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Abstract

This paper develops a unified framework for globally solving dynamic stochastic
general equilibrium models with high accuracy and computational efficiency in se-
quence space. The method efficiently handles rich heterogeneity, nonlinearities such as
occasionally binding constraints, and non-trivial market clearing conditions — with-
out assuming perfect foresight. Building on this, I introduce the generalized transi-
tion function (GTF), defined as a sub-path of the recursive competitive equilibrium.
The GTF nests generalized impulse responses and stochastic growth paths, enabling
global analysis of state-dependent dynamics and the interaction between growth and
uncertainty. Applications to heterogeneous-agent models with occasionally binding
constraints and portfolio choice reveal rich equilibrium predictions driven by the cross-
sectional heterogeneity — including uncertainty-driven dampened growth, endogenous
disasters, state-dependent fiscal multipliers, heterogeneous portfolio adjustments over
the business cycle, and state-dependent risk premium dynamics.
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1 Introduction

Modern macroeconomic analysis faces a critical challenge: real-world economies exhibit
rich heterogeneity and complex nonlinearities that our analytical tools struggle to capture
fully. This methodological gap has limited capacity to answer fundamental questions in
economics including how growth interacts with uncertainty, what drives recessions, and when
a policy can effectively intervene.

This paper fills this gap through three key contributions. First, it develops a power-
ful global nonlinear solution framework in the sequence space. It does not assume perfect
foresight, efficiently handles occasionally-binding constraints, and computes state-contingent
expectations without parameterizing laws of motion. The framework provides a substantial
computation gain for models with period-by-period fixed-point problems such as non-trivial
market clearing conditions—accelerating the computation of heterogeneous models by more
than tenfold. This advancement enables efficient solutions to computationally challenging
problems that were considered prohibitively expensive to solve, including heterogeneous-
agent models with multiple non-trivial market clearing conditions, as demonstrated in the
applications. Moreover, it provides theoretical foundations for using sufficient statistics to
solve dynamic stochastic general equilibrium (DSGE, hereafter) models with rich hetero-
geneity. This theoretical advance enables the method to efficiently solve a broad spectrum of
macroeconomic models — from a standard representative-agent real business cycle model to
cutting-edge heterogeneous-agent models with multidimensional aggregate states — all within
a unified simple computational framework.!

Second, this paper introduces a generalized transition function (GTF), which captures
short-run stochastic equilibrium dynamics over any possible exogenous state paths. Each
GTF is a sub-path of the recursive competitive equilibrium (RCE), which nests general-
ized impulse response functions (GIRF) (Koop et al., 1996; Andreasen et al., 2017) and
stochastic growth path (Justiniano and Primiceri, 2008; Hansen et al., 2008). The general-
ized transition function (GTF) provides a critical theoretical bridge between abstract RCE
and practical analysis of nonlinear, state-dependent macroeconomic dynamics. While RCE
offers a powerful conceptual framework, it has traditionally been difficult to leverage this
object for analyzing complex transitions between different states or history-dependent paths.
The GTF addresses this gap by formalizing transition dynamics as a sub-path of the stan-

dard recursive competitive equilibrium, enabling rigorous analysis of stochastic transitions

'More than 20 sample MATLAB codes for various DSGE models with representative or heteroge-
neous agents (households/firms), various frictions, occasionally binding constraints, multiple aggregate
states, New Keynesian, or DMP are available at https://sites.google.com/view /hanbaeklee/computation-
lab?authuser=0.
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within an integrated equilibrium framework. The global solution of this paper immediately
computes the GTF as it’s a part of the RCE. The GTF opens the door to two relatively under-
explored macroeconomic research topics: 1) endogenous interaction between the growth and
the business cycle components through the short-run stochastic growth path and 2) the
state-dependent shock responsiveness of economic variables on the RCE, obviating the need
for analyses based on different steady states.

Third, beyond its methodological contributions, the framework delivers several substan-
tive economic insights that are inaccessible to standard solution methods. These emerge
from applications of the integrated RCE framework to two heterogeneous-household RBC
models: (1) one with endogenous labor supply, investment irreversibility, and fiscal spending
shocks, and (2) another with portfolio choice and endogenous labor supply. There are five
key takeaways. First, the economy displays endogenous fragility: when a larger share of
households are hand-to-mouth, moderate shocks generate disproportionately severe down-
turns. This helps explain why similar exogenous shocks can produce dramatically different
outcomes across time. Second, uncertainty dampens short-run growth when capital adjust-
ment is subject to irreversibility. This highlights a novel interaction between uncertainty and
growth that is typically overlooked in macro models. Third, fiscal multipliers vary strongly
with the distribution of hand-to-mouth households, confirming the mechanism in Kaplan
and Violante (2014) within the fully nonlinear RCE framework. Fourth, portfolio adjust-
ment differs starkly across the wealth distribution: wealth-poor households maintain highly
leveraged risky positions and rebalance aggressively over the business cycle, frequently hit-
ting borrowing constraints—unlike wealth-rich households. Fifth, the response of the risk
premium to a TFP shock is highly state dependent and can even change sign depending on
the distribution of wealth portfolios. These results underscore that the transmission of fiscal
and monetary policy depends crucially on the cross-sectional distribution of households, with
implications for the design and timing of stabilization policy.

The global solution framework is highly versatile and applies to a wide range of macroe-
conomic environments. The online supplement demonstrates this versatility through sample
codes that address various computational challenges, including 1) heterogeneous agents—both
households and firms; 2) nonlinear aggregate dynamics including occasionally-binding con-
straints; 3) non-trivial market clearing conditions; 4) multiple aggregate shocks (including
aggregate uncertainty shocks (Bloom et al., 2018)); 5) multi-dimensional endogenous aggre-

gate states; 6) frictional labor markets; and 7) sticky prices in New Keynesian models.?

ZFerreira et al. (2025) uses the RTM to solve a heterogeneous-firm general equilibrium model, studying the
business cycle implications of corporate cash holdings. Also, Lee et al. (2024) applies the RTM to Diamond-
Pissarides-Mortensen (DMP) models with exogenous and endogenous job separation to analyze nonlinear
labor market dynamics. The RTM also solves nonlinear New Keynesian models globally and accurately.



Related literature The state space-based approach developed by Marcet (1988), Den Haan
and Marcet (1990), and Krusell and Smith (1997, 1998), which uses parametric expectations
or laws of motion, represents a foundational contribution to global solution methods.> While
powerful for models with linear aggregate dynamics, this approach faces challenges with non-
linear dynamics due to difficulties in correctly specifying the law of motion. These specifica-
tion challenges can lead to inaccurate computation of conditional expectations and dynamic
inconsistency in equilibrium paths. Den Haan and Rendahl (2010) advanced this literature
by characterizing laws of motion through explicit aggregation of Taylor-approximated indi-
vidual policy functions, enabling analysis of nonlinear dynamics. These methods share a
common feature: they approximate conditional expectations through combinations of basis
functions, which the repeated transition method (RTM) of this paper is sharply distinguished
from.

Reiter (2010) is the closest to the RTM in its treatment of the endogenous state distribu-
tions in heterogeneous-agent models. The method introduces a reference distribution, char-
acterized by a few moments, which is updated across iterations of the simulation. This refer-
ence distribution is then used to compute the conditional expectations of future (marginal)
value functions without specifying a full law of motion. However, Reiter’s approach remains
anchored in the state space, as it categorizes aggregate distributions via their moments. As
a result, it is still susceptible to the curse of dimensionality, particularly when higher-order
moments or cross-sectional heterogeneity become salient. In contrast, the RTM translates
this expectation-formation problem into the sequence space. By indexing value functions
with time subscripts, RT'M enables sharp identification of distributional states by matching
across simulation periods — without requiring a moment-based summary or embedding dis-
tributions into the value function state space. This distinction allows the RTM to sidestep
dimensionality issues: the model only needs to find a period where a similar distribution
realized, not project distributions via a functional approximation. For the same reason, the
RTM differs fundamentally from moment-based state approaches as in Den Haan (1996,
1997), Reiter (2001), Algan et al. (2008), and Algan et al. (2010) and functional approxima-
tions as in Cao et al. (2023) and Elenev et al. (2021).

While also operating in sequence space, the RT'M differs fundamentally from Auclert et al.

Lee and Nomura (2024) applies the method to analyze the nonlinear inflation dynamics and Phillips curve
outside and at the zero lower bound (ZLB). The method’s ability to capture nonlinear dynamics enables
analysis of state and history dependence that directly maps to empirical observations (Pizzinelli et al., 2020).

3The method of parameterized expectations traces back to Wright and Williams (1982, 1984) in the
context of commodity storage models in partial equilibrium. Marcet (1988) and Den Haan and Marcet
(1990) developed this approach for general equilibrium macroeconomic models, contributing methodological
tools for modern heterogeneous-agent business cycle analysis.



(2021), which achieve remarkable computational efficiency through sequences of Jacobians.
Their approach enables rapid likelihood-based estimation but requires perfect foresight. The
RTM, in contrast, handles aggregate uncertainty while maintaining computational efficiency.
This capability allows the method to accurately compute period-specific expected outcomes
under uncertainty, distinguishing it from perfect-foresight approaches in the literature (Fair
and Taylor, 1983; Juillard, 1996; Judd, 2002; Cai et al., 2017; Boppart et al., 2018). The
RTM further differentiates itself by computing aggregate allocations and market-clearing
prices directly on the simulated path without requiring law of motion specifications. This
approach contrasts with perturbation and linearization methods (Reiter, 2009; Boppart et al.,
2018; Ahn et al., 2018; Winberry, 2018; Childers, 2018; Bayer and Luetticke, 2020; Bhandari
et al., 2023), providing a more direct route to equilibrium solutions.

The RTM shares important features with simulation-based methods developed by Judd
et al. (2011) and Maliar et al. (2011), which achieve computational efficiency by focusing
on the realized ergodic state space. The RTM builds on this insight while making a crucial
advance: I use the information contained in the realized state space to construct agents’
conditional expectations at each point on the simulated path, significantly improving solution
accuracy.

My paper introduces the GTF, which nests generalized impulse response functions (GIRF)
(Koop et al., 1996; Andreasen et al., 2017) and stochastic growth path (Justiniano and Prim-
iceri, 2008; Hansen et al., 2008). As in Andreasen et al. (2017), the function can flexibly
capture the nonlinearity and state dependence, but it computes the transition path based
on global computation without high-order approximations. Unlike the existing GIRF, the
GTF-based GIRF is a subpath of the recursive competitive equilibrium, which allows a uni-
fied analysis in comparison with the global equilibrium. The existing stochastic growth path
has largely assumed a long-run stochastic growth by considering aggregate fluctuations on
the balanced growth path. In contrast, GTF captures short-run stochastic growth path.
The backward solution approach in the RT'M and the time-dependent nonlinear dynamics in
the GTF resembles the solution approach developed by Maliar et al. (2020). However, my
paper’s framework is about stationary but stochastic equilibrium dynamics process nested
in the RCE, while their extended function path (EFP) approach is on non-stationary equi-
librium dynamics utilizing turnpike property.

The findings from the leading applications contribute to the literature on nonlinear busi-
ness cycle dynamics, particularly in studying state-dependent responses and the nonlinear
propagation of aggregate shocks. A key prediction emerging from the RTM-GTF framework
is the possibility of endogenous disaster-like downturns, conceptually related to the mecha-

nism in Petrosky-Nadeau et al. (2018). However, while their model relies on frictions in the



labor market, the dynamics in my framework arise from the evolving cross-sectional distri-
bution of marginal propensities to consume (MPCs) across households. The GTF analyses
predict that the uncertainty dampens economic growth due to the down-sizing risk under
the irreversibility constraint. This brings the wait-and-see prediction by Bloom et al. (2018)
into the economic growth context in the stochastic environment. The model also predicts
state-dependent fiscal multipliers, contributing to a growing body of work including Chris-
tiano et al. (2011), Kaplan and Violante (2014), Michaillat (2014), Shen and Yang (2018),
Ghassibe and Zanetti (2022), and Jo and Zubairy (2025). In particular, the mechanism in my
setting operates through labor supply elasticities that vary endogenously with the share of
hand-to-mouth households—in line with the incomplete markets mechanism in Kaplan and
Violante (2014). Importantly, however, my model departs from theirs by embedding this
mechanism in a fully recursive competitive equilibrium (RCE) under aggregate uncertainty,
which allows the distribution of constrained households to evolve endogenously. The appli-
cation also sheds light on heterogeneous portfolio adjustments in response to business cycle
fluctuations. In contrast to standard representative-agent or static-heterogeneity models, the
RTM-GTF setup captures the dynamic reallocation between risky and riskless assets across
households as the macroeconomic state evolves. This connects to the heterogeneous portfolio
choice literature, including Den Haan (1996), Krusell and Smith (1997), Heaton and Lucas
(2000), Gomes and Michaelides (2007), Basten et al. (2016), Fagereng et al. (2017), Fagereng
et al. (2017), Bayer et al. (2019), Luetticke (2021) and more recently Auclert et al. (2024,
2025), which studies how heterogeneous portfolio choices interplay with the incomplete mar-
kets and aggregate risk. My model focuses on the interaction of borrowing constraints and

labor income risk in the RCE and its state-dependent asset pricing implications.

Roadmap Section 2 explains the repeated transition method. Section 3 explains the
sufficient statistic approach. Section 4 explains how the RTM bypasses non-trivial market
clearing conditions. Section 5 introduces the GTF. Section 6 analyzes the leading applica-

tions. Section 7 concludes.

2 The global nonlinear solution method in the sequence

space

2.1 A generic model framework

This section introduces a generic model framework that encompasses a broad class of dy-

namic stochastic general equilibrium (DSGE) models. The framework’s flexibility allows it



to accommodate both heterogeneous and representative agent specifications. I denote the
individual state as x and the aggregate state as X. The individual state x is composed of
the endogenous individual state a and the exogenous individual state s (the idiosyncratic
shocks). The aggregate state X is composed of the endogenous aggregate states ® and the
exogenous aggregate state S (the aggregate shocks). The endogenous aggregate state ® takes
different forms depending on the model class. In heterogeneous agent models, it represents
the distribution of individual states x, while in representative agent models, it captures the

set of aggregate allocations.

(Individual state) z = {a, s} (1)
(Aggregate state) X ={9,5} (2)

The idiosyncratic and aggregate shock processes are assumed to follow a Markov process with
a transition matrix II* and II°, respectively. The value function is denoted as V. Following
standard notation, variables with apostrophes indicate future period values. The objective
function of an economic agent is composed of the contemporaneous part f(y,z’,z; X) and
the expected future value. The agent maximizes the objective function by choosing (y, a’),
where y is a vector of control variables that affects only the contemporaneous period. Then,

the recursive formulation of an agent’s problem is as follows:*

V(z; X) =max f(y,d,2; X) + Em(X, X")V(d,s'; X') (3)
y,a’
st (y,2) e B(z; X, X',q), 9 =FX) (4)
where m(X, X') is the stochastic discount factor; ¢(X, X’) is a price bundle;
B(z; X, X', q) is the budget constraint; F(X) is the law of motion known to an individual

agent.® For notational convenience, I combine the price bundle (m, ¢) into p. The following

market clearing condition pins down the price p:°

[Market clearing] :  p(X, X') = arglg{QD(ﬁ, X, X" - Q°(p, X, X') =0}, (5)

4By expressing the model directly in recursive form, I implicitly assume the standard regularity condi-
tions—namely, Assumptions 4.1 and 4.2 in Stokey et al. (1989).

5The stochastic discount factor can be a constant, for example /3, as in a canonical dynamic household’s
problems. In a dynamic firm problem, the stochastic discount factor needs to be included.

6 Any period-specific fixed point problem can be considered in the method, such as the externality effect
as a function of endogenous allocations or non-trivial market clearing conditions. For brevity, I only include
the non-trivial market clearing condition.



where QP and Q° are the functions of demand and supply, which are endogenously deter-
mined by the model. The market clearing condition can be relaxed to a frictional price
determination. For example, the method seamlessly works for the frictional labor market
where the wage is bilaterally determined, as in Diamond-Pissarides-Mortensen (DMP) mod-
els, applications of which are available in the online supplements. For expositional clarity, I
consider a simple case where the exogenous aggregate state S can take two possible values
{G, B} with a 2 x 2 transition matrix II1°.” Based on this setup, Definition 1 defines the

recursive competitive equilibrium (RCE).

Definition 1 (The recursive competitive equilibrium).

(Vigy,0a) : §x X =5 R, F: X = Q, and (Q°,QP,p) : X x X — R are the recursive
competitive equilibrium if (i) (V, gy, ga) solves the agent’s problem (it) QP Q° represents the
demands and supplies of inputs and outputs, (iii) p satisfies the market clearing condition,

and (iv) F is consistent with the realized future distribution implied by go.3

In the following sections, I explain the method based on the recursive form in Equation
(3) for the comprehensiveness of exposition. However, the method is seamlessly applied even
if the value function is replaced by the first-order derivative or the marginal value functions.
In the online supplement, I provide multiple applications where the expected marginal value
function is computed instead of the expected value function.

My method achieves convergence in sequence space. Therefore, despite the converged
equilibrium allocations being fully describable in a recursive form, I denote the equilibrium
object in a sequential expression, such as {V;}, for the sake of a coherent explanation.
Hereafter, given a realized state {z;, X;} for an individual (or representative) agent in a
given period t, the value function in the sequential expression V; and the value function in
the recursive form V'(-; X;) are used interchangeably. The generic model framework nests
the cases where the value function and the constraint allow the analytical expression of the
first-order optimality conditions. In such cases, the marginal value function can replace the

value function.

2.2 Assumptions

In this section, I discuss the key conditions a model must satisfy for the global solution

method to be applicable. The method relies on three fundamental features: a) stability,

"The method’s applicability is not limited to a certain number of grid points for the aggregate shocks.
Moreover, multiple aggregate shocks can be considered an exogenous state.

88, X are the o-algebras generated from all possible individual and aggregate states. € is a set of all
distributions ®.



b) uniqueness of the recursive competitive equilibrium (RCE), and c) recursivity of the
equilibrium.

Recursivity, in particular, is essential: without it, certain equilibrium allocations may
appear only once and never reoccur in the future, making it impossible to implement the
method using repeated transitions. Specifically, I use “recursivity” to refer to Harris recur-
rence — the property that, regardless of the initial condition, the Markov process over state
variables revisits equilibrium states with probability one.”

Combined with aperiodicity (i.e., the absence of deterministic cycles), these conditions
guarantee the existence of a unique stationary distribution over the endogenous state vari-
ables — a distribution over distributions in heterogeneous-agent settings — from which
ergodicity follows. In what follows, I focus exclusively on models that satisfy these three
properties.

To ensure a well-defined equilibrium, I assume there is no redundancy in the represen-
tation of the aggregate state X. Specifically, I require a one-to-one mapping between the

economy’s fundamental state and the aggregate state X, formalized as:
V(g; X)=V(z; X') for Vz — X=X (6)

This condition rules out redundant state variables that could artificially generate equilib-
rium multiplicity through superfluous expansions of the state space. Put differently, X is

the natural minimal state variable (Cao, 2020).

2.3 The methodology

The method’s key innovation lies in computing conditional expectations directly from
realized equilibrium allocations of previous iterations. In particular, the method, which I
name the repeated transition method (RTM, hereafter), exploits a fundamental property of
DSGE models’ recursive competitive equilibria - their recursivity. That is, if a simulated
path of a stationary aggregate shock process is long enough, an endogenous aggregate state
is almost surely revisited. Along with this recursion of the endogenous aggregate state,
different exogenous aggregate states are stochastically realized on the path, forming an er-

godic set of aggregate states. This ergodic set encompasses all the possible combinations

9The exact technical definition sharpens the statement by requiring that the Markov process revisit
arbitrarily small neighborhoods of equilibrium states with probability one. Harris recurrence is implied under
a set of standard regularity conditions: 1) the Feller property, 2) a Lyapunov drift condition (boundedness),
3) irreducibility, and 4) minorization. These are typically satisfied by dynamic macroeconomic models with
smooth objective functions and bounded returns—see Assumption 4.2 in Stokey et al. (1989). For formal
statements and proofs, see Chapter 4 of Stokey et al. (1989) and Chapter 9 of Meyn and Tweedie (1993).



of endogenous and exogenous aggregate states in equilibrium. This property implies that
all state-contingent future allocations are obtainable as realized equilibrium outcomes some-
where on the sufficiently long simulated path.

Therefore, by identifying periods with equilibrium outcomes corresponding to each con-
tingent future state from the previous iteration, the RTM characterizes an agent’s conditional
expectations at any point on the simulated path. The identifiability of such period is guaran-
teed by the recursivity (or by the ergodicity) of the RCE. Then, the conditional expectation
converges to the true level (function) as iterations proceed, ensured by the stability and
the uniqueness of the RCE. Notably, this approach eliminates the need to specify paramet-
ric laws of motion or expectations - the method requires only a metric to assess similarity
between aggregate states across periods.

For a simple illustration, consider an agent’s infinite-horizon dynamic problem under
aggregate uncertainty with two possible exogenous aggregate states: G (Good) or B (Bad).
To solve the agent’s problem at period ¢, a researcher needs to construct the expected value
(marginal value) function of period ¢ + 1. The RTM accomplishes this by first identifying,
for each possible future state S;11 € {G, B}, a period in the previous iteration’s allocation
path where the endogenous aggregate state most closely matches that of period t+1. The
expected future value function is then constructed by combining the time-specific value
functions from these identified periods. This approach works because the ergodicity of a
sufficiently long simulation ensures the existence of periods where endogenous aggregate
allocations (such as the distribution of individual states) match those of period t+1 under
each possible shock realization. Consequently, the expected future value (marginal value)
function at each period can be accurately constructed by combining these realized outcomes
from the simulation path.!°

The method iteratively updates the guessed (predicted) allocation path by using the
realized allocation path in the past iteration until they converge to each other.!!' In these
steps, each iteration passes over the information of the whole sequence of the realized alloca-
tions to the next iteration, utilizing the maximal set of information regarding the transition
dynamics. This approach fundamentally differs from existing state-space methods, which
restrict transition dynamics to functional relationships between current and future states.
By avoiding such parametric specifications, the RTM accurately computes the equilibrium
dynamics even in highly nonlinear models. Further, the required simulation length for the

RTM is not longer than that for the existing methods, as the update based on the whole

10The method’s name - repeated transition method - reflects its key feature of utilizing repeated transitions
between the same (similar) endogenous states with different exogenous states.

' The terminology “predicted” means predicted from the perspective of researcher outside the model. It
is equivalent to n** guess for the allocation paths.

10



sequence utilizes all information about the dynamics, minimizing the information waste per
marginal increase in the number of periods in a simulation.

The basic structure of the methodology is as follows: Suppose T periods of aggregate
exogenous states {S;}7_, are simulated, and hypothetically the simulated path is long enough
to make almost all the possible equilibrium allocations happen on the path.'? The solution
process starts by conjecturing three time series: 1) value functions, {V;(O)}tT:O, 2) endogenous
states {@EO) M, and 3) prices {p§°>}tT:0. Using these guesses, I solve the allocations backward
from the terminal period 7' to obtain the implied value function solution {V;*},, and
simulate the economy forward using the solution. The forward simulation generates the
time series of the endogenous states {®;}L,, and implied prices {p;}_, from the market-
clearing conditions. Here the price pj is the price implied by the market clearing condition,
rather than the market clearing price. This distinction is discussed in detail in Section
4. The guess is then updated through convex combinations of prior guesses and realized
allocations to form {V;(l), CIDS), pgl)}tT:O. While this broad approach shares similarities with
perfect-foresight methods (Fair and Taylor, 1983), it differs fundamentally in the backward
solution step due to its treatment of conditional expectations.

To clarify this point, consider period ¢ in iteration n + 1, after solving backward from 7T’
to t + 1. Suppose the exogenous state at period ¢ + 1 is G (S;.1 = G). To solve an agent’s
problem at ¢, one needs to construct an expected future value function EJZH.B This presents
a challenge: while V} (-, S = G) available from the backward solution, V% (-, S = B) is not,
as only one exogenous state realizes in each period. I define this unobserved V;%(-,S = B)
as a counterfactual conditional value function.

The standard state space-based approach addresses this challenge by replacing time
indices with endogenous and exogenous aggregate states, interpolating endogenous states
through an assumed law of motion. The solution’s accuracy thus critically depends on
correctly specifying this law of motion. However, verifying the specification’s accuracy is
impossible before solving the equilibrium. An incorrect specification requires restarting the
solution process with a new guess, presenting two fundamental challenges: determining which
statistics to include and selecting appropriate functional forms. This problem cannot be eas-
ily resolved unless the aggregate dynamics are known to be log-linear, as in Krusell and
Smith (1998).

121n theory, an infinitely long simulation needs to be considered, but for illustrative purposes, I consider a T-
period long simulation. Later in the application, a long-enough finite simulation is used as an approximation
for the infinitely long ergodic path. The RTM’s reliance on a single, sufficiently long simulated path of
aggregate shocks connects to recent work by Kahou et al. (2021).

13The method can potentially accommodate various expectation formations beyond rational expectations.
The conditional expectation computation step can be adjusted to any well-defined expectation structure.

11



The RTM takes a fundamentally different approach. Instead of specifying a law of motion,
it obtains the counterfactual conditional value function from another period t 4+ 1 where
the endogenous aggregate state matches that of period t+1 but realizes the counterfactual

exogenous state:

o = o) (7)
Si1 = B#G = 5,41. (8)

Under these conditions, all aggregate states in period ¢ + 1 match those of the counterfactual

state in period t + 1, implying

V(.S = B) = V(.S = B). (9)
Importantly, Vt(+ 1( S = B) is the observed factual conditional value function available in the
n'" iteration. With both Vi, (-, S = G) and V;H(-, S =B)(= VtH( S = B)) available from

iteration n, the expected future value function EﬂZH can be consistently computed. This
approach extends naturally to finer discretizations of the aggregate shock process.!* The
recursivity of the recursive competitive equilibrium ensures that such a period ¢ + 1 exists
almost surely in a sufficiently long simulation. Figure 1 illustrates the step for computing

the conditional expectation in period t.

th _ oot
n-" — iteration { St+1 =IB, (bgﬁ)l ‘
£+ ]
Ve @B, o)
(n + 1) — iteration X Hgt,,g,’ g <= = Solve backward
. /, {St41 = G CD(+1} R
;‘ // s t+1 ]
EVigq (x5 Ses1, CD§+1) D S Vi (656, CIDE?I

Figure 1: The computing step for conditional expectation based on the RTM

Notes: The conditional expectation in period ¢ can be computed by EVt+1($';St+1,‘1>§i)1) = Hgt,B X

Vi (s B @) + T, 6 x Vi (' GL 1)),

This approach eliminates the need to specify a law of motion for computing expected

future value functions. Instead, the critical step becomes identifying period ¢ + 1 that

14Most applications in the online supplement employ finer grids than two grid points for the exogenous
aggregate states.

12



replicates the counterfactual conditions of period ¢+ 1. This identification relies on tracking
the sequence of endogenous aggregate states {@E”)}tTZO, which serves as the key criterion for

locating appropriate matching periods:
T+ 1= argmin |[®" — o7 || (10)

Taming curse of dimensionality = The RTM efficiently tames the curse of dimen-
sionality in two aspects. First, it replaces the infinite-dimensional law of motion by the
uni-dimensional distance comparison. In the similarity comparison of the cross-sectional dis-
tributions, one needs to come up with a distance metric that is necessarily uni-dimensional.?
This dimension reduction is independent of the sufficient statistic approach, which follows
later. Second, the RTM indexes all the value and policy functions by time subscript, of which
dimensions do not need to expand along the dimension of the aggregate state. In contrast,
the state-space-based approach requires the dimensions of the value and policy functions to

increase whenever the aggregate states expand.

The RTM algorithm

Step 1 (Initialization) Simulate a long path of aggregate shocks {S;}]_,. Conjecture

initial sequences of value functions {Vt(o)}tT:O, aggregate states {(IJEO)};‘FZO, and prices
On7
{p: " Yizo-

Step 2 (Backward solution) Starting from the terminal period T', solve agents’ problems
backward using expectations based on {Vt(n)}fzo. For each exogenous state in t + 1:

(a) Find periods 7 such that @Sn) ~ @Ei)l and collect realized state-contingent
value functions.
(b) Use these values to construct expectations E¢[Vii1].

Then, obtain the optimal value function V;* and the policy function g{**.

Step 3 (Forward simulation) Simulate the model forward using {g¢*}I_, to generate
{®;}L , and implied prices {p; }1_,.

Step 4 (Update) Update the guessed sequences via convex combination:

V;(n—’—l) = AV +(1— )\)\/;t(n)7 similarly for ®;, p;.

Step 5 (Iteration) Repeat Steps 2—4 until convergence:

(n)

sup Hp§"+1) —p | <e

In the Online Appendix A, I elaborate on the detailed steps to implement the RTM and

15Otherwise, the closest distribution cannot be well-defined. If such a closest distribution does not exist,
it violates the recursivity of the RCE.
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the required length of the simulated path. Due to the method’s ability to utilize the full
information from the entire sequence, it requires no additional simulation length beyond
what traditional methods demand. For example, as in Krusell and Smith (1998), if only
two aggregate states are realized based on a symmetric transition probability of a moderate
level (e.g., P(S" = G|S = B) = 0.125), the simulation of less than 1,000 periods is enough

to make the solution stay unaffected by further lengthening.!®

3 A theory of sufficient statistic

While a large body of literature has employed sufficient statistics to address the curse of
dimensionality in DSGE computation, the theoretical foundations justifying this approach
have remained unclear. This section fills this gap by establishing precise conditions under
which the sufficient statistic approach leads to an accurate solution. I first define the sufficient

statistics.

Definition 2 (Sufficient statistics).
Consider a function e : Q — R™. An equilibrium object e, := e(®;) is a sufficient statistic, if

for Ts = {t|S; = S}, VS € {B,G},
q=c = V,=V; ttecTs (11)

Notably, the sufficient statistic in the sequence space is differently defined from the coun-
terpart in the state space. The latter finds e; = e(®;) as a variable that can literally replace
or summarize ®, in the price determination or in the law of motion (Krusell and Smith, 1998;
Alvarez et al., 2016; Baley and Blanco, 2021). In contrast, the sufficient statistic I define is
an indexing variable where the same level of the variable indicates the periods with the same
aggregate state. Therefore, the sufficient statistic does not necessarily replace or summarize
the role of ®; in the sequence space. Instead, it provides proper indexation to help refer to
the correct subset of time periods for forming the conditional expectation.

The assumptions in Section 2.2 establish a one-to-one relationship (bijection) between

the sufficient statistic and the aggregate state. This result is formalized in Corollary 1 below.

Corollary 1 (Uniqueness and bijectivity).
If e, is a sufficient statistic, given S, = Sz, the following relationship holds:

€t = 6‘{ < (Dt = q)tN (12)

16 Appendix A.2 covers the required length of simulation path in detail.
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Proof.
Due to the assumptions in Section 2.2, e, = e; A S, =57 = V, =V; = &, = &7 From
the definition of a sufficient statistic &, = @3 A Sy = S; = e, = e(P;) = e(Pp) = ey [ |

The sufficient statistic is an n—dimensional vector. If such a sufficient statistic exists,

the following set identity is obtained:
arg min||e; — e7f] = arg min |, — @] (13)

where the left-hand side problem is computationally lighter than the right-hand side due to
the reduced dimension.

The RTM is particularly effective in handling multivariate sufficient statistics. Unlike
traditional approaches, it does not require a parametric law of motion—an advantage when
the relevant variables interact in high-dimensional or nonlinear ways. The only requirement
is a similarity metric defined over the proposed sufficient statistic. Moreover, since the value
and policy functions in the RTM are defined in the sequence space and indexed by time,
their dimensionality does not increase when additional variables are included in the sufficient
statistic. This allows the RTM to scale naturally to more complex state representations.

Extending this logic, even when the dimensionality of the sufficient statistic approaches
that of the full aggregate state ®;, the dimensionality of the value and policy functions
remains unchanged. This property enables a fully distributional implementation of the RTM,
directly computing the right-hand side of Equation (13). Although this extension increases
computational cost due to the pairwise high-dimensional distance computation, it remains
a feasible and flexible option.

This computational flexibility enables a rigorous investigation on the existence of multiple
self-fulfilling equilibria (Krusell and Smith, 2006; Cozzi, 2015). The literature has posited a
conjecture regarding the existence of a self-fulfilling equilibrium due to the bounded-rational
law of motion tracking the limited number of moments only. In the RTM, a heterogeneous-
agent model can be solved by matching the entire distribution, which necessarily computes
the recursive competitive equilibrium based on the full rational expectation. Then, two
testings can be implemented: 1) a fitness of the bounded-rational law of motion can be tested
based on this equilibrium path. Also, 2) the equilibrium path based on the bounded-rational
law of motion can be directly compared to the equilibrium path with the full rationality
under the same exogenous shock paths. I've implemented the second test for the model of
Krusell and Smith (1998) and confirmed that the equilibrium paths between the bounded
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rational law of motion and the full rationality are indistinguishably close to each other.!”
Moreover, the RTM provides a useful proposition and practical test to enable a dramatic

dimension reduction through the sufficient statistic as follows:

Proposition 1 (The monotonicity condition for a univariate sufficient statistic).
For each time partition Tg = {t|S; = S}, S € {B,G}, if e; is strictly monotone in V; for

Vt € Ts and all individual states (a, s), then, e; is a sufficient statistic.

Proof.

Without loss of generality, assume V; < V; = e, < ¢; for Vt,t € Tg and V(a,s). From
the contrapositive, e, > e = V; > V;. Then, e, = ¢; <= e, > egNeg > ¢ = Vi >
ViAV;>V, = V= Vi .

Proposition 1 establishes that when a time series {e;}L_, monotonically ranks the level
of the corresponding period’s value function for each individual state, e; qualifies as a suf-
ficient statistic for period ¢ in the RTM. The intuition behind the proposition is as follows.
Consider a researcher searching for the appropriate value function to compute conditional
expectations. If the correct counterfactual period 7 were known explicitly, identifying the
appropriate value function would be trivial since all value functions are indexed by time -
V. would simply be the correct choice. Now instead of 7, suppose the level of e, is known
to the researcher. Then, similar to the prior situation where 7 is known, the researcher can
identify which value function to use because the ranking information of e, uniquely pins
down the corresponding value function due to the strict monotonicity. This monotonicity
condition combined with Corollary 1 establishes a bijection between sufficient statistics and
target periods, ensuring unique identification. The framework extends naturally to marginal
value functions when solving models through first-order optimality conditions.

The monotonicity condition serves as a practically useful tester for the validity of a uni-
variate sufficient statistic in the RTM. After the solution is obtained, I compute Spearman’s
rank coefficients between the sufficient statistic and the individual state-specific value func-
tions for all individual states and for all aggregate exogenous states.'® Next, I analyze the

distribution of Spearman’s rank correlation coefficients. In leading applications (and as in

"For the full rationality case, I use the following metric to measure the similarity of the distributions:
0~ Bl = [ (@u(0) ~ B0) Pyt (149
In the computation, the updating weight for the (n 4 1) guess needs to be set at a high level (= 0.99) for
a smooth progression over iterations due to the possible nonlinear updates in the distributions (histogram).

18The Spearman’s rank coefficient assess the monotonic functional relationship between two variables. The
coeflicient ranges from -1 to 1, and the two extreme levels of =1 imply the perfect monotonicity.
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the online supplements), the sufficient statistic approach is validated as the average absolute

Spearman coefficient remains close to unity.'

Remark 1 (Empirical test for a univariate sufficient statistic).
For each time partition Ts = {t|S; = S}, S € {B,G} and for all (a,s) if a univariate e;
satisfies

|Spearman({e:}iers, {Vi(a, $)})iers| = 1,

then, e; is a sufficient statistic.?

Importantly, a sufficient statistic of the RTM may not qualify as a sufficient statistic
in state space-based approaches. This is because the statistic does not necessarily include
sufficient information about the inter-temporal dynamics of the endogenous aggregate state
variables. As in Definition 2, the sufficient statistic in the RTM is an indexing variable for
the cross-sectional similarity. For example, in the nonlinear model explained in Section 6,
if I fit the nonlinear aggregate dynamics of the sufficient statistic obtained from the RTM
to the nonlinear specifications of the single sufficient statistic, R? remains well below unity,
indicating that one variable cannot adequately capture the full law of motion. Nevertheless,
the variable alone serves perfectly as a sufficient statistic in the RTM by satisfying the
monotonicity condition. This distinction highlights a key advantage of the RTM: it can
achieve exact solutions with simpler sufficient statistics because it does not need to capture
the full complexity of inter-temporal dynamics.

K, = K7 is a necessary condition for ®, = ®;, making it a natural starting point for equi-
librium computation. This is consistent with the standard strategy of solving for equilibrium
using necessary conditions and verifying sufficiency via Proposition 1.

In some environments, a univariate sufficient statistic may not capture all relevant cross-
sectional variation—for example, when the population consists of several economically dis-
tinct subgroups. In such cases, the statistic can be extended to a vector of moments (e.g.,
group-specific means). The RTM is agnostic to the dimensionality of the statistic; it requires
only that the statistic provides a consistent ordering of similarity across periods. In practice,

the first moment is sufficient for all applications considered in this paper.

19The monotonicity condition is a sufficient condition and not a necessary condition for a variable to
qualify as a sufficient statistic. In other words, a variable e; that does not monotonically rank V; while
satisfying conditions in Definition 2 could potentially exist.

20Spearman(X,Y) denotes the Spearman’s rank correlation coefficient between X and Y (Spearman,
1904).
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4 Non-trivial market clearing conditions and accuracy

The RTM offers significant computational advantages, particularly in models with com-
plex market clearing conditions. For instance, when applied to the Khan and Thomas
(2008) model, the RTM converges nearly ten times faster than the Krusell and Smith (1997)
algorithm.?! This efficiency gain arises from a key methodological distinction: state-space-
based approaches rely on computationally expensive nested loops to determine exact market-
clearing prices each period, whereas the RTM utilizes implied prices that iteratively converge
to equilibrium values. By eliminating the need for nested fixed-point calculations, the RTM
achieves faster convergence without compromising accuracy. However, in cases where market
clearing is straightforward—such as in the Krusell and Smith (1998) heterogeneous-agent
model—the RTM’s computational efficiency remains comparable to that of Maliar et al.
(2010). The detailed comparison is available in Appendix C.

In the following, I elaborate on how the RTM efficiently handles non-trivial market clear-
ing conditions and why this approach is infeasible in state space-based methods. Consider

the following market clearing condition:

QP (pe, Xv, Xev1) — Q° (s X, Xi1) = 0.
P = argﬁ{QD(ﬁ, Xt,Xt+1) - Qs(ﬁu X, Xt+1> = 0}~ (15)

where QP and @Q° are demand and supply functions; p; is the market clearing price; X, and
X1 are the current and future aggregate states. The market clearing condition is non-trivial
when either demand, supply, or both lack closed-form characterization. For this problem,

the RTM utilizes the implied price p; instead of the exact clearing price p;, where

p = argﬁ{QD(pz(tn)’XtaXt—l—l) - QS(@ Xi, Xiyq) = 0} or
= argﬁ{QD(ﬁ7 Xt7 Xt+1) - Qs(pz(fn)a Xta Xt-‘rl) = 0} (16)

This approach fixes either demand or supply using the n'? iteration’s guessed price, then
finds the price that clears the remaining side. Computing this implied price is substantially
simpler than finding the market clearing price, which requires solving a fixed-point problem
where price simultaneously affects both supply and demand.

During the iteration, the implied price does not clear the market at each period, as it’s
only the implied price. However, as iteration goes by, the predicted path of prices {pgn)}fzo

converges to the equilibrium prices {p;}{_,. This convergence makes the implied price clear

21The RTM solves the model of Khan and Thomas (2008) in around 20 minutes, while the state-space-
based approach takes longer than 7 hours. Computations use a MacBook Pro 2021 with M1 Pro chip.
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the market in the limit for the following reasons:??

lim Q" (p}"”, Xo, Xi1) = Q% (v}, Xy Xiy1) = 0 (17)
— Q"(lim p{", Xy, Xi11) = Q3(p], X, Xi41) = 0 (18)
(19)
(20)

= Q" (ps, X4, Xo41) — QS(p;fkaXhXt-&-l) =0

= p; =p¢ (. uniqueness of the equilibrium).

Thus, the RTM’s converged solution delivers exact market clearing prices alongside other
equilibrium allocations.

In contrast, the implied price cannot replace the market clearing price in the state space-
based approach (Krusell and Smith, 1997) in general. In their approach, the price dynamics
is approximated by the parametric function of the aggregate state or the sufficient statistic,
and the coefficients of the function carry the information about the relationship between the
price and the aggregate state. Given that the number of coefficients cannot technically exceed
the number of periods, the coefficients can only carry the summarized information. If the
coefficients are updated based on the implied price rather than the market clearing price, the

update is based on inaccurate levels, thus leading to a biased coefficient.??

Then, the wrongly
updated coefficients often lead to a divergent path, as there is no theoretical guarantee that
the coefficient of the functional form features stability. The RTM, by contrast, preserves
complete information about price-state relationships by carrying entire sequences through
iterations. This approach enables uniform convergence in sequence space, guaranteed by
equilibrium stability, without requiring functional approximations or coefficient estimation.

Computation accuracy I compare the repeated transition method with the other
nonlinear solution methods in the literature for three DSGE models. The comparison is
based on a real business cycle model with irreversible investment (McGrattan, 1996; Chris-
tiano and Fisher, 2000), where I benchmark the RTM against three alternatives: linearized
solution, the OccBin method of Guerrieri and Iacoviello (2015) and the GDSGE solution
of Cao et al. (2023). The model features highly nonlinear aggregate dynamics due to the
occasionally binding irreversibility constraint for capital investment. Therefore, besides the
macroeconomic implications, the model serves as an ideal testing ground for the accuracy

of the different methods for the nonlinear solutions. The RTM displays a higher accuracy

22The local continuity of demand or supply is necessary to proceed from the first to the second line. This
should be true except for the knife-edge case where the unique equilibrium is at the discontinuity point,
which DSGE models are barely subject to.

ZWhile Bakota (2023) develops a method to update pricing rules approximately without exact market
clearing, improving state space computation speed, the RTM bypasses the need for such approximations
entirely.
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than other methodology in terms of dynamic consistency and the Euler equation error.?*

Detailed comparisons is available in Appendix B. Notably, the RTM achieves its accuracy
and speed using standard MATLAB code, without relying on lower-level machine languages

or advanced econometric techniques.

5 Generalized Transition Function (GTF)

In this section, I define a generalized transition function (GTF), which is a sub-path of the
recursive competitive equilibrium (RCE), and the RTM solution immediately computes the
GTF. The GTF nests generalized impulse response functions (GIRF) (Koop et al., 1996;
Andreasen et al., 2017) and stochastic growth path (Justiniano and Primiceri, 2008; Hansen
et al., 2008).%°

Definition 3 (Generalized transition function (GTF)).
Given an aggregate state realization (®g, So) in the RCE, the generalized transition function

g; of the variable of interest v as follows:
gj(U; q)o, S()) = /U(l’; (I)j, Sj)dq)j, Sj ~ Fj(Sj; S(]), j >1 (21)

where S; 1s a random wvariable of the exogenous aggregate state, which follows a j-length

Markov chain TV from the initial realization of Sp.

Notably, ®, is assumed to be a RCE allocation. However, a realistic analysis of the
stochastic growth or structural transformation might need to consider @, off the RCE.
Cao (2020) establishes the existence of dynamic stochastic competitive equilibrium (DSCE)
paths starting from arbitrary initial points under mild assumptions that encompass vari-
ants of Krusell and Smith (1998). However, characterizing the initial DSCE path from a
non-equilibrium initial condition requires non-trivial computational steps due to its non-
recursivity.? In computing the generalized transition function (GTF) from an initial state
off the RCE, I assume that agents immediately adopt the policy function associated with the

closest endogenous equilibrium state that shares the same exogenous state. This assump-

24The RTM provides the realized allocation path implied by the prediction path (n" guess). Dynamic
consistency requires these predicted and realized paths to coincide. Thus, the RTM can serve as a diagnostic
tool for other solution methods - by feeding their simulated paths as predicted paths into the RTM algorithm,
it evaluates their dynamic consistency.

25The definition assumes an heterogeneous-agent setup with micro-level v for comprehensive explanation,
but a representative-agent counterpart is consistently defined by omitting the integration.

26Tf the state were recursive, it would already belong to the set of RCE allocations given the uniqueness
of the RCE.
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tion is analogous to the saddle-path behavior in the canonical Ramsey growth model, where

transversality conditions enforce an immediate jump to the stable manifold.

Definition 4 (An extended generalized transition function).
Given an aggregate state realization (q)gf ! So) off the RCE, the extended generalized transi-

tion function g; of the variable of interest v as follows:
gj(’U; (I)Sff, So) == gj(U; (D(), So) == /’U(l‘, q)j, Sj)dcbj, Sj ~ F](Sj, S()), ] Z 1 (22)

where &y = arg_ min ||®Y — || and S; is a random variable of the exogenous aggregate
BeQROEy

state, which follows a j-length Markov chain IV from the initial realization of Sy.2"

For brevity, I denote g; as a transition function under the j’th exogenous state, so each g,
is also a random variable. Notably, G := {g1, g2, ... } is a sub-path of the RCE. Therefore, G
is readily computable from the global solution computed by the RTM. Specifically, for each
(®;,5;), v can be obtained by identifying the period sharing the closest aggregate states in
the global solution path and then interpolating the functions.

A certain magnitude of exogenous shocks is often considered in impulse response analyses.
In the GTF, one can flexibly consider an arbitrary magnitude of the initial exogenous shock
by fixing the initial exogenous state realization S;. Still, this response path is a subpath of

the RCE. I formally define the refined generalized impulse response function as follows:

Definition 5 (A refined generalized impulse response function).
Given an aggregate state realization (®g,Sy) in the RCE, the refined generalized impulse
response g]girf of the variable of interest v to an exogenous state realization Sy in the following

period is as follows:

g{" (v; @y, So, S1) Z/U($§@1751)d‘1)1 (23)
g]g-irf(v; (I)(), S(), Sl) = /U(QT; (I)j, Sj)dq)j, Sj ~ Fj(Sj; Sl), j > 1 (24)
where S; is a random variable of the exogenous aggregate state, which follows a j-length

Markov chain from the initial realization of S;.

Given Line (23), the first component of the g“{’irf is deterministic, as the magnitude of

the shock |S; — Sy| is set by a researcher from choosing S;. The average path with the 95%

2TORCE indicates all possible distributions in the RCE.
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confidence intervals can be characterized based on simulated shock paths.?® Notably, the
average GTF path is distinguished from the GTF path of average exogenous process due
to the possible nonlinearity in the GTF. Also, the average GTF significantly deviates from
the perfect-foresight growth path as studied in Section 6.1. The state dependence in the
response path could be flexibly analyzed through varying ®, and Sy with |S; — Sp| fixed.

6 Nonlinear heterogeneous-household business cycle mod-

els

The subsequent sections present two sets of analyses based on heterogeneous household
business cycle models. These applications address important macroeconomic questions that
have remained unexplored due to computational barriers. The RTM’s methodological break-

through enables efficient solutions to these challenging problems.

6.1 The leading application I: A heterogeneous-household model
with endogenous labor supply, investment irreversibility, and

fiscal spending shock

The first leading application is a heterogeneous-household business cycle model with endoge-
nous labor supply, investment irreversibility, and both aggregate TFP and fiscal spending
shocks. The model features a continuum of ex-ante identical households of unit measure in
an infinite-horizon discrete-time economy.

The model environment is characterized as follows. Each household faces uninsurable id-
iosyncratic labor productivity shocks and makes endogenous labor supply decisions n. The
temporal utility is assumed to be a log utility with a future discount factor 5 > 0. At the
beginning of each period, households observe their individual states (wealth a and produc-
tivity z) and the aggregate state X, forming rational expectations about future aggregate

conditions X’. Apostrophes denote next-period variables.

28 As the global solution is already computed by the RTM that covers all the possible sub-paths of the RCE,
computing the GTF's for a substantially large number of shock paths incurs almost zero extra computation
cost.
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The recursive formulation of a household’s problem is as follows:

V(a,z; X) = max log(c) — . Z lnHi + BEV (d, 2'; X') (25)
Y X

st. c+d =0+rX))a+wX)zn—T(X) (26)

a—(1—208)a>¢I*® (27)

® =Tx(X) (Aggregate law of motion) (28)

S~ 7(S8), 2 ~m(Z]z) (29)

where V' is the value function of a household; r and w are capital rent and wage that are
determined at the competitive input factor markets. I, is the steady-state aggregate saving
(investment) level. T is the lump-sum tax. x is the Frisch elasticity parameter, and 7 is
the labor disutility parameter. ¢ is the parameter that governs the degree of the saving
irreversibility. ['x is the aggregate law of motion. The idiosyncratic productivity z follows a
Markov process, where m(2’|z) governs the transition probability.

I consider a production sector that operates using a CRS Cobb-Douglas production func-
tion:

max AKCLY™ —w(X)L — (r(X) + §)K, (30)

where A is the aggregate TFP, K and L are capital and labor input demands.
The aggregate state X includes following three components:

X ={®,A4,G}. (31)

where @ is the distribution of the individual states, A is TFP, and G is government demand.
The first is endogenous aggregate state, and the others follow exogenous log AR(1) processes
specified as follows:

log(A') = palog(A) +oae € ~iiqg N(0,1) (32)
log(G') = (1 = pg)log(G) + pclog(G) + oge € ~iza N(0,1) (33)

where G is the steady-state government demand. For j € {A, G}, p; is the persistence pa-
rameter for the exogenous processes, and o; is the volatility parameter. These processes are
discretized by the Tauchen method in the computation. I assume the simplest government
setup where the budget is balanced by lump-sum tax collection: T'(X) = G. By assuming
this, the symmetric lump-sum tax is collected from heterogeneous households. For compu-

tation, I use the standard parameter levels in the literature, which are available in Appendix
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D.

The recursive competitive equilibrium is defined based on the following market-clearing

(Labor market) L(X)= /zn(a,z,X)dq) (34)
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Figure 2: Strict monotonicity of the marginal value in the aggregate capital stock

Notes: The figures are scatter plots of the marginal value functions in the vertical axis and the average capital
as a sufficient statistic in the horizontal axis for different exogenous aggregate states (different panels) given
the median level of individual wealth and productivity levels.

The market clearing is non-trivial as the wage determines individual labor supply, which
needs to be aggregated instead of directly pinning down the aggregate labor supply. In
Appendix D, I elaborate on how the RTM efficiently handles the model’s non-trivial market
clearing condition. Moreover, I verify the Proposition 1’s monotonicity condition is sharply
satisfied from the Spearman’s coefficient test.? Figure 2 provides graphical evidence, plotting

marginal values against aggregate capital stock across different TFP and government demand

29Gpecifically, I test the Spearman’s coefficient between the sufficient statistic and the marginal value for
each combination of individual states and exogenous aggregate states. The coefficient of unity implies the
perfect monotonicity. In this analysis, the minimum coefficients among all combinations for both optimality
conditions are distant from unity by 1072, The averages are not distinguishable from unity, and the standard
deviations are around 107'6. Thus, the monotonicity property holds robustly across the entire cross-section
of the individual states.
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levels (7 x 3 = 21 exogenous states) with individual states fixed at median levels of wealth
and labor productivity.

The solution reveals highly nonlinear dynamics in the aggregate capital path, driven by
the occasionally binding constraint. Figure 5 compares three capital paths: the predicted
path {K™}Z,, the realized (implied) path {K;}7_, from the RTM, and a simulated path
using a fitted log-linear law of motion. While the predicted and realized paths coincide to

form the equilibrium solution, the log-linear approximation shows significant deviations.?"
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Figure 3: The equilibrium path of aggregate capital stock

Notes: The figure plots the time series of the aggregate capital stock K; in the extended model

of Krusell and Smith (1998). The solid line is the predicted capital (n*" guess) {Kt(n) 1000, The
dashed line is the implied capital {K; }12%,. The dotted line is the capital predicted by the linear
law of motion.

6.1.1 Nonlinearity and aggregation

This section examines how micro-level nonlinearities shape aggregate dynamics by com-
paring heterogeneous and representative agent versions of the model. I contrast the heterogeneous-
household model (HH) with a representative-household variant (RH) that eliminates labor
productivity heterogeneity while maintaining all other parameter values. To ensure precise
comparison, I apply identical aggregate TFP paths to both specifications and solve them
using the RTM.

Figure 4 presents comparative dynamics in two contexts. Panel (a) displays equilibrium
capital paths for the HH model (solid line) and RH model (dash-dotted line), expressed as log

deviations from their respective steady states. For broader perspective, Panel (b) provides

30Fitting the aggregate capital dynamics to a log-linear AR(1) specification with exogenous shock controls
yields an R? of 0.920. As Den Haan (2010) demonstrates, such R? values can mask substantial inaccuracies
in aggregate dynamics as shown in Figure 3. Achieving high accuracy requires considerably more complex
specifications than log-linear forms (details available upon request).
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an analogous comparison between heterogeneous-firm and representative-firm models subject

to the same investment irreversibility constraint.3!

0.08 -
0.06 -
H

0.04 1
0.02
ot
-0.02

-0.04 ¢

600 700 800 900 1000 600 700 800 900 1000

Time (year) Time (year)
(a) Heterogeneous households (b) Heterogeneous firms

Figure 4: Equilibrium dynamics comparison: Heterogeneous households vs. firms

Notes: Panel (a) plots the subsample of the equilibrium capital dynamics for heterogeneous household model
(solid) and the representative household counterpart (solid). Panel (b) plots the subsample of the equilibrium
capital dynamics for heterogeneous firm model (solid) and the representative firm counterpart (solid).

The analysis reveals striking differences in aggregate dynamics between heterogeneous
and representative agent specifications. HH exhibits substantially lower capital stock volatil-
ity than RH, driven by reduced investment volatility. However, this volatility reduction does
not stem merely from the presence of micro-level heterogeneity per se. Indeed, panel (b)
demonstrates that heterogeneous-firm models display markedly higher capital stock volatil-
ity, stemming from increased investment volatility. This contrast highlights how the specific
nature of heterogeneity shapes aggregate nonlinear dynamics.

The business cycle statistics reported in Table 1 quantify these differences. While the HH
and RH models generate similar time-series averages, they differ notably in higher moments.
The HH model produces lower volatility in both output (5% reduction) and investment (18%
reduction), though consumption volatility remains similar between the specifications. The
models also differ in asymmetry: the HH model exhibits more negative skewness in output
and consumption, but more positive skewness in investment.?

Therefore, the representative-household model fails to adequately capture business cycle
dynamics present in the heterogeneous-household model. The key driver of this misalignment
is nonlinearity in household-level wealth dynamics.?® To see this, I compute the same hetero-

geneous and representative household models without the occasionally binding irreversibility

310nline Appendix E provides detailed specifications for the heterogeneous-firm model with irreversible
investment shown in Panel (b).

32Detailed business cycle statistics for the firm-side comparisons are provided in Appendix E.

33This result is specific to this model. For example, Khan and Thomas (2008) shows that the general
equilibrium effect washes out the firm-level nonlinearity in their model.
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Table 1: Business cycle statistics: heterogeneous (HH) vs. representative (RH)

Heterogeneous Representative

Mean

Output 0.512 0.508
Consumption 0.288 0.287
Investment 0.122 0.120
Volatility

log(Output) 0.042 0.044
log(Consumption) 0.057 0.058
log(Investment) 0.049 0.060
Skewness

log(Output) -0.026 0.024
log(Consumption) -0.363 -0.349
log(Investment) 0.936 0.874

Notes: The table reports the business cycle statistics implied by the heterogeneous agent model
(the first column) and the representative counterpart (the second column).

constraint (fully reversible investment), which is the source of the nonlinearity. Specifically,
for the HH benchmark, the irreversibility constraint is replaced by zero borrowing limit
constraint as in Krusell and Smith (1998) and Aiyagari (1994).
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Figure 5: Equilibrium dynamics comparison - frictionless: Heterogeneous vs. representative

Notes: The figure plots the time series of the aggregate capital stock K; in the extended model of Krusell
and Smith (1998) without the irreversibility constraint. The solid line is the predicted capital (n'* guess)

{K™M}1900  The dashed line is the implied capital {K;}1%9,. The dotted line is the capital predicted by
the linear law of motion.

Figure 5 plots equilibrium capital dynamics for these ‘reversible benchmark’ cases, show-
ing log deviations from steady state alongside a fitted log-linear law of motion. The perfect
alignment of all three paths demonstrates that when heterogeneous household decisions are

(near-)linear, the representative agent model provides an almost exact characterization of
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aggregate dynamics.?*

6.1.2 State-dependent fiscal multipliers

State-dependent policy effects are a crucial feature of models with nonlinear aggregate
fluctuations, yet analyzing these effects requires solution methods that can accurately cap-
ture global nonlinearities. The model in this paper provides an ideal laboratory for studying
such state dependence through the lens of households’ occasionally-binding constraints. The
key mechanism operates through an asymmetric wealth adjustment constraint: households
face greater friction when attempting to reduce their wealth positions than when increasing
them. This asymmetry creates state-dependent marginal propensities to consume (MPCs),
as households near their constraint exhibit nearly one-to-one consumption responses to neg-
ative income shocks while maintaining more modest responses to positive shocks.

The model’s calibration generates patterns of household financial constraints that align
remarkably well with empirical evidence. Using an irreversibility parameter of ¢ = 0.975 used
in Guerrieri and lacoviello (2015), the model produces a steady-state share of 33.9% hand-
to-mouth households, which is highly consistent with the empirical estimates from Kaplan
and Violante (2014). Importantly, the model captures a key feature of household financial
constraints: they affect not only low-wealth households but also wealthy ones who face
temporary difficulties adjusting their wealth. This feature emerges naturally from specifying
the constraint in terms of the wealth adjustment rather than the level of wealth. As a result,
21.6% of hand-to-mouth households in the model hold above-average wealth, consistent with
the “wealthy hand-to-mouth” phenomenon documented in the literature.

A positive fiscal demand shock generates heterogeneous output responses that depend
crucially on the distribution of financially constrained households. When a large fraction of
households face binding constraints, the economy exhibits a powerful amplification mecha-
nism: The lump-sum taxes levied to finance government spending trigger substantial declines
in household consumption, which in turn induce a strong positive labor supply response
through a wealth effect. This amplification mechanism leads to a significant increase in ag-
gregate output, as illustrated in Equation (36). In contrast, when most households operate
away from their constraints, the same fiscal shock induces a more muted response. These
unconstrained households can smooth consumption through saving adjustments, resulting

in a smaller labor supply response and consequently a more modest output expansion, as

34The hand-to-mouth households in Krusell and Smith (1998) and Aiyagari (1994) display kinked saving
policy around the borrowing limit. However, their contribution to the aggregate capital dynamics is almost
negligible.
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shown in Equation (37).

[Mostly constrained] : Cy + Iy + Gy =Y, 17 (. Large wealth effect) (36)
H { ™

[Mostly unconstrained] : Cy + Iy + Gy =Y; T (. Small wealth effect) (37)
H H T

To quantify this state dependence empirically, I estimate the following regression using sim-
ulated data from the model’s global solution:

Y: = Bo + B1Gt + B2Gt x A¢ + Balog(Ky) + Bslog(At) + €, (38)

where Y} is aggregate output; G, is government demand measured in the unit of output; A; is
the aggregated Lagrange multiplier defined by A; = A(X}) := [ Ma, z; X;)d®,. Ay captures
both the portion of constrained households and the average binding intensity. The coefficient
of primary interest is 5, which captures how the fiscal multiplier varies with the prevalence
of binding constraints.

Table 2 presents estimation results across three model variants: 1) the baseline model
(HH), 2) a representative-household version (RH), and 3) an RH specification with GHH
preferences. The baseline HH specification without interaction terms yields a fiscal multi-
plier of approximately 0.8 over a two-year horizon, aligning with empirical estimates from
Ramey (2020). However, incorporating state dependence through the interaction term re-
veals that this average effect masks substantial variation: the direct effect 5, becomes no-
tably smaller, while the interaction term accounts for roughly 23.5% of output variation
(= std(BaGiA)/std(Y) ~ 23.5%). The model achieves remarkable fit after including state
dependence, with mean squared prediction errors below 1076.

The result indicates that the fiscal multiplier is greater when a greater portion of house-
holds are constrained, which endogenously fluctuate over the business cycle. Importantly,
this implies strong counter-cyclical variation in fiscal policy effectiveness in equilibrium: the
negative correlation (-0.788) between output Y; and the constraint intensity measure A; in-
dicates that borrowing constraints bind more frequently during economic downturns. This
pattern implies that fiscal stimulus becomes particularly potent precisely when the economy
is weak, providing a natural stabilization mechanism through state-dependent multipliers.

The third column presents the regression coefficients when the data is simulated from the
RH model. Notably, the degree of state dependence in HH remains largely unchanged in its
representative-agent counterpart. The fourth column reports the coefficients under the GHH
utility specification, which eliminates the wealth effect arising from tax-driven consumption

reductions. When using contemporaneous consumption C} as the dependent variable in the
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Table 2: State-dependent fiscal spending multipliers

Dependent variable: Y; ($)
Hetero. (HH)  Rep. (RH) GHH

Gy (%) 0.402 0.182 0.206 0.000
(0.005)  (0.002) (0.000) (0.001)

Gy ($) x Ay 0.533 0.534 0.000
(0.003) (0.002) (0.000)

log(Ky) 0.143 0.105 0.104 0.496
(0.002) (0.001) (0.000) (0.000)

log(Ay) 0.463 0.598 0.591 1.504
(0.001)  (0.001) (0.001) (0.000)

Constant Yes Yes Yes Yes
Observations 3,000 3,000 3,000 3,000
R? 0.992 0.999 0.999 0.999
Adjusted R? 0.992 0.999 0.999 0.999

Notes: The table reports the regression results based on specification (38). The first two columns
are results based on the heterogeneous household baseline model. The next column is based on the
representative-household counterpart. The last column is based on the representative household
model with GHH utility, where the wealth effect is muted.

same regression setup with the GHH utility, the results confirm that a fiscal demand shock
significantly reduces consumption, consistent with both the HH and RH models. However,
this does not translate into any effect on aggregate output, as indicated by the near-zero
estimates for §; and f5. These findings highlight that the state-dependent fiscal multiplier
operates through variations in the state-dependent MPC and the resulting wealth effect. In
this context, the key equilibrium property of interest is global nonlinearity, which the RTM

effectively captures by providing an accurate solution in sequence space.

6.1.3 The GTFs: an endogenous disaster and the stochastic growth path

Due to the model’s nonlinear nature, the responsiveness of aggregate variables to an
exogenous shock depends critically on the prevailing aggregate state. In particular, the
size of the hand-to-mouth population plays a key role: identical shock paths can produce
markedly different outcomes depending on its share. To analyze this state dependence, I
use the generalized impulse response function (GIRF) constructed through the generalized
transition function (GTF).

I identify two periods within the sequence of global equilibrium allocations in which
the exogenous states are identical at their median levels, but the share of hand-to-mouth
households differs substantially: The high hand-to-mouth share is approximately 43.7%, and

the low share is approximately 34%. Figure 6 illustrates the responses of aggregate output
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Figure 6: State-dependent responsiveness: high vs low hand-to-mouth portion

Notes: Panel (a) plots the generalized impulse response functions (GIRF) of output when the aggregate
states before the shock hits were with a high portion hand-to-mouth households (solid line) and with a low
portion of hand-to-mouth households (dashed line). Panel (b) plots the GIRFs of consumption. The shaded
areas indicate the 95% confidence interval.

(panel (a)) and aggregate consumption (panel (b)) to a negative two-standard-deviation
TFP shock. The solid line corresponds to a state in which a large share of households are
hand-to-mouth, while the dashed line reflects a state with a smaller hand-to-mouth share.?

Although the two states experience identical exogenous shock paths, their macroeconomic
responses differ significantly. In the high hand-to-mouth state, output declines by around
28% more and aggregate consumption falls by 25% more compared to the low hand-to-mouth
case. The key amplifying channel in the propagation of TFP shock is excess consumption
shock sensitivity stemming from the high level of the cross-sectional average MPC. The con-
sumption wealth effect channel does not effectively save the economy from the recession when
there are large portion of hand-to-mouth people. It is because the constrained households
are mostly with low labor productivity, so their increased labor supply motivated by wealth
effect only marginally improve the aggregate labor supply. This state-dependent nonlinearity
resonates with the concept of an endogenous disaster as studied in Petrosky-Nadeau et al.
(2018). This result highlights that the macro economy’s response to shocks depends not just
on the size of the shock, but on the distributional state of the economy at the time the shock
hits—a distinctively nonlinear feature enabled by the global solution method.

The generalized transition function (GTF) also provides valuable insights into stochastic
growth dynamics. [ examine a transition scenario beginning from an initial steady state
with TFP 5% below the calibrated baseline. From this starting point, the economy evolves

along stochastically determined growth paths reflecting various possible shock realizations.

3°Both initial states share the same exogenous conditions: A =1 and G = 0.1011.
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Figure 7: Stochastic growth path vs. perfect-foresight growth path

Notes: The figure plots the GTF-based stochastic growth path (solid line) in comparison with the perfect-
foresight growth path (dashed line). The shaded areas indicate the 95% confidence interval. The transition
is initiated from the steady state of an economy with a 5% lower aggregate TFP productivity.

Figure 7 contrasts the stochastic growth path (solid line) of aggregate capital with the
perfect-foresight growth path (dashed line). The comparison reveals two key findings: the
stochastic path exhibits slower initial growth on average, yet ultimately converges to a higher
capital level than its perfect-foresight counterpart.

This divergence stems from fundamental differences in the households’ expectations. The
perfect-foresight path shows accelerated early growth precisely because households face no
risk of having to downsize capital. In the stochastic environment, however, households
must account for potential binding irreversibility constraints, leading to more cautious initial
capital accumulation. According to the model, the uncertainty lowers the capital growth rate
by up to 13 percent per quarter compared to the perfect foresight path.

Aggregate uncertainty ultimately drives greater capital accumulation through heightened
precautionary saving motives, as evidenced by the higher long-run capital level in the latter
phase of the transition. Together, these results highlight a novel interaction between growth
dynamics and aggregate uncertainty—an underexplored but economically significant feature

of dynamic stochastic economies.

6.2 The leading application II: A heterogeneous-household model

with portfolio choice and endogenous labor supply

In this section, I analyze a heterogeneous-household business cycle model with portfolio
choice, where each household endogenously determine labor supply. A continuum of unit
measure of households who consumes, saves in two assets (capital and bond), and supplies
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labor, which is summarized by following recursive formulation:

lea

V(a,b,2; X) = Jmax o = o Z >1<711+>1< + BEV (d', V', 2/ X") (39)

st c+ad + X))V =a(l +7r(X)) +b+ zw(X)n (40)
d >0 b>b (41)
® =T'x(X) (Aggregate law of motion) (42)
S ~(S)S), 2 ~w(d]z) (43)

where ¢ is consumption; z is idiosyncratic labor productivity, which follows a log AR(1)
process; n is endogenously chosen labor supply; w is wage to be competitively determined at
the factor input market, which thereby indicates that zw(X)n is the labor income; a is the
risky asset (capital) that earns capital rent r = r(X) in each period, which is competitively
determined at the capital market; b is the risk-free bond holding of which the price is ¢ =
q(X). The bond price is competitively determined at the bond market. Apostrophe indicates
future allocation. ¢ is risk-aversion parameter; x is the Frisch labor elasticity; 7 is the labor
disutility parameter; 8 is the discount factor. b < 0 is the borrowing limit for future bond
holding, and future risky asset is bound by zero borrowing limit.
The aggregate state X is defined as follows:

X = {®, A} (44)

where ® is the joint distribution of the individual states; A is aggregate productivity that fol-
lows the same two-state Markov chain as in Krusell and Smith (1997). The rest of the model
ingredients are identical to the leading application I (Section 6.1) except for the following
bond market clearing condition: The bond price ¢°(X) is determined at the competitive
market as follows:

q] / W (w, 2 X)d®(X) = 0 (45)

where I assume the aggregate net bond supply is zero as in Krusell and Smith (1997). T use
the standard parameter levels in the literature, which are available in Appendix C.

The model includes two inter-temporal assets, which necessarily leads to a highly complex
endogenous aggregate state in equilibrium. Moreover, the model includes two occasionally
binding constraints and the two non-trivial market clearing conditions for labor and bond
market, which exponentially increases the computational burdens. Nevertheless, the RTM

efficiently computes the global solution. I elaborate on the computational details in Appendix
E.
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The bond market presents a unique computational challenge beyond standard market
clearing issues: zero net supply (B'(X) = 0) creates difficulties in characterizing the implied
bond price using the RTM. The clearing condition reduces to a non-invertible identity:
(X)) x B (X) =B <= ¢*(X) x0=0. This challenge becomes apparent when examining
the national accounting identity derived from aggregating individual budget constraints:

C(X)+ K'(X)+¢*(X)B'(X) = K(l +7(X)) + B+ w(X)N (46)
— C(X)+I(X)+{X)B —B=Y(X) (47)
— @(X)B'=B < ¢(X)x0=0, (48)

where (C,K,I,Y,B) are aggregate consumption, capital stock, investment, output, and
bond holdings. To overcome this computational challenge, I introduce a dummy bond term
B > 0, which remains fixed over the iterations. The dummy bond serves as a reference point
for relative price updates. Specifically, this allows characterization of the implied price ¢**
through

(n) C* B* +qt( )B

(49)

where asterisks denote aggregations of individual optimal choices given the n'* iteration’s
guessed price path.?¢ Through iteration, this approach achieves two convergence results: the
implied bond price sequence {¢**}L, converges to market-clearing levels, and the aggregate
net bond supply Bf = [ b;d® converges to 0 for V ¢.57

6.2.1 Nonlinear bond price and heterogeneous portfolio adjustment over the

business cycle

The RTM computes the equilibrium paths of the price bundle (r(X), w(X), ¢(X)). Among
the prices, the bond price dynamics is particularly nonlinear, as can be seen from Figure 8.
The predicted path (solid line) and the realized path (dash-dotted line) are indistinguishably
close, which demonstrates the solution’s accuracy. Its dynamics significantly deviate from
the log-linear prediction (dotted line) based on the sufficient statistic K (X). The fitted line’s
R? is only around 0.50, underscoring the inadequacy of linear approximations.

This finding has important implications for solution methods. The bond price’s true

law of motion is too complex for conventional state-space approaches, which would re-

36 Appendix F explains the details of the role of the dummy bond variable.
37The equilibrium path shows high sensitivity to bond price adjustments, necessitating conservative up-
dating (weight = 0.999) in the implementation. An alternative specification for the implied bond price is
B —q,"B

¢ = —=+—=——, which also leads to the convergent outcomes.

34



quire correctly specifying the functional form before solving the model. Yet notably, de-
spite this complexity in price dynamics, the inter-temporal optimality conditions maintain
strict monotonicity in the sufficient statistic K, as demonstrated by the Spearman’s coef-

38 This result demonstrates a key advantage of the

ficient indistinguishably close to unity.
RTM: its sufficient statistic approach remains valid even when linear prediction rules fail,
enabling accurate solutions to models with complex nonlinear dynamics without requiring ex-

plicit functional forms. The heterogeneous agent model generates bond price dynamics that
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Figure 8: The equilibrium bond price path

Notes: The figure plots the time series of the bond price ¢? in the extended model of Krusell and

Smith (1997). The solid line is the predicted bond price (n'" guess) {q’"}89 .. The dashed line

is the implied bond price {g?*}$°¢ . The dotted line is the bond price predicted by the linear

law of motion.

sharply contrast with representative agent predictions.® The difference manifests in both
cyclicality and volatility. While the heterogeneous agent model predicts pro-cyclical bond
prices (corr(Yy, ¢?) = 0.64), while the representative agent framework implies counter-cyclical
prices (corr(Y;,q?) = —0.43). The volatility difference is also striking: the heterogeneous
agent model produces bond price volatility more than 9 times greater than its representative
agent counterpart. These substantial differences stem from the rich heterogeneity in house-
holds’ hedging motives across individual states, an equilibrium feature that representative
agent models necessarily abstract from.

The global nonlinear solution of the model reveals a novel prediction about heterogeneous
portfolio adjustment over the business cycle across different households. Due to the rich

heterogeneity in the equilibrium in the dimensions of wealth, income, productivity, and

38The details of the test is availabe in Appendix D.

39Tn the representative agent model, the bond price is derived from the inverse of the risk-free rate. This
remains an implied price since the zero net bond supply precludes actual transaction by the representative
agent.
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portfolio composition, the model provides various testable implications from the data. In
the following analysis, I focus on the different portfolio adjustment patterns through the
lens of the wealth heterogeneity. The analyses based on the labor income (productivity)
heterogeneity are provided in Appendix G, which show consistent patterns as the one about
the wealth heterogeneity.

Figure 9 illustrates this heterogeneity by tracking the household-level average of the risky
asset weight in the portfolio for three groups: wealth-rich households (defined as those in the
top tercile of the wealth distribution), wealth-poor households (those in the bottom tercile),
and middle class (the remaining middle 40%), plotted against output deviations from steady
state.

The wealth-rich and middle-class households display a highly stable individual portfo-
lio weight over the business cycle, while the wealth-poor households dramatically rebalance
their portfolios: the wealth-poor households display markedly counter-cyclical portfolio ad-
justments, increasing their risky asset allocations with a one-period lag relative to output
fluctuations. First, this shows that less constrained households behave as if there is the
optimal portfolio weight that does not vary over the business cycle. The middle-class house-
holds portfolio weight is stably (mildly fluctuating) formed at around 110% which implies
they maintain risky asset weight by leveraging in the debt market. The constrained house-
holds’ (wealth-poor) portfolio weight dramatically fluctuate around 100%, which indicates
that they borrow and pay back debts flexibly over the business cycle.
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Figure 9: The time series of average risky asset portion across different wealth groups

Notes: The figure plots the time series of the risky asset portion (%) in the wealth portfolio for different
households in the extended model of Krusell and Smith (1997). The solid line represents households in the
top wealth tercile, while the dashed and the dash-dotted lines show households in the bottom wealth tercile
and the remaining middle class. The dotted line depicts output (measured as percentage deviation from
steady state), with values shown on the secondary vertical axis at the right side of the figure.

Figure 10 contrasts the asset holdings of different wealth groups in the consumption goods
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unit (dollar) against output deviations from steady state, with panel (a) showing risky asset
holdings and panel (b) displaying risk-free asset positions. Panel (a) demonstrates that richer
households maintain larger risky asset positions, consistent with the empirical observation
by Calvet et al. (2009). Panel (b) reveals the financing strategy behind these positions:
wealth-poor and middle-class households achieve their risky asset holdings through leverage.
Especially, wealth-poor households aggressively relies on borrowing to purchase risky assets,
maintaining risk-free borrowing positions consistently near the constraint (b = —2.4). In
contrast, wealth-rich households hold large and stable risk-free asset positions throughout
the business cycle.

A notable pattern observed from Figures 10 and 9 is that the wealth-poor households’
average individual level portfolio weight dramatically fluctuate over the business cycle, while
the group-level average does not fluctuates. This is because the risk-free asset and risky-asset
transactions are the most active within the group of the wealth-poor households. From the
policy perspective, these results imply that government’s debt financing by issuance of risk-
free bonds would lead to a significantly asymmetric impact on different wealth groups: the
wealth-poor would face the most dramatic impact due to their highly volatile transactions
of the bonds, which sharply deviates from the policy impact of the lump-sum tax financing.
Also, the stark differences in the individual average and the group-level average show that
the idiosyncratic shocks affect the heterogeneous decisions for the households close to the
constraint.

These patterns offer important insights for both inequality dynamics and asset pricing
theory. The global solution framework reveals how the bond market mediates heterogeneous
hedging motives across household types, generating highly nonlinear and volatile bond prices.
This interaction between household heterogeneity and financial markets provides novel per-

spectives on both inequality transmission and asset pricing mechanisms.

6.2.2 State-dependent GTF's of the risk premium

The model predicts highly nonlinear risk premium dynamics. Figure 11 illustrates the
state-dependent impulse responses of the risk premium following TFP shocks of £2%, using
the generalized transition function (GTF). Panel (a) shows the response to a negative TFP
shock, while panel (b) shows the response to a positive TFP shock. The key state variable
that differentiates the responses is the portfolio composition prior to the shock—specifically,
the economy’s aggregate exposure to the risky asset.

In response to a negative TFP shock (panel (a)), the risk premium declines sharply in
economies that enter the shock with low risky asset holdings (dashed blue line). This re-

flects low expected risky return followed by flexible portfolio adjustments in a relatively less
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Figure 10: Risky and risk-free asset holding dynamics across different wealth groups

Notes: The figure plots the time series of the different asset holdings ($) by household types in the extended
model of Krusell and Smith (1997). Panel (a) is for the risky asset, and panel (b) is for the risk-free asset.
The solid line represents households in the top productivity tercile, while the dashed line shows households
in the bottom productivity tercile. The dotted line depicts output (measured as percentage deviation from
steady state), with values shown on the secondary vertical axis at the right side of the figure.
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Figure 11: State-dependent risk premium dynamics

Notes: The figure plots the GTF's of the risk premium for a negative (panel (a)) and positive (panel (b)) 2%
TFP shocks. The solid line represents the economy with the highest portion of risky asset before the shock
hits and the dashed line does it for the economy with the lowest portion of risky asset.

constrained state (flight to safety). In contrast, when the economy begins with high risk ex-
posure (solid black line), the risk premium spikes upward because the shock makes borrowing-
constrained households immediately sell off their risky assets, pushing down contemporane-
ous risky asset prices and raising their expected return, increasing the risk premium. The key
mechanism in distinctive patterns is in the constrained (wealth-poor) households’ risk-free
asset adjustment, which barely happens for the economy with high risk exposure, as they
are already highly constrained.

Following a positive TFP shock (panel (b)), the pattern reverses. Economies with high
pre-shock risky asset exposure experience a sharp drop in the risk premium, as improved

prospects reduce precautionary motives and increase demand for risky assets. In contrast,
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economies with low pre-shock risk exposure exhibit a modest increase in the premium, re-
flecting a financially less constrained economic state that does not have to rely largely on
leveraging. Across all the scenarios, the responses are highly asymmetric and persistent,
underscoring the importance of portfolio composition as a state variable in determining the
dynamics of the risk premium. Notably, Figure 9 and Figure 10 show that the endogenous
fluctuations in the portfolio are driven by the wealth-poor households. It reveals that the
risk premium’s state dependence crucially hinges on the wealth-poor households’ existing

wealth portfolio.

7 Concluding remarks

This paper develops a powerful global nonlinear solution framework in sequence space for
solving dynamic stochastic general equilibrium models that achieves both global accuracy
and computational efficiency without assuming perfect foresight. The framework also pro-
vides precise conditions under which sufficient statistics deliver exact solutions in models
with complex aggregate states.

Next, I introduce the generalized transition function (GTF) as a subpath of the recursive
competitive equilibrium (RCE). The GTF enables global nonlinear analysis including gener-
alized impulse responses and stochastic growth paths within an integrated RCE framework.
Moreover, it opens door to relatively overlooked important macroeconomic channels such as
interplay between growth and uncertainty and the state dependent shock/policy sensitivities
of economic variables.

Through the leading applications, I demonstrate the practical value of these frameworks,
and I analyze novel model predictions: An economy becomes particularly fragile to a negative
aggregate shock during the time of high hand-to-mouth household portion. Aggregate uncer-
tainty substantially hampers capital stock growth in the short run. The fiscal multipliers are
endogenous-state-dependent in the RCE. The rich and poor households display significantly
different portfolio choices over the business cycle, while the latter becoming pro-active and
taking more risk-loving stance. Moreover, the risk premium dynamics is substantially state-
dependent: depending on the existing distribution of the wealth-poor households’ wealth
portfolio, the sign of its response to a TFP shock can flip. These are novel findings which
became feasible due to the novel methodological advance this paper develops. This capa-
bility opens new possibilities for investigating complex nonlinear economic relationships and

policy effects in modern macroeconomic models.
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