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Abstract
Algebra and coalgebra are widely used to model data types in
functional programming languages and proof assistants. Their use
permits to better structure the computations and also to enhance the
expressivity of a language or of a proof system.

Interestingly, parametric polymorphism à la System F provides
a way to encode algebras and coalgebras in strongly normalizing
languages without loosing the good logical properties of the cal-
culus. Even if these encodings are sometimes unsatisfying because
they provide only limited forms of algebras and coalgebras, they
give insights on the expressivity of System F in terms of functions
that we can program in it.

With the goal of contributing to a better understanding of the
expressivity of Implicit Computational Complexity systems, we
study the problem of defining algebras and coalgebras in the Light
Affine Lambda Calculus, a system characterizing the complexity
class FPTIME. In this system, the principle of stratification limits
the ways we can use parametric polymorphism, and in general the
way we can write our programs.

We show here that while stratification poses some issues to the
standard System F encodings, it still permits to encode some weak
form of algebra and coalgebra. Using the algebra encoding one can
define in the Light Affine Lambda Calculus the traditional inductive
types. Unfortunately, the corresponding coalgebra encoding per-
mits only a very limited form of coinductive data types. To extend
this class we study an extension of the Light Affine Lambda Calcu-
lus by distributive laws for the modality §. This extension has been
discussed but not studied before.

1. Introduction
Algebras and coalgebras Data types shape the style we can use
to write our programs, contributing in this way to determining the
expressivity of a programming language. Algebras and coalgebras
of a functor (see [26] for an extended introduction) are important
tools coming from category theory that are useful to specify data
types in a uniform way. This uniformity has been exploited in the
design of functional programming languages, via the use of abstract
data types. In this particular setting, algebraic types correspond
usually to finite data types and coalgebraic ones correspond to
infinite data types.

Despite the fact that coalgebras correspond to infinite data
types, interestingly algebras and coalgebras can be also added to
languages that are strongly normalizing by preserving the strong
normalization property, as shown by Hagino [23]. Moreover, alge-
bras and coalgebras can also be encoded by using parametric poly-
morphism in strongly normalizing languages as System F as shown
by Wraith [41]. Preserving strong normalization corresponds to
preserving the consistency property of the language. It is this last
feature that allows the integration of algebras and coalgebras in
proof assistants such as Coq and Agda, where they can be used to
define inductive and coinductive data types, respectively.

Different notions of algebras and coalgebras can provide differ-
ent forms of recursion and corecursion that can be used to program
algorithms in different ways. Moreover, algebras and coalgebras

also provide some form of induction and coinduction that we can
use to prove program properties. So, algebras and coalgebras are
abstractions that are useful to compare in the abstract the expres-
sivity of distinct languages.

Implicit Computational Complexity (ICC) ICC aims at charac-
terizing complexity classes by means that are independent from
the underlying machine model. A characterization of a complex-
ity class C is traditionally determined by a system S obtained by
restricting the class of proofs of a given logical system or the class
of programs of a given programming language L. In order to char-
acterize C, the system S needs to satisfy two properties: 1) the
evaluation process of proofs or programs of S must lie within the
given complexity class C—this ensures that S is sound with re-
spect to C; 2) any function (or decision problem) in C must be
implementable by a proof or program in S—this ensures that S is
complete with respect to C.

This approach for characterizing complexity classes where all
the functions or problems of the given class C can be encoded by
some proof or program in S is traditionally referred to as extension-
ally complete. On the other hand, an intensionally complete charac-
terization requires that all the proofs or programs that can be eval-
uated within the complexity class C must lie in the restriction S.
From a programmer’s perspective intensionally complete charac-
terizations are certainly preferable to extensionally complete ones
since they capture all the algorithms of the languageL that lie in the
class C. However, providing intensional characterizations of well-
known and interesting complexity classes is in general problematic:
for polynomial time the problem of providing an intensional char-
acterization is Σ0

2-complete in the arithmetical hierarchy—and so
undecidable—as proved by Hájek [24].

This contrast between extensional and intensional completeness
has motivated researchers in ICC in the search of restrictions to
logical systems and programming languages that are more and
more expressive in terms of proofs or programs in L that they
can fit. This is usually achieved in two ways: by weakening the
restrictions, and by enriching the language with new programming
constructs. See the survey by Hofmann [25] for more information.

Light Logics The Light Logics [21, 27] approach to ICC is based
on the idea of providing characterizations of complexity classes by
means of subsystems of Girard’s (second order) Linear Logic [20].
Proofs of second order linear logic can be seen through the proof-
as-programs correspondence as terms of System F typed under a
refined typing discipline using the contraction and weakening rules
in a more principled way via the exponential modality !.

Following the light logic approach one can design type systems
for the lambda calculus and its extensions where only programs
that are in a particular computational complexity class can be as-
signed a type. This approach has been used to provide characteri-
zations of several complexity classes like FPTIME [2, 5, 14, 39],
PSPACE [16], LOGSPACE [38], NP [15, 32], P/Poly [33], etc.

A bird’s eye view on Light Affine Logic One of the most success-
ful examples of light logic is certainly Light Affine Logic (LAL),
the affine version of Light Linear Logic (LLL). Similarly to LLL,
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LAL provides a characterization of the class FPTIME by limiting
the way the modality ! is used in proofs and by introducing a new
modality § to compensate for some of these limitations. Roughly,
the modality ! is used as a marker for objects that can be iterated,
the modality § is used as a marker of objects that are the result of
an iteration and cannot be iterated anymore. The combined use of
these two modalities provides a way to limit the iterations that one
can write in proofs, and so the complexity of the systems.

More precisely, LAL enforces a design principle named strati-
fication by adopting the following rules for modalities1:

Γ ` τ Γ ⊆ {σ}
!Γ `:!τ

(!)
Γ, !τ, !τ ` σ

Γ, !τ ` σ (C)
Γ,∆ ` τ

!Γ, §∆ ` §τ (§)

The stratification is obtained by limiting the introduction of the two
modalities to the two rules (!) and (§), respectively. These rules
can be seen as boxes that stratify the proofs. In other words, strat-
ification corresponds roughly to ruling out the logical principles
!A ( A and !A (!!A but allowing the principles !A ( §A.
Enforcing stratification is not sufficient to characterize polynomial
time—it provides a characterization of Elementary time [21]. For
this reason, LAL further restrict the power of the modality ! by
requiring that the environment Γ in the rule (!) has at most one
assumption, this is the meaning of the premise Γ ⊆ {σ}. This re-
quirement corresponds roughly to ruling out the logical principles
!A⊗!B (!(A ⊗ B) and only allowing instead the restricted prin-
ciple !A⊗!B ( §(A⊗B).

Despite their rather technical definitions, LLL and LAL provide
natural and quite expressive characterizations of the class FPTIME.
For this reason, their principles have been used to design a lambda
calculus [39], a type system [5] and an extended language [6]
for polynomial time computations. In these languages one can
program several natural polynomial time algorithms over different
data structures.

Our contribution In this work we study the definability of alge-
bras and coalgebras in the Linear Affine Lambda Calculus (LALC),
a term language for LAL, with the aim of better understanding the
expressivity of LALC with respect to the definability of inductive
and coinductive data structures, in particular with a focus on infinite
data structures like streams.

Since LALC can be seen as a subsystem of System F, we study
how to adapt the encoding of algebras and coalgebras in System F
to the case of LALC. Not surprisingly, the standard System F en-
coding cannot be straightforwardly adapted to LALC because of
the stratification principle. Indeed variable duplication in the terms
enforces the modalities ! and § to appear. These modalities prop-
agate to the functor thus requiring types encoding initial algebras
and final coalgebras that differ from the ones of the standard encod-
ing. The initial algebra for the functor F can be encoded in LALC
by terms of type

∀X.!(F (X) ( X) ( §X
The final coalgebra for the same functor F can instead be encoded
by terms of type

∃X.!(X ( F (X))⊗ §X
Initial algebras and final coalgebras definable in System F are
only weak. In the case of LALC the two types above provide an
even more restricted class of initial algebras and final coalgebras:
intuitively, the ones that behave well under § as a marker for
iteration. These definitions will be made precise in Section 4 and
Section 5, respectively. A further restriction comes from the fact
that to obtain these classes of algebras and coalgebras we need

1 We present here the rules of the logic in sequent calculus. The correspond-
ing typing rules will then by presented in Section 3.

to consider only functors that behaves well with respect to the
modality §. More precisely, for initial algebras we need functors
that left-distribute over §, i.e. functors F such that F (§X) (
§F (X). Conversely, for final algebras we need functors that right-
distribute over §, i.e. functors F such that §F (X) ( F (§X).

Functors that left-distribute over § are quite common in LALC
and so we can define several standard inductive data types. Un-
fortunately, only few functors right-distribute over §. In particu-
lar, we cannot encode standard coinductive data structures. The
main reason is that the modality § does not distribute with respect
to the connectives tensor and plus. More precisely, in LALC we
cannot derive the distribution2 laws §(A ⊗ B) ( §A ⊗ §B and
§(A⊕B) ( §A⊕§B for genericA andB. We overcome this sit-
uation by adding terms for these distributive laws to LALC. Thanks
to this extensions we are able to write programs working on infinite
streams of booleans (or of any finite data type) and other infinite
data types.

Quite interestingly, Girard [19, §16.5.3] remarked that adding
the principle §(A⊕B) ( §A⊕ §B (“supposedly doing what one
thinks”) to LAL would bring to the absurd situation where we can
decide in linear time all the polynomial time problems. The infor-
mal argument is that this principle would allows us to extract the
output bit of a decision problem without the need of computing it.
A discussion on this argument has also been used by Baillot and
Mazza [4] to explain one of the difference between LAL and their
Linear Logic by Level. Here we show that adding the distributivity
principle §(A ⊕ B) ( §A ⊕ §B with a computational counter-
part in the term language does not bring to the absurd situation
prospected by Girard. On the contrary, we show that the full evalu-
ation of programs containing this distributivity principle requires a
more complex reduction strategy than the dept-by-depth one tradi-
tionally used for LAL [21]. This is also reflected in the polynomial
time soundness proof for LAL extended with distributions that we
provide in Section 6. Let us stress that our argument is not necessar-
ily in contradiction with Girard’s argument because the latter relies
on the informal condition “supposedly doing what one thinks” and
one can think to introduce the distributivity principles as an identity
§(A⊕B) = §A⊕§B without computational content. In this case,
the absurde situation would indeed arise.

2. Algebras and Coalgebras in System F
The starting point of our work is the encoding of weak initial F -
algebras and weak final F -coalgebras in System F as described by
Wraith [41] and Freyd [11] (see also Wadler [40]). Let us start by
reviewing the definition of F -algebras and F -coalgebras.

Definition 1 (F -Algebra and F -Coalgebra). Given a category C
and an endofunctor F : C → C:

• a F -algebra is pair (A, a) of an object A ∈ C together with a
C-morphism a : F (A)→ A,
• a F -coalgebra is pair (A, a) of an object A ∈ C together with

a C-morphism a : A→ F (A).

Algebras and coalgebras provide the basic syntactic structure
that is needed in order to define data types.

We can define two categories Alg-F and Coalg-F whose ob-
jects are F -algebras and F -coalgebras, respectively, and whose
morphisms are defined as follows.

Definition 2. A F -algebra homomorphism from the F -algebra
(A, a) to the F -algebra (B, b) is a morphism f : A → B making

2 We use here the term “distribution” because we think to both modalities
and type constructors as operations. In the literature, other people have
preferred the term “commutation”.
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the following diagram commute:

F (A)

a

��

F (f) // F (B)

b

��
A

f
// B

A F -coalgebra homomorphism from the F -coalgebra (A, a) to
the F -coalgebra (B, b) is a morphism f : A → B making the
following diagram commute:

A

a

��

f // B

b

��
F (A)

F (f)

// F (B)

To define the traditional inductive and coinductive data types we
also need the notions of initial algebras and final coalgebras.

Definition 3 (Initial algebra and final coalgebra). A F -algebra
(A, a) is initial if for each F -algebra (B, b), there exists a unique
F -algebra homomorphism f : A → B. A F -coalgebra (A, a)
is final if for each F -coalgebra (B, b), there exists a unique F -
coalgebra homomorphism f : B → A.

If the uniqueness condition is not met then the F -algebra (resp.
F -coalgebra) is only weakly initial (resp. weakly final).

An initial F -algebra is an initial object in the category Alg-F .
Conversely, a final F -coalgebra is a terminal object in the category
Coalg-F . In the definition above, the existence of a homomorphism
provides a way to build objects by (co)iteration; this corresponds to
have the ability to define by iteration elements in type fixpoints.
Conversely, the uniqueness of such homomorphism provides a way
to prove properties of these elements by (co)induction; this is some-
thing that type fixpoint does not necessarily provide.

Example 4. Consider the functor F defined by F (X) = 1 + X .
The pair (N, [0, suc]) consisting in the set of natural numbers N
together with the morphism [0, suc] : 1 + N → N, defined as the
coproduct of 0 : 1→ N and suc : N→ N, is an F -algebra.

Consider the endofunctor F over the category Set defined by
F (X) = A × X , for some set A. The pair (Aω, 〈head, tail〉)
where Aω is the set of infinite lists over A and the morphism
〈head, tail〉 : Aω → A × Aω is defined by head : Aω → A
and tail : Aω → Aω , is a final F -coalgebra.

2.1 Encoding weak initial algebras and weak final coalgebras
We here assume some familiarity with System F and existential
types (see [22] and [35]). A functor F (X) is definable in System F
if F (X) is a type scheme mapping every type A to the type F (A),
and if there exists a term F mapping every term of type A→ B to
a term of type F (A) → F (B) and such that it preserves identity
and composition. We say that a functor F (X) is covariant if the
variable X only appears in covariant positions.

It is a well known result that for any covariant functor F (X)
that is definable in System F we can define an algebra that is weakly
initial and a coalgebra that is weakly final [26]. This corresponds to
define the least and the greatest fixpoint of F (X) as a type scheme.

Proposition 5 (Weak Initial Algebra). Let F (X) be a covariant
functor definable in System F and T = ∀X.(F (X) → X) → X .
Consider the morphisms defined by:

inT : F (T )→ T,

inT = λs : F (T ).ΛX.λk : F (X)→ X.k(F (foldT X k) s),

foldT : ∀X.(F (X)→ X)→ T → X,

foldT = ΛX.λk : F (X)→ X.λt : T.tX k.

Then, (T, inT ) is a weak initial F -algebra: for every F -algebra
(A, g : F (A) → A) there is a F -homomorphism h : T → A
defined as h = foldT Ag.

We will sometimes write T as µX.F (X) when we want to
stress the underlying functor F and the fact that T corresponds to
the least fixpoint of F .

Proposition 6 (Weak Final Coalgebra). Let F be a covariant
functor definable in System F and T = ∃X.(X → F (X)) × X .
Consider the morphisms defined by:

outT : T → F (T ),

outT = λt : T.unpack t as (X, z) in

let (k, x) = z in F(unfoldT X k)(k x),

unfoldT : ∀X.(X → F (X))→ X → T,

unfoldT = ΛX.λk : X → F (X).λx : X.pack ((k, x), X) asT.

Then, (T, outT ) is a weak finalF -coalgebra: for everyF -coalgebra
(A, g : A → F (A)) there is a F -homomorphism h : A → T de-
fined as h = unfoldT Ag.

Similarly to the case ofF -algebras, we will write T as νX.F (X)
when we want to stress the underlying functor F and the fact that
T corresponds to the greatest fixpoint of F .

Example 7. Let us consider a functor defined on types as F (X) =
1 +X and on terms as:

λf : X → Y.λx : 1 +X.case x of

{inj1+X
0 (z)→ inj

1+Y
0 (()), inj1+X

1 (z)→ inj
1+Y
1 (f z) }.

Let N = µX.F (X). Proposition 5 ensures that (N, inN) is a
weak initial algebra: the weak initial algebra of natural numbers.
In particular, we can define 0 = inN(inj1+N

0 (())), n+ 1 =
inN(inj1+N

1 (n)), and more in general the successor function as
succ = λx.inN(inj1+N

1 (x)). We can use the fact that N is a weak
initial algebra to define an addition function. We just need to con-
sider a term like the following (we omit some type for conciseness):

g = λx : 1 + (N→ N).case x of

{inj0(z)→ λy : N.y, inj1(z)→ λy : N.succ(z y) }.
Then, Proposition 5 ensures that we can define add as foldN (N→
N) g.

Example 8. Let us consider a functor defined on types as F (X) =
N×X and on terms as:

λf : X → Y.λx : N × X.let 〈x1, x2〉 = x in 〈x1, f x2〉.
Let Nω = νX.F (X). Proposition 5 ensures that (Nω, outNω ) is
a weak final coalgebra: the weak final coalgebra of streams over
natural numbers. We can define the usual operations on streams as
head = λx : Nω.let 〈x1, x2〉 = (outNω x) in x1, and tail =
λx : Nω.let 〈x1, x2〉 = (outNω x) in x2. We can use the fact that
Nω is a weak final coalgebra to define streams. As an example we
can define a constant stream of ks by using a function:

g = λx : 1.let () = x in 〈k, ()〉.
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τ, σ ::= X | 1 | !τ | §τ | τ ⊕ σ | τ ⊗ σ | τ ( σ
| ∀X.τ | ∃X.τ

M, N, L ::= x | () | λx : τ.M | M N | ΛX.M | M τ | !̂M | §̂M
| let §̂x : τ = M in N | let !̂x : τ = M in N
| 〈M, N〉 | let 〈x : τ1, y : τ2〉 = M in N
| pack (M, σ) as τ | unpack M as (X, x) in N
| let () = M in N | injτi (M) |
| case M of {injτ0 (x)→ N|injτ1 (x)→ L}

Figure 1. LALC: grammar for types and terms.

Proposition 6 ensures that we can define const = unfoldNω 1 g().
Similarly, we can define a function that extracts from a stream the
elements in even position. This time we need a function:

g = λx : Nω.〈hd x, tl (tl x)〉.
Proposition 6 ensures that we can define even = unfoldNω Nω g.

3. The Light Affine Lambda Calculus
The Light Affine Lambda Calculus is the affine version of the Light
Linear Lambda Calculus [39] and provide a concrete syntax for
Intuitionistic Light Affine Logic [1].

3.1 The language
The syntax of the Light Affine Lambda Calculus (LALC) is in-
spired by the restrictions provided by Light Affine Logic. The fo-
cus of our work is on the expressivity of the calculus rather than
on other properties, so to make our examples more clear we adopt
an explicitly typed version of LALC. The types and the terms of
LALC are presented in Figure 1. As basic type we consider only
the multiplicative unit 1, while as type constructors we consider
the linear implication (, the tensor product⊗, and the additive dis-
junction⊕. Moreover, we have type variablesX and type universal
and existential quantifications: ∀X.τ , and ∃X.τ . We also have two
modalities !, and §. The connectives ⊗, ⊕ and the existential quan-
tification ∃X.τ can be defined by using only the linear implication
(, the modalities !, §, and the universal quantification ∀ but we
prefer here to consider them as primitive. The reason behind this
choice is that in the second part of the paper we will introduce ex-
plicit rules for distributing the § modality over ⊗ and ⊕, so it is
natural to consider them as primitive.

Every type constructor comes equipped with a term constructor
and a term destructor. Since we consider explicitly typed term we
avoid confusions by denoting !̂ and §̂ the term level constructors
for the modalities ! and §, respectively. The semantics of LALC is
defined in terms of the reduction relation→ described in Figure 2
where we use the notation [M/x] for the usual capture avoiding term
substitution, the notation [τ/X] for the usual capture avoiding type
substitution, and †, ‡ to denote the modalities ! or §.

We have three kinds of reduction rules: the exponential rules de-
scribe the interaction of a constructor and a destructor for modali-
ties, the beta rules describe instead the interaction of a constructor
and a destructor for all the other types, the commuting conversion
rules describe the interaction of different destructors. In Figure 2
we have omitted several commuting rules. The number of these
rules is quite high and their behavior is standard. We consider only
two such rules (com-1) and (com-2) as representative of this class.

3.2 Type system
A typing judgment is of the shape Γ ` M : τ , for some typing
environment Γ (an environment assigning types to term variables),

some term M and some type τ . The standard typing rules, inherited
from Light Affine λ-calculus, are given in Figure 3(a) and addi-
tional rules for the extra constructs are given in Figure 3(b). As
usual, this system uses the notion of discharged formulas, which
are expressions of the form [τ ]†. Given a typing environment Γ =
x1 : τ1, . . . , xn : τn, [Γ]† is a notation for the environment
x1 : [τ1]†, . . . xn : [τn]†. Discharged formulas are not types, so
they cannot be abstracted and we do not want them to appear in
final judgments. They are just syntactic artifacts introduced by the
rule (!I) and (§I), used by the rule (C), and eliminated by the rules
(!E) and (§E), respectively. These five rules implement in a natural
deduction style the three sequent calculus LAL rules we discussed
in the introduction and the cut rule on modalities. All the other rules
are the linear versions of the standard System F rules. We assume a
multiplicative management of contexts: when we write Γ,∆ we as-
sume that the set of free variables in Γ and ∆ are disjoint. The only
rule that uses in part an additive management of context is the rule
(⊕E) where we have a sharing of variables in the two branches
of the case construction. We adopt here the same convention as in
Light Linear Logic (LLL) [21] and we consider a lazy reduction
that reduce redexes with variable bound in the two branches only
when the argument is closed.

The polynomial soundness of LALC can be expressed in terms
of the depth d(M) of a term M: the maximal number of nested !̂ or §̂
that can be found in any path of the term syntax tree. Moreover, we
will call depth of a subterm N of M the number of !̂ and §̂ that one
has to cross to reach the root of N starting from the root of M.

3.3 Properties of LALC
LALC provides a characterization of the FPTIME complexity
class. However, it also enjoys standard properties of typed lambda
calculi. In particular, it enjoys subject reduction.

Theorem 9 (Subject Reduction). Let Γ ` M : τ and M → N, then
Γ ` N : τ .

In fact, LALC enjoys also a stronger version of subject reduc-
tion that ensures not only that types are preserved, but also that a
reduction M → N corresponds to a rewriting of the type derivation
of M in the type derivation of N.

Polynomial time soundness for LALC can be stated as follow:

Theorem 10 (Polynomial Time Soundness). Consider a term Γ `
M : τ . Then, M can be reduced to normal form by a Turing Machine
working in time polynomial in |M| with exponent proportional to
d(M).

The original proof of this theorem by Girard [21] as well as
other subsequent proofs [2, 39] are based on three main observa-
tions about reductions in LALC:

1. reductions cannot increase the depth of a term,

2. a beta reduction at depth i decreases the size of the term at depth
i and cannot increase the size of the term at other depths,

3. any sequence of exponential reduction at depth i can only
square the size of the term at depth j greater than i.

These properties suggest a depth-by-depth reduction strategy
whose length is polynomial in the size of the term and exponential
in the depth.

For expressing the FPTIME completeness statement for LALC
we need a data type B∗ for strings of Booleans that can be easily
defined by a standard Church encoding.

Theorem 11 (FPTIME completeness). For every polynomial time
function f : {0, 1}∗ → {0, 1}∗ there exists a natural number n
and a term f : B∗ ( §̂nB∗ such that and f represents f .
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(λx : τ.M) N→ M[N/x] (beta-λ)
let () = () in M→ M (beta-1)
(ΛX.M) τ → M[τ/X] (beta-∀)
case injτi (M) of {injτ0 (x)→ N0|injτ1 (x)→ N1} → Ni[M/x] (beta-⊕)
let 〈x : τ, y : σ〉 = 〈N0, N1〉 in M→ M[N0/x, N1/y] (beta-⊗)
unpack (pack (M, σ) as ∃X.τ) as (X, x) in N→ N[M/x, σ/X] (beta-∃)

let §̂x : §τ = §̂N in M→ M[N/x] (exp-§̂)
let !̂x :!τ = !̂N in M→ M[N/x] (exp-̂!)

(let †̂x : †τ = N in M)L→ let †̂x : †τ = N in (ML) (com-1)
let †̂y : †τ = (let ‡̂x : ‡σ = N in L) in M→ let ‡̂x : ‡σ = N in (let †̂y : †τ = L in M) (com-2)

Figure 2. Light Affine Lambda Calculus reduction rules.

The proof of this statement requires to show that one can pro-
gram in LALC all the polynomial expressions, that one can define
data types for Turing Machine’s configurations, and that transitions
between configurations are definable.

4. Algebras in LALC
4.1 Motivations and definition
We want now to adapt the encoding of algebras in System F to the
case of LALC. The first thing that we need is to find a type that
permits to express a weak initial F -algebra. One can consider the
straightforward linear type T = ∀X.(F (X) ( X) ( X but this
is not enough for typing an analogous of the term inT that contains
a duplicated variable k. Consequently, modalities are required in
the corresponding type as the duplication in the term inT is needed
for iteration. So, a more natural choice is instead to use the type:

T = ∀X.!(F (X) ( X) ( §X. (1)

Indeed, this type can be seen as the analogous of the one used
for the standard Church natural numbers in LALC: ∀X.!(X (
X) ( §(X ( X). In this type, the modality ! is a marker for the
duplication and the modality § witness the iteration.

Using this type for assigning types in LALC to terms analogous
to the one of Proposition 5 presents two problems. First, the modal-
ity § in Equation 1—that witnesses iteration—propagates when one
wants to build the F -homomorphism to another F -algebra. This
implies that only a restricted form of weak initial algebras can be
obtained. So, we are able to build the needed F -algebra homomor-
phisms only with F -algebra of the form (§B, g : F (§B) → §B).
There is a second problem: we need the functor F to left-distribute
over §3. This corresponds to require the existence of a morphism:

LF : F (§X) ( §F (X).

This technical requirement comes from the fact that the modality
§ propagates due to the iteration, but also from the uniformity im-
posed by the polymorphic encoding. This uniformity corresponds
to require that the algebra (§B, g) target of the F -algebra homo-
morphism comes from an underlying F -algebra (B, f) via the
functoriality of § and the left-distributivity LF of F .

By considering the two requirements, we obtain the following
definition.

Definition 12. Given a functor F , we say that an F -algebra (A, a)
is weakly-initial under § if for every F -algebra of the form (B, f)
there exists an F -algebra (§B, g) and an F -algebra homomor-

3 We call this property “distribute” instead of “commute” in order to high-
light the distinction with the standard commuting rules (com-n).

phism h : A→ §B making the following diagram commute:

F (A)
F (h) //

a

��

F (§B)

g

��

LF

$$
§F (B)

§f
zz

A
h

// §B

That is, we require the existence of an F -algebra homomor-
phism only for F -algebra of the form (§B, g) that comes from an
underlying F -algebra (B, f) via the functoriality of § and the left-
distributivity LF of F . With these two restrictions in mind we can
now formulate an analogous of Proposition 5.

Theorem 13. Let F be a functor definable in LALC that left-
distributes over §, and let T = ∀X.!(F (X) ( X) ( §X .
Consider the morphisms defined by:

inT : F (T ) ( T,

inT = λs : F (T ).ΛX.λk :!(F (X) ( X).

let !̂y :!(F (X) ( X) = k in

let §̂z : §F (X) = LF (F (foldT X !̂y)s) in §̂(y z),

foldT : ∀X.!(F (X) ( X) ( T ( §X,
foldT = ΛX.λk :!(F (X) ( X).λt : T.tX k.

Then, (T, inT ) is a weakly-initial F -algebra under §: for every
F -algebra (B, f : F (B) ( B) we have an F -algebra (§B, g :
F (§B) → §B) and an F -algebra homomorphism h : T → §B
defined as h = foldT B !̂f .

The situation described by Theorem 13 corresponds to saying
that for every F -algebra (B, f ) the following diagram commutes:

F (T )
F (foldT B !̂f) //

inT

��

F (§B)

g

��

LF

$$
§F (B)

§f
zz

T
foldT B !̂f

// §B
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x : τ ` x : τ
(Ax)

Γ ` M : τ
Γ,∆ ` M : τ

(W )
Γ, x : [τ ]!, y : [τ ]! ` M : σ

Γ, z : [τ ]! ` M[z/x, z/y] : σ
(C)

Γ, x : τ ` M : σ

Γ ` λx : τ.M : τ ( σ
(( I)

Γ ` M : τ ( σ ∆ ` N : τ
Γ,∆ ` MN : σ

(( E)
Γ ` N :!τ ∆, x : [τ ]! ` M : σ

Γ,∆ ` let !̂x : !τ = N in M : σ
(!E)

Γ ` N : §τ ∆, x : [τ ]§ ` M : σ

Γ,∆ ` let §̂x : §τ = N in M : σ
(§E)

Γ ` M : τ Γ ⊆ {x : σ}
[Γ]! ` !̂M :!τ

(!I)
Γ,∆ ` M : τ

[Γ]!, [∆]§ ` §̂M : §τ
(§I)

Γ ` M : τ X /∈ FTV(Γ)

Γ ` ΛX.M : ∀X.τ (∀I)
Γ ` M : ∀X.τ

Γ ` Mσ : τ [σ/X]
(∀E)

(a) standard rules

Γ ` M : τ ∆ ` N : σ
Γ,∆ ` 〈M, N〉 : τ ⊗ σ

(⊗I)
Γ ` M : τ ⊗ σ ∆, x : τ, y : σ ` N : τ ′

Γ,∆ ` let 〈x : τ, y : σ〉 = M in N : τ ′
(⊗E)

Γ ` () : 1
(1I)

Γ ` M : 1 ∆ ` N : τ
Γ,∆ ` let () = M in N : τ

(1E)
Γ ` M : τi

Γ ` inj
τ0⊕τ1
i (M) : τ0 ⊕ τ1

(⊕I)
Γ ` M : τ [σ/X]

Γ ` pack (M, σ) as ∃X.τ : ∃X.τ
(∃I)

Γ ` M : τ0 ⊕ τ1 ∆, x : τ0 ` N0 : τ ∆, x : τ1 ` N1 : τ

Γ,∆ ` case M of {injτ0⊕τ10 (x)→ N0|injτ0⊕τ11 (x)→ N1} : τ
(⊕E)

Γ ` M : ∃X.τ ∆, x : τ ` N : σ

Γ,∆ ` unpack M as (X, x) in N : σ
(∃E)

(b) rules for additional constructions

Figure 3. Typing rules for the Light Affine Lambda Calculus.

This diagram provides a way to encode the least fixpoint of types,
similarly to what we have for System F, and so to define standard
data types.

Notice that with respect to initial algebras we have now relaxed
both the uniqueness and the existence property.

4.2 Algebra examples
Before providing examples of algebras, we want to characterize a
large class of functors that left-distribute.

Lemma 14. All the functors built using the following signature
left-distribute over §:

F (X) ::= 1 |X | A | §F (X) | F (X)⊕ F (X) | F (X)⊗ F (X),

provided that A is a closed type for which it exists a closed term of
type A(!A or type A( §A.

Proof. By induction on F (X). The full proof is in the supplemen-
tary material.

Thanks to the above lemma we can give a notion of weakly-
initial F -algebra under § to several standard examples.

Example 15. Consider the functor F (X) = 1 ⊕ X . This is the
linear analogous of the functor considered in Example 7, definable
by the same term (in the types annotation, implication is replaced
by a linear arrow and + is replaced by ⊕). By Lemma 14, we have
that F left-distribute over §, and so by Theorem 13 we have that
(N, inN) is a weakly-initial F-algebra under §, where by abuse of
notation we again use N to denote µX.F (X). Similarly to what
we did in Example 7, we can define natural numbers as inhabitants
of this type. Noticing that to the term g defined there we can
also give the type F (N ( N) ( (N ( N), we have that
add = foldN (N ( N) !̂g has type N ( §(N ( N).

Example 16. Consider the functor Fn(X) = 1⊕(Bn⊗X) where
Bn is as a finite type with n states. The functor Fn(X) is definable

by the term:

λf : X ( Y.λx : Fn(X). case x of

{inj0(z)→ inj0(()),

inj1(z)→ let〈z1 : Bn, z2 : X〉 = z in inj1(〈z1, f z2〉)},
where we omit the superscripts of the inji constructs for read-
ability. It is easy to verify that by Lemma 14, we have that Fn left-
distribute over §. So, if we define B∗n = µX.Fn(X), by Theorem 13
we have that (B∗n, inB∗n) is a weakly-initial F-algebra under §. In
the particular case where n = 2, let B2 = 1 ⊕ 1 be the type for
booleans. The type B∗2 is inhabited by finite boolean strings: nil =
inB∗2 (inj0(())), cons = λh : B2.λt : B∗2.inB∗2 (inj1(〈h, t〉)).

We can define a map function on boolean strings using the
function:

g = λf : B2 ( B2.λx : F2(B∗2). case x of

{inj0(z)→ inB∗2 (inj0(())),

inj1(z)→ let〈z1 : B2, z2 : B∗2〉 = z in inB∗2 (inj1(〈f z1, z2〉)).

Noticing that for a variable f : B2 ( B2, to the term g f
we can give the type F (B∗2) ( B∗2, we have that map f =

foldB∗2 B∗2 !̂(g f) has type B∗2 ( §B∗2.

The next section will show an extensive example in program-
ming with these data structures.

4.3 Polynomial time completeness of LALC using algebras
As a sanity check, we want to use the new encoding of algebras to
prove the FPTIME completeness of LALC. This follows the same
line as the standard proof from Asperti and Roversi [2] or the one
from Baillot et al. [6]. The idea is to show that we can use algebras
to encode polynomial expressions—that can be used as clocks for
iterations—and Turing Machines and their transitions.

We have seen how to define natural numbers as inhabitants of
the type N = µX.1 ⊕ X . It is important to stress that all the
inhabitants of N can be typed with a fixed number of (!I) and
(§I) rules—this corresponds to having terms with constant depth as
defined in Definition 23—this is quite standard but still important
to stress in order to ensure a sound characterization of PTIME,
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see [28]. We want now to show that we can encode polynomial
expressions and that we can use them as clocks of iterators. Let us
start with the latter. Thanks to Theorem 13 and the fact that given
two terms of type 1 ( A and A( A we can build a term of type
1 ⊕ A ( A combining them, we can define an iteration scheme
parametrized by the type A over natural numbers as:

iter : N ( (1 ( A) ( (A( A) ( §A.

This term has the property that for every n, given a base b a step s
it produces the n-th iteration of s over b. More precisely:

iter n b s→∗ §̂(sn b).

As an example, we can make explicit the base and the iteration step
for addition add : N ( §(N ( N):

badd = λz : 1.let () = z in λy.y : 1 ( (N ( N),
sadd = λz.λy.succ(z y) : (N ( N) ( (N ( N).

The type of add is not entirely satisfying, however we can define a
coercion function:

coer : (N ( §(N ( N)) ( N ( §N ( §N,
coer = λf.λn.λm.let §̂u = m in (let §̂z = f n in §̂(z u)).

Moreover, we have a coercion function:

coer′ : N ( §N,
coer′ = λn.iter n 0 succ.

Thanks to these coercion functions we can change the type of
addition:

addc : N ( N ( §N,
addc = λn : N.λm : N.coer add n (coer′ m).

This is the same type that we can assign to addition in LLL. While
this type is good for adding together several elements, in order to
define multiplication it is also convenient to give to addition the
following type:

add§ : §N ( §2N ( §2N,
add§ = λn : §N.λm : §2N.let §̂u = n

in let §̂w = m in §̂(coer add u w).

We can now define the base step and the iteration step for multipli-
cation mul : N ( §(!N ( §2N):

bmul = λz : 1.let () = z in

λy :!N.let !̂v = y in §̂(coer′ v) : 1 ( (!N ( §2N),

smul = λg :!N ( §2N.λy :!N.let !z = y in

(add§ §̂z (g !z)) : (!N ( §2N) ( (!N ( §2N).

By using another coercions similar to coer and coer′ we can
assign to multiplication a type as: mulc : N (!N ( §3N. By
using addition and multiplication we can prove the following.

Lemma 17. For any polynomial p[x] in the variable x there exists
an integer n and a term λx.p of type N ( §̂nN representing p[x].

Likewise Asperti and Roversi [2] the above lemma can be also
improved by expressing the number n of § in term of the degree of
the polynomial. However, in our case we would have some extra §
given by the extra § that we have in the type of mulc.

Now we need to encode Turing MachinesM. We can encode a
configuration ofM with n states by a type Mn = B∗3 ⊗ B∗3 ⊗ Bn
where B∗3 is the type of strings over a three symbols alphabet, and
Bn is a finite type of length n. The first B∗3 represents the left part of
the tape while the second one represents the right part of the tape,
starting from the scanned symbol. The type Bn represents the state.
The transition function δ between configurations can be defined by
case analysis: we can represent δ by a term delta : Mn ( Mn.

So, we can use the iteration scheme to iterate transitions starting
from an initial configuration. We then have the following:

Theorem 18 (FPTIME completeness). For every polynomial time
function f : {0, 1}∗ → {0, 1}∗ there exists a natural number n
and a term f : B∗3 ( §̂nB∗3 such that and f represents f .

The proof uses the type of configurations as described above
and is similar to the one presented by Asperti and Roversi [2] or
the one presented by Baillot et al. [6].

5. Coalgebras in LALC
Trying to adapt the encoding of final coalgebras we hit unsurpris-
ingly the same problem we had for the encoding of initial algebra.
Knowing now the receipt we can consider the type:

T = ∃X.!(X ( F (X))⊗ §X. (2)

By duality, we are able to build F -coalgebra homomorphisms only
with coalgebras of the shape (§B, g : §B ( F (§B)) and we
will require the functor F to right-distribute over §. The latter
corresponds to require the existence of a morphism:

RF : §F (X) ( F (§X).

These requirements come once again from the fact that the modality
§ propagates and from the polymorphic encoding. We have the
following dual of Definition 12.

Definition 19. Given a functor F , we say that an F -coalgebra
(A, a) is weakly-final under § if for every F -coalgebra of the form
(B, f) there exists an F -coalgebra (§B, g) and an F -coalgebra
homomorphism h : §B → A making the following diagram
commute:

A

a

��

§Bhoo

g

��

§f

$$
§F (B)

RFzz
F (A) F (§B)

F (h)
oo

That is, we require the existence of an F -coalgebra homomor-
phism only for F -coalgebra of the form (§B, g) that comes from
an underlying F -coalgebra (B, f) via the functoriality of § and the
right-distributivity RF of F .

We can now formulate an analogous of Proposition 6.

Theorem 20. Let F be a functor definable in LALC that right-
distribute over §, and let T = ∃X.!(X ( F (X))⊗§X . Consider
the morphisms defined by:
outT : T ( F (T ),

outT = λt : T.unpack t as (X, z) in

let 〈k :!(X ( F(X)), x : §X〉 = z in

let !̂u = k in

let §̂v = x in F (unfoldT X !̂u)RF (§̂(u v)),

unfoldT : ∀X.!(X ( F (X)) ( §X ( T,

unfoldT = ΛX.λk :!(X ( F (X)).λx : §X.pack (〈k, x〉, X) asT.

Then, (T, outT ) is a weakly-final F -coalgebra under §: for every
F -coalgebra (B, f : B ( F (B)) we have an F -coalgebra
(§B, g : §B → F (§B)) and an F -coalgebra homomorphism
h : §B → T defined as h = unfoldT B !̂f .

The situation described by Theorem 13 corresponds to say-
ing that for every F -coalgebra (B, f ) the following diagram com-
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mutes:

T

outT

��

§B

g

��

unfoldT B !̂foo

§f

$$
§F (B)

RFzz
F (T ) F (§B)

F (unfoldT B !̂f)

oo

This diagram provides a way to encode the greatest fixpoint of a
type schema, similarly to what we have for System F, and so to
define standard data types.

Once again, with respect to final coalgebras we have now re-
laxed both the uniqueness and the existence property.

5.1 Lack of examples
We want now to give an analogous of Lemma 14 describing the
functors that right-distribute. Unfortunately, we are able to prove
only the following weak lemma.

Lemma 21. All the functors built using the following signature
righ-distribute over §:

F (X) ::= 1 |X | A | §F (X),

provided that A is a closed type for which it exists a closed term of
type §A( A.

Clearly, this lemma is too weak for defining interesting coin-
ductive examples. Indeed, even a simple functor such as F (X) =
1 ⊕ X (the type for the natural numbers extended with an infi-
nite object) is not right-distribute. By proof search it is easy to
verify that we cannot derive a closed judgment for §(1 ⊕ X) (
1⊕§X . Similarly, we cannot derive a closed judgment for the type
§(A⊗X) ( A⊗§X , or the type §(A⊗A⊗X) ( A⊗A⊗§X . So,
we cannot encode infinite lists and infinite trees using Theorem 20.

The root of this problem lies in the fact that in LALC, as in Light
Linear Logic, the modality § does not distribute on the right with⊗
and ⊕. That is, we cannot prove in general §(A⊗B) ( §A⊗ §B
or §(A⊕B) ( §A⊕§B. Without these distributive rules it seems
hard to program any interesting coinductive data in LALC. For this
reason, the next step is to add these rules to our language.

6. LALC with Distributions
We want now to add to LALC the distributive principles we dis-
cussed in the previous section. The calculus we obtain by adding
these principles inherits the polynomial time completeness of LAL.
However, we need to do some work in order to show that it pre-
serves the polynomial time soundness. Indeed the usual proof tech-
nique based on the depth by depth reduction (see [39]) cannot be
applied to this calculus as distributions at depth i may create new
redexes at depth i− 1.

6.1 Extending LALC with distributions
We extend the grammar of Figure 1 with distributions, constructs
that allow the reduction to distribute a §̂ constructor over a injτi (−)
or 〈−,−〉 constructor:

M, N, L ::= . . .

| dist §̂〈x : τ1, y : τ2〉 = M as z = 〈§̂x, §̂y〉 in N

| dist §̂injτ⊕τ
′

i (x) = M as z = inj
§τ⊕§τ ′
i (§̂x) in N.

We extend the reduction relation → from Figure 2 with two new
distributive rules given in Figure 4 and as usual we denote by

→∗ its reflexive, transitive and contextual closure. Similarly, we
add the two typing rules for distributions given in Figure 5. In
the following, we will sometimes need to consider a term M with
a specific type derivation Π for it, we will then use the notation
Π � Γ ` M : τ for some environment Γ and type τ .

The most interesting logical properties of LAL, such as subjec-
tion reduction, are preserved by this extension.

Theorem 22 (Subject reduction). Let Π be a type derivation of the
shape Π � Γ ` M : τ . If M→ N, then there exists a type derivation
Π′ such that Π′ � Γ ` N : τ .

We have already discussed informally the depth of LAL terms.
Here we introduce this concept more formally.

Definition 23 (depth). Given a term M, the depth of M, noted d(M),
is the maximal number of nested †̂ constructs in a path of the syntax
tree of M. Given a term M and one of its subterms N, N is at depth
i in M if it is in the scope of i nested †̂ in M. Given a derivation Π,
the depth of Π, noted d(Π), is the maximal number of introduction
rules for † (†I rules) in a branch of the derivation Π. A rule in a
given type derivation is at depth i if it is preceded by i †I rules in
a branch of Π.

Notice that the depth of a term coincides with the depth of
its typing derivations. In other words, if Π � Γ ` M : τ then
d(M) = d(Π). In the following we will be interested in reductions
that occur at a particular depth i, in such cases we will use the
notation→i. Similarly to LAL, in the extended calculus the depth
of a term cannot increase in the reduction.

Lemma 24 (Depth preservation). Given two terms M and N, if
M→∗ N then d(N) ≤ d(M).

Proof. By a case analysis of the reduction rules. See the supple-
mentary material for more details.

6.2 Depth-by-depth reduction is not enough
We want now show that the depth-by-depth reduction is not enough
to evaluate terms to normal form. Let us first introduce the notion
of potential redex.

Definition 25 (Potential redexes at depth i). A potential redex in
M is a subterm whose outermost construct is either a destructor or
a distribution. Given a type derivation Π � Γ ` M : τ , we denote
by Ei(Π) the number of elimination rules, (d⊕) and (d⊗) rules
that are at depth i in Π. An actual redex in M is a potential redex
that can be reduced at the outermost level by applying either a beta
rule, an exponential rule or a distribution rule. A stuck redex in M
is a potential redex that is not an actual redex.

Notice that Ei(Π) is exactly equal to the number of potential
redexes at depth i in M. Indeed, each elimination or distribution
rule corresponds to the introduction of exactly one destructor or
distribution construct in the typed term and conversely.

Fact 26 (From potential redex of depth i to actual redex of depth
i − 1). A reduction M →i N at depth i can turn a stuck redex at
depth i− 1 in an actual redex at depth i− 1.

We show that this fact holds by providing an illustrating exam-
ple. Consider a term M of depth i having the following subterm M1

occurring at depth i− 1:

dist §̂〈x : τ, y : σ〉 = §̂(λu : τ ′.〈u, v〉)w as z = 〈§̂x, §̂y〉 in M2.
This subterm is a stuck redex as it is a potential redex (indeed a
distribution) that is not an actual redex as the term (λu : τ ′.〈u, v〉)w
is not a constructor. Indeed, this term needs to be evaluated first for
M1 to become an actual redex. Moreover this term is of depth i in M
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dist §̂〈x : τ, y : σ〉 = §̂〈M1, M2〉 as z = 〈§̂x, §̂y〉 in N→ N[〈§̂M1, §̂M2〉/z] (dis-1)
dist §̂injτ⊕τ

′
i (x) = §̂injτ⊕τ

′
i (M) as z = inj

§τ⊕§τ ′
i (§̂x) in N→ N[inj§τ⊕§τ

′

i (§̂M)/z] (dis-2)

Figure 4. Distributive reduction rules.

Γ ` M : §(τ ⊗ σ) ∆, z : §τ ⊗ §σ ` N : τ ′

Γ,∆ ` dist §̂〈x : τ, y : σ〉 = M as z = 〈§̂x, §̂y〉 in N : τ ′
(d⊗)

Γ ` M : §(τ ⊕ σ) ∆, z : §τ ⊕ §σ ` N : τ ′

Γ,∆ ` dist §̂injτ⊕σi (x) = M as z = inj
§τ⊕§σ
i (§̂x) in N : τ ′

(d⊕)

Figure 5. Distributive typing rules for LALC

as it is located under an extra §̂ construct in M1. Consequently, we
have M →i N where N is the term obtained from M by substituting
M1 with the term N1 below:

dist §̂〈x : τ, y : σ〉 = §̂〈w, v〉 as z = 〈§̂x, §̂y〉 in M2.

N1 is a potential redex of depth i − 1 in N (no enclosing †-box has
been changed wrt to the initial term) and is not a stuck redex since
it reduces to M2[〈§̂w, §̂v〉/z].

This example shows that we cannot use the depth-by-depth
strategy to prove the polynomial time soundness of LALC extended
with distributions. Indeed, we need a strategy that can round trip on
the depth. In the following section we will prove the polynomial
time soundness by using a global argument that provides an up-
per bound on the number and size of subterms generated in any
reduction. This will help us in showing that each reduction has a
polynomially bounded length.

6.3 Soundness of the extension
In this section, we show that the well-typed terms of our language
can be reduced in polynomial time by a Turing Machine.

Preliminary notations We write M →c N (resp. M →nc N) to
stress that M → N and that the reduction uses (resp. does not
use) a commutation rule (com-n). Similarly, we write M →k,i N,
k ∈ {c, nc}, to stress that M→k N with a reduction at depth i.

While the subject reduction only claims the existence of a type
derivation Π′, the proof gives us a concrete way to build Π′ starting
from Π. Thanks to this we can lift our reasoning from terms to type
derivations. Indeed every reduction in terms corresponds to some
transformation on the type derivation. In general we will write Σ :
Π � M R∗ Π′ � N, with R ∈ {→,→i,→c,→nc,→c,i,→nc,i},
when we want to explicitly give a name Σ to the reduction and
the corresponding type derivation Π′ obtained by reducing M to
N wrt the reflexive and transitive closure of R starting with the
type derivation Π. This will be useful when discussing about the
structural rules—contraction and weakening—that do not have a
corresponding syntactic construct in the language. So, they can
only be seen in the typing derivation.

Length and size We also need to clarify the notions of length
of a derivation and size of a term (or of a typing derivation). The
reduction name Σ is useful when we want to deal with reduction
length: |Σ| will denote the length of the reduction (i.e. number of
applications of R), while |Σ|c (respectively |Σ|nc) will denote the
number of commutation rules (resp. rules that are not commutation
rules) in Σ. Trivially, |Σ| = |Σ|c + |Σ|nc as each reduction rule
is either a commutation or not. The size of a term M is the number
of subterms at any depth. The size of a typing derivation Π is the

total number of rules in it. Straightforwardly, the size of a term is
bounded by the size of its typing derivations:

Lemma 27 (Size). If Π � Γ ` M : τ then |M| ≤ |Π|.

Polynomial size reducts The key property that we will use to
prove the soundness with a global argument is that the size of each
intermediate type derivation obtained in a reduction is bounded
polynomially by the size of the initial type derivation. To express
this fact we need to refer to specific parts of a given term or
derivation that are at a particular depth.

Definition 28 (size at depth i). Given a term M we denote by |M|i
the number of subterms of M that are at depth i in M. Trivially,
the following equality holds |M| =

∑d(M)
i=0 |M|i. In the same way,

we denote by |Π|i the number of rules that are at depth i and the
equality |Π| =

∑d(Π)
i=0 |Π|i also holds.

We also need to count the contraction rules at each depth.

Definition 29 (contractions at depth i). Given a type derivation
Π � Γ ` M : τ , we denote by Ci(Π) the number of contraction
rules that are at depth i in Π.

The notion of potential for a type derivation Π is introduced in
order to bound the size of typing derivations in a reduction.

Definition 30. Given a typing derivation Π � Γ ` M : τ we define
its weight at depth i, denotedWi(Π), by:

W0(Π) = C0(Π)

Wi+1(Π) =

i∏
j=0

(Cj(Π) + 1)2i−j

· Ci+1(Π)

The potential of Π, denoted P(Π) is defined as:

P(Π) =

d(Π)∑
i=0

(Wi−1(Π) + 1) · |Π|i

with the convention thatW−1(Π) = 0.

We can now formulate the key property of the potential.

Lemma 31 (Polynomial size). Consider a reduction Σ : Π �
M →∗ Π′ � N. Then, there is a polynomial P(Π) in |Π| such that
the following hold:

• |Π′| ≤ P (Π),
• P (Π) = O(|Π|2

d(Π)+2).

Proof. By induction on the depth, using an upper bound on the
maximal number of contraction rules that might exist at each depth
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in a reduct. The full proof are available in the supplementary mate-
rial.

As a corollary, we obtain an upper bound on the number of
potential redexes at each depth:

Corollary 32 (Polynomial number of potential redexes at any
depth). Consider a reduction Σ : Π � M →∗ Π′ � N. Then,
for any i ≥ 0, we have: Ei(Π′) ≤ P(Π).

Proof. By Lemma 31 as Ei(Π′) ≤ |Π′| ≤ P(Π).

Polynomial length reductions Now we are ready to show the
the reduction length of a typed term is polynomially bounded by
the size of its typing derivation. We proceed in two steps. First
we show that the number of non commuting reduction steps is
bounded polynomially in the size (and exponentially in the depth
- that is fixed) of a term using a lexicographic decrease on the
number of potential redexes (and the fact that they are bounded by
the potential by Corollary 32). In a second step, we show that the
number of commuting reduction steps is bounded polynomially in
the size using a rewriting argument based on the structure of such
rules.

Lemma 33. Consider a reduction Σ : Π � M →k,i Π′ � N, with
k ∈ {c, nc}.
(i) For each j < i, we have Ej(Π′) = Ej(Π).
(ii) Moreover,

1. if k = c then we have: for each j ≥ i, Ej(Π′) = Ej(Π);
2. if k = nc then we have: Ei(Π′) < Ei(Π).

The above lemma tells us that a commutative reduction does not
change potential redexes at all while non commutative reductions
at depth i preserve potential redexes at depth strictly smaller than i
and decrease by one the number of potential redexes at depth i. Of
course, in this latter case, the number of potential redexes at depth
strictly higher than i may increase.

Definition 34 (Strength). Given a type derivation Π � Γ ` M : τ ,
the strength of Π, noted s(Π), is a d(Π) + 1 tuple defined by:

s(Π) = 〈E0(Π), E1(Π), . . . , Ed(Π)(Π)〉.
Corollary 35. Consider a reduction Σ : Π � M →k,i Π′ � N,
with k ∈ {c, nc}.
1. if k = c then we have s(Π) =lex s(Π

′);
2. if k = nc then we have: s(Π) >lex s(Π

′).

where>lex is the lexicographic strict order induced by> on tuples.

Now we take benefits of the above Corollary together with the
previous upper bound on size of reduced proof in order to infer an
upper bound on the length of non-commutative reductions.

Lemma 36. Consider a reduction Σ : Π � M →∗ Π′ � N. Then,
we have:

|Σ|nc ≤ (P(Π))d(Π)+1.

Proof. Let t(Π) = 〈P(Π), . . . ,P(Π)〉 be a tuple with d(Π) +
1 times elements. By several applications of Corollary 35 and
Corollary 32, for any reduction of the shape Π1 � M1 →∗c Π2 �
M2 →nc Π3 � M3 →∗c Π4 � M4, the following holds:

t(Π) t(Π) t(Π) t(Π)
≥ ≥ ≥ ≥

s(Π1) =lex s(Π2) >lex s(Π3) =lex s(Π4),

where ≥ is the pointwise partial order induced by ≥ on tuples.
Consequently, there can be no more than (P(Π))d(Π)+1 strict

lexicographic decreases in a reduction. This provides us a bound on
the number of reduction rules that are not commutation rules.

It is worth noticing that the above lemma diverges from the
classical soundness proof for LAL. In particular, we combine a
global argument given by the potential P(Π) of the type derivation
Π with the lexicographic order that provides a local argument.
In this way we have an argument that is independent from the
strategy. While this approach has the consequence that the bound
we provide is looser than the usual one, the difference is just in a
small exponential constant that leaves the bound polynomial once
the depth is fixed. A tighter bound—similar to the usual one—can
be obtained by considering instead a specific reduction strategy
where lower depth redexes are reduced with higher priority.

As usual, the length of reductions only involving commutation
is bounded quadratically in the size of the initial type derivation
using a term rewriting argument.

Lemma 37. For each reduction Σ : Π � M →∗c Π′ � N, we have
|Σ| ≤ |Π|2.

Now we are ready to show that any reduction has a polynomially
bounded length:

Lemma 38 (Polynomially bounded reduction length). Consider a
reduction σ : Π � M→∗ Π′ � N. Then, we have:

|Σ| ≤ P(Π)d(Π)+1 · (P(Π)2 + 1).

Proof. The inequality follows by combining Lemma 37, Corol-
lary 31 and Lemma 36. See the supplementary material for the
full proof.

FPtime soundness We can now show the soundness properties of
our type system:

Theorem 39 (Polynomial Time Soundness). Consider a type
derivation Π � Γ ` M : τ . Then, M can be reduced to normal
form by a Turing Machine working in time polynomial in |M| with
exponent proportional to d(M).

Proof. By definition of depth, the equality d(Π) = d(M) holds.
Moreover, for any typable term M, there is at least one normal
type derivation Π (with no superfluous contraction rule and weak-
ening rule). For such a type derivation, |Π| = O(|M|) holds. By
Lemma 31, the potential of a derivation is bounded by a polynomial
in the size of Π with exponent proportional to d(Π). By Lemma 38,
each typable term M has at most a polynomially bounded number of
reductions in |M|. By Corollary 31 the size of every intermediate
term in the reduction is bounded polynomially in |M|. As the re-
duction of LAL can be easily implemented by a Turing Machine in
quadratic time (see [39]), the conclusion follows.

7. Examples
We can now improve Lemma 21 and obtain the following analo-
gous of Lemma 14.

Lemma 40. All the functors built using the following signature
righ-distribute over §:
F (X) ::= 1 |X | A | §F (X) | F (X)⊗ F (X) | F (X)⊕ F (X),

provided that A is a closed type for which it exists a closed term of
type §A( A.

Proof. By induction on F (X).

Similarly to Example 8 we would like to consider the case
of streams of natural numbers. Unfortunately, Lemma 40 is not
enough to show that the functor F (X) = N ⊗ X distributes to
the right. The problem is that we do not have a coercion §N ( N,
but only the converse one. Nevertheless, we can consider streams
of booleans (or more in general of every finite type 1 ⊕ · · · ⊕ 1).
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Let us consider the functor defined on types as F (X) = B2 ⊗ X
and on terms as:

λf : X ( Y.λx : B2 ⊗ X.let 〈x1, x2〉 = x in 〈x1, f x2〉.
This functor right-distributes by Lemma 40. Let Bω2 = νX.F (X).
Theorem 20 ensures that (Bω2 , outBω

2
) is a weak final coalgebra.

Let us use this property to define a constant stream of 1 (as a
boolean). Similarly to what we did in Example 8 this can be defined
by considering the function:

g = λx : 1.let () = x in 〈1, ()〉.

By Theorem 20 we can then define ones = unfold1 !̂g §̂().
Similarly to what happens in System F we can define the usual
operations on streams as:

head = λx : Bω2 .let 〈x1, x2〉 = (outBω
2
x) in x1,

tail = λx : Bω2 .let 〈x1, x2〉 = (outBω
2
x) in x2.

Unfortunately, using these operations is often inconvenient in pres-
ence of linearity, and it is more convenient to use directly the coal-
gebra structure provided by outBω

2
. Consider for example the oper-

ation that extracts from a stream of booleans the elements in even
position – we have seen a similar operation encoded in System F in
Example 8. We can define this operation by using the function:

g = λx : Bω2 .let 〈x1, x2〉 = (outBω
2
x) in

let 〈x21, x22〉 = (outBω
2
x2) in 〈x1, x22〉.

This function has type g : Bω2 ( B2 ⊗ Bω2 . So, by Theorem
20 even = unfoldBω

2
Bω2 !̂g. Another interesting example is a

function that merges two streams. This can be defined by the term:

g = λx : Bω2 ⊗ Bω2 .let 〈x1, x2〉 = x in

let 〈x11, x12〉 = (outBω
2
x1) in 〈x11, 〈x2, x12〉〉.

This function has type g : Bω2 ⊗ Bω2 ( B2 ⊗ (Bω2 ⊗ Bω2 ). So, by
Theorem 20 again, merge = unfoldBω

2
(Bω2 ⊗ Bω2 ) !̂g.

We can combine algebra examples and coalgebra ones. For
instance, we can write a standard inductive function take that for
a given n returns the first n elements of a stream as a string. This
can be obtained by the function:

g = λx : 1⊕ (Bω2 ( B∗2).case x of{
inj0(z)→ λy : Bω2 .nil | inj1(z)→

λy : Bω2 .let 〈y1, y2〉 = (outBω
2
y) in cons(y1, z y2)

}
.

This function has type g : 1⊕ (Bω2 ( B∗2) ( (Bω2 ( B∗2). So, by
Theorem 13, take = foldBω

2
(Bω2 ( B∗2) !̂g.

Even if we cannot define a stream of the standard inductive nat-
ural numbers, we can have a stream of extended natural numbers.
Let us define the latter first. Consider the functor F (X) = 1⊕X .
By Lemma 40, we have that F right-distributes over §, and so by
Theorem 20 we have that (N, outN) is a weakly-final F-coalgebra
under §, where N denotes νX.F (X). The inhabitants of the type
N correspond to the natural numbers extended with a limit element
∞. We can think about outN as a predecessor function mapping 0
to (), n to n − 1 and∞ to∞. We can define the addition of two
extended natural numbers by considering the term:

g = λx : N⊗ N.let 〈x1, x2〉 = x in
(
case (outN x1) of{

inj0(z)→ case (outN x2) of {inj0(z′)→ inj0(())

| inj1(z′)→ inj1(〈z, z′〉)}

| inj1(z)→ inj1(〈z, x2〉)
})
.

This function has type g : N⊗N ( 1⊗ (N⊗N). So, by Theorem
20 add = unfoldN (N⊗N) !̂g. For the extended natural numbers,
we have a term coerN : §N ( N, this is given by Theorem 20 as
coerN = unfoldN N !̂outN. Thanks to this coercion we can define
streams of extended natural numbers.

One would like also to consider infinite trees labelled with
elements in A. This could be defined using the functor F (X) =
A⊗ (X ⊗X). Unfortunately, the term defining this functor :

λf.λx.let 〈y, z〉 = x inlet 〈u, v〉 = z in 〈y, 〈f u, f v〉〉
cannot be assigned a linear type because of the duplication of the
variable f.

8. Related works
Infinite data structures in ICC Several works have studied prop-
erties related to ICC in the context of infinite data structures.

Burrell et al. [8] proposed Pola as a programming language
characterizing FPTIME. The design idea of Pola comes from safe
recursion on notation [7] and interestingly, Pola permits the pro-
grammer to write polynomial time functional programs working
both on inductive and coinductive data types. This work is close to
ours but there are two main differences. First, the use of safe re-
cursion on notation and the use of linear types are quite different
and produce two different programming methodologies. Second,
we studied how to define algebras and coalgebras in the language
while Pola takes inductive and coinductive types as primitive.

Leivant and Ramyaa [29] have studied a framework based on
equational programs that is useful to reason about programs over
inductive and coinductive types. They used such a framework to
obtain an ICC characterization of primitive corecurrence (a weak
form of productivity). Ramyaa and Leivant [36] also shows that a
ramified version of corecurrence gives an ICC characterization of
the class of functions over streams working in logarithmic space.
Leivant and Ramyaa [30] further studied the correspondence be-
tween ramified recurrence and ramified corecurrence. In our work,
in contrast we focus on the restrictions directly provided by Light
Affine Logic. It can be an interesting future direction study whether
one can express some form of ramified corecurrence in LAL, along
the lines of what has been done for ramified recursion [34].

Using an approach based on quasi-interpretation, in [12, 13]
we have studied space upper bounds properties and input-output
properties of programs working on streams. Using a similar ap-
proach Férée et al. [10] showed that interpretations can be used
on stream programs also to characterize type 2 polynomial time
functions by providing a characterization of the class of the Basic
Feasible Functionals of Cook and Urquhart [9].

Dal Lago et al.[3] have developed a technique inspired by quasi-
interpretations to study the complexity of higher-order programs.
In their framework infinite data are first class citizens in the form
of higher order functions. However, they do not consider programs
working on declarative infinite data structures as streams.

Expressivity of Light Logics Understanding and improving the
expressivity of light logics, and more in general of ICC systems, is
a well known problem. Unfortunately, we do not yet have a general
method for comparing different systems and improvements.

Hofmann [25] provides a survey of the different approaches to
ICC. In this survey he also discusses the expressivity and the limi-
tations of the different light logics in the encoding of traditional al-
gorithms. Murawski and Ong [34] and, more recently, Roversi and
Vercelli [37] have studied the expressivity of light logics by com-
paring them with the one provided by ramified recursion. In partic-
ular, they provide different embeddings of (fragments of) ramified
recursion in LLL and its extensions. Dal Lago et al.[28] have stud-
ied and compared the expressivity of different light logics obtained
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by adding or removing several type constructions, like tensor prod-
uct, polymorphism and type fixpoints. Our work follows in spirit
the same approach focusing on the encoding of (co)algebras.

Gaboardi et al. [17] have studied the expressivity of the different
light logics by designing embeddings from the light logics to Lin-
ear Logic by Level [4], another logic providing a characterization
of polynomial time but based on more general principles. Interest-
ingly, in Linear Logic by Level the § modality commutes with all
the other type constructions. It would be interesting to study what
is the expressivity of this logic with respect to the encoding of alge-
bras and coalgebras. Baillot et al. [6] have approached the problem
of improving the expressivity of LAL by designed a programming
language with recursion and pattern matching around it. We take
inspiration by their work but instead of adding extra constructions
we focus on the constructions that can be defined in LAL itself.

9. Conclusion and future works
We have studied the definability of algebras and coalgebras in the
LALC along the lines of the encoding of algebras and coalgebras in
the polymorphic lambda calculus. By extending the calculus with
distributive rules for the modality § we are able to program several
natural examples over infinite data structures.

It is well-known that the encoding of algebras and coalgebras
in System F is rather limited and it also does not behave well
from the type theory point of view [18]. For this reason, several
works have studied how to extend the polymorphic lambda calculus
with different notions of algebras and coalgebras that behave better,
e.g. [31]. We expect that a similar approach can be also followed
for LALC: it would be interesting to understand how the different
extensions studied in the literature can fit the LALC setting.

We have approached the study of algebras and coalgebras in a
term language for Light Affine Logic (LALC). There are also other
light logics for which we could ask the same question. Obviously,
the an encoding similar to the one we studied here can be used for
Elementary Linear Logic. It would instead be more interesting to
understand whether there is an encoding for Soft Linear Logic that
allows a large class of coinductive data structures to be defined.
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