
Characterizing and Identifying Misexposed Activities in
Android Applications∗

Jiwei Yan
Tech. Center of Softw. Eng.

Institute of Software, CAS, China
Beijing, China

yanjw@ios.ac.cn

Xi Deng
State Key Lab. of Computer Science
Institute of Software, CAS, China

Univ. of Chinese Academy of Sciences
Beijing, China

Ping Wang
State Key Lab. of Computer Science
Institute of Software, CAS, China

Univ. of Chinese Academy of Sciences
Beijing, China

Tianyong Wu
State Key Lab. of Computer Science
Institute of Software, CAS, China

Beijing, China

Jun Yan †

State Key Lab. of Computer Science
Institute of Software, CAS, China

Univ. of Chinese Academy of Sciences
Beijing, China

Jian Zhang†
State Key Lab. of Computer Science
Institute of Software, CAS, China

Univ. of Chinese Academy of Sciences
Beijing, China

ABSTRACT
Exported Activity (EA), a kind of activities in Android apps that can
be launched by external components, is one of the most important
inter-component communication (ICC) mechanisms to realize the
interaction and cooperation among multiple apps. Existing works
have pointed out that, once exposed, an activity will be vulnerable
to malicious ICC attacks, such as permission leakage attack. Unfor-
tunately, it is observed that a considerable number of activities in
commercial apps are exposed inadvertently, while few works have
studied the necessity and reasonability of such exposure. This work
takes the first step to systematically study the exposing behavior
of EAs through analyzing 13,873 Android apps. It utilizes the EA
associated call relationships extracted from byte-code via data-flow
analysis, as well as the launch conditions obtained from the mani-
fest files, to guide the study on the usage and misexposure of EAs.
The empirical findings are that the EAmechanism is widely adopted
in development and the activities are liable to be misexposed due to
the developers’ misunderstanding or carelessness. Further study on
subsets of apps selected according to different criteria indicates that
the misexposed EAs have specific characteristics, which are manu-
ally summarized into six typical misuse patterns. As a consequence,
ten heuristics are designed to decide whether an activity should be
exposed or not and are implemented into an automatic tool called
Mist. Experiments on the collected apps show that around one fifth
EAs are unnecessarily exposed and there are more than one third
EAs whose exposure may not be suggested.
∗This work is supported by National Natural Science Foundation of China (Grant
No. 61672505), the National Key Basic Research (973) Program of China (Grant No.
2014CB340701), and Key Research Program of Frontier Sciences, CAS, Grant No.
QYZDJ-SSW-JSC036.
†Corresponding Authors. Email: yanjun@ios.ac.cn, zj@ios.ac.cn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’18, September 3–7, 2018, Montpellier, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00
https://doi.org/10.1145/3238147.3238164

CCS CONCEPTS
•General and reference→ Empirical studies; • Software and
its engineering→ Software testing and debugging;

KEYWORDS
Android apps, Exported Activity, Program Analysis

ACM Reference Format:
Jiwei Yan, Xi Deng, PingWang, TianyongWu, Jun Yan, and Jian Zhang. 2018.
Characterizing and Identifying Misexposed Activities in Android Applica-
tions. In Proceedings of the 2018 33rd ACM/IEEE International Conference on
Automated Software Engineering (ASE ’18), September 3–7, 2018, Montpellier,
France. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3238147.
3238164

1 INTRODUCTION
With the growing momentum of the Android OS and its app market,
the functionalities of apps become rich and specialized. It is a trend
that more and more apps share information and collaborate with
each other to complete a complex task. For instance, an electronic-
payment app can be invoked by multiple third-party e-commerce
apps to perform the payment process. Another example is that many
apps are embedded with social contact functionality by invoking
some mature social contact apps, e.g., Facebook andWeChat.

By default, an activity in an app is invisible to the external apps,
i.e., they can not be activated by activities in other apps. The An-
droid system provides the “Exported Activity” (EA for short) mech-
anism by which an app can share specific activities with other apps.
EAs can be regarded as the interfaces of apps, which usually carry
the key functionalities that the developers want to promote and
will be repeatedly invoked by other apps. Besides, the invocation
to EAs may be indeterministic due to the Android specific mapping
mechanism (e.g., implicit invocation, see Section 2.3), which brings
flexibility and uncontrollability to their usage.

Many activities are made to be exposed (i.e., EA) in practice. Ac-
cording to our statistics, around two thirds of apps have at least one
EA, and the percentage of EA in all activities is about 8.6% (see Sec-
tion 4.1). Existing works [1–3] have shown the vulnerability of EAs.
For example, the arbitrary data received from external apps may
disturb the apps’ regular work-flow or even cause code injection,

691

https://doi.org/10.1145/3238147.3238164
https://doi.org/10.1145/3238147.3238164
https://doi.org/10.1145/3238147.3238164

ASE ’18, September 3–7, 2018, Montpellier, France Jiwei Yan, Xi Deng, Ping Wang, Tianyong Wu, Jun Yan, and Jian Zhang

and the invoking of sensitive APIs in EA without the protection of
permissions may cause permission leakage. A recent research [4]
also shows that inter-component communication (ICC) methods are
significantly used by malware to leak private data. Thus, we have
the following hypothesis: exposed activities might bring the
potential vulnerabilities to the entire application. Although
the EA simplifies inter-app interaction, new potential security risks
and functionality bugs that it might bring force developers to think
carefully before using it.

Recent works [5–9] have provided a series of effective defect
detection approaches that involve EA, however, little is known
about whether the exposing behavior of an activity is proper or not.
The wide adoption of such a flexible and error-prone EAmechanism
drives us to re-examine the activities that are declared to be exposed.
Thus, we make a large-scale empirical study on 12,673 commercial
apps and 1200 open-source ones in order to answer the following
three research questions:

• RQ1 (Usage of EA): To what extent are EAs used by develop-
ers? Which functionalities are EAs mostly used to perform?
• RQ2 (Comparative Analysis): Are there any differences
between the well exposed activities and those should not
necessarily be exposed?
• RQ3 (Characteristics of Misexposed EA): Are there any
common patterns of unnecessarily exposed activities? Can
these misexposed EAs be identified automatically?

To answer these questions, we first obtain the launch conditions
of EAs and extract intents that can start certain EAs via data-flow
analysis on apks. Then, we match intents to activities according to
the Android mechanism and construct the caller-callee pairs within
the app set. We further employ a comparative analysis on two
sets of selected apps to investigate the misexposure of activities.
The comparison results indicate that the misexposed EAs have
specific characteristics, which are manually summarized into six
typical misuse patterns. Furthermore, we sum up ten heuristic rules
based on these patterns to categorize the EAs into four classes,
and implement these ten rules into a tool called Mist for automatic
misexposed EA identification. The experiments on the collected
apps show that about 19.23% EAs are unnecessarily exposed and
there are 36.50% EAs whose exposure may not be appropriate.

To sum up, the contributions of this work lie in three-fold:

(1) We conduct an empirical study on three datasets to under-
stand the usage and misexposure of EAs in practice. To the
best of our knowledge, this is the first research that system-
atically studies the behavior of activity exposure.

(2) We make use of static analysis techniques to extract EA
related information from tens of thousands of real-world
apps to aid the misexposure identification.

(3) We summarize six kinds of misuse patterns and extract ten
rules, based onwhich a tool calledMist is designed and imple-
mented for EA misexposure identification. The experiments
show that our tool can effectively help to find the misex-
posed EAs. Both our tool and the related data are publicly
available on GitHub (https://github.com/AndroidMist/Mist).

2 BACKGROUND
This section provides the background knowledge about Android
system and exported activity.

2.1 Android Activity
Android is an open-source and Linux-based operating system de-
veloped by Google for portable devices. Except for some native
libraries, Android apps are mainly written in Java and compiled
into Dalvik byte-code, while they also have some configuration
files (e.g., manifest file) to declare the components and layouts. An-
droid apps are composed of four kinds of components, including
Activity, Service, Content Provider, and Broadcast Receiver. Among
them, activity is the most frequently used component that provides
an interface for the users’ interaction. A research [4] shows that
around 67.4% of the total ICC method calls are related to the ac-
tivity component. The activity can be categorized into two kinds,
including the Internal Activity (IA) and Exported Activity (EA). The
former one can only be launched by the components in the same
app, while the latter one allows other Android apps to launch it.
The EA provides an effective way for the ICC among multiple apps,
which is the major component discussed in this paper.

2.2 Activity Attribute and Intent Filter
Android system provides a number of attributes for the activity [10],
which can be mainly set in the manifest file by developers. We only
list the relevant ones here.
• android:exported By default, this attribute is set as false,
i.e., the activity is an IA. Developers can change it to exported
by setting its value as true.
• android:permission This attribute defines the permission
which is required for external apps to activate this activity.
If the caller app does not declare this permission, it is not
allowed to call this activity.

The intent filter is an element of EA that is also set in the
manifest file, while an EA can have multiple intent filters. It decides
what kinds of implicit intents the EA responds to. An intent filter
contains several sub-elements, including action, category, and
data. The resolution from intent to intent filters is performed on
these elements based on specific rules [11]. If multiple intent filters
are compatible, the system displays a dialog showing options for
users to pick up which app to start. The intent filter has an attribute
android:priority that provides information about how able an
activity is to respond to the intent that matches the filter. Android
will consider only those with higher priority values as potential
targets for the intent.

2.3 Activity Exposing and Launching
There are two rules to expose an activity, according to the Android
reference [10]. First, if the attribute android:exported is set as
true, this activity will be an EA. Besides, for an activity whose
attribute android:exported is not set, it will also be an EA if it
contains at least one intent filter [12]. Note that, only effective
intent filters are considered, e.g., intent filters with no action are
ignored because they can not be invoked. The rest activities are
internal ones (IAs).

692

https://github.com/AndroidMist/Mist

Characterizing and Identifying Misexposed Activities in Android Applications ASE ’18, September 3–7, 2018, Montpellier, France

Both EA and IA can be launched by the mechanism of intent [11],
which can be categorized into two types, Explicit Intent and Implicit
Intent. The explicit intents specify its target by giving the activity
name (the fully-qualified class name), while the implicit intents only
declare a series of features (e.g., action and category), which makes
invoking components of other apps possible without the knowledge
of the concrete component name [11]. Android system provides
a set of APIs to assign these attributes that are related to activity
launching, some of which are listed in Table 1. The combination
of these attributes determines the type of invocation (explicit or
implicit) and which activity to be launched.

Table 1: some attribute assignment APIs of Intent

Intent Attribute API

component setClass, setClassName, setComponent,
Intent(Context, Class)

action setAction, Intent(String)
category addCategory
data setData
action, data Intent(String, Uri)
action, data, component Intent(String, Uri, Context, Class)

When receiving an explicit intent, the activity with the same
component name will be directly picked up for reaction. For im-
plicit intents, the system needs to find appropriate activities to
start by comparing descriptions of the intent and the intent fil-
ters of other activities. It first compares the action information
between the intent and all intent filters of EAs. The action spec-
ified in the intent must match one of the actions listed in the
filter. For category matching, every category in the intent must
match a category in the filter. For intent without category, the
category android.intent.category.DEFAULT will be added by
default. Thus, each intent should declare the default category, or
else it will not be launched by any implicit intent. For the data ele-
ment, each part of it is a separate attribute in the intent filter, which
can be composed as a uri: <scheme>://<host>:<port>/<path>
and then be used for data matching.

2.4 An Example of EA
In this subsection, we illustrate the EA and intent mechanism by a
simple example. Figure 1 shows a portion of manifest file of an EA
FooActivity. This EA declares exported=true explicitly as well
as a permission named com.intent.permission.Foo. In addition,
it has an intent filter for implicit intent calls. This intent filter
will respond to intents that satisfy the following three conditions:
containing action com.intent.action.Foo; having no category or
only the default one; containing data element whose corresponding
uri matches http://foo.

Figure 2 shows an activity that can launch this EA. It creates an
intent instance with a string as the parameter, which denotes that
the action is com.intent.action.Foo. Then it sets the category
and data attributes, where the value of category is obtained by
invoking the method getCategoryStr() and the value of data
is obtained from the parameter uriData. Note that if the default
category attribute is not set in the code, the Android system will
add it to the intent by default. Then the data items are attached,
in which bundle is a mapping from String keys to various values.

<activity android:name="FooActivity"

android:exported="true"

android:permission="com.intent.permission.Foo" >

<intent-filter>

<action android:name="com.intent.action.Foo"/>

<category android:name="android.intent.category.DEFAULT"/>

<data android:scheme="http" android:host="foo"/>

</intent-filter>

</activity>

Figure 1: Manifest File of FooActivity

public class FooLaunchActivity extends Activity {

public void startWithData(String uriData) {

Intent intent = new Intent ("com.intent.action.Foo");

String myCategory = getCategoryStr();

intent.addCategory(myCategory);

intent.setData(Uri.parse(uriData));

intent.putExtra("key1", "abcdefg");

intent.putExtra("key2", new Bundle());

bundle.putInt("key3", 12345678);

this.startActivity(intent);

}

}

Figure 2: Activity for Launching FooActivity

Finally, this intent will be performed with the API startActivity
and be resolved to the intent filter of the activity FooActivity,
which will be launched by the Android system after resolving.

3 EMPIRICAL STUDY METHODOLOGY
To the best of our knowledge, there are no systematic empirical
researches that investigate the usage and exposing characteristics
of EA mechanism in Android apps. Thus, we conduct an empiri-
cal study to investigate how EAs are used in real-world Android
apps. In this section, we introduce the experimental dataset and
the method of the empirical study.

3.1 Analysis Method
To systematically study the usage of EA, we perform a statistic anal-
ysis to obtain the EA declaration information in manifest, including
the most commonly used actions and the exposing modes of EAs,
etc. And to make clear how EAs are invoked in the program, we
analyze the intent related APIs by applying a light-weight data-flow
analysis on bytecode of the app. Then we construct two databases
based on the analyzing results, i.e., the EA declaration database and
EA invocation database. The first one stores the EA declaration in-
formation, including activity attributes as well as intent filters, and
the second one stores all possible invocations used in the program.
Finally, the information in the two datasets is matched according
to the Android mapping mechanism to construct the caller-callee
pairs within the app set, which can guide the study on the usage
and misexposure of EAs. The overall analysis process is shown in
Figure 3.

3.2 Dataset Collection
There are three datasets in our empirical study, in which Dataset AL
contains all the apps we collected from app markets, and the other
two are selected from Dataset AL according to different criteria.

693

ASE ’18, September 3–7, 2018, Montpellier, France Jiwei Yan, Xi Deng, Ping Wang, Tianyong Wu, Jun Yan, and Jian Zhang

Manifest
Analysis

Intent
Analysis

EA Declaration
Database

EA Invocation
Database

Decompile

Call
Relationship

Extraction Statistic

Figure 3: Overall Analysis Process

Dataset AL: 13,873Android apps from threemarkets. They
are collected from three app markets, including an open-source app
repository F-Droid (1,200, 10.8%), Google Play (6,946, 50.1%), and
a Chinese app market Wandoujia (5,727, 41.3%). For F-Droid, we
download all the available apps in June 2017 using a web crawler.
Considering the scale of Google Play and Wandoujia, obtaining
all their apps is not possible. Since Google Play has 32 categories
and Wandoujia has 14 ones, we download the first 500 apps of
each category by the display order. For Google Play, direct app
downloading is not allowed, thus we get apps from a third-party
website APKLeecher [13] and miss some apps. Besides, apps that
can not be decompiled are excluded from the dataset. Figure 4
displays the downloads and size distributions of the collected apps
using box-plots. As we can see, these Android apps are widely used.
Among them, half have their download counts in the range from
one hundred thousand to one million, as demonstrated by the solid
median line. And the size of the apps ranging from hundreds of KB
to hundreds of MB, is at the average of 15MB in Google Play and
18MB in Wandoujia, as shown by the X mark symbol.

Google Wandoujia

Google

WandoujiaF- Droid

Figure 4: Downloads and File Size Distribution.

Dataset AR: Apps containing EAs thatmight not necessar-
ily serve as external interfaces. We focus on the apps that have
different characteristics with most others and suppose that EAs
in them might not necessarily be exposed to external apps. EAs
are specially designed for external interaction rather than internal
main functionality. According to our statistic, most apps expose
only a small part of activities for external invocation, however,
the percentage of EA in some apps are abnormally high. To get
knowledge about the generation of this dataset, we make a small
empirical study. And in this study, we take the ratio of EA against
the number of activities as the indicator for abnormal app identifi-
cation. First, we pick the top 5 apps with the most abnormal ratio of
EAs from Dataset AL and extract 327 EAs from them. By launching
each EA and inspect its bytecode to judge the reasonableness of
the exposure, the tester report that 234 EAs (71.6%) are suspected
to be misexposed. Thus, in our experiments, we distinguish the

outlier apps that have the abnormal ratio of EAs in Section 4.1 as
Dataset AR based on the following assumption: the apps with an
abnormal ratio of EAs compared with most of the apps are
more likely poorly programmed.

Dataset MD: Apps containing EAs that are more likely
well declared. To make a comparative analysis between normal
apps and outlier apps in Dataset AR, we want to extract EAs that
have a higher possibility of being well declared. Considering that
widely used apps are more likely to be developed under strict code
regulations by skilled programmers andmight have beenwell tested,
the EAs corresponding to such apps are more likely to be well de-
clared and suitable for comparison. We also make a small empirical
study for the generation of this dataset. We pick 5 apps with the
most downloads from Dataset AL and extract 47 EAs from them.
By launching each EA and inspect its bytecode to judge the rea-
sonableness of the exposure, we find that only 5 EAs (10.6%) are
labeled as misexposed activities. And most of (4/5) these widely
used apps provide specific SDKs (e.g., WeChat’s open SDK[14]) for
external invoking so that have only a small percentage EA (15/476
for WeChat). Therefore, we pick up 50 apps that have the most
downloads in Dataset AL to generate Dataset MD.

3.3 Manifest Analysis
According to the Android reference, any activity must be declared
in the manifest file, which is written in XML language. Therefore,
the complete EA declaration report can be obtained by parsing
and analyzing manifest files. We first decompile an apk file into
two parts, the manifest file and the Dalvik byte-code. Then, we
identify all the ⟨activity⟩ tags, and collect the activity attribute
(e.g., android:exported) as well as the intent filter (e.g., android:
action) information.

3.4 Intent Analysis
To have insights into the activity invocation, we make a static
analysis of ICC messages on the program byte-code. In this step,
we make use of a Java bytecode analysis framework soot [15] for
data-flow analysis. Considering that existing intent analysis tool
is inefficient (e.g., 140 seconds per app using IC3) in analyzing
our large-scale datasets, we adopt a light-weight intent analysis
method in this paper. Our method is mainly based on the reaching
definition technique [16], which focuses on statically determining
which definitions may reach a given point in the code.

As shown in Algorithm 1, we perform a variable assignment
analysis on ICC messages. For each method under analysis (in
line 2), we first construct use-define chains [17] to capture the data
propagation. In line 3, we recognize all the invocation units by
locating instructions that invoke API startActivityForResult
or startActivity, and add them into set invs . Then, in line 5, we
make use of the use-def chain to obtain the corresponding intent
object intent for each unit in invs . Next, we collect all the units
that are related to object intent and form a set uses in line 6. In
line 7-13, we iterate over all the units in set uses aiming to find out
all the assignments of each intent-related attribute. Considering
that each API listed in Table 1 can be used, we first get the name
of attribute (e.g., attr_name=action) using getAttrName(use).

694

Characterizing and Identifying Misexposed Activities in Android Applications ASE ’18, September 3–7, 2018, Montpellier, France

For this attribute, we get a mapping of (attribute, variable) by in-
voking method getAttrVar(udc, use), and then get the assign-
ments of each variable, i.e., a (variable, assignments) mapping, by
invoking getVarAssign(method, var). Finally, the obtained in-
formation will be added to the output set by invoking method
storeIntentInfo in line 12.

To get the corresponding assignment of a variable, one diffi-
culty is that not all assignments of it can be directly obtained.
For a variable assigned as the return value of a function call, we
search the callee method by its methodSignature and get the last
assignment of the return value. And for a variable assigned in the
caller method that is passed as a parameter, we search the caller
method by its name through call graph. Because there may be
several caller methods, we locate all the call points and add these
corresponding assignments into a candidate set. Besides, we take
care of branch statements and get all the possible assignments ac-
cording to the use-def chain. The assignment obtaining algorithm
of method дetVarAssiдn(method,var) is shown in Algorithm 2.

3.5 Call Relationship Extraction
Android system has a mechanism for mapping an intent invoca-
tion to activities. When an intent is invoked for activity launching
explicitly, the Android system will wake up the target activity by
its component name. However, for the implicitly invoked intents,
the Android system needs to search all apps for intent filters that
match the given intent. We simulate the matching process (refer to
Section 2.3) between the caller and callee to extract call relation-
ships for the apps we collected. Then, we can obtain the matching
results on a specific dataset, e.g., the caller set of given EA or the
callee set of an intent object.

4 OBSERVATIONS FROM EMPIRICAL STUDY
In this section, we discuss our major findings by previous analy-
ses. All of our analysis processes are performed on an Intel Xeon
CPU @2.40 GHz machine, with 64 GB memory and Ubuntu 16.04
operating system. It takes about 33 hours to decompile all the apk
files (8 seconds per app), 34 minutes for manifest file analysis and
around 80 hours for intent analysis (20 seconds per app).

Algorithm 1 Activity Invocation Analysis
Input: method namemethod
Output: intent info
1: r es_l ist =∅
2: udc = дetU seDef ineChains (method)
3: invs = дetAllU nits InvokinдAPI (“star tActivity”)
4: for each unit inv in set invs do
5: intent = дet IntentV ar iable (udc, inv)
6: uses = дetU seUnitSet (udc, intent)
7: for each unit use in set uses do
8: if unit use assigns attribute attr then
9: attr_name = дetAttrName (use)
10: attr_var = дetAttrV ar (udc, use)
11: attr_assiдn = дetV arAssiдn (method, attr_var)
12: storeIntent Inf o (intent, attr_name, attr_assiдn)
13: end if
14: end for
15: end for

Algorithm 2 дetVarAssiдn(method,var)

Input: method, var
Output: assignment
1: udc = дetU seDef ineChains (method)
2: unit = дetDef U nit (var)
3: if unit is caller method then
4: callee = дetCalleeMethod (unit)
5: var = дetRetV ar (callee)
6: assiдnment = дetV arAssiдn (callee, var)
7: else if unit is callee method then
8: caller s = дetCallerMethods (unit, дetCallGraph ())
9: for each method caller in caller s do
10: var = дetParameterV ar (caller,method, para_index)
11: assiдnment = дetV arAssiдn (caller, var)
12: end for
13: else
14: assiдnment = дetU nitAssiдn (unit)
15: end if
16: return assignment

4.1 EA usage
In this part, we discuss the usage and functionality of EA.

Percentage of EA. To figure out whether EA is frequently used
in real-world apps or not, we count the number of activities and
EAs declared in each app. The detailed results of the apps collected
from different app markets are shown in Table 2, where the second
to fourth columns show the number of apps (#N), activities (#A)
and EAs (#EA), and the fifth column shows the number of apps
that have at least one EA (#AEA). Note that a special kind of EA,
MainActivity (whose action is android.intent.action.MAIN
and category is android.intent.category.LAUNCHER), is excluded
in the process of counting, since each MainActivity is the entry
of its app and is EA by default. Totally, we get 639,483 activities,
among which 55,075 activities are EAs (8.6%). And there are 9,361
(67.5%) apps that have at least one EA (#AEA), which indicates
that the EA mechanism is widely adopted in the real-world
Android applications.

Table 2: Number of Activities and EAs
App Market #N #A #EA #AEA

F-Droid 1200 6898 1109 492
Google Play 6946 195973 17514 4243
Wandoujia 5727 436612 36452 4626

Total 13873 639483 55075 9361
App Market #AvgA #AvgEA #EA/#A #AEA/#N

F-Droid 5.7 0.9 16.0% 41.0%
Google Play 28.2 2.5 8.9% 61.1%
Wandoujia 76.2 6.4 8.3% 80.1%
Average 46.1 4.0 8.6% 67.5%

We calculate the ratio of EAs (#EA/#A) of all the collected apps
and display the results in Figure 5. The apps collected from different
markets are labeled with different colors and shapes. These apps
also have different characteristics, e.g., open-source apps in F-Droid
always contain fewer activities than commercial ones. For com-
mercial apps, the apps in Wandoujia are with a higher ratio of EAs
and are more dispersed than these in Google Play. We have two ob-
servations from Figure 5: 1) some apps have extremely higher
percentage of EAs than others; 2) when the number of activ-
ities increases, the ratio of EAs decreases in most cases.

The Local Outlier Factor (LOF) algorithm [18], is used to identify
outliers based on the density. Although apps with many activities

695

ASE ’18, September 3–7, 2018, Montpellier, France Jiwei Yan, Xi Deng, Ping Wang, Tianyong Wu, Jun Yan, and Jian Zhang

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200

Ratio of EA

Number of Activity

Wandoujia Google F-Droid

Figure 5: Distribution of the Ratio of EAs

Number of Activity

Ratio of EA

Figure 6: Outlier App Detection Result

and few EAs might also be taken as outliers by the LOF algorithm,
they are more likely to be well-programmed apps indeed. Therefore,
we filter out the apps whose ratio of EAs is less than 0.1. The final
results are displayed in Figure 6, in which the background color
denotes the contour plot based on density. The lighter the color,
the higher the density. To maintain the number consistency of two
datasets, the top 50 outliers (red points) are labeled as outlier apps
and added into Dataset AR.

Functionality of EA. As introduced in Section 2.3, an EA may
contain several intent filters to declare what kinds of implicit intent
the EA responds to. The action attribute in the intent filter indicates
which kind of operations the EA will perform as well as shows its
main functionality. So we extract all the intent filters from the
manifest file and get 63,758 actions that are in 10,010 types. Among
these actions, 44,181 (69.3%) actions are system ones that are defined
in the Intent.java file of Android source code.

Table 3: Most frequently used actions

Actions Declared in Manifest

sy
st
em

android.intent.action.VIEW (58.6%)
android.intent.action.SEND (3.1%)
android.intent.action.SEARCH (1.8%)
android.appwidget.action.APPWIDGET_CONFIGURE (1.2%)
android.intent.action.CREATE_SHORTCUT (1.0%)

no
n-
sy
st
em com.sina.weibo.sdk.action.ACTION_SDK_REQ_ACTIVITY (2.5%)

com.google.android.gms.appinvite.ACTION_PREVIEW (0.9%)
cn.jpush.android.ui.PushActivity (0.3%)
COM_TAOBAO_TAE_SDK_TRADE_WEB_VIEW_ACTION (0.2%)
com.google.android.gms.actions.SEARCH_ACTION (0.2%)

Display, 61.22% Send, 4.44% Other, 2.98%

SDK, 2.90%

Search, 2.36%

Setting, 1.67%

Debugging, 0.04%

Figure 7: Functionality of Actions.

Table 3 shows themost frequently used actions in our EA declara-
tion database. Themost frequently used system action is android.in
tent.action.VIEW (58.6%), which is used to display the data to
users, e.g., text or webpage browsing. And the most frequently used
non-system action is com.sina.weibo.sdk.action.ACTION_SDK
_REQ_ACTIVITY (2.5%), which is used to callback the caller app who
invokes sina weibo (a social networking application) with a sharing
operation. We also find that the frequently used non-system
actions are always provided by giant companies.

To make clear which functionalities are mostly used by develop-
ers, we pick the 300 most used types of actions (more than 80% of
count) declared in the manifest and manually analyze their func-
tionalities. We get 21 categories in total and the results are shown in
Figure 7. The categories not shown are Shortcut, Pick, Stub, Camera,
Nfc, Push, Communication, Media, Launch, Hardware, Auth, Create,
Share and Install. As we can see, EA can support various func-
tionalities, in which display (61.22%) is the most commonly
used functionality. One interesting finding is that actions related
to SDK account for 2.90%, which are provided by big companies
like sina, taobao, and etc. By providing SDK to developers, these
companies can protect and manage the invocation of their EAs eas-
ily. Another observation is that the debugging and testing related
EAs still exist in some released apps, which may bring potential
security issues and should not be exposed in the published version.

4.2 Comparative Analysis
We now get two small datasets using different picking criteria, in
which Dataset MD contains EAs that belong to widely used apps
and Dataset AR contains EAs that come from apps with abnormal
ratio of EAs. Each dataset contains 50 apps, and we find that these
two datasets are disjoint.

Table 4: General Information of Datasets

App_Num App_Size EA_Num EA_Ratio
Dataset MD 50 1,332MB 598 8.1%
Dataset AR 50 1,522MB 5654 38.5%

Table 4 lists the general information about the two datasets. As
we can see, the first difference between these two sets is the number
of EAs. While the size is similar, apps in Dataset AR have much
more EAs than those in Dataset MD. The last column gives the ratio
of EAs, which shows EAs in Dataset AR have a larger proportion.

We further investigate how developers expose an EA with differ-
ent exposure modes and show the results in Figure 8. The exposure
mode “ExTrue” indicates the EAs whose attribute exported=true
are explicitly declared, and “NoEx” indicates the EAswithout that at-
tribute. The ratio of activities declared with exported=true varies
a lot in these two datasets, which is 50% on Dataset MD but only
15% on Dataset AR. It shows that the attribute exported, which
demonstrates the intention of developers explicitly, is more

696

Characterizing and Identifying Misexposed Activities in Android Applications ASE ’18, September 3–7, 2018, Montpellier, France

SysActData,
18.1%

NoEx,
50.0%

ExTrue,
50.0%

NonSysAct,
25.4%

SysActNoData,
6.5%

Dataset MD: most downloads

SysActData,
41.7%

NoEx,
85.0%

NonSysAct,
33.5%

ExTrue,
15.0%

SysActNoData,
9.8%

Dataset AR: abnormal ratio

Figure 8: Exposure Mode Comparison

often used in well programmed apps. For EAs in mode “NoEx”,
we further separate them into three types “SysActData”, “SysActN-
oData” and “NonSysAct”, according to whether they contain any
data and non-system action or not. The results show that themode
“SysActNoData” is rarely used in both datasets, whichmight
be an abnormal exposure mode.

4.3 Misexposure Patterns of EA
The results of the comparative analysis guide the misexposure
pattern extraction. Besides, manual inspection on the 100 apps from
Dataset MD and AR as well as the Android reference also helps.
We find six misexposure patterns and separate them according to
whether developers know the exposing characteristic or not.

4.3.1 Developer-unanticipated Exposure. As the activity expos-
ing mode is flexible, the developers might not know that their
activities are exposed.

P1: Abnormally High Percentage of EA. 1) How to Extract:
The comparative results in table 4 show that poorly programmed
apps may have higher EA percentage, i.e., declare more misexposed
EAs. By comparing the ratio of EAs in each app, we find that some
apps have extremely high EA numbers and ratios, whose function-
alities are usually not designed for external invocation. 2) Case
Study: The app Mobile collaboration, which exceeds millions of
downloads in the market, contains 59 activities and 58 of them
are EAs. Its ratio of EAs reaches 98.3%, while the average value is
8.6%. This app is designed for mobile teamwork cooperation, and
all functions must be accessed by users who have logged in. How-
ever, we observe that these EAs can be easily accessed through the
direct external invocations without login, that may violate the in-
tention of developers. Another example is the well-known app Bing
Dictionary, which has totally 63 activities and 38 of them are EAs.
However, according to the name of these EAs and the judgment by
manual invocation, most of them seem to be part of the internal
functionalities instead of being specially designed for external in-
vocations. 3) How We Identify: This pattern can be identified by
EA ratio statistic.

P2: Copy-Pasted EA Declaration. 1) How to Extract: When
developers want to declare an activity correctly, the most con-
venient way is to imitate the last declared one, i.e., declare by
copy-and-paste. By manual inspection on the manifest files of the
selected apps in both datasets, we find that copy-pasted EA declara-
tions widely exist. 2) Case Study: We find an app called ToolWiz
Photos, which has totally 197 activities and 128 of them are EAs.
Surprisingly, up to 124 EAs in this app are declared using mode

<activity android:exported="true" android:name="com.toolwiz.

photo.community.UserInfoActivity" />

<activity android:exported="true" android:name="com.btows.

photo.editor.ui.SelectiveColorActivity"/>

Figure 9: Copy-Pasted EA Declaration

“ExTrue”. In Figure 9, we show some of them and get rid of all the
expose-irrelevant attributes. If we start activity UserInfoActivity
using adb command 1, the app will crash and throw an exception,
which means that the developers do not expose it deliberately.
And SelectiveColorActivity is used for adjusting the tone for a
photo. External invocation is allowed to directly start it without a
target image, which leads this activity to be invalid and even causes
a crash. 3) How We Identify: Misexposures in this pattern can be
found out by calculating the ratio of each mode (see Section 4.2) in
one app.

P3: Inappropriate Action and Data. 1) How to Extract: Ac-
cording to the Android reference and manual inspection, we find
that the officially provided system actions (or categories) are com-
monly used, which are difficult to be taken as the identifier of an
EA. Developers always add data, a uri object that assigns the data to
be acted on, to limit the range of resolved activities. Therefore, the
EA declaration that contains only system actions without data item
required is likely to be misused. 2) Case Study: To ease under-
standing, we discuss a real case in UCMobile. As shown in Figure 10,
it declares an EA with the most frequently used system action
android.intent.action.VIEW only. When an implicit call that
only contains this system action is sent, dozens of EAs are matched
as candidates to be launched. 3) How We Identify: This pattern
can be identified by analyzing the intent-filers of each EA.

<activity android:name="com.ucweb.activity.LifeAssistantActivity">

<intent-filter>

<action android:name="android.intent.action.VIEW"/>

<category android:name="android.intent.category.DEFAULT"/>

</intent-filter>

</activity>

Figure 10: Inappropriate Action and Data

P4: Incorrect Category Setting. 1) How to Extract: Accord-
ing to the official reference, Android system will automatically
apply the category android.intent.category.DEFAULT to all the
implicit intents, so that an EA must include such category in its
intent filters. Otherwise, no implicit intents will resolve to this EA
with incomplete intent filters. However, they are still exposed in
force and can be invoked by explicit intents. 2) Case Study: As
shown in Figure 11, app Mozilla Browser declares such an EA that
contains an action only. This activity fails to be invoked implicitly,
however, it is exposed by declaring intent-filter and can be invoked
explicitly. When this EA is invoked explicitly, a blank window will
show up and then disappear. Then the logcat will give the error
log android.view.WindowLeaked, which means the activity has a
leaked window. Obviously, this activity is not ready to be exposed as
an EA. 3) How We Identify: We identify this pattern by detecting
the existence of the default category.
1Considering that the lack of extra data will also cause app crash, all EAs we listed in
this section do not need to receive any extra data.

697

ASE ’18, September 3–7, 2018, Montpellier, France Jiwei Yan, Xi Deng, Ping Wang, Tianyong Wu, Jun Yan, and Jian Zhang

<activity android:name="org.mozilla.gecko.sync.config.activities.

SelectEnginesActivity">

<intent-filter>

<action android:name="android.intent.action.MAIN"/>

</intent-filter>

</activity>

Figure 11: Incorrect Category Setting

P5: Implicit internal Invocation. 1) How to Extract: In the
light of the Android reference [10], activities declared with intent-
filters will expose an activity. Developers should prevent other apps
from calling one activity by not setting intent filters for it. However,
by our investigation, intent-filters are often used for implicit intra-
invocation due to its convenience, rather than external invocation.
The comparative results in the previous section also show that
widely used apps declare EA in “ExTrue” more frequently. 2) Case
Study: The app “dianping” contains 483 EAs and 481 of them are
in the mode “NoEx”. Some of them are used for implicit invocation
inferred by the name of these activities, e.g., “MyCardActivity” and
“AtFriendActivity”. 3) How We Identify: We identify this pattern
by comparing the ratio of each exposure mode and provide warning
information to developers.

4.3.2 Developer-anticipated Exposure. There are also some EAs
that are exposed for the convenience of development and should
be removed before application being released, otherwise they may
bring unpredictable threats.

P6: Debugging Functionality. 1) How to Extract: In our man-
ual inspection, we find that some activities are designed and ex-
posed to ease the debugging, mainly according to their names.
These exposed debugging activities help to test the target activity
directly, and they may manipulate the database and lack security
protection, Forgetting to remove them in the release versions might
be an issue. 2) Case Study: For instance, the invoking of the EA
DebugDomainSelectActivity in Figure 12 launches an activity
that is used for domain testing. 3) How We Identify: By keyword
retrieving, we totally find 13 debugging activities in this app.

<activity android:name="com.dianping.debug.DebugDomainSelectActivity" >

<intent-filter>

<action android:name="com.dianping.action.VIEW"/>

<category android:name="android.intent.category.DEFAULT"/>

</intent-filter>

</activity>

Figure 12: Debugging Functionality

5 MISEXPOSURE CHARACTERIZATION AND
IDENTIFICATION

Through the investigation of collected datasets, we summarize a
series of rules to identify whether an EA is misexposed or not. First,
we give several features of activity in Table 5, including informa-
tion about EA declaration and invocation as well as the attributes
used in the identification of the misexposure patterns. Each feature
corresponds to a boolean variable and the second column describes
the condition to make it true.

Then we summarize the characteristics of misexposed activities
according to the patterns in Section 4.3, and give out the classifi-
cation rules in Table 6. As shown in the first column, EAs can be

Table 5: Features of EA

Feature Description
exTrue declares exported=true
ifTrue contains intent filter
noDefault omits the default category
sysActNoData declare only system action without data
priority contains priority setting of intent filter
permission contains permission setting of activity

clsDeclare
with classname that has been declared more than
three times in manifest

clsInvoke with classname that has been externally invoked

actInvoke
with non-system action that has been externally
invoked

similar
belongs to an app that declared EA with the similar
exposure mode shown in Figure 8, including ExTrue,
SysActData, SysActNoData and NonSysAct.

debug contains keywords “test”, “debug”, etc.
highRatio belongs to an app that has high value of #EA/#A

Table 6: The Classification Conditions of EA

Class Pr Condition

MustEA
4 clsInvoke or actInvoke
5 clsDeclare
6 priority or permission

MayEA 9 exTrue

MayIA
7 similar (P2)
8 highRatio (P1)
10 ifTrue and not exTrue (P5)

MustIA
1 sysActNoData and ifTrue and not exTrue (P3)
2 noDefault and ifTrue and not exTrue (P4)
3 debug (P6)

classified into four classes according to the necessity and reason-
ability of the exposure. All the rules can be categorized into two
types, i.e., “Must” and “May”, in which the type “May” contains
some coarse-grained rules that can not tell which specific EA is
misexposed. For example, the rule similar can only figure out a
series of similar EAs to be suspicious. The second column shows
the priority (Pr) of rules, which is set according to our experience.
The last column describes the judgment conditions, which uses
single or the combination of features listed in Table 5. Because one
EA may satisfy several conditions at the same time, when condition
collision occurs, the final classification is determined by the priority
value. For example, the rule debug that maps to class “MustIA” has
high priority; while another rule exTrue (mayEA) is more undeter-
mined. When both these conditions are satisfied by one EA, it will
be classified as “MustIA” at last.

Then we use a logic programming language prolog to automati-
cally identify the misexposures, in which the program logic is ex-
pressed in terms of relations, represented as facts and rules [19, 20].
A fact is composed of an attribute and its value, and a rule is in the
form of Head:-Body., in which the Head is the conclusion and the
Body contains several facts. If the facts in Body are true, the Head
is true.

Figure 13 shows part of our implementation using prolog, in
which the declaring order of rules decides the priority of matching.
We use features listed in Table 5 as attributes of fact, whose values
can be extracted through EA declaration and invocation analysis.
For each EA, we can get totally ten facts to help the classification.
And we make use of conditions and their classes in Table 6 to define

698

Characterizing and Identifying Misexposed Activities in Android Applications ASE ’18, September 3–7, 2018, Montpellier, France

ten rules, in which the IA classification conditions are linked to
misexposure patterns. For example, line 4-5 in Figure 13 represent
a rule, which means if the fact clsDeclare(true) is satisfied, the
class of corresponding activity is “mustEA”. For other rules that
contain several facts, these facts are combined, where the comma
indicates “and”, and the semicolon indicates “or”. For instance, the
lines 1-3 mean that if an EA satisfies (noDefault(true) and not
ifTrue(true) and not exTrue(true)) or (debug(true)), it
belongs to class “mustIA”.

6 EVALUATION
We describe some experiments in this section. A tool called Mist
(MISexposure idenTification for Android) is designed and imple-
mented based on the extracted rules. For the coarse-grained rule
highRatio, we find out the apps that have more than 50 EAs and a
ratio of EAs larger than 0.4. For rule similar, we only detect apps
that have more than 30 EAs and use thresholds that vary from 0.5 to
0.7 for different exposure modes. Then we perform experiments on
a large-scale dataset and two small ones, which aims at answering
the following two research questions:
• RQ4 (Usefulness): To what extent are our misexposure iden-
tification results consistent with manual checking? Does the
identification help developers to reduce ICC attack threats?
• RQ5 (Result Distribution): What is the distribution of EAs
misexposed in real-world Android apps? Do the results vary
in different datasets?

6.1 RQ4: Usefulness
We randomly select 50 apps and launch their EAs to verify the
identification consistency between Mist and manual checking. Be-
sides MainActivity, EAs that need to receive extra data are also
excluded, since the uncertain launching results induced by different
inputs will obstruct the manual judgment. Totally, we obtain 519
EAs from the selected apps.

As we know, there are no common criteria to determine whether
an activity should be exposed or not, and no existing benchmark is
provided for this task. Therefore, to get the correct classification
results for tool evaluation, we design the following regulations for
manual identification according to the launching result:
• The activity is an IA if it has data dependencies with other
unexecuted internal activities and thus provides incomplete
functionalities; shows abnormal display (e.g., blank window);
throws exceptions; or provides obviously internal function-
alities (e.g., debugging).
• The activity is an EA if it provides complete functionalities
for external apps.

For each of the EAs, we automatically generate an adb launching
command, such as adb shell am start -n package/activity

activity(mustIA):-

noDefault(true), not(ifTrue(true)), not(exTrue(true)); debug(true);

activity(mustEA):-

clsDeclare(true).

Figure 13: Part of the Implementation Using Prolog

-d data, according to the EA declaration. The options -a (for action)
and -c (for category) are not adopted to ensure only one target will
respond. When the target EA is launched, the GUI interfaces and
the exception information from logcat are considered in manual
annotation, but the code information is not provided.

All the 519 EAs are labeled by three annotators as EA or IA in
about five hours, while the automatic identification by Mist only
takes several seconds. We compare the results committed by all
annotators and find that they annotate same labels on 367 EAs.
i.e., all of them label an activity as EA/IA, and the disagreement
among annotators is 29.7%. It is hard for annotators to infer the
intention of developers from the decompiled byte-code, thus, anno-
tators may have disagreement on the same activity. For example,
some EAs receive uri as the data item, which can be composed
as <scheme>://<host>:<port>/<path>. It is easy to generate a
legal input but it may not make sense, which may cause invalid
invocation or blank window. The launching of these EAs is diffi-
cult to judge by annotators who are not the developers of the app
under test. Therefore, we perform a strict selection, i.e., we just
consider the activities that are classified into the same classes by
all annotators as the test oracle and drop the rest. The final results
show that 263 (71.6%) EAs are successfully identified as the same
type by the annotators and our tool. The precision and recall of the
misexposure identification are 0.87 and 0.77, respectively. For those
inconsistent ones, the rules exTrue and similar hit the most ones
(over 50% in total), which should be further studied and refined.

We also collect some apps that have been reported as victims
of ICC attacks. For example, Covert [6] is a popular permission
leakage detection tool, whose results are publicly available on web-
site [21]. There are totally ten activities that are reported as victims
of the permission leakage by Covert, in which seven of them are
MainActivity. We identify the rest three activities using Mist and
find out two of them seem to be misexposed. By manual inspection,
these two activities (from two apps) are inferred to be misexposed
ones (since they are designed for implicit invocation rather than ex-
ternal invocation), which indicates that the vulnerabilities of these
apps can be fixed by unexposing their activities.

6.2 RQ5: Result Distribution
We extract and collect features for all EAs in apps of the three
datasets, and make use of the rules written in Prolog to classify
these EAs. Then we obtain the classification results and show their
statistics in Figure 14.

As we can see, in Dataset AL, there are 19.23% of EAs that are
classified as “mustIA” with high certainty. Overall, more than half
(55.73%) of EAs are suspected to be IAs, whose exposure may not be
suggested. Our further analysis shows that, in the 9361 apps which

MustEA, 24.24%

MayEA, 20.03% MayIA, 36.50%

MustIA, 19.23%

Dataset AL

MustEA, 21.33%

MayEA, 33.83% MayIA, 33.00%

MustIA, 11.83%

Dataset MD

MustEA, 16.02%

MayEA, 4.36% MayIA, 65.48%

MustIA, 14.15%

Dataset AR

Figure 14: Identification Results on Three Datasets

699

ASE ’18, September 3–7, 2018, Montpellier, France Jiwei Yan, Xi Deng, Ping Wang, Tianyong Wu, Jun Yan, and Jian Zhang

0.50%
1.57%

2.47%
4.48%

6.50%
12.09%

14.25%
16.18%

20.03%
21.94%

3 debug
6 priority ⋯
8 highRatio
2 noDefault

4 clsInvoke ⋯
7 similar

1 sysActNoData ⋯
5 clsDeclare

9 exTrue
10 ifTrue and ⋯

Figure 15: Statistic Results of Each Rule

have at least one EA, 5339 (57.03%) of them are detected to have at
least one misexposed EA. These results indicate that the misexpo-
sure of EA widely exists in real-world apps. For the other two
datasets, there are 55.16% of EAs seem to be correctly exposed in
Dataset MD. And for the Dataset AR, only 20.38% of EAs seem to
be rightly exposed, which is consistent with our assumption.

To have some intuitive understanding of our rules, we count the
hitting number of each rule on Dataset AL. As we can see from
Figure 15, the rule ifTrue and not exTrue hits the most EAs.
These EAs are suspected to be IAs and should be checked by their
developers. Rule exTrue also holds for a large proportion, which
shows that a number of developers show their exposing intention
explicitly. And about 16.18% of EAs satisfy the rule clsDeclare,
which may be public activities provided as the SDK interfaces. For
other rules, they hit fewer EAs even some of them have high priority,
indicating that they are discriminative for identification.

7 THREATS TO VALIDITY
As with any system, Mist has its limitations, including the scale of
benchmarks, the setting, and the research scope. First, the identi-
fication results are limited by the scale of our dataset, especially
when the rules that involve the number of invocations are used.
Besides, both the threshold in each rule and the priority value to
combine these rules are set manually, which may limit the accuracy
of identification. These settings can be obtained by a combined
technique of program analysis and machine learning. Finally, An-
droid apps are composed of four kinds of components, and only
the most commonly used component activity is studied in this
paper. We believe that the misexposure of other components has
similar characteristics with activity and will investigate them in
our following studies.

8 RELATEDWORK
ICC Attacks Detection. Currently, most of the existing works on
testing and analysis of Android apps [22–27] target at the intra-app
analysis. However, the design of ICC has its limitations, which may
cause bugs or security flaws. A recent study by Ahmad et al. [28]
discussed the challenges it brings to Android development. Chin et
al. [1] provide tool ComDroid to describe application communica-
tion vulnerabilities caused by the misunderstanding of the intent
passing system, e.g., unauthorized intent receipt and intent spoof-
ing. The research [2] proposes an iterative test generation approach
to detect the ICC vulnerabilities (e.g., XSS, SQL injection, etc.) of
Android apps. In each iteration, they recovered the custom fields
(variables) of intent by instrumenting the APIs that are used to read
such fields and monitoring the app execution. Bagheri et al. [6]
implement a tool Covert that can detect the permission leakage

caused by the lack of permission requirements of exposed compo-
nents. They first perform the static analysis techniques to obtain
the model of program behavior, and then use the alloy language
(an object modeling notation) to model the combination of apps,
and finally perform the formal analysis technique to verify the
model. In addition to a wide variety of approaches to identifying
vulnerabilities, an exploit generation tool LetterBom [7] based on a
combined path-sensitive symbolic execution-based static analysis is
provided, which can be used to reduce the number of false positives
in vulnerability detection. In our work, we pay more attention to
another aspect, i.e., detect whether activities should be exposed or
not instead of detecting its vulnerabilities.

Intent Analysis. The implicit control flow introduced by ICC
mechanism makes the generation of precise call graph and control
flow graph, which are the essential parts of program analysis, very
difficult. In recent years, several researchers aim to expose such
implicit transitions by intent analysis [29–31], in which the tool
Epicc [29] is provided byOcteau et al. for obtaining the ICCmethods
and their parameters. They also provided a tool IC3 [30] (Epicc
has now been replaced with IC3 [32]) which modeled the ICC
messages with proposed COAL language and implemented the
associated solver that performs a string analysis to figure out the
ICC specification in Android apps. Based on Epicc and IC3, Li et
al. [4] developed IccTA, a static analysis tool for detecting inter-
component privacy leaks in Android apps. The links between the
components are detected by the code instrumentation and static
analysis techniques. Besides the activity, Zhang et al. [33] focus on
service testing by extracting service related intents using a variable
assignment analysis.

9 CONCLUSION
In this paper, we investigate the exposing behavior of EAs, which is
rarely discussed in existing works. Since EAs usually carry the func-
tionalities that are eagerly promoted by developers and vulnerable
to malicious ICC attacks, eliminating the unnecessarily exposed
EAs is a simple but effective way to improve the quality of Android
apps. Therefore, the key challenge lies in the identification of the
misexposure. With the help of the static analysis, we derive typical
misexposed activities from tens of thousands of real-world apps.
By investigating these activities, we summarize the specific char-
acteristics of misexposed EAs into typical misuse patterns, which
in general are related to the misunderstanding and carelessness of
developers. We also design several heuristics for misexposed EA
identification and implement a tool called Mist. The experiments
on real-world apps show that it can effectively help to locate the
misexposed EAs, and the problem of the misexposure of activities
is widespread and noteworthy.

Our tool can improve the quality and robustness of Android ap-
plications by detecting misexposures of activities. In the future, we
will improve the accuracy of our tool by using more concise static
analysis and employing machine learning techniques to obtain the
weights (including the thresholds and the priority) from a training
set with sufficiently labeled samples. We will also make further
studies on the exploitation of the misexposed activities as well as
how to re-implement the EA declarations automatically to fix the
misexposures .

700

Characterizing and Identifying Misexposed Activities in Android Applications ASE ’18, September 3–7, 2018, Montpellier, France

REFERENCES
[1] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David A. Wagner. An-

alyzing inter-application communication in Android. In Proceedings of the 9th
International Conference on Mobile Systems, Applications, and Services (MobiSys
2011), pages 239–252, 2011.

[2] Roee Hay, Omer Tripp, andMarco Pistoia. Dynamic detection of inter-application
communication vulnerabilities in Android. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis, pages 118–128, 2015.

[3] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David A. Wagner.
Android permissions demystified. In Proceedings of the 18th ACM Conference on
Computer and Communications Security, CCS, pages 627–638, 2011.

[4] Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mc-
Daniel. IccTA: Detecting inter-component privacy leaks in Android apps. In
Proceedings of the 37th IEEE/ACM International Conference on Software Engineer-
ing, pages 280–291, 2015.

[5] Michael C. Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. Systematic detection
of capability leaks in stock Android smartphones. In 19th Annual Network and
Distributed System Security Symposium, NDSS, 2012.

[6] Hamid Bagheri, Alireza Sadeghi, Joshua Garcia, and Sam Malek. COVERT: com-
positional analysis of Android inter-app permission leakage. IEEE Transactions
on Software Engineering, 41(9):866–886, 2015.

[7] Joshua Garcia, Mahmoud Hammad, Negar Ghorbani, and Sam Malek. Automatic
generation of inter-component communication exploits for Android applica-
tions. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE, pages 661–671, 2017.

[8] Jun Ma, Shaocong Liu, Yanyan Jiang, Xianping Tao, Chang Xu, and Jian Lu.
Lesdroid - a tool for detecting exported service leaks of Android applications.
The preprint is available at website http://moon.nju.edu.cn/people/junma/static/
files/LesDroid(pre-print).pdf, 2018.

[9] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. Amandroid: A precise
and general inter-component data flow analysis framework for security vetting
of Android apps. In Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, pages 1329–1341, 2014.

[10] activity | Android Developers. https://developer.android.com/guide/topics/
manifest/activity-element.html, 2017.

[11] Intents and Intent Filters | Android Developers. https://developer.android.com/
guide/components/intents-filters.html, 2017.

[12] intent filter | Android Developers. https://developer.android.com/guide/topics/
manifest/intent-filter-element.html, 2017.

[13] Online APK Downloader | Download APK Directly From Google Play To Your
Computer. http://apkleecher.com/, 2017.

[14] Open SDK. https://open.weixin.qq.com/cgi-bin/showdocument?action=dir_list&
t=resource/res_list&verify=1&id=1417751808&token=&lang=en_US, 2017.

[15] Soot. http://www.bodden.de/2008/09/22/soot-intra, 2017.
[16] Reaching definition | Wikipedia. https://en.wikipedia.org/wiki/Reaching_

definition, 2017.
[17] Use-define chain - Wikipedia. https://en.wikipedia.org/wiki/Use-define_chain,

2017.
[18] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. LOF:

identifying density-based local outliers. In Proceedings of the 2000 ACM SIGMOD

International Conference on Management of Data, pages 93–104, 2000.
[19] William F Clocksin and Christopher SMellish. Programming in PROLOG. Springer

Science & Business Media, 2003.
[20] Dennis Merritt. Building expert systems in Prolog. Springer Science & Business

Media, 2012.
[21] covert. http://www.ics.uci.edu/~seal/projects/covert/index.html.
[22] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,

Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid:
precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for
Android apps. In Proceedings of the 2014 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 29:1–29:11, 2014.

[23] Michael I. Gordon, Deokhwan Kim, Jeff H. Perkins, Limei Gilham, Nguyen
Nguyen, and Martin C. Rinard. Information flow analysis of Android appli-
cations in droidsafe. In 22nd Annual Network and Distributed System Security
Symposium, 2015.

[24] Wei Huang, Yao Dong, Ana Milanova, and Julian Dolby. Scalable and precise
taint analysis for Android. In Proceedings of the 2015 International Symposium on
Software Testing and Analysis, pages 106–117, 2015.

[25] Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas Zeller, Steven
Arzt, Siegfried Rasthofer, and Eric Bodden. Mining apps for abnormal usage of
sensitive data. In Proceedings of the 37th IEEE/ACM International Conference on
Software Engineering, pages 426–436, 2015.

[26] SongyangWu, PanWang, Xun Li, and Yong Zhang. Effective detection of Android
malware based on the usage of data flow APIs and machine learning. Information
& Software Technology, 75:17–25, 2016.

[27] Wei Yang, Xusheng Xiao, Benjamin Andow, Sihan Li, Tao Xie, and William Enck.
Appcontext: Differentiating malicious and benign mobile app behaviors using
context. In 37th IEEE/ACM International Conference on Software Engineering,
pages 303–313, 2015.

[28] Waqar Ahmad, Christian Kästner, Joshua Sunshine, and Jonathan Aldrich. Inter-
app communication in Android: developer challenges. In Proceedings of the
13th International Conference on Mining Software Repositories, MSR 2016, pages
177–188, 2016.

[29] Damien Octeau, Patrick D. McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden,
Jacques Klein, and Yves Le Traon. Effective inter-component communication
mapping in Android: An essential step towards holistic security analysis. In
Proceedings of the 22th USENIX Security Symposium, pages 543–558, 2013.

[30] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick
McDaniel. Composite Constant Propagation: Application to Android Inter-
Component Communication Analysis. In Proceedings of the 37th International
Conference on Software Engineering, pages 77–88, 2015.

[31] Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le
Traon. Apkcombiner: Combining multiple Android apps to support inter-app
analysis. In Proceedings of 30th International Conference on ICT Systems Security
and Privacy Protection, pages 513–527, 2015.

[32] Epicc. http://siis.cse.psu.edu/epicc/.
[33] Li Lyna Zhang, Chieh-Jan Mike Liang, Yunxin Liu, and Enhong Chen. System-

atically testing background services of mobile apps. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering, ASE,
pages 4–15, 2017.

701

http://moon.nju.edu.cn/people/junma/static/files/LesDroid(pre-print).pdf
http://moon.nju.edu.cn/people/junma/static/files/LesDroid(pre-print).pdf
https://developer.android.com/guide/topics/manifest/activity-element.html
https://developer.android.com/guide/topics/manifest/activity-element.html
https://developer.android.com/guide/components/intents-filters.html
https://developer.android.com/guide/components/intents-filters.html
https://developer.android.com/guide/topics/manifest/intent-filter-element.html
https://developer.android.com/guide/topics/manifest/intent-filter-element.html
https://open.weixin.qq.com/cgi-bin/showdocument?action=dir_list&t=resource/res_list&verify=1&id=1417751808&token=&lang=en_US
https://open.weixin.qq.com/cgi-bin/showdocument?action=dir_list&t=resource/res_list&verify=1&id=1417751808&token=&lang=en_US
http://www.bodden.de/2008/09/22/soot-intra
https://en.wikipedia.org/wiki/Reaching_definition
https://en.wikipedia.org/wiki/Reaching_definition
https://en.wikipedia.org/wiki/Use-define_chain
http://www.ics.uci.edu/~seal/projects/covert/index.html
http://siis.cse.psu.edu/epicc/

	Abstract
	1 Introduction
	2 Background
	2.1 Android Activity
	2.2 Activity Attribute and Intent Filter
	2.3 Activity Exposing and Launching
	2.4 An Example of EA

	3 Empirical Study Methodology
	3.1 Analysis Method
	3.2 Dataset Collection
	3.3 Manifest Analysis
	3.4 Intent Analysis
	3.5 Call Relationship Extraction

	4 Observations from Empirical Study
	4.1 EA usage
	4.2 Comparative Analysis
	4.3 Misexposure Patterns of EA

	5 Misexposure Characterization and Identification
	6 Evaluation
	6.1 RQ4: Usefulness
	6.2 RQ5: Result Distribution

	7 Threats to validity
	8 Related Work
	9 Conclusion
	References

