

Pretraining of Deep Bidirectional Transformers for Language Understanding

성주용, Causality Lab, SNU

3월 20일, 2025년

Abstract

- Bert is designed to pretrain deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers.
 - Previous models relied on labeled text, which required significant time and had limited data.
 - By using unlabeled text, they were able to leverage a vast amount of training data and achieve better model representation.

Introduction

Natural language processing task

- Sentence-level tasks
 - Natural language inference
 - 참/거짓 판별
 - Paraphrasing
 - 같은 의미의 다른 문장을 생성
- ► Token-level tasks
 - Named entity recognition
 - 텍스트에서 특정 카테고리에 속하는 단어나 구를 식별하고 분류
 - Question answering

Introduction

Two existing strategies

- ► Feature-based
 - Use task-specific architecture
- ► Fine-tuning
 - Introduce minimal task-specific parameters
 - Trained on the downstream tasks by simply fine-tuning all pretrained parameters

Use unidirectional language models to learn general language representations

=> Restrict the power of the pre-trained representations

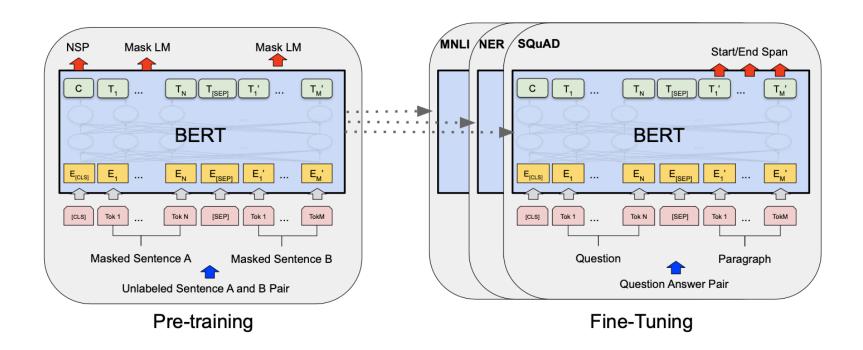
Introduction

Unidirectional drawback

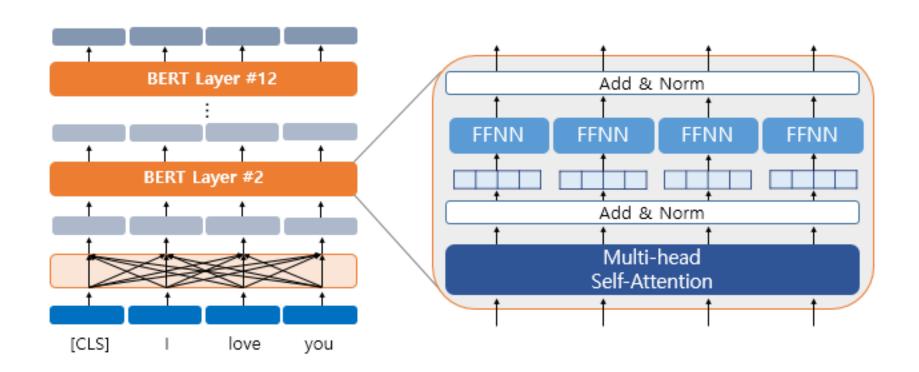
Use unidirectional language models to learn general language representations

- ⇒Restrict the power of the pre-trained representations
- ► The bank approved the loan.
- ► He sat by the bank and watched the river flow.

Architecture

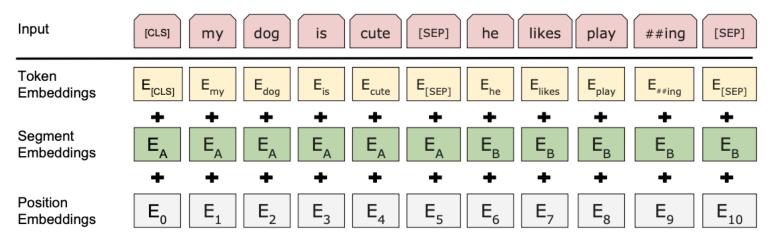


Architecture



Input/Output Representation

- ► Input
 - Word Piece embeddings as token embeddings.
 - First token of every sequence is always a [CLS]
 - Used as the aggregate sequence representation for classification tasks.
 - Sentence pairs are separated with [SEP] and introduce Segment embeddings.



Input/Output Representation

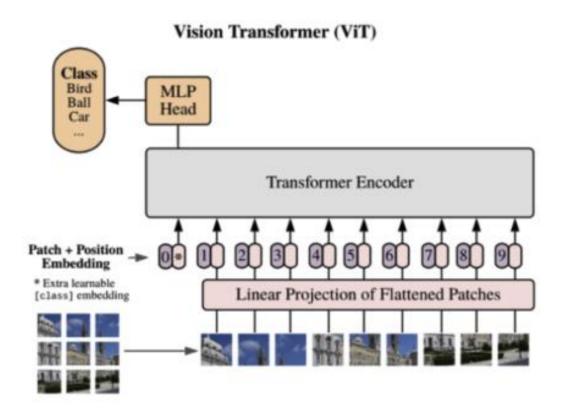
- Word Piece embedding
 - Word Piece embeddings as token embeddings.

수행하기 이전의 문장: Jet makers feud over seat width with big orders at stake

WordPiece Tokenizer를 수행한 결과(wordpieces): _J et _makers _fe ud _over _seat _width _with _big _orders _at _stake

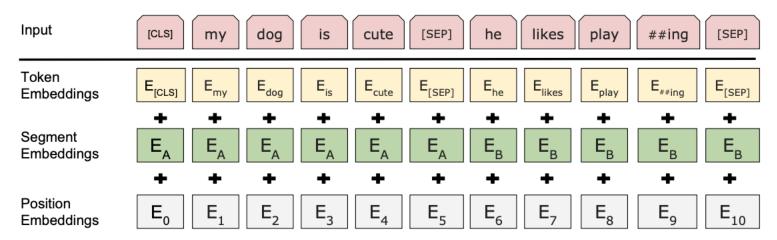
Input/Output Representation

- ► CLS token
 - First token of every sequence is always a [CLS]
 - Used as the aggregate sequence representation for classification tasks.



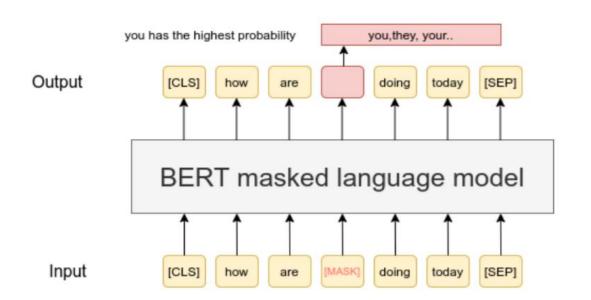
Input/Output Representation

- ► Input
 - Word Piece embeddings as token embeddings.
 - First token of every sequence is always a [CLS]
 - Used as the aggregate sequence representation for classification tasks.
 - Sentence pairs are separated with [SEP] and introduce Segment embeddings.



Masked language model

- Simply mask some percentage(15%) of the input tokens at random and predict.
- Final hidden vectors are fed into an output softmax.



문	1. 빈칸에 들어갈	표현으로 가장 적절한 것은?
	If you	when you are driving, it means
	that you stop.	
	① go through	2 put off
	③ pull over	④ get over
문	2. 빈칸에 들어갈	단어로 가장 적절한 것은?
	Journalists mus	st be For instance, they
	must be good	at writing, listening to people,
	speaking, workin	g quickly, and doing research.
	① factual	2 contemporary
	③ extensive	④ versatile

Masked language model

Masked language model

```
label_ids = tf.reshape(label_ids, [-1])
  label_weights = tf.reshape(label_weights, [-1])
  one hot labels = tf.one hot(
      label_ids, depth=bert_config.vocab_size, dtype=tf.float32)
 per_example_loss = -tf.reduce_sum(log_probs * one_hot_labels, axis=[-1])
 numerator = tf.reduce_sum(label_weights * per_example_loss)
 denominator = tf.reduce_sum(label_weights) + 1e-5
 loss = numerator / denominator
return (loss, per_example_loss, log_probs)
```

Next Sentence Prediction

- ➤ 50% actual next sentence, 50% random sentence.
- C (CLS) is used for NSP task.

Making Predictions

Write a sentence to predict what you think will happen next.

	ed for my school bag and noticed m
nomew	ork was missing
I faster	ned up my winter coat, ready for son
sledgin	g in the snow
sledgin	g in the snow
sledgin	g in the snow
While s	g in the snow etting the table for dinner, I noticed
While s	etting the table for dinner, I noticed
While s	etting the table for dinner, I noticed
While s	etting the table for dinner, I noticed

Next Sentence Prediction

```
def get next sentence output(bert config, input tensor, labels):
  """Get loss and log probs for the next sentence prediction."""
 # Simple binary classification. Note that 0 is "next sentence" and 1 is
 # "random sentence". This weight matrix is not used after pre-training.
 with tf.variable_scope("cls/seq_relationship"):
    output_weights = tf.get_variable(
       "output weights",
        shape=[2, bert_config.hidden_size],
        initializer=modeling.create_initializer(bert_config.initializer_range))
   output bias = tf.get variable(
        "output_bias", shape=[2], initializer=tf.zeros_initializer())
    logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
    logits = tf.nn.bias add(logits, output bias)
    log_probs = tf.nn.log_softmax(logits, axis=-1)
    labels = tf.reshape(labels, [-1])
    one_hot_labels = tf.one_hot(labels, depth=2, dtype=tf.float32)
   per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
    loss = tf.reduce mean(per example loss)
    return (loss, per_example_loss, log_probs)
```

Experiment

GLUE

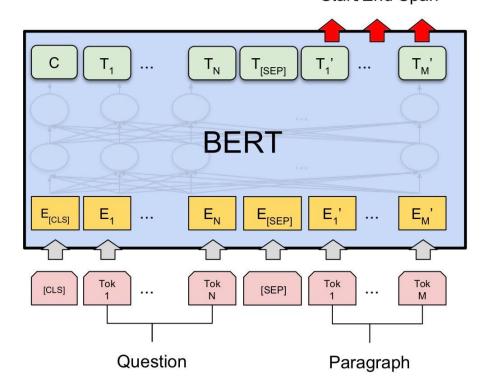
GLUE (General Language Understanding Evaluation) Benchmark Tasks:

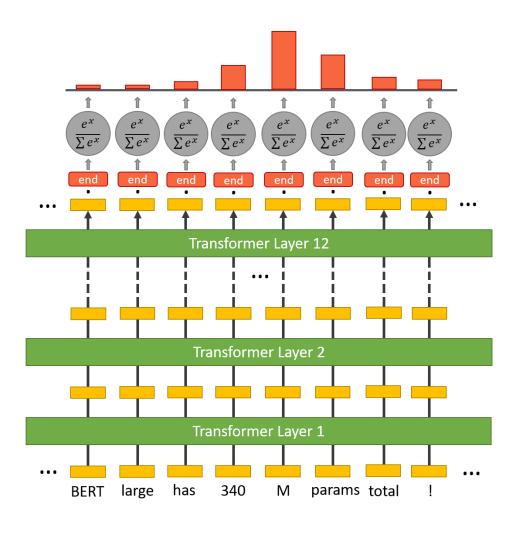
Task	Example		Metric
Grammatical	"This toast is than that one." = Ungrammatical	CoLA	Matthews
Sentiment Analysis	"Toy Story 2 was okay." = .543291 (neutral)	SST-2	Accuracy
Similarity	 a.) A pride of lions surrounded a monkey. b.) Lions encompassed a monkey. = 4.7 (Very Similar) 	STS-B	Person / Spearman
Paraphrase	 A. Last week, Seattle reported 12 new earthquakes. B. Seattle reported another 12 earthquakes yesterday. = A Paraphrase 	MRPC	Accuracy / F1
Question Similarity	a.) How can I cook noodles over a campfire? b.) How do you make Mac & Cheese? = Not Similar	QQP	Accuracy / F1
Contradiction	a.) Glossier products are the best!b.) Glossier products are overpriced.= Contradiction	MNLI-mm	Accuracy
Answerable	a.) How does the Dyson Airwrap work? b.) The Airwarp uses the Coanda effect to create a vortex pulling the hair towards the attachments. = Answerable	QNLI	Accuracy
Entail	a.) In 2006, Paul David bought a Microprocessing center to create 30,000 jobs in Northern Minnesota. b.) Paul David created 30,000 jobs in MN. = Entail	RTE	Accuracy
Ambiguous pronouns	 a.) Federico spoke to Marie, breaking her focus. b.) Federico spoke to Marie, breaking Federico's focus. = Incorrect Referent 	WNLI	Accuracy

Experiment

SQuAD

- "Who wrote the Harry Potter series?"
- The Harry Potter was written by J.K. Rowling." Start/End Span





Ablation Studies

Effect of Pre-training Tasks

► No NSP: MLM o, NSP x

- ► LTR & NO NSP: MLM x (Left-to-Right), NSP x
 - Comparable to OPENAI GPT

]	Dev Set		
Tasks	MNLI-m	QNLI	MRPC	SST-2	SQuAD
	(Acc)	(Acc)	(Acc)	(Acc)	(F1)
BERT _{BASE}	84.4	88.4	86.7	92.7	88.5
No NSP	83.9	84.9	86.5	92.6	87.9
LTR & No NSP	82.1	84.3	77.5	92.1	77.8
+ BiLSTM	82.1	84.1	75.7	91.6	84.9

Ablation Studies

Effect of Model Size

- ► Larger model, better performance
- ► Task-specific models can benefit from the larger, more expressive pretrained representations.

Hyperparams				Dev Set Accuracy			
#L	#H	#A	LM (ppl)	MNLI-m	MRPC	SST-2	
3	768	12	5.84	77.9	79.8	88.4	
6	768	3	5.24	80.6	82.2	90.7	
6	768	12	4.68	81.9	84.8	91.3	
12	768	12	3.99	84.4	86.7	92.9	
12	1024	16	3.54	85.7	86.9	93.3	
24	1024	16	3.23	86.6	87.8	93.7	

Ablation Studies

Feature-based Approach with BERT

- ► Not all tasks can be easily represented by a Transformer encoder architecture, require a task-specific model architecture to be added.
- ► There are major computational benefits.
 - By using cheaper models on top of BERT representation.

System	Dev F1	Test F1
ELMo (Peters et al., 2018a)	95.7	92.2
CVT (Clark et al., 2018)	-	92.6
CSE (Akbik et al., 2018)	-	93.1
Fine-tuning approach		
BERT _{LARGE}	96.6	92.8
$BERT_{BASE}$	96.4	92.4
Feature-based approach (BERT _{BASE})		
Embeddings	91.0	-
Second-to-Last Hidden	95.6	-
Last Hidden	94.9	-
Weighted Sum Last Four Hidden	95.9	-
Concat Last Four Hidden	96.1	-
Weighted Sum All 12 Layers	95.5	-

End of Document

