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Preface

This volume of EPTCS contains the proceedings of the First Workshop on Hammers for Type Theories
(HaTT 2016), held on 1 July 2016 as part of the International Joint Conference on Automated Reasoning
(IJCAR 2016) in Coimbra, Portugal.

HOLyHammer for HOL Light and HOL4, Sledgehammer for Isabelle/HOL, and other similar tools
can have a huge impact on user productivity. These integrateautomatic theorem provers (including SMT
solvers) with proof assistants. However, users of proof assistants based on type theories, such as Agda,
Coq, Lean, and Matita, currently miss out on this convenience. The expressive, constructive logic is often
seen as an insurmountable obstacle, but large developments, including the CompCert compiler, typically
postulate the classical axioms and use dependent types sparingly.

The workshop features four regular papers, three regular presentations, and two invited talks by
Pierre Corbineau (Verimag, France) and Aleksy Schubert (University of Warsaw, Poland).

We would like to thank the authors for submitting papers of high quality to these proceedings, the
program committee and external reviewers for diligently reviewing the submissions, and the local orga-
nizers of IJCAR 2016 for their help in organizing HaTT 2016.

6 June 2016 Jasmin Christian Blanchette
Cezary Kaliszyk
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• Stéphane Graham-Lengrand,École polytechnique
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Generic Automation for the Coq Proof Assistant:
Design and Principles

Pierre Corbineau
Verimag, Université Grenoble Alpes, France

Proof-editing in the Coq proof assistant is conducted usinga wide variety of procedures called tactics.
Several of these tactics host automated proof-search procedures addressing generic or specific logical
problems.

Generic automation tactics try to provide help without relying on the existence of a specific theory
or axiom, whereas specialised tactics address logical problems expressed in specific object-level theories
such as linear arithmetic, rings, fields, . . .

In this talk, we will focus on several examples of generic automation procedures. We will first
describe how they work, and then show how they can interact with each other and other Coq features.
Finally we will discuss their usefulness and weaknesses, and the pertinence of the generic approach.
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Proof Generation in Propositional Intuitionistic Logic
Based upon Automata Theory

Aleksy Schubert and Maciej Zielenkiewicz
Institute of Informatics, University of Warsaw, Poland

The process of proof construction in constructive logics corresponds very naturally to runs of a certain
kind of automata. This idea was used as a presentation methodin recent book on lambda calculi with
types by Barendregt, Dekkers, and Statman. However, this idea also gives the opportunity to bring the
refined techniques of automata theory to proof generation inconstructive logics.

In the talk a model of automata will be presented that can handle proof construction in full intuition-
istic first-order logic. The automata are constructed in such a way that any successful run corresponds
directly to a cut-free proof in the logic. This makes it possible to discuss formal languages of proofs and
the closure properties of the automata and their connections with the traditional logical connectives.

It turns out that one can devise two natural notions of automata. The first one that is able to recognise
the language of all the normal forms and one that is able to recognise only proofs in so called total dis-
charge form. This difference will be discussed during the talk as well as a number of decision problems
around the automata. Of course, the emptiness problem for automata in their most general presentation
is undecidable, but a number of interesting decidable caseswill be presented during the talk.

The languages of proofs discussed so far are languages of cut-free proofs. However, proofs in proof
assistants are usually constructed with help of lemmas and the cut rule is used there extensively. An
automata theoretic approach to proofs with cuts will also bediscussed during the talk.
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Extending Nunchaku to Dependent Type Theory

Simon Cruanes
Inria Nancy – Grand Est, France

simon.cruanes@inria.fr

Jasmin Christian Blanchette
Inria Nancy – Grand Est, France

Max-Planck-Institut für Informatik, Saarbrücken, Germany

jasmin.blanchette@inria.fr

Nunchaku is a new higher-order counterexample generator based on a sequence of transformations
from polymorphic higher-order logic to first-order logic. Unlike its predecessor Nitpick for Isabelle,
it is designed as a stand-alone tool, with frontends for various proof assistants. In this short paper,
we present some ideas to extend Nunchaku with partial support for dependent types and type classes,
to make frontends for Coq and other systems based on dependent type theory more useful.

1 Introduction

In recent years, we have seen the emergence of “hammers”—integrations of automatic theorem provers
in proof assistants, such as Sledgehammer and HOLyHammer [7]. As useful as they might be, these tools
are mostly helpless in the face of an invalid conjecture. Novices and experts alike can enter invalid for-
mulas and find themselves wasting hours (or days) on an impossible proof; once they identify and correct
the error, the proof is often easy. To discover flaws early, some proof assistants include counterexample
generators to debug putative theorems or specific subgoals in an interactive proof. When formalizing
algebraic results in Isabelle/HOL, Guttmann et al. [21] remarked that

Counterexample generators such as Nitpick complement the ATP [automatic theorem prov-
ing] systems and allow a proof and refutation game which is useful for developing and
debugging formal specifications.

Nunchaku is a new fully automatic counterexample generatorfor higher-order logic (simple type
theory) designed to be integrated into several proof assistants. It supports polymorphism, (co)algebraic
datatypes, (co)recursive functions, and (co)inductive predicates. The tool is undergoing considerable
development, and we expect that it will soon be sufficiently useful to mostly replace Nitpick [8] for
Isabelle/HOL. The source code is freely available online.1

A Nunchaku frontend in a proof assistant provides anunchaku command that can be invoked on
conjectures to debug them. It collects the relevant definitions and axioms, translates them to higher-order
logic along with the negated conjecture, invokes Nunchaku,and translates any model found to higher-
order logic. We have developed a frontend for Isabelle/HOL [32]. We are also working on a frontend for
the set-theoretic TLA+ Proof System [18] and plan to develop frontends for other proof assistants.

This short paper discusses some of the issues that must be addressed to make frontends for Coq [4]
and other systems based on dependent type theory (e.g., Agda, Lean, and Matita) applicable beyond their
simple type theory fragment. We plan to elaborate and implement the approach in a Coq frontend, as
part of the Inria technological development action “Contre-exemples utilisables par Isabelle et Coq.”

1https://github.com/nunchaku-inria/nunchaku
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2 Overview of Nunchaku

Nunchaku is the spiritual successor to Nitpick but is designed as a stand-alone OCaml program, with
its own input language. Whereas Nitpick generates a succession of finite problems for increasing car-
dinalities, Nunchaku translates its input to one first-order logic program that targets the finite model
finding fragment of CVC4 [2], a state-of-the-art SMT (satisfiability modulo theories) solver. Using
CVC4 as a backend allows Nunchaku to reason efficiently aboutarithmetic constraints and (co)algebraic
datatypes [36] and to detect unsatisfiability in addition tosatisfiability. Support for other backends, in-
cluding Kodkod [43] (used by Nitpick) and Paradox [16], is inthe works. We also plan to integrate
backends based on code execution and narrowing, as providedby Quickcheck for Isabelle/HOL [10], to
further increase the likelihood of finding counterexamples.

Nunchaku’s input syntax is inspired by that of proof assistants based on higher-order logic (e.g.,
Isabelle/HOL) and by typed functional programming languages (e.g., OCaml). The following problem
gives a flavor of the syntax:

data nat := Zero | Suc nat.
pred even : nat→ prop :=
even Zero;
∀n. odd n⇒ even (Suc n)

and odd : nat→ prop :=
∀n. even n⇒ odd (Suc n).

val m : nat.

goal even m∧ ¬ (m= Zero).

The problem defines a datatype (nat) and two mutually recursive inductive predicates (even andodd), it
declares a constantm, and it specifies a goal to satisfy (“m is even and nonzero”). For counterexample
generation, the negated conjecture must be specified as the Nunchaku goal. For the example above,
Nunchaku outputs the model

val even := λ(n : nat). IF n= Zero ∨ n= Suc (Suc Zero) THEN true ELSE ? n.
val odd := λ(n : nat). IF n= Suc Zero THEN true ELSE ? n.
val m := Suc (Suc Zero).

The output is a finite fragment of an infinite model. The notation ‘? ’ is a placeholder for an unknown
value or function. To most users, the interesting part is theinterpretation ofm; but it may help to inspect
the partial model ofeven andodd to check if they have the expected semantics.

Given an input problem, Nunchaku parses it before applying asequence of translations, each reduc-
ing the distance to the target fragment. In our example, the predicateseven andodd are translated to
recursive functions, then the recursive functions are encoded to allow finite model finding, by limiting
their domains to an unspecified finite fragment. If Nunchaku finds a model of the goal, it translates it
back to the input language, reversing each phase.

The translation pipeline includes the following phases (adapted from a previous paper [37]):

Type inference infers types and checks definitions;

Type skolemization replaces∃α. ϕ[α] with ϕ[τ], whereτ is a fresh type;

Monomorphization specializes polymorphic definitions on their type arguments and removes unused
definitions;
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Elimination of equations translates multiple-equation definitions of recursive functions into a single
nested pattern matching;

Specialization creates instances of functions with static arguments (i.e., an argument that is passed
unchanged to all recursive calls);

Polarization specializes predicates into a version used in positive positions and a version used in nega-
tive positions;

Unrolling adds a decreasing argument to possibly ill-founded predicates;

Skolemization introduces Skolem symbols for term variables;

Elimination of (co)inductive predicates recasts a multiple-clause (co)inductive predicate definition into
a recursive equation;

λλλ-Lifting eliminatesλ-abstractions by introducing named functions;

Elimination of higher-order constructs substitutes SMT-style arrays for higher-order functions;

Elimination of recursive functions encodes recursive functions to allow finite model finding;

Elimination of pattern matching rewrites pattern-matching expressions using datatype discriminators
and selectors;

Elimination of assertions encodesASSERTINGoperator using logical connectives;

CVC4 invocation runs CVC4 to obtain a model.

Although our examples use datatypes and well-founded (terminating) recursion, Nunchaku also sup-
ports codatatypes and productive corecursion. In additionto finite values, cyclicα-regular codatatype
values can arise in models (e.g., the infinite stream 1,0,9,0,9,0,9, . . . ) [36].

While most of Nunchaku’s constructs are fairly conventional, one is idiosyncratic and plays a key
role in the translations described here: TheASSERTING operator, writtent ASSERTING ϕ, attaches a
formula ϕ—the guard—to a termt. It allows the evaluation oft only if ϕ is satisfied. The construct
is equivalent toIF ϕ THEN t ELSE UNREACHABLE in other specification languages (e.g., the Haskell
Bounded Model Checker [14]). Internally, Nunchaku pulls the ASSERTINGguards outside of terms into
the surrounding logical context, carefully distinguishing positive and negative contexts.

Nunchaku can only find classical models with functional extensionality, which are a subset of the
models of constructive type theory. This means the tool, together with the envisioned encoding, will be
sound but incomplete: All counterexamples will be genuine,but no counterexamples will be produced
for classical theorems that do not hold intuitionistically. We doubt that this will seriously impair the
usefulness of Nunchaku in practice.

3 Encoding Recursive Functions

When using finite model finding to generate counterexamples,a central issue is to translate infinite posi-
tive universal quantifiers in a sound way. The situation is hopeless for arbitrary axioms or hypotheses, but
infinite quantifiers arising in well-behaved definitions canbe encoded soundly. We describe Nunchaku’s
encoding of recursive functions [37], because it is one of the most crucial phases of the translation
pipeline and it illustrates theASSERTINGconstruct in a comparatively simple setting.

Consider the following factorial example:
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rec fact : int→ int :=
∀n. fact n= (IF n≤ 0 THEN 1 ELSE n ∗ fact (n−1)).

val m : int.

goal fact m> 100.

(We conveniently assume that Nunchaku has a standard notionof integer arithmetic, as provided by its
backend CVC4.) The encoding restricts quantification onfact’s domain to an unspecified, but potentially
finite, typeαfact that is isomorphic to a subset offact’s argument type and introduces projectionsγfact :
αfact → int andASSERTINGguards throughout the problem, as follows:

val fact : int→ int.

axiom ∀(a : αfact). fact (γfact a) = (IF γfact a≤ 0 THEN 1
ELSE γfact a ∗ (fact (γfact a−1) ASSERTING ∃(b : αfact). γfact b= γfact a−1)).

val m : int.

goal (fact m ASSERTING ∃(b : αfact). γfact b= m) > 100.

The guards are propagated outward until they reach a polarized context, at which point they can be
asserted using standard connectives:

val fact : int→ int.

axiom ∀(a : αfact). fact (γfact a) = (IF γfact a≤ 0 THEN 1 ELSE γfact a ∗ fact (γfact a−1)
∧ ¬ γfact a≤ 0∧ ∃(b : αfact). γfact b= γfact a−1).

val m : int.

goal fact m> 100∧ ∃(b : αfact). γfact b= m.

The guards ensure that the result of recursive function calls is inspected (i.e., influences the truth value
of the problem) only if the arguments are in the subsetαfact, for which the function is axiomatized.

4 Encoding Dependent Datatypes

We propose an extension to Nunchaku’s type system with a simple flavor of dependent types. We as-
sume a finite hierarchy of sorts. A Coq frontend would need to truncate the problem’s hierarchy of
universes. Our encoding is similar to the one proposed by Jacobs and Melham [24]. We, too, erase
dependent parameters from types and use additional predicates to enforce constraints that would be lost
otherwise—with the addition of dependent (co)datatypes. In (co)datatypes, we allow term parameters
(such as the length of a list, of typenat) to occur as uniform parameters or as indices (i.e., each construc-
tor can have a different value for this parameter), but type parameters should occur uniformly. We only
forbid polymorphic recursion (type indices), because it isnot compatible with the monomorphization
step Nunchaku currently relies on.

In general, we consider dependent (co)datatype definitionsof the form

(co)data τ x α :=
c1 : σ1 → τ t1 α
...

| ck : σk → τ tk α

wherex := (xi)
m
i=1 is the tuple of term variables on whichτ depends,α := (αi)

n
i=1 is the tuple of type

variables, the types(σk
i )

arity(ck)
i=1 are the types of the arguments of thekth constructor, and the terms
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tk := (tki )
m
i=1 are the term arguments of thekth constructor’s return type. More elaborate definitions,

such as those interleaving type and term parameters in more intricate ways, are beyond the scope of this
approach. We are aiming for a practical balance between expressiveness and ease of implementation.

Let τ′ α be the encoding ofτ where all term arguments have been removed. We introduce a predicate
invτ, defined inductively (ifτ is a datatype) or coinductively (ifτ is a codatatype), that enforces the
correspondence betweenx andτ′ α:

(co)pred invτ : Πα. α→ τ′ α→ prop :=

k∧

i=1



∀x (y1 : ai

1) . . . (yk : ak
arity(ck)

).(
∧arity(ck)

j=1,yk
j :τ
invτ α yk

j

)
⇒ invτ α (ck α y)


.

The predicateinvτ has one clause per constructorck of τ, which ensures that if the invariant holds for
every argument(y j)

arity(ck)
j=1 of ck that has typeτ (a recursive instance ofτ), it also holds forck α y.

When encoding terms, we process binders on dependently-typed variables recursively as follows:
∀v : τ t u. ϕ becomes∀v : τ′ u. invτ t v ⇒ ϕ, and a functionλ(x : τ t u). v is translated toλ(x :
τ′ u). (v ASSERTING invτ t x).

Functions whose type depends on terms remain parameterizedby these terms after the translation,
but their definition specifies a precondition that links the term parameters to the encoded dependent type.
The use ofASSERTING to encode the precondition ensures that the function is evaluated only if the
condition is met, irrespective of the context (positive, negative, or unpolarized) of the function. Finally,
some specific constructs such as equality (in Coq, equality is a dependent datatype) are translated directly
into Nunchaku counterparts.

As an example, consider the type of vectors of lengthn. Here,n is an index, andα is a uniform type
parameter:

data vec : nat→ type→ type :=
nilα : vec 0 α

| ∀(n : nat) (x : α) (l : vec n α). cons α x l : vec (S n) α.

The encoded typevec′ corresponds to the datatype of finite lists, and the invariant is

pred invvec : nat→ vec′ α→ prop :=
invvec 0 (nil α)

| ∀(n : nat) (x : α) (l : vec′ α). invvec n l ⇒ invvec (S n) (cons α x l) .

A formula ∀(v : vec n τ). ϕ is translated to∀(v : vec′ τ). invvec n v⇒ ϕ. A function λ(v : vec n τ). t is
translated toλ(v : vec′ τ). (t ASSERTING invvec n v).

Thus, the function returning the length of a vector,λn(l : vec n α). n, becomes

λn(l : vec′ α). (n ASSERTING invvec n)

Theappend functionλm n(l1 : vec mα) (l2 : vec n α). t (omitting the body) becomes

λm n(l1 : vec′ α) (l2 : vec′ α). (t ASSERTING invvec m l1∧ invvec n l2)

And themult function that multiplies two matrices,λm nk(A : matrix m n) (B : matrix n k). t, returning
a value of typematrix m k, becomes

λm n k(A : matrix′) (B : matrix′). (t ASSERTING invmatrix m n A∧ invmatrix n k B)
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5 Encoding Dependent Records and Type Classes

Type classes are a powerful tool for abstraction in Coq, Isabelle/HOL, and other proof assistants [41,45].
However, in dependently typed proofs assistants such as Coq, they are usually encoded as dependent
records combining types, values, and proofs. We assume thattype classes have been explicitly resolved
by the frontend’s type inference and focus on their representation as a record of values and propositions.
Consider the following example from basic algebra:

class monoid a where
e : a
op : a→ a→ a
left neutral : ∀x. op e x= x
assoc : ∀x y z. op (op x y) z= op x (op y z).

This definition of monoids can be encoded in a straightforward way as a dependent record—that is, a
datatype with a single four-argument constructor. The encoding from Section 4 could then be applied.
Here, we propose a more specific encoding that avoids introducing an inductive predicateinvmonoid. This
transformation does not use dependent types, and its resultstill contains the required invariants of each
type class, thereby requiring models to satisfy them.

Following our proposed scheme, a type class is translated into a nondependent datatype with one
constructor whose arguments are the data fields (e.g.,e andop for monoid). The proofs of the axioms
can be erased, since they serve no purpose for model finding, and the additional propertiesleft neutral
andassoc are directly inserted at appropriate places in the problem.

The definition ofmonoid is translated to
instmonoid : Πa. a→ (a→ a→ a)→monoid a.

pred left neutralmonoid : Πa. monoid a→ prop :=
∀e op. (∀x. op e x= x)⇒ left neutralmonoid a (instmonoid a e op).

pred assocmonoid : Πa. monoid a→ prop :=
∀e op. (∀x y z. op(op x y) z= op x(op y z))⇒ assocmonoid a (instmonoid a e op).

A function definition
rec f : Πa. monoid a⇒ a→ τ :=
∀(x : a). f x= t.

is translated to
rec f : Πa. monoid a→ a→ τ :=
∀(x : a). f x= (t ASSERTING left neutralmonoid a∧ assocmonoid a) .

In a proof assistant, users must explicitly register types as instances of type classes. For example,
registeringnat as amonoid instance might involve some syntax such as

instance monoid nat where
e= 0
op= (+)
left neutral= 〈proof of left neutral〉
assoc= 〈proof of assoc〉.

These would not have to be specified to Nunchaku; in a semanticsetting, any type that satisfies the type
class axioms would be considered a member of the type class. (For essentially the same reason, only defi-
nitions and axioms need to be specified in Nunchaku problems,and not derived lemmas.) Nonetheless, it
might be more efficient to provide the instantiations to Nunchaku, so that it can eliminate true conditions
such asleft neutralmonoid nat ∧ assocmonoid nat that can arise as a result of its monomorphization phase.
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6 Related Work

There are many competing approaches to refuting logical formulas. The main ones arefinite model find-
ing andcode execution. Alternatives include infinite model generation [11], counterexample-producing
decision procedures [13], model checking [17], and saturations [1].

Finite model finding consists of enumerating all potential finite models, starting with a cardinality of
one for the domains. Some model finders explore the search space directly; FINDER [40], SEM [46],
Alloy’s precursor [22], and Mace versions 3 and 4 [30] are of this type. Other tools reduce the problem
to propositional satisfiability and invoke a SAT solver; these include early versions of Mace (or MACE)
[31], Paradox [16], Kodkod [43] and its frontend Alloy [23],and FM-Darwin [3]. Finally, some theorem
provers implement finite model finding on top of their proof calculus; this is the case for KIV [35],
iProver [25], and CVC4 [38]. To make finite model finding more useful, techniques have been developed
to search for partial fragments of infinite models [6,19,26,37,42].

The idea with code execution is to generate test inputs and evaluate the goal, seen as a functional
program. For Haskell, QuickCheck [15] generates random inputs, SmallCheck [39] systematically enu-
merates inputs starting with small ones, and Lazy SmallCheck [39] relies on narrowing to avoid eval-
uating irrelevant subterms. A promising combination of bounded model checking and narrowing is
implemented in HBMC, the Haskell Bounded Model Checker [14].

In proof assistants, Refute [44] and Nitpick [8] for Isabelle/HOL are based on finite model finding.
QuickCheck-like systems have been developed for Agda [20],Isabelle/HOL [10], PVS [33], FoCaLiZe
[12], and now Coq with QuickChick [34]. Agsy for Agda [27] employs narrowing. Isabelle’s Quickcheck
combines random testing, bounded exhaustive testing, and narrowing in one tool [10]. Finally, ACL2 [29]
combines random testing and theorem proving.

Our experience with Isabelle is that Nitpick and Quickcheckhave complementary strengths and
weaknesses [5, Section 3.6] and that it would be a mistake to rely on a single strategy. For example,
debugging the axiomatic specification of the C++ memory model [9] was a heavy combinatorial task
where Nitpick’s SAT solving excelled, whereas for the formalization of a Java-like language [28] it
made more sense to develop an executable specification and invoke Quickcheck. Nunchaku currently
stands firmly in the finite model finding world, but we plan to develop an alternative translation pipeline
to generate Haskell code and invoke QuickCheck, SmallCheck, Lazy SmallCheck, and HBMC.

7 Conclusion

Nunchaku supports polymorphic higher-order logic by a series of transformations that yield a first-order
problem suitable for finite model finding. This paper introduced further transformations that extend the
translation pipeline to support dependent types and type classes as found in Coq and similar systems.
More work is necessary to fully specify these transformations, prove them correct, and implement them.
We plan an integration in Coq but will happily collaborate with the developers of other systems to build
further frontends; in particular, we are already in contactwith the developers of Lean, a promising new
proof assistant based on type theory.

We generally contend that too much work has gone into engineering the individual proof assistants,
and too little into developing compositional methods and tools with a broad applicability across systems.
Nunchaku is our attempt at changing this state of affairs forcounterexample generation.
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[4] Yves Bertot & Pierre Castéran (2004):Interactive Theorem Proving and Program Development: Coq’Art:
The Calculus of Inductive Constructions. Springer.

[5] Jasmin Christian Blanchette (2012):Automatic Proofs and Refutations for Higher-Order Logic. Ph.D. thesis,
Technische Universität München.

[6] Jasmin Christian Blanchette (2013):Relational analysis of (co)inductive predicates, (co)inductive datatypes,
and (co)recursive functions. Softw. Qual. J.21(1), pp. 101–126, doi:10.1007/s11219-011-9148-5.

[7] Jasmin Christian Blanchette, Cezary Kaliszyk, Lawrence C. Paulson & Josef Urban (2016):Hammering
towards QED. J. Formal. Reasoning9(1), pp. 101–148, doi:10.6092/issn.1972-5787/4593.

[8] Jasmin Christian Blanchette & Tobias Nipkow (2010):Nitpick: A counterexample generator for higher-order
logic based on a relational model finder. In Matt Kaufmann & Lawrence C. Paulson, editors:ITP 2010,
LNCS 6172, Springer, pp. 131–146, doi:10.1007/978-3-642-14052-5_11.

[9] Jasmin Christian Blanchette, Tjark Weber, Mark Batty, Scott Owens & Susmit Sarkar (2011):Nitpicking
C++ concurrency. In: PPDP 2011, ACM, pp. 113–124, doi:10.1145/2003476.2003493.

[10] Lukas Bulwahn (2012):The new Quickcheck for Isabelle: Random, exhaustive and symbolic testing under
one roof. In Chris Hawblitzel & Dale Miller, editors:CPP 2012, LNCS 7679, Springer, pp. 92–108, doi:10.

1007/978-3-642-35308-6_10.

[11] Ricardo Caferra, Alexander Leitsch & Nicolas Peltier (2004):Automated Model Building. Applied Logic31,
Springer.

[12] Matthieu Carlier, Catherine Dubois & Arnaud Gotlieb (2012):A first step in the design of a formally verified
constraint-based testing tool: FocalTest. In Achim D. Brucker & Jacques Julliand, editors:TAP 2012, LNCS
7305, Springer, pp. 35–50, doi:10.1007/978-3-642-30473-6_5.

[13] Amine Chaieb & Tobias Nipkow (2008):Proof synthesis and reflection for linear arithmetic. J. Autom.
Reasoning41(1), pp. 33–59, doi:10.1007/s10817-008-9101-x.

[14] Koen Claessen (2016): Private communication.

[15] Koen Claessen & John Hughes (2000):QuickCheck: A lightweight tool for random testing of Haskell pro-
grams. In: ICFP ’00, ACM, pp. 268–279, doi:10.1145/357766.351266.
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Muñoz & Sofiène Tahar, editors:TPHOLs 2008, LNCS 5170, Springer, pp. 278–293, doi:10.1007/

978-3-540-71067-7_23.
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Hammers are tools that provide general purpose automation for formal proof assistants. Despite the
gaining popularity of the more advanced versions of type theory, there are no hammers for such sys-
tems. We present an extension of the various hammer components to type theory: (i) a translation of
a significant part of the Coq logic into the format of automated proof systems; (ii) a proof reconstruc-
tion mechanism based on a Ben-Yelles-type algorithm combined with limited rewriting, congruence
closure and a first-order generalization of the left rules ofDyckhoff’s system LJT.

1 Introduction

Justifying small proof steps is usually a significant part ofthe process of formalizing proofs in anin-
teractive theorem proving(ITP), or proof assistant, system. Many of such goals would be considered
trivial by mathematicians. Still, state-of-the-art ITPs require the user to spend an important part of the
formalization effort on them. The main points that constitute this effort are usually library search, minor
transformations on the already proved theorems (such as reordering assumptions or reasoning modulo
associativity-commutativity), as well as combining a small number of simple known lemmas. To reduce
this effort various automation techniques have been conceived, including techniques from automated rea-
soning and domain specific decision procedures. The strongest general propose automation technique,
available for various interactive theorem provers today isprovided by “hammers” [10].

Hammers are proof assistant tools that employ external automated theorem provers (ATPs) in order
to automatically find proofs of user given conjectures. There are three main components of a hammer:

• Lemma selection (also called relevance filtering or premiseselection) that heuristically chooses a
subset of the accessible lemmas that are likely useful for the given conjecture.

• Translation (encoding) of the user given conjecture together with the selected lemmas to the logics
and input formats of automated theorem provers (ATPs). The focus is usually on first-order logic
as the majority of the most efficient ATPs today support this foundation. The automated systems
are in turn used to either find an ATP proof or just further narrow down the subset of lemmas to
precisely those that are necessary in the proof.

• Proof reconstruction, which uses the obtained informationfrom the successful ATP run, to reprove
the lemma in the logic of the proof assistant.

Robust hammers exist for proof assistants based on higher-order logic (Sledgehammer [27] for Is-
abelle/HOL [33], HOLyHammer [20] for HOL Light [18] and HOL4[31]) or dependently typed set
theory (MizAR [21] for Mizar [7, 34, 6]). The general-purpose automation provided by the most ad-
vanced hammers is able to solve 40–50% of the top-level goalsin various developments [10], as well as
more than 70% of the user-visible subgoals [11], and as such has been found very useful in various proof
developments [17].

Despite the gaining popularity of the more advanced versions of type theory, implemented by systems
such as Agda [12], Coq [8], Lean [25], and Matita [4], there are no hammers for such systems. The
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construction of such a tool has so far been hindered by the lack of a usable encoding component, as well
as by comparatively weak proof reconstuction.

For the proof assistants whose logics are based on the Calculus of Constructions and its extensions,
the existing encodings in first-order logic so far cover onlylimited fragments of the source logic [1, 32, 9].
Why3 [16] provides a translation from its own logic [15] (which is a subset of the Coq logic, including
features like rank-1 polymorphism, algebraic data types, recursive functions and inductive predicates)
to the format of various first-order provers (in fact Why3 hasbeen initially used as a translation back-
end for HOLyHammer). Recently, an encoding of the dependently typed higher-order logic of F∗ into
first-order logic has also been developed [2].

The built-in HOL automation is able to reconstruct the majority of the automatically found proofs
using either internal proof search [19] or source-level reconstruction. The internal proof search mecha-
nisms provided in Coq, such as thefirstorder tactic [13], have been insufficient for this purpose so far.
Matita’s ordered paramodulation [5] is able to reconstructmany goals with up to two or three premises,
and the congruence-closure based internal automation techniques in Lean [24] are also promising.

The SMTCoq [3] project has developed an approach to use external SAT and SMT solvers and verify
their proof witnesses. Small checkers are implemented using reflection for parts of the SAT and SMT
proof reconstruction, such as one for CNF computation and one for congruence closure. The procedure
is able to handle Coq goals in the subset of the logic that corresponds to the logics of the input systems.

Contributions. We present our recently developed proof advice components for type theory and systems
based on it. We first introduce an encoding of the Calculus of Inductive Constructions, including the
additional logical constructions introduced by the Coq system, in untyped first-order logic with equality.
We implement the translation and evaluate it experimentally on the standard library of the Coq proof
assistant. We advocate that the encoding is sufficient for a hammer system for Coq: the success rates
are comparable to those demonstrated by early hammer systems for Isabelle/HOL and Mizar, while the
dependencies used in the ATP proofs are most often sufficientto prove the original theorems. Strictly
speaking, our translation is neither sound nor complete. However, our experiments suggest that the
encoding is “sound enough” to be usable. Moreover, we believe that a “core” version of the translation
is sound and we are currently working on a proof of this fact.

Secondly, we present a proof reconstruction mechanism based on a Ben-Yelles-type procedure com-
bined with a first-order generalization of the left rules of Dyckhoff’s LJT, congruence closure and heuris-
tic rewriting. With this still preliminary proof search procedure we are able to reprove almost 90% of the
problems solved by the ATPs, using the dependencies extracted from the ATP output.

2 Translation

In this section we introduce an encoding of (a close approximation of) the Calculus of Inductive Con-
structions into untyped first-order logic with equality. The encoding should be a practical one, which
implies that its general theoretical soundness is not the main focus, i.e., of course the translation needs to
be “sound enough” to be usable, but it is more important that the encoding is efficient enough to provide
practically useful information about the necessary proof dependencies. In particular, the encoding needs
to be shallow, meaning that Coq terms of type Prop are translated directly to corresponding first-order
formulas. Our translation is in fact unsound, e.g., it assumes proof irrelevance and ignores certain uni-
verse constraints. However, we believe that under the assumption of proof irrelevance a “core” version
of the translation is sound, and we are currently working on aproof.
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Below we present a variant of the translation for a fragment of the logic of Coq. The intention here
is to provide a general idea, but not to describe the encodingin detail. In the first-order language we
assume a unary predicateP, a binary predicateT and a binary function symbol @. Usually, we writets
instead of @(t, s).

For the sake of efficiency, terms of type Prop are encoded directly as FOL formulas using a func-
tion F . Terms that have type Type but not Prop are encoded using a function G as guards which
essentially specify what it means for an object to have the given type. For instance,∀ f : τ.ϕ where
τ = Πx : α.β is translated to∀ f .G (τ, f ) → F (ϕ) whereG (τ, f ) = ∀x.G (α, x) → G (β, f x). SoG (τ, f )
says that an objectf has typeτ= Πx : α.β if for any objectx of typeα, the applicationf x has typeβ.
FunctionF encoding propositions as FOL formulas is defined by:

• If Γ ⊢ t : Prop thenFΓ(Πx : t.s) = FΓ(t)→ FΓ,x:t(s).

• If Γ 6⊢ t : Prop thenFΓ(Πx : t.s) = ∀x.GΓ(t, x)→ FΓ,x:t(s).

• Otherwise, if none of the above apply,FΓ(t) = P(CΓ(t)).

FunctionG encoding types as guards is defined by:

• If t = Πx : t1.t2 andΓ ⊢ t1 : Prop thenGΓ(Πx : t1.t2, s) = FΓ(t1)→ GΓ,x:t1(t2, s).

• If t = Πx : t1.t2 andΓ 6⊢ t1 : Prop thenGΓ(Πx : t1.t2, s) = ∀x.GΓ(t1, x)→ GΓ,x:t1(t2, sx).

• Otherwise, whent is not a productGΓ(t, s) = T(u,CΓ(t)).

FunctionC encoding terms as FOL terms is defined by:

• CΓ(b) = b for b being a variable or a constant,

• CΓ(ts) is equal to:

– CΓ(t) if Γ ⊢ s : A : Prop for someA,

– CΓ(t)CΓ(s) otherwise.

• CΓ(Πx : t.s) = P~y for a fresh constantP where~y= FV(Πx : t.s) and

– if Γ ⊢ (Πx : t.s) : Prop then∀~y.P~y↔ FΓ(Πx : t.s) is a new axiom,

– if Γ 6⊢ (Πx : t.s) : Prop then∀~yz.P~yz↔ GΓ(Πx : t.s,z) is a new axiom.

• CΓ(λ~x :~t.s) = F~y wheresdoes not start with a lambda-abstraction any more,F is a fresh constant,
~y= FV(λ~x : ~t.s) and∀~y.FΓ(∀~x : ~t.F~y~x= s) is a new axiom.

• CΓ(case(t,c,n,λ~a : ~α.λx : c~p~a.τ,λ ~x1 : ~τ1.s1, . . . ,λ ~xk : ~τk.sk)) = F ~y1~y2 for a fresh constantF where

– I(c : γ : κ := c1 : γ1 : κ1, . . . ,ck : γk : κk) ∈ E,

– Γ2 = ~y2 : ~ρ2 = FC(Γ; t),

– Γ1 = ~y1 : ~ρ1 = FC(Γ;λ~y2 : ~ρ2.t(λ~x1 : ~τ1.s1) . . .(λ~xk : ~τk.sk)),

– γi = Π~zi : ~βi .Π~xi : ~τi .σi for i = 1, . . . ,k,

– the following is a new axiom:

∀~y1.FΓ1(∀~y2 : ~ρ2 . (∃~z1 : ~β1.∃ ~x1 : ~τ1.t = c1~z1 ~x1∧F ~y1~y2 = s1)
∨ . . .

∨ (∃~zk : ~βk.∃ ~xk : ~τk.t = ck~zk ~xk∧F ~y1~y2 = sk))
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Here t is the term matched on, the type oft has the formc~p~u, the integern denotes the number
of parameters (which is the length of~p), the typeτ[~u/~a, t/x] is the return type, i.e., the type of
the whole case expression,~a∩FV(~p) = /0, andsi[~v/~xi] is the value of the case expression if the
value oft is ci~p~v. The free variable context FC(Γ; t) of t in Γ is defined inductively: FC( /0;t) = /0;
FC(Γ, x : τ; t) = FC(Γ;λx : τ.t), x : τ if x∈ FV(t); and FC(Γ, x : τ; t) = FC(Γ; t) if x /∈ FV(t).

In the data exported from Coq there are three types of declarations: definitions, typing declarations
and inductive declarations. We briefly describe how all of them are translated.

A definition c= t : τ : κ is translated as follows.

• If κ = Prop then addF (τ) as a new axiom with labelc.

• If κ 6= Prop then

– addG (τ,c) as a new axiom,

– if τ= Prop then addc↔ F (t) as a new axiom with labelc,

– if τ= Set orτ= Type then add∀ f .c f ↔ G (t, f ) as a new axiom with labelc,

– if τ /∈ {Prop,Set,Type} then add the equationc= C (t) as a new axiom with labelc.

A typing declarationc : τ : κ is translated as follows.

• If κ = Prop then addF (τ) as a new axiom with labelc.

• If κ 6= Prop then addG (τ,c) as a new axiom with labelc.

An inductive declarationI(c : τ : κ := c1 : τ1 : κ1, . . . ,cn : τn : κn) is translated as follows.

• Translate the typing declarationc : τ : κ.

• Translate each typing declarationci : τi : κ for i = 1, . . . ,n.

• Add axioms stating injectivity of constructors, axioms stating non-equality of different construc-
tors, and the “inversion” axioms for elements of the inductive type.

For inductive types also induction principles and recursordefinitions are translated.

The above only gives a general outline of the translation. Inpractice, we make a number of optimi-
sations, e.g., the arity optimisation by Meng and Paulson [23], or translating fully applied functions with
target type Prop directly to first-order predicates.

3 Reconstruction

We report on our work on proof reconstruction. We evaluate the Coq internal reconstruction mechanisms
includingtauto andfirstorder [13] on the original proof dependencies and on the ATP found proofs,
which are in certain cases more precise. In particularfirstorder seems insufficient for finding proofs
for problems created using the advice obtained from the ATP runs. This is partly caused by the fact that
it does not fully axiomatize equality, but even on problems which require only purely logical first-order
reasoning its running time is sometimes unacceptable.

The formulas that we attempt to reprove usually belong to fragments of intuitionistic logic low in the
Mints hierarchy [29]. Most of proved theorems follow by combining a few known lemmas. This raises a
possibility of devising an automated proof procedure optimized for these fragments of intuitionistic logic,
and for the usage of the advice obtained from the ATP runs. We implemented a preliminary version of a
Ben-Yelles-type procedure (essentiallyeauto-type proof search with a looping check) augmented with
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Prover Solved% Solved Sum% Sum Unique

Vampire 32.9 6839 32.9 6839 855
Z3 27.6 5734 34.9 7265 390
E Prover 25.8 5376 35.3 7337 72

any 35.3 7337 35.3 7337

Table 1: Results of the experimental evaluation on the 20803FOL problems generated from the propo-
sitions in the Coq standard library.

a first-order generalization of the left rules of Dyckhoff’ssystem LJT [14], the use of thecongruence
tactic, and heuristic rewriting using equational hypotheses.

It is important to note that while the external ATPs we employare classical and the translation
assumes proof irrelevance, the proof reconstruction phasedoes not assume any additional axioms. We
reprove the theorems in the intuitionistic logic of Coq, effectively using the output of the ATPs merely
as hints for our hand-crafted proof search procedure. Therefore, if the ATP proof is inherently classical
then proof reconstruction will fail. Currently, the only information from ATP runs we use is a list of
lemmas needed by the ATP to prove the theorem (these are addedto the context) and a list of constant
definitions used in the ATP proof (we try unfolding these constants and no others).

Another thing to note is that we do not use the information contained in the Coq standard library
during reconstruction. This would not make sense for our evaluation of the reconstruction mechanism,
since we try to reprove the theorems from the Coq standard library. In particular, we do not use any
preexisting hint databases available in Coq, not even the core database (we use theauto andeauto
tactics with thenocore option). Also, we do not use any domain-specific decision procedures available
as Coq tactics, e.g.,field, ring or omega.

4 Evaluation

We evaluated our translation on the problems generated fromall declarations of terms of type Prop in the
Coq standard library of Coq version 8.5. We used the following classical ATPs: E Prover version 1.9 [30],
Vampire version 4.0 [22] and Z3 version 4.0 [26]. The methodology was to measure the number of
theorems that the ATP could reprove from their extended dependencies within a time limit of 30 s for
each problem. The extended dependencies of a theorem are obtained by taking all constants occuring in
the proof term of the theorem in Coq standard library, and recursively taking all constants occuring in
the types and non-proof definitions of any dependencies extracted so far. Because of the use of extended
dependencies, the average number of generated FOL axioms for a problem is 193. We limited the
recursive extraction of extended dependencies to depth 2.

The evaluation was performed on a 48-core server with 2.2 GHzAMD Opteron CPUs and 320 GB
RAM. Each problem was always assigned one CPU core. Table 1 shows the results of our evaluation. The
column “Solved%” denotes the percentage (rounded to the first decimal place) of the problems solved by
a given prover, and “Solved” the number of problems solved out of the total number of 20803 problems.
The column “Sum%” denotes the percentage, and “Sum” the total number, of problems solved by the
prover or any of the provers listed above it. The column “Unique” denotes the number of problems the
given prover solved but no other prover could solve.

We also evaluated various proof reconstruction mechanismson the problems originating from ATP
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Tactic Time Solved% Solved

yreconstr0 10s 26.8 1965
yreconstr 1s 83.1 6097
yreconstr 2s 85.8 6296
yreconstr 5s 87.5 6421
yreconstr 10s 88.1 6466
yreconstr 15s 88.2 6473
simple 1s 50.1 3674
firstorder’ 10s 69.6 5103
jprover 10s 56.1 4114

any 90.1 6609

Table 2: Results of the evaluation of proof reconstruction on the 7337 problems solved by the ATPs.

proofs of lemmas in the Coq standard library. In our setting,the Ben-Yelles-type algorithm mentioned
in the previous section tends to perform significantly better than the available Coq’s tactics. The results
of the evaluation are presented in Table 2. Our tactic (yreconstr) manages to reconstruct about 88% of
the reproved theorems. However, it needs to be remarked thatif we use the advice obtained from ATP
runs then about 50% of the the reproved theorems follow by a combination of hypothesis simplification,
the tacticsintuition, auto, easy, congruence and a few heuristics (tacticsimple). Moreover, the
yreconstr tactic without any hints (yreconstr0), i.e., without using any of the information obtained
from ATP runs, achieves a success rate of about 26%. The reconstruction success rate of thefirstorder
tactic combined with various heuristics is about 70% if generic axioms for equality are added to the
context (tacticfirstorder’). Thejp tactic (which integrates the intuitionistic first-order automated
theorem prover JProver [28] into Coq) combined with variousheuristics and equality axioms (tactic
jprover) achieves a reconstruction success rate of about 56%. This low success rate is explained by the
fact that in contrast to thefirstorder tactic thejp tactic cannot be parameterised by a tactic used at
the leaves of the search tree when no logical rule applies.
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This extended abstract reports on current progress of SMTCoq, a communication tool between the
Coq proof assistant and external SAT and SMT solvers. Based on a checker for generic first-order
certificates implemented and proved correct in Coq, SMTCoq offers facilities both to check external
SAT and SMT answers and to improve Coq’s automation using such solvers, in a safe way. Currently
supporting the SAT solver ZChaff, and the SMT solver veriT for the combination of the theories of
congruence closure and linear integer arithmetic, SMTCoq is meant to be extendable with a reason-
able amount of effort: we present work in progress to supportthe SMT solver CVC4 and the theory
of bit vectors.

1 Introduction

SMTCoq1 [1] is a tool that allows the Coq [2] proof assistant to communicate with external automatic
solvers for Boolean satisfiability (SAT) and SatisfiabilityModulo Theories (SMT). Its twofold goal is to:

• increase the confidence in SAT and SMT solvers: SMTCoq provides an independent and certified
checker for SAT and SMT proof witnesses;

• safely increase the level of automation of Coq: SMTCoq provides starting safe tactics to solve a
class of Coq goals automatically by calling external solvers and checking their answers (following
askepticalapproach).

SMTCoq currently supports the SAT solver ZChaff [19] and theSMT solver veriT [10] for the quantifier-
free fragment of the combined theory of linear integer arithmetic and equality with uninterpreted func-
tions. For this combined theory, SMTCoq’s certificate checker has proved to be as efficient as state-of-
the-art certified checkers [1, 9].

There is a large variety of SAT and SMT solvers, with each solver typically excelling at solving
problems in some specific class of propositional or first-order problems. While the SAT and SMT com-
munities have adopted standard languages for expressinginputproblems (namely the DIMACS standard
for SAT and the SMT-LIB [4] standard for SMT), agreeing on a commonoutputlanguage for proof wit-
nesses has proven to be more challenging. Several formats [11, 21, 6] have been proposed but none has
emerged as a standard yet. Each proof-producing solver currently implements its own variant of these
formats.

1SMTCoq is distributed as free software athttps://github.com/smtcoq/smtcoq.
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Figure 1: SMTCoq’s main checker and its uses

To be able to combine the advantages of multiple SAT and SMT solvers despite the lack of com-
mon standards for representing proof certicates, SMTCoq has been designed to be modular along two
dimensions:

• supporting new theories: SMTCoq’s main checker is an extendable combination of independent
small checkers;

• supporting new solvers: SMTCoq’s kernel relies on a genericcertificate format that can encode
most SAT and SMT reasonings for supported theories; the encoding can be done during aprepro-
cessingphase, which does not need to be certified.

In this abstract, we emphasize the key ideas behind the modularity of SMTCoq, and validate this
by reporting on work in progress on the integration of the SMTsolver CVC4 [3] and the theory of bit
vectors. We simultaneously aim at:

• offering to CVC4 users the possibility to formally check itsanswers in a trusted environment like
Coq;

• bringing the power of a versatile and widely used SMT solver like CVC4 to Coq;

• providing in Coq a decision procedure for bit vectors, a theory widely used, for instance, for
verifying circuits or programs using machine integers.

2 The SMTCoq Tool

2.1 General Idea

The heart of SMTCoq is a checker for a generic format of certificates (close to the format proposed
by Bessonet al. [6]), implemented and proved correct inside Coq (see Figure1a). Taking advantage
of Coq’s computational capabilities the SMTCoq checker is fully executable, either inside Coq or after
extraction to a general-purpose language [18].

The Coq signature of this checker is the following:

checker : formula → certificate → bool
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where the typeformula represents the deep embedding in Coq of SMT formulas, and thetype
certificate represents SMTCoq’s format of certificates.

The checker’s soundness is stated with respect to a translation function from the deep embedding of
SMT formulas into Coq terms:

J•K : formula → bool

that interprets every SMT formula into its Coq Boolean counterpart. The correctness of the checker:

checker_sound : ∀ f c, checker f c = true → JfK
thus means that, given a formula and a certificate for which the checker answers positively, then the
interpretation in Coq of the formula is valid.

The choice of the type of Booleansbool as the codomain of the translation functionJ•K, instead of
the type of (intuitionistic) propositionsProp, allows us to handle the checking of the classical reasoning
made by SMT solvers without adding any axioms. The SSReflect [12] plugin for Coq can be used to
bridge the gap between propositions and Booleans for the theories considered by SMTCoq. The major
shortcoming of this approach is that it does not allow quantifiers inside goals sent to SMT solvers,
although it does not prevent one from feeding these solvers universally quantified lemmas. To increase
the expressivity of SMTCoq with respect to quantifiers, one will need to switch to propositions, and
handle classical logic either by axioms or by restricting attention to decidable atoms of the considered
combined theory.

The first use case of this correct-by-construction checker is to check the validity of a proof witness,
or proofcertificatecoming from an external solver against some input problem (Figure 1b). In this use
case, the trusted base is both Coq and the parser of the input problem. The parse is part of the trusted
based because we need to make sure we are effectively verifying a proof of the problem we sent to the
external solver. However, this parser is fairly straightforward.

The second use case is within a Coq tactic (Figure 1c). We can give a Coq goal to an external solver
and get a proof certificate for it. If the checker can validatethe certificate, the soundness of the checker
allow us to establish a proof of the initial goal. This process is known ascomputational reflectionas it
uses a computation (here, the execution of the checker) inside a proof. In this use case, the trusted base
consists only of Coq: if something else goes wrong (e.g., thechecker cannot validate the certificate), the
tactic will fail, but nothing unsound will be added to the system.

In both cases, a crucial aspect for modularity purposes is the possibility topreprocessproof certifi-
cates before sending them to the SMTCoq checker, without having to prove anything about this prepro-
cessing stage. Again, if the preprocessor is buggy, the checker will fail to validate the proof certificate (by
returningfalse), which means that while nothing is learned, nothing unsafeis added to Coq’s context.
This allows us to easily extend SMTCoq with new solvers: as long as the certificate coming from the
new solver can be logically encoded into SMTCoq’s certificate format, we can implement this encoding
at the preprocessing stage. As a result, SMTCoq’s current support for both ZChaff and veriT is provided
through the implementation of a preprocessor for each solver. Both preprocessors convert to the same
proof format, thus sharing the same checker.

Using a preprocessor is also beneficial for efficiency: proofcertificates may be encoded more com-
pactly before being sent to the SMTCoq checker, which may improve performance.

2.2 The Checker

We now provide more details on the checker of SMTCoq. As presented in Figure 2, it consists of amain
checkerobtained as the combination of severalsmall checkers, each specialized in one aspect of proof
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checking in SMT (e.g., CNF conversion, propositional reasoning, reasoning in the theory of equality,
linear arithmetic reasoning, and so on).

CNF

resolution chains

EUF

LIA

Main checker

Coq checker

formula certificate

yes no

CNF

resolution chains

EUF

LIA

Small checkers

Figure 2: Internals of the Coq checker

The typecertificate is actually the aggregation of specialized types, one for each small checker.
The role of the main checker is thus to dispatch each piece of the certificate to its dedicated small checker,
until the initial formula is proved.

A small checker is a Coq program that, given a (possibly empty) list of formulas and a certificate
associated with it (which may be just a piece of the input certificate), computes a new formula:

small_checker : list formula → certificate_sc → formula

The soundness of thechecker comes from the soundness of each small checker, stated as follows:

small_checker_sound : ∀ f1 . . . fn c,
Jf1K ∧ . . . ∧ JfnK → Jsmall_checker [f1;...;fn] cK

meaning that the small checker returns a formula which is implied (after translation into Coq’s logic) by
the conjunction of its premises. Note that the list of premises may be empty: in such a case, the small
checker returns a tautology in Coq.

Here are some examples of small checkers.

• For propositional resolution chains, the checker takes as input a list of premises and returns a
resolvent if it exists, or a trivially true clause otherwise. In this case, a certificate is not required as
part of the small checker’s input.

• For the theory of equality with uninterpreted functions (EUF), the checker takes as input a formula
in this theory formulated as a certificate (corresponding toa theory lemma produced by the SMT
solver), and returns the formula if it is able to check it, or atrivially true clause otherwise. In this
case, no premises are given.
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• For linear integer arithmetic (LIA), the checker works similarly to the EUF checker, but checks the
formula using Micromega [5], an efficient decision procedure for this theory implemented in Coq.

The only thing that small checkers need to share is the typeformula, and its interpretation into Coq
Booleans. Each small checker may then reason independently, using separate pieces of the certificate.
Again, this is crucial for modularity: to extend SMTCoq witha new theory, one only has to extend
the typeformula with the signature of this theory and, independently of the already existing checkers,
implement a small checker for this theory and prove its soundness.

Notice that “small checker” can be understood in a very general sense: any function that, given a list
of first-order formulas, returns an implied first-order formula, can be plugged into SMTCoq as a small
checker. In principle, such a checker could even be as complex as an SMT solver, as long as it can be
proved correct in Coq.

3 Work in Progress: Extensions to CVC4 and Bit Vector Arithmetic

3.1 Support for CVC4

CVC4 is a proof-producing SMT solver, whose proof format is based on the Logical Framework with
Side Conditions (LFSC) [21]. LFSC extends the Edinburgh Logical Framework (LF) [14] by allowing
types with computationalside conditions, explicit computational checks defined as programs in a small
but expressive functional first-order programming language. The language has built-in types for arbitrary
precision integers and rationals, ML-style pattern matching over LFSC type constructors, recursion, a
minimal support for exceptions, and a very restricted set ofimperative features. One can define proof
rules in LFSC as typing rules that may optionally include a side condition written in this language. When
checking the application of such proof rules, an LFSC checker computes actual parameters for the side
condition and executes its code; if the side condition fails, the LFSC checker rejects the rule application.
The validity of an LFSC proof witness thus relies on the correctness of the side condition functions used
in the proof. LFSC comes with a set of pre-defined side conditions for various theories, used by the
CVC4 proof production mechanism.

The key differences between LFSC and the SMTCoq format are presented in Table 1.

LFSC SMTCoq
Rules deduction + computation deduction + certificate

Nested proofs supported not supported

Table 1: Main differences between the LFSC and SMTCoq certificate formats

The major difference lies in the presentation of the deduction rules. In SMTCoq, the small checkers
deduce a new formula from already known formulas, possibly with the help of a piece of certificate that
depends on the theory. The LFSC format is more uniform, thanks to the side conditions described above.

To support LFSC, and so CVC4, we are in the process of implementing (in OCaml) an untrusted
preprocessor that transforms LFSC proofs into SMTCoq proofs. To this end, for some theories, we
need to replay parts of the side conditions, in order to produce the corresponding SMTCoq premises,
conclusion and piece of certificate that will be passed to thesmall checkers. This encoding, however, is
relatively straightforward:

• for propositional reasoning, LFSC side conditions use the same logical content as SMTCoq rules;
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• CNF conversion and EUF proofs are nested in LFSC, so they require some processing for the
moment;

• for linear integer arithmetic, since SMTCoq relies on an existing decision procedure in Coq, it
only needs to know what theory lemma is being proved, and can ignore the actual proof steps in
the LFSC certificate.

One difficulty in translating LFSC proofs to the SMTCoq format comes from to the possibility in
LFSC of using natural-deduction-style proofs, where one can nest one proof inside another. For instance,
it is possible to have lemmas inside an LFSC proof whose witnesses are themselves LFSC proofs. The
architecture of the main and small checkers of SMTCoq does not currently allow this sort of nesting:
every clause produced by the small checkers needs to be a direct consequence of input clauses or clauses
that were previously produced. To encode an LFSC proof into SMTCoq, our preprocessor thus linearizes
nested proofs. The LFSC proofs generated by CVC4 are constructed in such a way that this does not
cause a blow-up in practice; however, to support LFSC in general, we plan to extend SMTCoq certificates
with nested proofs. Again, this extension should be made easier by the modularity inside the checker. It
should impact only the main checker, and not the various small checkers already in SMTCoq.

3.2 Support for Bit Vector Arithmetic

CVC4 has been recently extended to produce LFSC proofs for the quantifier-free fragment of the SMT
theory of bit vectors [13]. To check proof certificates in this theory, SMTCoq needs be extended with it.
As explained in Section 2.2, to do that one needs to:

1. extend the Coq representation of formulas with the signature of the bit vector theory and the
interpretation function into Coq terms;

2. implement (new) small checkers and their corresponding certificates for this theory, and prove
their correctness.

Step 1 is a simple extension on the SMTCoq side. The major difficulty is that Coq itself has limited
support for bit vectors. Its bit vector library provides only the implementation of bitwise operations
(and not arithmetic operations), and no proofs. We are thus currently implementing a more complete
library for this theory. Step 2 involves implementing and adding new certified Coq programs (the small
checkers). As mentioned, however, because of SMTCoq’s design, none of the previous small checkers
and their proofs of correctness need to be changed as a resultof this addition.

LFSC proofs for bit vectors produce by CVC4 mainly involve the following two kinds of deduction
steps:

• bit-blastingsteps that reduce the input bit vector formula to an equisatisfiable propositional for-
mula;

• standard propositional reasoning steps (based on resolution).

The propositional steps can be handled directly by previoussmall checkers. For the bit-blasting steps, we
implemented new small checkers that relate terms of the bit vector theory with lists of Boolean formulas
representing their bits; we are currently working on producing proofs of correctness in Coq for these
small checkers.

LFSC proofs generated by CVC4 involve a third kind of step: formula simplifications based on
the equivalence of two bit-vector terms or atomic formulas (for instance, by normalizing inequalities).
Currently, these simplification steps are not provided a detailed LFSC subproof by CVC4, although there
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are plans to do so in the near future. In the current SMTCoq implementation then, we assume those steps,
as in the LFSC proof coming from CVC4, or let the user prove them, in the case of tactics. Since those
steps correspond to applications of CVC4-defined rewritingand simplification rules, we plan for now to
prove the correctness of these rules once and for all at the Coq level, and to pre-process simplification
steps into applications of these rules.

4 Related Work

In addition to related work already discussed throughout the paper, we now briefly mention a few more
notable projects. Heuleet al. implemented an efficient checker for state-of-the-art SAT techniques,
verified in ACL2 [15, 24]. It is mainly based on a generalization of extended resolution [22, 17] and
on reverse unit propagation [11]. SMTCoq currently handlesonly standard extended resolution for its
propositional part.

Efficient proof reconstruction for SAT and SMT solvers has been implemented in proof assistants
based on higher-order logic [23, 9]. Some of these reconstructions also handle the theory of bit vec-
tors [8]. This approach is based on translating SAT/SMT certificates to applications of the inference
rules of the kernels of these proof assistants. In contrast,our approach in Coq is based on computational
reflection: the certificate is directly processed by the reduction mechanism of Coq’s kernel.

Based on an efficient encoding of a large subset of HOL goals into first-order logic, the Sledgeham-
mer tactic [20] allows HOL-based proof assistants to efficiently and reliably help manual proving. Proofs
are replayed using either the proof reconstruction mechanism described above or a built-in first-order
prover. We hope that SMTCoq can help in adding such techniques into Coq and other Type Theory-
based proof assistants, by providing a proof replay mechanism based on certificates.

5 Conclusion and Future Work

SMTCoq has been designed to be modular in such a way that facilities its extension with new solvers
and new theories. In particular, such extensions should notrequire any changes in existing checkers or
in their proofs of soundness. Thus, while it may require someeffort to certify new small checkers or to
translate new proof formats into the SMTCoq format, such extensions require only local changes. Our
current extensions to CVC4 and bit vectors arithmetic validate this goal: indeed, the work so far consisted
mostly in implementing an untrusted preprocessor for certificates and adding new, independent checkers.
One limiting aspect of SMTCoq is the lack of support for nested proofs, which we plan to add. Thanks
to the modularity of the checker, we believe this feature toocan be added locally.

In the future we plan to continue extending the expressivityof SMTCoq, and in particular to offer
support for the SMT theory of arrays (for which CVC4 is also proof-producing). We believe we can
match, and perhaps even improve upon existing work in terms of efficiency.

The current major limitation of SMTCoq resides in its set of tactics: presently, it can only handle
goals that are directly provable by SMT solvers, without much encoding of Coq logic into first-order
logic. Our longer term plan is to combine ongoing work onhammering[7] for proof assistants based on
Type Theory (such as Coq) with the certificate checking capabilities offered by SMTCoq.
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An efficient intuitionistic first-order prover integrated into Coq is useful to replay proofs found by
external automated theorem provers. We propose a two-phaseapproach: An intuitionistic prover
generates a certificate based on the matrix characterization of intuitionistic first-order logic; the cer-
tificate is then translated into a sequent-style proof.

1 Introduction

Sledgehammer [11] and HOLyHammer [5] drastically improvedthe productivity for users of proof assis-
tants. They make the capabilities of automated theorem provers (ATPs) available from within interactive
proof assistants.

The large, monolithic design of state-of-the-art theorem provers can not be easily trusted to be free of
bugs. Thus invoking theorem provers as an oracle is unacceptable for most users. Proof assistants are
more trustworthy because all reasoning is checked by a kernel intentionally kept small.

To integrate external provers, small yet efficient,certifiedproversintegratedinto the proof assistant are
used: Although it is often possible to mechanically translate the proof to a format accepted by the proof
assistant, the integrated prover allows for the reconstruction without the full knowledge of all axioms and
rules used by the external prover. Thus an integrated proversimplifies the integration of not only one but
different external provers.

There has been effort to integrate classical provers into Coq, e.g. SMTCoq [1], Satallax [3] and why3
[2], but they produce proofs that assume classical axioms. As a fair amount of proof developments avoids
assuming additional axioms, the acceptance of a future ‘CoqHammer’ benefits from the integration of
an efficient,intuitionistic prover.

2 Existing Intuitionistic Provers in Coq

The existing intuitionistic first-order provers integrated into Coq are not very strong. We evaluated
firstorder [4], a built-in tactic based on a sequent calculus, and JProver [14], a plugin available for
Coq. Using Coq version8.6pl1, we considered first-order problems that are likely to emerge in a future
‘Coq Hammer’.

For example, we tested formulas where the instantiate of quantifiers is not immediately determined
using a goal-driven approach:

(∀x,x= x)∧ (∀x,Px∨Qx)

∧ (∀xy,x= y∧Px⇒ Ry)∧ (∀xy,x= y∧Qx⇒ Ry)⇒ (∀x,Rx).
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On this formula,firstorder was unable to find a proof during the several minutes we run it.JProver
succeeded in less than one second.

We also invoked both provers on several set-theoretical problems from the ILTP (Intuitionistic Logic
Theorem Proving) library [12]. Similar to the intended use case, we only supplied the axioms needed for
the proofs, resulting in problems like

(∀ABX,X ∈ A∪B⇔ X ∈ A∨X ∈ B)

∧ (∀AB,A= B⇔ A⊆ B∧B⊆ A)

∧ (∀AB,A⊆ B⇔∀X,X ∈ A⇒ X ∈ B)⇒ (∀A,A∪A= A).

On this and similar problems, bothfirstorder and JProver failed to find proofs before we aborted
them after running several minutes.

Therefore, faster intuitionistic provers integrated intoCoq are necessary for a ‘Coq Hammer’ used in
practice.

3 Proposed Architecture

We propose to employ the recent improvements on automated, intuitionistic first-order theorem proving
by Otten: ileanCoP [7, 8] and the forthcoming intuitionistic version of nanoCoP [10, 9]. The existing
implementations of both provers verified that the formulas in Section 2 are valid in under a second. Both
provers are based on the existence of proof certificates for the matrix characterization of (intuitionistic)
validity [15], which can be translated to sequent-style proofs [13].

This architecture is similar to that of JProver (which uses the same characterization of validity), but
uses a more efficient proof search procedure, leading to a higher success rate.

3.1 Finding Proof Certificates

The performance of ileanCoP is well in identifying valid formulas, compared to other intuitionistic
provers [8]. But it does not keep track of the proof found. Furthermore, it is based on aclausalvariant
of the matrix characterization for intuitionistic logic. The necessary translation into a non-clausal matrix
proof has been sketched in the correctness proof of ileanCoP[7], but to our knowledge has not yet been
implemented.

The classical prover nanoCoP [10] solves both problems: It outputs the proof certificate found and
uses the non-clausal matrix characterization of classicalvalidity. Otten is currently extending nanoCoP
to an intuitionistic variant by integrating prefix unification [15], a method already employed to derive
ileanCoP from the classical prover leanCoP.

In our proposed architecture, the proof certificate for a first-order formulaF consists of amultiplicity
µ , a pair of substitutionsσ = (σQ,σJ) and a set of pairs ofσ -complementaryatoms in the formula
(connections) thatspans Fµ .

We will now give an very informal intuition about this certificate.
A Part of the certificate is already needed for the matrix characterization of classical logic: The mul-

tiplicity µ takes care of the multiple instances an all-quantified subformula ofF may be needed in the
proof. One part of ‘σ -complementary’ ensures that that two atoms in a connectionare identical under
the (non-circular) term substitutionσQ, but have different polarity.

The set of connectionsspansthe formula if everypath through the formula contains at least one
connections. In the quantifier-free case, each path correspond to a disjunction in the conjunctive normal
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form. In the case of formulas with quantifiers, each path correspond a branch of a (classical) analytic
tableaux, where quantifiers are instantiated according toσQ.

The main difference in the intuitionistic characterization is the use ofσJ to ensure that the positions of
the pair of complementary atoms in the formula are ‘compatible’. The position of an atom is defined by
structural recursion on the formula and represented by a string, consisting of fresh constants and fresh
variables.

An example of this for an intuitionistic valid formula isP ⇒ P, where the two atoms can be made
complementary: The position of the firstP is described by the stringz with a fresh variablez, while the
position of the secondP is the stringa consisting of a fresh constanta. DefiningσJ(z) = a unifies those
strings.

For the formula¬P∨P, a theorem of classical, but not intuitionistic logic, the two atoms can not be
made complementary: The position of the firstP is described byxa, while the one for the secondP is b.
As the second position contains no variable and noa, we can never unify those strings.

This concept generalizes to quantified formulas, but for themain idea, it suffices to study the cases for
non-quantified formulas.

For a more formal definition and a few more examples, we recommend the first two Sections of [7],
and Chapter 8, §4 of [15].

It should be noted that one of the main improvements of nanoCoP compared to JProver is the handling
of the multiplicities: nanoCoP adds instances of subformulas during the proof search as needed, while
JProver fixes the multiplicity before searching for an proof; on failure, an additional instance of the
whole formula gets added and the proof is retried. Although both are complete, the first approach is
more goal-driven and thus expected to be more efficient.

3.2 Generating Sequence Proofs

The high-level idea is that the proof certificate guaranteesthat on each branch of the sequent-style proof,
eventually complementary atoms are found. The difficulty isto traverse the formulas in the right order,
which depends onσJ.

The translation of a matrix characterisation proof certificate into a sequent-style proof has already
been investigated and implemented for JProver[13]. We intend to adopt this translation, as we expect it
to be reasonable fast: In the examples we tried and where JProver succeeded, the sequence-style proof
produced was rather short. In the cases where JProver did notsucceed in an acceptable time, it did not
even reach the sequence-proof generation. Thus we concludethat the bottleneck of JProver, at least in
the examples we tried, is the proof certificate search.

4 Discussion

Modular vs Monolithic

We explicitly want to use a modular implementation for the two phases, possibly written in multiple
languages. The Prolog version of the intuitionistic variant of nanoCoP is expected to materialize soon
and there is already an implementation of the sequence proofgenerating algorithm integrated into Coq.
Thus we expect no challenge in creating a prototype of the suggested architecture using the Prolog
program. This would allow us to test whether the proposed setup is suitable for the intended use case.

In the longer term, it would be desirable to have a native OCaml implementation of the proof search
procedure, allowing for a deployment within Coq, without additional binaries. The classical leanCoP
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has been ported to OCaml for the HOL light proof assistant, with performence comparable to the Prolog
version[6]. This port can serve as a starting point for a native OCaml version of the forthcoming intu-
itionistic nanoCoP. Then, the modular approach allows to optionally use external proof procedures. This
allows to evaluate improvements to the Prolog proof procedure before porting them.

Also, a modular design allows to more easily use parts an implementation this for other, intuitionistic
proof assistants. This additional usage should be kept in mind while developing this, and other, tools
towards Hammers in Type Theory.

Explicit Proofs vs Reflection

One approach in proof automation in Coq is ‘proof by reflection’: Some or all parts of the the proof
search procedure are written in Coq, including a correctness proof. The proof of a statement thenis the
call to this Coq procedure.

One argument for ‘proof by reflection’ in Coq is the efficiency. But this is just a benefit compared
to an implementation using Ltac, the tactic language in Coq:The evaluation of native Coq terms is
heavily optimized to the extend of native machine code compilation and execution. In contrast, Ltac is
just interpreted on top of several layers of abstraction. Aswe propose to use OCaml, not Ltac, for the
computationally intense parts, this argument does not apply here.

We assume that the search for the proof certificate could be more easily written, modified, or enriched
with heuristics, when using a language allowing side effect. This discourages the use of reflection in the
first part of our proposed architecture.

Reflection seems to be more reasonable for the second part, the translation to a sequence proof: There
is no need to explicitly generate the sequence proof when a certified procedure guarantees that the se-
quence proofdoesexist when the certificate satisfies the appropriate conditions.

The challenge here would be that the proof certificate must annotated with type information rich
enough to reduce to proofs for all formulas we intend to proof: This means that when the terms in
the formula are not single sorted, but have of more complex types, e.g. dependent types, this must be
incorporated in the proof certificate, the translation procedure itself and its correctness proof. At first,
it seems that a benefit would be that the translation is provento be sound by design. But to check the
conditions that a proof certificate is indeed valid is more orless computationally equivalent hard as to
generating a sequence-style proof.

Another aspect to consider is that some usage, a formula thatis not first-order can be transformed into
an first-order formula such that a proof of the later formula can be translated back to a proof of the former
formula. In a reflective proof reconstruction, this intermediate steps may can not type-check.

Intuitionistic vs Classical

Automated theorem proving in intuitionistic logic is computationally harder than in classical logic. For
developments assuming classical axioms, the intuitionistic part of both phases can be made optional,
resembling the classical proof search of nanoCoP without significant overhead.

Note that the proof search in this proposed architecture does neither need skolemization nor clausal
normal forms. Thus more structure of the different lemmas and parts of the formulas is preserved and in
some sense, this approach is closer to humans reasoning. Further investigation of this architecture could
lead to insights useful for automated reasoning in proof assistants of classical logic.
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