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Abstract

We introduce BoltzGen, an all-atom generative model for designing proteins and peptides across
all modalities to bind a wide range of biomolecular targets. BoltzGen builds strong structural
reasoning capabilities about target-binder interactions into its generative design process. This is
achieved by unifying design and structure prediction, resulting in a single model that also reaches
state-of-the-art folding performance. BoltzGen’s generation process can be controlled with a flexible
design specification language over covalent bonds, structure constraints, binding sites, and more.
We experimentally validate these capabilities in a total of eight diverse wetlab design campaigns
with functional and affinity readouts across 26 targets. The experiments span binder modalities
from nanobodies to disulfide-bonded peptides and include targets ranging from disordered proteins
to small molecules. For instance, we test 15 nanobody and protein binder designs against each
of nine novel targets with low similarity to any protein with a known bound structure. For both
binder modalities, this yields nanomolar binders for 66% of targets. We release model weights,
data, and both inference and training code at: https://github.com/HannesStark/boltzgen.

*Interned at Boltz for a part of the project, TEqual core computational contributors, MIT, 2Boltz,
30pen Athena, *CTU Prague, °IOCB Prague, SNVIDIA, 7IOCB Boston, 8UC Irvine, °MPI, !0UCSF,
UHHMI, 2Jameel Clinic


https://github.com/HannesStark/boltzgen

Figure 1: BoltzGen Wetlab Validation. We validate BoltzGen in collaboration with leading wet
labs working on high-impact biological problems. These independently test designs for their specific
applications. Additionally, we validate on 9 "novel targets" meaning that there are no proteins in a
bound context with more than 30% sequence identity in the entire PDB.
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1 Introduction

De-novo binder design offers considerable potential for automating drug discovery. A number of previous
techniques have been proposed to address parts of this challenge, including | , ,

, , , |. Several key limitations remain, however.
For example many of the techmques are tailored to specific classes of biomolecules such as nanobodies
or peptides. As models learn to emulate physics primarily through examples provided, we believe
expanding the generality of the method further improves its design capabilities for specific classes as
well. Another key limitation has to do with evaluation as methods are often tested on targets that have
closely related complexes in the training data. The potential of de-novo binder design comes precisely
from its presumed ability to extrapolate beyond easy targets. We believe design methods should be
tested accordingly. Moreover, in real-world discovery campaigns, a number of additional requirements
and constraints govern successful designs. It is important to be able to control the design process in a
flexible manner.

Here we introduce BoltzGen, a binder design algorithm that addresses the above desiderata. At its
core, the BoltzGen pipeline uses a single, all-atom generative model that unifies design and structure
prediction. A purely geometry-based representation of designed residue types enables scalable training
on both tasks simultaneously. As a result, unlike any previous design model, BoltzGen matches the
performance of state-of-the-art folding models (Figure 20). BoltzGen’s structure-based reasoning
about target-binder interactions supports design of high-affinity binders to novel targets, unrelated to
complexes seen during training (Figure 1). We also provide a design specification language that allows
for constraining binders across a variety of possible requirements, such as selecting a desired binding
site or a (partial) structure for the target and covalent bonds or residue identity constraints in the
design. The method is described in detail in Section 3.

Wetlab Validation. We experimentally validate our designs in a large-scale distributed effort involving
multiple wetlabs. Each group selected targets and output modalities relevant to their specific application
and then independently validated BoltzGen designs. To measure generalization capacity, we explicitly
focus on targets that are dissimilar to any proteins for which bound structures exist.

Here we report the experimental results available to date; additional validation is ongoing. Some data
are temporarily confidential at collaborators’ request, and we will update this work as further results
become available.

1. Section 2.2: We design nanobodies against 9 novel targets for which there are no proteins with
>30% sequence identity in a bound context in the entire PDB. Experimentally validating 15 or
fewer designs against each target yields nM binders for 66% of them. The analogous experiment
for protein binder designs results in the same success rate of nM binders against 66% of targets.

2. Section 2.3: When designing proteins to bind 3 bioactive peptides with diverse structures, we
obtain nM binders for 2 and M binders for the other, while only testing 6 binders per target.

3. Section 2.4: We generate and test 5 designs for binding the disordered region of NPM1 and obtain
evidence of de-novo designs binding disordered proteins in live cells.

4. Section 2.5: When designing linear peptides to bind RagC, we obtain 7 binders after testing 29,
with the highest affinity being 3.5 puM.

5. Section 2.6: Similarly, designing disulfide-bonded peptides to bind the RagA:RagC dimer yields
binders for 14 of 28 tested designs.

6. Section 2.7: We find hits when testing 7 nanobody designs against each of 2 novel targets in a
yeast dlbplay assay.

7. Section 2.8: We obtain weak binders against two small molecules.

8. Section 2.9: Our campaign to design antimicrobial peptides binding to GyrA results in 19.5% of
designs inhibiting cell growth by more than 4x.

9. Section 2.10: When testing at most 20 designed proteins and 15 nanobodies against 5 benchmark
targets, we obtain nM binders against 80% of them with both modalities.

Open Source Release. We release training code, inference code, model weights, and all designs
under the MIT License: https://github.com/HannesStark/boltzgen. The design pipeline is freely


https://github.com/HannesStark/boltzgen.

available, with easy-to-use interface to specify a binder-design problem and run BoltzGen, producing a
filtered, ranked, diversity-optimized set of designs ready for experimental validation. We hope that
fully open-sourcing the project puts state-of-the-art biomolecular design capabilities in the hands of
any researcher and enables the community to build upon BoltzGen or contribute to BoltzGen-2.

2 Wetlab Results Summary

This section provides a summary of the wetlab results. Each subsection contains a figure that illustrates
the best designs against each target. For the same set of experiments, more detailed descriptions are in
Section 4, and their wetlab methodology is laid out in Appendix D. Unless mentioned otherwise, we
provide the structure of the targets as input to BoltzGen.

2.1 Interpreting Affinities and Expression Numbers

Expression. To test a designed binder, one typically first produces the DNA that encodes the design.
If the DNA is introduced into an environment with molecular machinery that translates DNA into
proteins, the protein is produced and the design is being expressed. Expression can fail for various
reasons. For instance, a protein could fail to fold as intended, or a design could contain a large
hydrophobic patch that binds to itself, causing aggregation (the proteins "clump up"). Usually, more
stable and more soluble proteins have a higher chance of expressing well.

Affinity. Binding affinity describes how tightly two

molecules stick to each other. It is often quantified via Drug Target Kq (nM)
their dissociation constant K4, defined as the binder’s Caplacizamab vWF ]85
off-rate (how often they fall apart) divided by its on- Brolucizumab ~ VEGF-A  0.03
rate (how often they come together). A smaller K, Ozoralizumab TNFa 0.02
indicates that the molecules stay bound longer and Degarelix GnRH-R 1.68
interact more strongly. Natural protein—protein in- Desmopressin ~ AVPR2  0.76

teractions cover a broad range of affinities: transient Tirzepatide GIPR 0.13

signaling complexes typically bind in the MM Tange, Taple 1. Reported binding affinities (Ky) of
whereas stable complexes such as enzyme—inhibitor
pairs or antibody—antigen assemblies can reach nM
affinities. In contrast, therapeutic binders, such as monoclonal antibodies, engineered nanobodies, and
peptide drugs, are often optimized to achieve tighter binding. Antibodies and nanobodies frequently
reach picomolar or low-nanomolar affinities, while therapeutic peptides typically bind in the nanomolar
range, depending on their size and conformational rigidity. Representative affinities for selected thera-
peutic binders are summarized in Table 1. Importantly, a high affinity is only the first step toward an
effective therapeutic. It indicates that a molecule can recognize and stably engage its target, but not
whether it will reach the target in the body, remain stable, avoid off-target interactions, or produce the
desired biological effect.

therapeutic antibodies and peptides.

2.2 Designing Nanobodies and Proteins against 9 Novel Targets
Ezxperiments carried out by Adaptyv Bio.

Targets. The majority of prior experimental validation of binder design models is carried out on
targets that appear in their training data in complex with existing binders. In contrast to this, we
choose 9 targets that are dissimilar to any other protein in PDB with an existing binder. For all 9
targets, we enforce that they are monomers and that there is no protein appearing in a bound structure
in PDB with a sequence identity greater than 30%. Thus, it is possible that some of the targets do not
even have a surface patch that allows for high-affinity protein-protein or nanobody-protein binding. We
detail the potential therapeutic relevance of the targets in Section 4.1.

We evaluate BoltzGen’s ability to design both nanobodies and general proteins against these targets.
Designing high-affinity nanobodies is generally more challenging, as it involves additional structural
constraints that restrict the diversity of sequences and structures the model can generate. Nevertheless,



nanobodies are often preferred as therapeutic modalities due to their favorable developability character-
istics, including high solubility, robust expression yields, low aggregation propensity, good thermal and
chemical stability, and ease of engineering [ ,

Nanobody Designs. We use BoltzGen to generate 60 000 nanobodies against each of the 9 targets
without specifying any binding site. BoltzGen randomly samples from its 4 default nanobody scaffolds
for each design (see Figure 9). Given a selected scaffold, we fix the structure and sequence of the
framework region, but replace the 3 CDR regions with loops of random length.

Protein Designs. We use BoltzGen to generate 60 000 proteins of lengths 80-140 against each of the
9 targets without specifying any binding site.

Results. The results are described in Figures 2 and 3.

Figure 2: Nanobody binders for 9 novel targets.

Nanobody Design Results in Figure 2. For each target, we select 15 nanobodies for experimental
validation. Surface plasmon resonance (SPR) and biolayer interferometry (BLI) affinity assays confirm
that we obtain nM-affinity binders for 6 out of 9 targets. This represents a 66% success rate against
novel targets, none of which have similar proteins in a bound context in all of PDB.

Figure 3: Protein binders for 9 novel targets.

Protein Design Results in Figure 3. For each target, we evaluate a set of 15 designed protein
binders. Using SPR and BLI, we detect nM binders for 6 out of 9 targets. These results represent a 66%
success rate on novel targets without any similar protein in all of PDB that is in a bound structure.

2.3 Designing Proteins to Bind Bioactive Peptides with Diverse Structures

Experiments by A. Katherine Hatstat, Angelika Arada, Nam Hyeong Kim, Ethel Tackie-Yarboi, Dylan Boselli,
Lee Schnaider, and William F. DeGrado.

Targets. We design proteins to bind to
three antimicrobial peptides and cytotoxic
peptides as a class of biologically important
compounds. We targeted multiple structural
classes, including: 1) protegrin, a disulfide-
rich beta hairpin; 2) melittin, which is intrin-
sically unfolded in dilute aqueous solution
but forms a helix when bound to membranes;
3) indolicidin, which forms a polyproline IT
or amphipathic conformation in the presence
of bilayers.



Designs and Results. All selected designs were first screened for peptide binding in vitro via changes
in intrinsic tryptophan fluorescence and/or by surface plasmon resonance (details in 4.2). As the target
peptides are cytotoxic and antimicrobial peptides, we also assessed binders for their ability to neutralize
antimicrobial activity and, where relevant, hemolysis. For each target, at least one binder design had
single-digit uM affinity (for protegrin) or nM affinity (for indolicidin and melittin) and neutralized
antimicrobial and, for melittin, hemolytic activity.

2.4 Designing Peptides to Bind the Disordered Region of NPM1.

Ezperiments by Yaotian Zhang, and Denes Hnisz.

Target. The NPM1-c mutant of NPM1
is a known driver of Acute Myeloid
Leukemia. We aimed to design peptides
that bind to the disordered region of
NPM1. NPM1 is particularly appealing
as a target due to its intrinsic disorder
and cellular localization: it naturally
accumulates in the nucleoli, and pep-
tides that bind to it are expected to
co-localize there. Therefore, nucleolar localization of a designed peptide can be a proxy for assessing its
binding to NPM1 in live cells.

Designs. We generate 20000 peptide designs, each 40-80 residues in length, targeting the disordered
region of NPM1. To guide the design process, we leverage BoltzGen’s binding site conditioning feature,
explicitly directing the model to target the disordered region while avoiding interaction with the
structured (§-sheet region through its "not-binding" constraint. Additionally, we provide the structure
of the ordered region and leave the disordered region flexible. Thus, tasking BoltzGen to model how
the disordered region will fold and become structured in the presence of the designed peptide that is
simultaneously being designed.

Results. We experimentally test the top five highest-ranked designs in live human cells using
fluorescence readouts based on GFP attached to the designs (see Section 4.3 for details). One design
reliably localized to the nucleoli, suggesting successful binding to NPM1. Thus, we obtain a de-novo
designed protein with in vivo evidence of binding to a disordered protein. Importantly, this in-cell
assay provides insight beyond binding affinity. It also reflects functional viability, including the design’s
selectivity for NPM1 over potential off-targets that do not localize to the nucleoli. However, this
experiment does not definitely confirm that the binding occurs specifically at the disordered region
- the main evidence for this comes from the BoltzGen-generated structure and structure predictions
within the BoltzGen pipeline.

2.5 Designing Peptides to Bind a Specific Site of RagC GTPase
Ezperiments by Shamayeeta Ray, Jonathan T. Goldstein, and David M. Sabatini.

Target. RagC GTPase is a central part of a cellular pathway for sensing nutrients
and regulating cell growth, protein synthesis, and other metabolic processes. There
are no existing peptide binders against RagC.

Designs and Results. With one of RagC’s interaction surfaces as binding-site
input for BoltzGen, we generate 10000 ranked designs of length 5-20. We test
29 in a binding affinity assay (SPR), and find 7 binders. The highest affinity is
3.5 uM and the second highest 60 pM.

2.6 Designing Disulfide Bonded Cyclic Peptides to Bind a
Specific Site of RagA:RagC
Ezperiments by Shamayeeta Ray, Jonathan T. Goldstein, and David M. Sabatini.



Target. The RagA:RagC dimer is part of a cellular pathway
responsible for sensing nutrients and regulating cell growth,
protein synthesis, and other metabolic processes. There are
no existing peptide binders against the RagA:RagC dimer.

Designs. We use BoltzGen to design 50 000 ranked disulfide-

cyclized peptides of size 10-18 against the RagA:RagC dimer

with one of its interaction surfaces specified as binding site. The aim of introducing a disulfide bond
between two residues of the peptide is to stabilize it and reduce its flexibility (rigidity reduces entropy
loss during binding, thus potentially aiding stronger binding). To achieve this with BoltzGen, we
specify the design to contain two cysteines that are covalently bonded. The cysteines are separated
by six designed residues, with an additional one to five designed residues flanking either side of this
eight-residue segment.

Results. We test 24 designs in a binding affinity assay and find 14 binders. For 8 of those, we resolved
their affinities (SPR) and obtained 80 uM as the highest 164 uM as the second highest affinity.

2.7 Designing Nanobodies that Bind Penguinpox and Hemagglutinin
Ezxperiments by Jacob A. Hambalek, Anshika Gupta, Diego Taquiri Diaz, and Chang C. Liu.

Targets. We choose two monomer targets that were recently
deposited in PDB. The first target is the cyclic GMP-AMP
phosphodiesterase of Penguinpox (cGAMP PDE), a protein
known to inhibit host STING signaling by degrading cyclic
dinucleotides | ) ]. The second is Filamentous
Hemagglutinin (FhaB), an adhesion protein expressed by the
pathogen Bordetella, which allows the pathogen to colonize
and infect hosts | , |.

Designs and Results. We generate 60000 nanobodies

against each target in the fashion described in Section 2.2 and select 7 per target for experimental
characterization. A yeast surface display assay shows binding signal for a nanobody to bind Penguinpox
and for 7 to bind Hemagglutinin. The assay does not allow for computing a binding affinity but
indicates that it is at best 2 uM. We note that we carried out similar experiments on a set of designs
from a previous version of BoltzGen that suffered from a serious flaw resulting in close-to-random
ranking and filtering (Details in C). For those designs no hits were found.

2.8 Designing Proteins that Bind to Small Molecules
Ezperiments by Nam Hyeong Kim and William F. DeGrado.

Targets. We evaluate BoltzGen’s ability to design binders against two small
molecules: rucaparib and a rhodamine derivative. Binders to these targets could
serve as components in biosensors, delivery systems, or detoxification agents.

Designs and Results. We generate 10000 protein designs targeting rucaparib
and 20000 targeting the rhodamine derivative with design lengths ranging from
140 to 180 residues. We select six designs against rucaparib for experimental
validation, five of which show binding with affinities between 50 and 150 uM. For
the rhodamine derivative, four designs were tested experimentally, all showing
weak binding with affinities between 30 and 250 pM.

Previous computational work | , | designed a low-nanomolar binder to

rucaparib through a specialized, expert-guided approach that involved identifying specific chemical
groups on the small molecule. In contrast, our work demonstrates that a general-purpose design model,
BoltzGen, can generate diverse scaffolds with moderate binding affinity and simpler customization.



2.9 Designing Antimicrobial Peptides that Inhibit the GyrA to GyrA In-
teraction

Ezperiments by Andrew Savinov, and Gene-Wei Li.

Target. We used BoltzGen to design in-
hibitory peptides of the essential bacterial
protein DNA gyrase subunit A (GyrA), a
target of interest for developing antibiotics.
For its function, GyrA needs to interact with
a copy of itself. When disrupting this inter-
action in bacteria, they die.

Designs and Results. We specify the sur-

face where GyrA interacts with a copy of

itself as the binding site when generating

peptides of length 10-50. We select 1808

designs for experimental validation in a growth inhibition assay. Of these, 352 (19.5%) were found
to inhibit E. coli growth by more than 4x. In a second experiment, we replace the design’s three
closest residues to the target (pink in the Figure) with alanines to verify whether they bind as intended.
54 (3.0% of total) of the growth inhibitors lose their activity after introducing these mutations. The
inhibitory effects of the 54 successful designs were, in most cases, strong enough to completely eliminate
the cell populations in which they were expressed.

2.10 Designing Nanobodies and Proteins against 5 Benchmark Targets
Ezxperiments carried out by Adaptyv Bio.

Targets. We designed binders against PD-L1, TNFa, PDGFR, IL-7TRa, and InsulinR, which were
considered in previous work | , , |. All these targets have
known binders that are included in the training data of most previous models and in our training data.

1. TNF« There are 18 matching PDB complexes, i.e. entries with more than 1 protein entity and
with over 90% sequence identity to the structure used to design binders. See, for example, PDB
5M2I, released in 2017, showing TNFa in complex with picomolar-affinity nanobodies |

, 2017].

2. PD-L1 There are 37 matching PDB complexes. See, for example, PDB 5JDS, released in 2017,
showing PD-L1 in complex with a 3.0-nanomolar-affinity nanobody | , ]

3. PDGFR The PDB entry 3MJG used for making designs, released in 2010, shows PDGFR in
complex with its binding partner PDGF, and previous work has reported de movo mini protein
binders with nanomolar affinities [ , |

4. IL-7TR« There are 6 matching PDB complexes, such as PDB entry 6P50, released in 2019, which
shows IL-7TRa in complex with a 1-nanomolar-affinity Fab | , |

5. InsulinR There are 74 matching PDB complexes. The PDB entry 4ZXB used for design, released
in 2016, shows the target in complex with four Fabs (83-7 and 83-14) | , |

Nanobody Designs. We generate 60000 nanobodies (except for TNFa, where we only generate
30000) against each of the 5 targets while specifying the binding sites listed in

[ |. BoltzGen randomly chooses between its 4 default scaffolds for each design (see Figure 9). For a
selected scaffold, we fix the structure and sequence of the framework region, but replace the 3 CDR
regions with loops of random length.

Protein Designs. We use BoltzGen to generate 60000 proteins (except for TNFa where we only
generate 30000) of lengths 80-120 against each of the 5 targets while specifying the binding sites listed
in [ |.



Figure 4: Nanobody binders targeting 5 Benchmark Proteins.

Nanobody Binder Results in Figure 4. For each target, we evaluate a set of 15 or fewer designed
protein binders. SPR and BLI assays confirm nM-affinity binders for 4 out of 5 targets (an 80% success
rate).

Figure 5: Protein binders targeting 5 Benchmark Proteins.

Protein Binder Results in Figure 5. We tested 20 designed protein binders per target. SPR
and BLI assays identified binders for 4 out of 5 targets, including pM hits on PDGFR, yielding an
80% success rate. The missing target is TNFa for which previous work | , |
successfully designed.

We note that these benchmark targets include cases where high-affinity binders are already present in
public datasets. In such settings, a model may succeed by reusing or recombining interaction motifs
encountered during training, rather than by generating truly novel binding solutions. Consequently,
results on these benchmark targets provide marginal evidence toward a model’s ability to generalize to
discovery scenarios involving targets without known binders.

3 Method

BoltzGen is a single all-atom diffusion model capable of performing both structure prediction and
protein design. The model takes a set of molecular entities as input and outputs their all-atom three-
dimensional structure. Molecular entities include small molecules, RNA, DNA, or protein sequences,
along with any post-translational modifications and covalent bonds. New proteins are sampled by
specifying design residues, for which the model generates both the all-atom structure and amino acid
identities. Structure prediction and design capabilities can be exercised in tandem; for example, when
generating a binder given only the sequence of the target, the model simultaneously folds the target
and designs the binder’s atomic structure, producing a bound complex.

Unified Design and Structure Prediction. The joint all-atom sequence and structure sampling
ability of the model and its scalable training come from its purely geometry-based representation of
designed amino-acid types. This representation encodes residue identities according to the position of
the "left-over" atoms of side chains (see Figure 7). This change helps maintain a scalable architecture
and its associated diffusion training process, similar to state-of-the-art biomolecular structure prediction
methods.

Design Specification Language. Predictions can be conditioned on a broad set of additional
inputs. These include standard annotations such as desired residue types and covalent bonds, as well
as secondary structure identity, binding site location, and structure templates. The conditions can be

10



Figure 6: Overview of BoltzGen Pipeline: (a) The overall flow from target specification to
binder generation. The generative model designs binders for arbitrary targets, including proteins,
nucleic acids, and small molecules. It supports various constraints such as covalent bonds, structural
motifs, and specific binding sites. The generated designs are passed through a filtering and ranking
pipeline to produce a small, diverse set suitable for experimental validation. (b) Runtime per stage
for a representative case with 200 total residues across the binder and target, illustrating the model’s
efficiency. (c) A detailed breakdown of each pipeline stage, showing intermediate inputs and outputs.

incorporated with the help of a rich design specification language, allowing us to support the needs of
our experimental collaborators. As a result, we can address a wide range of design challenges, including
diverse modalities such as nanobodies, cyclic peptides with various cyclizations, helicons, or cyclotides.

In addition to the core generative model, we provide a comprehensive design pipeline that includes:
(1) the initial generation of candidate designs, (2) optional sequence redesign through inverse folding,
(3) evaluation of refolding quality and, for small molecule targets, affinity estimation, (4) ranking and
filtering of designs, and (5) selection of a final candidate pool with diversity optimization.

3.1 All-atom Generative Model Formulation

Model Representations. All non-designed molecular entities provided as input to the model are
represented at the atomic level, including atom positions, element types, and charge. These atoms
are grouped into tokens, such as residues for proteins or nucleotides for RNA and DNA. Designed
residues, which do not have a specified amino acid type during generation, use a fixed-size representation
consisting of exactly 14 atoms, some of which serve as wvirtual placeholders. Once the model determines
the final residue types, these virtual atoms are discarded, as done in other approaches that employ a
fixed number of residues to circumnavigate the issue that a residue’s atom count is unknown before its
generation [ , , , , , |-

Geometric Encoding of Residue Type. Instead of generating a discrete residue label, the model
encodes the residue identity through the geometry of the 14-atom representation (see Figure 7).
Specifically, it learns to place the virtual atoms on top of designated backbone atoms to signal the
intended residue type. The first four atoms in each designed residue are fixed as the backbone N, Ce,
C, and O atoms, in that order. As a result, residue types can be inferred directly from the generated

11



Figure 7: Residue Type Encoding In BoltzGen, each designed residue is represented using 14 atoms.
To determine the residue type, the model is trained to superpose a subset of these atoms onto specific
backbone atoms. These auxiliary atoms act as markers and are discarded after decoding. For example,
placing three atoms on the backbone nitrogen and four on the backbone oxygen is interpreted as a
threonine. The atoms in positions 5, 6, and 7 are then assigned as the threonine CB, OG1, and CG2
atoms, respectively.

structure by counting how many atoms are placed within 0.5 A of each backbone atom. Any remaining
atoms that are not superposed onto the backbone are interpreted as the side chain. For example, proline
is encoded by placing 7 atoms on the backbone oxygen, while threonine is represented by placing 3
atoms on the nitrogen and 4 on the oxygen.

This geometric encoding allows the model to operate entirely in a continuous space, avoiding the need
to mix discrete and continuous representations. As a result, it enables efficient joint training for both
structure prediction and design tasks.

Diffusion Process. Because the model operates on a continuous space, we can use the same diffusion
process as Boltz-2 | , ]. The only difference is that the data samples now contain
additional virtual atoms for the designed residues.

Formally, let X ~ pgata, X € RY*3 the 3D atomic coordinates of a training sample and let X; follow
the forward diffusion process

dX; = V2tdB;, (1)

with initial condition Xy ~ pdata. For large T, X1 will be approximately Gaussian with variance T°2.
This process can be reversed to obtain samples from the data distribution starting from Gaussian noise.
Reversing the diffusion process requires a denoiser Dy(x,t; z), parameterized by learnable weights 6.
The goal of the denoiser is to approximate the posterior mean

Do(x,t; 2) = pi(x) = Exyx,—[Xo]s (2)
conditioned on trunk features z. The model is trained using a standard denoising loss
L(0) = EEx,,x, [w(t) - [|Do(Xe, 1 2) — Xo|?] (3)

where w(t) is a weighting function. In the absence of parametric constraints, the minimizer of this loss
is ¢, the posterior means.

3.2 Architecture

The model preserves the Boltz-2 architecture with some modifications to include additional conditioning
inputs, as shown in Fig. 8. The model is split into two parts. The larger Trunk produces token and
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Figure 8: Model Architecture The architecture preserves the main components of the AlphaFold3
and Boltz-2 architectures, including the condition encoder (trunk) and diffusion model. The main
difference lies in the inclusion of design tokens and additional inputs such as binding site and target
structure.

pairwise representations used to condition the Diffusion Module, which generates the structure. The
trunk is only run once, while the diffusion module is run many times to progressively denoise the 3D
coordinates of all atoms.

Trunk. The trunk operates on tokenized structures, where proteins are tokenized into amino acids,
RNA and DNA into nucleotides, and small molecules into atoms. Each token consists of a group of
atoms with associated features such as charge and element type, along with token-level attributes
including residue index, amino acid type, and a flag indicating whether the residue is designed. All
features are encoded into vector representations. Atom-level embeddings are averaged to produce
token-level vectors, and a pair representation is constructed using an outer-sum of the token embeddings.
Both token and pair representations are then passed through a PairFormer stack. Each PairFormer
block includes triangle multiplicative and triangle attention layers that update the pair representations,
along with a transformer layer that updates the token representations using the pair features as the
attention bias.

Diffusion Module. The diffusion module takes noisy 3D atomic coordinates as input and predicts
denoised coordinates. It uses a standard transformer architecture that operates on both atom and
token levels, consisting of 3 atom-level layers, followed by 24 token-level layers, and concluding with
another 3 atom-level layers. The atom-level layers utilize sequence-local attention. Transitions between
atom and token levels are handled by averaging or expanding the representations. Conditioning
information from the trunk is incorporated by adding expanded token-level features to the atom-level
input representations, and by biasing the attention layers based on the pair representation.

As in Boltz-2, AlphaFold3 and EDM | , |, the diffusion module is preconditioned to
parameterize the denoiser Dy,

2
1% t - Odata x 1
Do(x,t;2) = data .. 4 Fy -
( 7 ) Uﬁata + t2 \/U(Qiata + t2 \/a(ziata + t2 ’ 4

log(t); Z) ; (4)
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where Fj is the diffusion module. This parameterization is derived in | , | so that (1)
the inputs to the network Fy have unit variance (2) the effective training target of Fyp has unit variance
and (3) the scalar multiplier of Fp in Eqn. 4 is minimal.

Controllability. Several additional inputs can optionally be provided to BoltzGen to steer the
generation process according to user-specified requirements. Figure 8 shows where these inputs are
integrated into the architecture, and Figure 9 illustrates the resulting expressive design specification
language.

1. Covalent Bonds. Covalent bonds can be specified between individual atoms, in which case the
identity of the residues that contain the bound atoms must be specified.

2. Structure Conditioning. Parts of the structure can be specified to the model via pairwise
distances, for example to perform motif scaffolding. All structures are specified in structure
groups, where all pairwise distances between atoms in the same structure group are fixed, but not
across groups. For example, during nanobody design, the nanobody framework structure and the
target structure can be fixed but their relative positions to each other can be left unconstrained
by putting them in different structure groups.

3. Binding Site. Residues can be specified as binding, or not-binding. The model will try to place
designed residues close to binding residues and away from non-binding residues.

4. Secondary Structure. Designed residues can also be specified to be part of alpha-helices,
beta-sheets, or coils.

Covalent bonds, specified as a matrix of pairwise bonds, and pairwise distances for structure conditioning
are both encoded and added to the trunk’s input pair representation. Binding and secondary structure
labels are incorporated into the input token representation.

These conditioning options can be used to control the model and address a variety of design tasks. For
example,

1. Cyclic Peptides can be designed by specifying a covalent bond. This includes disulfide-stapled
peptides, head-to-tail cyclic peptides, and any other type of cyclization.

2. Helicons can be designed by including a staple molecule in the model’s input and enforcing
covalent bonds between the staple and the sulfurs of two cysteines in the design.

3. Nanobodies can be designed by enforcing the design to adhere to a given template, allowing the
model to generate the CDRs as well as place the scaffold in relation to the target.

Figure 9 also illustrates how to realize these examples using the BoltzGen design interface.

3.3 Training

The model is trained with a diffusion objective with a mixture of experimental and self-distilled
biomolecular structures. This data is then randomly cropped and employed in a diverse set of tasks by
randomly selecting parts of the structure to be designed or conditioned on. The procedure is described
in Figure 10. This conditioning sampling process, combined with the diffusion objective, supervises
BoltzGen to simultaneously learn folding, binder design, motif scaffolding, and more, resulting in a
universal binder design model that maximally extracts information from the data.

Training Data. Our data pipeline mostly retains the datasets used in Boltz-2 | ,

|, while adapting the sampling procedure for the task of biomolecular design. Specifically, we
use experimental structures from the Protein Data Bank (PDB) | , |, as well as
self-distilled structures from AlphaFold2 (AFDB), as well as Boltz-1 (for protein-ligand, RNA, and
DNA-protein structures) (see Appendix A.1 for dataset details). Our data also differs from Boltz-2
by not including the upsampled antibody and TCR datasets, since including them reduces generation
diversity.
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Figure 9: Design Specification Language. 3 examples of how the BoltzGen design specification can
be used to solve different design tasks. (a) Designing a cyclic peptide against streptavidin. Part of
the target structure is left flexible (3, orange) and is predicted to change conformation upon binding
the design (1, yellow). (b) Designing a helicon binder. The helicon is created by including the staple
molecule (1, WHL) and specifying covalent bonds between two cysteines in the design and the staple
(4,5, orange). (c) Designing a nanobody against a peptide-MHC complex. The peptide (2, orange)
is specified as a binding site, and the designed regions are limited to the 3 CDR loops (a,b,c) of the
nanobody (1, yellow). The nanobody frameworks are themselves yaml files that specify the PDB
structure to use and which are parts to design. With multiple specifications, a random one is sampled
for each design.
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Figure 10: Crop, Selection, and Specification During training, we sample one PDB structure from
the database and crop it using our cropping algorithm 4. On top of this cropped structure, we optionally
select chains that will be designed (yellow). Diverse conditions, such as fixed target substructures
(green), binding sites (red), and more, are also optionally specified. Cropped, selected, and specified
structure is then featurized to be supplied to the model.

Cropping. The crop size for folding is up to 768 residues, as done in | , ,
, |. Crop size for generative tasks (binder design, motif scaffolding, and unconditional design)
is reduced to 512 residues, to accommodate augmented fake atom representations (Appendix A.2).

Diffusion Objective. The loss used to train the model is

L(0) = Ex~paaa [w(t) (Lmse(0; X t,€) + Liona(0; X, t,€)) + ﬁsmooth_lDDT(a; X,t, 6)] ) (5)

~Pnoise
e~

where ppoise is described below, € is standard isotropic Gaussian noise, Jﬁam is the variance of the data,
LysE; Lvonds and Lsmeoth 1pDT are the three components of the loss described below and the weighting
is defined as 9 )

t o

w(t) = - date (©)

(t : Jdata)
Let X = Dy (X + te, t; z) be the output of the denoiser. The MSE loss is a weighted version of the
denoising loss including a rigid alignment of the denoiser output and target,

1 % aligne
Caise(0: X, t,e) = 5 D wi| Xy — X T, (7)
l

where [ iterates over atoms in the structure, X2i&ned is rigidly aligned to X , and w; upweighs nucleotide
and ligand atoms,
1 if protein
w; =46 if DNA or RNA . (8)
11 if ligand

The bond loss encourages bond length correctness,

1 % % ign aligne 2
Loona(5 X,1,6) = 7= > (1K1 = Kol = X718 Xaiened )7, (9)
|B| l,meB
Finally, Lsmooth DT i8 described in | , | and is a smooth version of the IDDT
which can be directly optimized.
The noise sampling distribution ppeise used during training is
Tdata - exp(—1.2 4+ 1.5- N'(0,1)). (10)
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Training Tasks. We train BoltzGen on a number of tasks (Appendix A.3 for more details) under
the different forms of conditioning above to obtain a general and controllable algorithm. This not only
results in generality but could also improve performance for individual tasks as the model is exercised
on the data in more contexts, increasing the number of examples to extract generalizable patterns from
and learn to emulate physics. Each task is distinguished by which parts of a cropped structure are
chosen to be designed. These selected parts are represented using the fixed-size representation with
virtual atoms described above, and their residue and atom types are masked.

1. Folding. No design residues are specified, corresponding to structure prediction.

2. Binder Design. One protein chain in the target structure is chosen to be designed. This
corresponds to binder design against whatever other biomolecules are in the target structure,
which could be a small molecule, DNA, RNA, or another protein. Sometimes, only the interface
of the protein chain with the rest of the structure is designed, corresponding to binder design
with a supplied scaffold.

3. Motif Scaffolding. Either a crop of the target structure is chosen to be designed, or everything
but the crop is designed. This corresponds to completing a scaffold in the first case, and scaffolding
a motif in the second case.

4. Unconditional Design. Everything is chosen to be designed, corresponding to unconditional
protein generation.

Each task is sampled with some probability during training as long as the target structure is appropriate
for the task. For example, the binder design tasks are not sampled for structures that contain a single
protein monomer.

In addition to the tasks, we also sample different conditioning to supply the model:

1. Structure Conditioning. We randomly choose portions of the target structure to supply as
input to the model based on crops. These are also randomly grouped together.

2. Binding Site. We randomly annotate residues as being part of a binding site or not, based on
proximity to any portions of the training structure selected to be designed.

3. Secondary Structure. We annotate random residues by their secondary structure.

See Appendix A.3 for full details on the various schemes we use to construct the tasks and sample the
different conditioning inputs to give the model.

3.4 Generation

To sample from the model, the inputs are first passed through the trunk to obtain the token and pair
representations z that condition the diffusion module. The diffusion module then generates a structure
x using the stochastic sampler from | , |. This sampler starts from random noise and
alternates between adding noise and denoising.

The sampler makes use of the probability flow ODE, which in the case of our forward process is,

2/ (t) = f‘”%’”(@dt, (11)
for ¢t > 0, where p; is the posterior mean in Eqn. 2 that is approximated by the denoiser Dy. Note
that this ODE runs forward (towards noise). Let F(x,t,s), be the associated flow map, i.e. if z(¢) is a
solution to the above ODE, then

F(x(t),t,8) = z(s). (12)

The probability flow ODE satisfies that F(Xy,t,s) has the same marginal distribution as X,. In
particular, F'(Xy,t,0) gives samples from the data distribution for any ¢ > 0. Rather than simulate the
ODE the whole way, the sampler in | , | interleaves noising steps to add stochasticity
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Algorithm 1: EDM Sampler

Input: Times t;, v; > 1, « > 0,8 >0, Dy, 2, T
Output: Sample trajectory x;

Sample xo ~ N(0, T?I);

foreach i € {0,...,N — 1} do

Sample €; ~ N(0,1);

b 4 t; +vits;

// 1) Step toward noise:

:%Z<—xl+ﬁ t?—t?ei;
// 2) Step in ODE direction:
di (& — Do (%4, 15 2)) /s

Tip1 — T + o(tig1 — t)ds;

end

Figure 11: The EDM Sampler steps toward noise and then toward the model prediction in each
denoising iteration. The magnitude with which to make these steps can be scaled by 3 (noise) and
(prediction). Using v # 1, 3 # 1 no longer samples the training distribution, but is a heuristic scaling
to sample more diverse (higher 3, lower ) or more designable (lower 3, higher <) proteins.

based on the observation that X; = X + ¢, € ~ N (0,2 — s?) for ¢t > s. Hence, alternating between
adding noise € and applying the flow map F always gives samples with the correct marginals. The
algorithm is given in Alg. 1 which additionally makes use of a step scale @ and noise scale 5. To sample
more high-designability but lower diversity binder structures, we can increase the step scale or decrease
the noise scale (and the opposite to obtain more diverse proteins). When drawing many samples, we
vary the step scales and noise scales for each generated protein.

Dilated schedule. The time schedule ¢; used in AlphaFold3 and Boltz is,
P
ti = Odata - (%{;’X 7 (5P — 8111{5’,()) : (13)

where 0gata = 16, Spin = 4+ 1074, s100x = 160,p = 7, and {1}, € [0,1] is a sequence of steps. By
default, 7; = i/N.
Because of our geometric encoding, we found that the amino acid types of designed residues were
determined within a short window, approximately at 7; € [0.6,0.8]. In order to spend more function
evaluations when generating the residue types, we therefore use a dilated schedule where the interval
[0.6,0.8] is stretched out. Concretely, to dilate an interval 7, 7] by 1 < A < 1/(7. — 75), we map step
7 € [0, 1] according to

T/T, if r <l

or) =< (r—uw)/r+u fT7>u |, (14)
(tr—=10)/A+1 otherwise

where r = (1 =X (1 — 75))/(1 = (7 — 7)), L = r - 75, u = | + A(7e — 75). In practice, we choose
A=28/3, 7, = 0.6, and 7, = 0.8, with N = 300 total function evaluations which we found to work well
in experiments.

3.5 BoltzGen Pipeline

On top of the generative model, we run a computational pipeline to filter from the potentially thousands
of designs sampled by the model down to the most promising candidates. The pipeline consists of the
following stages.

1. BoltzGen Diffusion (GPU). Given a design specification, we generate a large number of
designed binders with BoltzGen.

2. Inverse Folding (GPU). We optionally inverse fold the designed binders. This step tends to
create sequences that are more likely to be predicted to refold into the designed structure. It is
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Inverse Folding Model. Our inverse folding model
is largely similar to SolubleMPNN | , 80 1

also likely to improve solubility (the inverse folding model was only trained on soluble proteins).
We use BoltzIF (detailed below), which is similar to SolubleMPNN | ) |-

. Folding (GPU). We predict the structure of the design in complex with the target using Boltz-2
which is provided the template of the target structure (produced in step 1) and no MSAs. We
compute the RMSD between the predicted structure and the structure produced by step 1 for
later filtering (if the refolded structure is similar to the designed structure, the design is more
likely to be a binder). This also produces confidence metrics (pTMs, pAEs) used in filtering.

In scenarios where we design globular proteins, we perform an additional refolding step where we
only predict the structure of the designed binder (in absence of the target), and compute the
same RMSD metrics. As detailed in C, we found this necessary to assess whether the designed
protein’s structure can be achieved in absence of the target, indicating that the design can express
well and fold on its own.

. Affinity Prediction (GPU). When designing proteins that bind small-molecules, we predict
their affinity using Boltz-2’s affinity module.

. Analyze (CPU). We compute physics-based metrics that provide information about the binder-
target interaction strength and developability properties of the design. Here we describe those
that are used in the filtering step by default. A complete list is in Appendix A.4. We count
the hydrogen bonds and salt bridges between design and target and assess the buried surface
area (how much contact is there and how much shape complementarity) between the design and
target. Additionally, we compute a sequence based solubility metric and the area of the largest
hydrophobic patch on the surface of the designed protein (large hydrophobic patches can cause
protein aggregation and difficulty during purification or expression).

. Filter (CPU). Based on the metrics computed in the previous stage, we produce a ranking
of the designs (detailed below). This ranking is used in a quality-diversity algorithm (detailed
below) which returns a final set of filtered (to a desired budget k), ranked, and diversity optimized
candidates. This step takes around 20 seconds independent of the number of designs.

|. The main differences are that (1) we use 6

encoder layers instead of the 3 of SolubleMPNN, (2) 701

we exclude fibril proteins from the training set next
to excluding transmembrane proteins and (3) we train
on structures cropped to 1024 amino acids rather than
excluding larger instances. We verify that our inverse
folding model performs similar to ProteinMPNN and
SolubleMPNN in Section B.3.

Ranking. To rank designs, we first compute two
groups of metrics that we expect to correlate with ex-
perimental success: Boltz-2 confidence scores |

, | and interaction-type scores such as the
number of hydrogen bonds. These are aggregated into
a single quality score ¢ by taking the worst rank across
all metrics (Algorithm 2). Metrics are given varying
importance by weighting their respective ranks, where
the weights are calibrated on a benchmark of validated
binders (see Appendix B.1). This prioritizes designs
with the best worst-case performance across all metrics.
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Algorithm 2: Top-k binder designs selection by worst weighted metric rank

Input: Data matrix X (rows indexed by i correspond to protein binder designs, columns
indexed by j are metrics), metric weights w;, number of selections k
Output: Indices of top-k rows
/* Default metrics and weights: design_iiptm: 1, design_ptm: 2, neg_min_design_to_target_pae:
1, plip_hbonds_refolded: 2, plip_saltbridge_refolded: 2, and delta_sasa_refolded: 2 */
foreach column j do

foreach row i do
Compute rank r; ; across column; // Lower is better

Compute weighted rank 7; j < r; j/w;;
end
end
foreach row i do
‘ Compute score s; <— max; 7; ;;
end
return Indices of k& rows with smallest s;;

Quality-Diversity Selection. In order to select a diverse set of high-ranking designs, we use a
greedy selection algorithm described in Alg. 3. Each design x produced by the model is ranked according
to the aggregated score ¢(z) introduced above. For a given set of candidates S, we also measure the
similarity of design = to all designs in the set S based on a mixture of the TM-score and sequence
similarity,

Diversity(z, A) = 1 — (Wstruet - StructSim(x, A) + Wseq - SeqSim(z, A)), (15)
where
StructSim(z, A) = max TM-score(x, a), (16)
ac
and

alignment(z, a)

SeqSim(z, A) = max (17)

acA max(len(zx),len(a))’

The algorithm then proceeds by greedily adding designs that maximize a combination of quality and
diversity with respect to the current set of candidates.

Algorithm 3: Greedy Quality-Diversity (QD) Selection

Input: Set of candidate designs S = {z1, z2,..., 2N}, quality scores ¢(x), trade-off parameter
a € [0,1], diversity weights Wstruct, Wseq, and selection budget B.

Output: Selected subset of designs A, with |A| = B

A+ {argmax,cs q(x)}; // Initialize selected set

while |[A| < B do
x* ¢ argmax,eg\ 4 [ - Diversity(z, A) + (1 — ) - Quality(z)]; // Choose next design =
A+ AU {SL‘*}, // Update selection set

end

return A

4 Detailed Wetlab Results

4.1 Designing Nanobodies and Proteins against 9 Novel Targets
Ezxperiments carried out by Adaptyv Bio.

The target choice, design process, and results are described in Section 2.2. Here we provide Tables 3
and 2 to list all attained affinity measurements and describe the targets’ therapeutic and translational
relevance in Section 4.1.1. All sensograms, collected datapoints for computing affinities, and associated
experimental information is available at: https://huggingface.co/datasets/boltzgen/adaptyv_
datal/resolve/main/adaptyv_data.zip
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Table 2: Affinities for Novel Targets - Nanobody Designs. Entries in blue correspond to the
average of 2 replicate measurements, corresponds to single measurements. Affinity Kp in nM.
Expressed designs that do not bind are marked as o; lack of expression is marked as x.

AMBP GM2A HNMT IDI2 MZB1 ORM2 PHYH PMVK RFK
(3dkg) (1g13)  (1jgd) (2pny) (7aah) (3apu) (2alx) (3ch4) (1nb0)

7.8 6.1 8.8
9.1 18
13
23
66
76
200
440
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Table 3: Affinities for Novel Targets - Protein Designs. Entries in blue correspond to the average
of 2 replicate measurements, corresponds to single measurements. Affinity K p in nM. Expressed
designs that do not bind are marked as o; lack of expression is marked as x.

AMBP GM2A HNMT IDI2 MZB1 ORM2 PHYH PMVK RFK
(3dkg) (1g13)  (1jad) (2pny) (7aah) (3apu) (2alx) (3ch4) (1nb0)

53 o 270 26 9.8 o 22 o
190 o o 66 12 o 31 12 o
710 o o 14 o 91 o o
890 o o 230 23 o 120 o o
weak o o o 25 o 160 o o
o o o o 25 o o o o
o o o o 26 o o o o
o o o o 31 o o o
o o o o 31 o o o
o o o X 32 o o o
o o o X 73 o o X
o X o X 160 X o X
o X o X 220 X o X

o X o X 310 X o X
o X X X o X e} X

4.1.1 Therapeutic and Translational Relevance of 9 Novel Targets

While largely chosen for benchmarking generalization, many of our 9 "hard" targets also play important
roles in disease pathways, therapeutic mechanisms, or emerging biotechnological and synthetic biology
applications. Designing binders against them could therefore enable new ways to modulate, inhibit,
stabilize, or study these proteins in both therapeutic and translational contexts. We should note that,
for intracellular targets, we assume that nanobody-based intrabodies, genetically encoded and expressed
within cells, offer a promising modality for studying and modulating protein function in vivo, including
within organelles such as peroxisomes | ) |.

Some of the targets are directly implicated in chronic inflammation and cancer. For instance,
orosomucoid-2 (ORM2) is an acute-phase glycoprotein that promotes cytokine production in rheuma-
toid arthritis synovial tissue [ , ]. Binders that block ORM2-mediated immune signaling
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could serve as potential anti-inflammatory agents or probes to dissect its role in autoimmune disease.
Similarly, MZB1, an ER-resident co-chaperone involved in antibody secretion and calcium regulation,
is overexpressed in multiple myeloma and chronic lymphocytic leukemia [ , . A
binder that perturbs MZB1 folding function could interfere with the secretory machinery of transformed
plasma cells and thus represent a novel intervention for B-cell malignancies.

Several of our targets are enzymes whose dysfunction causes inherited or acquired metabolic disorders.
Phytanoyl-CoA hydroxylase (PHYH) is a peroxisomal enzyme required for phytanic acid breakdown.
While mutations in PHYH cause Adult Refsum disease, recent studies have also implicated PHYH
in cancer metabolism and other contexts of metabolic dysregulation [ , |. A highly
specific binder could serve as a research tool to selectively modulate or visualize PHYH activity and
to study the cellular consequences of impaired alpha-oxidation. Another example is riboflavin kinase
(RFK), which catalyzes the rate-limiting step in the biosynthesis of FMN and FAD, cofactors essential
in redox metabolism. Species-specific differences between human and microbial RFK enzymes support
the development of microbial RFK-targeting binders as potential antimicrobial agents |

, |]. Other enzymes in our panel link directly to cancer metabolism. Phosphomevalonate
kinase (PMVK) is a critical enzyme in the mevalonate pathway, and recent work shows it drives
tumor progression via metabolite-dependent activation of Wnt/S3-catenin signaling [ , ]
Designed binders could serve to inhibit this signaling axis or act as pathway-specific probes. IDI2 is
also part of isoprenoid biosynthesis and widely used in engineered microbes to boost terpenoid and
carotenoid yields | , ]. Tunable binders for IDI2 could thus be applied in enzyme control
or stabilization in synthetic biology workflows.

Some of our targets are involved in signaling and regulatory processes relevant to inflammation,
neurobiology, and RNA metabolism. HNMT, which methylates histamine, plays a central role in
histamine clearance and is genetically associated with asthma, allergy, and various neurological traits
[ , , , ]. Increasing brain histamine levels through novel
HNMT inhibitors could offer therapeutic potential for certain neuropsychiatric conditions [

, ]. In contrast to HNMT’s role in small-molecule metabolism, METTL16 is an m®A
RNA methyltransferase that regulates MAT2A mRNA splicing and S-adenosylmethionine homeostasis.
Its functional roles span both RNA processing and metabolic control. Recent studies highlight its
context-dependent behavior in cancer: METTL16 can promote tumor progression in colorectal and
gastric cancer | , , , |, while acting as a tumor suppressor in bladder
and papillary thyroid cancers, where its downregulation correlates with more aggressive disease |

, ]. This functional duality underscores the potential of selective binders as
orthogonal tools to dissect METTL16 pathway wiring and regulatory logic across tissue types | ,
|
Finally, two of our targets highlight distinct modes of translational value. GM2A, a lysosomal activator
protein required for ganglioside GM2 degradation, is deficient or functionally compromised in the
AB variant of GM2 gangliosidosis, which leads to neurodegeneration |
, |. Stabilizing or activating binders could therefore serve therapeutlc
or diagnostic functions in this rare disease, while inhibitory binders may have utility for other neu-
rodegenerative diseases such as Alzheimer’s Disease, where GM2A activity is elevated [
|. Alpha-1-microglobulin/bikunin precursor (AMBP) is a complex plasma glycoprotein that is
processed into two distinct, functional proteins: alpha-l-microglobulin (A1M) and bikunin. AIM is a
radical-scavenging and heme-binding protein that protects against oxidative stress and tissue injury,
while bikunin is a Kunitz-type protease inhibitor involved in extracellular matrix stabilization and
inflammation control. Recent work in a preeclampsia mouse model showed that recombinant A1M
can alleviate placental and renal oxidative damage, reduce hypertension, and preserve organ function,
underscoring its therapeutic potential in pregnancy-related disorders and other oxidative pathologies
[ , |. Binders that selectively enhance or inhibit cleavage, secretion, or the extracel-
lular interactions of AMBP products could be developed as tools to modulate protease activity, track
oxidative damage in vivo, or regulate post-translational processing of these multifunctional proteins.

In sum, the 9 hard targets selected here are not merely difficult in structural terms — they are
underexplored yet promising proteins across therapeutic, diagnostic, and synthetic biology domains.
The ability to design functional binders against them suggests new experimental and translational tools
that could complement or extend small-molecule and protein binder—based strategies.
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4.2 Designing Proteins to Bind Bioactive Peptides with Diverse Structures

Ezperiments by A. Katherine Hatstat, Angelika Arada, Nam Hyeong Kim, Ethel Tackie- Yarboi, Dylan Boselli,
Lee Schnaider, and William F. DeGrado.

We sought to test the capacity of BoltzGen to generate binders of biologically active peptides with

diverse secondary structures and antimicrobial and/or cytotoxic activity. We targeted three peptides

with diverse secondary structures: protegrin (disulfide stapled beta-hairpin) | , ,

, |, melittin (amphipathic helix in the presence of membranes) | ,

, , , , , , , ], and indolicidin
(polyproline IT or amphipathic conformation in the presence of bilayers) [ ,

, |. In this campaign, we define a successful design as one that exprebses at high levels
in Eschenchm coli, is monomeric with the desired secondary structure, and binds its desired target with
at least single-digit pM affinity. Because all the binding targets are antimicrobial peptides (AMPs),
we also screened binders for their ability to neutralize antimicrobial activity against Bacillus subtilis
and, where applicable, their ability to inhibit peptide-induced hemolysis. The former also serves as a
measure of the designs’ proteolytic stability as B. subtilis secretes numerous proteases.

From the top ranked designs produced by BoltzGen, we selected six per peptide through manual
inspection, prioritizing those with consistent burial, well-oriented hydrogen bonds, and tightly packed
interfaces for experimental characterization.

Target Peptide Melittin. We first evaluated melittin binders for their ability to bind melittin and
neutralize its antimicrobial and hemolytic activity. All six selected melittin binder designs (termed
mell-mel6) expressed, and mell-3 displayed the expected helical structure (Figure 13a,b; [©]222,mel1 =
—29,900deg * cm? /dmol; [0]292 mei2 = —17,200deg * cm? /dmol; [O]222 me13 = —13, 600deg * cm? /dmol).
Size exclusion chromatography (SEC) showed that mell forms a monodisperse species consistent with a
monomer, while mel2 and mel3 tended to aggregate (Figure 13c). However, pre-incubation of mel2 and
mel3 with melittin before SEC analysis shows that melittin binding acts as a switch, driving mel2 and
mel3 from an aggregated state to monodisperse, monomeric species. Meld—6 show poor folding and
form aggregates in SEC (Figure 13b,c).

Mel1l-3 were moved forward for assessment of melittin binding through a combination of in witro
binding assays and neutralization assays (both antimicrobial and hemolysis assays, as melittin has
both antimicrobial activity and cytotoxicity) (Figure 13e,f). All three binders neutralize antimicrobial
activity (Figure 13e) and hemolysis (Figure 13f). A single molar equivalent of Mell and Mel2 reversed
the cytotoxic effect of melittin near its HD50 (1.2 uM) for hemolysis of erythrocytes. Melittin contains
a single tryptophan residue that is predicted to be near or fully buried in the peptide:binder interface
in the designed complexes. Thus, we complemented neutralization assays by monitoring changes in
intrinsic tryptophan fluorescence in vitro to quantify design binding affinity. Mel2 and mel3 have low to
sub-puM affinity for melittin (0.41 and 4.4 uM K, for mel2 and mel3, respectively), while mell showed
limited spectral shift at the excitation and emission wavelengths monitored.

Target Peptide Indolicidin. All selected indolicidin binder designs were predicted to be helical,
comprised of 3-6 helices with a peptide binding cleft on the surface of the helical binder (Figure
14a). Three of the six (indol, indo3, and indo4) designs formed single, homogenous species by
analytical size exclusion chromatography, while indo2, indo5, and indo6 tended to aggregate (Fig-
ure 14b). All six binder designs had helical character as measured by circular dichroism (Figure
14¢; [O]222,indo1 = —21,700deg * cm?/dmol; [B]222,indoz = —19,800deg * cm?/dmol; [0]222indos =
—8, 700deg * cm?/dmol; [0]222 indos = —17, 700deg * cm? /dmol; [O]222 indos = —9, 600deg * cm? /dmol;
[©]222.indos = —22,900deg * cm?/dmol). All indolicidin binder designs showed indolicdin binding
as monitored by changes in indolicidin tryptophan fluorescence (Figure 14d; Kgindo4 < Kdindo1 <
K indos < Kdindo2 < Kd,indos < Ka,indos), with indo 1, 3, and 5 exhibiting affinities <5uM and indo4
exhibiting sub-uM affinity. (Figure 14d). The indo4:indolicidin interaction was further analyzed by
surface plasmon resonance, which confirmed that the complex binds with nanomolar affinity (Figure 14e).
Despite all six designs having detectable indolicidin binding, only indo4 showed robust neutralization
of indolicidin antimicrobial activity (Figure 14f). This may be due to low proteolytic stability of the
designs in the presence of B. subtilis, which secretes an array of proteases | , ].
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Figure 13: Experimental characterization of melittin binder designs. (a) Structure prediction
models of all selected melittin binders are predicted to adopt a helical conformation and to bind melittin
in its amphipathic helix state. (b) Analytical size exclusion chromatography traces of Mell-Mel6 show
varied oligomeric states. (c) Circular dichroism shows that Mell-3 have helical character, while Mel4—6
are only partially folded. (d) Mel2 and Mel3 show detectable melittin binding as measured by changes
in intrinsic fluorescence of melittin’s tryptophan residue. Melittin concentration is held constant at
10 pM while binders, which lack tryptophan residues, are varied from 0-40 pM. (e) Mell—-3 neutralize
melittin’s antimicrobial activity against B. subtilis. (f) Mell-3 also neutralize melittin’s hemolytic
activity.

Target Peptide Protegrin. Finally, we assessed the ability of BoltzGen to generate binders to
protegrin, a disulfide-stapled, beta-hairpin antimicrobial peptide. Unlike the previous targets, the
generated designs for protegrin binders showed mixed alpha/beta or all beta topologies (Figure 15 a).
By SEC, prol and pro6 formed single monodisperse species consistent with a monomeric state, while
pro2-5 eluted at volumes consistent with higher-order oligomers or mixed oligomeric states (Figure
15 b). All six designs showed the expected secondary structure by circular dichroism (beta or mixed
alpha/beta) (Figure 15 c¢). Two of the six designs, prol and pro6, showed detectable binding to protegrin
via changes in binder tryptophan fluorescence, with affinities of 7.2 and 1.2 uM, respectively (Figure
15 d). Both prol and pro6 neutralized protegrin, with pro6 being a more potent neutralizer. This
is consistent with the relative affinities of the two designs as measured by tryptophan fluorescence
changes. While pro2, pro4, and pro5 showed little spectral shift in tryptophan fluorescence assays,
they all neutralized protegrin’s activity against B. subtilis. The trp residues in these designs are not
predicted to be fully buried in the bound complex; thus, neutralization assays indicate a binding event
is occurring but it may not be detectable by the in vitro binding assay used herein (Figure 15 e).
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Figure 14: Experimental characterization of indolicidin binder designs. (a) Structure prediction
models of all selected indolicidin binders are predicted to adopt a helical conformation. (b) Analytical
size exclusion chromatography traces of Indol-Indo6 show varied oligomeric states. (c) Circular
dichroism shows that Indol-6 all have helical character. (d) All Indo binders show detectable
indolicidin binding as measured by changes in intrinsic fluorescence of indolicidin’s tryptophan residues.
Indol, Indo4, and Indo5 binding was measured with multiple indolicidin concentrations, and K, was
determined via a global fit. (e) Only Indo4 neutralizes indolicidin antimicrobial activity against B.
subtilis. (f) For Indo4, binding was validated by surface plasmon resonance, in which Indo4 was
immobilized and exposed to varied [indolicidin]. Affinity was determined as a function of response units
at the pre-injection stop points of each [indolicidin] (inset).

4.3 Designing Peptides to Bind the Disordered Region of NPM1.

Ezxperiments by Yaotian Zhang, and Denes Hnisz.

Designs. Using BoltzGen, we generate 20,000 designs of size 40-80 to bind NPM1’s disordered region
and test 5 designs experimentally. We make use of BoltzGen’s binding site conditioning and specify
that the design should interact with the disordered region and not its structured beta-sheet region via
our model’s "not-binding" feature. Additionally, we provide the structure of the ordered region and
leave the disordered region flexible. Thus tasking BoltzGen to model how the disordered region will
fold and become structured in presence of the peptide while designing that peptide.

Detailed Results. We assessed the target engagement of the NPM1-binders in live cells. Five selected
NPM1-binders were genetically fused to GFP, and the GFP-tagged binders were transiently expressed
in human osteosarcoma (U20S) cells. The subcellular localization of the binders was visualized with
GFP fluorescence (Figure 16 A). Among the five tested binders, one binder (NPM1-binder-4) showed
localization consistent with enrichment in nucleoli where the endogenous NPM1 protein is known to
localize (Figure 16 B). Immunofluorescence staining for NPM1 indeed confirmed the colocalization of
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Figure 15: Experimental characterization of protegrin binder designs. (a) Structure prediction
models of all selected protegrin binders are predicted to adopt a helical conformation. (b) Analytical
size exclusion chromatography traces of Prol-Pro6 show varied oligomeric states. (c) Circular dichroism
shows that Prol, 4, 5, and 6 have partial helical character, while Pro2 and Pro3 have the expected
B-structure in their apo form. (d) Prol, 5, and 6 show detectable indolicidin binding as measured
by changes in intrinsic fluorescence of the binders’ tryptophan residues. (e) Prol, 2, 4, and 6 fully
neutralize protegrin antimicrobial activity against B. subtilis at the concentrations tested.

the GFP-tagged NPM-binder-4 with endogenous NPM1 (Figure 16 C), thus providing evidence of a
de-novo designed protein binding disordered proteins in live cells. As an additional control for nucleolar
localization, another well-known protein that also localizes in nucleoli, SURF6, was also visualized
(Figure 16 C).

4.4 Designing Peptides to Bind a Specific Site of RagC GTPase
Ezxperiments by Shamayeeta Ray, Jonathan T. Goldstein, and David M. Sabatini.

Target and Designs. All information is already present in the summary Section 2.5.

Results. We test 29 designs in an SPR assay and find 7 binders with affinities ranging from 3.5 uM
to 893 uM (Table 4). Additionally, for 4 binders, we randomly permute their residues and re-test
binding. Three lose their affinity and 1 shows 10x weaker binding. Furthermore, the permuted version
of peptide 23 showed poor binding at lower concentration and displayed uninterpretable sensograms at
concentrations greater 25 pM, indicating non-specific binding.
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Figure 16: A. Schematic model of the msfGFP-tagged binder design and cellular assay to visualize
subcellular localization of the NPM1-binders. B. Live cell fluorescence microscopy images of U20S
cells expressing ectopic msfGFP-NPM1 binders. The cell nucleus is highlighted with a dashed white
line contour. Scale bar: 10 um. The experiment was repeated twice independently with similar
results. C. Fixed-cell immunofluorescence of U20S cells expressing exogenous msfGFP-NPM1-binder-4.
Endogenous NPM1 and SURF6 are stained with antibodies. The cell nucleus is highlighted with a
dashed white line contour. Scale bar: g pm. The experiment was repeated twice independently with
similar results.

4.5 Designing Disulfide Bonded Cyclic Peptides to Bind a Specific Site of
RagA:RagC
Experiments by Shamayeeta Ray, Jonathan T. Goldstein, and David M. Sabatini.

Target and Designs. All information is already present in the summary Section 2.6.

Results. We test 24 peptides and find 14 of them to show specific binding by SPR. For 8 of those we
resolved the affinities obtaining values ranging from 80 uM to 1100 uM (Table 5).

4.6 Designing Nanobodies that Bind Penguinpox and Hemagglutinin
Experiments by Jacob A. Hambalek, Anshika Gupta, Diego Taquiri Diaz, and Chang C. Liu.

Targets. All information is already present in the summary Section 2.7.

Designs and Results. We generate 60 000 nanobodies against each target in the fashion described in
Section 2.2 and select 7 per target for experimental characterization. Of the 7 designed nanobodies
that we tested for each antigen through yeast surface display at a range of antigen concentrations
(7 nM-2 pM), we observed a weak binding signal at the highest antigen concentration (1.6-2 pM) for

some designs. Specifically, 1 of 7 designs against cGAMP PDE showed a binding signal at 1.6 pM of the
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Peptide Sequence Kq (pM)  Rmax (RU)

6 ICTLHRK 60 375
13 GVKEDCQALRAQSKALRK 117 249
18 IMTLKRFSKNYGEIERLALY 893 505
19 QLYHIRIARSAQRIFKNGG 268 3041
20 HAMSKNMQRFLRKAKAMVIV 3.5 2083
23 MMSDVRQLRTIVRELRRV 268 285
29 DYSAGRQLLRTLKDKLTTS 373 185
Scr20 KWVHIFRALAMKAMRSQKNM 33.5 451

Table 4: Binding affinities and response maxima of BoltzGen’s peptide designs. 29 peptides
were tested in total. Ryax is the saturated signal of a sensogram at maximum binding representing
complete occupancy of all ligand sites. RU is Response Units. Scr20 denotes a version of peptide 20
with randomly permuted residues.

Peptide Sequence Ki (uUM)  Rmax (RU)
7 RLRERCRLNPLYCL 308 670
8 RRRERCRLNPLYCG 318 2200
11 SRRERCRLNRLLCLL 447 2000
12 RRRELCKLNPLVCG 1100 1750
14 RRRELCRLDRRACL 297 550
16 KRREACARYRTICLH 164 250
18 TAKRCKADPYRCKLLSR 80 1200
22 GCSKDVQKCKLLK 274 290

Table 5: Binding affinities and response maxima of BoltzGen’s disulfide-bonded cyclic
peptide designs against the RagA:RagC dimer. 24 peptides were tested in total, 14 bind, and for
8 we resolved the affinities. Ry.x denotes the maximum sensogram signal corresponding to full ligand
occupancy. RU: Response Units.

Figure 17: YSD of nanobodies for feasibility assessment of design optimization. Median
fluorescence intensities above background for cells displaying nanobodies targeting (left) cGAMP PDE
and (right) FhaB. The highest concentration of antigen in both cases was the only test case that
demonstrated any binding signal for any nanobody design.

antigen, and 7 of 7 designs against FhaB—where all 7 designs were against the same epitope—showed
a binding signal at 2 pM of the antigen. Because 2 pM was the highest antigen concentration used
for labeling and was the minimal concentration tested that resulted in any binding signal, we cannot
calculate an ECsq from these studies. However, we can conclude that the binders exhibiting weak
binding signals are at best 2 pM affinity binders.
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The plots in Figure 17 represent the median Alexa Fluor 647 fluorescence intensity of nanobody-
displaying cells (HA tag label positive) minus the median Alexa Fluor 647 fluorescence intensity of
the non-nanobody-displaying cells (HA tag label negative) at different concentrations of antigen. The
latter acts as an internal control and is subtracted to remove the signal from nanobody-independent
background binding of cells to antigen. Higher fluorescence intensity indicates more binding. The
background-subtracted median fluorescence intensities across concentrations for each nanobody design
were then fit to a Hill function using SciPy curve_fit. For initializing curve fitting, the background
value used was the minimum fluorescence intensity observed at 0 antigen concentration and the ECsxg
used was the median antigen concentration tested. The Hill coefficient, n, was explicitly set to 1, as we
expect non-cooperative binding of the antigen to the antibody. The fluorescence value, Y, is fit as:

Bl’l‘laXL

Y:Bmin"' =
C+1L

vyhere Buin is the best-fit background fluorescence value, B ax is the best-fit maximum binding value,
C is the best-fit EC5¢ projection, and L is the concentration of antigen.

4.7 Designing Proteins that Bind to Small Molecules
Experiments by A. Katherine Hatstat, Angelika Arada, Nam Hyeong Kim, Ethel Tackie-Yarboi, Dylan Boselli,
Lee Schnaider, and William F. DeGrado.

Figure 18: rucaparib Binder Design a) Structural model of the designed rucaparib binder (purple)
in complex with rucaparib (yellow). b) Fluorescence emission spectra of rucaparib (10 pM) upon
titration with increasing concentrations of the designed protein (0-10 equivalents). The emission
spectrum of rucaparib exhibited a blue shift upon binding, indicating changes in its local environment.
c) Fluorescence polarization assay of rucaparib binding to the designed protein, measured with an
excitation wavelength of 405 nm and emission wavelength of 516 nm. Polarization values were plotted
against the molar ratio of protein to rucaparib, and the data were fitted to a one-site binding model
using nonlinear regression in GraphPad Prism 10 to determine the dissociation constant (K ).

We selected rucaparib as a benchmark target, as published reports indicate that high-affinity binders
(K4 < 5 nM) can be achieved. We also selected a rhodamide derivative related to rucaparib, which we
leave undisclosed. Our computational design pipeline generated on the order of 10,000 designs for each
target. The initial set was filtered to a highest-confidence subset of 100 designs based on RMSD < 2.5 A
relative to the Boltz-2 refolded models. Within this filtered pool, designs were ranked using a composite
metric (interaction score + Boltz score), which effectively integrates predicted structural fidelity with
biophysical interaction quality. To identify essential interactions, we fragmented the chemical groups of
rucaparib and calculated the number of hydrogen bonds formed with each fragment. We prioritized
designs forming hydrogen bonds with the carboxamide chemical groups, as this interaction is considered
essential for specific binding. A total of six designs for rucaparib and 4 designs for the rhodamine
derivative were selected for experimental validation by binding assay (Figure 18a).
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Among the selected rucaparib binder de-

signs (termed rucl-ruc6), five out of six Length Expressed Ky (M)

were expressed in moderate to good yields rucaparib

(15 — 69.5 mg/L). Incubation of each rucl 173 yes 75.9
binder with equimolar concentrations of ruc?2 180 yes 43.0
rucaparib led to a marked blue-shift and ruc3 173 yes 64.2
an increase in the intensity of its fluores- rucd 180 yes 59.1
cence spectrum, which is characteristic ruch 177 ves 151.5
of the rucaparib indole core being bound ruch 179 1o -
in a rigid, solvent-inaccessible site (Fig-

ure 18b). Fluorescence polarization data rhodamine deriv.

showed that rucl-ruc4 exhibited moder- rhdl 154 yes 69.2
ate affinity for rucaparib, with values of rhd2 141 yes 252.2
75.9, 43.0, 64.2, and 59.1 uM K, respec- rhd3 158 yes 30.9
tively. Ruch showed the weakest bind- rhd4 154 yes 144.7

ing affinity (151.5 uM K,) among the
tested candidates (Figure 18c). All de- Table 6: Small Molecule Binders. Experimental char-
signs against the rhodamine derivative acterization of designed binders against rucaparib and an
expressed in moderate to good yields (15 undisclosed rhodamine derivative.

-~ 69.5 mg/L), and fluorescence polariza-

tion data showed binding affinities of 30.9, 69.2, 144.7 and 252.2 puM. Affinities of all designs against
both targets are summarized in Table 6.

4.8 Designing Antimicrobial Peptides that Inhibit the GyrA to GyrA In-
teraction

Ezperiments by Andrew Savinov, and Gene-Wei Li

Recent work has demonstrated that peptide fragments of full-length proteins (protein fragments) are
generalizable inhibitors of native protein interactions in living cells | , , |. Libraries
of tiling protein fragments also reveal specific interfaces prone to such protein fragment-based inhibition
[ , |, identifying good target sites for alternative drug design modalities.

Here, we sought to leverage previous results uncovering potent inhibitory protein fragments of the
essential bacterial protein DNA gyrase (subunit A; hereafter, GyrA), where the C-gate closure interaction
between two GyrA subunits was identified as a desirable target site | , , |. DNA
gyrase is a target of considerable interest for developing novel antibiotics. Existing compounds, such as
clinically employed fluoroquinones, function by trapping gyrase in the DNA-cleavage complex |

, , , | and aminocoumarins interfere with the enzyme’s ATPase activity |

, ], but interfering with C-gate closure represents a complementary drug modality. Indeed, a
previously reported monoclonal antibody against Mycobacterium tuberculosis GyrA appears to target
this same site | , ]

We therefore used the inhibitory peak identified by fragment scanning experiments | , ,

] and massively parallel predictions of fragment binding modes with FragFold | , |
to identify target residues in the GyrA C-gate closure complex, and used BoltzGen to design de novo
peptide binders targeting this same interface. We note that this was a challenging target for de novo
binder design owing to the small size of the C-gate closure interface (i.e., only 6 residues within 4 Ain
the experimental structure of the full gyrase complex (PDB ID 6RKS), and 11 residues within 4 A
in the FragFold model | , ) and we therefore designed binders with diverse design
parameters. We then leveraged an established experimental method to measure the inhibitory effects of
these designed binders in living E. coli cells, taking advantage of the importance of GyrA for cell growth
to determine inhibitory function from massively parallel measurements of growth inhibition |

, , |; in this way a large library of BoltzGen designs was tested in parallel (Methods).

1,808 designed GyrA inhibitors were tested alongside 1,788 mutants designed to break the designed
binding modes (3 alanine substitutions at the binding interface per design) to determine the specificity
of inhibitory activity to binding GyrA as desired. These designs were tested alongside 30-aa fragments
tiling across GyrA with a 1 aa step size, matching previously published work [ , ,
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Figure 19: BoltzGen-designed binders are potent DNA Gyrase inhibitors in vivo. (a) GyrA
inhibition from massively parallel in-cell measurements of peptides (Methods) for all designed GyrA
binders; designed binders that were inhibitory and specific to the designed binding mode (5.5% of all
designs); and inhibitory fragments of GyrA targeting the same site (| , , |). Note
that all values for the inhibitory GyrA fragments and 91% of the values for interface-specific designed
binders represent lower bounds on inhibitory activity, as these peptides inhibited growth so thoroughly
that they completely dropped out of the library when expressed. (b) Structure of inhibitory fragment
371-400 of GyrA (orange; | , , ]) bound to full-length GyrA (blue) in the context
of the full-length GyrA dimer structure (PDB ID 6RKS), with in vivo inhibitory effect indicated.
(c) - (e) Three example BoltzGen-designed binders targeting the same interface as GyrA fragment
371-400, exhibiting high inhibition and specificity in vivo. In each case the in-cell inhibitory effects of
the designed binder as well as the mutated form with 3 alanine substitutions at the interface (magenta
residues) are indicated. In all three cases, inhibitory effects are completely lost upon mutation.

|, as an internal positive control for GyrA-inhibitory fragments; and also 20-aa fragments tiling (1
aa step size) across enhanced GFP (eGFP), approximately matching the average fragment length of
the designs (15 + 3.4 aa, mean =+ s.d.). The eGFP fragments provided an internal negative control in
the form of fragments not expected to interact specifically with E. coli proteins.

Across all designed GyrA binders tested, 352 (19.5%) were found to substantially inhibit E. coli growth,
similar to known inhibitory protein fragments of GyrA (Figure 19a-b; Methods). The binders inhibiting
growth specifically by binding the GyrA C-gate at the desired interface should generally exhibit loss
of activity when residues at the designed interface are mutated (Figure 19c-e), so we calculated the
quantity A(Inhibition) = Inhibition(design) - Inhibition(mutated design) as a measure of designed
GyrA inhibitor specificity. Of all 352 growth-inhibiting designs, 54 designed binders (3.0% of total)
were strongly specific for the designed GyrA binding site (A(Inhibition) > 2) and 99 designed binders
(5.5% of total) were significantly specific under a less stringent requirement (A(Inhibition) > 1). Thus,

~3-6% of designed GyrA inhibitors appear to inhibit growth by binding GyrA at the C-gate site as
designed, and almost 20% of designs targeting this essential protein inhibited growth more broadly.

The fraction of successfully designed GyrA inhibitors was comparable to the fraction of tiling fragments
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across GyrA producing inhibitory activity (~9%), reflecting the previously noted widespread inhibitory
activity of protein fragments across diverse proteins | , , |. Comparing these
results to the effects of expected nonfunctional protein fragments of similar length as represented by
the 20 aa eGFP fragment library, we found that 0.45% of eGFP fragments inhibited E. coli growth.
Therefore, compared to nonspecific control peptides, a ~43-fold larger fraction of designed GyrA binders
inhibit cell growth, and ~7-12-fold larger fraction specifically inhibit growth dependent on the designed
binding interface.

The inhibitory effects of interface-specific designed binders (Inhibition = 4.7 £ 1.2, mean =+ s.d.)
were comparable to the inhibitory effects of GyrA fragments from the corresponding inhibitory peak
(Inhibition = 3.5 £+ 0.6, mean + s.d.) in internal control measurements in the same experiment
(Figure 19a). We note as well that all GyrA-inhibitory protein fragments and 91% of interface-specific
designed GyrA binders were sufficiently strong inhibitors of this essential protein that they completely
dropped out of the cell population when expressed, meaning these values represent a lower bound
on inhibitory activity. The successfully designed DNA gyrase inhibitors represent promising novel
antimicrobials targeting this essential bacterial protein.

4.9 Designing Nanobodies and Proteins against 5 Benchmark Targets
Ezxperiments carried out by Adaptyv Bio.

The target choice, design process, and results are described in Section 2.10. Here we provide Table 7 to
list all attained affinity measurements. The sensograms, from which the affinities were determined, and
associated experimental information are available at: https://huggingface.co/datasets/boltzgen/
adaptyv_datal/resolve/main/adaptyv_data.zip.

(a) Nanobody designs (b) Protein designs
IL-TRA Insulin PDGFR PDL1 TNF« IL-TRA Insulin PDGFR PDL1 TNF«

890 36 o 7.8 0.81 o
1300 70 o 17 12 o
1400 71 o 25 23 o o
1500 87 o 27 110 o o
o 98 o o 29 110 o o
o 120 o o 33 170 o o
o o o o o 42 260 o o
o o o o o o 49 310 o o
o o o o o o 54 350 o o
o o o o o o 56 350 o o
o o o o o 58 370 o o
o o o o o 140 590 o o
o o o o o 710 o o o
o o o o o 730 o) o o
o o o o o 1400 o o o
o 1400 o o o
o 1600 o o o
o) o) o) o X
o o o o X
o o o o X

Table 7: Affinities for Benchmark Targets. Nanobody designs (a) and Protein designs (b). Entries
in blue correspond to the average of 2 replicate measurements, to single measurements. Affinity
Kp in nM. Expressed designs that do not bind are marked as o; lack of expression is marked as x.
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Figure 20: Structure Prediction Evaluation. We reason that structure-based binder design requires
strong structure prediction and reasoning capability. BoltzGen can perform design and folding. Its
folding performance matches Boltz-2. Shown is the best IDDT out of 5 diffusion samples for each
complex.

5 Computational Results

5.1 Structure Prediction

BoltzGen’s development was driven by the hypothesis that designing high-affinity binders requires
strong structure prediction and reasoning capabilities. Expressive features that allow for accurate
structure prediction are also crucial for design and enable the model to place atoms that tightly interact
with the target. Thus, we assess BoltzGen’s structure prediction performance.

Figure 20 shows that BoltzGen’s folding performance matches Boltz-2 on its test set (minus 187
complexes that did not fit on a 40 GB GPU). This test set is based on clustering sequences with a 40%
similarity threshold (details in A.1.2).

5.2 Computational Binder Design

In a comparison with RFdiffusion [ , | and its extension RFdiffusionAA |

, | we aim to assess the degree to which the models ignore the target and produce the same
structures independent of their conditioning. To evaluate a model’s target dependence, we collect a
set of targets and draw one binder design per target and filter that set, only keeping the designs that
match the model’s generated structure after refolding with Boltz-2 (based on an RMSD threshold of
2.5 A). We then assess the diversity of the resulting set as the Vendi score [ , ]
with TM-score as the similarity kernel. Methods that tend to produce the same structures irrespective
of the target will obtain a lower diversity.
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We carry this evaluation out for monomeric proteins and small Length 150  Length 15 Length 150

Protein- Peptide- Protein-
molecules as targets. The monomer set is selected based on g .. | Protein Protein  Small Molecule
sequence similarity clustering and June 2023 as a date cutoffs % 31.2
(details in A.1). The small molecule set is a random sample = 301
from all ligands that satisfy standard drug-like property criteria g »s |
(Lipinski’s rule of five | , |) and have a Tanimoto ~ § 225
similarity of less than 0.35 to any small molecule with the same 5201 150 104
date cutoff. The comparison in figure 21 shows that BoltzGen ‘g 15 14.6
"pays more attention" to the target. % 110

0 104
3
6 Limitations z ’
04
For therapeutic development, generating high-affinity binders is — :Zﬂfg;on RFdiffusion AA

only the first step. Whether a design will achieve the intended

function depends on a range of additional properties, includ- Figure 21: Target conditioning
ing selectivity, developability, and the precise characteristics quantification. The diversity of suc-
of the target. While predictors for these could be included in  cessfully refolded complexes when de-
BoltzGen’s filtering steps, the selective binding problem may signing a single binder against 110
be particularly ripe for direct integration into the generative targets. This assesses the degree to
process. Classifier-free guidance techniques could be used for which the models are conditioned on
combining the scores of BoltzGen with different targets as con- the target instead of generating de-
ditioning to achieve guiding toward one target while steering signs independent of the target.
away from off-targets. Alternatively, BoltzDesignl | ,

| could be used to suggest mutations that prevent binding to off-targets.

More specific to BoltzGen, we note that there is a memorization issue when designing binders of length
73-76. For certain protein targets, BoltzGen’s generation diversity collapses in this length range and
it nearly exclusively samples ubiquitin as the binder. For future BoltzGen training runs, ubiquitin
should be downsampled (appears more than 900 times in the PDB). More details about this ubiquitin
memorization is provided in Appendix B.5.

Lastly, we comment on how there is a tendency in the field to claim that binder design models are
"zero-shot" and "plug-and-play" solutions without a chance for failure. We do not make this claim
and encourage users to use BoltzGen thoughtfully, carefully inspect the generated structures, and
potentially rerun the pipeline multiple times, first at smaller and then larger scales. BoltzGen’s rich
design specification language provides a large degree of control that should be experimented with for
optimal results.

7 Conclusion

BoltzGen is a general-purpose generative model for biomolecular binder design, supporting a broad
range of modalities, including proteins, peptides, nanobodies, and related modalities, which can be
designed to target virtually any biomolecule, such as proteins, small molecules, and nucleic acids. While
the core of BoltzGen is a diffusion generative model, we provide it as part of a broader framework that
includes tools for specifying design tasks, generating candidates, and filtering, ranking, and optimizing
for diversity. This makes it a practical, end-to-end solution for several binder design problems.

Our strongest results to date are in nanobody design against protein targets, where we obtain nanomolar-
affinity binders against two-thirds of the tested novel targets with only 15 or fewer designs. We also
demonstrate finding binders when designing miniproteins and peptides against a wide variety of ordered
and disordered regions of proteins.

We release the entire BoltzGen package under the MIT license, including model weights, training and
inference code, and a user-friendly pipeline for design and evaluation. By providing a complete and
accessible solution, we hope BoltzGen serves as a practical tool and a foundation for future work in
general-purpose biomolecular design.
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A Computational Method Details

A.1 Datasets
A.1.1 Training

Our data pipeline builds upon Boltz-2 | , |, while adapting the sampling procedure for
the task of biomolecular design.

Table 8 summarizes the datasets used for sampling during training, including their sources, sampling
cluster types, and associated weights. BoltzGen is primarily trained on entries from the Protein Data
Bank (PDB) | , | and the AlphaFold Protein Structure Database (AlphaFold DB)
[ , |, while leveraging Boltz-1 distillation | , | to enhance performance
on underrepresented modalities. For additional information on individual datasets, please see

[2025].

PDB We process every structure in the PDB following a pipeline similar to those previously described
in Boltz-2 | , |:

e We use every PDB structure up to the training date cutoff of 06/01/2023. We parse the Biological
Assembly 1 from these structures.

e For each polymer chain, we use the reference sequence and align it to the residues available in the
structure.

e For ligands, we refer to the CCD dictionary to get the reference ligand and atom composition.
We compute up to 10 3D conformers per ligand and sample one at random during training.

e We remove large complexes that are over TMB or with more than 5000 residues.

e We apply the same filters as AlphaFold3, namely excluding crystallization aids and other non-
biologically relevant ligands, removing clashing chains, and filtering out chains with fewer than 4
resolved residues or composed only of unknown residues.

e We compute multiple-sequence alignments for every protein chain (and only protein chains) using
ColabFold search. Once monomeric MSAs are produced, we assign a taxonomy ID to every
sequence in every MSA using their Uniref100 IDs as reference, if any. The preprocessing of the
MSAs is analogous to AlphaFold3.

e We produce template hits for protein chains as described in AlphaFold3, using hmmbuild and
hmmsearch on PDB sequences deposited at least 60 days prior to any given query’s deposition
date.

Distilled datasets We use Boltz-2 distilled datasets, in particular:

e AlphaFold Database (AFDB) distillation: In order to construct a protein monomer distillation set,
we begin with uniref30 and find the overlap between those sequences and the uniclust multiple
sequence alignments provided by OpenFold. We then fetch structures from the AFDB where we
impose a minimum global IDDT of 0.5. This procedure results in a monomer distillation of about
5 million proteins.

e Protein-Ligand distillation: We construct a dataset of protein-ligand distillation from BindingDB
and ChEMBL that were excluded from the main hit-to-lead affinity training set of Boltz-2 |
, |. The distillation set was formed by filtering Boltz-1 predictions to examples with a
maximum interface predicted distance error (iPDE) < 1.0 and a minimum interface predicted
TM-Score (ipTM) > 0.9.
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e RNA distillation: Following AlphaFold3, we clustered Rfam (v14.9) | , | using
MMSeqs2 | , | with 90% identity and 80% coverage. To form the
distillation set, Boltz-1 predictions for cluster representatives are filtered to those where the
maximum average predicted distance error (PDE) < 2.0.

e Protein-DNA distillation: The protein-DNA distillation data is constructed similarly to Al-
phaFold3. Using the JASPAR 2024 release (specifically, the CORE collection), we first find
transcription factor profiles with matching gene IDs across two high-throughput SELEX datasets
[ , , , |. For each filtered profile, a protein sequence is assigned in two
ways: i) using the canonical protein sequence under the profile’s Uniprot ID and ii) searching for
the sequence in the two SELEX datasets (with matching gene ID) with the highest similarity to the
Uniprot sequence. Sequence similarity is calculated using KAlign v2.0, computed as the number
of non-gap matches between the two sequences divided by the minimum length of pre-aligned
sequences. Unlike AlphaFold3, we did not apply any sequence clustering. To generate binding
DNA sequences for each protein sequence, we use the corresponding JASPAR profile’s position
frequency matrix (PFM) to sample 10 single-stranded motifs. For each distillation example, the
inputs include the protein sequence, the single-strand DNA sequence and its corresponding reverse
complement. After generating Boltz-1 predictions, we filtered examples to those that satisfied all
the following conditions PDE < 2.0, maximum interface predicted distance error (iPDE) < 1.0
and minimum interface predicted TM-Score (ipTM) > 0.7.

Table 8: Training data composition

Dataset Source Sampling Clusters Sampling Weight
PDB experimental chains & interfaces 0.6
AFDB AF2 distillation chains 0.3
Protein-ligand Boltz-1 distillation interfaces 0.03
RNA Boltz-1 distillation chains 0.04
DNA-protein  Boltz-1 distillation interfaces 0.03

A.1.2 Structure Prediction Test Set

For structure prediction, the test set in table 20 was constructed following Boltz-2 |

1. Initial release date is between 2024-01-01 and 2024-12-31.

2. Resolution is below 4.5A.

3. We select all polymer chains that have less than 40% similarity to training polymer chains.

4. We select all interfaces where at least one of the two chains is dissimilar from the training chains.

5. Given these chains and interfaces, we get all the relevant full targets and always predict assembly 1.

We exclude 187 complexes since they do not fit on 40GB GPUs.

A.2 Cropping

Each sampled training entry is randomly cropped. While AlphaFold3 | , | alternates
between contiguous, spatial, and interface-spatial cropping, we use the single strategy of Boltz-1
[ , | tailored to biomolecule design. Algorithm 4 shows how training tokens T" are
processed: given a center index ¢ determined by the sampling cluster type (Table 8), we iteratively add
contiguous fragments of size W from chains nearest to the center until reaching the target crop size L.
The maximum crop size is 768 for folding, matching AlphaFold3 and Boltz-2, and 512 for design tasks
to accommodate additional memory for fake atoms.
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Algorithm 4: CROPNEIGHBORHOOD

Input: tokens T, centre index ¢, fragment-size W, maximum length L
Output: cropped — indices centered on ¢, grown in W-sized fragments, truncated at L

/*order residues by spatial proximity to the center */

ordered < indices of residues sorted by || T'[7].x — T'[c].x |[;

cropped — &;
for i € ordered do
chain_members < {j | T[j].chain_id = T[i].chain_id };
if |chain_members| < W then
| block < chain_members ; // short chain - keep all
else
block < contiguous window in chain_members centered on i,

expand left /right until |block| > W;
end

if |cropped| + |block| > L then
‘ break ; // length budget reached

end

cropped <— cropped U block;
end

return cropped (sorted);

A.3 Training Tasks
During training, we select different parts of the data sample to be designed. We do this according
to different training tasks, which correspond to common use cases such as binder design, or motif

scaffolding, as described in Sec. 3.3. The tasks are outlined in Table. 9.

Table 9: Training Tasks Descriptions

Design Task Training Task Description Alg.
Folding Folding No design residues selected 5
Protein Chains Select a protein chain to be de- 7
signed
Protein Interfaces Select residues in a protein chain 11
Binder Design at the interface with another pro-
tein chain

Non-Protein Interfaces Select residues in a protein chain 10
at the interface with a non-
protein chain

. . Scaffolding Select all residues in a crop 8
Motif Scaffolding Motif Select all residues except a crop 9
Unconditional Design ~ Standard Protein Select all protein residues 6

Each task is sampled with a certain probability depending on the data sample. These sampling
probabilities are given in Table 10.

In addition to selecting which residues will be designed, we also sample other conditioning features,
such as binding site specifications. The procedures for each feature are listed in Table 11 along with
references to algorithmic descriptions.
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Table 10: Training Tasks Distribution

Condition
Task 0 Non-Protein > 0 Non-Protein
0 Protein 1 Protein > 1 Protein 1 Protein > 1 Protein
Folding (Alg. 5) 1 0.1 0.05 0.05 0.05
Scaffolding (Alg. 9) 0 0.5 0.2 0.2 0.2
Motif (Alg. 8) 0 0.3 0.15 0.15 0.1
Non-Protein Interface (Alg. 10) 0 0 0 0.2 0.05
Standard Protein (Alg. 6) 0 0.1 0.1 0.4 0.1
Protein Interfaces (Alg. 11) 0 0 0.1 0 0.1
Protein Chains (Alg. 7) 0 0 0.4 0 0.4
Table 11: Conditioning Inputs Sampling
Input Feature Description Mode Weight Alg.
Which residues are part of the binding b1nd11.1g , 0-15
.o . . . . not_binding 0.075 .
Binding Site site, not part of the binding site, or Alg. 12
< ecified both 0.075
URSPECLied. none 0.70
Which pairwise distances are given as all 0.40
Pairwise Distances input to the model. Used, for example, uniform 0.30 Alg. 13
to specify the structure of the target. crops 0.30
Which residues are part of an alpha all 0.50
Secondary Structure helix, beta-sheet, loop, or unspecified. uniform 0.50 Alg. 14

Algorithm 5: SELECT NONE

Input: tokens T’

Output: updated T with T.design_mask (1 = redesign)
T.design_mask < 0

return 7T

Algorithm 6: SELECT STANDARD PROT

Input: tokens T
Output: updated T with T.design_mask
foreach residue index i do

if T[i].is_protein and T[i|.is_standard (not modified) then

‘ T[i] .design_mask « 1;
end
end
return 7'

Algorithm 7: SELECT PROTEIN _CHAINS

Input: tokens T'
Output: updated T with T.design_mask

chain_ids < unique{ T'[i].chain_id | T|i].is_protein and T'[i].is_standard };

chosen__ids < np.random.choice(chain_ids, size = np.random.randint(1, |chain_ids|))

foreach residue i with Ti].chain_id € chosen_ids do
‘ T[i] .design_mask < 1;

end

return 7T

9
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Algorithm 8: SELECT MOTIF

Input: tokens T' (one per residue), fragment-size K (desired motif width
Output: updated T with T.design_mask
/* canonical protein residues */

protein_ std < {i | T[i].is_protein and T[i|.is_standard };

/* decide maximum motif length */
maz_ len < max(np.random.randint(|protein_ std|), fragment_ size + 1)
/* choose a central residue and gather a contiguous window around that */

center _token < np.random.choice(protein_ std);

crop_ set < CROPNEIGHBORHOOD (tokens =T, center = center token, window =
fragment_size, limit = max_ len);

T[crop _set].design_mask < 1;

return 7T’

Algorithm 9: SELECT SCAFFOLD

Input: tokens T, fragment-size set K
Output: updated T with T.design_mask
/* first select a motif based on seLEcT_moTIF (Alg. 8), then set the remaining standard protein
residues as the scaffold to be designed. */
protein_ std < {i | T[i].is_protein and T[i].is_standard };
maz_ len + max(np.random.randint(|protein_ std|), fragment_ size + 1)
center _token < np.random.choice(protein_ std);
crop_ set < CROPNEIGHBORHOOD (tokens =T, center = center_token, window =
fragment _size, limit = max_ len);

/* design scaffold part: all protein-standard residues outside the motif */
T protein_ std\ crop_ set].design_mask «+ 1;
return 7T’

Algorithm 10: SELECT NONPROT INTERFACE

Input: tokens T’
Output: updated T with T.design_mask
/* pick 1+ non-protein chains as the target and design the k closest standard protein residues at
the interface. */
nonprot_ids < unique{ T'[i].chain_id | T[i].is_protein = False }
target ids < np.random.choice(nonprot _ids, size = np.random.randint(1, [nonprot_ids|+1);
candidates < {1 | T[i].is_protein and T[i|.is_standard };
foreach 7 € candidates do
d[i] «
MiN;.7(j].chain_idetarget ids ( ||T[i].center_coords — T[j].center_coords”2 + N(0, 0));

end

order < candidates sorted by d;

k < np.random.randint(1, |order|+1);
Tlorder[:k] ].design_mask < 1;
return 7'
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Algorithm 11: SELECT PROTEIN INTERFACES

Input: tokens T
Output: updated T'
/* Select 1+ protein chains and mark the k standard residues on those chains that lie closest to
other protein chains to be designed. */
prot__chain_ids < unique {T'[i].chain_id | T[i].is_protein and T'[i].is_standard} ;
redesign_chain_ids < np.random.choice(prot _chain_ids, size =
np.random.randint(1, |prot_chain_ids|);
Redesign < {i | T[i].chain_id € redesign_ids and T'[i].is_standard };
Target < {i | T[i].chain_id ¢ redesign_ids };
foreach i € Redesign do

d[i] + min ( |T'[i].center_coords — T[j].center_coordsH2 + N(0, 0));
j€Target

end

order < Redesign sorted by d;

k + np.random.randint(1, |order|+1);
T[order[:k] ].design_mask < 1;
return T

Algorithm 12: SPECIFY BINDING _SITE

Input: tokens T’

Output: updated T with T.binding_type set on target residues
design + {i | T[i].design_mask = 1 };

target < {i | T[i].design_mask = 0 };

/* compute atom-atom contacts between every target token and all design-token atoms */
foreach 7 € target do
is_atomic_ contact[i] < Ja € atoms(T'[i]), b € atoms(design) s.t. ||a — b|| < 5 A;
end
contact _targets <— {i € target | is_atomic_ contact[i]| = 1};

mode < random.choice([binding, not_binding, both, none], p = [0.15, 0.075, 0.075, 0.70]);
if mode € {binding, both} then
S < random nonempty subset of contact targets;
foreach ¢ € S do
| T[i].binding_type - BINDING;
end
end
if mode € {not_binding, both} then
U < random nonempty subset of (target \ contactitargets);
foreach i € U do
| T[i].binding_type <~ NOT _BINDING;
end

end

return 7'
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Algorithm 13: SPECIFY _STRUCTURE _GROUPS (pairwise—distance conditioning)

Input: tokens T'

Output: updated T with T.structure_group set for target residues

/* we set structure_group to drive pairwise-distance conditioning: pairs with group 0 receive no
distances; pairs whose residues share a nonzero group (> 1) have their pairwise distance

specified */

target < {i | T[i].design_mask = 0 };
chain_ids < unique T'[i].chain_id for i € target;

/* pick one or more target chains to specify structure group */

speci fied + random subset of chain_ids of size randint[1, |chain _ids|];

/* for each chosen chain, select all tokens or sub-regions to specify the structure */
subsets + &;

foreach c € specified do

tokens. <— {1 € target | T'[i].chain_id = c };

mode < random.choice([all, uniform, crops], p = [0.40, 0.30, 0.30]);

if mode = all then

/* specify the entire set of target tokens on the chain */
subsets < subsets U [tokens, |;

else if mode = untform then
/* split the chain’s target tokens into contiguous segments */

m < randint[1, min(6, [tokens.|)];
split tokens. into m contiguous segments;
subsets < subsets U [each segment |;

else crops
/* take several spatially local crops grown around random centres */
R <+ randint[2, 4];
for r=1to R do
center _token < random element of tokens not yet chosen in any crop;
crop__set < CROPNEIGHBORHOOD (tokens =T, center = center _token, window =
fragment _size, limit = |tokens not yet chosen in any crop|);
subsets < subsets U [crop_set];
end
end
end
/* assign frame IDs: sample num_groups and give each subset a random ID in {1,...,num_groups}
(group 0 means no distances) */

num__groups < randint[1, |subsets|];
foreach S € subsets do

g < random choice in {1,...,num__groups};
Vi € S: T[i].structure_group < g;

end

return 7T’
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Algorithm 14: SPECIFY SECONDARY STRUCTURE _MASK

Input: tokens T

Output: updated T with T.design_ss_mask set for designed residues

/* design_ss_mask controls secondary structure conditioning: 1 means condition on the secondary
structure for a designed residue */

designed < {i | T[i].design_mask = 1 };

/* select a mode for how much SS to reveal */

mode <— random choice € {all,uniform};

if mode = all then

| Vi€ designed : Tli].design_ss_mask < 1;

else uniform

*/
m < randint[1, |T'|];

for k=1 tomdo

end
end
return 7T’

/* partition into contiguous intervals; randomly choose to reveal SS or not for each interval

split the token index range [1..|T|] into m contiguous intervals I3, ..., Ly,;

| with prob 1/2 set T'[i].design_ss_mask < 1 for all i € (designed N I);

A.4 Details about Computed Metrics

Table 12 provides a comprehensive reference for all metrics computed by the BoltzGen pipeline.

Table 12: BoltzGen metrics reference.

Metric Name

Description

1 Design quality metrics

1.1 Predicted structure quality

ptm
iptm
design_ptm

design_iptm

design_to_target_iptm

design_iiptm

design_ptm>[threshold]
design_iptm>[threshold]

interaction_pae

Predicted TM-score, measuring overall structure quality (higher is
better).

Predicted TM-score across chain pairs, measuring overall complex
stability (higher is better).

Predicted TM-score for the designed structure, measuring how well
the designed structure folds (higher is better).

Predicted TM-score for interactions between the entire design
chain and target, measuring overall binding interface quality
(higher is better).

Predicted TM-score for interactions between only the designed
residues (not the full chain) and target, measuring specific binding
interface quality (higher is better).

Predicted TM-score for interactions between design residues that
are within 8 A of target atoms and any target residues, measuring
interface interaction quality (higher is better).

Binary flag for design_ptm above threshold (1 = pass, 0 = fail),
where threshold is 0.75 or 0.8.

Binary flag for design design_iptm above threshold (1 = pass, 0
= fail), where threshold is 0.5, 0.6, 0.7, or 0.8.

Predicted aligned error for all design—target interactions (lower is
better).

Continued on next page
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Metric Name

Description

min_design_to_target_pae

neg_min_design_to_target_pae

Minimum Predicted Aligned Error (PAE) between any design and
target residue pair, indicating the most confidently predicted
contact (lower is better).

Negative of min_design_to_target_pae for ranking purposes
(higher is better).

1.2 Designability / refolding accuracy

filter_rmsd

filter_rmsd_design

designfolding-filter_rmsd

Root mean square deviation used for filtering, either backbone
RMSD (from_inverse_folded=True) or all-atom RMSD (lower is
better).

RMSD of the designed structure only, used for filtering (lower is
better).

RMSD when refolding the design in isolation (without target),
ensuring design stability (lower is better).

2 Interaction metrics

2.1 Binding interface analysis

plip_hbonds_refolded

plip_saltbridge_refolded

Number of hydrogen bonds between design and target in refolded
structure (higher is better).

Number of salt bridge interactions between design and target in
refolded structure (higher is better).

2.2 Binding site adherence

bindsite_under_[cutoff]rmsd

Fraction of binding site residues within [cutoff] A of designed
residues, where [cutoft] is 3, 4, 5, 6, 7, 8, or 9 (higher is better).

3 Solvent accessibility and hydrophobicity

3.1 Surface area analysis

delta_sasa_refolded

delta_sasa_original

Change in solvent accessible surface area when binder is present vs
absent, computed on refolded structure (higher indicates better
burial).

Change in solvent accessible surface area when binder is present vs
absent, computed on original structure (higher indicates better
burial).

3.2 Hydrophobicity metrics

design_chain_hydrophobicity
design_hydrophobicity
neg_design_hydrophobicity
design_largest_hydrophobic_
patch_refolded

Hydrophobicity score of the entire designed chain sequence.
Hydrophobicity score of only the designed residues.
Negative of design_hydrophobicity for ranking purposes .
Area of the largest hydrophobic patch in the refolded design
structure (lower is better for solubility).

4 Sequence composition and structure

4.1 Amino acid composition

num_design
[amino_acid] _fraction
UNK_fraction

Number of designed residues in the sequence.

Fraction of specific amino acid residues in the designed sequence.
Fraction of unknown (X) residues in the designed sequence (0
preferred to avoid unknown residues).

4.2 Secondary structure

loop
helix
sheet

Fraction of residues in loop conformation (0-1 scale).
Fraction of residues in helical conformation (0-1 scale).
Fraction of residues in S-sheet conformation (0-1 scale).

Continued on next page
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Metric Name

Description

5 Liability analysis

5.1 Overall liability scores

liability_score
liability_num_violations

liability_high_severity_
violations
liability_medium_severity_
violations
liability_low_severity_
violations
liability_violations_summary
liability_details

Overall developability score combining all liability assessments
(lower is better).

Total number of liability violations detected in the sequence (lower
is better).

Number of high-severity liability violations (lower is better).

Number of medium-severity liability violations (lower is better).
Number of low-severity liability violations (lower is better).
Human-readable summary of all liability violations detected.

Consolidated details string combining all motif-specific liability
information.

5.2 Specific liability motifs

liability_[motif]_count

liability_[motif]_position

liability_[motif]_length
liability_[motif] _severity

liability_[motif]_details
liability_[motif]_positions

liability_[motif]_num_positions

liability_[motif]_global_
details

Number of instances of the specific liability motif found (lower is
better). Examples: HydroPatch detects hydrophobic patches like
“FILVWY”, DPP4 detects cleavage sites like “AP”, MetOx detects
methionine oxidation sites.

Position of the first occurrence of the motif in the sequence
(residue index).

Length of the liability motif in residues.

Severity score for this motif instance (lower is better). Examples:
HydroPatch severity increases with patch size (3+ consecutive
hydrophobic residues = high severity), MetOx has moderate
severity, DPP4 cleavage sites have high severity.

Specific details about the motif violation.

All positions where this motif occurs (comma-separated).

Total number of positions where this motif occurs.

Global context details for this motif.

liability_[motif]_avg_severity Average severity across all instances of this motif.

7 Affinity prediction (small molecule binders)

affinity_probability_binaryl

Probability of binary binding classification (higher is better).

8 Filtering and ranking metrics

8.1 Aggregated ranking and filtering

final_rank

num_filters_passed
pass_filters

Final ranking position after quality and diversity optimization (1
= best).

Number of filter criteria that the design passed.

Binary flag indicating whether design passed all filters (1 = pass, 0
= fail).

B Additional Computational Results and Details

B.1 Calibrating Filtering Algorithm for Protein-Protein Complexes

The relative importance of the Boltz-2 confidence metrics and interaction metrics used to rank designs
is calibrated on a benchmark of 11,000 validated binders across 11 target proteins, based on data
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from [ |. These weights serve as default values and are manually adjusted for wetlab
design experiments based on domain expert feedback.

Binder designs selection benchmark. For each of the 11 targets (InsulinR, FGFR2, EGFR, H3,
IL7Ra, PDGFR, SARS-CoV-2 RBD, TGFb, Tie2, TrkA, and VirB8), we sample up to 100 positive
examples (i.e., 4uM binders) and fill the remainder up to 1,000 designs with negative examples (i.e.,
non-binders), resulting in a balanced subset of 11,000 designs.

When exploring different methods to prioritize designs, we optimize the mean enrichment factor at top
25 and top 50 designs. Following [ |, due to the high variance of metric values across
targets, we do not directly optimize the mean enrichment score. Instead, we optimize the mean rank
across targets, where each target’s rank is based on its individual enrichment value. When computing
enrichment factors, we normalize by the original binder-to-non-binder ratio from the full dataset, rather
than our 11,000-design subset.

Binder designs selection method. In our ini-

tial experiments, we trained a decision tree to pre- 1.00
dict binary binder labels based on the given metric design_iiptm Ry [0,75
values. However, we find that learning decision design_ptm - 1.00

thresholds for individual metrics is not optimal, heq_min_design.to_target pae 0.42 o0
as the best threshold values can be specific to the

target protein (for example, optimal interaction plip_hbonds _refolded --0.02 0.00 -0.02 BLly
count metric thresholds can vary depending on plip_saltbridge_refolded - 0.11 0.16 0.09 0.32 FHAY
protein size). Instead of using absolute thresholds,
we develop a design selection scheme that prior- I
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the enrichment factor on our benchmark of 11,000

experimentally validated binder designs. We do  Figure 22: Final Metrics Used For Binder
not run this optimization over all metrics but only Design Filtering And Their Pairwise Cor-
over a representative subset of non-correlated ones relations. Correlations were calculated on 11,000
(Figure 22). We include both design_iiptm and BoltzGen-designed binders for 11 targets from our
neg_min_design_to_target_pae despite their benchmark derived from [ ]

high correlation, as variations of these two metrics

have been shown to be complementary |

, 2024].

Our enrichment factor optimization, combined with wetlab experimental feedback, yields the fol-
lowing final combination of metrics and weights for Algorithm 2: design_iiptm: 1, design_ptm:
2, neg_min_design_to_target_pae: 1, plip_hbonds_refolded: 2, plip_saltbridge_refolded: 2,
and delta_sasa_refolded: 2. When designing small-molecule binders, we slightly modify the weights
of Boltz-2 metrics: design_iiptm: 1.1, design_ptm: 1.1, neg _min_design_to_target_pae: 1.1,
plip_hbonds_refolded: 2, plip_saltbridge_refolded: 2, and delta_sasa_refolded: 2.

B.2 Baseline methods

RFdiffusion. We employ RFdiffusion | , | as a baseline for binder generation,
using the official implementation (https://github.com/RosettaCommons/RFdiffusion). We apply
the standard settings (diffuser.T=100) and reduce the inference noise to improve design quality
(denoiser.noise_scale_ca=0, denoiser.noise_scale_frame=0), following the configuration used in
the official binder design example (https://github.com/RosettaCommons/RFdiffusion/blob/main/
examples/design_ppi.sh).

We use ProteinMPNN | , | for inverse folding, as implemented in the official
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LigandMPNN | , | repository (https://github.com/dauparas/LigandMPNN). We
use the standard checkpoint proteinmpnn_v_48_020.pt. Side-chain packing is performed with the
following settings: pack_side_chains=1, number_of_packs_per_design=1, and pack_with_ligand_
context=1.

RFdiffusionAA. We use RFdiffusion All-Atom (RFdiffusionAA) | , | as a base-
line for generating protein binders against small molecules. We employ the official implementation
(https://github.com/baker-laboratory/rf_diffusion_all_atom) with a standard configuration

(diffuser.T=150, inference.ckpt_path=RFDiffusionAA_paper_weights.pt). Inverse folding is per-
formed using LigandMPNN | , |, as described above for RFdiffusion.

BoltzGen only requires a SMILES representation of the input small molecule and performs cofolding
during the design process. In contrast, RFdiffusionA A uses a fixed ligand structure to generate a protein
binder. To ensure a fair comparison between the two methods, we generate ligand conformers for
RFdiffusionAA using RDKit | , |. Specifically, inspired by DiffDock | , ],
we employ the A11Chem.ETKDGv3 algorithm and, if it fails, fall back to initializing random coordinates
followed by optimization with A11Chem.MMFFOptimizeMolecule. We generate a single conformer per
input ligand, as we observe that increasing the number of conformers to diversify designs has no
significant impact on RFdiffusionA A performance.

B.3 BoltzlF Inverse Folding Model

We verify whether BoltzIF behaves similarly to Protein MPNN (PMPNN) and Soluble (SMPNN) on a
set of 64 monomer targets from the PDB. We evaluate each model’s ability to inverse fold both native
and designed structures. For native ability, we inverse fold the targets themselves and evaluate 50
sequences for each one. For designed ability, we generate 50 binders for each target with BoltzGen and
evaluate 1 inverse-folded sequence per design.

Native Backbones Designed Backbones
Method
RMSD < 2.5 Hydrophobic RMSD < 2.5 Hydrophobic
ProteinMPNN 0.55 1343.30 0.31 1448.65
SolubleMPNN 0.55 1025.72 0.33 1143.31
BoltzIF 0.55 1185.98 0.32 1400.73

Table 13: Inverse Folding Model Comparison. "RMSD<2.5" denotes the success rate with which
designed sequences refold into the inverse folded structure (using Boltz-2). "Hydrophobic" indicates
the surface area of the inverse folded protein’s largest hydrophobic patch.

Table 13 reports both the backbone designability of the refolded sequences to the original structures as
well as the size of the largest hydrophobic patch, which is relevant for protein expressibility. We see that
BoltzIF attains the same designabilities as ProteinMPNN and SolubleMPNN and its hydrophobicity
scores fall between the two models.

Fig. 23 shows the amino acid distribution over all sequences from each of the models. BoltzIF’s residue
frequencies mostly fall between that of ProteinMPNN and SolubleMPNN. Likely, the reason for the
higher hydrophobicity scores than SolubleMPNN is that it has been trained on crops (hydrophobic
cores can be viewed as solvent-facing when it is the surface of a crop).

B.4 Motif Scaffolding Benchmark Results
We ran the following Motif-scaffolding performance benchmark performed in | , |:

e For each motif scaffolding task, we generate 1000 backbones.

48


https://github.com/dauparas/LigandMPNN
https://github.com/baker-laboratory/rf_diffusion_all_atom

Figure 23: Amino acid distributions when inverse folding BoltzGen’s designed binders against 64
monomers in PDB. "PDB Native" denotes the amino acid distribution in our PDB training data.
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Figure 24: The Ubiquitin Memorization Issue. Shown is the sequence diversity (number of unique
sequences divided by total number of designs) for designs with varying lengths against 9 targets (33,600
designs). The gap in the 73-76 region stems from BoltzGen’s bias toward Ubiquitin in that length
range. The bias likely stems from Ubiquitin’s overrepresentation in the training data (>1000 entries in
the PDB).

For each backbone, 8 sequences are generated by ProteinMPNN with fixed sequences in the motif
region.

All 8 sequences are refolded via ESMfold and the C,-RMSD and the motifRMSD are computed
between the ground truth and the prediction.

A backbone is categorized as a success when one of the ProteinMPNN sequences satisfy C,,-RMSD
< 2A, motifRMSD < 1A, pLDDT > 70, and pAE < 5.

Hierarchical clustering with single linkage and TM-score threshold 0.6 is performed on all successful
backbones to get a clustering to get the final unique successes.

BoltzGen has the highest number of sole best method in 8 tasks (compared to Proteina that wins in 6
tasks).

B.5 Memorization of Ubiquitin

In a few design campaigns, we observed diminished sequence diversity and low filter pass rates for
BoltzGen minibinder designs in the 73-76 amino acid length range. This is visualized in an analysis of
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Task Name BoltzGen Proteina Genie2 RFDiffusion FrameFlow

6E6R _short 83 56 26 23 25
5TRV_med 25 22 23 10 21
5YUI 36 5 3 1 1
6EXZ_short 11 3 2 1 3
5TRV _short 6 1 3 1 1
AJHW 3 0 0 0 0
5IUS 3 1 1 1 0
1PRW 2 1 1 1 1
6E6R_long 289 713 415 381 110
6EXZ_long 59 290 326 167 403
6E6R_medium 164 417 272 151 99
1YCR 102 249 134 7 149
5TRV _long 155 179 97 23 7
AZYP 1 11 3 6 4
6EXZ_med 32 43 54 25 110
7TMRX_ 128 64 51 27 66 35
7MRX_ 85 22 31 23 13 22
3IXT 10 8 14 3 8
5TPN 3 4 8 5 6
7TMRX_ 60 4 2 5 1 1
1QJG 0 3 5 1 18
1BCF 1 1 1 1 1
5WN9 2 2 1 0 3
2KL8 1 1 1 1 1

Table 14: Number of unique successes on the RFDiffusion benchmark for BoltzGen and 4 other methods,
for 1000 backbones.

33,600 designs against 5 protein and 4 small molecule targets in Figure 24. Inspection of the sequences
revealed that the pipeline (backbone design followed by inverse folding) is frequently recapitulating
the sequence for ubiquitin in this length range. For example, in this analysis all designs of length 73
(n=156) had >97% sequence identity to "MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIP-
PDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRL".

Likely, this arises since this sequence is present, often in complex, in >1000 entries in the PDB. In
future versions of the model, we plan to down-sample this interaction during training.

C Learnings from BoltzGenv(

Template bug. A previous version of BoltzGen, which we term BoltzGenv0, had a serious flaw
resulting in close-to-random ranking and filtering. We can judge the impact of the bug based on the
nanobody design results in Section 2.7, where, with the current version of BoltzGen, we obtain a 1/7
hit rate for the Penguinpox target and a 7/7 hit rate against hemagglutinin. BoltzGenv0’s hit rates
were 0 for both targets. The same failure case occurred for an attempt to design helicons against a
pMHC complex.

The nature of this bug was in our handling of which residues are considered to be part of the target
and which part of the design. In cases where the designed binder contains fixed residues, such as when
designing helicons or nanobodies, BoltzGenv0 considered the fixed residues of the designs as being
part of the target. The implications of this are that their relative position with respect to the target is
provided in the refolding step via the templates that we employ for the targets. Thus, the resulting
structure prediction is bound to recapitulate the generated structure, without providing any filtering
power that enriches for binders. Furthermore, metrics such as the minimum interaction pAE and the
ipTM would be influenced by the fixed residues that are in the design. For instance, in the overwhelming
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majority of cases, the minimum interaction pAE would not correspond to an interaction between the
design and the target, but rather an interaction between a designed residue and a fixed residue in the
designed binder. Hence, these scores also do not provide any filtering power for BoltzGenvO0.

Designfolding. Another improvement in BoltzGen over BoltzGenv0 is its "designfolding" step. In
this step, we additionally refold the design in the absence of the target and compute the RMSD to the
design in the generated structure. This serves as a proxy to assess whether the binder could attain the
designed structure by itself, which we use to filter out designs that are likely to require a significant
conformational change upon binding or do not express since they do not fold into a stable structure by
themselves.

We introduced this improvement after a protein-protein binder design attempt where all 12 of Boltz-
Genv(’s designs failed to express. These designs would often partially or completely "envelop" the
target and require a large conformational change to bind.

D Wetlab Experimental Method Details

D.1 Target Selection Process for 10 Hard Adaptyv Bio Targets

For assembling a panel of hard protein targets for Adaptyv Bio to test experimentally, we use the
following criterion:

1. PDB Monomer — The biological assembly has to be a monomer with exactly one protein polymer
instance
(oligomeric_state = Monomer, polymer_entity_instance_count_protein = 1).

2. Monomer-only sequence cluster — Each chain is either a singleton or a member of a sequence
cluster (30% identity threshold, mmseqs easy-cluster with -min-seq-id 0.30 and -c 0.0) in
which every member is a PDB monomer (satisfies Condition 1).

3. Catalog availability — Must be available in the Sino Biological catalog (via mapping to a
Swiss-Prot accession listed there).

With this selection method, we aim to ensure that each protein we keep is a monomeric PDB entry
that has no close sequence homolog (MMseqs2 sequence identity > 30%) anywhere in the PDB that
appears in a multimeric or ligand-bound assembly. This makes the targets genuinely “hard” for our
binder design: the model has not seen a closely related protein in a bound context during training.

We verify our target’s sequence identities <30% to any non-monomeric protein in PDB as follows.
For each target sequence, we ran MMseqs2 easy-search against non-monomer PDBs and keep the top
identity hit that passes our coverage filter:

mmseqs easy-search queries.fa nonmonomer_db out.m8 tmp \
--threads 32 \
--min-seq-id 0.0 \
--alignment-mode 3 \
-e 1e5 -s 9.5 \
--prefilter-mode 2 \
--cov-mode 2 -c 0.9 \

e Coverage policy. We require near-global coverage on the target via -cov-mode 2 -c 0.9, i.e.

aligned residues
tcov = ——— > 0.9.
target length

This enforces that the match spans (almost) the entire target chain. We initially used -c¢ 1.0, but
very long targets often fail to align end-to-end stably; we therefore relaxed to 0.9.
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e Zeros in the table. Some entries appear as 0.0% (e.g., 1JQD, 2A1X). This indicates that no
hit met the near-global coverage threshold, not that a full-length alignment with 0% identity was
found. These two sequences are also the longest among the ten (292 and 308 aa), making full-length
alignment to known non-monomeric chains particularly hard under tcov > 0.9.

Table 15: Maximum sequence identity (against non-monomeric PDB chains) for the selected
targets.

Target Max sequence identity (%)

1G13 25.4
1JQD 0.0
INBO 24.6
2A1X 0.0
9PNY 23.0
3APU 19.8
3CH4 22.7
3QKG 27.9
TAAH 24.3

D.2 BLI and SPR Details for Sections "Designing Nanobodies and Proteins
against 9 Novel Targets" and "Designing Nanobodies and Proteins
against 5 Benchmark Targets"

The binding affinity assays were carried out by the contract research organization Adaptyv Bio.

Biolayer Interferometry (BLI) affinity characterization Ligand constructs were designed by
reverse-translating target protein sequences and optimizing codon usage for expression in a prokaryotic
cell-free system. A C-terminal assay tag was included to facilitate capture on biosensors. Gene fragments
(Twist Bioscience) were assembled using NEBuilder HiFi DNA Assembly (NEB) in 2 pL reactions.
Assembly products were validated via capillary electrophoresis (Agilent ZAG DNA Analyzer) and
quantified using the Qubit dsDNA assay (Invitrogen).

Proteins were expressed in 8 pL reactions using an optimized in vitro transcription/translation system
supplemented with 4 nM DNA template. Reactions were incubated at 37 °C for 8 hours. After
expression, total protein levels were measured using an affinity-based detection assay and normalized
across samples prior to binding analysis.

BLI experiments were carried out using a Gator Bio instrument with Strep-Tactin XT biosensors.
Twin-Strep-tagged ligands were captured on the biosensors using the following protocol:

e Baseline 1: 120 s in running buffer
e Ligand loading: 120 s (target shift 0.5-1.0 nm)

e Baseline 2: 200 s in running buffer

The running buffer consisted of 50 mM HEPES, 100 mM NaCl, and 0.5% Triton X-100 at pH 7.4. All
steps were performed at 25 °C with data collected at 5 Hz. Binding was assessed using a multi-cycle
format with four antigen concentrations (30-1000 nM, half-log dilution series). Each kinetic cycle
consisted of a 220 s association phase in antigen solution followed by a 240 s dissociation phase in
running buffer. After each cycle, biosensors were regenerated with 10 mM glycine-HCl (pH 1.5) applied
five times for 10 s each, followed by a wash step in running buffer to restore baseline. Buffer-only and
non-binding ligand controls were used for reference subtraction and signal drift correction.
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Surface Plasmon Resonance (SPR) affinity characterization SPR measurements were per-
formed on a Carterra LSA XT system. DNA constructs encoding ligands with C-terminal Twin-Strep
tags were synthesized (Twist Bioscience), assembled using NEBuilder HiFi DNA Assembly, and validated
using capillary electrophoresis and Qubit fluorometry. Proteins were expressed in a prokaryotic in vitro
translation system and normalized post-expression using an affinity-based quantification assay. Sensor
chip surfaces were functionalized by covalently attaching Strep-Tactin XT to a carboxymethylated
surface using EDC/NHS coupling. The chip preparation procedure included:

e Conditioning: 50 mM NaOH

Activation: EDC/NHS solution

Capture: Strep-Tactin XT (50 pug/mL in 10 mM sodium acetate, pH 4.5)

Quenching: 1 M ethanolamine hydrochloride, pH 8.5

Wash: 0.1 M sodium borate, 1 M NaCl, pH 9.0

Twin-Strep-tagged ligands were captured on the chip using a 96-channel printhead under bidirectional
flow for 750 s, followed by a 600 s baseline step in running buffer. Antigens were diluted in running
buffer (10 mM HEPES, 150 mM NaCl, 3 mM EDTA, 0.05% Tween-20, pH 7.4) and injected at seven
concentrations (1-1000 nM, half-log dilution series) in a single-cycle kinetic format. Each cycle consisted
of a 60 s baseline step in running buffer, a 300 s antigen association phase, and a 600 s dissociation
phase in running buffer. After the completion of each injection series, the chip was regenerated with
10 mM glycine-HC1 (pH 1.5) for 5 minutes, followed by a 20-minute wash in running buffer.

Data analysis and binder classification Sensorgrams from both BLI and SPR assays were analyzed
using Adaptyv Fitting software. Preprocessing included trimming to relevant kinetic phases (association
and dissociation), correcting for signal jumps at buffer transitions, aligning phases, and subtracting
signals from both baseline and reference channels.

Data were fit to a 1:1 Langmuir binding model using a global fitting approach across all antigen
concentrations. If global fits were not feasible, alternative fitting strategies—such as dissociation-only
or slope-based methods—were employed. In cases where individual curve fits could not be achieved,
group-level models (e.g., equilibrium, flat, or linear) were used to approximate binding behavior.

Final kinetic parameters (kon, kofr, and Kp) were determined based on the best available fit. Under
global fitting, kog and Kp were estimated directly, with ko, calculated as kog/Kp. Ligands were labeled
as binders (True) or non-binders (False) based on the presence of quantifiable sensorgrams and
successful kinetic model fitting. In cases where ligands generated a large signal during the association
phase (at least 300% greater than the negative control) but could not be reliably fit, binding classification
was assigned based on the observed magnitude of the shift.

D.3 Designing Proteins to Bind Bioactive Peptides with Diverse Structures

Experiments by A. Katherine Hatstat, Angelika Arada, Nam Hyeong Kim, Ethel Tackie-Yarboi, Dylan Boselli,
Lee Schnaider, and William F. DeGrado

Visual Inspection The top 100 computationally ranked designs were manually examined in PyMOL.
Visual inspection criteria included: (i) extent of peptide burial within the binding pocket, (ii) number
and geometry of hydrogen bonds between binder and target peptide, (iii) overall packing density and
complementarity at the binding interface, and (iv) internal packing quality of the apo binder in the
absence of the target peptide. The top 6 designs exhibiting consistent burial, multiple well-oriented
hydrogen bonds, and tightly packed interfaces were prioritized for experimental characterization.

Solid phase peptide synthesis and purification Protegrin-1 was purchased from MedChemExpress
(catalog #HY-P1633)/ Melittin and Indolicidin were synthesized following the procedure below.
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Melittin and Indolicidin were synthesized on a Biotage Initiator Alstra microwave synthesizer using
standard Fmoc solid-phase peptide synthesis on a TentaGel S Ram resin. Resin (417 mg, 0.24 mmol)
was swollen in DMF for 10-15 mins prior to synthesis. The general synthetic steps included: (a) Fmoc
deprotection with 20% (v/v) piperidine in DMF, (b) resin washing (3x, DMF), (c) amino acid (0.50
mmol) coupling with DIPEA (0.50 mmol) and HCTU (0.50 mmol) for 5 min at 75 °C, (d) resin washing
(3x, DMF), and (e) repeat deprotection/coupling until sequence completion.

The peptides were globally deprotected in a 10 mL solution of TFA:H20:TIPS (95:2.5:2.5) for 3 h. The
solution was then filtered, with filtrate concentrated under the flow of nitrogen. The concentrate was
precipitated in cold diethyl ether (40 mL), centrifuged, and the pellet dissolved in 5 mL H20:ACN (1:1,
0.1% TFA).

Crude peptides were purified by reverse-phase HPLC on a C18 column using H20/ACN (0.1% TFA)
at a 10 mL/min gradient of 5-100% ACN (0.1% TFA) for 50 min. Pure fractions were identified by
analytical HPLC and MALDI-TOF, pooled, and lyophilized. The final products were white powders
with >95% purity.

Protein expression and purification Codon-optimized genes encoding the designed candidate
proteins with an N-terminal 6xHis tag and a TEV protease cleavage site (HHHHHHENLYFQS) were
synthesized and obtained from Twist Bioscience. To facilitate Gibson assembly into the pET-28a(+)
vector, short sequences were added at the 5" end (CTCTAGAAATAATTTTGTTTAACTTTAA-
GAAGGAGATATACC) and 3’ end (GATCCGGCTGCTAACAAAGCCCGAAAG) of each gene. The
recombinant plasmids were transformed into Escherichia coli strain E. cloni BL21(DE3). A single colony
was picked from an LB agar plate and inoculated into LB medium supplemented with kanamycin (50
pg/mL) for overnight growth. The culture was then transferred into 200 mL of TB medium containing
kanamycin (50 pg/mL) and incubated at 37 °C until reaching an OD600 of 0.6 - 0.8. Protein expression
was induced with 0.5 mM isopropyl S-D-1-thiogalactopyranoside (IPTG), and cultures were incubated
overnight at 30 °C. Cells were harvested by centrifugation and resuspended in 25 mL PBS buffer (10
mM Na2HPO4, 1.8 mM KH2PO4, 2.7 mM KCI, 137 mM NaCl, pH 7.4) supplemented with 20 mM
imidazole. Cells were lysed by ultrasonication (Sonic Dismembrator Model 500, Fisher Scientific),
and the lysate was clarified by centrifugation (35,000g, 30 min). The supernatant was loaded onto a
gravity column containing Ni-NTA agarose resin (HisPur, Thermo Fisher, 1.0 mL or 3.0 mL). The resin
was washed with three column volumes (CVs) of PBS buffer containing 20 mM imidazole, and bound
proteins were eluted with 7 mL. PBS buffer containing 250 mM imidazole. The eluted proteins were
concentrated and subjected to three rounds of buffer exchange with PBS buffer using a 15 mL, 10 kDa
cutoff centrifugal filter unit (EMD Millipore).

Circular dichroism Protein samples were prepared at 10 puM in sterile filtered 10 mM sodium
phosphate with 50 mM NaCl, pH 7.4. A280 was measured via UV-Vis spectroscopy in a 0.1 mm
Quartz cuvette, and protein concentration was calculated from A280 via Beer’s law using the extinction
coefficient calculated from protein sequence via ExPasy ProtParam. Circular dichroism measurements
were performed on a Jasco J-810 spectropolarimeter. Spectra were collected from 200-250nm in
continuous scanning mode at 50 nm/min and Inm band width with six accumulations per sample.
CD spectra were converted from millidegrees to molar ellipticity using the equation m - M/(10- L - C)
where C' is concentration in g/L (derived from A280 signal in UV-Vis experiments), M is the average
molecular weight (g/mol) and L is the path length of the cell.

Analytical size exclusion chromatography The oligomeric state of binder samples was assessed
via analytical size exclusion chromatography using a Superdex 75 5/150 analytical gel filtration column
(Cytiva) on an AKTA FPLC. Samples (50 uL) were prepared at 100 uM in sterile filtered 1X Phosphate
Buffered Saline (PBS), pH 7.4 and centrifuged in a microfuge at 21,000g for 15 minutes before loading
onto the FPLC. Chromatography runs were conducted at 0.2 mL/min for 1.2 column volumes and
absorbance was measured at 220 and 280 nm. For measurement of protein:peptide complexes, protein
and peptide were mixed at a 1:1 ratio (50 uM each) and incubated overnight at 4 °C. After equilibration
to room temperature, samples were centrifuged at 21,000g for 15 minutes before loading onto the FPLC.
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Change in intrinsic tryptophan fluorescence for in vitro assessment of peptide binding
In vitro binding was assessed via tryptophan quenching in which either peptide or protein was held
constant with the other binding partner varied depending on which species contained tryptophan
residues. All peptides were solubilized in DMSO at > 1mg/mL prior to dilution into sterile filtered 1X
PBS, pH 7.4 for binding experiments. All binding assays were conducted in PBS in non-binding 96-well
half-area black plates (Corning 3686) and tryptophan quenching was measured as endpoint fluorescence
intensity measurements (Aex = 295 nm, Ae;,, = 330 nm) in a BioTek Synergy Neo-2 multi-mode plate
reader. For melittin and indolicidin, which both contain tryptophan residues, assays were conducted
with constant [peptide], and binder sequences were designed to exclude tryptophan. [Melittin] was
fixed at 10 uM and [melittin binder| was varied from 0 to 40 uM. [Indolicidin| was initially fixed at 10
uM, with [binder| varying from 0-20 uM. For subsequent global fitting experiments, [Indolicidin| was
held constant at either 5, 7.5 or 10 uM and [binder| was varied from 0-25uM. Samples were prepared in
triplicate and incubated overnight at 4 °C. After equilibrating to room temperature for 30 minutes,
tryptophan fluorescence was measured as described. As a control, a gradient of [binder| without peptide
was included for background subtraction. For all samples, the A295 and A330 of the binder was below
0.1; thus, protein fluorescence was subtracted as background instead of being treated with inner filter
effect correction. For protegrin, which contains no tryptophan residues, [binder| was held constant
while [peptide] was varied. All protegrin binder designs contain at least one tryptophan. For initial
experiments, [protegrin| was held constant at 5 uM and [binder| was varied from 0-30uM. Samples were
prepared in triplicate and incubated at room temperature for 3h before tryptophan fluorescence was
measured. Here, a gradient of [protegrin] without binder was included for background subtraction.

Binding was fit with the following quadratic binding equation in Prism (GraphPad): Y = M + ((Q —
M)/2-P))-(1/K)+X +P—/(1/K)+ X + P)2 — 4% P+ X) where M = fully unbound signal
(baseline signal), @ = fully bound (saturation) signal, P = concentration of fixed species, X = ligand
concentration, Y = observed fluorescence intensity, and K = association constant. M, @, and K were
not constrained, and P was fixed. For global fitting, K was shared for all datasets.

paragraphSurface plasmon resonance for validation of indo4-indolicidin binding The binding of the

highest affinity peptide/binder pair was further validated by surface plasmon resonance (SPR). SPR was
performed on a Bruker SPR-24 Pro Instrument using an NTA derivatied SPR chip (SPR sensor prism
NiHC1000M; Xantec bioanalytics). The surface was preconditioned with 350mM ethylenediaminete-
traacetic acid (EDTA) and running buffer (10 mM HEPES pH 7.4, 150 mM NaCl, 50 pM EDTA, 0.05%
Tween-20) prior to loading with 5mM Ni2+. Hexahistidine tagged indo4 binder was immobilized on
the surface prior to exposure to analyte (indolicidin). Indolicidin was solubilized in water to 4mg/mL
to afford a stock solution. From the stock solution, a concentration gradient of 0-20uM indolidicin was
prepared in running buffer. The analyte solutions were flowed over the immobilized protein surface
for 80 seconds at 25 pL/min flow rate from low to high concentration and 120 second dissociation
time. Blank (running buffer only) injections interspersed between the analyte injections to confirm
that analyte was dissociating between injections. Following the cycle of injections, binding affinity
was calculated by plotting the pre-injection stop point signal (RU) versus protein concentration. High
concentration samples were omitted because of bulk shift from buffer mismatch from preparation of
the samples from stock solution solubilized in water. Affinity was calculated via a Langmuir fit of the
response units (RU) at the pre-injection stop point.

Bacterial growth assays to measure neutralization of antimicrobial activity Minimum
inhibitory concentrations (MICs) of melittin, indolicidin, and protegrin-1 were determined against
Bacillus subtilis (ATCC 23857). Peptides were prepared at 100 pug/mL and serially diluted 2-fold in
Mueller Hinton Broth (MHB). A glycerol stock of B. subtilis was inoculated into 10 mL. MHB and
grown overnight at 37°C. The following day, 100 pL of starter culture was added to 10 mL MHB and
grown to an OD600 of 0.6-0.8, then diluted to OD600 = 0.001 and added to the peptide dilutions in a
96-well non-treated cell culture plate (Gen-Clone 25-104). Absorbance at 600 nm was measured using a
BioTek Synergy Neo-2 plate reader at 37°C with cycles of 7 min shaking and 3 min rest for 15 hours.
The MIC was defined as the lowest peptide concentration that completely inhibited growth, and was
1.1 pM, 1.70 uM, and 1.16 uM for melittin, indolicidin, and protegrin-1, respectively.

For neutralization assays, peptides were held constant at their respective MICs, and protein binders
were serially diluted 2-fold starting from 40X its target peptide MIC. Peptide was added to the protein
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binders, transferred to a 96-well plate, and then the diluted B. subtilis culture prepared as described
above was added. Samples were prepared in triplicates. Absorbance at 600 nm was measured as
previously described, with the exception that the indolicidin assays were conducted for 7.5 hours instead
of 15 hours to account for peptide degradation. For the protegrin binders, protein and peptide dilutions
were incubated overnight at 4°C before measuring absorbance. % neutralization was calculated with
the following equation: % neutralization = ((Aobs — Amin)/(Amax — Amin))cdot100 where Agps is the
observed endpoint A600 for the varying protein concentrations, Ay, is the observed endpoint A600 of
the peptide and bacteria only control, and Ay, .x is the observed endpoint A600 of the bacteria only
control.

Hemolysis assays Sheep red blood cells (25 mL) were transferred into a 50 mL conical tube and
centrifuged at 500 x g for 5 min. The plasma layer was aspirated, leaving the pellet. The cells were
resuspended in 150 mM NaCl solution to 25 mL, with gentle inversion and centrifugation (500 x g, 5
min). The supernatant was aspirated, and washed once more with 150 mM NaCl solution. The pellet
was then resuspended in 1X PBS (pH 7.4), centrifuged (500 x g, 5 min), and aspirated. The pellet after
the PBS wash, was then resuspended in 1X PBS to 25 mL and stored at 4 °C. For hemolysis assessment,
190 pL of RBC (1:100 in 1X PBS) was added per well of a 96-well plate, followed by the addition of
10 uL of either 1X PBS, 20% Triton X-100, or melittin. Cells were treated with serial dilutions of
melittin (0.08 to 10 uM final). The plate was incubated at 37 °C with gently shaking for 1 h, followed
by centrifugation (500 x g, 5 min). From each well, 100 uL of supernatant was transferred to a fresh
plate ensuring pellets were undisturbed. Absorbance was measured at 400 nm using a microplate reader
(SpectraMax M5). Values were normalized to PBS and Triton X-100 controls (N= 4, performed in
duplicate). To assess melittin’s hemolytic activity in the presence of its binders, 10 uL of melittin (1.2
M final) was added to wells of a 96-well plate, followed by serial dilution of protein (0.05 M to 6
M final). This was incubated for 1h at room temperature. Then, 180 uL of red blood cells (1:100
in 1X PBS) was added to each well and incubated at 37 °C for 1 h. After centrifugation, 100 uL of
supernatants were transferred to a fresh plate and absorbance measured at 400 nm. Absorbance values
were normalized to PBS and melittin only (1.2 uM) controls (N= 4, performed in duplicate).

D.4 Designing Peptides to Bind the Disordered Region of NPM1.

Ezperiments by Yaotian Zhang, and Denes Hnisz

pRK5-msfGFP-NPM1binder plasmids were constructed by amplifying msfGFP from pRK5 msfGFP-
HMGBI1-Shuffled 1 (Addgene #237650) (PMID: 40468084). The NPM1binder sequences were inserted
at the C-terminus of msfGFP through primer sequences. The amplicons were assembled into Agel +
Xbal-digested pRK5 backbone (Addgene #194548) (PMID: 36755093) using the NEBuilder HiFi DNA

assembly master mix.

Cell culture Cells were cultured under standard conditions (37 °C and 5% CO3) in sterile, TC-treated,
non-pyrogenic, polystyrene tissue culture dishes (Corning). U2-OS (ATCC, HTB-96) cells were cultured
in DMEM GlutaMAX (Gibco, 31966047). The culture medium included 10% FBS (Gibco, 10438-026)
and 100 U ml™! penicillin-streptomycin (Gibco, 15140148). All cell lines tested negative for mycoplasma
using the LookOut Mycoplasma PCR Detection Kit (Sigma-Aldrich, MP0035) or the PCR Mycoplasma
Test Kit IT (Applichem, A8994). Mycoplasma testing was performed on 0.2—-1 ml of culture medium
taken from tissue culture dishes containing confluent monolayers of cells, on a routine basis at least
twice a year.

Live-cell imaging All live-cell imaging experiments were performed using the LSM880 Airyscan
microscope equipped with a Plan-Apochromat 63x/1.40 oil differential interference contrast objective,
while incubating cells at 37 °C and 5% COs. Cells were seeded onto eight-well chamber slides (Ibidi,
80826-90) at 40,000 cells per well, transfected 24 h later, and imaged 24 h after transfection. U20S
cells were transfected using FuGENE HD according to the manufacturer’s instructions. Hoechst 33342
(0.2 pg mIt, Thermo Fisher Scientific, 62249) was added to the cell culture medium for nuclear staining.
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Live-cell imaging For immunofluorescence experiments, U20S cells were seeded on eight-well
chamber slides (Ibidi, 80826-90) at 40,000 cells per well, transfected 24 h later, and fixed 24 h after
transfection with 4% PFA in PBS for 10 min. Cells were permeabilized with 0.5% Triton X-100
(Thermo Fisher Scientific, 85111) in PBS for 30 min, incubated in blocking buffer containing 1% BSA
(BSA Fraction V, Gibco, 15260037) and 0.1% Triton X-100 in PBS for 1 h, and stained with primary
antibodies at room temperature for 1 h with gentle rotation. Slides were washed five times with
blocking buffer, incubated with secondary antibodies (AlexaFluor 594 donkey anti-mouse antibody,
Jackson ImmunoResearch, 715-585-150; and AlexaFluor 594 donkey anti-mouse antibody, Jackson
ImmunoResearch, 711-605-152; 1:1,000) in blocking buffer for 1 h at room temperature, washed twice
with blocking buffer, stained with 0.5 ng ml"* DAPI in PBS (Invitrogen, D1306), and washed three
times with PBS. The following primary antibodies were used: NPM1 (B23) (Santa Cruz, sc-271737,
1:100) and SURF6 (Abcam, ab221990, 1:1000). Imaging was performed using the LSM880 Airyscan
microscope equipped with a Plan-Apochromat 63x /1.40 oil differential interference contrast objective.

D.5 Designing Peptides to Bind a Specific Site of RagC and the RagA:RagC
Dimer
Experiments by Shamayeeta Ray, Jonathan T. Goldstein, and David M. Sabatini.

Expression and purification of the Rag A: Rag C GTPase heterodimer E.coli LOBSTR
[ , ] cells carrying a pETDuet-1 vector encoding codon optimized, C-terminally
His-tagged RagA with a mutation (T21N) that favors the GDP loaded state| ,

, | and tagless wildtype (WT) RagC in its state (Addgene: 99664) were
grown in Terrlﬁc broth (TB) and protein expression induced with an overnight IPTG treatment at 18°C
b. The purification follows a protocol described previously| , |. The complex was purified
using Ni-NTA affinity chromatography followed by ion-exchange chromatography (IEX) using a Capto
HisRes Q anion-exchange column and then size-exclusion chromatography (SEC) using a Superdex200
column. The protein corresponding to the heterodimer was concentrated in a final buffer containing 50
mM HEPES (pH7.5), 100 mM NaCl and 2 mM MgCl2 and used for SPR studies.

Binding studies of peptides to the Rag GTPase heterodimer using a high-throughput SPR
instrument Surface plasmon resonance (SPR) experiments were performed on a Cytiva Biacore 8K
instrument. 0.2 uM of the Rag GTPase heterodimer with the His-tag on RagA was immobilized on
a Biacore NTA sensor chip using a Ni-NTA-Histag immobilization technique. All the peptides, at a
concentration range from 0-100 uM were flown over the protein-bound NTA sensor chip as ‘analyte’
and their binding responses were recorded. The Rag GTPase heterodimer was first loaded with 1 yM
GDP after immobilization prior to each peptide run. The protein, GDP, and the peptide samples were
prepared in a buffer containing 50 mM HEPES (pH7.5), 100 mM NaCl and 2 mM MgCl2. Rag GTPase
heterodimer was immobilized on the NTA sensor chip for 200 sec and all the runs were performed
at 25°C. For each peptide run at each concentration, the association and dissociation times were 120
and 300 sec, respectively. The sensor chip was regenerated after each run using 0.35 M EDTA and
subsequently reused throughout the entire run. Association and dissociation kinetics along with binding
affinities were analyzed using the Biacore™ Insight Software. Each sensogram corresponding to a single
peptide concentration fit best using a two-state binding model that indicates an initial weak binding
state followed by a conformational change to obtain a strong binding state. For each peptide that
showed a detectable binding response, a log-plot of concentration (x-axis) vs relative response (y-axis)
based on the individual fits was generated and a single dissociation constant (KD) was computed using
the Biacore™ Insight Software based on the two-state model (Table 4).

D.6 Designing Nanobodies that Bind Penguinpox and Hemagglutinin
Ezperiments by Jacob A. Hambalek, Anshika Gupta, Diego Taquiri Diaz, and Chang C. Liu.

Each nanobody design was cloned into plasmid pMAA28 [ |, which is a CEN/ARS
plasmid that encodes the nanobody as an N-terminal fusion to Aga2 (i.e., N-nanobody-HA-tag-Aga2-C)
for display under the control of a pER promoter [ |. Each plasmid was transformed
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into yeast strain yAP174 [ | and then plated on synthetic complete media lacking
histidine, uracil, and leucine (SC-HLU). Colonies for each design were picked into SC-HLU media and
grown separately for 1820 hours at 30°C with 200 rpm. Expression of the surface protein Agal was
induced with 200 nM S-estradiol, eliciting surface display of the constitutively expressed nanobody-HA
tag—Aga2 fusion.

For designs targeting cGAMP PDE, the nanobody-expressing cells were incubated with the labeled
cGAMP PDE and an Alexa Fluor 488 conjugated antibody (R&D Systems, catalog #1C6875G),
which targets the nanobody’s HA tag, in the incubation buffer HBSBM (20 mM HEPES, pH 7.5;
100 mM NaCl; 1 g/L BSA; 1.8 g/L maltose) for 1 hour at 4°C. The cGAMP PDE protein (a gift from
Philip J. Kranzusch and Samuel J. Hobbs, Harvard Medical School) was labeled with a reporter dye
Alexa Fluor 647 using an NHS-AlexaFluor 647 labeling kit (Thermo Fisher).

For the FhaB-targeting designs, the nanobody-expressing cells were incubated with the FhaB protein
for 1 hour at 4°C, followed by incubation with fluorescently labeled Anti-His Alexa Fluor 647 antibody
(R&D Systems; catalog #IC0501R) and Anti-HA Alexa Fluor 488 for 30 minutes at 4°C. The FhaB
protein (a gift from Celia W. Goulding and Christine D. Hardy, UC Irvine) contains a His-tag for
protein purification and detection. After antigen incubation and reporter incubation, 2.5 pg propidium
iodide (Sigma-Aldrich; catalog #81845) was added to stain dead cells. The cells were then washed with
two volumes of HBSBM and resuspended in 125 pL. HBSBM. Each cell population was interrogated for
fluorescence using the Attune NxT Flow Cytometer (Thermo Fisher).

D.7 Designing Proteins that Bind to Small Molecules

Experiments by A. Katherine Hatstat, Angelika Arada, Nam Hyeong Kim, Ethel Tackie-Yarboi, Dylan Boselli,
Lee Schnaider, and William F. DeGrado

Rational inspection The top 100 computationally ranked designs were examined based on the
number and geometry of potential hydrogen bonds formed between rucaparib and each designed binder.
rucaparib was conceptually fragmented into three hydrogen-bonding functional groups: carboxamide,
indole NH, and secondary amine. Hydrogen bonds were defined by the distance between oxygen or
nitrogen atoms of these rucaparib fragments and those of the binder residues within 3.2 A. The presence
of hydrogen bonds involving the carboxamide group was given the highest priority during selection. Six
candidate designs were subsequently chosen by visual inspection, considering both burial within the
binding pocket and diversity of the protein scaffolds.

Protein expression and purification Codon-optimized genes encoding the designed candidate
proteins with an N-terminal 6 xHis tag and a TEV protease cleavage site (HHHHHHENLYFQS) were
synthesized and obtained from Twist Bioscience. To facilitate Gibson assembly into the pET-28a(+)
vector, short sequences were added at the 5 end (CTCTAGAAATAATTTTGTTTAACTTTAA-
GAAGGAGATATACC) and 3’ end (GATCCGGCTGCTAACAAAGCCCGAAAG) of each gene. The
recombinant plasmids were transformed into Escherichia coli strain E. cloni BL21(DE3). A single colony
was picked from an LB agar plate and inoculated into LB medium supplemented with kanamycin (50
pg/mL) for overnight growth. The culture was then transferred into 200 mL of TB medium containing
kanamycin (50 pg/mL) and incubated at 37 °C until reaching an OD600 of 0.6 - 0.8. Protein expression
was induced with 0.5 mM isopropyl 8-D-1-thiogalactopyranoside (IPTG), and cultures were incubated
overnight at 30 °C. Cells were harvested by centrifugation and resuspended in 25 mL PBS buffer (10
mM Na2HPO4, 1.8 mM KH2PO4, 2.7 mM KCI, 137 mM NaCl, pH 7.4) supplemented with 20 mM
imidazole. Cells were lysed by ultrasonication (Sonic Dismembrator Model 500, Fisher Scientific),
and the lysate was clarified by centrifugation (35,000 g, 30 min). The supernatant was loaded onto
a gravity column containing Ni-NTA agarose resin (HisPur, Thermo Fisher, 1.0 mL or 3.0 mL). The
resin was washed with three column volumes (CVs) of PBS buffer containing 20 mM imidazole, and
bound proteins were eluted with 7 mL PBS buffer containing 250 mM imidazole. The eluted proteins
were concentrated and subjected to three rounds of buffer exchange with PBS buffer using a 15 mL, 10
kDa cutoff centrifugal filter unit (EMD Millipore).

Fluorescence emission and fluorescence polarization assays: Fluorescence emission and fluorescence
polarization spectra for assessment of rucarparib binding: To assess rucaparib binding, rucaparib
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dissolved in DMSO was mixed with proteins in PBS buffer (137 mM NaCl, 2.7 mM KCI, 10 mM
Na2HPO4, 1.8 mM KH2PO4, pH 7.4) to a final DMSO concentration below 2%, and incubated for 5
min prior to measurement. Fluorescence emission spectra were recorded in black, flat-bottom 96-well
plates using a BioTek Synergy Neo-2 plate reader with an excitation wavelength of 355 nm. Protein
aliquots from 10 or 100 M stocks in PBS were combined to make 200 uL samples containing 10 pM
rucaparib. Each condition was measured in triplicate. Fluorescence polarization (FP) assays were
performed using the same samples on a BioTek Synergy 2 plate readerequipped with excitation and
emission filters of 405 nm and 516 nm, respectively. FP values were recorded in polarization (P) units.
The polarization values were plotted against protein concentration, and the data were fitted to a one-site
binding model using nonlinear regression in GraphPad Prism 10 to determine the dissociation constant

(Ka).

D.8 Designing Antimicrobial Peptides that Inhibit the GyrA to GyrA
Interaction

Ezperiments by Andrew Savinov, and Gene-Wei Li

A library of DNA templates encoding designed variants, mutated variants with 3 alanine substitutions
at the binding interface, alongside a library encoding protein fragments tiling GyrA and eGFP, was
generated (Twist Biosciences), and massively parallel relative growth measurements in E. coli were
performed as previously | , , |

Specifically, the library of coding sequences was cloned into the pET-9a expression vector (Novagen)
exactly as previously | , , ]. The plasmid library encoding designed binders and
protein fragments was then transformed into electrocompetent E. coli BL21 (DE3) (Sigma-Aldritch)
at >110-fold coverage of the library size, and following 1-hr recovery from transformation, cells
were immediately diluted into LB media (Gibco) containing kananycin (selecting for presence of the
library) and 10 uM IPTG (inducer for library expression), beginning the massively parallel inhibition
measurements. Cells were then grown to an ODgggnm of 1.5, at which point they were harvested. These
experiments were performed in triplicate (3 biological replicates). Plasmids were extracted from each
sample (Qiagen miniprep kit), and DNA from each output sample as well as the plasmid library input
was prepared for high-throughput sequencing as previously | , |. Paired-end sequencing
was performed on a Singular G4 platform. From these measurements we determined designed peptide
and protein fragment frequencies in the population (f) at the initial and final growth assay timepoints,
allowing calculation of the enrichment F = log2(f initial/f final). The inhibition score for each
peptide was then calculated as Inhibition = -F, such that larger positive values correspond to stronger
inhibitory effects. Results across biological replicates of these measurements were highly reproducible
as in prior work | , ) |.

The specificity of designed binders for the designed binding mode to GyrA was calculated as A (Inhibition)
= Inhibition(designed binder) - Inhibition(mutated binder). Positive A(Inhibition) values therefore
correspond to binders which are more inhibitory than their corresponding variants where 3 interface
residues are mutated to alanine. Designed binders and protein fragments that substantially inhibit
cell growth were defined as those with inhibition scores F < -2, corresponding to a >4-fold reduction
in relative growth. Results were similar with a less stringent threshold of F < -1, and so the more
conservative threshold was employed. This threshold picks out previously identified inhibitory peaks
from protein fragments tiling across GyrA | , , |.
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