation provided by the most ad-
vanced hammers is able to solve 40-50% of the top-level goakrious developments [10], as well as
more than 70% of the user-visible subgoals [11], and as saslvéen found very useful in various proof
developments [17].

Despite the gaining popularity of the more advanced vessibtype theory, implemented by systems
such as Agda [12], Coq [8], Lean [25], and Matita [4], there ao hammers for such systems. The
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construction of such a tool has so far been hindered by tleolisa usable encoding component, as well
as by comparatively weak proof reconstuction.

For the proof assistants whose logics are based on the GaloliConstructions and its extensions,
the existing encodings in first-order logic so far cover dimhyted fragments of the source logic [1, 32, 9].
Why3 [16] provides a translation from its own logic [15] (whiis a subset of the Coq logic, including
features like rank-1 polymorphism, algebraic data typesunsive functions and inductive predicates)
to the format of various first-order provers (in fact Why3 haen initially used as a translation back-
end for HOLyHammer). Recently, an encoding of the depetygléyped higher-order logic of Finto
first-order logic has also been developed [2].

The built-in HOL automation is able to reconstruct the mijoof the automatically found proofs
using either internal proof search [19] or source-levebrstruction. The internal proof search mecha-
nisms provided in Coq, such as therstorder tactic [13], have been insufficient for this purpose so far.
Matita’s ordered paramodulation [5] is able to reconstraany goals with up to two or three premises,
and the congruence-closure based internal automationitees in Lean [24] are also promising.

The SMTCoq [3] project has developed an approach to usenat8AT and SMT solvers and verify
their proof witnesses. Small checkers are implementedyusiflection for parts of the SAT and SMT
proof reconstruction, such as one for CNF computation amdfoncongruence closure. The procedure
is able to handle Coqg goals in the subset of the logic thaesponds to the logics of the input systems.

Contributions. We present our recently developed proof advice componentgge theory and systems
based on it. We first introduce an encoding of the Calculusadéi¢tive Constructions, including the
additional logical constructions introduced by the Codesys in untyped first-order logic with equality.
We implement the translation and evaluate it experimgntall the standard library of the Coq proof
assistant. We advocate that the encoding is sufficient famanter system for Coq: the success rates
are comparable to those demonstrated by early hammer s/ftersabelle/HOL and Mizar, while the
dependencies used in the ATP proofs are most often suffitigmtove the original theorems. Strictly
speaking, our translation is neither sound nor completewdder, our experiments suggest that the
encoding is “sound enough” to be usable. Moreover, we belibat a “core” version of the translation
is sound and we are currently working on a proof of this fact.

Secondly, we present a proof reconstruction mechanisndlmsa Ben-Yelles-type procedure com-
bined with a first-order generalization of the left rules gfdRhoff's LJT, congruence closure and heuris-
tic rewriting. With this still preliminary proof search predure we are able to reprove almost 90% of the
problems solved by the ATPs, using the dependencies eadrftm the ATP output.

2 Translation

In this section we introduce an encoding of (a close appration of) the Calculus of Inductive Con-
structions into untyped first-order logic with equality. erlencoding should be a practical one, which
implies that its general theoretical soundness is not tha foaus, i.e., of course the translation needs to
be “sound enough” to be usable, but it is more important tiaencoding is efficient enough to provide
practically useful information about the necessary pragfathdencies. In particular, the encoding needs
to be shallow, meaning that Coq terms of type Prop are tribldirectly to corresponding first-order
formulas. Our translation is in fact unsound, e.g., it asssiproof irrelevance and ignores certain uni-
verse constraints. However, we believe that under the gasumof proof irrelevance a “core” version
of the translation is sound, and we are currently working prnoaf.
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Below we present a variant of the translation for a fragménihe logic of Coq. The intention here
is to provide a general idea, but not to describe the encadimfgtail. In the first-order language we
assume a unary predica®e a binary predicatd and a binary function symbol @. Usually, we write
instead of @t, s).

For the sake of efficiency, terms of type Prop are encodedttliras FOL formulas using a func-
tion .#. Terms that have type Type but not Prop are encoded usingaidoré as guards which
essentially specify what it means for an object to have thergtype. For instance{f : .o where
T =Tx:apis translated to/f.¥4 (7, f) — .Z# (¢) where¥ (r, f) = Vx4 (e, x) = 4 (B, fX). So¥4(r,f)
says that an objedt has typer = Nx: .8 if for any objectx of type «, the applicationf x has types.
Function.# encoding propositions as FOL formulas is defined by:

o If I -1t:Prop thenZr(MNx:t.s) =% (t) = Zrxt(9).

o If I't/t: Prop thenZr(Mx:t.s) = VX% (t,X) = Fr xt(9).

e Otherwise, if none of the above apply (t) = P(%r (1)).

Function¥ encoding types as guards is defined by:

o If t=TIX:ty.t andl" Fty : Prop ther (Mx:t1.t2, S) = Zr (1) = % xt, (12, 9).

o If t=Tx:t1.tp andl }7/111 - Prop ther%r(l"lx i1t S) =VX% (tl, X) — gr,x:tl (tz, SX).

e Otherwise, whenis not a producr (t,s) = T (u,6r (1)).

Function% encoding terms as FOL terms is defined by:

%r (b) = bfor b being a variable or a constant,

%r(ts) is equal to:
— %r(t)if I's:A:Prop for some,
— %r(t)%r(s) otherwise.
%r(Mx:t.s) = Pyfor a fresh constar® wherey = FV(IMx: t.s) and
— if T (MNx:t.s) : Prop thervy.Py <+ Zr(Mx: t.s) is a new axiom,
— if M/ (Mx:t.s) : Prop thervyzPyz <« % (Mx:t.52) is a new axiom.

%r(AX: ts) = Fywheresdoes not start with a lambda-abstraction any mbris, a fresh constant,
¥y=FV(1X: T's) andvy.7r (VX: LFyX = s) is a new axiom.

e ¢r(case(t,c,n,Ad: @.AX: cpa1,AX : 71.91,...,AXk | Tk-S)) = FY1y> for a fresh constarf where
—I(c:y:k:=cCpiy1ikK1,...,Ck: vk : kk) € E,

- T2=Yy3:p2=FC(I';1),

—T1=VYi:01=FC(I ;%% : po.t(AK : 71.91) ... (A : Th- %)),

— v =NZ:4.N%:7.oifori=1,...k

— the following is a new axiom:

WAFr (W ph . (341K Tt = CiZiXi AFYiY; = 51)
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Heret is the term matched on, the type tofias the formcpd, the integem denotes the number
of parameters (which is the length @j, the typer|[t/&a,t/x] is the return type, i.e., the type of
the whole case expressio& FV(p) = 0, ands[V/X] is the value of the case expression if the
value oft is ¢;pv. The free variable context KC;t) of tin I is defined inductively: FQ;t) = 0;
FC(I,x:7;t) = FC(IM; Ax: 7.t), x: 7 if x€ FV(t); and FGI,x: 7;t) = FC(T';t) if x ¢ FV(t).

In the data exported from Coq there are three types of déidasa definitions, typing declarations

and inductive declarations. We briefly describe how all ehthare translated.
A definitionc=t:7: «kis translated as follows.

e If x =Prop then add” (r) as a new axiom with label

e If x #~ Prop then
— add¥(t,c) as a new axiom,
— if r=Prop then add + .7 (t) as a new axiom with labe],
— if 7= Setorr = Type then add&/f.cf <> ¥ (t, f) as a new axiom with labe,
— if 7 ¢ {Prop Set Type} then add the equation= % '(t) as a new axiom with label

A typing declaratiorc: 7 : « is translated as follows.

e If x =Prop then add” (r) as a new axiom with label

e If x # Prop then ad&/(z,c) as a new axiom with label

An inductive declaratioh(c: 7:«x:=C1:71:k1,...,Cn: Tn : kn) IS translated as follows.
e Translate the typing declaratian 7 : .

e Translate each typing declaration 7 : « fori=1,...,n.

e Add axioms stating injectivity of constructors, axiomstistg non-equality of different construc-
tors, and the “inversion” axioms for elements of the induetiype.

For inductive types also induction principles and recudigimitions are translated.

The above only gives a general outline of the translatiorpréictice, we make a number of optimi-
sations, e.g., the arity optimisation by Meng and Pauls8i & translating fully applied functions with
target type Prop directly to first-order predicates.

3 Reconstruction

We report on our work on proof reconstruction. We evaluage@bq internal reconstruction mechanisms
including tauto andfirstorder [13] on the original proof dependencies and on the ATP fouodfs,
which are in certain cases more precise. In particflatstorder seems insufficient for finding proofs
for problems created using the advice obtained from the AIFB.rThis is partly caused by the fact that
it does not fully axiomatize equality, but even on problentgcl require only purely logical first-order
reasoning its running time is sometimes unacceptable.

The formulas that we attempt to reprove usually belong tgnfrants of intuitionistic logic low in the
Mints hierarchy [29]. Most of proved theorems follow by camibg a few known lemmas. This raises a
possibility of devising an automated proof procedure oz for these fragments of intuitionistic logic,
and for the usage of the advice obtained from the ATP runs.migeimented a preliminary version of a
Ben-Yelles-type procedure (essentiadyuto-type proof search with a looping check) augmented with
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Prover Solved% Solved Sum% Sum  Unique
Vampire 32.9 6839 32.9 6839 855
Z3 27.6 5734 34.9 7265 390

E Prover 25.8 5376 35.3 7337 72
any 35.3 7337 35.3 7337

Table 1: Results of the experimental evaluation on the 2@8DB problems generated from the propo-
sitions in the Coq standard library.

a first-order generalization of the left rules of Dyckhof§gstem LJT [14], the use of theongruence
tactic, and heuristic rewriting using equational hypo#ses

It is important to note that while the external ATPs we empéog classical and the translation
assumes proof irrelevance, the proof reconstruction ptlass not assume any additional axioms. We
reprove the theorems in the intuitionistic logic of Coqeefively using the output of the ATPs merely
as hints for our hand-crafted proof search procedure. Toreref the ATP proof is inherently classical
then proof reconstruction will fail. Currently, the onlyfimmation from ATP runs we use is a list of
lemmas needed by the ATP to prove the theorem (these are #uitieel context) and a list of constant
definitions used in the ATP proof (we try unfolding these ¢ants and no others).

Another thing to note is that we do not use the informationtaimed in the Coq standard library
during reconstruction. This would not make sense for ouluati@mn of the reconstruction mechanism,
since we try to reprove the theorems from the Coq standardriib In particular, we do not use any
preexisting hint databases available in Coq, not even the database (we use th@ato andeauto
tactics with thenocore option). Also, we do not use any domain-specific decisiorc@uares available
as Coq tactics, e.gfjield, ring Or omega.

4 Evaluation

We evaluated our translation on the problems generateddtomeclarations of terms of type Prop in the
Coq standard library of Coq version 8.5. We used the follgvdglassical ATPs: E Prover version 1.9 [30],
Vampire version 4.0 [22] and Z3 version 4.0 [26]. The metHodp was to measure the number of
theorems that the ATP could reprove from their extended ntdgrecies within a time limit of 30 s for
each problem. The extended dependencies of a theorem afeaubby taking all constants occuring in
the proof term of the theorem in Coq standard library, andns#eely taking all constants occuring in
the types and non-proof definitions of any dependencieaeeil so far. Because of the use of extended
dependencies, the average number of generated FOL axianas fmblem is 193. We limited the
recursive extraction of extended dependencies to depth 2.

The evaluation was performed on a 48-core server with 2.2 &P Opteron CPUs and 320 GB
RAM. Each problem was always assigned one CPU core. Tablexsshe results of our evaluation. The
column “Solved%” denotes the percentage (rounded to thedfigmal place) of the problems solved by
a given prover, and “Solved” the number of problems solvebbthe total number of 20803 problems.
The column “Sum%” denotes the percentage, and “Sum” thé not@ber, of problems solved by the
prover or any of the provers listed above it. The column “Weigdenotes the number of problems the
given prover solved but no other prover could solve.

We also evaluated various proof reconstruction mechan@ntse problems originating from ATP
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Tactic Time Solved%  Solved
yreconstr0 10s 26.8 1965
yreconstr 1s 83.1 6097
yreconstr 2s 85.8 6296
yreconstr 5s 87.5 6421
yreconstr 10s 88.1 6466
yreconstr 15s 88.2 6473
simple 1s 50.1 3674
firstorder’ 10s 69.6 5103
jprover 10s 56.1 4114
any 90.1 6609

Table 2: Results of the evaluation of proof reconstructioribe 7337 problems solved by the ATPs.

proofs of lemmas in the Coq standard library. In our settthg, Ben-Yelles-type algorithm mentioned
in the previous section tends to perform significantly bidttan the available Coq’s tactics. The results
of the evaluation are presented in Table 2. Our tagtie ¢onstr) manages to reconstruct about 88% of
the reproved theorems. However, it needs to be remarkedf tvatuse the advice obtained from ATP
runs then about 50% of the the reproved theorems follow byngbamation of hypothesis simplification,
the tacticsintuition, auto, easy, congruence and a few heuristics (tactisimple). Moreover, the
yreconstr tactic without any hintsyreconstr0), i.e., without using any of the information obtained
from ATP runs, achieves a success rate of about 26%. Theg&uotion success rate of ti¢rstorder
tactic combined with various heuristics is about 70% if genaxioms for equality are added to the
context (tacticfirstorder’). The jp tactic (which integrates the intuitionistic first-ordertamated
theorem prover JProver [28] into Coq) combined with varibesiristics and equality axioms (tactic
jprover) achieves a reconstruction success rate of about 56%. Gvinisuccess rate is explained by the
fact that in contrast to theéirstorder tactic thejp tactic cannot be parameterised by a tactic used at
the leaves of the search tree when no logical rule applies.
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This extended abstract reports on current progress of SMT&communication tool between the
Coq proof assistant and external SAT and SMT solvers. Baseddahecker for generic first-order
certificates implemented and proved correct in Coq, SMTGteyofacilities both to check external
SAT and SMT answers and to improve Coq's automation usinly salvers, in a safe way. Currently
supporting the SAT solver ZChaff, and the SMT solver veriiftie combination of the theories of
congruence closure and linear integer arithmetic, SMTGageant to be extendable with a reason-
able amount of effort: we present work in progress to suppp@SMT solver CVC4 and the theory
of bit vectors.

1 Introduction

SMTCod [1] is a tool that allows the Coq [2] proof assistant to cominate with external automatic
solvers for Boolean satisfiability (SAT) and Satisfiabilitfodulo Theories (SMT). Its twofold goal is to:

e increase the confidence in SAT and SMT solvers: SMTCoq pesvah independent and certified
checker for SAT and SMT proof withesses;

e safely increase the level of automation of Coq: SMTCoqg mesistarting safe tactics to solve a
class of Coq goals automatically by calling external s@h\ard checking their answers (following
askepticalapproach).

SMTCoq currently supports the SAT solver ZChaff [19] andSiMT solver veriT [10] for the quantifier-
free fragment of the combined theory of linear integer amittic and equality with uninterpreted func-
tions. For this combined theory, SMTCoq’s certificate cleedkas proved to be as efficient as state-of-
the-art certified checkers [1, 9].

There is a large variety of SAT and SMT solvers, with each eotypically excelling at solving
problems in some specific class of propositional or firseomtoblems. While the SAT and SMT com-
munities have adopted standard languages for expreisgingproblems (namely the DIMACS standard
for SAT and the SMT-LIB [4] standard for SMT), agreeing on antnonoutputlanguage for proof wit-
nesses has proven to be more challenging. Several fornigt2116] have been proposed but none has
emerged as a standard yet. Each proof-producing solvegrtlyrimplements its own variant of these
formats.

1SMTCoq is distributed as free softwarenattps : //github. com/smtcoq/smtcoq.

J.C. Blanchette and C. Kaliszyk:
Hammers for Type Theories (HaTT'16)
EPTCS 210, 2016, pp. 21-29, doi:10.4204/EPTCS.210.5
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Figure 1: SMTCoqg’'s main checker and its uses

To be able to combine the advantages of multiple SAT and SMMespdespite the lack of com-
mon standards for representing proof certicates, SMTCsdokan designed to be modular along two
dimensions:

e supporting new theories: SMTCoq’s main checker is an exeledcombination of independent
small checkers

e supporting new solvers: SMTCoq’s kernel relies on a geregitificate format that can encode
most SAT and SMT reasonings for supported theories; thedémg@an be done duringm@epro-
cessingphase, which does not need to be certified.

In this abstract, we emphasize the key ideas behind the mdtyubf SMTCoq, and validate this
by reporting on work in progress on the integration of the Séélver CVC4 [3] and the theory of bit
vectors. We simultaneously aim at:

¢ offering to CVC4 users the possibility to formally checkdsswers in a trusted environment like
Coq;

e bringing the power of a versatile and widely used SMT soliker CVC4 to Coq;

e providing in Coq a decision procedure for bit vectors, a thewidely used, for instance, for
verifying circuits or programs using machine integers.

2 The SMTCoq Tool

2.1 General Idea

The heart of SMTCoq is a checker for a generic format of ceatifis (close to the format proposed
by Bessoret al. [6]), implemented and proved correct inside Coq (see Figale Taking advantage
of Coq's computational capabilities the SMTCoqg checkeully/fexecutable, either inside Coq or after
extraction to a general-purpose language [18].

The Coq signature of this checker is the following:

checker : formula — certificate — bool
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where the typeformula represents the deep embedding in Coq of SMT formulas, andytre
certificate represents SMTCoq’s format of certificates.

The checker’s soundness is stated with respect to a tramsfanhction from the deep embedding of
SMT formulas into Coq terms:

[e] : formula — bool
that interprets every SMT formula into its Coq Boolean ceupart. The correctness of the checker:
checker_sound : V f c, checker f c = true — [f]

thus means that, given a formula and a certificate for whiehctiecker answers positively, then the
interpretation in Coq of the formula is valid.

The choice of the type of Booleabsol as the codomain of the translation functifw], instead of
the type of (intuitionistic) propositionBrop, allows us to handle the checking of the classical reasoning
made by SMT solvers without adding any axioms. The SSRefl&jtfjlugin for Coq can be used to
bridge the gap between propositions and Booleans for tlaigseconsidered by SMTCog. The major
shortcoming of this approach is that it does not allow qdi@ns inside goals sent to SMT solvers,
although it does not prevent one from feeding these solvakersally quantified lemmas. To increase
the expressivity of SMTCoq with respect to quantifiers, orilk meed to switch to propositions, and
handle classical logic either by axioms or by restrictingrtion to decidable atoms of the considered
combined theory.

The first use case of this correct-by-construction checkéw theck the validity of a proof witness,
or proof certificatecoming from an external solver against some input probleigu¢e 1b). In this use
case, the trusted base is both Coq and the parser of the imghlem. The parse is part of the trusted
based because we need to make sure we are effectively ngridyproof of the problem we sent to the
external solver. However, this parser is fairly straightfard.

The second use case is within a Coq tactic (Figure 1c). We iwaragCoq goal to an external solver
and get a proof certificate for it. If the checker can validat certificate, the soundness of the checker
allow us to establish a proof of the initial goal. This pracésknown asomputational reflectioms it
uses a computation (here, the execution of the checkederssproof. In this use case, the trusted base
consists only of Coq: if something else goes wrong (e.g.chleeker cannot validate the certificate), the
tactic will fail, but nothing unsound will be added to the t&ys.

In both cases, a crucial aspect for modularity purposeseiptissibility topreprocesgroof certifi-
cates before sending them to the SMTCoq checker, withouhgdw prove anything about this prepro-
cessing stage. Again, if the preprocessor is buggy, thekehadll fail to validate the proof certificate (by
returningfalse), which means that while nothing is learned, nothing ungagelded to Coq’s context.
This allows us to easily extend SMTCoqg with new solvers: aglas the certificate coming from the
new solver can be logically encoded into SMTCoq’s certiidarmat, we can implement this encoding
at the preprocessing stage. As a result, SMTCoq’s currgmtcstifor both ZChaff and veriT is provided
through the implementation of a preprocessor for each soBeth preprocessors convert to the same
proof format, thus sharing the same checker.

Using a preprocessor is also beneficial for efficiency: pomofificates may be encoded more com-
pactly before being sent to the SMTCoq checker, which mayadwgperformance.

2.2 The Checker

We now provide more details on the checker of SMTCoqg. As piteskin Figure 2, it consists ofraain
checkerobtained as the combination of sevesaiall checkerseach specialized in one aspect of proof
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checking in SMT (e.g., CNF conversion, propositional re@sg, reasoning in the theory of equality,
linear arithmetic reasoning, and so on).

formula certificate

Small{checkers

™ resolution chains |

Main checker

/ \ Coq checker

yes no

Figure 2: Internals of the Coq checker

The typecertificate is actually the aggregation of specialized types, one fohamall checker.
The role of the main checker is thus to dispatch each piedesafdrtificate to its dedicated small checker,
until the initial formula is proved.

A small checker is a Coq program that, given a (possibly ejrglyof formulas and a certificate
associated with it (which may be just a piece of the inputifteate), computes a new formula:

small_checker : list formula — certificate_sc — formula
The soundness of thehecker comes from the soundness of each small checker, stated@asspl

small_checker_sound : V f1 ... f, c,
[£f1] A ... A [fn] — [small_checker [f1;...;fn] c]

meaning that the small checker returns a formula which idieddafter translation into Coq’s logic) by
the conjunction of its premises. Note that the list of praamimay be empty: in such a case, the small
checker returns a tautology in Coq.

Here are some examples of small checkers.

e For propositional resolution chains, the checker takespstia list of premises and returns a
resolvent if it exists, or a trivially true clause otherwise this case, a certificate is not required as
part of the small checker’s input.

e For the theory of equality with uninterpreted functions lxhe checker takes as input a formula
in this theory formulated as a certificate (corresponding toeory lemma produced by the SMT
solver), and returns the formula if it is able to check it, driaally true clause otherwise. In this
case, no premises are given.
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e Forlinear integer arithmetic (LIA), the checker works damliy to the EUF checker, but checks the
formula using Micromega [5], an efficient decision procegfar this theory implemented in Coq.

The only thing that small checkers need to share is thetypaula, and its interpretation into Coq
Booleans. Each small checker may then reason independesithg separate pieces of the certificate.
Again, this is crucial for modularity: to extend SMTCoq wighnew theory, one only has to extend
the typeformula with the signature of this theory and, independently of tineaaly existing checkers,
implement a small checker for this theory and prove its soess.

Notice that “small checker” can be understood in a very garsanse: any function that, given a list
of first-order formulas, returns an implied first-order faden can be plugged into SMTCoq as a small
checker. In principle, such a checker could even be as congsl@n SMT solver, as long as it can be
proved correct in Coqg.

3 Work in Progress: Extensions to CVC4 and Bit Vector Arithmetic
3.1 Support for CVC4

CVC4 is a proof-producing SMT solver, whose proof format éasdd on the Logical Framework with
Side Conditions (LFSC) [21]. LFSC extends the EdinburghitaigFramework (LF) [14] by allowing
types with computationaide conditionsexplicit computational checks defined as programs in alsmal
but expressive functional first-order programming languaihe language has built-in types for arbitrary
precision integers and rationals, ML-style pattern maigtover LFSC type constructors, recursion, a
minimal support for exceptions, and a very restricted seinplerative features. One can define proof
rules in LFSC as typing rules that may optionally includedesiondition written in this language. When
checking the application of such proof rules, an LFSC checkeputes actual parameters for the side
condition and executes its code; if the side condition féile LFSC checker rejects the rule application.
The validity of an LFSC proof witness thus relies on the acirress of the side condition functions used
in the proof. LFSC comes with a set of pre-defined side camdtifor various theories, used by the
CVC4 proof production mechanism.

The key differences between LFSC and the SMTCoq format asepted in Table 1.

LFSC SMTCoq
Rules| deduction + computation deduction + certificate
Nested proofg supported not supported

Table 1: Main differences between the LFSC and SMTCoq asatidiformats

The major difference lies in the presentation of the deduactules. In SMTCoq, the small checkers
deduce a new formula from already known formulas, possilitki the help of a piece of certificate that
depends on the theory. The LFSC format is more uniform, thémkhe side conditions described above.

To support LFSC, and so CVC4, we are in the process of impléngefin OCaml) an untrusted
preprocessor that transforms LFSC proofs into SMTCoq grodfo this end, for some theories, we
need to replay parts of the side conditions, in order to predhe corresponding SMTCoq premises,
conclusion and piece of certificate that will be passed tasthall checkers. This encoding, however, is
relatively straightforward:

e for propositional reasoning, LFSC side conditions use #&meslogical content as SMTCoq rules;
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e CNF conversion and EUF proofs are nested in LFSC, so theyireegame processing for the
moment;

¢ for linear integer arithmetic, since SMTCoq relies on arséng decision procedure in Coq, it
only needs to know what theory lemma is being proved, and graoré the actual proof steps in
the LFSC certificate.

One difficulty in translating LFSC proofs to the SMTCoq fotmtames from to the possibility in
LFSC of using natural-deduction-style proofs, where omerezst one proof inside another. For instance,
it is possible to have lemmas inside an LFSC proof whose agiee are themselves LFSC proofs. The
architecture of the main and small checkers of SMTCoq doégunoently allow this sort of nesting:
every clause produced by the small checkers needs to becactiresequence of input clauses or clauses
that were previously produced. To encode an LFSC proof iM®Soq, our preprocessor thus linearizes
nested proofs. The LFSC proofs generated by CVC4 are catetiin such a way that this does not
cause a blow-up in practice; however, to support LFSC iniggnee plan to extend SMTCoq certificates
with nested proofs. Again, this extension should be madelag the modularity inside the checker. It
should impact only the main checker, and not the variouslsrhatkers already in SMTCoqg.

3.2 Support for Bit Vector Arithmetic

CVC4 has been recently extended to produce LFSC proofs éogulantifier-free fragment of the SMT
theory of bit vectors [13]. To check proof certificates irsttheory, SMTCoq needs be extended with it.
As explained in Section 2.2, to do that one needs to:

1. extend the Coq representation of formulas with the sigeatf the bit vector theory and the
interpretation function into Coq terms;

2. implement (new) small checkers and their correspondergjficates for this theory, and prove
their correctness.

Step 1 is a simple extension on the SMTCoq side. The majocdiif§i is that Coq itself has limited
support for bit vectors. Its bit vector library provides ypithe implementation of bitwise operations
(and not arithmetic operations), and no proofs. We are thma®otly implementing a more complete
library for this theory. Step 2 involves implementing andliagy new certified Coq programs (the small
checkers). As mentioned, however, because of SMTCoqg'gulesbne of the previous small checkers
and their proofs of correctness need to be changed as aoéthik addition.

LFSC proofs for bit vectors produce by CVC4 mainly involve flollowing two kinds of deduction
steps:

e bit-blasting steps that reduce the input bit vector formula to an equigalble propositional for-
mula;

e standard propositional reasoning steps (based on resgluti

The propositional steps can be handled directly by prevsonall checkers. For the bit-blasting steps, we
implemented new small checkers that relate terms of thesliiov theory with lists of Boolean formulas
representing their bits; we are currently working on pradggroofs of correctness in Coq for these
small checkers.

LFSC proofs generated by CVC4 involve a third kind of steprmfola simplifications based on
the equivalence of two bit-vector terms or atomic formulas (hstance, by normalizing inequalities).
Currently, these simplification steps are not provided aitéet LFSC subproof by CVC4, although there
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are plans to do so in the near future. In the current SMTCodgmentation then, we assume those steps,
as in the LFSC proof coming from CVC4, or let the user proventhia the case of tactics. Since those
steps correspond to applications of CVC4-defined rewriiing simplification rules, we plan for now to
prove the correctness of these rules once and for all at tlyel&vel, and to pre-process simplification
steps into applications of these rules.

4 Related Work

In addition to related work already discussed throughoetpidwper, we now briefly mention a few more
notable projects. Heulet al. implemented an efficient checker for state-of-the-art Sédhniques,
verified in ACL2 [15, 24]. It is mainly based on a generaligatiof extended resolution [22, 17] and
on reverse unit propagation [11]. SMTCoq currently handlely standard extended resolution for its
propositional part.

Efficient proof reconstruction for SAT and SMT solvers hasrbémplemented in proof assistants
based on higher-order logic [23, 9]. Some of these recatt&gins also handle the theory of bit vec-
tors [8]. This approach is based on translating SAT/SMTifieates to applications of the inference
rules of the kernels of these proof assistants. In conastapproach in Coq is based on computational
reflection: the certificate is directly processed by the cidn mechanism of Coqg’s kernel.

Based on an efficient encoding of a large subset of HOL go#idfiirst-order logic, the Sledgeham-
mer tactic [20] allows HOL-based proof assistants to effitjeand reliably help manual proving. Proofs
are replayed using either the proof reconstruction meshamiescribed above or a built-in first-order
prover. We hope that SMTCoq can help in adding such techsaiinte Coq and other Type Theory-
based proof assistants, by providing a proof replay meshabased on certificates.

5 Conclusion and Future Work

SMTCoq has been designed to be modular in such a way thatiécits extension with new solvers
and new theories. In particular, such extensions shouldagptire any changes in existing checkers or
in their proofs of soundness. Thus, while it may require seffat to certify new small checkers or to
translate new proof formats into the SMTCoq format, suclemsions require only local changes. Our
current extensions to CVC4 and bit vectors arithmetic za#idhis goal: indeed, the work so far consisted
mostly in implementing an untrusted preprocessor forfiegsites and adding new, independent checkers.
One limiting aspect of SMTCoq is the lack of support for ndgteoofs, which we plan to add. Thanks
to the modularity of the checker, we believe this featuredmo be added locally.

In the future we plan to continue extending the expressinftpMTCoq, and in particular to offer
support for the SMT theory of arrays (for which CVC4 is alsogifrproducing). We believe we can
match, and perhaps even improve upon existing work in tefrefficiency.

The current major limitation of SMTCoq resides in its setadtics: presently, it can only handle
goals that are directly provable by SMT solvers, without meacoding of Coq logic into first-order
logic. Our longer term plan is to combine ongoing workl@mmering7] for proof assistants based on
Type Theory (such as Coq) with the certificate checking ciipab offered by SMTCoqg.
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An efficient intuitionistic first-order prover integratedt® Coq is useful to replay proofs found by
external automated theorem provers. We propose a two-@mgseach: An intuitionistic prover
generates a certificate based on the matrix charactenzattiotuitionistic first-order logic; the cer-
tificate is then translated into a sequent-style proof.

1 Introduction

Sledgehammer [11] and HOLyHammer [5] drastically improtreglproductivity for users of proof assis-
tants. They make the capabilities of automated theoremepsdATPs) available from within interactive
proof assistants.

The large, monolithic design of state-of-the-art theoreovers can not be easily trusted to be free of
bugs. Thus invoking theorem provers as an oracle is unaagleptor most users. Proof assistants are
more trustworthy because all reasoning is checked by a kieteationally kept small.

To integrate external provers, small yet efficiagrtifiedproversintegratedinto the proof assistant are
used: Although it is often possible to mechanically trarestae proof to a format accepted by the proof
assistant, the integrated prover allows for the reconstrugvithout the full knowledge of all axioms and
rules used by the external prover. Thus an integrated peigalifies the integration of not only one but
different external provers.

There has been effort to integrate classical provers intp €g. SMTCoq [1], Satallax [3] and why3
[2], but they produce proofs that assume classical axiorssa #&ir amount of proof developments avoids
assuming additional axioms, the acceptance of a future iammer’ benefits from the integration of
an efficient,intuitionistic prover.

2 Existing Intuitionistic Provers in Coq

The existing intuitionistic first-order provers integrtanto Coq are not very strong. We evaluated
firstorder [4], a built-in tactic based on a sequent calculus, and Heriiv], a plugin available for
Cog. Using Coq versioBa.6pl1, we considered first-order problems that are likely to eméng future
‘Cog Hammer'.

For example, we tested formulas where the instantiate afitfigas is not immediately determined
using a goal-driven approach:

(WX, x = X) A (VX, PXV QX)
A (VXy,Xx =Yy APX= Ry) A (VXy,x =y A Qx=- Ry) = (¥X,RX).

J.C. Blanchette and C. Kaliszyk:
Hammers for Type Theories (HaTT’'16) © Fabian Kunze
EPTCS 210, 2016, pp. 30-35, doi:10.4204/EPTCS.210.6
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On this formulafirstorder was unable to find a proof during the several minutes we rulPitover
succeeded in less than one second.

We also invoked both provers on several set-theoreticdll@nas from the ILTP (Intuitionistic Logic
Theorem Proving) library [12]. Similar to the intended uase;, we only supplied the axioms needed for
the proofs, resulting in problems like

(VABX,X € AUB« X € AV X € B)
A (VABA=B< ACBABCA)
A (VABAC B VX, X € A= X €B) = (VA AUA=A).

On this and similar problems, boffirstorder and JProver failed to find proofs before we aborted
them after running several minutes.

Therefore, faster intuitionistic provers integrated iftoq are necessary for a ‘Cog Hammer’ used in
practice.

3 Proposed Architecture

We propose to employ the recent improvements on automattedtjonistic first-order theorem proving
by Otten: ileanCoP [7, 8] and the forthcoming intuitiorgstiersion of nanoCoP [10, 9]. The existing
implementations of both provers verified that the formutaSeéction 2 are valid in under a second. Both
provers are based on the existence of proof certificatehémiatrix characterization of (intuitionistic)
validity [15], which can be translated to sequent-styleofsd13].

This architecture is similar to that of JProver (which udes same characterization of validity), but
uses a more efficient proof search procedure, leading toheehgyccess rate.

3.1 Finding Proof Certificates

The performance of ileanCoP is well in identifying valid riaulas, compared to other intuitionistic
provers [8]. But it does not keep track of the proof found. tRewmore, it is based on@ausalvariant

of the matrix characterization for intuitionistic logich& necessary translation into a non-clausal matrix
proof has been sketched in the correctness proof of ileafidpBut to our knowledge has not yet been
implemented.

The classical prover nanoCoP [10] solves both problemsutipuds the proof certificate found and
uses the non-clausal matrix characterization of classaadity. Otten is currently extending nanoCoP
to an intuitionistic variant by integrating prefix unificati [15], a method already employed to derive
ileanCoP from the classical prover leanCoP.

In our proposed architecture, the proof certificate for a-firder formulaF consists of anultiplicity
M, a pair of substitutionsy = (0q,0;) and a set of pairs of-complementaryatoms in the formula
(connections) thaépans F.

We will now give an very informal intuition about this certifite.

A Part of the certificate is already needed for the matrix @tt@rization of classical logic: The mul-
tiplicity u takes care of the multiple instances an all-quantified suffita of F may be needed in the
proof. One part of &-complementary’ ensures that that two atoms in a conneetieridentical under
the (non-circular) term substitutiasg, but have different polarity.

The set of connectionspansthe formula if everypath through the formula contains at least one
connections. In the quantifier-free case, each path cames a disjunction in the conjunctive normal
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form. In the case of formulas with quantifiers, each pathesgond a branch of a (classical) analytic
tableaux, where quantifiers are instantiated accordingyto

The main difference in the intuitionistic characterizatie the use o to ensure that the positions of
the pair of complementary atoms in the formula are ‘comptifi he position of an atom is defined by
structural recursion on the formula and represented byirgstronsisting of fresh constants and fresh
variables.

An example of this for an intuitionistic valid formula B =- P, where the two atoms can be made
complementary: The position of the fildtis described by the stringwith a fresh variable, while the
position of the secon® is the stringa consisting of a fresh constaat Defining 0;(z) = a unifies those
strings.

For the formula—P Vv P, a theorem of classical, but not intuitionistic logic, theotatoms can not be
made complementary: The position of the fiPss described bya, while the one for the secor@lis b.

As the second position contains no variable anénwe can never unify those strings.

This concept generalizes to quantified formulas, but fontlaé idea, it suffices to study the cases for
non-quantified formulas.

For a more formal definition and a few more examples, we recenththe first two Sections of [7],
and Chapter 8, 84 of [15].

It should be noted that one of the main improvements of naRog@mnpared to JProver is the handling
of the multiplicities: nanoCoP adds instances of subfoamwuring the proof search as needed, while
JProver fixes the multiplicity before searching for an promfi failure, an additional instance of the
whole formula gets added and the proof is retried. Althougthtare complete, the first approach is
more goal-driven and thus expected to be more efficient.

3.2 Generating Sequence Proofs

The high-level idea is that the proof certificate guarantkason each branch of the sequent-style proof,
eventually complementary atoms are found. The difficultypisraverse the formulas in the right order,
which depends owoj;.

The translation of a matrix characterisation proof cedificinto a sequent-style proof has already
been investigated and implemented for JProver[13]. Wenthte adopt this translation, as we expect it
to be reasonable fast: In the examples we tried and whereelPsocceeded, the sequence-style proof
produced was rather short. In the cases where JProver dslinoged in an acceptable time, it did not
even reach the sequence-proof generation. Thus we conitiatithe bottleneck of JProver, at least in
the examples we tried, is the proof certificate search.

4 Discussion

Modular vs Monolithic

We explicitly want to use a modular implementation for theo tphases, possibly written in multiple
languages. The Prolog version of the intuitionistic varieihinanoCoP is expected to materialize soon
and there is already an implementation of the sequence gewrating algorithm integrated into Coq.
Thus we expect no challenge in creating a prototype of thgestgd architecture using the Prolog
program. This would allow us to test whether the proposedpsistsuitable for the intended use case.
In the longer term, it would be desirable to have a native Oldmaplementation of the proof search
procedure, allowing for a deployment within Coq, without#inal binaries. The classical leanCoP
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has been ported to OCaml for the HOL light proof assistartt) pérformence comparable to the Prolog
version[6]. This port can serve as a starting point for aveaCaml version of the forthcoming intu-
itionistic nanoCoP. Then, the modular approach allows toaoplly use external proof procedures. This
allows to evaluate improvements to the Prolog proof prometefore porting them.

Also, a modular design allows to more easily use parts ane@mehtation this for other, intuitionistic
proof assistants. This additional usage should be kept i mihile developing this, and other, tools
towards Hammers in Type Theory.

Explicit Proofs vs Reflection

One approach in proof automation in Coq is ‘proof by reflacticome or all parts of the the proof
search procedure are written in Coq, including a correstpesof. The proof of a statement thisrthe
call to this Coq procedure.

One argument for ‘proof by reflection’ in Coq is the efficiendyut this is just a benefit compared
to an implementation using Ltac, the tactic language in Cblge evaluation of native Coq terms is
heavily optimized to the extend of native machine code ctatiph and execution. In contrast, Ltac is
just interpreted on top of several layers of abstraction.w&spropose to use OCaml, not Ltac, for the
computationally intense parts, this argument does notydpgre.

We assume that the search for the proof certificate could ve easily written, modified, or enriched
with heuristics, when using a language allowing side effébis discourages the use of reflection in the
first part of our proposed architecture.

Reflection seems to be more reasonable for the second mattatislation to a sequence proof: There
is no need to explicitly generate the sequence proof whentidie# procedure guarantees that the se-
guence prootioesexist when the certificate satisfies the appropriate canditi

The challenge here would be that the proof certificate musbtated with type information rich
enough to reduce to proofs for all formulas we intend to probis means that when the terms in
the formula are not single sorted, but have of more complprdye.g. dependent types, this must be
incorporated in the proof certificate, the translation pohae itself and its correctness proof. At first,
it seems that a benefit would be that the translation is préwdye sound by design. But to check the
conditions that a proof certificate is indeed valid is mordegs computationally equivalent hard as to
generating a sequence-style proof.

Another aspect to consider is that some usage, a formulésthat first-order can be transformed into
an first-order formula such that a proof of the later formwa be translated back to a proof of the former
formula. In a reflective proof reconstruction, this intediate steps may can not type-check.

Intuitionistic vs Classical

Automated theorem proving in intuitionistic logic is contationally harder than in classical logic. For
developments assuming classical axioms, the intuitiengsrt of both phases can be made optional,
resembling the classical proof search of nanoCoP withguifgtant overhead.

Note that the proof search in this proposed architecturs deéher need skolemization nor clausal
normal forms. Thus more structure of the different lemmasb@arts of the formulas is preserved and in
some sense, this approach is closer to humans reasonirigefFuvestigation of this architecture could
lead to insights useful for automated reasoning in prodéts¥s of classical logic.
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