

GPT-3

Language Models are Few-Shot Learners

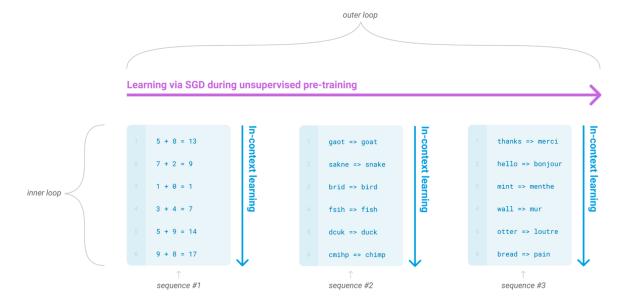
성주용, Causality Lab, SNU

4월 3일, 2025년

Abstract

- Recent work requires task-specific fine-tuning datasets.
- In contrast, humans can generally perform a new language task from only a few examples
 - Something which current NLP systems still struggle
- Scaling up language models greatly improves task-agnostic, few-shot performance => GPT-3
 - Without any gradient updates or fine-tuning

Introduction


Removing limitation requiring task-specific datasets

- Practical perspective
 - Limits the applicability of language models
 - Difficult to collect a large supervised training dataset
- Potential of spurious correlations in training data
 - Absorb information during pre-training, fine-tuned on very narrow task distributions
 - Does not generalize well
- Human does not act like that
 - Allows humans to seamlessly mix together or switch between many tasks and skills
 - Fluidity and generality

Introduction

Meta-learning

- ► In-context learning
 - Model is conditioned on a natural language instructions and/ or a few demonstrations of the task
 - Expected to complete further instances of the task
 - Strong gains with model scale

Few-Shot

- ► Model is given a few demonstrations at inference time
- ► K examples of context and completion
 - K is 10 to 100 (that fit model's context window)
- Major reduction for task-specific data
- Much worse than fine-tuning

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

```
Translate English to French: 

sea otter => loutre de mer 

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => 

prompt
```

One-Shot

- Only one demonstration is allowed
- Closely matches the way in which some tasks are communicated to humans
- Sometimes difficult to communicate the content or format of a task

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

```
Translate English to French: ← task description

sea otter => loutre de mer ← example

cheese => ← prompt
```

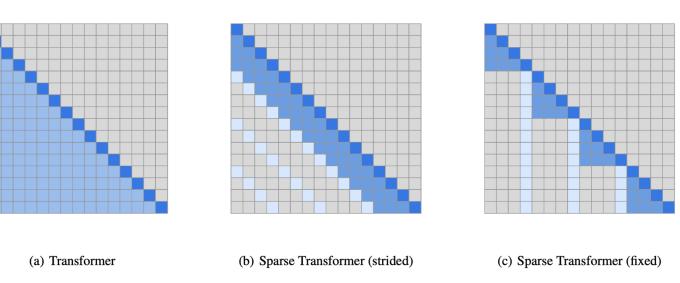
Zero-Shot

- ► No demonstrations are allowed
 - Only given a instruction describing the task
- ► For at least some settings is closest to how humans perform tasks
 - Translations

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

Model and Architectures

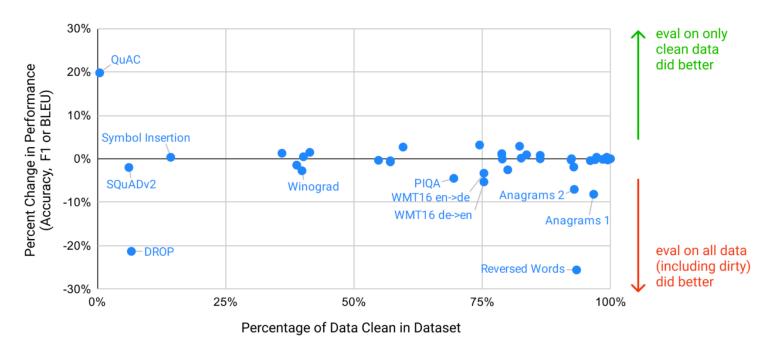

- ► Use same model and architecture as GPT-2
 - Include modified initialization, pre-normalization, reversible tokenization
- ► Alternating dense and locally banded sparse attention patterns in the layers of the transformer

Model and Architectures

- ► Sparse Transformer
 - Restructured residual block and weight initialization
 - A set of **sparse attention** kernels which efficiently compute subsets of the attention matrix

• Recomputation of attention weights during the backwards pass to reduce memory

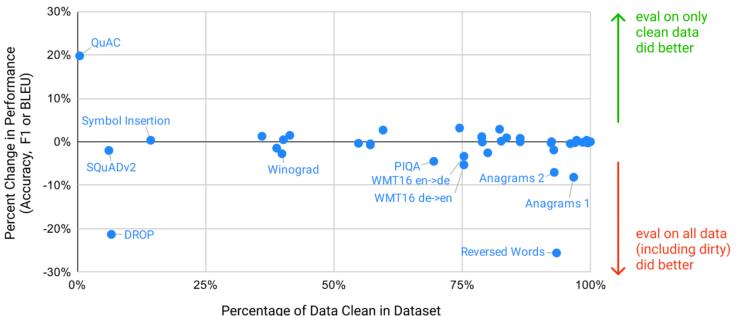
usage


Evaluation

- Choosing one correct completion from several options
 - For most tasks, compare the per-token likelihood
 - For small datasets, compute $\frac{P(completion|context)}{P(completion|answer_context)}$
- ► For binary classification, used True/False than 0/1
 - Treat as multiple choice
- ► For free-form completion, used beam search

Memorization Of Benchmarks

Contamination


- Overlap between training and testing
- ► Investigated how remaining overlap impacts results

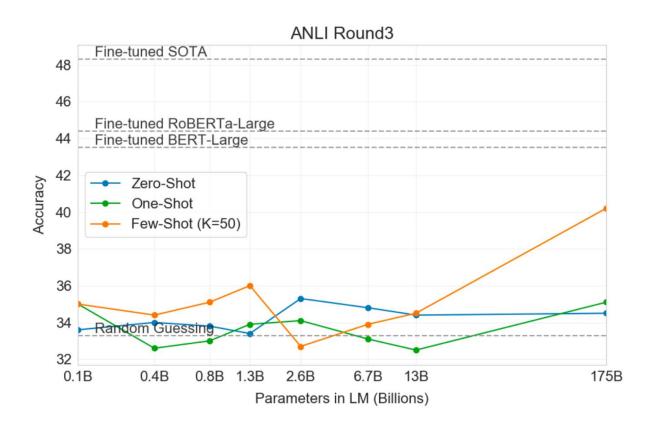
Memorization Of Benchmarks

Contamination

- ► Either overestimate contamination or has little effect on performance
- Cannot sure that the clean subset is drawn from the same distribution as the original dataset

Weaknesses in text synthesis and several NLP tasks

- ► Text synthesis
 - Lose coherence over long passages
 - Contradict themselves
 - Contain non-sequitur sentences
- ► Discrete NLP
 - Common sense physics
 - "If I put cheese into the fridge, will it melt?"


Structural and algorithmic limitations

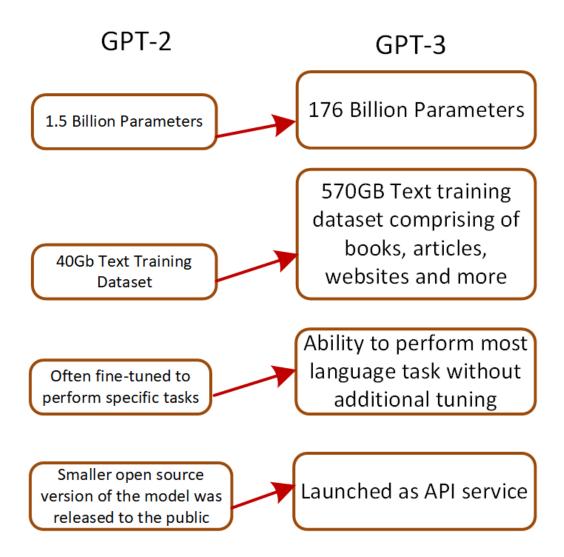
- ► Does not include any bidirectional architectures / denoising
- ► WIC
 - Compare the use of a word in two sentences
- **ANLI**
 - Compare two sentences to see if one implies the other
- ► Reading comprehension tasks

WIC Result

	WiC Accuracy	WSC Accuracy	MultiRC Accuracy	MultiRC F1a	ReCoRD Accuracy	ReCoRD F1
Fine-tuned SOTA	76.1	93.8	62.3	88.2	92.5	93.3
Fine-tuned BERT-Large	69.6	64.6	24.1	70.0	71.3	72.0
GPT-3 Few-Shot	49.4	80.1	30.5	75.4	90.2	91.1

ANLI Result

Reading comprehension task Result


Setting	CoQA	DROP	QuAC	SQuADv2	RACE-h	RACE-m
Fine-tuned SOTA GPT-3 Zero-Shot	90.7 ^a 81.5	89.1 ^b 23.6	74.4 ^c 41.5	93.0 ^d 59.5	90.0 ^e 45.5	93.1 ^e 58.4
GPT-3 One-Shot GPT-3 Few-Shot	84.0 85.0	34.3 36.5	43.3 44.3	65.4 69.8	45.9 46.8	57.4 58.1

Self-supervised prediction limitation

- ► Learn the objective function from humans
- ► Fine-tuning with RL
- ► Add additional modalities such as images

- ► Improve poor sample efficiency
- Understand precisely how few-shot learning works
- Expensive and inconvenient to perform inference on
 - Challenge of practical applicability
 - Distillation of large models
- ► Decisions are not easily interpretable

GPT-3 vs GPT-2

End of Document

