Schematic for the TULIP4041

TULIP: The Ultimate Intelligent Peripheral For The HP-41 Handheld Calculator

[Andrew Menadue] wrote in to let us know about the TULIP-DevBoard and TULIP-Module being developed on GitHub.

TULIP is short for “The Ultimate Intelligent Peripheral” and it’s an everything expansion board for the HP-41 line of handheld calculators sold by HP from 1979 to 1990. These particular calculators support Reverse Polish notation which seems to be one of those things, like the Dvorak keyboard, where once you get used to it you can never go back.

Continue reading “TULIP: The Ultimate Intelligent Peripheral For The HP-41 Handheld Calculator”

The Confusing World Of Bus Mice

The USB port which first appeared on our computers some time in the mid-1990s has made interfacing peripherals an easy task, save for the occasional upside down connector. But in the days before USB there were a plethora of plugs and sockets for peripherals, often requiring their own expansion card. Among these were mice, and [Robert Smallshire] is here with a potted history of the many incompatible standards which confuse the retrocomputing enthusiast to this day.

The first widely available mice in the 1980s used a quadrature interface, in which the output from mechanical encoders coupled to the mouse ball is fed directly to the computer interface which contains some form of hardware or microcontroller decoder. These were gradually superseded by serial mice that used an RS-232 port, then PS/2 mice, and finally the USB variant you probably use today.

Among those quadrature mice — or bus mice, as early Microsoft marketing referred to them — were an annoying variety of interfaces. Microsoft, Commodore, and Atari mice are similar electrically and have the same 9-pin D connector, yet remain incompatible with each other. The write-up takes a dive into the interface cards, where we find the familiar 8255 I/O port at play. We’d quite like to have heard about the Sun optical mice with their special mouse pad too, but perhaps their omission illustrates the breadth of the bus mouse world.

This piece has certainly broadened our knowledge of quadrature mice, and we used a few of them back in the day. If you only have a USB mouse and your computer expects one of these rarities, don’t worry, there’s an adapter for that.

Illustrated Kristina with an IBM Model M keyboard floating between her hands.

Keebin’ With Kristina: The One With The Keyboard-Mouse, Again

The astute among you may remember an earlier version of this Russian beauty, the Lapa, which I featured last year around this time. Creator [lemosbor] claims that the worry was less about visual beauty and more about ergonomics. Way more. Well then, let this serve rather nicely as a textbook definition of that old form-follows-function principle.

A splendidly ergonomic split with few keys, large openings under the palms and wrists, and mouse control on the thumbs.
The lovely Lapa.

See, [lemosbor] believes that the keyboard must adapt to the hands and not the other way around. The main goals were to minimize hand and finger movement as well as the visual attention required of the keyboard itself. No, there were never going to be any screens or RGB, and there likely never will be.

But I refuse to sidestep the obvious beauty in this keyboard, which from the side resembles a stylish and expensive pair of slightly-heeled shoes that were tailored to the contours of the human hand. And let’s not forget those handmade, oval keycaps, which again are a product of form-follows-function.

Continue reading “Keebin’ With Kristina: The One With The Keyboard-Mouse, Again”

Moving Mousepad Is An Elegant Aimbot

These days, it can be hard to remain competitive in online shooters without spending your entire life dedicated to the sport. This leads some to explore the world of competitive aids. (AKA: cheating.) A great example is [Nick], who built a mechanical aimbot to help in this regard.

[Nick’s] build moves a mousepad underneath the mouse opposite to the desired movement direction, in order to simulate the mouse movements required to aim at targets in game. This is achieved with the aid of a XDraw A4 pen plotter, which served as a cheap prebuilt X-Y motion platform. The plotter responds to simple serial commands, which makes it easy to control. The X-Y gantry was mounted underneath the desk so the mousepad sits seamlessly on top of the desk, sliding neatly on low-friction mouse skate stickers.

With the mousepad control system built, it was then necessary to figure out how to turn it into an aimbot. [Nick] already had a machine vision tool to detect enemies in shooting game, so it was merely modified to make the right mousepad movements to get the crosshairs right where they needed to be before firing. In testing, it proved more than capable at helping a new player achieve far superior aim, as a good aimbot should.

We’ve featured similar projects before that use complex mechanical contraptions to aim for you. Yes, it’s still cheating, but it’s a lot harder to detect than a traditional aimbot. That doesn’t make it right, per se, just more subtle. Video after the break. Continue reading “Moving Mousepad Is An Elegant Aimbot”

a torn-up printer with a very long image of different frames

Playing DOOM On A Receipt Printer

Gaming is a wonderful thing. Unfortunately for many of us, work takes up our valuable time, which should be allocated to our gaming. What if there was a better way? Well, printers can print an image quickly, and receipt printers can print a lot of images. This sounds like an effective display for DOOM in a pinch. [Bringus Studios] managed to find such a printer and got the classic shooter running.

Getting the printer’s attached computer, which was only designed for printing the cost of your chicken sandwich, to run Half-Life was far from easy. [Bringus] struggled through the process of swapping operating systems from Windows 7 to Linux just to return to Windows 7 after a painful process of maintaining compatibility between 32 and 64 bit software. Driver issues followed through the entire process just to get anything running at all.

But we can’t play DOOM while at work on a normal screen. The printer MUST display our glorious 480p gameplay. To achieve such a workflow, [Bringus] implemented a script to print out a frame of the display, allowing for “visible gameplay”. Along with some heat issues from the nature of thermal receipts, eventually the printer displayed the glory of DOOM.

Playing games on a thermal printer might be one of the weirdest things you’ve seen today, but what if we could reverse the script a bit and create a printer from something else? Here at Hackaday, we have exactly the thing for you: a printer made from a vintage typewriter!

Continue reading “Playing DOOM On A Receipt Printer”

Building A High-Performance Shifter For Sim Racing

These days, sim racing is more realistic than ever. There are better screens, better headsets, and better steering wheels with better force-feedback, all of which help make you feel like you’re driving the real thing. If you’re looking for a stick shifter to complete such a setup, [DAZ Projects] might have just what you’re looking for. 

To create a robust shifter with great feel, the build relies on 3D printed parts as well as lots of quality metal hardware. At the heart of the build is a linear rail for the front-to-back movement, with a printed slider on top with a carefully-profiled indexer to ensure the stick properly ca-chunks into the right gear. A ball joint locates the shift lever itself, while allowing for smooth movement left-to-right. Centering is via simple extension springs. The H-pattern shift is enforced with machined steel rods. Detecting the position of the stick is handled via microswitches, with an Arduino Leonardo reading the switches and reporting itself as a USB device that should work with any modern sim.

It’s funny to think that such a mechanism would once have been a very serious machining job. These days, you can just squirt all this stuff out on a printer in a few hours. For the parts that can’t be extruded, [DAZ Projects] has provided a parts list on Google Docs.

We’ve featured some great racing sim builds over the years, from button pads to pedal boxes.

Continue reading “Building A High-Performance Shifter For Sim Racing”

Illustrated Kristina with an IBM Model M keyboard floating between her hands.

Keebin’ With Kristina: The One With The Ultimate Portable Split

What do you look for in a travel keyboard? For me, it has to be split, though this condition most immediately demands a carrying solution of some kind. Wirelessness I can take or leave, so it’s nice to have both options available. And of course, bonus points if it looks so good that people interrupt me to ask questions.

A pair of hands poised above a blue split keyboard that packs easily for travel in a 3D-printed case. The case doubles as a laptop stand.
Image by [kleshwong] via YouTube
Depending on your own personal answers to this burning question, the PSKEEB 5 just may be your endgame. And, lucky for you, [kleshwong] plans to open source it soon. All he asks for is your support by watching the video below and doing the usual YouTube-related things.

You’ll see a couple of really neat features, like swing-out tenting feet, a trackpoint, rotary encoders, and the best part of all — a carrying case that doubles as a laptop stand. Sweet!

Eight years in the making, this is the fifth in a series, thus the name: the P stands for Portability; the S for Split. [kleshwong] believes that 36 keys is just right, as long as you have what you need on various layers.

So, do what you can in the like/share/subscribe realm so we can all see the GitHub come to pass, would you? Here’s the spot to watch, and  you can enjoy looking through the previous versions while you wait with your forks and stars.

Continue reading “Keebin’ With Kristina: The One With The Ultimate Portable Split”