
MARTY-1.5
A Modern ARtificial Theoretical phYsicist

User Manual

Grégoire Uhlrich

May 30, 2022

MARTY User Manual

2

Contents

Introduction 13

1 Basics 15
1.1 Philosophy . 15
1.2 CSL . 16

1.2.1 The Expr type . 16
1.2.2 Modifying expressions . 16
1.2.3 Accessing sub-expressions . 17
1.2.4 Tensors . 17
1.2.5 Deeper features . 19

1.3 Basic principles . 19

2 Quantum Fields 23
2.1 Different types of quantum fields . 24

2.1.1 Overview . 24
2.1.2 Fermions . 25
2.1.3 Vectors . 26
2.1.4 Scalars . 26

2.2 Using and modifying a Particle . 27
2.2.1 Getting particles . 27
2.2.2 Basic properties . 28
2.2.3 Gauge and Flavor representations 31

2.3 Quantum Fields in expressions . 34
2.3.1 Indices . 34
2.3.2 Space-time point . 35
2.3.3 Creating an expression from a Particle 36
2.3.4 Type system . 37
2.3.5 Polarization field . 38

3 Models 41
3.1 Introduction . 41
3.2 ModelData interface . 41

3.2.1 Adding / Removing particles . 44
3.2.2 Managing couplings . 44
3.2.3 Lagrangian . 45
3.2.4 Adding Lagrangian terms . 47
3.2.5 Fermion number violating interactions 50
3.2.6 Group theory objects . 52

3

https://marty.in2p3.fr/doc/csl/html/classcsl_1_1Expr.html

MARTY User Manual CONTENTS

4 Group theory 57
4.1 Semi-simple Lie algebras . 58

4.1.1 Principle . 58
4.1.2 Semi-simple Lie algebras in MARTY 58

4.2 Irreducible representations . 59
4.2.1 Highest-weight state . 59
4.2.2 The su(2) example . 59
4.2.3 The su(3) example . 60
4.2.4 Irreducible representations in MARTY 61

4.3 Product decomposition . 62
4.4 Gauge representations . 63
4.5 Dynkin labels for common representations 64

4.5.1 su(N) . 65
4.5.2 so(N) . 65
4.5.3 sp(N) . 66
4.5.4 E6 . 66
4.5.5 E7 . 67
4.5.6 E8 . 67
4.5.7 F4 . 68
4.5.8 G2 . 68

5 Model Building 69
5.1 Recipe . 69
5.2 Gauge Group . 70
5.3 Particle content . 72
5.4 Completing the Lagrangian . 72
5.5 ModelBuilder interface . 72

5.5.1 Replacements . 72
5.5.2 Symmetry breaking . 75
5.5.3 Diagonalization . 78
5.5.4 Other features . 83

6 Calculations 87
6.1 General principles . 87
6.2 Feynman Rules . 87

6.2.1 Get Feynman rules . 87
6.2.2 Read Feynman rules . 88

6.3 Gauge fixing . 90
6.4 Amplitude . 91

6.4.1 External legs . 91
6.4.2 Finding diagrams . 93
6.4.3 Initial amplitude expression . 94
6.4.4 Simplify the expression . 95

6.5 Squared Amplitude . 97
6.6 Decay widths . 99
6.7 Wilson coefficients . 101

6.7.1 Definitions . 101
6.7.2 Wilson coefficient extraction . 102
6.7.3 Calculation details . 107

4

MARTY User Manual CONTENTS

6.7.4 Conclusion on the extraction of Wilson coefficients 109
6.8 Automating calculations . 110

7 Code generation 113
7.1 Library generation . 113

7.1.1 General principles . 113
7.1.2 Spectrum generation . 114
7.1.3 LHA Reader . 115

7.2 The generated libraries . 116
7.2.1 Layout . 116
7.2.2 The param_t structure . 117
7.2.3 Spectrum generation . 118
7.2.4 Meta-programming features . 119

8 Options 121
8.1 The FeynOptions class . 121

8.1.1 Local options . 121
8.1.2 Filters . 122
8.1.3 Amplitude selection . 123

8.2 Global options . 123
8.2.1 CSL options . 123

8.3 General options . 124
8.3.1 Amplitude calculation options . 125

9 Built-in models 127
9.1 Simple models . 128

9.1.1 Scalar theory . 128
9.1.2 Scalar QED . 128
9.1.3 QED . 129
9.1.4 QCD . 130
9.1.5 Electro-weak model . 131

9.2 Standard Model (SM) . 136
9.3 2 Higgs Doublet Model (2HDM) . 136

9.3.1 The high-energy Lagrangian . 136
9.3.2 Samples . 141

9.4 Minimal Supersymmetric Standard Model (MSSM) 141
9.4.1 Unconstrained MSSM . 141
9.4.2 Phenomenological MSSM . 142

10 Debugging MARTY programs 143
10.1 Common mistakes . 143

10.1.1 Model Building mistakes . 143
10.1.2 Calculation mistakes . 144

10.2 GNU Debugger (GDB) . 144
10.3 The author(s) . 145

5

MARTY User Manual CONTENTS

6

List of Figures

1.1 Principle of CSL tensors . 18
1.2 Principle of MARTY . 20

2.1 Principle of MARTY Quantum fields . 23
2.2 Inheritance tree for Quantum fields . 24
2.3 Gauge group definitions . 27
2.4 Dirac fermion embedding . 28
2.5 Field contractions . 30

(a) Standard contractions . 30
(b) Self-conjugate contractions . 30

3.1 Inheritance tree for Model . 41
3.2 Examples of interactions that can lead to fermion number violating pro-

cesses. ψ is a regular spin 1/2, N a Majorana and B a boson (scalar or
vector). 50

3.3 Examples of fermion number violating (locally at least) processes. ψ is a
regular spin 1/2, N a Majorana and B a boson (scalar or vector). 51

3.4 Physics to group theory . 53

4.1 su(2) algebra . 60
4.2 Weight lattice of su(3) . 60
4.3 Common representations of su(3) . 61

6.1 Feynman rule vertex . 89
6.2 Scalar QED 3-vertex . 89
6.3 Yang-Mills propagators . 90
6.4 Transition diagrams . 92
6.5 Mass correction diagram . 109

7.1 Content of the C++ libraries generated by MARTY. 116

9.1 Scalar theory Feynman rules . 128
(a) Propagator . 128
(b) 3-vertex . 128

9.2 Scalar QED Feynman rules . 129
(a) Vector propagator . 129
(b) Scalar propagator . 129
(c) 4-vertex . 129
(d) 3-vertex . 129

9.3 QED Feynman rules . 129
(a) electron propagator . 129

7

MARTY User Manual LIST OF FIGURES

(b) Vertex . 129
9.4 QCD gluon Feynman rules . 130

(a) 3-gluon vertex . 130
(b) 4-gluon vertex . 130

9.5 QCD fermion Feynman rules . 131
(a) u gauge interaction . 131
(b) d gauge interaction . 131

9.6 Higgs rules in the Electro-weak model . 133
(a) h3 vertex . 133
(b) h4 vertex . 133
(c) huū vertex . 133
(d) hdd̄ vertex . 133
(e) hW+W− vertex . 133
(f) hhW+W− vertex . 133
(g) hZZ vertex . 133
(h) hhZZ vertex . 133

9.7 Fermion rules in the Electro-weak model 134
(a) ūAu vertex . 134
(b) d̄Ad vertex . 134
(c) ūLWdL vertex . 134
(d) ūRZuR vertex . 134
(e) d̄RZdR vertex . 134
(f) ūLZuL vertex . 134
(g) d̄LZdL vertex . 134

9.8 Gauge bosons rules in the Electro-weak model 135
(a) WWA vertex . 135
(b) WWZ vertex . 135
(c) WWWW vertex . 135
(d) WWZZ vertex . 135
(e) WWAA vertex . 135
(f) WWAZ vertex . 135

8

List of Tables

2.1 Properties of Quantum fields . 29
2.2 Dynkin classification . 32
2.3 Common Dynkin labels . 32

3.1 ModelData content . 43

4.1 Lorentz representations . 57
4.2 su(N) Dynkin labels . 65
4.3 su(3) Dynkin labels . 65
4.4 so(N) Dynkin labels . 66
4.5 sp(N) Dynkin labels . 66
4.6 E6 Dynkin labels . 67
4.7 E7 Dynkin labels . 67
4.8 E8 Dynkin labels . 67
4.9 F4 Dynkin labels . 68
4.10 G2 Dynkin labels . 68

5.1 Gauged groups in MARTY . 71

6.1 Gauge choices . 90
6.2 Dirac couplings for dimension-6 operators 105
6.3 Color couplings for dimension-6 operators 105

9.1 Electroweak matter content . 131
9.2 4 types of 2HDM . 139
9.3 Yukawas in 2HDM models . 141

9

List of sample codes
1 CSL program . 16
2 Basics on CSL expressions 1/2 . 16
3 Basics on CSL expressions 2/2 . 17
4 Access CSL sub-expressions . 17
5 Basics on CSL tensors . 19
6 Creating fermions . 25
7 Creating vector bosons . 26
8 Creating scalars . 26
9 Creating ghosts and Golstones . 26
10 Getting a particle from a model . 27
11 Dirac fermion embedding . 28
12 Quantum fields properties usage . 31
13 Setting gauge representations . 33
14 Setting flavor representations . 34
15 Generating indices . 35
16 Generating space-time points . 35
17 Particles to symbolic expressions . 37
18 Symbolic expressions to particle . 38
19 Polarization fields . 39
20 Adding / Removing particles . 44
21 Managing couplings . 45
22 Adding mass terms explicitly . 47
23 Getting γ−matrices . 49
24 Getting group generators . 49
25 Vector spaces . 50
26 Gauge and Flavor . 53
27 Gauge and Flavor groups . 54
28 Getting representations from particles 54
29 Abstract groups and algebras . 55
30 Semi-simple algebras . 58
31 Irreducible representations . 61
32 Representation product decomposition 63
33 Gauge irreducible representations . 64
34 Model building recipe . 70
35 Adding gauged and flavor groups . 71
36 Renaming particles . 73
37 Replacing expressions . 73
38 Replacing tensors . 74
39 Replacing particles . 75
40 Symmetry breaking . 77
41 Sub-grouping flavor symmetries . 78
42 Create a unitary matrix . 80
43 Tensor field rotation . 80
44 Field rotation . 81
45 Symbolic diagonalization . 81
46 Semi-automated diagonalization . 83
47 Automated diagonalization . 83

10

48 Dirac fermion embedding . 84
49 Goldstone boson promotion . 84
50 Ghost boson promotion . 84
51 Majorana fermion promotion . 85
52 Feynman rules . 88
53 Gauge fixing . 91
54 Field insertions . 92
55 Amplitude calculation . 93
56 Squared amplitudes . 98
57 Virtual corrections . 99
58 Decay widths . 100
59 Automated decay widths . 100
60 Wilson coefficient calculation . 102
61 General Wilson coefficient extraction 1/2 103
62 General Wilson coefficient extraction 2/2 104
63 (Chromo-)Magnetic operators . 106
64 Dimension-6 operators . 106
65 Dimension-5 operators . 107
66 Get particles lists from a model . 111
67 Automate a large number of calculations 111
68 Create a C++ library with MARTY . 114
69 Customize libraries . 114
70 Generation of the spectrum generator 115
71 LHA Reader, a SUSY example . 116
72 Importing the LHA module in a library 116
73 Generalities on the parameters . 117
74 Spectrum generation . 119
75 Looping over functions . 119
76 Accessing parameters and functions 120
77 Using custom options for amplitudes 121
78 Apply filters in amplitudes . 122
79 Select parts of amplitudes . 123
80 Set up options . 124
81 Display models . 127
82 The Standard Model . 136
83 2HDM . 141
84 Unconstrained MSSM . 142
85 Phenomenological MSSM . 142

11

12

Introduction

MARTY (for Modern ARtificial Theoretical phYsicist) is a C++ framework developed to
accelerate phenomenology Beyond the Standard Model (BSM). When doing phenomenol-
ogy one wants to build a predictive model, and compare its predictions to experimental
data and Standard Model (SM) values. This task is extremely difficult because it needs
an important amount of man power to perform the required calculations in general BSM
models. Calculating observables require first to be able to evaluate transition amplitudes,
cross-sections and Wilson coefficients in effective theories. These calculations can be done
pertubatively but represent a real challenge if one wants to do them by hand, considering
that a single calculation for a particular model can take weeks and is error prone.

Because of the possibly huge number of terms in amplitude calculations, they must be
performed analytically. Computers are not built for that purpose, this is why a program
automating theoretical calculations BSM needs a computer algebra system. Existing pro-
grams performing one-loop calculations BSM use Mathematica [1], a private and closed
software for symbolic manipulations. This is the case of FormCalc [2] and SARAH [3].
Other Mathematica-based programs can perform several other tasks. FeynRules [4] calcu-
lates Feynman rules from a Lagrangian, FeynArts [2] can draw Feynman diagrams in the
Mathematica interface. There also are codes that have implemented their own computer
algebra system like LanHEP [5], CalcHEP [6] and CompHEP [7]. However these codes
do not perform one-loop level computations, that are important for phenomenology as
many processes are trivial at the tree-level. We may give the example of Flavor Changing
Neutral Currents (FCNC) in flavor physics, crucial for phenomenology, that only appear
at the one-loop level.

MARTY [8] solves this issue by proposing a free and open-source code, fully written
in C++, that automates theoretical calculations at the one-loop level in a very large
variety of BSM models. It has its own computer algebra system, CSL (C++ Symbolic
computation Library). All calculations are automated from the Lagrangian of the theory.
Feynman rules may first be derived, (squared) amplitudes and Wilson coefficients are
calculated at tree-level or at one-loop. All calculations are automated in any BSM model,
amplitudes are simplified as much as possible to allow a numerical evaluation that other-
wise would be impossible. This evaluation is done by a C++ library generated by MARTY
containing all the material necessary to calculate the exact value of the results, depending
on the model parameters. MARTY also generates Feynman diagrams graphically with a
Desktop application, GRAFED (Generating and Rendering Application for FEynman
Diagrams).

In this manual one may find detailed explanations on core features of MARTY. Keep in
mind that there also is the documentation, more interactive and helpful when one already
knows how to use MARTY, and the website on which the reader may find more information
and in particular all the publications. MARTY permanently uses CSL as computational core
to manipulate symbolic expressions. This manual will not go into much details of CSL as

13

https://marty.in2p3.fr/doc/marty/html/index.html
https://marty.in2p3.fr

there already is a comprehensive CSL manual.
Chapter 1 represents a review the basic principle of MARTY, including main CSL features.

Chapters 2, 3 and 4 present the main interface of MARTY, respectively quantum fields, high
energy physics models, and group theory. They are presented outside any actual program
context. This context is then treated in chapters 5 for model building, 6 for calculations
and 7 for the code generation. These three steps represent the main parts, in that order,
of a typical MARTY program. Finally, a word is given about options in chapter 8, built-in
MARTY models in chapter 9 and debugging possibilities in chapter 10.

14

https://marty.in2p3.fr/doc/csl-manual.pdf

Chapter 1

Basics

1.1 Philosophy

MARTY is an independent code, that has been given all the tools it needs to perform
theoretical calculations BSM at the one-loop level.

Modern C++. MARTY has been written in C++ mainly for performance reasons. This
language is an old derivative of C but is constantly improving and is the best comprise, in
the high energy physics community, between an effective and popular language. The main
competitor was python. Analytical calculations require however to manipulate thousands
of terms, and we think that python could not offer enough guarantee in terms of execution
speed1.

MARTY is written with the C++17 standard (2017) following modern guidelines [9] and
coding standards. C++ recent improvements2 allow to write code in a safer, simpler, and
more optimized way using in particular developments of the standard library [10]. We
want to facilitate the development of MARTY in the future, being for us or not.

Generality. MARTY implementations are always very general, i.e. not limited to any
particular case. Being for the model definitions or calculations, there is very few limita-
tions to what it can do. Rather than implementing simple and fast algorithms to known
cases, MARTY implements more complex and slower ways to get to the same results3. This
way will however lead to all kind of results, for models we did not even think of when
developing the code. We want the context in which MARTY can be used to be as large as
possible. Once a fully general algorithm works we may start to optimize it to be more
efficient for particular cases. Details on what models can be built in MARTY are given in
chapter 5, and on what calculations it can perform in chapter 6. In particular, most of
the content in this manual presents special cases of what MARTY can do. When there are
real limitations, they are explicitly mentioned.

Independence. As we said in the Introduction, MARTY is independent of Mathematica,
but in general of any other framework. We started from scratch in C++, just using the

1This is due to the fact that such a program would not much benefit from python pre-compiled
functions such as numpy ones because we explicitly manipulate objects that are not numbers, but symbolic
mathematical expressions.

2In particular since 2011, C++11, C++14 and C++17 standards.
3MARTY run-time could indeed be optimized at several places, but is still very efficient.

15

standard library and built what we needed to create such a code. This means in particular
that all aspects of the code are under control. Symbolic manipulations, simplifications,
Quantum Field Theory, Group Theory and more can all be found in MARTY’s code, mod-
ified, corrected, extended. This is a great power implying great responsibilities in terms
of development.

1.2 CSL

Symbolic manipulations needed to do physics are done with CSL. In the following is
presented a very brief introduction on this computer algebra system, one may find more
information in the manual and the documentation.

Throughout this manual, we consider that CSL is properly installed on the computer,
with include and namespace statements as presented in sample code 1 in each program.

Sample code 1: CSL program

#include <csl.h>

using namespace std; // Standard library namespace
using namespace csl; // CSL namespace

int main() {

// My program
return 0;

}

1.2.1 The Expr type

Any mathematical expression in CSL can be stored in the Expr type. A number, a constant,
a sum, a product, a mathematical function can all be contained in such variable. This
type has a simple interface, allowing to print it in the terminal, access elements, and use
mathematical operations. To create symbolic expressions, one must call dedicated CSL
functions (all with a suffix _s for symbolic). One may then combine them to create more
complex expressions with a standard syntax as shown in sample code 2.

Sample code 2: Basics on CSL expressions 1/2

Expr a = constant_s("a");
cout << (a*a + sqrt_s(4*a)) endl;
// >> a^2 + 2*a^(1/2)

1.2.2 Modifying expressions

Expressions may be modified with CSL interface functions (see sample code 3) or with
member functions of the Abstract class, that one can access any time from an expression
Expr using -> (expr->function() of expr an Expr variable).

16

https://marty.in2p3.fr/doc/csl-manual.pdf
https://marty.in2p3.fr/doc/csl/html/index.html
https://marty.in2p3.fr/doc/csl/html/classcsl_1_1Expr.html
https://marty.in2p3.fr/doc/csl/html/classcsl_1_1Abstract.html

Sample code 3: Basics on CSL expressions 2/2

Expr b = constant_s("b");
Expr expr = a*a + sqrt_s(4*a);
Replace(expr, a, b + 1);
cout << expr << endl;
// >> (1 + b)^2 + 2*(1 + b)^(1/2)
DeepExpand(expr);
cout << expr << endl;
// >> 1 + 2*b + b^2 + 2*(1 + b)^(1/2)

1.2.3 Accessing sub-expressions

One can easily access sub-expressions in CSL using the Size() interface function, and using
operator[] as shown in sample code 4.

Sample code 4: Access CSL sub-expressions

Let’s create a function that prints sub-arguments

void printArguments(Expr a)
{

for (size_t i = 0; i != Size(a); ++i)
cout << i << "␣:␣" << a[i] << endl;

// Also possible to call a->size()
}

And use it

Expr a = constant_s("a");
Expr expr = 1 + pow_s(a, 2) + sqrt_s(4*a);
printArguments(expr);
// >> 0 : 1
// >> 1 : a^2
// >> 2 : 2*a^(1/2)

Note Using the subscript operator with [i] returns another expression of type
Expr. This procedure can then be repeated recursively to parse the whole expression.

Note size_t is simply long unsigned int. It is defined to contain size values that
cannot be negative and are encoded on 64 bits (on 64 bits architectures).

1.2.4 Tensors

Tensors are a major topic of interest in CSL, as they are ubiquitous in high-energy physics
calculations. The principle is presented in figure 1.1. It is very similar to the Quantum
Fields that will be presented in chapter 2. There is one unique parent, the abstract tensor,
containing all intrinsic properties. The objects entering mathematical expressions, that
may be multiple, contain only their specific properties (indices for example) and a pointer
to their parent tensor. This allows to save memory, keeping access at all time to any

17

Figure 1.1: Working principle of tensors in CSL. The parent (TensorParent) is unique in
the program, contains all its intrinsic properties, and can generate symbolic expressions
(TensorElement) given some indices.

property through the parent pointer. Indices given to tensor are Index objects. They are
simple data container and can be used easily as shown in the following.

TensorParent is not the end of the story, as its life-time must be managed cor-
rectly, taking into account the fact that it must not be destroyed if it exists at least
one TensorElement. The parent is then encapsulated in a Tensor object, that is a
shared_ptr<TensorParent> re-implementing some interface.

The reader should keep in mind that the object one manipulates in CSL is a Tensor. One
can give it indices between brackets, and access all member functions of TensorParent with
->. When calling the parent with indices, an expression Expr specialized in TensorElement
is returned. Examples of use are shown in sample code 5. The principle is exactly the
same for Quantum fields:

• A Quantum field element, the equivalent of TensorElement, is called QuantumField.

• A Quantum field parent, the equivalent of TensorParent, is called QuantumFieldParent.

• The actual parent object the user manipulates, the equivalent of Tensor, is called
Particle.

18

https://marty.in2p3.fr/doc/csl/html/classcsl_1_1Index.html
https://marty.in2p3.fr/doc/csl/html/classcsl_1_1TensorParent.html
https://marty.in2p3.fr/doc/csl/html/classcsl_1_1TensorElement.html
https://marty.in2p3.fr/doc/csl/html/classcsl_1_1Tensor.html

Sample code 5: Basics on CSL tensors

Creating or getting existing tensors

Tensor A("A", {&Minkowski, &Minkowski});
Tensor X("X", &Minkowski);
Tensor g = GetMetric(Minkowski);

Creating indices to feed tensors

Index mu = GenerateIndex(Minkowski);
Index nu = GenerateIndex(Minkowski);

Creating symbolic indexed expressions

Expr indexed = A({mu, nu})*(X(+mu)*X(+nu) + g({+mu, +nu}));
cout << indexed << endl;
// >> A_{%mu,%nu}*(X_+%mu*X_+%nu + g_{+%mu,+%nu})
cout << Expanded(indexed) << endl;
// >> A_{+%mu,%mu} + A_{%mu,%nu}*X_+%mu*X_+%nu

Note The % symbol means that an index is summed over (repeated) in an expres-
sion, and the + symbol means that it is up (for spaces with non-trivial metric like
Minkowski that have up and down indices).

1.2.5 Deeper features

This section is a crash course on CSL. To get deeper on how to read and modify symbolic
expressions, feel free to take a look at the comprehensive CSL manual. One can find much
more details and explanations to really master CSL.

1.3 Basic principles
MARTY is a very general code for high-energy physics. From model building to theoretical
calculations at one-loop, everything can be done in MARTY for BSM. Amplitudes, squared
amplitudes, Wilson coefficients may be calculated in full generality in a very large variety
of BSM models. The idea behind that code is to be able to build a new BSM model easily
and perform a detailed phenomenological study within a few lines of C++ and very little
time, greatly accelerating the research Beyond the Standard Model.

Such a complex code must encapsulate as many objects as possible and let the user
a simple interface to use. This is what is done in MARTY as most of the features can be
accessed through a single function call. For interface functions, parameters are simplified
as much as possible in order to ask the user a very small quantity of information. A
sketch of how MARTY works internally is presented in figure 1.2. One may see in particular
that there is no direct communication between the user and calculation modules of MARTY,
or CSL the computer algebra system of MARTY. This is the consequence of the fact that
calculations are fully automated, without any need for additional information from the
user. Note that one can still use all CSL capabilities to modify results as they are symbolic
expressions stored in Expr variables.4

4Results are rarely composed only of symbolic expressions because there is more information to return
to the user. One may however always get to symbolic expressions and use CSL to modify them. See
chapter 6 for more details.

19

https://marty.in2p3.fr/doc/csl-manual.pdf

A standard MARTY program always goes through the same steps.

• Model loading. The model can already be ready to use, or need some calculation
steps to be done by MARTY. See chapter 5 for information on how to build a model.

• Setting of options. Before doing calculations, one may want to change some
options to make MARTY do the calculation a certain way. See chapter 8 for more
information on possible options.

• Calculations. Once the model is loaded and options are set, one may launch the
calculation(s) that MARTY must perform. Details are given in chapter 6.

• Library generation. After calculating a theoretical quantity analytically, one
makes MARTY generate the corresponding C++ code to evaluate the results numer-
ically depending on the model parameters. This procedure is explained is chapter
7.

All these steps are typically very simple to implement and a MARTY program rarely
takes more than a hundred lines of code, including line breaks and spaces for readability.
The only step that may be very long is to build the model if it is not given by MARTY. A
model like the MSSM for example cannot be built from scratch in MARTY in a few lines,
even with a simple user interface (see chapter 5).

Figure 1.2: Sketch of MARTY basic principle. The user communicates (in C++) with
the high-energy physics model to get / modify its content, and to perform calculations.
These calculations are done internally by MARTY (using CSL) and are, at least for now,
completely separated from the user interface.

Once the numerical C++ code is generated, one may use the resulting values in your
favorite phenomenological code to scan the model, detect interesting scenarios with respect
to the SM, compare to experimental data etc. At the end of the day, an ultimate tool

20

would be to have a direct interface between MARTY and such codes. It is actually already
on the way for SuperIso [11, 12, 13] in flavor physics, and SuperIso Relic [14, 15, 16] in
Dark Matter. With such interfaces, one may launch a complete phenomenological analysis
of a BSM model at one-loop by basically pressing the Enter key and drinking coffee or
watching ’Back to the Future’.

21

22

Chapter 2

Quantum Fields

This chapter is dedicated to MARTY’s user interface for quantum fields. The QuantumField
object inherits from TensorFieldElement in CSL. In section 1.2 we saw the basic principle
of an indexed tensor in CSL, in particular the object TensorElement. A tensor field is a
tensor with a space-time point:

Aµν → Aµν(X), (2.1)

and a quantum field is a tensor field with more properties. Recalling figure 1.1, the same
principle holds for quantum fields. There is simply more properties in a quantum field, and
the naming convention is slightly different1. The equivalent sketch for the QuantumField
object is shown in figure 2.1.

Figure 2.1: Working principle of quantum fields in MARTY. The parent (QuantumField-
Parent) is unique in the program, contains all its intrinsic properties, and can generate
symbolic expressions (QuantumField) given some indices and a space-time point.

As in the case of simple tensors, the object in the user’s hands is not directly the quan-
tum parent, but in this case a Particle object. It is a shared pointer to QuantumFieldParent,
ensuring a well-managed life-time for the parent. MARTY’s user interface always takes

1We should have named QuantumFieldElement the object entering expressions, but named it
QuantumField instead because this object is used at many places in MARTY’s code and had to be shorter
for readability reasons.

23

https://marty.in2p3.fr/doc/marty/html/classmty_1_1QuantumField.html
https://marty.in2p3.fr/doc/csl/html/classcsl_1_1TensorFieldElement.html
https://marty.in2p3.fr/doc/csl/html/classcsl_1_1TensorElement.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1Particle.html

Particle objects, and the QuantumFieldParent interface can be used simply using -> on a
Particle.

2.1 Different types of quantum fields

All possible quantum fields in MARTY inherit from QuantumFieldParent as shown in figure
2.2. The base class is not constructible, and users manipulate a (shared) pointer to this
base class. This shared pointer is encapsulated in a Particle object and can then reference
a Dirac fermion, a vector boson, etc.

Figure 2.2: Inheritance tree for the QuantumFieldParent object. It first inherits from
CSL tensors, and then is specialized in the different types of particles in MARTY.

2.1.1 Overview

A particle in MARTY is one specialization of QuantumFieldParent:

• ScalarBoson: Scalar boson, trivial representation of the Lorentz group.

• WeylFermion: Chiral two-component fermion. Weyl fermions are always projected
on left or right chiralities in amplitudes. They may be paired to form a Dirac
fermion.

• DiracFermion: 2-component Majorana fermion if self-conjugate, 4-component Dirac
fermion otherwise. Majorana fermions are embedded in Dirac notation in MARTY.
Dirac fermions can contain Weyl sub-parts with the definition ψ = ψL ⊕ ψR.

• VectorBoson: Spin 1 particle Aµ, associated with a field strength. A vector boson
can also have associated ghost and Goldstone bosons.

24

https://marty.in2p3.fr/doc/marty/html/classmty_1_1ScalarBoson.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1WeylFermion.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1DiracFermion.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1VectorBoson.html

• GaugeBoson: Specialization of VectorBoson that keeps a pointer to the gauged group
it is the gauge boson of. A gauge boson in a non abelian gauged group (different
from U(1)) has a predefined GhostBoson.

• FieldStrength: Field strength object for a vector boson (gauge or not) Fµν = ∂µAν−
∂νAµ.

• GhostBoson: Ghost bosons defined in non abelian gauged group. It is a non-physical
anti-commuting bosonic field introduced to quantize properly the theory that ap-
pears only at the one-loop level in diagrams. They are linked with their GaugeBoson
through gauge fixing.

• GoldstoneBoson: Goldstone bosons may be defined to link a scalar boson of the
theory as the Goldstone of a vector boson, to have proper gauge fixing conditions.

Some particles may be defined automatically by MARTY, like the gauge bosons and
ghosts, when defining the gauge group of the theory. Users will however have to define
particle content on their own2, using built-in functions that create all the necessary par-
ticles presented above. All particle constructions work the same way. Each time, one
must give the name of the particle, the model in which it lives, and additional arguments
specific to that particle. In all sample codes in the following, model is assumed to be a
valid Model object, whose gauge is already initialized (see chapter 5 for more details).

2.1.2 Fermions

Three types of spin 1/2 are possible to create in MARTY. Weyl, Dirac, and Majorana
fermions. Majorana fermions do not have their own builder function, as they do not
have their own class either. To create a Majorana one must first build a Dirac fermion,
and then specify that it is self-conjugate. Doing so will enable non-trivial contractions in
diagrams like 〈ψψ〉 and

〈
ψ̄ψ̄
〉
, whereas for Dirac fermions only

〈
ψψ̄
〉
and

〈
ψ̄ψ
〉
do not

vanish. Sample code 6 presents a summary on how to build fermions.

Sample code 6: Creating fermions

Dirac fermion

Particle e = diracfermion_s("e", model);

Weyl fermion

Particle muL = weylfermion_s("\\mu_L", model, Chirality::Left);
Particle muR = weylfermion_s("\\mu_R", model, Chirality::Right);

Majorana fermion

Particle maj = diracfermion_s("M", model);
maj->setSelfConjugate(true);

See also File fermionicField.h for the documentation of these functions.

2Only in a model building context. When using a built-in model, no need to define anything before
using the model.

25

https://marty.in2p3.fr/doc/marty/html/classmty_1_1GaugeBoson.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1FieldStrength.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1GhostBoson.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1GoldstoneBoson.html
https://marty.in2p3.fr/doc/marty/html/fermionicField_8h.html

2.1.3 Vectors

Spin 1 particles are often built by MARTY, as they are in general gauge bosons. Most
of high-energy physics models like the SM or even BSM do not have additional spin 1
particles. It is still possible in MARTY to create new spin 1 particles, as shown in sample
code 7.

Sample code 7: Creating vector bosons

Vector boson

Particle A = vectorboson_s("A", model);

Field strength

Particle F_A = A->getFieldStrength();

See also File vectorField.h for the documentation of vectorboson_s().

2.1.4 Scalars

Spin 0 particles are very simple to create as they have no specific property due to their
spin. Procedure to create a scalar boson is presented in sample code 8.

Sample code 8: Creating scalars

Particle phi = scalarboson_s("\\phi", model);

See also File scalarField.h for the documentation of scalarboson_s().

Ghosts and Goldstone bosons can be created explicitly as shown in sample code 9,
but in general will be handled automatically by MARTY during the model construction. As
those particles are tied to a given VectorBoson, no need to define any property. The user
only has to give the associated vector, and an optional name.

Sample code 9: Creating ghosts and Golstones

Considering a vector boson A as in sample code 7.

Ghost

Particle ghost_A = ghostboson_s("c", A);
// Or with name chosen by marty
Particle ghost_A = ghostboson_s(A);

See also File ghostField.h for the documentation of ghostboson_s().

Goldstone

Particle goldstone_A = goldstoneboson_s("c", A);
// Or with name chosen by marty
Particle goldstone_A = goldstoneboson_s(A);

See also File goldstoneField.h for the documentation of goldstoneboson_s().

26

https://marty.in2p3.fr/doc/marty/html/vectorField_8h.html
https://marty.in2p3.fr/doc/marty/html/scalarField_8h.html
https://marty.in2p3.fr/doc/marty/html/ghostField_8h.html
https://marty.in2p3.fr/doc/marty/html/goldstoneField_8h.html

2.2 Using and modifying a Particle

Once a particle is build following prescriptions of section 2.1, the interface is almost
always identical for all the different types of particles. This section will demonstrate how
to do basic manipulations on particles and how to get information from them. Keep in
mind that you may go at any time on the documentation of the Particle class, and the
QuantumFieldParent class that contains all the interface this section presents.

2.2.1 Getting particles

Gauge-related particles

We saw in the previous section how to create new particles. Before going further, it
is necessary to explain how to get the particles that MARTY creates on its own. Figure
2.3 presents the objects that are automatically created with gauged groups, including
naming conventions, in MARTY. All default names can be changed by the user. It is
however important to know the initial convention to be able to access all objects created
automatically.

Figure 2.3: Sketch of the main objects a MARTY gauged group creates with him. The
ghost particle and the generators are not created for the U(1) group as it is abelian.

The way to get different kinds of particles from a model MARTY is shown in sample
code 10. The field strength cannot be retrieved directly from the model as it has the same
name as the vector boson. It is actually not a different particle, simply another structure.
This is why the field strength is given by the particle itself, not the model.

Sample code 10: Getting a particle from a model

Particle e_L = model.getParticle("e_L"); // Weyl fermion
Particle A = model.getParticle("A_G"); // Vector boson of group "G"
Particle F_A = A->getFieldStrength(); // Field strength of group "G"
Particle c_A = model.getParticle("c_A_G"); // Ghost boson of group "G"

27

https://marty.in2p3.fr/doc/marty/html/classmty_1_1Particle.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1QuantumFieldParent.html

Dirac fermion embedding

When creating a Dirac fermion, MARTY automatically creates its left and right parts. The
three generated particles can talk to each other, and in particular a user can navigate
in the triangle they define through simple function calls. This is presented in figure 2.4.
Concrete examples in a MARTY program are presented in sample code 11.

Figure 2.4: Sketch of the relations between the different parts of a Dirac fermion em-
bedding ψ ≡ ψL ⊕ ψR. The getWeylFermion() function takes as argument a Chirality.

Sample code 11: Dirac fermion embedding

Creating a Dirac fermion

Particle psi = diracfermion_s("psi", model);

Navigating in the triangle

Particle psi_L = psi->getWeylFermion(Chirality::Left);
Particle psi_R = psi_L->getChiralityCounterPart();
Particle other_psi = psi_R->getDiracParent();

See also File fermionicField.h to see the documentation.

2.2.2 Basic properties

Basic properties means properties that are not the gauge or flavor representations, treated
separately in section 2.2.3. The main properties of quantum fields are presented in table
2.1.

28

https://marty.in2p3.fr/doc/marty/html/quantumField_8h.html
https://marty.in2p3.fr/doc/marty/html/fermionicField_8h.html

Property Type Getter Setter
Name string getName() setName()
Latex name string getLatexName() setLatexName()
Spin dimension int getSpinDimension()
Mass Expr getMass() setMass()
Width Expr getWidth() setWidth()
Self-conjugation bool isSelfConjugate() setSelfConjugate()
Physicality bool isPhysical() setPhysical()

Table 2.1: List of properties for quantum fields, with each time the type, getter and
setter functions. For setter functions, users must of course give one argument of the right
type. See the documentation of class QuantumFieldParent for more information.

Name

Names of particles have two different purposes apart from identifying their owners in
expressions. Firstly, names must uniquely define particles to allow a user to identify a
particle in a model, at any time, simply given its name. This name has to be short and
simple to lighten the interface. Another use of names is in Feynman diagrams, where one
prefers in general to see νµL rather than num. The problem is that latex expressions are
complicated, in that case one should write "\\nu_{\\mu_L}" each time referring to the
muon neutrino.

This is why regular and latex names are separated since MARTY-1.2. If not specified,
the latex name will be identical to the regular one. To avoid multiple calls (setName()
and setLatexName()), it is possible when creating a particle to give both names in the
same string literal, separating them by a ; (spaces around it are ignored). For example,
one can define a neutrino with

Particle num = weylfermion_s("num␣;␣\\nu_{\\mu_L}", Chirality::Left);

For identification purposes "num" will then have to be used, but Feynman diagrams will
display νµL .

Spin

The spin can of course not be changed, as it would require to change the particle type.
The user may access its value at anytime with the getSpinDimension() function. Be aware
however that as this function returns an integer, one does not get the spin but the spin
dimension

d = 2j + 1 , (2.2)

for a particle of spin j. Examples of property usage are presented in sample code 12.

Physicality

A non-physical particle cannot be used as external particle in any process. By default
ghosts and Goldstone bosons are non-physical and all other particles are, but this property
may be changed by the user. Examples of property usage are presented in sample code
12.

29

https://marty.in2p3.fr/doc/marty/html/classmty_1_1QuantumFieldParent.html

Self-conjugation

The self-conjugation property is in general the possibility for the field to contract with
itself, not complex conjugated. For a self-conjugate field, contractions like 〈φφ〉 and

〈
φ†φ†

〉
are enabled in diagrams whereas only

〈
φφ†
〉
and

〈
φ†φ
〉
are for other fields, as shown in

figure 2.5. This is a general statement. For integer spin particles it is simpler because the
self-conjugate property corresponds the the fact that the field is real:

φ† = φ for scalars bosons,
A†µ = Aµ for vector bosons.

(2.3)

There is in this case only one possible contraction.
For fermions however it is more subtle, because the self-conjugate Dirac field is not

real. It has 2 degrees of freedom instead of 4 but this is not equivalent to ψ† = ψ, at least
not in all realizations. For spin 1/2 particles, the self-conjugate property reads

ψc ≡ Cψ̄ = ψ, (2.4)

with the conjugation matrix
C ≡ iγ0γ2 (2.5)

in the Weyl realization for γ−matrices, that is the one used in MARTY. As the relation is
not as simple as ψ† = ψ, we keep both ψ and ψ† in the Lagrangian, and the four possible
contractions presented in figure 2.5 are possible replacing φ by ψ. Examples of property
usage are presented in sample code 12.

(a) Standard contractions (b) Self-conjugate contractions

Figure 2.5: Possible field contractions. For non self-conjugate particles only contractions
(a) do not vanish. For self-conjugate particles, all four contractions are non-zero.

Mass and Width

Mass and width arise in propagators when calculating an amplitude. They may be set to
any expression, not only constants or zero. One may for example give a mass

MG =
√
ξMA (2.6)

to a Goldstone boson related to a vector A, with gauge fixing parameter ξ.
The mass M and width Γ of a particle appear in propagator denominators

1

p2 −M2 + iMΓ
. (2.7)

The mass also appears in numerators for fermions and vector bosons but we will not detail
theses dependencies here. Examples of property usage are presented in sample code 12.

30

Sample code 12: Quantum fields properties usage

Building particles for the example

Particle W = vectorboson_s("W", model);
Particle c_W = ghostboson_s(W);
Particle psi = diracfermion_s("psi", model);

The basics

cout << c_W->isPhysical() << endl; // 0
cout << W->isPhysical() << endl; // 1
c_W->setPhysical(true);
cout << c_W->isPhysical() << endl; // 1
cout << c_W->getSpinDimension() << "␣" << psi->getSpinDimension()

<< "␣" << W->getSpinDimension();
// >> 1 2 3

Mass and width

Expr xi = constant_s("xi");
Expr M_W = constant_s("M_W");
Expr G_W = constant_s("G_W");
W->setMass(M_W);
W->setWidth(G_W);
c_W->setMass(sqrt_s(xi) * W->getMass()); // mcW =

√
ξMW

cout << c_W->getMass() << endl;
// >> xi^(1/2)*M_W

2.2.3 Gauge and Flavor representations

Gauge and flavor representations are crucial for the user to understand as any model
building activity with MARTY will require a good knowledge of this aspect.

Gauge representations

MARTY can handle all irreducible representations of all semi-simple groups. These repre-
sentations are defined by Dynkin labels [17]. These labels are positive integers and the
number of labels defining representations of a given group corresponds to the rank ` of
the algebra. Table 2.2 presents the link between gauged groups and their corresponding
algebra.

One may easily find definitions of Dynkin labels for common representations in the
literature. Table 2.3 shows sets of labels for the most used representations in physics.

Now that irreducible representations have been defined for non abelian gauged groups,
let us treat the special U(1) case. There is no Dynkin label in this case as only a frac-
tional charges define U(1) representations. In order to unify notations when doing model
building for U(1) or non abelian gauged groups, a fractional charge is treated as a pair of
Dynkin labels, one for the numerator and one for the denominator. For example, in the
SM, the electron has Dynkin labels (−1, 1) for the electromagnetic U(1) gauge whereas
the up quark has labels (2, 3).

More details on irreducible representations will be given in chapter 4 and on model

31

Group Algebra Rank
SU(N) A` ` = N − 1
SO(2N + 1) B` ` = N
Sp(2N) C` ` = N
SO(2N) D` ` = N
E6 E6 ` = 6
E7 E7 ` = 7
E8 E8 ` = 8
F4 F4 ` = 4
G2 G2 ` = 2

Table 2.2: Link between semi-simple groups and their algebras. The rank ` of the algebra
corresponds to the number of Dynkin labels defining uniquely irreducible representations.

Group Algebra Dynkin labels Dimension
SU(2) A1 (1) 2 (doublet)
SU(2) A1 (2) 3 (triplet)
SU(3) A2 (1, 0) 3 (triplet)
SU(3) A2 (0, 1) 3̄ (anti-triplet)
SU(3) A2 (1, 1) 8 (octet)
SU(3) A2 (2, 0) 6 (sextet)
SO(4) D2 (1, 0) 2 (left spinor)
SO(4) D2 (0, 1) 2̄ (right spinor)
SO(4) D2 (1, 1) 4 (vector)
E6 E6 (1, 0, 0, 0, 0, 0) 27

Table 2.3: Common representations in high energy physics, with their group, algebra,
Dynkin labels and dimensions. Trivial representations (dimension 1) have always labels
equal to zero.

32

building in chapter 5, but let us do a quick introduction on how to define gauge represen-
tation for particles in MARTY.

By default, all representations are trivial3. Calling the setGroupRep() function giving
the name of the gauge group and the Dynkin labels between curly braces will automatically
change the representation of the particle. An example in a SU(2)L×U(1)Y gauge is given
in sample code 13.

Sample code 13: Setting gauge representations

Considering a gauge composed of one SU(2) group named "L" and one U(1) group
named "Y", one can set the representation of eL : (2,−1) and uR : (1, 2/3) writing

Particle e_L = weylfermion_s("e_L", model, Chirality::Left);
e_L->setGroupRep("L", {1});
e_L->setGroupRep("Y", {-1}); // denomimator = 1 omitted

for the electron and

Particle u_R = weylfermion_s("u_R", model, Chirality::Right);
u_R->setGroupRep("Y", {2, 3});

for the quark.

Note This example does not exactly correspond to SM conventions for simplicity.

Note When the denominator of a fractional charge is 1 it may be omitted when
giving the representation.

See also Chapter 4 for more details on representations, and chapter 5 to see how
to build a model in MARTY.

Flavor representations

Flavor in high energy physics has a particular meaning, like the 3 generations of matter
particles in the Standard Model. In MARTY it has a slightly more general meaning, as
flavor allow users to define as many additional indices as wanted for quantum fields, real
or complex. Flavor representations are for now limited to two types:

• Complex flavors. Mixes N complex fields, that are considered as a fundamental
representation of a SU(N) flavor group.

• Real flavors. Mixes N real fields, that are considered as a vector representation of
a SO(N) flavor group.

Flavor machinery could be extended in the future is needed. We may consider for
example different representations of a same flavor group, with tensors mixing different
representations. We think that these cases are very rare and there is then no support in
MARTY to do it automatically. Work-arounds are however already possible, like creating
different flavors to simulate representations of different dimensions.

Sample code 14 shows how to define flavor representations for particles in a MARTY
model. See chapter 5 for more details on model building.

3Dimension 1 representation for non abelian gauged group and 0 charge for U(1) group.

33

Sample code 14: Setting flavor representations

Let’s consider a model with two flavor groups. One complex flavor SU(3) named
"C" and one real SO(4) named "R".

Creating the fields

// Real field for the real SO(4) flavor
Particle phi = scalarboson_s("phi", model);
phi->setSelfConjugate(true);

// Complex field for the complex SU(3) flavor
Particle psi = diracfermion_s("psi", model);

Setting the representations

phi->setFundamentalFlavorRep("R");
psi->setFundamentalFlavorRep("C");

Note As we may extend MARTY for non fundamental representations in the future,
one has to precise through the function name. But for now, no other representation
is available.

See also Documentation of QuantumFieldParent and chapter 5 for more details
on model building.

2.3 Quantum Fields in expressions

This section presents how to handle quantum fields in symbolic expressions. This is a
deeper feature of MARTY, and users should not have to do it in general as calculations are
fully automated. The idea here is to learn how to create expressions containing quantum
field objects, and also read and manipulate them. A user new to this framework may
want to skip this part.

2.3.1 Indices

To create symbolic quantum field objects, one must first have indices to give to the
particle. Minkowski, Dirac and gauge indices can be gathered simply from the user
interface. There is several ways to get indices. The simplest way is presented in sample
code 15. The reader should keep in mind why group indices are more complicated to get.
There is one vector space per irreducible representation and per gauged group. The model
will generate group indices for you given the number of indices you want, the model, the
group or group name, and a particle or particle name (the model returns indices in the
vector space of the representation of the particle in this particular group).

34

https://marty.in2p3.fr/doc/marty/html/classmty_1_1QuantumFieldParent.html

Sample code 15: Generating indices

Minkowski indices

auto mu = MinkowskiIndices(10); // 10 indices

Dirac indices

auto alpha = DiracIndices(10); // 10 indices

Gauge indices, for the representation of the particle "phi" in the gauged
group "g"

auto A = GaugeIndices(10, model, "g", "phi"); // 10 indices

Flavor indices, for the flavor "f"

auto I = FlavorIndices(10, model, "f"); // 10 indices

Indices can then be used simply using the subscript operator []

mu[i]; // is a Minkowski index for i in [0, 10[
alpha[i]; // is a Dirac index for i in [0, 10[
A[i]; // is a Group index for i in [0, 10[
I[i]; // is a Flavor index for i in [0, 10[

Note The auto keyword allows the user to not care about the type of the index
collection: std::vector<csl::Index> (or vector<Index> without namespaces).

See also The documentation of the Index class.

2.3.2 Space-time point

Quantum fields are tensor fields. They need then a space-time point to live, and MARTY for
now is limited to the Minkowski space4. One simply generates a space-time point (vector
in Minkowski space) following prescription in sample code 16.

Sample code 16: Generating space-time points

The easy way

Tensor X = MinkowskiVector("X");

The not much harder way

Tensor X("X", &Minkowski);

Note The second way is fully general and can be used for any vector space
(Minkowski here).

See also Documentation of Tensor or section 1.2.4 for more details on tensors.

Generating a space-time point is not necessary for quantum fields. It will be if you
have to distinguish different points between several fields in the same expression. This is
the case when applying the Wick theorem for example, that needs the information of the

4This statement does not mean that tensor fields can only live in the Minkowski space. CSL is fully
general and there is no such limitation. MARTY calculations are limited to the Minkowski space for now,
so quantum fields must live in it.

35

https://marty.in2p3.fr/doc/csl/html/classcsl_1_1Index.html
https://marty.in2p3.fr/doc/csl/html/classcsl_1_1Tensor.html

different space-time points of the fields. However, one may omit the space-time point. In
that case, a default one (that is also used in the Lagrangians) is introduced automatically
by MARTY.

2.3.3 Creating an expression from a Particle

Now that we saw in section 2.3.1 how to generate indices for quantum fields and in section
2.3.2 how to generate space-time points, we have all we need to create symbolic expressions
from Particle objects.

We will consider here the example of a SU(3)C×SU(2)L gauge with a fermion Q in the
fundamental representation of both groups, and a vector W in the adjoint representation
of the SU(2)L group. In top of that, let us introduce a complex SU(3) flavor named ’F’
for the fermion in order to really have a complete example. Sample code 17 shows how
to create a gauge interaction term like the following

L 3 igψ̄ /Wψ = igψ̄Iaiα (X)γµαβW
A
µ (X)TAijψ

Iaj
β (X), (2.8)

with µ a Minkowski index, (i, j) indices in the doublet representation of SU(2)L, a an
index in the triplet representation of SU(3)C , A an index in the triplet representation
of SU(2)L, and I an index in the 3-dimensional flavor for the fermion. This example is
complex on purpose, because it shows the reader how to create arbitrary interaction terms
in MARTY, introducing all necessary interface to do so. One may notice that all indices are
explicit in MARTY. It may be rather long to write expressions with so many indices, but
then cannot be removed apart from specific cases like γ matrices. We chose in MARTY to
have one unique and general treatment for all indices. Interface could be improved in the
future allowing for example to omit indices in bi-linear diagonal couplings (like SU(3)C
and the flavor indices in equation 2.8), but for now all indices must be given.

An important thing to know is the order of indices defined for quantum fields. If not
given in order, MARTY will raise an error and stop the program. The order is the following,
to give from left to right:

• Flavor indices in the same order than when adding the corresponding flavors to
the model.

• Gauge indices in the same order than when adding the corresponding gauged
groups to the model.

• Space-time indices, that concerns for now only spin 1/2 (Dirac index) and spin
1 (Minkowski index) particles.

The term presented in equation 2.8 and in sample code 17 is a gauge interaction, that is
of course given automatically by MARTY, but knowing how to build it by hand allows the
reader now to create basically any interaction term to add it in the Lagrangian. More
details on model building are given in chapter 5.

36

Sample code 17: Particles to symbolic expressions

We consider here a gauge formed by a SU(3) group "C" and a SU(2) "L", with
psi in the fundamental representation of both groups and in an additional SU(3)
flavor "F", and finally W in the adjoint of the SU(2).

Generating indices and space-time point

auto I = FlavorIndices(1, model, "F");
auto a = GaugeIndices(1, model, "C", "psi");
auto A = GaugeIndices(1, model, "L", "W");
auto i = GaugeIndices(2, model, "L", "psi");
auto mu = MinkowskiIndices(1);
auto al = DiracIndices(2);
Tensor X = MinkowskiVector("X");

Getting the two additional tensors we need

Tensor gamma = DiracGamma();
Tensor T = GetGenerator(model, "L", "psi");

Creating the expression

Expr g = constant_s("g");
Expr term = CSL_I * g

* GetComplexConjugate(psi({I[0], a[0], i[0], al[0]}, X)),
* W({A[0], +mu[0]}, X)
* T({A[0], i[0], i[1]})
* gamma({mu[0], al[0], al[1]})
* psi({I[0], a[0], i[1], al[1]}, X);

Note Here as all fields have the same point X, we could omit it and the default
space-time point of MARTY would be introduced automatically.

Note There is no need for γ0 as in MARTY ψ† is considered automatically as
ψ̄ = ψ†γ0. This saves a lot of unnecessary calculations.

See also Sample code 24 to have more details on how to get generators from a
model.

2.3.4 Type system

CSL type system does not include MARTY objects, and in particular quantum fields. MARTY
extends the type system to generalize it to any type, even types that may be defined later
by the user5. While CSL type system allows one to find out which type an expression is
(number, tensor, sum etc), the extended type system allows one to compare the expression
to any given type (including MARTY types) and convert back to it (if the type is correct).
An example given in sample code 18 shows how to, from a CSL expression containing a
quantum field, recover the field inside the expression, and its Particle parent.

5Of course this generalization has a cost. This cost is to be slightly less simple and less optimized.

37

Sample code 18: Symbolic expressions to particle

Let’s consider that sfield is an expression containing a quantum field (this is the
case for term[4] in sample code 17).

Using CSL, we cannot get the physics information

cout << IsIndicialTensor(sfield) << endl;
// >> 1
cout << GetPrimaryType(sfield) << endl;
// >> Indicial
cout << GetType(sfield) << endl;
// >> TensorFieldElement

Using the extended type system in MARTY, getting the QuantumField and
the Particle

if (IsOfType<QuantumField>(sfield)) {
QuantumField field = ConvertTo<QuantumField>(sfield);
Particle particle = field.getParticle();

}

Warning If one wants to modify the quantum field and the symbolic expression at
the same time, one must get a pointer to the field:

if (IsOfType<QuantumField>(sfield)) {
QuantumField *field = ConvertToPtr<QuantumField>(sfield);
// Here modification of field will affect sfield also
Particle particle = field->getParticle();

}

See also The CSL manual for more information on CSL’s type system.

2.3.5 Polarization field

Polarization fields are another quantum field type object in expressions6. They represent
momentum space fields, with spin explicit spin indices. This gives

φ(X)→ φ(p) for scalars, (2.9)
Aµ(X)→ εµλ(p) for vectors, (2.10)
ψα(X)→ uασ(p) for fermions, (2.11)

with λ a spin index for the vector and σ for the fermion. These indices are important to
calculate squared amplitudes as polarization sum rules must be applied like∑

λ

εµλ(p)ε∗νλ (p) = −igµν (2.12)

for the photon for example, and∑
σ

uασ(p)ūβσ(p) =
(
/p+m

)
αβ

(2.13)

6Polarization fields, at the difference of fermionic quantum fields, commute with each other.

38

https://marty.in2p3.fr/doc/csl-manual.pdf

for fermion particles.
Scalar polarization fields do not appear in amplitude results as they have no spin. An

option can however be set to tell MARTY to create them, in order to keep track of scalar
field insertions in amplitudes. See chapter 8 for more details on options.

All the statements valid for quantum fields in sections 2.3.3 and 2.3.4 are valid for
polarization fields, with two main differences:

• The type of expression is not the same, QuantumField must then be replaced by
PolarizationField when testing the type or converting a symbolic expression (see
sample code 18).

• Polarization fields are generated also by the same particle, giving a polarization
index separately from the other indices, before. An example is presented in sample
code 19.

Sample code 19: Polarization fields

Taking the same example as in sample code 17, we create here the same term but
with PolarizationField objects instead of QuantumField objects (useless here but
pedagogical)

Creating polarization indices

auto pol = Euclid_R3.generateIndices(3);

Creating the expression

Expr g = constant_s("g");
Expr term = CSL_I * g
* GetComplexConjugate(psi(pol[1], {I[0], a[0], i[0], al[0]}, X)),
* W(pol[1], {A[0], +mu[0]}, X)
* T({A[0], i[0], i[1]})
* gamma({mu[0], al[0], al[1]})
* psi(pol[2], {I[0], a[0], i[1], al[1]}, X);

Note Vector spaces for polarization indices do not matter, one may create them, for
any particle, from any vector space in the program, like the built-in 3 dimensional
space Euclid_R3 for example.

Warning For scalar bosons one must also give a polarization index, even if the
particle has no spin.

See also The documentation of the class PolarizationField.

39

https://marty.in2p3.fr/doc/marty/html/classmty_1_1PolarizationField.html

40

Chapter 3

Models

3.1 Introduction

Models are very large objects. They basically contain all the theory, and all the user
interface for model building (see chapter 5) and calculations (see chapter 6). For this
reason, the model is divided in three different parts. The inheritance hierarchy is presented
in figure 3.1.

Figure 3.1: Inheritance tree for the Model object. Readers may see the three parts
composing a Model. The data container, the model builder, and the final interface with
calculation features.

The first interface, ModelData, contains almost all the content of the model: La-
grangian, particles, gauge, flavor, etc. It also has methods to get and modify these
different elements. Then ModelBuilder implements all model building features like gauge
symmetry breaking, particle replacement, diagonalization etc. Finally, the Model class
has methods to perform physical calculations BSM. Feynman rules, amplitudes, squared
amplitudes and Wilson coefficients can be calculated from this class.

While the ModelData interface is presented in this chapter, ModelBuilder and Model will
be detailed respectively in the chapters about model building 5 and about calculations 6.

3.2 ModelData interface

Class ModelData contains all the basic interface to store and manipulate the content of
a high-energy physics model. It contains many methods and we think that its documen-
tation is also well suited to learn all the features. In the following is presented the main
manipulations users may have to do through the ModelData interface.

41

https://marty.in2p3.fr/doc/marty/html/classmty_1_1ModelData.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1ModelBuilder.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1Model.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1ModelData.html

Table 3.1 presents the attributes of ModelData giving their types and roles in the
program. Users may not access them directly but only through the different methods
of the class. More details on how to manipulate these attributes are given in the next
sections.

For the methods of this class that take a Particle as parameter, the user may actually
often give different objects, not only a Particle. Functions are template, taking any
argument that may be given to the getParticle() function. In other words when MARTY
asks the user a Particle object, any object may be given that is either directly a Particle
or an object MARTY can use to find a particle through its getParticle() methods, like a
name, a QuantumField object, QuantumFieldParent, or even an expression if it contains a
quantum field. This simplifies the interface for users, as basically any object representing
a field can be given to the template methods. This allows to replace code like

model.doSomeThingWithParticle(model.getParticle("phi"));

by

model.doSomeThingWithParticle("phi");

In particular, one can give each time a name "phi" for example instead of searching the
actual variable containing phi.

The same principle holds for gauge and flavor groups and the getGroup() methods.
This means that a method taking a group as parameter can use a group name instead of
a Group object.

42

Attribute name Type Purpose

L Lagrangian
(doc)

Lagrangian of the model, contains
all interaction terms. See section
3.2.3 for more details.

spaceTime Space const*
(doc)

Space-time of the theory, for now
always Minkowski.

gauge unique_ptr<Gauge>
(doc)

Gauge group, containing all gauged
groups.

flavor unique_ptr<Flavor>
(doc) Flavor, containing all flavor groups

particles vector<Particle>
(doc) List of all particles in the model.

quantumNumbers vector<QuantumNumber>
(doc)

List of quantum numbers in the
model.

scalarCouplings vector<Expr>
(doc)

List of all scalar couplings, in
particular gauge couplings.

tensorCouplings vector<Tensor>
(doc) List of all tensor couplings.

momenta vector<Tensor>
List of all momenta used in
amplitude calculations.

momentaSquared map<pair<size_t,size_t>,
Expr>

Map between pairs of positive
integers (i, j) and symbolic quantity.
Corresponds to scalar products of
momenta sij = pi · pj.

gaugeLocked bool
Tells if the gauge is fully initialized
(true) and if particle content may
be added.

Table 3.1: Attributes of the ModelData class with their type, documentation link, and
purpose.

43

https://marty.in2p3.fr/doc/marty/html/classmty_1_1Lagrangian.html
https://marty.in2p3.fr/doc/csl/html/classcsl_1_1Space.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1Gauge.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1Flavor.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1Particle.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1QuantumNumber.html
https://marty.in2p3.fr/doc/csl/html/classExpr.html
https://marty.in2p3.fr/doc/csl/html/classcsl_1_1Tensor.html

3.2.1 Adding / Removing particles

Particles may be added to or removed from a Model. A user will add a particle typically
when doing model building (see chapter 5 for more details). Once a particle is added in
the model its gauge and flavor representations must not be changed as some default gauge
interactions are introduced automatically by MARTY at that moment. Kinetic and mass
terms are also introduced automatically, but as one may read in section 3.2.3, masses of
particles may still be changed by users. It is also possible to forbid MARTY to introduce any
Lagrangian term by giving a boolean when adding the particle. A particle may also be
removed from a model. In that case, the particle and all the Lagrangian terms containing
it are removed from the theory. These procedures is summarized in sample code 20.

Sample code 20: Adding / Removing particles

Creating particles

Particle psi = diracfermion_s("psi", model);
// Setting psi representation ...
Particle phi = scalarboson_s("phi", model);
// Setting phi representation ...

Adding the particles

model.addParticle(psi); // Adds psi with default interactions
model.addParticle(phi, false); // Adds phi without any interaction

Removing a particle

model.removeParticle(phi); // phi and all its interactions are removed

3.2.2 Managing couplings

It may be important to have access to the couplings present in the model, in case for
example one wants to extend the model using them. As shown in table 3.1 there is two
kinds of couplings in a MARTY model:

• Scalar couplings. Gauge couplings are automatically added in this category when
created.

• Tensor couplings. Initially empty, may contain any tensor.

Users may get expressions for scalar couplings (Expr objects, typically constants) and
tensors for tensor couplings (Tensor objects) from a model, given the name of the coupling.
Initially the model only contains gauge couplings, but one can add couplings (scalars or
tensors) to the model, and retrieve them later on. As we saw in figure 2.3, gauge couplings
are defined initially with a name "g_<group-name>". This procedure is summarized in
sample code 21.

44

Sample code 21: Managing couplings

Getting gauge couplings

// Getting the couplings of two gauge groups "Y" and "L"
Expr g_Y = model.getScalarCoupling("g_Y");
Expr g_L = model.getScalarCoupling("g_L");

Adding couplings

Expr e = constant_s("e");
model.addScalarCoupling(e);
// Defining our own gamma matrix
Tensor my_gamma("gamma", {&Minkowski, &dirac4, &dirac4});
model.addTensorCoupling(my_gamma);

Getting tensor couplings

Tensor my_gamma_2 = model.getTensorCoupling("gamma");

Note In all these example, the first one is probably the most important because
there is no other way to get gauge couplings.

See also Section 1.2.4 for more details on tensors, or the CSL manual.

3.2.3 Lagrangian

The Lagrangian is an object almost entirely encapsulated by the ModelData class. In
other words, a user will probably not directly interact with it, but through the interface
functions of the model. Section 3.2.4 shows for example how to add interaction terms
to the Lagrangian, using methods of the ModelData class. In general, the Lagrangian is
just a container of symbolic expressions, and all modifications to it are ordered by Model
classes.

Lagrangian meaning in MARTY

The Lagrangian contains all kinetic, mass, and interaction terms of the theory. An In-
teractionTerm in MARTY may contain any of the three kinds of terms. The Lagrangian is
then just a collection of such objects, divided in three parts:

• Kinetic terms. Basically purely informative. No physics in MARTY depend on them.
They may be however an interesting way to check that model building prescriptions,
that MARTY also applies to them, are correct.

• Mass terms. For built-in models, they do not have any impact on calculations
either. However during model building, MARTY will look in that part of the La-
grangian to determine masses for particles and matrices to diagonalize. See chapter
5 for more details.

• Interaction terms. These terms of course determine the physics, vertices used
in Feynman diagrams. They are used once to calculate Feynman rules (see section
6.2).

45

https://marty.in2p3.fr/doc/csl-manual.pdf
https://marty.in2p3.fr/doc/marty/html/classmty_1_1Lagrangian.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1InteractionTerm.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1InteractionTerm.html

Amplitude calculations depend on two main features for a given model. Propagators and
vertices. As we saw in section 2.2.2, the mass and width of a particle to insert in the
propagators are taken from the particle itself, not the model. Changing a mass explicitly
as shown in sample code 12 will not change the mass Lagrangian. Mass terms are a
wonderful aid for model building (see chapter 5) but will not prevent a user to set masses
and widths as wanted for any particle before launching a calculation.

Kinetic terms could in principle affect physics because they determine free equations
of motions, the propagators. A scalar Lagrangian like

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 (3.1)

implies the following equation of motion for φ

(� +m2)φ = 0, (3.2)

which in turns gives a propagator of the type
1

� +m2
≈ 1

−p2 +m2
. (3.3)

Kinetic terms could be used to determine the propagators in MARTY, but would require
unnecessary algebra. Instead all propagators are fixed with a denominator as in equation
3.3, letting the possibility to change propagators explicitly. This feature actually is avail-
able in MARTY (see documentation of QuantumFieldParent) but has not been tested and
is then not detailed in this first manual1.

Vertices, Feynman rules, are calculated from the interaction Lagrangian. They are
computed once (see section 6.2), and after this point the Lagrangian becomes basically
just a beautiful, but useless, mathematical expression.

Interaction terms

The InteractionTerm object is used for the three kinds of terms in the Lagrangian. It
handles a mathematical expression corresponding to a term in a Lagrangian like

igψ̄iαγ
µ
αβW

A
µ T

A
ijψjβ. (3.4)

It allows to have a more specialized representation of a term knowing at any moment the
fields that are inside. For model building it is important, as MARTY must be able to know
quickly which particles are in a given term. This may be used to know the type of term
(kinetic, mass, interaction), what terms must be modified when replacing particles, and
what terms have the same content and must be merged together.

Interaction terms also keep track of all different index contractions in the interaction.
When calculating Feynman rules, the Lagrangian expansion is done explicitly using in-
teraction terms. The Wick theorem and most of the algebra is done with a generic term,
with only the field content, and the interaction term will apply all factors and index sym-
metries on the final result. Taking the example of equation 3.4, the calculation of the
Feynman rule would inject in the Wick theorem a generic term like

ψ̄iαW
A
µ ψjβ (3.5)

with only free indices, and the InteractionTerm object is asked in the end to recover, in
the final result, the initial index structure and factors of the Lagrangian term.

1Do not hesitate to contact us if you want to test this feature. Changing a propagator structure could
prevent to perform one-loop calculations, but tree-level may be enough in such exotic theories (Lorentz
violation theories with modified propagators for example could be implemented with this principle).

46

https://marty.in2p3.fr/doc/marty/html/classmty_1_1QuantumFieldParent.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1InteractionTerm.html

3.2.4 Adding Lagrangian terms

There is three ways to add a Lagrangian term in MARTY. The first is automated, just by
adding a new particle in the model. In that case MARTY initializes automatically gauge
interactions. The second way is to use built-in functions to add common terms, like mass
terms. Finally, as section 2.3.3 presented, it is possible to build general interaction terms
building the corresponding mathematical expression ourselves.

Built-in interaction terms

There is for now only three types of interaction terms in MARTY one may easily add to a
model. Bosonic mass terms

L 3 −sη ·m2φ†φ, (3.6)

Dirac or Majorana mass terms
L 3 −η ·mψ̄ψ, (3.7)

and Weyl mass terms
L 3 −m

(
ψ̄RψL + ψ̄LψR

)
. (3.8)

Each time η is 1 for complex fields, and 1
2
for real ones, s = +1 for scalars and s = −1 for

vectors. In the Dirac mass terms η = 1
2
corresponds to a Majorana mass. The procedure

to add such mass terms is presented in sample code 22. The η and s factors are determined
automatically by MARTY.

Sample code 22: Adding mass terms explicitly

For a boson B (scalar or vector)

Expr M = constant_s("M");
model.addBosonicMass("B", M);
// Or
model.addBosonicMass("B", "M");

For a Dirac or Majorana fermion F

Expr m = constant_s("m");
model.addFermionicMass("F", "m");
// Or
model.addFermionicMass("F", "m");

For a pair of Weyl fermions (L + R) F_L and F_R

Expr m = constant_s("m");
model.addFermionicMass("F_L", "F_R", m);
// Or
model.addFermionicMass("F_L", "F_R", "m");

NoteWhen adding a particle to a model, a mass term will be defined automatically
if it has a non zero mass. This procedure is useful when one wants to add a mass
explicitly during model building for example.

General interactions

To add general interactions, one must give explicitly the expressions to MARTY. It is more
involved of course, but completely general and will allow users to build any Lagrangian

47

they want. The procedure to build these expressions was introduced in section 2.3.3 with
an example. Recall that in MARTY the complex conjugate of a fermion, ψ†, is defined
directly as ψ̄ = ψ†γ0 to avoid dealing with too many unnecessary γ0 matrices in vertex
definitions or calculations. Let us review here the main ingredients for building interaction
terms from scratch.

• Particles. One must have the Particle objects. Either the user-defined ones, or
those defined by MARTY that one may get calling the getParticle() method. See
sample code 10.

• Indices. Indices are necessary to call Particle objects and get symbolic expressions
Expr. Sample code 15 shows how to get all the necessary indices and sample code
17 how to use them.

• Space-time point. This ingredient is actually not necessary for interaction terms.
Users may omit it, MARTY will automatically place all fields to the space-time point
defined for the rest of the Lagrangian. Sample code 16 gives more details if one
wants to give points anyway.

• Gauge couplings. One may have to define new interactions depending on the
gauge couplings of the model. The procedure to get gauge couplings has been
developed in sample code 21.

• γ−matrices. They are built-in, and may be accessed simply as shown in sample
code 23.

• Generators. One may have to define new interactions depending one the group
generators (TAij , fABC etc) of the model. All generators can be gathered through
interface function calls as depicted in sample code 24.

• Vector spaces. If one wants to create a new custom tensor, one has to have the
vector spaces (Space) corresponding to all the tensor indices. This is presented in
sample code 25.

• CSL. To create new couplings, tensors, one may have to know how to use CSL. The
CSL manual will represent an important help, and allow any user to write general
interactions. The user in a hurry may want to start with section 1.2.

With these ingredients users should be able to write any unreasonably complicated La-
grangians, starting from the example in sample code 17.

48

https://marty.in2p3.fr/doc/csl-manual.pdf

Sample code 23: Getting γ−matrices

The easy way, using the interface

Tensor gamma = DiracGamma(); // gamma matrix
Tensor gamma5 = DiracGamma5(); // gamma5 matrix
Tensor sigma = DiracSigma(); // sigma matrix
Tensor P_L = DiracPL(); // left projector
Tensor P_R = DiracPR(); // right projector
Tensor C = DiracCMatrix(); // Conjugation matrix

The not much harder way, using the dirac4 vector space

Tensor gamma = dirac4.gamma; // gamma matrix
Tensor gamma5 = dirac4.gamma_chir; // gamma5 matrix
Tensor sigma = dirac4.sigma; // sigma matrix
Tensor P_L = dirac4.P_L; // left projector
Tensor P_R = dirac4.P_R; // right projector
Tensor C = dirac4.C_matrix; // Conjugation matrix

Sample code 24: Getting group generators

A generator is defined for each irreducible representation for each different gauged
group. Structure constants fABC are the generators of adjoint representations, in
particular the one of gauge bosons.

Taking the Standard Model example, one has a "Q_L" particle in the doublet
representation of a SU(2) "L" and a gluon "G" in the adjoint representation of a
SU(3) "C". One may get generators for those representations.

Getting the generators from the model

Tensor T_SU2_2 = model.getGenerator("L", "Q_L");
Tensor f_SU3 = model.getGenerator("C", "G");

Getting the generators from the interface

Tensor T_SU2_2 = GetGenerator(model, "L", "Q_L");
Tensor f_SU3 = GetGenerator(model, "C", "G");

Note This procedures are fully general and allow to get any generator in any model.

49

Sample code 25: Vector spaces

Taking an example with a "C" gauged group and an "F" flavor group.

From the interface

auto gaugeVectorSpace = GetVectorSpace(model, "C", "phi");
auto flavorVectorSpace = GetVectorSpace(model, "F", "phi");

From the model

auto gaugeVectorSpace = model.getVectorSpace("C", "phi");
auto flavorVectorSpace = model.getVectorSpace("F", "phi");

Creating a new tensor with these vector spaces

Tensor A("A", {&Minkowski, gaugeVectorSpace, flavorVectorSpace});
// A has one index in Minkowski, one gauge and one flavor index

Note The auto here deduces the type Space const* that is a pointer to a constant
CSL vector space.

Note Minkowski is a built-in Space object so the & symbol must be used to get a
pointer whereas the spaces returned here are already pointers (no need for &).

3.2.5 Fermion number violating interactions

The issue

This section is about fermion number violating interactions, coming from self-conjugate
fermions or not. Those vertices require a particular care from MARTY’s side, but also form
the user which is why a section is dedicated to them. Figure 3.2 presents examples of
interactions that may violate fermion number.

Figure 3.2: Examples of interactions that can lead to fermion number violating processes.
ψ is a regular spin 1/2, N a Majorana and B a boson (scalar or vector).

The issue with such vertices comes in processes such as those depicted in figure 3.3.
A naive use of Feynman rules leads to unpleasant fermion bilinears because the fermion
number is not conserved along the line, when we always want to have expressions such as

ψ̄Γχ, (3.9)

with Γ a combination of gamma matrices with indices flowing from left to right. The
reason bilinears must be ordered is not only to have nice expressions, but mostly to be
able to simplify them further using well-known tricks. To solve this issue, we follow
prescriptions of [18], that defines a set of rules to recover proper fermion bilinears.

50

Figure 3.3: Examples of fermion number violating (locally at least) processes. ψ is a
regular spin 1/2, N a Majorana and B a boson (scalar or vector).

The conjugation matrix

The conjugation matrix C depends on the γ−matrix realization. In the Dirac realization

a fermion is expressed as
(
ψL
ψR

)
. In this basis, one has

C = −iγ0γ2. (3.10)

In particular, C = C∗ = −CT = −C† = −C−1. In this basis, a charge conjugated fermion
is simply defined by

ψc ≡ Cψ̄T . (3.11)

A Majorana fermion N is its own charge conjugated particle and the previous equation
reads

N c = CN̄T ≡ N. (3.12)

Regarding fermionic external legs, the Conjugation matrix has nice contraction prop-
erties with fermion external states u(p) (and v(p) for anti-particles). As C is the charge
conjugation matrix, it is defined as a link between particles (u) and anti-particles (v). In
particular one has

ū = Cv, (3.13)
v̄ = Cu, (3.14)

and equivalently

u = v̄C, (3.15)
v = ūC. (3.16)

C also fulfills properties with gamma matrices transposed namely

CΓTi C
† ≡ Γ′i = ηiΓi, (3.17)

with

ηi =

{
+1 for Γi = 1, iγ5, γµγ5

−1 for Γi = γµ, σµν .
(3.18)

Rules given in [18] consist in defining a fermion line, and inserting conjugation ma-
trices C to recover a nice fermion bilinear such as the one in equation 3.9, while being
mathematically equivalent. By ordering the fermion lines, the only subtlety is to obtain
the right sign at the end for the diagram in order to keep consistent interference patterns.
Users should then be careful about the signs while defining such interactions. This is
explained in the next section.

51

Fermion number violation in MARTY

There is two golden rules in the definition of fermion number violating interactions in
MARTY. The first rule is: Do not use the charge conjugation matrix in vertices with
Majorana fermions. This is because from equation 3.12 we know that a conjugation
matrix can be simplified away contracting it with a Majorana fermion. It is possible with
MARTY to use charge conjugation matrices with Majorana interactions, but if one has to
do it probably means that the vertex expression should be reconsidered, checking that no
mistake has been made. Let’s see an example of charge conjugation in a vertex with a
Majorana N , a Dirac fermion ψ and a vector A

L 3 λAµNγµLc = λAµNγ
µCL̄T . (3.19)

Using equations 3.12 and 3.17, one can transform the vertex into

L 3λAµN̄T (γµ)T L̄T

=λAµ
(
N̄T (γµ)T L̄T

)T
=− λAµL̄γµN̄ ,

(3.20)

which does not contain any conjugation matrix. Vertices with two Majorana fermions
should also follow this rule.

The second rule is: For fermion number violating interactions between non-
Majorana fermions, make sure that the position and sign of C is correct. One
should most of all make sure that conjugation matrices are placed correctly. In particular,
in case a fermion number violating vertex or process vanishes incorrectly, conjugation
matrices introduced in the Lagrangian should be checked first, in particular considering
that

Cγµ 6= γµC, (3.21)
Cαβ = −Cβα. (3.22)

The way to obtain the symbolic tensor corresponding to the conjugation matrix C in
MARTY was presented in sample code 23.

3.2.6 Group theory objects

The ModelData class also handles the gauge of theory. In general, one may obtain from
a model the Gauge, Flavor, all GaugedGroups and FlavorGroups, and also the particle
representations for the whole gauge (GaugeIrrep), flavor (FlavorIrrep), or a specific group
(Irrep).

Manipulating these objects is a much deeper feature of MARTY and should not be needed
in a standard use. They represent however an important content of a high energy physics
model, and we demonstrate in the following how to access them. Readers will dive into
the depths of group theory in MARTY, starting from a high energy physics model, up to
deep dark places where abstract group theory implementations are. This will represent
the transition to chapter 4. Figure 3.4 presents a summary of the different interfaces
presented in this section, and in particular how to get form a high-energy physics model
to abstract group theory implementations in MARTY.

Except for representation objects, all groups (flavor or gauged) must be used as point-
ers. This is because their are unique in the program, and must then not be copied.

52

https://marty.in2p3.fr/doc/marty/html/classmty_1_1Gauge.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1Flavor.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1GaugedGroup.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1FlavorGroup.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1GaugeIrrep.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1FlavorIrrep.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1Irrep.html

Figure 3.4: Sketch of the successive logical links from a high-energy physics model
to abstract group theory implementations in MARTY. Representations are calculated by
SemiSimpleAlgebra, and several interfaces exist to go from abstract representations to
gauge and flavor groups, and finally end in the model.

Gauge and Flavor

The Gauge contains all the gauge groups, and the Flavor all the flavor groups. They may
be accessed as shown in sample code 26.

Sample code 26: Gauge and Flavor

Getting the gauge and flavor of a model

Gauge *gauge = model.getGauge();
Flavor *flavor = model.getFlavor();

Warning Users must always keep pointers to these objects, as they must not be
copied.

See also Documentation of Gauge and Flavor for more information.

Gauged and Flavor groups

A gauge contains several gauged groups, and a flavor several flavor groups. From their
name, one can get these groups from a model, as depicted in sample code 27.

53

https://marty.in2p3.fr/doc/marty/html/classmty_1_1Gauge.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1Flavor.html

Sample code 27: Gauge and Flavor groups

Considering a model with a SU(3) "C" gauged group, and a SU(3) "F" flavor.

Getting the gauge and flavor groups from the model

GaugedGroup *ggroup = model.getGaugedGroup("C");
FlavorGroup *fgroup = model.getFlavorGroup("F");

Warning Users must always keep pointers to these objects, as they must not be
copied.

See also Documentation of GaugedGroup and FlavorGroup for more information.

Gauge representations

Obtaining the gauge representation of a particle, or in a specific group, are tasks that may
be done easily in MARTY. One has to give the particle (or its name), and the group (or
its name) and the model will return the corresponding representation. More details on
representations will be given in chapter 4. Example on how to get particle representations
are given in sample code 28.

Sample code 28: Getting representations from particles

Suppose a particle phi in a model containing a SU(3) "C" gauged group, and a
SU(3) "F" flavor.

Getting the full gauge and flavor representations

GaugeIrrep gaugeRep = model.getGaugeIrrep("phi");
FlavorIrrep flavorRep = model.getFlavorIrrep("phi");

Getting a specific group representation (gauged or flavor)

Irrep ggroupRep = model.getGroupIrrep("phi", "C");
Irrep fgroupRep = model.getFlavorIrrep("phi", "F");

See also Documentation of GaugeIrrep, FlavorIrrep and Irrep for more information.

See also Chapter 4 that will present representations more in details.

Groups and algebras

GaugedGroup and FlavorGroup objects are an additional abstraction layer with respect to
groups from a pure group theory point of view. They contain in particular quantum
field theory considerations, that are not needed to define abstract groups. There exist in
MARTY deeper data structures for groups and algebras. Groups that MARTY can define are
semi-simple, coming with their semi-simple algebras. SemiSimpleAlgebra implements the
deep representation machinery of MARTY, and SemiSimpleGroup is an interface to get from
algebra to groups we know better (SU(N), SO(N), Sp(N)) as figure 3.4 shows. Chapter
4 presents in much more details these objects, but let’s introduce here how to get to them
from the gauged and flavor groups of the model. This is presented in sample code 29.

54

https://marty.in2p3.fr/doc/marty/html/classmty_1_1GaugedGroup.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1FlavorGroup.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1GaugeIrrep.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1FlavorIrrep.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1Irrep.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1SemiSimpleAlgebra.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1SemiSimpleGroup.html

Sample code 29: Abstract groups and algebras

Considering a model with a SU(3) "C" gauged group, and a SU(3) "F" flavor.

Getting gauged and flavor groups

GaugedGroup *ggroup = model.getGroup("C");
FlavorGroup *fgroup = model.getFlavor("F");

Getting abstract groups from gauged and flavor groups

SemiSimpleGroup *group1 = ggroup->getGroup();
SemiSimpleGroup *group2 = fgroup->getGroup();

Getting algebras from the groups

SemiSimpleAlgebra *algebra1 = group1->getAlgebra();
SemiSimpleAlgebra *algebra2 = group2->getAlgebra();

Warning Users must always keep pointers to these objects, as they must not be
copied.

See also Documentation of file group.h, SemiSimpleGroup and SemiSimpleAlgebra
for more information.

See also Chapter 4 for details about deep group theory implementations in MARTY.

55

https://marty.in2p3.fr/doc/marty/html/group_8h.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1SemiSimpleGroup.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1SemiSimpleAlgebra.html

56

Chapter 4

Group theory

This chapter is a bit aside from the rest of the manual, as it presents a deeper feature of
MARTY, that goes beyond the scope of amplitude calculation in quantum field theory. A
user only interested in BSM phenomenology may then skip this chapter.

As we saw in section 2.2.3, a quantum field is an irreducible representation of the gauge
group. We introduced in particular the link between semi-simple algebras and groups in
table 2.2, while table 2.3 presented the definition of the main representations used in
physics in terms of Dynkin labels. We will in this chapter talk about how irreducible
representations are defined, computed in MARTY, and what kind of algebra one may do
with them.

Section 4.1 will go in details on what a semi-simple algebra is in MARTY, while sec-
tions 4.2 and 4.3 will respectively introduce irreducible representations (irreps) and the
decomposition of irrep products into sums of irreps. These calculations are similar to
what LieART [19] can do, another Mathematica-based program, does. Finally, section
4.4 will recall the link between these abstract group theory considerations and quantum
field theory, and in particular the calculations done by MARTY with gauge representations.

The Lorentz group A word on the Lorentz group before diving into more abstract
considerations. A particle is also an irreducible representation of the Lorentz group, that
corresponds to the spin. The Lorentz group SO(1, 3) has the same algebra as SO(4). The
algebra of SO(4) is

so(4) = D2
∼= A1 ⊕ A1 = su(2)⊕ su(2). (4.1)

In D2 or A1 ⊕ A1, one must give two Dynkin labels. The common representation are
presented in table 4.1.

Particle Dynkin labels Dimension
Scalar (0, 0) 1
Left Weyl fermion (1, 0) 2
Right Weyl fermion (0, 1) 2
Dirac fermion (0, 1)⊕ (1, 0) 4 = 2⊕ 2
Vector (1, 1) 4

Table 4.1: Correspondence between Lorentz representations (spin) and Dynkin labels in
the algebra D2

∼= A1 ⊕ A1 = su(2)⊕ su(2).

57

4.1 Semi-simple Lie algebras

4.1.1 Principle

We will not here go into much theoretical details, as this document still is MARTY’s manual.
Readers wanting to learn more about semi-simple Lie algebras may see [17, 19, 20].

Semi-simple Lie algebras have a common definition, and can be described with the
same formalism. They are defined as having have no non-zero abelian ideal. One must
find the maximal Cartan sub-algebra, whose dimension is called the rank ` of the algebra.
There is seven different types of such algebras.

• A` for ` ≥ 1.

• B` for ` ≥ 1.

• C` for ` ≥ 1.

• D` for ` ≥ 2.

• E` for 6 ≤ ` ≤ 8.

• F` for ` = 4.

• G` for ` = 2.

Algebras E` to G` are called exceptional while those from A` to D` are the algebras of
SU(N), SO(N) and Sp(N) groups. They can however all be described with the same
formalism. This is what MARTY does to define irreducible representations in all these
algebras.

The Cartan sub-algebra defines the so-called simple roots of the semi-simple Lie alge-
bra. An algebra of rank ` has exactly ` simple roots, and an irreducible representation is
defined from them.

4.1.2 Semi-simple Lie algebras in MARTY

In MARTY, such algebra is called SemiSimpleAlgebra. The way to create semi-simple
algebras is presented in sample code 30. Irreducible representations will be presented in
the next section.

Sample code 30: Semi-simple algebras

Creating algebras

auto A2 = CreateAlgebra(algebra::Type::A, 2);
auto B7 = CreateAlgebra(algebra::Type::B, 7);
auto F4 = CreateAlgebra(algebra::Type::F4);
auto G2 = CreateAlgebra(algebra::Type::G2);

Note The type deduced by auto is unique_ptr<SemiSimpleAlgebra>. Simply recall
that it is a pointer, and that one must use -> to access member functions of
SemiSimpleAlgebra.

Note Algebra names being very unspecific, prefix algebra::Type is needed to access
algebra type names.

58

https://marty.in2p3.fr/doc/marty/html/classmty_1_1SemiSimpleAlgebra.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1SemiSimpleAlgebra.html

4.2 Irreducible representations

4.2.1 Highest-weight state

As we saw in the previous section, irreducible representations in a semi-simple Lie algebra
are defined from its ` simple roots. These roots define a `−dimensional discrete lattice,
in which states |ψi〉 are living. A state is defined with ` integer as

|ψi〉 ≡ |i1, i2, . . . i`〉, ij integers.. (4.2)

An irreducible representation is defined uniquely by its highest-weight state, and from
this highest-weight are deduced all other states of the representation R. Each state |ψi〉
has a multiplicity mi, and the dimension of the irrep is simply

dR =
∑
|ψi〉∈R

mi. (4.3)

From the highest weight state, one may get all states with multiplicities using annihilation
operators recursively. All states in the representation will be found to finally get them
all.

4.2.2 The su(2) example

Let us consider the simplest example, the physicist’s spin in SU(2). The algebra is A1. We
are in a one dimensional, discrete space. Highest weights must have a positive (unique)
Dynkin label, and lower states are found by applying the only annihilation operator1

J− =
1√
2

(σ1 + iσ2). (4.4)

From the spin 1/2 state, one will get the spin -1/2 and get two 2-dimensional spin 1/2
representation. From the spin 1 highest weight, one will find spin 0 and -1 states to finally
get a 3-dimensional representation. This is represented in figure 4.1. Dynkin labels in
su(2) are just twice the spin value.

This principle is then generalized in ` dimensions, and irreducible representations in
any semi-simple Lie algebras may be uniquely defined.

1This is also the same operator as theW− boson in the SM, annihilation operator for the weak isospin:
W− = 1√

2
(W 1 + iW 2).

59

Figure 4.1: A1 = su(2) algebra 1-dimensional space, with spin 1/2 (red) and spin 1
(blue) representations showed with respectively 2 and 3 states. Correspondence with
Dynkin labels is shown. Annihilation operator J− = 1√

2
(σ1 + iσ2) action is presented on

the different states, starting each time from the highest weight state of the representation.

4.2.3 The su(3) example

Let us consider now the most complicated generalization of the previous section, that can
still be represented on a sheet of paper, the 2D case. The weight lattice of A2 = su(3) is
2-dimensional and is represented in figure 4.2.

Figure 4.2: Root and weight lattices of SU(3). α and β are the two simple roots of
su(3) = A2. Dynkin labels of irreducible representations correspond to the position of the
highest-weight state on the weight lattice. The dominant Weyl chamber is defined by the
set of all positive-weights states. It contains all states that can be highest-weights, i.e.
that can define an irreducible representation.

Highest-weights may be any state in the dominant Weyl chamber, i.e. must have
positive Dynkin labels. The state |0, 0, . . . , 0〉 is always the trivial 1-dimensional repre-
sentation. A highest weight state in su(3) is defined by two Dynkin labels (2D plane),
and now there is two different annihilation operators one must apply recursively to the
highest weight state to derive all states in an irreducible representation. These two an-
nihilation operators are geometrically along −~α and −~β, with ~α, ~β the two simple roots
of A2. Common representations, the quark, anti-quark, and gluon of the strong nuclear
force SU(3) symmetry group are presented in figure 4.3.

60

Figure 4.3: Usual QCD representations (quark, anti-quark and gluon respectively) in
the weight lattice of SU(3). The coordinates of their highest weight is shown. In the 8-
dimensional representation, the state of weight (0, 0) has multiplicity 2. The total number
of states is then indeed 8.

4.2.4 Irreducible representations in MARTY

From a semi-simple Lie algebra, one can build any irreducible representation given the
Dynkin labels of its highest-weight state, as we said in the previous section. Examples
for SU(2) and SU(3) have been given, readers will then have to search in the literature
the definition of more exotic representations if needed. The procedure to make MARTY
derive an irreducible representation is presented in sample code 31. All the procedure,
applying annihilation operators from the highest weight to find all the states, deriving
the multiplicities, are calculations done automatically by MARTY, in all semi-simple Lie
algebras.

Sample code 31: Irreducible representations

Taking algebras defined in sample code 30.

From the interface

Irrep quark = GetIrrep(A2, {1, 0});
Irrep gluon = GetIrrep(A2, {1, 1});
Irrep exotic = GetIrrep(F4, {1, 1, 0, 0});

Through member functions

Irrep quark = A2->highestWeightRep({1, 0});
Irrep gluon = A2->highestWeightRep({1, 1});
Irrep exotic = F4->highestWeightRep({1, 1, 0, 0});

Getting dimensions

cout << quark.getDimension() << endl; // 3
cout << gluon.getDimension() << endl; // 8
cout << exotic.getDimension() << endl; // 29172

See also Documentation of Irrep for more information on member functions.

61

https://marty.in2p3.fr/doc/marty/html/classmty_1_1Irrep.html

4.3 Product decomposition

Product of irreducible representations have an important meaning in particle physics.
Each interaction vertex is in fact such a product, with the representations of all the inter-
acting particles. The product can be decomposed in a sum of irreducible representations,
the total number of dimensions being conserved. For an interaction to be mathematically
valid, the trivial representation must appear in the decomposition. With this procedure
one can know for example what type of representation can get out from the annihilation of
two particles, or what quark arrangements may result in a color-blind structure (mesons
qq̄ or baryons qqq). The procedure to decompose a product into a direct sum of irreducible
representations can be found in [19]2. Let us give examples. First, a well-known SU(2)
spin

2⊗ 2 = 1⊕ 3, (4.5)

with integers representing the dimensions of the representations. Group theory tells us
that combining two 1/2 spins, one may either get a scalar or a spin 1, not any other spin.
If a reader is now wondering what we can get from the collision of two gluons3, the answer
is

8⊗ 8 = 1⊕ 8⊕ 8⊕ 10⊕ 10⊕ 27. (4.6)

We conclude that we may get a neutral particle, another gluon-type particle or a more
exotic representation 10- or 27-dimensional. May be an hint for New Physics the search
at the LHC !

With a simple interface, one can make MARTY decompose such products. The result
is not an Irrep but a SumIrrep. The interface allows in general to sum, multiply and
display any of those objects in any semi-simple Lie algebra. Sample code 32 shows two
examples. One may see the link between the SU(3) example and physics. It is the answer
to the question ’What quarks arrangements can be color neutral and explain the structure
of neutrons and protons ?’. A neutral state is a trivial SU(3) representation, i.e. the
dimension 1. When taking product of quarks, one knows if it can be in a neutral state if
the trivial representation appears in the decomposition. The example confirms what we
already know, qq̄ and qqq are the only states with 2 or 3 quarks that can be color neutral.4

2Or in MARTY’s code, for the brave.
3Purely in terms of SU(3) color structure.
4Arbitrary combinations of those two building blocks will of course also give neutral states, as tetra-

quarks qqq̄q̄ and penta-quarks qqqqq̄ for example.

62

Sample code 32: Representation product decomposition

Taking the sample algebras of sample code 30.

In the A2 algebra

Irrep quark = GetIrrep(A2, {1, 0});
Irrep antiquark = GetIrrep(A2, {0, 1});

cout << "3␣x␣3␣=␣" << quark * quark << endl;
// >> 3 x 3 = 3 + 6 (Total dim = 9)
cout << "3␣x␣3c␣=␣" << quark * antiquark << endl;
// >> 3 x 3c = 1 + 8 (Total dim = 9)
cout << "3␣x␣3␣x␣3␣=␣" << quark * quark * quark << endl;
// >> 3 x 3 x 3 = 1 + 8 + 8 + 10 (Total dim = 27)
cout << "3␣x␣3␣x␣3c␣=␣" << quark * quark * antiquark << endl;
// >> 3 x 3 x 3c = 3 + 3 + 6 + 15 (Total dim = 27)

In the F4 algebra

Irrep exotic1 = GetIrrep(F4, {1, 0, 0, 0});
Irrep exotic2 = GetIrrep(F4, {0, 0, 0, 1});
cout << exotic1 << endl;
// >> Representation |1,0,0,0> of dimension 52
cout << exotic2 << endl;
// >> Representation |0,0,0,1> of dimension 26
SumIrrep decomposition = exotic1 * exotic2;
cout << "52␣x␣26␣=␣" << decomposition << endl;
// >> 52 x 26 = 26 + 273 + 1053 (Total dim = 1352)

See also Documentation of Irrep and SumIrrep.

4.4 Gauge representations

A gauge representation is simply a collection of group representations. The principle is
the same as for Irrep and SumIrrep, but this time one manipulates representations in
different groups at the same time in objects GaugeIrrep and SumGaugeIrrep. Taking a
sample SU(3)C⊗SU(2)L SM gauge for example, one can take the product of a left-handed
quark with a left-handed anti-quark

(3, 2)⊗ (3̄, 2̄) = (1⊕ 8, 1⊕ 3) = (1, 1)⊕ (8, 1)⊕ (1, 3)⊕ (8, 3). (4.7)

For gauge representations, one may directly use a high-energy physics model with its
interface like we showed in 3.2.6. Sample code 33 presents how to perform the exam-
ple above, building a Gauge from scratch, independently of any quantum field theory
consideration, and calculating the decomposition of qq̄ in this SU(3)C ⊗ SU(2)L gauge.

63

https://marty.in2p3.fr/doc/marty/html/classmty_1_1Irrep.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1SumIrrep.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1GaugeIrrep.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1SumGaugeIrrep.html

Sample code 33: Gauge irreducible representations

Building a SU(3)× SU(2) gauge

Gauge gauge;
gauge.addGroup(group::Type::SU, "C", 3);
gauge.addGroup(group::Type::SU, "L", 2);

Getting quark (3, 2) and anti-quark (3̄, 2̄) representations

// Two representations between {},
// {1, 0} is SU(3) triplet
// {1} is SU(2) doublet
GaugeIrrep quark = gauge.getRepresentation({{1, 0}, {1}});
GaugeIrrep antiquark = quark.getConjugatedRep();
cout << quark << endl;
// >> (3 , 2)
cout << antiquark << endl;
// >> (3 , 2)

Getting the decomposition of qq̄

SumGaugeIrrep decomposition = quark * antiquark;
cout << decomposition << endl;
// >> (1 , 1) + (8 , 1) + (1 , 3) + (8 , 3)
if (decomposition.containsTrivialRep()) {

cout << "Contains␣trivial␣rep␣!" << endl;
// >> Contains trivial rep !

}

Note The containsTrivialRep() method for gauge representations is actually used
in MARTY to check that interactions terms are not loudly violating gauge invariance.
They still can violate the gauge even if respecting this condition but it is more
subtle to test automatically.

See also Documentation of Gauge, GaugeIrrep and SumGaugeIrrep.

4.5 Dynkin labels for common representations

In this section we present the correspondence between Dynkin labels and the most common
irreducible representations (irreps) for all semi-simple groups. In MARTY, Dynkin labels
allow users to define uniquely irreps when creating particles. Each time, those positive
integers must be given between {}, as for a SU(3) "C" group

particle->setGroupRep("C", {1, 0});

for the fundamental representation of SU(3) of Dynkin labels (1, 0), typically quarks.
Gauge bosons are in the adjoint representation of their gauged groups, and generally

non-trivial representations are the fundamental ones (doublet of SU(2), triplet of SU(3)
etc), but this section also presents more exotic irreps. Trivial irreps (dimension 1) have
always 0 Dynkin labels (0, · · · , 0) but need not to be defined in MARTY. The correspondence
between groups and algebras A`, B`, C` and D` was given in table 2.2.

64

https://marty.in2p3.fr/doc/marty/html/classmty_1_1Gauge.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1GaugeIrrep.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1SumGaugeIrrep.html

4.5.1 su(N)

su(N) is an algebra of rank N − 1 corresponding to AN−1, meaning that an irrep in that
group is uniquely defined by N − 1 positive integers. Starting from su(2) with one label,
common representations are presented in table 4.2.

Dynkin labels Dimension Common name
(1, 0, · · · , 0) N Fundamental
(0, · · · , 0, 1) N Anti-fundamental

(1, 0, · · · , 0, 1) N2 − 1 Adjoint

Table 4.2: Dynkin labels for common su(N) irreducible representations.

The su(2) case

For the su(2) algebra, there is only one Dynkin label λ corresponding to the spin j through
the relation

j =
λ

2
. (4.8)

One can then straight-forwardly deduce the Dynkin label for a representation of spin j
(dimension 2j + 1) by multiplying by 2.

The su(3) case

su(3) representations are defined with two Dynkin labels. Table 4.3 presents the corre-
spondence with common su(3) irreps.

Dynkin labels Dimension Common name
(1, 0) 3 Triplet
(0, 1) 3 Anti-triplet
(1, 1) 8 Adjoint
(2, 0) 6 Sextet
(0, 2) 6 Anti-sextet
(2, 1) 10 Decuplet
(1, 2) 10 Anti-decuplet

Table 4.3: Dynkin labels for common su(3) irreducible representations.

4.5.2 so(N)

so(2`) and so(2`+1) are algebras of rank ` namelyD` and B` respectively. Particular cases
must be mentioned for low ` to define properly vector, adjoint, and spinor representations
of so(N).

65

Group Algebra Dynkin labels Dimension Common name
SO(5) B2 (1, 0) 5 Vector
SO(5) B2 (0, 2) 10 Adjoint

SO(2`+ 1) Bl, ` ≥ 3 (1, 0, 0, · · · , 0) 2`+ 1 Vector
SO(2`+ 1) Bl, ` ≥ 3 (0, 1, 0, · · · , 0) `(2`+ 1) Adjoint
SO(4) D2 (1, 1) 4 Vector
SO(4) D2 (2, 1) 6 Adjoint
SO(6) D3 (1, 0, 0) 6 Vector
SO(6) D3 (0, 1, 1) 15 Adjoint
SO(2`) D`, ` ≥ 4 (1, 0, 0, · · · , 0) 2` Vector
SO(2`) D`, ` ≥ 4 (0, 1, 0, · · · , 0) `(2`− 1) Adjoint
SO(2`) D` (0, · · · , 0, 1, 0) 2`−1 Left spinor
SO(2`) D` (0, · · · , 0, 0, 1) 2`−1 Right spinor

Table 4.4: Dynkin labels for the simplest so(N) irreducible representations. Dimensions
have been calculated with MARTY as demonstrated in section 4.2.

4.5.3 sp(N)

sp(2`) is an algebra of rank ` namely C`. Dynkin labels for the fundamental and adjoint
representations of Sp(N) groups are presented in table 4.5.

Group Algebra Dynkin labels Dimension Common name
Sp(2`) C` (1, 0, · · · , 0) 2` Fundamental
Sp(2`) C` (2, 0, · · · , 0) `(2`+ 1) Adjoint

Table 4.5: Dynkin labels for the simplest sp(2N) irreducible representations. Dimensions
have been calculated with MARTY as demonstrated in section 4.2.

4.5.4 E6

E6 is an exceptional algebra of rank 6. Dynkin labels for the simplest E6 representations
are presented in table 4.6.

66

Dynkin labels Dimension
(1, 0, 0, 0, 0, 0) 27
(0, 1, 0, 0, 0, 0) 351
(0, 0, 1, 0, 0, 0) 2925
(0, 0, 0, 1, 0, 0) 351
(0, 0, 0, 0, 1, 0) 27
(0, 0, 0, 0, 0, 1) 78
(1, 1, 0, 0, 0, 0) 5824
(1, 0, 1, 0, 0, 0) 51975
(1, 0, 0, 1, 0, 0) 7371
(1, 0, 0, 0, 1, 0) 650
(1, 0, 0, 0, 0, 1) 1728

Table 4.6: Dynkin labels for the simplest E6 irreducible representations. Dimensions
have been calculated with MARTY as demonstrated in section 4.2.

4.5.5 E7

E7 is an exceptional algebra of rank 7. Dynkin labels for the simplest E7 representations
are presented in table 4.7.

Dynkin labels Dimension
(1, 0, 0, 0, 0, 0, 0) 133
(0, 1, 0, 0, 0, 0, 0) 8645
(0, 0, 1, 0, 0, 0, 0) 365750
(0, 0, 0, 1, 0, 0, 0) 27664
(0, 0, 0, 0, 1, 0, 0) 1539
(0, 0, 0, 0, 0, 1, 0) 56
(0, 0, 0, 0, 0, 0, 1) 912

Table 4.7: Dynkin labels for the simplest E7 irreducible representations. Dimensions
have been calculated with MARTY as demonstrated in section 4.2.

4.5.6 E8

E8 is an exceptional algebra of rank 8. Dynkin labels for the simplest E8 representations
are presented in table 4.8.

Dynkin labels Dimension
(1, 0, 0, 0, 0, 0, 0, 0) 3875
(0, 0, 0, 0, 0, 1, 0, 0) 30380
(0, 0, 0, 0, 0, 0, 1, 0) 248

Table 4.8: Dynkin labels for the simplest E8 irreducible representations. Dimensions
have been calculated with MARTY as demonstrated in section 4.2.

67

4.5.7 F4

F4 is an exceptional algebra of rank 4. Dynkin labels for the simplest F4 representations
are presented in table 4.9.

Dynkin labels Dimension
(1, 0, 0, 0) 52
(0, 1, 0, 0) 1274
(0, 0, 1, 0) 273
(0, 0, 0, 1) 26
(1, 1, 0, 0) 29172
(1, 0, 1, 0) 8424
(1, 0, 0, 1) 1053
(0, 1, 1, 0) 107406
(0, 1, 0, 1) 19278
(0, 0, 1, 1) 4096

Table 4.9: Dynkin labels for the simplest F4 irreducible representations. Dimensions
have been calculated with MARTY as demonstrated in section 4.2.

4.5.8 G2

G2 is an exceptional algebra of rank 2. Dynkin labels for the simplest G2 representations
are presented in table 4.10.

Dynkin labels Dimension
(1, 0) 7
(0, 1) 14
(1, 1) 64
(2, 0) 27
(0, 2) 77
(2, 1) 189
(1, 2) 286
(2, 2) 729

Table 4.10: Dynkin labels for the simplest G2 irreducible representations. Dimensions
have been calculated with MARTY as demonstrated in section 4.2.

68

Chapter 5

Model Building

This chapter is about advanced features for model building in MARTY. We saw in chapter
2 how to create quantum fields, and in chapter 3 how to add any Lagrangian term by
hand. Users then already have what is needed to create general BSM models. In the
following are presented more advanced manipulations one can do on MARTY’s models to
save time and energy, in particular for those having several thousands of terms. This
kind of procedures have been used in MARTY to create the MSSM for example, that has
more than 7000 Lagrangian terms for its unconstrained version. Writing the Lagrangian
by hand was not an option for us. We then decided to write the high-energy Lagrangian,
with a SU(3)C × SU(2)L × U(1)Y gauge and the SM flavor (3 fermion generations) fully
preserved. This Lagrangian is much more simple to get in the literature, and to implement.
It uses for example the very compact notation QL that contains the three generations of
left-handed up and down quarks uL, dL, cL, sL, tL, bL. Then, all breaking steps to get to the
final low energy Lagrangian have been automated to get to the final low-energy effective
Lagrangian, and are then available for any BSM model. These features are presented in
the following.

5.1 Recipe

The recipe to build a model in MARTY is always the same. In this section we present a ’fill
in the blanks’ sample for model building. This is presented in sample code 34. The first
step is to create the gauge and flavor groups, as detailed in section 5.2. Then, section 5.3
explains how particle content must be given by the user. Sections 5.5.1, 5.5.2 and 5.5.3
bring up the topic of advanced model building features. Finally, section 5.5.4 will tell
users what they have to do and can do at the end of the model building process, before
getting into actual calculations that will be presented in chapter 6.

69

Sample code 34: Model building recipe

Creating the model

Model model;

Setting the gauge and flavor groups

model.addGaugedGroup(args...);
model.addGaugedGroup(args...);
model.addFlavorGroup(args...);
model.init(); // Important to call this function once finished !

Adding particle content

Particle p1 = builderfunction_s(args...);
p1->setGroupRep(args...);
p1->setFlavorRep(args...);
model.addParticle(p1); // Do not forget to add the particles !
// ...

Using advanced model building features

// Here really starts the model building game !
model.renameParticle(args...);
model.replace(args...);
model.rotateFields(args...);
model.diagonalizeMassMatrices(args...);

Refreshing the model once finished

model.refresh(); // Once everything is done, let MARTY do some cleaning

Note The refreshing at the end is important. It will allow MARTY to find some nice
simplifications and merge all the terms that must been merged (same content).

Model building is done by iteration, testing the different steps one after the other.
When building a BSM model, we encourage users to often display the state of the model,
checking that everything is done correctly by typing

cout << model << endl;

It allows one to know what MARTY is doing, and more importantly what needs to be done to
have a meaningful model. For models with many terms, the output may not be contained
in a terminal and can be redirected in a file typing for example

./myProgram.x > data.txt

5.2 Gauge Group

The gauge in a MARTY model can be any combination of semi-simple Lie groups. When
adding a gauged group to a model, one must give its type, its name, and a dimension
when it is relevant. Group types and their respective allowed dimensions are presented
in table 5.1. Names must be chosen carefully as many interface functions take the group
names as parameter as we have seen in section 2.3.3.

Flavor groups are for now limited to the N−dimensional fundamental representations
of SU(N) for flavors mixing complex fields, and SO(N) for real ones. One must then sim-

70

Group MARTY type Dimension
U(1) group::Type::U1
SU(N) group::Type::SU d ≥ 2
SO(N) group::Type::SO d ≥ 2
Sp(N) group::Type::Sp d ≥ 2, d even
E6 group::Type::E6
E7 group::Type::E7
E8 group::Type::E8
F4 group::Type::F4
G2 group::Type::G2

Table 5.1: Different gauged groups possible in MARTY. The type to give to the
addGaugedGroup() method is given, as well as the dimension allowed, if there is a di-
mension to give.

ply give the dimension of the flavor N and a boolean that tells if mixed fields are complex
(SU(N)) or not (SO(N)). Procedure to add gauged and flavor groups is summarized in
sample code 35.

Sample code 35: Adding gauged and flavor groups

Taking the Standard Model example: A SU(3)C × SU(2)L × U(1)Y gauge, and a
SU(3)F (complex) symmetry flavor group.

Adding gauged groups

model.addGaugedGroup(group::Type::SU, "C", 3);
model.addGaugedGroup(group::Type::SU, "L", 2);
model.addGaugedGroup(group::Type::U1, "Y");

Adding flavor groups

model.addFlavorGroup("F", 3, true); // Complex 3-dimensional flavor
// For a SO(3) real flavor, this command would be
// model.addFlavorGroup("F", 3, false);

Recall to initialize the model once finished

model.init();

Note Again we present the SM example for simplicity but the procedure is fully
general and may applied on any groups.

Note As said in section 2.3.3, the definition order of symmetry groups defines
also the order of the indices to give to particles that have multiple non-trivial
representations. In this case for example, one will have to give color indices before
weak isospin ones.

As detailed in chapter 2 gauge bosons and ghosts, coming with their initial kinetic
and interaction terms, are created automatically by MARTY. Users then have to create
themselves the matter content, as explained in the next section.

71

5.3 Particle content

Once the gauge is fixed, new particles can be added to the model. Chapter 2 already
presented what quantum fields can be defined and how. Let us recall here the basic
principle. One first creates a particle, fermionic or bosonic, using a built-in function in
MARTY (see sample codes 6, 7, 8 and 9 of section 2.1). Then, one has to define the gauge
and flavor representations of the particle that are not trivial (see sample codes 13 and 14
of section 2.1). Finally, one may add the particle to the model. As explained in sample
code 20 of section 3.2.1, adding a particle will automatically initialize1:

• The kinetic term of the particle like ∂µφ∗∂µφ for a complex scalar φ.

• The mass term of the particle if the user defined one through the setMass()
method of particles (see 2.2.2 for more details).

• Gauge interactions, depending on the gauge representations defined by the user
before adding the particle.

5.4 Completing the Lagrangian

This topic has already been fully explained in section 3.2.4, we will not repeat ourselves
here. This is the final step before using the built-in functions in MARTY that allow to
modify a model, presented in the next section.

5.5 ModelBuilder interface

The class ModelBuilder contains all the necessary interface to modify an existing La-
grangian. The principle is to give the user the possibility to modify all terms in the
Lagrangian following a given prescription. Replacement of a mathematical expression,
particles, field rotations, mass diagonalization etc can be performed by MARTY. The fol-
lowing sections present more in details the different possibilities to this end.

5.5.1 Replacements

There is several kinds of replacements possible in a model. Except simple renaming,
replacements are based on the CSL machinery, see the CSL manual for more details on
how it works under the hood. There is four ways to replace expressions in a model:

• Renaming particles. This is the simplest procedure one will see in this section.
It is however important to get a model corresponding to standard conventions. It
may be done through a single function call, as presented in sample code 36.

• Replacing scalar expressions. As in CSL, an expression can be replaced with
another in the whole Lagrangian, like a 7→ b/ cos θ.

• Replacing tensors. Tensors may also be replaced, but need a particular care to
handle indices in the replacement procedure.

1Except if specified otherwise by the user.

72

https://marty.in2p3.fr/doc/marty/html/classmty_1_1ModelBuilder.html
https://marty.in2p3.fr/doc/csl-manual.pdf

• Replacing particles. Particles may be replaced by any expression. It works like
the replacement of tensors but the model needs to know the particle redefinition
explicitly. H0 7→ h+v√

2
is an example of such replacement.

Sample code 36: Renaming particles

From the ModelBuilder interface

model.renameParticle("A_L", "W");

From the Particle object

Particle A_L = model.getParticle("A_L");
A_L->setName("W");

See also Documentation of Particle and ModelBuilder.

Replacing expressions

Replacing scalar expressions can be done on the full Lagrangian by MARTY in a very simple
way. One simply has to have all the symbolic expressions needed. For example replacing
a coupling gL of a model by e

cos θW
, one needs in the first place the initial coupling gL of

the model. Section 3.2.2 presented in details how to get the built-in gauge couplings of a
model.

The example here is taken from the Standard Model. One breaks the SU(2)L×U(1)Y
into a U(1)EM symmetry. The two initial gauge couplings gL and gY are identified to a
new coupling, the electromagnetic coupling constant e, through the relations

gY 7→
e

cos θW
, (5.1)

gL 7→
e

sin θW
. (5.2)

This kind of replacements are done easily, as demonstrated in sample code 37.
Sample code 37: Replacing expressions

Taking a SU(2)L × U(1)Y gauge, replacing the two initial coupling constants by a
new one e, depending on an angle θW .

Getting the initial expressions, and creating the new

Expr g_Y = model.getScalarCoupling("g_Y");
Expr g_L = model.getScalarCoupling("g_L");
Expr e = constant_s("e");
Expr theta_W = constant_s("theta_W");

Performing the replacements in the Lagrangian

model.replace(g_Y, e / cos_s(theta_W));
model.replace(g_L, e / sin_s(theta_W));

Note This code is fully general, any kind of scalar replacement can be done in the
Lagrangian using the CSL machinery.

See also Section 3.2.2 for more details on how to get couplings in a BSM model.

73

https://marty.in2p3.fr/doc/marty/html/classmty_1_1Particle.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1ModelBuilder.html

Replacing tensors

Replacing tensor may be more subtle because one has to be careful about indices. Taking
a simple example, the replacement of a matrix Aij following

Aij 7→ Cij +Bji, (5.3)

with B and C two user-defined matrices. It is not trivial for MARTY to know, if indices are
not specified for A, which index of A maps to i and which to j. Considering canonical-
ization of expressions (see the CSL manual), B is simpler than C and is placed first. The
replacement for MARTY then reads instead

Aij 7→ Bji + Cij. (5.4)

You see then that if the indices of the replaced tensor are not given, MARTY cannot know in
general how to place indices i and j in the final expression. Such an example is presented
in sample code 38.

Sample code 38: Replacing tensors

We consider here φ and ψ two particles in a given flavor representation with indices
i, j, k. We also take for granted all indices and tensors. More details on that in
sections 1.2.4 and 2.3.3.

Setting the initial tensor A complex

A->setComplexProperty(ComplexProperty::Complex);

Building an interaction term ψ̄iAijkψjφk + h.c.

model.addLagrangianTerm(
A({i, j, k})
* GetComplexConjugate(psi({i, alpha}))
* psi({j, alpha})
* phi(k),
true // Adding the hermitian conjugate as well

);

Replacing Aijk 7→ bBijk − ic Cjik, B and C real tensors

model.replace(A({i, j, k}), b*B({i, j, k}) - CSL_I*c*C({j, i, k}));
// The result looks like
// (b*B_{E,F,G} + -i*c*C_{F,E,G})*phi_{G}*psi_{E,a}^(*)*psi_{F,a} + h.c

Note The index α for the fermion ψ is a Dirac index.

See also Section 3.2.4 for more details on how to build interaction terms.

See also The CSL manual for more details on tensors and replacement.

Replacing particles

Replacing particles uses the exact same interface as other replacements presented above.
The commands are then the same, but users still should know that:

74

https://marty.in2p3.fr/doc/csl-manual.pdf
https://marty.in2p3.fr/doc/csl-manual.pdf

• If the initial expression is a particle, it will be removed from the model, except if it
appears also in the final state.

• If the final state contains unknown particles, they will be added to the model,
without adding kinetic, mass or interaction terms automatically.

This is presented in sample code 39. For the specific case of vector bosons,

Sample code 39: Replacing particles

Considering a complex scalar field φi mapped to ηi + iχi with χ and η two real
scalar fields. i can be an index in any space.

Building the two new fields

Particle eta = phi->generateSimilar("eta");
Particle chi = phi->generateSimilar("chi");
eta->setSelfConjugate(true); // real field
chi->setSelfConjugate(true); // real field

Replacing the field with the explicit index

model.replace(
phi(i),
eta(i) + CSL_I * chi(i)

);

Replacing the field without specifying indices

model.replace(
phi,
eta(i) + CSL_I * chi(i)

);

Warning The second method works well for one (or zero) index, but may be
dangerous when several indices are in the same vector space, for a Field strength
for example.

See also Chapter 2 for more details on quantum fields.

Rotations

Field rotations are treated in section 5.5.3 that presents the diagonalization capabilities
of MARTY.

5.5.2 Symmetry breaking

Principle

It is possible to break gauge and flavor symmetries in MARTY. This is the most power-
ful feature for model building, although for now limited to particular cases. Symmetry
breaking means two things:

• The broken gauge symmetry can be violated by interaction terms introduced after
the symmetry breaking, in the sense that MARTY will not complain.

75

• Tensors living in vector spaces of the broken group are also broken in pieces. W I in
the SU(2)L Standard Model gauge for example will be broken in {W 1,W 2,W 3}.

Limitations for gauge symmetry breaking

The limitations of gauge symmetry breaking are the following2. There is for now no
sub-grouping support. In other words, one cannot break a group into a subgroup. The
group will be completely broken. The second limitation is a not a strong one, but could
be unpleasant. When breaking a gauge symmetry, algebra generators are broken. Taking
the example of SU(2), generators TA are expressed as functions of Pauli matrices:

TAij =
1

2
σAij, (5.5)

with

σ1 =

(
0 1
1 0

)
, (5.6)

σ2 =

(
0 −i
i 0

)
, (5.7)

σ3 =

(
1 0
0 −1

)
. (5.8)

Structure constants defined as

[TA, TB] = ifABCTC (5.9)

are fABC = εABC in SU(2), the fully anti-symmetric tensor with ε012 = 1.
When breaking the gauge representation spaces, the values of generators and structure

constants may not be defined. In particular, generators explicitly defined in MARTY are
those known in the Standard Model (works also in the 2HDM and the MSSM), i.e. those
for the doublet and triplet of SU(2), and triplet and octet of SU(3). One still can break
a gauge that is not SM-like, but values for generators should then be given by the user to
have a numerical result at the end. Otherwise results will depend on symbolic expressions
of the type T 1

02 or f 124 that are undefined.
Gauge symmetry breaking could easily be improved in future MARTY’s developments

but is not a priority for now as the present limitations do not prevent one to write any
BSM model, simply may complicate this task. If one is particularly interested in such
developments, we are available to discuss them !

In practice

In practice, breaking a symmetry in MARTY is very simple. This is shown in sample code
40. Broken particles are automatically renamed as said before, a field ΦI with I in a
N-dimensional broken space gives after breaking {Φ1,Φ2, . . . ,ΦN}. From a programming
point of view, a particle of name phi will yield broken particles of names phi_1, phi_2 etc.
This is important if one wants to access the broken particles later on.

2Flavor symmetry breaking has not such limits.

76

Sample code 40: Symmetry breaking

Considering a "C" SU(3) gauge group, and a "F" SU(3) flavor group.

Breaking the gauge symmetry

model.breakGaugeSymmetry("C");

Breaking the Flavor symmetry

model.breakFlavorSymmetry("F");

Note U(1) symmetries may also be broken. There is no tensor to break, but one
tells MARTY that future interaction terms may violate the symmetry.

See also Documentation of ModelBuilder.

Sub-grouping in flavor symmetry breaking

Sub-grouping is possible for flavor symmetry breaking. The CSL machinery to break
tensors exists, but the particle definition in MARTY should be changed a bit for the same
process to be possible for gauge symmetries. Sub-grouping means keeping a sub-group
unbroken. Let’s consider the example of a SU(4) flavor symmetry. One may want to
break apart the two first components only. This gives for a matrix Aij living in that 4× 4
space

Aij =


· · · ·
· · · ·
· · · ·
· · · ·

→

· · · ·
· · · ·
· · · ·
· · · ·

 . (5.10)

The matrix is then broken into 4 scalars, 2 tensors of dimensions (1, 2), two (2, 1) and one
(2, 2). For numbers one gets simply CSL constants in expressions. New tensor are named
a particular way by CSL. The notation is heavy but allows a user to know what is the
underlying tensor. The prescriptions to find new names are the following:

• Start with the initial tensor name.

• Add "_B_" to signal that the tensor has been broken.

• For each broken dimension add "i_j" if the broken tensor corresponds to indices i
to j (or just "i" if i == j). If the range is maximal (all indices are conserved along
the dimension), add "a" for ’all’.

• Add "__" between each dimension.

Sub-grouping can be done several times and each time these naming conventions are
used. For the example in equation 5.10, tensors names would be

• A_B_0__2_3 and A_B_1__2_3 for the (1, 2) tensors.

• A_B_2_3__0 and A_B_2_3__1 for the (2, 1) tensors.

• A_B_2_3__2_3 for the (2, 2) tensor.

77

https://marty.in2p3.fr/doc/marty/html/classmty_1_1ModelBuilder.html

The exact procedure to break flavor symmetries is presented in sample code 41.

Sample code 41: Sub-grouping flavor symmetries

Considering a SU(4) "F" flavor group.

Breaking 4 in 2⊕ 2 and then in 1⊕ 1⊕ 2

model.breakFlavorSymmetry("F", {2, 2}, {"F1", "F2"});
model.breakFlavorSymmetry("F1");

Breaking 4 in 1⊕ 1⊕ 2 directly

model.breakFlavorSymmetry("F", {1, 1, 2});

Breaking 4 in 1⊕ 1⊕ 1⊕ 1

model.breakFlavorSymmetry("F");

When sub-grouping, one must give the dimensions of all sub-groups (including
dimension 1).

Note Users may give names for the new non-trivial flavors. If not given, "_i" will
be appended to the initial flavor name to distinguish them. If there is one unique
non-trivial flavor remaining, the name stays unchanged.

See also Documentation of ModelBuilder for more information.

5.5.3 Diagonalization

Meaningful results in general cannot be obtained without first diagonalizing all mass
matrices of the theory. In order to get mass eigenstates one must treat the case of mixings,
in mass terms, between different particles. This results in the tree-level spectrum of the
theory, with masses and mixings. There is several ways to diagonalize mass matrices
depending on what the user wants to do, that range from manual to fully automated
solutions.

MARTY will complain if it sees mixing terms left in the mass Lagrangian, but will let
users do it. Depending on the situation, different kinds of diagonalization are possible,
always trying to minimize to size of expressions in the Lagrangian that propagates in
Feynman rules and in the end theoretical calculations.

Rotations

Rotations are the first features allowing one to diagonalize mass matrices. There is two
ways to rotate fields. Either the field Φ is still in a tensor notation

Φi 7→ UijΦj, (5.11)

or the rotation concerns different fields φ
η
· · ·

 7→
 Uφφ Uφη · · ·

Uηφ Uηη · · ·
· · · · · · · · ·

 φ
η
· · ·

 (5.12)

78

https://marty.in2p3.fr/doc/marty/html/classmty_1_1ModelBuilder.html

In both cases, the mixing matrix U must be unitary

U †U = UU † = 1. (5.13)

As the user may want to perform both kinds of rotations, MARTY can do both. In any
case, what this section present does not diagonalize mixings. It simply applies a rotation
to fields in the Lagrangian. If one uses this feature to diagonalize a mass matrix by hand,
it should be checked that the left mixing terms in the Lagrangian are indeed zero, even if
MARTY is not able to know it automatically. Let us consider a simple example to illustrate
this point, and take a mass Lagrangian

L 3 −1

2
(m2

1φ
2
1 +m2

2φ
2
2 + 2m2

12φ1φ2), (5.14)

giving a mass matrix

M2 =

(
m1 m12

m12 m2

)
. (5.15)

One may want to rotate away the mixing between φ1 and φ2 by introducing an angle θ

φ′1 ≡ cos θφ1 + sin θφ2,

φ′2 ≡ − sin θφ1 + cos θφ2.
(5.16)

This should be an angle defined as diagonalizing the Lagrangian, but MARTY will a priori
not know it and the resulting Lagrangian is

L 3 −1

2

[
(cos2 θm2

1 + sin2 θm2
2 + 2 cos θ sin θm12)φ′21

+(cos2 θm2
2 + sin2 θm2

1 − 2 cos θ sin θm12)φ′22

+
(
cos θ sin θ(m2

2 −m2
1) + 2m2

12(cos2 θ − sin2 θ)
)
φ′1φ

′
2

]
.

(5.17)

MARTY will then end up on such a Lagrangian, eventually3 read the masses of φ′1 and φ′2
on diagonal terms and ignore the mixing

(
cos θ sin θ(m2

2 −m2
1) + 2m2

12(cos2 θ − sin2 θ)
)
φ′1φ

′
2, (5.18)

that should be checked by the user to verify that it is indeed zero, in the user-defined
conventions. MARTY will display non-diagonal terms in the mass Lagrangian if there are
some in the final result when calling the refresh() function.

First, let us consider the tensor rotation of equation 5.11. One must provide the
rotation matrix U . Sample code 42 presents the way to create a unitary matrix in a given
vector space.

3If calling the refresh() function as precised in section 5.1

79

Sample code 42: Create a unitary matrix

Creating the unitary tensor "U"

Tensor U = Unitary("U", mySpace);

Creating indices

auto I = mySpace->generateIndices(3);

Testing unitarity

cout << U({I[0], I[1]})*U({I[1], I[2]}) << endl;
// >> U_{i, j}*U_{j, k}
cout << U({I[0], I[1]})*GetComplexConjugate(U({I[2], I[1]})) << endl;
// >> delta_{i, k}
cout << U({I[0], I[1]})*GetComplexConjugate(U({I[0], I[2]})) << endl;
// >> delta_{i, k}

See also Sample code 25 for more details on vector spaces.

See also The CSL manual for explanations on tensors and their properties.

Unitarity is not a mandatory property, but will be very practical in the Lagrangian
because simplifications will be done automatically using the unitary property.

Once the user has a unitary matrix, the field rotation as in equation 5.11 is done in
one function call, as shown in sample code 43.

Sample code 43: Tensor field rotation

Let us consider a rotation for a field "psi" in a "F" flavor space

Building the unitary matrix

auto flavorSpace = GetVectorSpace(model, "F", "psi");
Tensor U = Unitary("U", flavorSpace);

Rotating the field

model.rotateField("psi", U);

The second way to rotate fields is when they are not contained in a tensor, like in
equation 5.12. In this case, the user may provide all the mixing matrix components if
wanted, or let MARTY define them itself. This is summarized in sample code 44.

80

https://marty.in2p3.fr/doc/csl-manual.pdf

Sample code 44: Field rotation

Considering a simple two fields example, "phi" and "eta".

Giving a rotation matrix explicitly

Expr theta = constant_s("theta");
Expr c = cos_s(theta);
Expr s = sin_s(theta);
model.rotateFields(

{"phi", "eta"},
{{c, s},
{-s, c}}
);

Note The rotation matrix may be omitted, but one probably wants in this case to
read the section 5.5.3 about semi-automatic diagonalization.

Symbolic diagonalization for 2-by-2 matrices

A symbolic diagonalization is possible in MARTY for 2× 2 matrices. This is however only
recommended for determinant 0 matrices, i.e. with one final massless state. In that
case the mixing matrix is simple and may be introduced smoothly in the Lagrangian.
For general 2 × 2 matrices, the result may be rather complicated expressions and a user
could prefer the explicit rotation solution presented above. Matrices of higher dimensions
cannot be diagonalized symbolically in general, it is then not possible to do it in MARTY.

Diagonalizing a mass matrix symbolically is very simple in MARTY, the procedure being
presented in sample code 45.

Sample code 45: Symbolic diagonalization

Consider a 2× 2 matrix mixing the B and W 3 bosons in the Standard Model. The
matrix has determinant 0 and can be automatically diagonalized typing

model.diagonalizeSymbolically("B");
// Or
// model.diagonalizeSymbolically("W^3");

Only one particle name is needed, MARTY will find the matrix automatically in the
Lagrangian.

If the matrix determinant is known to be zero by the user but difficult to know for
MARTY, one can give it this extra piece of information through a boolean to help
MARTY simplify mass and mixing matrices

// Means "Believe me the determinant is zero,
// use the corresponding simplifications"
model.diagonalizeSymbolically("B", true);
// Or
// model.diagonalizeSymbolically("W^3", true);

Note For non-zero determinants, the symbolic diagonalization is not recommended
as it will probably introduce very complicated expressions.

81

Semi-automatic diagonalization

This part presents the way to diagonalize any mass matrix without having to know any-
thing about it. The diagonalization is not performed in the model but later during
numerical evaluation. The principle is to introduce arbitrary masses and mixings in the
Lagrangian. Results will then depend on it, and diagonalization will be done numerically,
in full generality, just before the numerical evaluation. In this section we present how to
trigger such diagonalization. See section 7.1.2 to have more information about the actual
numerical diagonalization.

There is two types of diagonalizations. The simple one, triggered by a mass matrix
acting on a field Φ

Φ†MΦ, (5.19)

and the bi-diagonalization by matrices acting on two different sets of fields ΦL and ΦR

Φ†LMΦR + Φ†RM
†ΦL (5.20)

In the first case, one can define
Φ = UΦ′, (5.21)

with U a unitary matrix and a diagonal mass matrix D defined as

Φ†MΦ = Φ′U †MUΦ′ ≡ Φ′†DΦ′. (5.22)

Asking MARTY to diagonalize Φ, it will introduce symbolic matrices U and D, keeping the
initial M in memory to diagonalize it later, and find values for U and D.

For the second case, one can define

ΦL = UΦ′L, (5.23)
ΦR = V Φ′R, (5.24)

with U and V unitary matrices and a diagonal mass matrix D defined as

Φ†LMΦR + Φ†RM
†ΦL = Φ†′LU

†MV Φ′R + Φ†′RV
†M †UΦ′L

≡ Φ†′LDΦ′R + Φ†′RDΦ′L.
(5.25)

One can see that we get the relation for D

U †MV = V †M †U = D. (5.26)

The way to obtain U and V is called bi-diagonalization, and requires to solve

U †MM †U = D2, (5.27)
V †M †MV = D2. (5.28)

One can check indeed that

D2 = U †MV V †M †U = U †MM †U

= V †M †UU †MV = V †M †MV.
(5.29)

There is two diagonalizations to perform, and one gets finally two mixing matrices U and
V for left and right fields, and a diagonal matrix D4.

4D does not actually contain the eigenvalues of M , but the squared roots of eigenvalues of MM†.

82

The procedure to ask MARTY to perform these diagonalizations is summarized in sample
code 46. The principle is very similar to a simple rotation. One simply has to specify
a boolean to tell MARTY to remember the mass matrix to be able to diagonalize it later.
This is the first step to have a spectrum generator for any BSM model, the next being
the library generation, explained in section 7.1.2.

Sample code 46: Semi-automated diagonalization

Simple diagonalize of fields "phi_1" and "phi_2"

model.rotateFields({"phi_1", "phi_2"}, true);

Bi-diagonalization of left fields "psiL_1" and "psiL_2", and right fields
"psiR_1" and "psiR_2"

model.birotateFields({"psiL_1", "psiL_2"}, {"psiR_1", "psiR_2"});

Note No need to give a boolean for bi-diagonalization as this feature has been
developed only in that particular purpose.

See also Section 7.1.2 to see how to get the spectrum of the theory after diagonal-
izing symbolically fields following the procedure presented here.

Automatic diagonalization

There is a way to fully automate diagonalization in MARTY. Although we recommend
to use semi-automated features, explicit rotations and symbolic diagonalization, one can
ask MARTY to look at the mass Lagrangian, diagonalize symbolically the 2 × 2 matrices
it encounters, and using the procedure presented in the previous section for other non-
diagonal matrices if the diagonalizeSymbolically option is set to true by the user (see
chapter 8). This is presented in sample code 47.

Sample code 47: Automated diagonalization

Automated diagonalization in a MARTY model

model.diagonalizeMassMatrices();

Note 2× 2 matrices are diagonalized symbolically.

Note Other non-diagonal matrices are diagonalized following the prescriptions of
the previous section if the diagonalizeSymbolically option is set to true by the
user (see chapter 8).

5.5.4 Other features

Dirac fermion embedding

When doing model building with Weyl fermions, one may eventually want to have a Dirac
fermion notation

ψ ≡ ψL ⊕ ψR, (5.30)

in particular when a Weyl mass terms arises in the Lagrangian like

L 3 −m
(
ψ̄LψR + ψ̄RψL

)
= −mψ̄ψ. (5.31)

83

It is possible to tell MARTYto create a Dirac fermion, linking it with two existing Weyl
fermions (must be left and right). This is presented in sample code 48.

Sample code 48: Dirac fermion embedding

Considering two Weyl fermions "psi_L" and "psi_R"

model.diracFermionEmbedding("psi_L", "psi_R");

Note The call of the refresh() function in principle should automate it, and
recognize Weyl fermions that have a common mass term. It is however possible to
do it explicitly.

See also Section 5.1 for the refresh() function.

Goldstone boson promotion

When breaking symmetries, Goldstone bosons may appear, that one may want to link
to their corresponding vector boson. Gauge fixing will then apply transformations to the
Goldstone boson automatically. Sample code 49 presents this simple procedure.

Sample code 49: Goldstone boson promotion

In the Standard Model example, we promote the Higgs degree of freedom G+ to
the Goldstone boson of W .

model.promoteToGoldstone("G^+", "W");

After that, the Goldstone is linked to the W gauge fixing parameter ξ, in particular
through its mass

MG =
√
ξMW . (5.32)

See also Section 2.1.4 for more details on Goldstone bosons, and section 6.3 for
explanations on gauge fixing in MARTY.

Ghost boson promotion

When breaking symmetries or making replacements, ghost bosons may change indepen-
dently on their corresponding vectors, and in that case one may want to set the ghost of
a particular vector. Sample code 50 presents this simple procedure.

Sample code 50: Ghost boson promotion

In the Standard Model example, we can promote a c+ to be the ghost boson of W
once we defined these two particles.

model.promoteToGhost("c^+", "W");

After that, the Ghost is linked to the W gauge fixing parameter ξ, in particular
through its mass

MG =
√
ξMW . (5.33)

See also Section 2.1.4 for more details on ghost bosons, and section 6.3 for expla-
nations on gauge fixing.

84

Majorana fermion promotion

It is possible to transform a self-conjugate Weyl fermion ηL (or ηR) into a 4-component
Majorana fermion η by using the method promoteToMajorana(). This is useful for ex-
ample in the MSSM when defining the gauginos as self-conjugate Weyl fermions to recover
the 4-component Majorana definition if needed. The Lagrangian is modified accordingly
to simplify what can be, using the properties of the Majorana fermion. More precisely,
MARTY applies the relevant replacements in the Lagrangian from the definition of the
4-component η to obtain η from ηL or ηR:

η ≡
(
ηL
ηR

)
=

(
ηL
Cη†L

)
, (5.34)

with the conjugation matrix C, for an initial left-handed Weyl fermion ηL and

η ≡
(
ηL
ηR

)
=

(
Cη†R
ηR

)
, (5.35)

for an initial right-handed Weyl fermion ηR. Sample code 51 presents this simple proce-
dure.

Sample code 51: Majorana fermion promotion

It is possible to transform a self-conjugate Weyl fermion ηL (or ηR) into a 4-
component Majorana fermion η.

model.promoteToMajorana("eta_L", "eta");
// Or just
// model.promoteToMajorana("eta_L");
// if the name need not to be modified

85

86

Chapter 6

Calculations

6.1 General principles

This chapter is about theoretical calculations done by MARTY, its main purpose. In the
following are detailed all procedures to get symbolic results from a MARTY program. The
numerical evaluation is done outside of MARTY and will be treated separately in chapter 7.
Section 6.2 will introduce Feynman rules in MARTY, and how to calculate them. The gauge
fixing procedure we be detailed in section 6.3, treating the case of ghosts, Goldstone bosons
and the gauge fixing parameter ξ. Finally, sections 6.4, 6.5 and 6.7 will respectively show
how to get symbolic results for amplitudes, squared amplitudes and Wilson coefficients in
MARTY. All these calculations are available through the Model interface, the last layer of
the high energy physics model abstraction in MARTY as we saw in chapter 3.

6.2 Feynman Rules

Feynman rules are stored in the class FeynmanRule. It is mostly encapsulated by the
Model class. This means that a user should not have to manipulate explicitly this ob-
ject. Feynman rules will be automatically computed before a calculation if they have not
already been derived.

6.2.1 Get Feynman rules

The procedure to calculate the Feynman rules of a model and get them is presented in
sample code 52. There is a simple interface for the user to get the information about
the different vertices, being the Feynman diagrams (using GRAFED) or the symbolic
expressions. One can compute Feynman rules at any time during model building. Next
section will introduce notions to be able to read Feynman rules.

87

https://marty.in2p3.fr/doc/marty/html/classmty_1_1Model.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1FeynmanRule.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1Model.html

Sample code 52: Feynman rules

Launch the calculation of Feynman rules

model.computeFeynmanRules();

Get Feynman rules

// No need to ask the explicit computation when getting rules.
auto rules = model.getFeynmanRules();

Displaying the rules

Display(rules); // Displaying expressions in standard output
Show(rules); // Shows Feynman diagrams for rules with GRAFED

Note The auto keyword deduces the type vector<FeynmanRule> here, a list of rules.

Note Computing Feynman rules can be done several times if wanted. When
getting Feynman rules, they will be calculated only if it is not already done, and
then simply returned.

See also Documentation of class FeynmanRule.

6.2.2 Read Feynman rules

It is important to be able for a user to read Feynman rules, and check that they are
correct. When doing model building, this is the most important part. An incorrect
vertex coming from a misunderstanding of different conventions in the model will end up
in wrong results. Before doing any calculation with MARTY, we strongly encourage users
to check all the Feynman rules that are used.

A Feynman rule is a set of fields that enter the Wick theorem, with which other fields
will contract. Here is an example of Feynman rule for a fermion-photon interaction:

(0) : Rule for A_mu(p_1) psi_b(p_2)^(*) psi_a(p_3) :
-i*e*gamma_{mu,a,b}

One can see the field content of the first line, with corresponding indices and momenta.
In the line below stands the expression of the Feynman rule. We see the coupling, the
γ−matrix, but more importantly one may want to know which fermion is incoming,
psi_b(p_2)^(*) or psi_a(p_3). A Feynman rule does not show the fields it contains but
the fields that can be contracted with it. It means that a φ∗ in the vertex will yield φ
(and inversely) in the actual Feynman rule. This principle is shown in figure 6.1. We can
know be certain that ψ∗ in the vertex corresponds to the incoming fermion, and must
then be associated with the second index b of the γ-matrix.

Let us now consider other Feynman rules examples. First, a scalar QED example,
with a U(1) gauge. There is two vertices, a 3-vertex with a derivative of the scalar φ and
a 4-vertex. Feynman rules are the following

(0) : Rule for A_\rho_87(p_1) \phi(p_2) \phi(p_3)^(*) :
i*e*(p_1_\rho_87 + 2*p_2_\rho_87)

(1) : Rule for A_\rho_52(p_1) A_+\rho_53(p_2) \phi(p_3) \phi(p_4)^(*) :
2*i*e^2*delta_{\rho_52,+\rho_53}

88

https://marty.in2p3.fr/doc/marty/html/classmty_1_1FeynmanRule.html

Figure 6.1: Vertex for a Feynman rule, with a fermion-photon interaction example. The
fields in the vertex are shown in the middle, and fields using the rule (contracting with
it) are on the outside. These outside fields are those defining a Feynman rule, that MARTY
displays as content of a vertex.

Figure 6.2: 3-vertex rule in Scalar QED. The diagram presented here does not correspond
to the inner vertex but to MARTY’s Feynman rule, as explained in figure 6.1. All momenta
in Feynman rules are directed towards the vertex.

One may see the momentum dependence that arises in the 3-vertex. Figure 6.2 shows in
more details this dependence. Momenta in Feynman rules are always considered incoming
by default.

A last example of Feynman rules, in a QCD model. One gets for example a fermion-
gluon interaction, similar to the QED vertex with a SU(3) generator, and a 4-gluon vertex
introducing SU(3) structure constants fABC . The two rules are the following in MARTY:

(4) : Rule for G_{h,\tau}(p_1) X_{b,eps}(p_2)^(*) X_{a,del}(p_3) :
i*g*T_{h,a,b}*gamma_{\tau,del,eps}

(5) : Rule for G_{a,+\tau}(p_1) G_{b,+\mu}(p_2) G_{c,\nu}(p_3) G_{d,\rho}(p_4) :
-i*g^2*(f_{a,d,%h}*f_{b,c,%h}*g_{+\mu,+\tau}*g_{\rho,\nu}
+ f_{a,c,%h}*f_{b,d,%h}*g_{+\mu,+\tau}*g_{\rho,\nu}
+ -f_{a,c,%h}*f_{b,d,%h}*delta_{+\mu,\nu}*delta_{\rho,+\tau}
+ -f_{a,b,%h}*f_{c,d,%h}*delta_{+\mu,\nu}*delta_{\rho,+\tau}
+ -f_{a,d,%h}*f_{b,c,%h}*delta_{+\mu,\rho}*delta_{+\tau,\nu}
+ f_{a,b,%h}*f_{c,d,%h}*delta_{+\mu,\rho}*delta_{+\tau,\nu})

89

The 4-vertex reads (renaming indices to a vertex GAµ(p1)GBν(p2)GCρ(p3)GDσ(p4))

−ig2

(
fadhf bchgµνgρσ + fachf bdhgµνgρσ

−fachf bdhgµσgνρ − fabhf cdhgµσgνρ

−fadhf bchgµρgνσ + fabhf cdhgµρgνσ
)
,

(6.1)

that can be factored to recover a well-known rule (can be found in [21] page 511)

−ig2

(
fabhf cdh (gµρgνσ − gµσgνρ)

+fachf bdh (gµνgρσ − gµσgνρ)

+fadhf bch (gµνgρσ − gµρgνσ)

)
.

(6.2)

6.3 Gauge fixing
Gauge fixing can take place for any vector boson, independently of a gauge group. Taking
the most general case of a massive vector boson Aµ of mass M with a Goldstone boson φ
and a ghost c, one can write down the propagators of these different particles depending
on the gauge fixing parameter ξ [21], as presented in figure 6.3. Correspondence between
the different gauges available in MARTY and the ξ parameter is detailed in table 6.1.

= −i
gµν − (1− ξ) pµpν

p2−ξM2

p2 −M2
,

=
i

p2 − ξM2
,

=
i

p2 − ξM2
.

Figure 6.3: Propagators for a vector boson and its Goldstone and ghost bosons depend-
ing on the gauge fixing parameter ξ.

Name Parameter value Name in MARTY
Feynman ’t Hooft ξ = 1 gauge::Feynman
Lorenz ξ = 0 gauge::Lorenz
Unitary ξ =∞ gauge::Unitary
Rξ ξ gauge::NotDefined

Table 6.1: List of the different gauges that one can choose for a particular vector boson
in MARTY. The Rξ gauge lets an explicit ξ dependence in calculation, that should cancel
in physical observables.

One can see that setting the gauge choice for a vector boson will simply modify its
propagator, and masses of the associated ghost and Goldstone bosons. As physical results
must be gauge invariant, doing a calculation in one gauge or another should give the same
result. In particular, a calculation in the Rξ gauge will be expressed as a function of ξ

90

but should not depend on it. In the special case of the unitary gauge, the propagator or
the vector becomes

− i
gµν − pµpν

M2

p2 −M2
, (6.3)

the ghost and Goldstone bosons acquire an infinite mass
√
ξM → ∞ and decouple from

the theory. In particular, MARTY simply disables these scalars in diagrams for the unitary
gauge. Beware however that the latter must not be used for massless vector bosons as
the limit ξ → ∞ is ill-defined. The procedure to fix a gauge choice for a vector boson is
presented in sample code 53.

Sample code 53: Gauge fixing

Setting the unitary gauge for the W boson and Feynman gauge for the
photon A in the Standard Model for example

model.setGaugeChoice("W", gauge::Unitary);
model.setGaugeChoice("A", gauge::Feynman);

Note The default gauge choice in MARTY is gauge::Feynman with ξ = 1.

See also Documentation of file gaugedGroup.h.

Users should note that for now Goldstone - ghost interactions as presented in [22]
are not taken into account in MARTY. They come from gauge symmetry breaking and
are not written in general. If one is interested in processes using such interactions, the
corresponding interaction terms should be given explicitly as demonstrated in section
3.2.4.

6.4 Amplitude

The amplitude calculation is the main feature of MARTY, as other quantities (squared
amplitudes and Wilson coefficients) require first such calculation.

The calculation is fully automated, and can be launched in a single command line as
demonstrated in sample code 55. We however detail in this section the main steps in the
derivation of amplitude expressions.

6.4.1 External legs

External legs are the only pieces of information the user has to give beside the order of
development. From external legs, MARTY has to find all possible diagrams as presented in
figure 6.4.

An external leg carries four pieces of information:

• The underlying quantum field.

• The direction, incoming or outgoing.

• The conjugation, particle or anti-particle.

• The physicality, on-shell or off-shell.

91

https://marty.in2p3.fr/doc/marty/html/gaugedGroup_8h.html

= + + · · ·

Figure 6.4: Different 1-loop Feynman diagrams possible for the h → γγ process in the
SM. There is for example fermion and W -boson triangles.

MARTY has a simple interface to create field insertions that is shown in sample code 54.
There are four interface functions (Incoming(), Outgoing(), AntiPart(), OffShell()) that
can be composed with each other to build the relevant field insertion, starting from a
Particle type or the name of the field.

Sample code 54: Field insertions

An incoming off-shell fermion "psi"

Incoming(OffShell("psi"));
// Or
// OffShell(Incoming("psi"));

An outgoing anti phi

Outgoing(AntiPart("psi"));
// Or
// AntiPart(Outgoing("psi"));

To give a list of insertions as function parameter, one can put them in curly braces
{} (here for an electron self-energy calculation):

{Incoming(OffShell("e")), Outgoing(OffShell("e"))}

See also Documentation of Insertion.

With this information on can now launch an amplitude calculation with MARTY as pre-
sented in sample code 55.

92

https://marty.in2p3.fr/doc/marty/html/classmty_1_1Insertion.html

Sample code 55: Amplitude calculation

Calculating the transition amplitude for h→ eē.

Calculate the amplitude from the model

auto res = model.computeAmplitude(
Order::TreeLevel, // or Order::OneLoop
{Incoming("h"), Outgoing("e"), Outgoing(AntiPart("e"))}
);

Displaying the results

Display(res); // Prints symbolic result in standard output
Show(res); // Shows Feynman diagrams with GRAFED

Getting the different terms of the amplitude

for (size_t i = 0; i != res.size(); i++) {
Expr &term = res.expression(i);
// Do something to term

}

Note auto deduces the type Amplitude, that contains all expressions and diagrams
of the process.

See also Documentation of Model and Amplitude.

For now, library generation is only available for scalar quantities. An amplitude (with
non-scalar external particles) have indices and cannot be given directly to the library
generator presented in chapter 7. To generate C++ code corresponding to an amplitude,
one must decompose it in Wilson coefficients, that are scalar quantities in front of different
operators. For example the vacuum energy iΠµν(p) of a vector boson A can be decomposed
in general as

iΠµν(p) = α(p2,m2)gµν + β(p2,m2)pµpν , (6.4)

which corresponds to the amplitude

iM = α(p2,m2) (ε∗(p) · ε(p)) + β(p2,m2) (p·ε
∗(p)) (p · ε(p)) . (6.5)

Calculating Wilson coefficients for this amplitude as explained in section 6.7 will yield
α(p2,m2) and β(p2,m2) that can be used for library generation.

6.4.2 Finding diagrams

Finding all the diagrams for a given process can be done in several ways. FeynArts [2] uses
a hard-coded set of possible topologies for tree-level and one-loop processes with a given
number of external legs. Once done, it tries to fit particles on each leg of each topology.
MARTY uses a more brutal way. It applies explicitly the Wick theorem, trying all possible
Lagrangian interactions for each vertex in the diagram.1 This can be longer but has the
advantage of being fully general, in particular not limited to the one-loop order.

The algorithm finding all diagrams is of course highly optimized to avoid calculating
several times the same diagram. Consider the MSSM example that contains about 104

1The maximum number of vertices is determined by the development order.

93

https://marty.in2p3.fr/doc/marty/html/classmty_1_1Amplitude.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1Model.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1Amplitude.html

interaction terms. Taking a 1-loop amplitude with 3 external particles requires to develop
to L3 in perturbation theory, i.e. to have (104)3 = 1012 terms. This is of course not possible
to do in a reasonable amount of time on a standard computer, not even considering that
for each term arrangement, an algorithm of pair-finding must be applied for the set of
fields. The present algorithm in MARTY has a very reasonable performance, and is most
of the time faster than the actual calculation that follows. It results in a set of possible
diagrams, each of which has a corresponding expression, using Feynman rules for all
vertices, that must be further simplified. Each diagram comes with a symmetry factor
that is automatically determined by MARTY’s algorithm, and a possible sign coming from
fermion ordering that is also taken care of.

6.4.3 Initial amplitude expression

The amplitude iM(i → f) of a transition from an initial state i to a final state f is
defined from the S-matrix element

〈f |S|i〉 ≡ 〈f |(1 + iT)|i〉

= 〈f |i〉+ (2π)4δ(4)

(∑
i

pi −
∑
f

pf

)
· iM(i→ f),

(6.6)

with pi incoming and pf outgoing momenta. What MARTY actually calculates contains

the (2π)4δ(4)

(∑
i pi−

∑
f pf

)
factor coming from total momentum conservation but it is

removed from the result to obtain iM(i→ f), the term proportional to the identity being
not relevant in quantum field theory calculations. Feynman rules are properly inserted at
each interaction vertex, and momentum conversation in the diagram is calculated from
the LSZ formula that introduces Ve + Vi + E integrals, one for each external vertex (Ve),
internal vertex (Vi) and edge (E) in the diagram. These integrals simplify following the
rules ∫

d4XeiX(p−q) = (2π)4δ(4)(p− q), (6.7)∫
d4q δ(4)(p− q)f(q) = f(p). (6.8)

This machinery allows MARTY to apply automatically momentum conservation at each
vertex in the diagram (external and internal), in particular with equation 6.7. There is
always one momentum conservation property at the end of the calculation, that gives the
kinematic condition ∑

i

pi −
∑
f

pf = 0. (6.9)

The number of edges in a diagram reads

E = V − 1 +NL = VI + VE − 1 +NL, (6.10)

with V = VI + VE the total number of vertices, and NL the number of loops. A tree has
V − 1 edges, and each additional connection will add a loop to the diagram. The LSZ
formula introduces then

V = VE + VI = VE + VI − 1 + 1 (6.11)

94

position-space integrals. VE + VI − 1 of them simplify one by one momentum integrals,
and the last one (the +1 left) gives the momentum conservation on the whole diagram.
With initially E momentum space integrals, we are left with

E − (VE + VI − 1) = VI + VE − 1 +NL − (VE + VI − 1) = NL (6.12)

momentum integrals in the final expression of the amplitude. The latter must then be
simplified, as presented in the following.

6.4.4 Simplify the expression

Group theory

Group theory simplifications include simple tensor contractions and trace of generators
like

Tr(TA1TA2 · · ·TAN). (6.13)

We will not here go into many details about the calculation of such quantities. For more
explanations, see [23, 24]. Traces can be calculated in all representations of all semi-simple
Lie groups. They are decomposed in a combination of invariant fully-symmetric tensors
dA1···AN and structure constants fABC . There is additional simplification identities in the
defining representation of these groups [20] like

TAij T
A
kl =

1

2

(
δilδjk −

1

N
δijδkl

)
(6.14)

in SU(N).

The limitations of group theory simplifications are the following:

• Specific tensors in exceptional and Sp(N) algebras may appear in certain ampli-
tudes. These tensors lack for now simplification properties to have a fully simplified
results automatically. This will be improved in the future.

• When calculating a squared amplitude with a color trace, one gets contraction of in-
variant tensors dABC··· that are not yet simplified automatically by MARTY. This lim-
itation can be overcome in defining representations of SU(N) and SO(N) through
the application (by MARTY) of projection relations as equation 6.14.

Group theory simplifications are actually easy to implement in MARTY, the challenge is to
find general properties that can be applied in all semi-simple Lie groups. So if one needs
any particular simplification that is missing in MARTY, we are available to discuss their
implementation!

Diracology

Diracology is the algebra with Dirac matrices γµ. One has to apply number of simplifica-
tion properties starting from

{γµ, γν} = 2gµν , (6.15)

calculate traces like
Tr(γµγν ·), (6.16)

95

and eventually apply Dirac equations in fermion bilinears

/pu(p) = mu(p), (6.17)

/pv(p) = −mv(p), (6.18)

to simplify at most fermionic chains. The conjugation matrix

C ≡ iγ0γ2 (6.19)

also appears in amplitudes due to Majorana fermions or fermion-number violating inter-
actions, and must be simplified using properties of the type

C2 = −1, (6.20)
Cγµ = −γµTC, (6.21)
v = CūT . (6.22)

More details on that can be found in [25].
All of the algebra presented above is done automatically by MARTY in amplitude sim-

plifications. The limitations of these procedures are:

• Only the spin 1/2 algebra is done. In order to have higher spins like 3/2, work
would need to be done to implement the relevant algebra simplifications.

• Fermions quadrilinears lack Fiertz identities application [26] to simplify mixed mo-
menta between two fermion currents. This prevents to get 4-fermion Wilson coeffi-
cients for now, but is currently being implemented in MARTY.

One-loop calculation

As we said in section 6.4.3, a one-loop calculation requires the evaluation of one momentum
integrals such as

I =

∫
d4q

iπ2

∏n
i=1 q

µi∏m−1
j=0 ((q − pj)2 −m2

j)
(6.23)

for the rank n m−point function, with p0 = 0, pj≥1 combinations of external momenta,
mj masses of particles in the loop. m is then the number of propagators and n, the rank,
the number of momenta in the numerator. Letters are associated to n-point functions,
starting with A for the 1-point function, up to E for the 5-point function. Such integrals
can be decomposed in different Lorentz structure. Considering the example of the rank 2
3-point function

Cµν ≡
∫
d4q

iπ2

qµqν

(q2 −m2
0)((q − p1)2 −m2

1)((q − p2)2 −m2
2)
, (6.24)

one can write without loss of generality

Cµν = C00(pi,mj)g
µν + C11(pi,mj)p

µ
1p

ν
1 + C22(pi,mj)p

µ
2p

ν
2 + C12(pi,mj)(p

µ
1p

ν
2 + pν1p

µ
2).

(6.25)
The decomposition is done by MARTY, and factors Cij are numerical functions implemented
in the Fortran / C library LoopTools [2], used when results are evaluated numerically.

96

The scalar factors coming from one-loop integrals can have a divergent part that is
regularized by taking the dimension D = 4− 2ε. Integrals then take the form

I ≈ a

ε
+ b+O(ε). (6.26)

Factors of D coming from Minkowski index contractions must then be kept to determine
the local terms they generate when they are multiplied by a divergent integral [27, 28].
For the scalar 1-point function for example, we get the finite part

Finite(DA0(m2)) = Finite((4− 2ε)A0(m2)) = −2m2 + 4 · Finite(A0(m2)). (6.27)

This is done by MARTY automatically, that adds local terms when is necessary.
One loop calculations are limited to

• At most rank 2 1-point function, Aµν .

• At most rank 3 2-point function, Bµνρ.

• At most rank 4 3-point function, Cµνρσ.

• At most rank 5 4-point function, Dµνρσλ.

• At most rank 4 5-point function, Eµνρσ.

• Propagators with denominators of the type 1
p2−X(m)

. Note that one can absorb in
general a factor in front of p2 in the numerator.

The rank limitations2 actually follow the integrals LoopTools provides. They could how-
ever be relaxed in the future as we could implement reduction formulas for higher-rank
integrals, in particular the Passarino Veltman reduction [29, 30]. It can be difficult to
adapt the procedure to generalized propagators, as all standard calculations are based
on master integrals, provided by libraries like LoopTools. One can still do tree-level
calculations in these models, and as they are mostly exotic (Lorentz violating models
for example), the tree-level may be sufficient to perform analysis in a phenomenological
purpose.

6.5 Squared Amplitude
Cross-sections are the main observables we get in colliders. They are directly proportional
to the number of events observed in the various detectors. MARTY does not compute
directly the cross-sections, but performs the complicated theoretical part. MARTY actually
calculates the squared amplitude. For incoming particles I with spins jI and outgoing
particles O of spins jO, the squared amplitude is (as a function of the amplitude iM that
depends on the particle spins)

1∏
I dI

∑
{jI},{jO}

|M|2, (6.28)

with dI the spin dimension of the incoming particle I taking into account mass-less effects
for spin 1 particles. This quantity is averaged over the spin dimension of the incoming

2Rank limitations can also affect some gauges, as for a vector boson Unitary and Lorenz gauges
introduce additional momenta in the numerators and denominators of propagators.

97

particles. Squared amplitudes imply the calculation of traces in Dirac and color spaces
(group algebra) that MARTY computes automatically already at the amplitude level. The
additional simplifications done by MARTY are the polarization sums for spin 1/2 and spin
1 particles. For spinors uσ(p) (particle) and vσ(p) (anti-particle) with spin σ one has∑

σ

uσ(p)ūσ(p) = /p+m, (6.29)∑
σ

vσ(p)v̄σ(p) = /p−m. (6.30)

(6.31)

For spin 1 particles, proper quantization is ensured by ghosts (see section 6.3) and the
polarization sum for εµλ(p) of spin λ reads∑

λ

εµλ(p)εν∗λ (p) = −gµν (6.32)

for massless particles and ∑
λ

εµλ(p)εν∗λ (p) = −gµν +
pµpν

M2
(6.33)

for vector bosons of mass M .
The result is a scalar depending on momenta and masses of particles in the process.

The differential cross-section has always the same form for a given process of amplitude
iM

dσ ≡ K(pi,mi) ·

 1∏
I dI

∑
{jI},{jO}

|M|2
 dΠLIPS, (6.34)

with K(pi,mi) a factor coming from kinematics, and dΠLIPS the Lorentz Invariant Phase
Space. Once the amplitude squared has been calculated and simplified, no more computer
algebra system is needed to pursue the calculation. This is the quantity that MARTY can
compute automatically, as presented in sample code 56. Kinematics considerations and
possible integration on external momenta are left to the user using the numerical library
generated by MARTY that contains the quantity between brackets in equation 6.34.

Sample code 56: Squared amplitudes

We first need a transition amplitude

auto res = model.computeAmplitude(
Order::TreeLevel, // or Order::OneLoop
{Incoming("h"), Outgoing("e"), Outgoing(AntiPart("e"))}
);

Square it

Expr square = model.computeSquaredAmplitude(res);

Displaying the result in standard output

cout << square << endl;

Note The squared amplitude is a simple CSL expression that can be used directly.

See also Documentation of Model.

98

https://marty.in2p3.fr/doc/marty/html/classmty_1_1Model.html

Interference and virtual corrections MARTY can in general compute a squared am-
plitude from two different amplitudesM1 andM2, namely

M2
cross =M1 × (M2)∗ , (6.35)

whereM1 andM2 must have the same external particles. IfM1 andM2 are different
the contribution to the corresponding physical quantity is therefore

M2
cross +

(
M2

cross

)∗
. (6.36)

This feature allows us to calculate selected interference terms (M1 andM2 are calcu-
lated with the same perturbation theory order but contain different diagrams) or virtual
corrections (M1 andM2 contain the same diagrams but are calculated at tree-level and
one-loop respectively). This is presented in sample code 57.

Sample code 57: Virtual corrections

Consider the h→ e+e− process, calculating separately the tree-level and
one-loop amplitudes

auto ampl_tree = model.computeAmplitude(
Order::TreeLevel,
{Incoming("h"), Outgoing("e"), Outgoing(AntiPart("e"))}

);
auto ampl_loop = model.computeAmplitude(

Order::OneLoop,
{Incoming("h"), Outgoing("e"), Outgoing(AntiPart("e"))}

);

Obtain the tree-level squared amplitude, virtual correction and full 1-
loop contribution:

Expr square_tree = model.computeSquaredAmplitude(ampl_tree);
Expr M1_M2star = model.computeSquaredAmplitude(ampl_tree, ampl_loop);
Expr virtual_corr = M1_M2star + GetComplexConjugate(M1_M2star);
Expr square_loop = model.computeSquaredAmplitude(ampl_loop);

Note The same principle can be applied with amplitudes containing different
diagrams to calculate a specific interference term.

See also Documentation of Model.

6.6 Decay widths
The decay width of a particle φ can be calculated from the squared amplitude φ → X
where X can be any final state. The total decay width is therefore expressed as the sum
over all the partial decay widths with external states Xi:

Γφ =
∑
i

Γφ→Xi , (6.37)

where the partial decay widths Γφ→Xi are proportional to the squared amplitude of the
φ→ Xi process.

99

https://marty.in2p3.fr/doc/marty/html/classmty_1_1Model.html

Considering energy conservation, the partial decay width is non-zero if and only if the
total mass of the external particles is below the mass of φ. If a final state Xi is the set of
particles {φ1, · · · , φn}, the partial decay width can be expressed as

Γφ→Xi ∝
{

0 if mφ <
∑

jmφj ,

|M(φ→ Xi)|2 otherwise. (6.38)

In this section we do not consider the calculation of partial decay widths as they can
be obtained straight-forwardly from squared amplitude calculations (see section 6.5).

Since MARTY-1.5 it is possible to calculate the leading order of the total decay width,
namely:

ΓLOφ =
∑
i,j

Γtreeφ→φiφj , (6.39)

where the partial decay widths are calculated at the tree-level. In the above formula,
loop-level diagrams and 1→ n decays with n ≥ 3 are neglected.

Without third-party libraries providing a higher precision for decay widths, this feature
allows MARTY to calculate the full spectrum at the tree-level including the widths and only
depend on the model input parameters. The procedure to calculate decay widths in MARTY
is presented in sample code 58.

Sample code 58: Decay widths

In the SM, calculate the Higgs or Z width:

Expr Gamma_H = model.computeWidth(Order::TreeLevel, "h");
Expr Gamma_Z = model.computeWidth(Order::TreeLevel, "Z");

Note The decay widths are simple CSL expressions.

See also Documentation of Model.

It is possible to fully automate the width calculation in a MARTY model. When using
the automated width calculation, MARTY loops over all particles and calculates the width
for each of them. When generating a numerical library from this model, the particle
widths will be automatically integrated in the spectrum generator and computed in the
spectrum calculation. This is presented in sample code 59.

Sample code 59: Automated decay widths

Compute and update the widths of all particles:

model.computeModelWidth(Order::TreeLevel);

Generate the spectrum as shown in section 7.1.2

Library lib('myLibrary');
lib.generateSpectrum(model);
// ... add functions
lib.print();

Note With the width calculation and the spectrum library generation, the
generated library will automatically update the decay widths for all particles upon
spectrum calculation.

See also Chapter 7 for more details on library generation.

100

https://marty.in2p3.fr/doc/marty/html/classmty_1_1Model.html

6.7 Wilson coefficients

6.7.1 Definitions

Wilson coefficients are complex numbers in front of operator structures in MARTY. Here we
are considering only the Leading Order (LO), there is then no subtlety in the matching
such as Operator mixing and Renormalization Group Equations (RGE) at Next to Leading
Order (NLO), that will come in a future version of MARTY. In Effective Field Theories
(EFT), amplitudes are the matrix element of an effective Hamiltonian

Heff ≡
∑
i

CiÔi, (6.40)

with Ôi effective operators and Ci their Wilson coefficients. The transition amplitude
between an initial state i and a final state f is defined quantum mechanically as the
matrix element of this Hamiltonian:

iM(i→ f) = 〈f |(−iHeff)|i〉 = −i
∑
i

Ci〈f |Ô|i〉. (6.41)

The operator matrix elements 〈f |Ô|i〉 may not in general be calculated pertubatively and
contains long distance effects. However the BSM dependence lies in the Wilson coefficient
and a perturbative calculation is enough to determine its value as explained in [31]. In this
case, a matrix element is simply a particular contraction of external fields. The general
case for an amplitude with N external fields {Φ{AI}I }I with indices {AI} can be written
as

iM = −iα
∑
i

Ci · T {A1}···{AN}
i · Φ{A1}

1 · · ·Φ{AN}N , (6.42)

with T {A1}···{AN}
i all different external fields contractions in the resulting amplitude and α

a convention dependent constant. Multiplying the result by i Wilson coefficients can be
identified in front of different matrix elements.

When asked, MARTY will decompose an amplitude in the different external field con-
tractions it encounters and give the coefficients in front, taking into account a global
user-defined factor α. There is for now no specific treatment for well-known Wilson coef-
ficients, MARTY only simplifies at most the amplitude decomposing it in an operator basis,
letting the task to identify Wilson coefficients to the user. The particular case of magnetic
operators (fermion-fermion-vector) is treated explicitly in MARTY as the operator structure
used in the literature cannot appear in amplitude otherwise. This operator reads for a
ψ1 → ψ2A process

ψ̄2σ
µνTAPRψ1F

A
µν (6.43)

and its chirality counter part

ψ̄2σ
µνTAPLψ1F

A
µν , (6.44)

with TA a group generator in general, that can be trivial. FA
µν is the field strength of A

in momentum space
FA
µν ≡ i(qµε

A
ν (q)− qνεAµ (q)) (6.45)

for a vector boson of momentum q and polarization vector ε, and the σ matrix defined as

σµν ≡ i

2
[γµ, γν] . (6.46)

101

6.7.2 Wilson coefficient extraction

In order to obtain Wilson coefficients using MARTY, there are four steps to follow:

• Options setup.

• Amplitude calculation, including the decomposition on an operator basis.

• Definition of the operator of which the coefficient must be extracted.

• Extraction of the coefficient.

The first two steps are similar to the amplitude calculation and are presented in sample
code 60. For 4-fermion operators, the order of external fermions in the operator basis must
be user-defined. From the initial order given when defining the external particles, the final
order is defined as a permutation of the initial order. Considering a four fermion process
ψ1ψ2 → ψ3ψ4, a fermion order (2, 0, 3, 1) corresponds to operators of the type

(ψ̄3ΓAψ1)(ψ̄4ΓBψ2), (6.47)

where ΓA,B are generalized couplings. The permutation is defined starting at 0, a valid
permutation is therefore a permutation of (0, 1, 2, 3). The fact that particles are incoming
or outgoing is not relevant for this ordering.

Sample code 60: Wilson coefficient calculation

Definition of the options for the calculation, in particular the global factor defined
in equation 6.42 that must be factored out

FeynOptions options;
Expr alpha = ...; // Convention-dependent factor e.g. -G_F/sqrt(2)
options.setWilsonOperatorCoefficient(alpha);

Calculation of the b→ sγ decay:

auto wilsons = model.computeWilsonCoefficients(
OneLoop,
{Incoming("b"), Outgoing("s"), Outgoing("A")},
options

);

For 4-fermion processes such as b→ sµµ, the order of external fermions has to be
provided

options.setFermionOrder({1, 0, 2, 3});
auto wilsons = model.computeWilsonCoefficients(

OneLoop,
{Incoming("b"), Outgoing("s"),
Outgoing("mu"), Outgoing(AntiPart("mu"))},
options

);
// b s* mu* mu ordered with (1, 0, 2, 3)
// means operators of the type (s* b)(mu* mu)

Display the coefficients

Display(wilsons);

Note An order can also be provided for 2-fermion operators but is not mandatory.

102

Once the calculation has been performed, it is possible to extract the coefficients in
multiple ways. The first one, simple but not practical, is presented in sample code 61.

Sample code 61: General Wilson coefficient extraction 1/2

Considering the variable wilsons result of the computeWilsonCoefficients()
method, it is possible to extract any coefficient in the list by giving its index:

Expr C = wilsons[2].coef.getCoefficient();
// Coefficient of the third operator

While this method is very simple, the index of a particular operator cannot be
known in advance in general.

Another method exists to extract reliably any Wilson coefficient. The principle is to
give to MARTY the expression of the operator of which the coefficient must be extracted.
Considering the example of C9, the effective Hamiltonian is expressed as

Heff 3
−4GF√

2
V ∗tsVtb

e2

16π2
C9 (s̄γµPLb) (µ̄γµµ) , (6.48)

with the global factor, the Wilson coefficient C9 and the operator3

O9 ≡ (s̄γµPLb) (µ̄γµµ) . (6.49)

The global factor has to be provided in the calculation options as presented in sample
code 60, and the operator can be created by the user to specify the coefficient that has
to be extracted. To create an operator expression, the procedure is very similar to the
creation of Lagrangian terms discussed in section 3.2.4. This is shown in sample code
62. The only new feature needed to create an operator is the extraction of the process
momenta4 to define external fields, e.g.:

(s̄(p2)γµPLb(p1)) (µ̄(p3)γµµ(p4)) . (6.50)

3While in the literature operators often carry their own global factors, in MARTY an operator is only
the contraction of external fields without additional factor.

4This step could be ignored in the future because the momenta are not theoretically required to define
operators. For technical reasons however, it is for now necessary to provide them.

103

Sample code 62: General Wilson coefficient extraction 2/2

Here we consider the process b(p1)→ s(p2)A(p3) and present the extraction of the
coefficient of s̄(p2)γµb(p1)Aµ.

Obtaining the momenta of the process:

auto p = wilsons.kinematics.getOrderedMomenta(); // p is a vector
// Momenta are indexed from 0

Obtaining the other required object (similar to section 3.2.4):

// The fields
auto b = model.getParticle("b");
auto s = model.getParticle("s");
auto A = model.getParticle("A");
// Additional tensors
auto gamma = dirac4.gamma;
// Indices
auto i = model.generateIndex("C", "b"); // quark color index
auto al = DiracIndices(2);
auto mu = MinkowskiIndex();

Creating the operator

Expr Op = GetComplexConjugate(s({i, al[0]}, p[1]))*A(mu, p[2])
*gamma({+mu, al[0], al[1]})*b({i, al[1]}, p[0]);

Extracting the coefficient

Expr C = getWilsonCoefficient(wilsons, Op);

For common operators, built-in functions exist to create them without having to ex-
plicitly construct them from scratch. This is the case for dimension-55 and dimension-6
operators with 4 fermions. Dimension-5 magnetic operators are defined for two fermions
ψ1, ψ2 and a vector boson A as

Omag ≡
(
ψ̄1(TA)σµνΓψ2

)
Fµν , (6.51)

with (TA) the algebra generator when relevant, Fµν the field strength of A and

Γ ∈
{

1, γ5, PL, PR
}
. (6.52)

To define a magnetic operator, a user therefore only has to provide Γ that is one element
picked in a set of 4 elements.

Dimension-6 operators with fermions ψ1, ψ2, ψ3 and ψ4 are defined by

Od=6 ≡ Tijkl

(
ψ̄1

i
ΓAψj2

)(
ψ̄3

k
ΓBψl4

)
, (6.53)

5Dimension-5 operators are strictly speaking dimension-4 operators (2 fermions, 1 vector) because
MARTY does not add by default any scalar mass in the operator definition. This mass can be user-defined
and we still prefer to specify dimension-5 to avoid confusion with the literature.

104

with this time

ΓA,ΓB ∈
{

1, γ5, PL, PR,

γµ, γµγ5, γµPL, γ
µPR,

σµν , σµνγ5, σµνPL, σ
µνPR}

,

(6.54)

with ΓA and ΓB contracting to leave no free Minkowski index. The indices i, j, k, and l
in equation 6.53 are color indices, contracted by Tijkl that can be of four kinds:

Tijkl = δijδkl,

Tijkl = δilδkj,

Tijkl = δikδjl,

Tijkl = TAij T
A
kl .

(6.55)

To define a dimension-6 operator, ΓA, ΓB and Tijkl must be provided by the user. To
make the choice easy, the several possibilities for Γ and T are stored in the enumer-
ations mty::DiracCoupling and mty::ColorCoupling respectively (they can be found in
include/builtinOperators.h). The different enumeration elements are presented in ta-
bles 6.2 and 6.3.

Enumeration element Name Expression
DiracCoupling::S Scalar 1
DiracCoupling::P Pseudo-scalar γ5

DiracCoupling::L Left PL
DiracCoupling::R Right PR
DiracCoupling::V Vector γµ

DiracCoupling::A Axial γµγ5

DiracCoupling::VL Vector left γµPL
DiracCoupling::VR Vector right γµPR
DiracCoupling::T Tensor σµν

DiracCoupling::TA Tensor axial σµνγ5

DiracCoupling::TL Tensor left σµνPL
DiracCoupling::TR Tensor right σµνPR

Table 6.2: Dirac couplings possible to define Lorentz couplings for operators in MARTY.

Enumeration element Name Expression
ColorCoupling::Id Identity δijδkl
ColorCoupling::Crossed Crossed δilδkj
ColorCoupling::InvCrossed Crossed inversed δikδjl
ColorCoupling::Generator Generator TAij T

A
kl

Table 6.3: Color couplings possible to define operators in MARTY. See equation 6.53 for
the definition of the indices ijkl.

To fully define a magnetic or a dimension-6 operator, it is enough to provide the cou-
plings using the enumerations mty::DiracCoupling and mty::ColorCoupling. An example

105

of magnetic operator is given in sample code 63 and dimension-6 operators are discussed
in sample code 64.

Sample code 63: (Chromo-)Magnetic operators

Considering the result of a Wilson coefficient calculation in a variable wilsons, it
is possible to extract the coefficient of a magnetic operator by first creating the
operator:

auto O_mag1 = chromoMagneticOperator(model, wilsons, DiracCoupling::R);
// e.g. for C_7

auto O_mag2 = chromoMagneticOperator(model, wilsons, DiracCoupling::S);
// e.g. for (g-2)

Finally, the Wilson coefficient extraction:

Expr C7 = getWilsonCoefficient(wilsons, O_mag1);
Expr gm2 = getWilsonCoefficient(wilsons, O_mag2);

Note The σµν term in the operator is embedded in the definition and must not be
taken into account in the DiracCoupling provided as defined in equation 6.51.

Sample code 64: Dimension-6 operators

Considering the result of a Wilson coefficient calculation in a variable wilsons, it
is possible to extract the coefficient of a dimension-6 operator by first creating the
operator:

auto O1 = dimension6Operator(model, wilsons,
DiracCoupling::L, DiracCoupling::R); // (P_L)x(P_R)

auto O2 = dimension6Operator(model, wilsons,
DiracCoupling::VL, DiracCoupling::V); // (G^mu P_L)x(G_mu)

Finally, the Wilson coefficient extraction:

Expr C1 = getWilsonCoefficient(wilsons, O1);
Expr C2 = getWilsonCoefficient(wilsons, O2);

For a non-identity color coupling in a group named "C":

auto O1_crossed = dimension6Operator(model, wilsons,
DiracCoupling::L, DiracCoupling::R,
{"C", ColorCoupling::Crossed}
); // (P_L)_ij x (P_R)_ji

Expr C1_crossed = getWilsonCoefficient(wilsons, O1_crossed);

Since MARTY-1.5 it is also possible to create easily dimension-5 operators that are not
magnetic operators i.e. of the type

Od=5 ≡
(
ψ̄1(TA)Γµψ2

)
A(A)
µ , (6.56)

where the generator TA is implicitly provided by MARTY when relevant. The coupling Γµ

is a vector coupling:
Γµ ∈ {γµ, γµγ5, γµPL, γ

µPR}. (6.57)

In MARTY such an operator can therefore be defined using one coupling in (V, A, VL, VR)
that are defined in table 6.2. This is presented in sample code 65.

106

Sample code 65: Dimension-5 operators

A dimension-5 operator (not magnetic) can be obtained using:

auto OV = dimension5Operator(model, wilsons,
DiracCoupling::V);

auto OA = dimension5Operator(model, wilsons,
DiracCoupling::A);

Finally, the Wilson coefficient extraction:

Expr CV = getWilsonCoefficient(wilsons, OV);
Expr CA = getWilsonCoefficient(wilsons, OA);

6.7.3 Calculation details

In this section we present some calculation details for the extraction of Wilson coefficients.
We simply discuss how the extraction of Wilson coefficients is different from a simple
identification of terms in an amplitude and how MARTY addresses this challenge.

Factors and signs of the coefficients

When matching the effective theory calculation on the full theory at leading order, only
the sign and combinatorial factor of the coefficient must be derived and the complete
calculation in the effective theory is not necessary.

MARTY calculates this factor automatically and inserts it into the decomposition of
the amplitude. More precisely, the result of a Wilson coefficient calculation in MARTY
corresponds to the decomposition

iη × iM≡
∑
i

CiOi, (6.58)

with iM the initial amplitude that has been multiplied by i and η which contains the sign
and combinatorial factor for the calculation. The sign comes from the order of fermions
between the amplitude calculation and the operator defined in the effective Hamiltonian.
The combinatorial factor is not equal to one when there are identical particles in the
effective operator. Considering an effective operator with n identical particles

Oφ ≡ φn, (6.59)

the calculation in the effective theory is proportional to

iMeff ∝ n!, (6.60)

which gives a relation for the Wilson coefficient

C ∝ iMfull

iMeff

∝ 1

n!
. (6.61)

This factor, together with the sign of fermion ordering and the multiplication by i are
added automatically by MARTY when calculating Wilson coefficients.

107

Magnetic operators

Magnetic operators of the type

Omag ∝
(
ψ̄σµνΓAψ

)
Fµν , (6.62)

do not appear naturally in amplitude calculations. Instead, they can be identified as
combinations of

Oi = (A · pi)
(
ψ̄ΓAψ

)
, (6.63)

with pi momenta of the two fermions ψ̄ and ψ. The sign of the contribution to the
magnetic coefficient depends on the incoming or outgoing nature of pi with respect to q
which is the momentum of the vector boson.

In particular, extracting the coefficient of a magnetic operator built by hand following
the method described in sample code 62 will return 0 as the operator is not present itself
in the decomposition. Because of this, the chromoMagneticOperator() function discussed
in sample code 63 implements the relevant relations to obtain the coefficients of magnetic
operators in an easy way.

Dimension-6 operators at one-loop

The extraction of the Wilson coefficients of 4-fermion operators at the loop-level is done
on the mass shell for the external fermions and requires the calculation of three types of
diagrams:

• Box diagrams implying the calculation of 4-point functions.

• Triangle diagrams implying the calculation of 3-point functions.

• Mass correction diagrams implying the calculation of 2-point functions.

Following [32], external momenta are set to zero in the integral propagators to extract
the coefficients (except when the corresponding terms are divergent, e.g. in the 2-point
function case). This means that integrals are simplified such as the following∫

k

(/k +m)(/k +m)

(k2 −m2
0)((k − p1)2 −m2

1)((k − p2)2 −m2
2)
−→

∫
k

k2 +m2

(k2 −m2
0)(k2 −m2

1)(k −m2
2)
.

(6.64)

This simplification is performed for all diagrams except the penguins diagrams with a
massless vector boson as a propagator (such as the photon) for which the full integral has
to be evaluated with the on-shell external momenta and masses.

MARTY takes care of separating the calculation to derive each part in the right way and
finally extract the coefficient.

The issue with mass correction diagrams One issue arises with flavor changing
one-loop mass correction diagrams with a massless vector boson as mediator, such as the
one shown in figure 6.5. For such diagrams, 2-point function flavor-changing counter-
terms must be explicitly supplemented in the Lagrangian to obtain a correct result. As
MARTY does not yet support tree-level flavor-changing propagators, we use a redundancy
in the penguin calculation to correct a posteriori the pathological contributions. More

108

Figure 6.5: Mass correction diagram appearing in the extraction of the Wilson coeffi-
cients of 4-fermion operators.

specifically, the penguin amplitude of a ψ → ψA process can be decomposed in 6 different
operators given by

Oi(′) ≡ (A · pi)ψ̄(γ5)ψ (6.65)

O(′)
g ≡ ψ̄ /A(γ5)ψ, (6.66)

with pi ∈ {p1, p2} the momenta of the external fermions. When counter-terms are not
considered, the contributions to the operators in equation 6.66 are pathological but can be
derived from the contributions of the operators in equation 6.65 thanks to a redundancy
in the result (see e.g. equation (6.138) of [32]). As the operators in 6.65 are independent
of mass corrections they do not suffer from the lack of counter-term and are enough to
extract any coefficient for the process.

Consequently, MARTY applies a patch in the calculation to solve this particular issue.
This is only a temporary solution that will be solved with the introduction of interaction
terms with only two legs to implement the appropriate counter-terms. For now, this patch
has been validated in multiple examples, different calculations and models.

After the application of the patch, the amplitude becomes proportional to

q2

q2
, (6.67)

with a vanishing on-shell q2 = 0 leading to an embarrassing 0/0 in the numerical program.
When calculating diagrams automatically in the general case, it is difficult to identify sym-
bolically such simplifications in general. To prevent this numerical issue, MARTY introduces
a regulator in the numerator and denominator and the calculation becomes proportional
to

0 + ε

0 + ε
= 1. (6.68)

This regulator is discussed in chapter 7 and is the reg_prop parameter in the param_t
struct.

All the code related to this patch can be found in the files include/penguinpatch.h
and src/penguinpatch.cpp. If one is interested in the exact implementation, the relations
used to derive the coefficients of the operators in equation 6.66 can be found in the static
applyPenguinPatch_implementation() method.

6.7.4 Conclusion on the extraction of Wilson coefficients

When extracting Wilson coefficients, several important issues must be addressed:

109

• The operator basis must be clearly defined. As the bases are convention-
dependent, the basis used by MARTY will not always corresponds to what can be
found in the literature. When extracting a coefficient, one should make sure that
the operator basis used to define the coefficient in the literature matches with what
MARTY calculates, otherwise a work needs to be done to match the two bases and
extract the correct contribution.

• Kinematics must be given on-shell for magnetic and dimension-6 operators
(at least). In particular, a valid set of sij must be provided respecting momentum
conservation and p2 = m2 for all external particles.

• The regulator must be set to a non-zero value for 4-fermion processes with a
massless vector boson mediator. Otherwise, the result will diverge. A value of 10−3

has been empirically validated to give accurate results.

6.8 Automating calculations

In some phenomenological analysis it is necessary to calculate a large number of similar
calculations. In that case, the method using explicit particle names can be tedious and
not recommended. Consider calculating all 2-to-2 processes for a model with 50 particles,
this is a task that one does not want to do by hand. while the getParticles() of a
model returns the list of all particles, the method that must be used in that case is
getPhysicalParticles(). Contrary to the first option, this method removes not physical
particles and redundancies. For a Dirac fermion ψ for example the left- and right-handed
parts are also considered as particles and will cause redundancy in calculations. The
getPhysicalParticles() method will take care of it and return a list of independent
physical particles. This is also possible to filter even more this list, as summarized in
sample code 66.

110

Sample code 66: Get particles lists from a model

Exhaustive list, but not suited for automating calculations

auto particles = model.getParticles();

Removing non-physical particles and redundancies

auto particles = model.getPhysicalParticles();

Filtering physical particles

auto fermions = model.getPhysicalParticles(
[&](Particle p) { return p->isFermionic(); }

);
auto bosons = model.getPhysicalParticles(

[&](Particle p) { return p->isBosonic(); }
);
auto vectors = model.getPhysicalParticles(

[&](Particle p) { return (p->getSpinDimension() == 3); }
);
auto Ni = model.getPhysicalParticles(

[&](Particle p) { return (p->getName()[0] == 'N'); }
);

Note The deduced return type is each time std::vector<mty::Particle> allowing
to iterate over it.

Note The lambda expression given to filter out the result can be any user-defined
boolean predicate taking a Particle as parameter.

See also The CSL manual for more details on lambda expressions.

Once proper lists of particles have been filtered out from the model, one can iterate
over them to automate the calculation of a large number of processes. This is presented
in sample code 67.

Sample code 67: Automate a large number of calculations

for (auto f : fermions) {
for (auto v : vectors) {

auto ampl = model.computeAmplitude(
Order::TreeLevel,
{Incoming(f), Incoming(AntiPart(f))),
Outgoing(v), Outgoing(AntiPart(v))}

);
auto squared = model.computeSquaredAmplitude(ampl);

}
}

111

112

Chapter 7

Code generation

Theoretical calculations, in particular at the one-loop level, cannot be used as symbolic
expressions because they have a very large size and can be complicated. Furthermore,
when one uses an automated program the final expression will very often be less simplified
than the same result obtained by hand. The advantage is that while a physicist may take
weeks to perform the calculation, the program will finish in a few seconds or minutes.
The only requirement for the output is that it must be simplified enough to allow one to
evaluate it numerically. The numerical evaluation consists in obtaining numbers for the
symbolic outputs given the initial values for model parameters. This evaluation is not
done in the same program than the symbolic calculation for two reasons:

• The symbolic calculation may be done once and be used several times to scan the
parameter space.

• If the numerical evaluation is separated from the main program, it can be indepen-
dent of MARTY and contain compiled functions that run much faster.

For that purpose MARTY generates C++ code containing functions that can evaluate
the symbolic results calculated by the user.

7.1 Library generation

In this section we describe how libraries can be generated using MARTY, i.e. for the results
of Wilson coefficients or squared amplitudes for example. This part is done in the main
MARTY program that performs symbolic manipulations. For details about the generated
libraries themselves and the numerical computations, see the next section.

7.1.1 General principles

A C++ library can be generated by MARTY as sample code 68 demonstrates. Once created,
any scalar quantity can be added to the library as a function returning a complex number.
These quantities can be squared amplitudes and Wilson coefficients. For bare amplitudes,
one has to decompose it in Wilson coefficients to get all different scalar contributions, as
explained in section 6.7.

113

Sample code 68: Create a C++ library with MARTY

Initializing a library

Library lib("library_name", "library_path");

Adding functions from symbolic expressions

Expr A = someExpr();
Expr B = someOtherExpr();
lib.addFunction("A_function_name", A);
lib.addFunction("B_function_name", B);

Make MARTY compile the library

lib.build(); // creates and compiles the library
// or simply
lib.print(); // creates the library

Make MARTY compile the library using multiple jobs

lib.build(4); // compiles with 4 jobs (make -j 4)

Note If the path to the library is not given, it is "." by default.

See also Documentation of Library in CSL.

One can customize a library as presented in sample code 69, for example adding the
path for MARTY and CSL headers and libraries if they are not installed in a standard
location, or changing the compiler.

Sample code 69: Customize libraries

Setting the compiler

lib.setClangCompiler(); // clang++
lib.setGccCompiler(); // g++

Adding include dependencies

lib.addIPath("/path/to/include/files");

Adding library dependencies

lib.addLPath("/path/to/library/files");

Note These functions must be called before compiling the library (when calling
.build()).

Note If one wants to use clang++ instead of g++, the corresponding function
should be called to allow MARTY to adapt compiler flags to clang, although it is not
recommended.

7.1.2 Spectrum generation

As presented in section 5.5.3, MARTY can diagonalize mass matrices by introducing sym-
bolic masses and mixings in the Lagrangian. Given the numerical values of the initial
mass matrices, MARTY can diagonalize in full generality any mass matrix, and get the

114

https://marty.in2p3.fr/doc/csl/html/classcsl_1_1Library.html

spectrum of a BSM model. To add the spectrum generator to a generated library only
one line is required as shown in sample code 70.

Sample code 70: Generation of the spectrum generator

Only the spectrum depending on diagonalization

lib.applyDiagonalizationData(model);

The whole spectrum, including abbreviations

lib.generateSpectrum(model);

Note The second method includes the first and is therefore more general, gener-
ating also the spectrum for abbreviations such as MW = 1

2
gv (in the form of a

callable function depending on the parameters).

Note If the model widths have been calculated as shown in 6.6 the spectrum gen-
erator also includes the particle decay widths.

Let us consider a simple example, a 2× 2 mass matrix

M =

(
a c tan θ

c tan θ b

)
. (7.1)

This mass is diagonalized symbolically through

U †MU = D, (7.2)

with

U ≡
(
U11 U12

U21 U22

)
, (7.3)

D ≡
(
m1 0
0 m2

)
. (7.4)

In general, the model parameters such as a, b, c and θ in the example above must be
provided as input, and the diagonalization procedure derives the final masses and mixings
that are necessary to evaluate perturbative quantities. The numerical diagonalization is
performed in the generated library as discussed in section 7.2.3

7.1.3 LHA Reader

There is a module of MARTY able to read files following Les Houches Accord (LHA) [33, 34].
The purpose of this module is to be able to read easily a LHA file, being for input or output
parameters. Documentations of files lhaData.h, lha.h and lhaBlocks.h are comprehensive
allowing one to handle easily this module. Sample code 71 shows the basics about this
LHA reader.

115

https://marty.in2p3.fr/doc/marty/html/lhaData_8h.html
https://marty.in2p3.fr/doc/marty/html/lha_8h.html
https://marty.in2p3.fr/doc/marty/html/lhaBlocks_8h.html

Sample code 71: LHA Reader, a SUSY example

Reading a file example.lha

auto data = lha::Reader::readFile("example.lha");

Getting a full block in the data structure

auto U = data.getValues("Umix"); // 2x2 chargino mixing
cout << "Umix␣=␣[[" << U[0] << ",␣" << U[1] << "],␣["

<< U[2] << ",␣" << U[3] << "]]\n";

Getting a single value in the data structure from its id

long double mC1 = data.getValue("MASS", 1000024); // Chargino1 mass
long double mC2 = data.getValue("MASS", 1000037); // Chargino2 mass
cout << "mC1␣=␣" << mC1 << endl;
cout << "mC2␣=␣" << mC2 << endl;

See also Documentation of class LHAFileData for more details.

To import this module into a generated library, one must give the path to MARTY’s
source files (for example /home/MARTY-1.2/marty) as presented in sample code 72.

Sample code 72: Importing the LHA module in a library

lib.importLHAModule("path-to-marty-sub-directory");

Warning One should not be confused between the project root directory and the
marty sub-directory that has to be given.

7.2 The generated libraries

In this section we describe how to use the libraries that are generated by MARTY. They
are independent of MARTY itself or CSL (although they use some header-only part of CSL,
the CSL library has not to be linked).

7.2.1 Layout

Libraries that MARTY generates have always the same form, presented in figure 7.1. The

Figure 7.1: Content of the C++ libraries generated by MARTY.

116

https://marty.in2p3.fr/doc/marty/html/classmty_1_1LHAFileData.html

Makefile will automatically, by typing make, compile all source files in the src/ directory
(spectrum generator, results of symbolic calculations, corresponding header files are in
include/) and generate object files in obj/. The make command will also compile user
programs placed in script/. An example of such a program is generated automatically,
called example_libname.cpp. One can modify this file (the library is already included),
and then type

$ make
$ bin/example_libraryname.x

to build and execute the program. This procedure can be applied to any cpp file put in
this directory.

7.2.2 The param_t structure

The param_t structure contains all the parameters (real or complex numbers) used in
the library as public attributes, including all the parameters related to the spectrum
generator. param_t is defined in the file include/params.h. This structure is used as
unique and universal parameter for all functions generated in the library, i.e. for the
results of Wilson coefficients and squared amplitudes.

The parameters are not directly numbers such as double but are instead constructed
as csl::InitSanitizer objects. InitSanitizer is a template class designed to prevent
uninitialized values to be used in the program. As the number of parameters in the struc-
ture quickly grows for complex models, it is easy to forget to initialize one parameter and
obtain wrong results. For this reason, the template class InitSanitizer<T> encapsulates a
parameter (real or complex) and is implicitly convertible to the value it contains. It allows
a user to use it in the same way as a standard variable but ensures that the underlying
value is initialized when it is used, otherwise an error is raised. This is summarized in
sample code 73.

Sample code 73: Generalities on the parameters

Creating the param_t struct

param_t params; // All parameters are uninitialized

Considering two real parameters m_1 and m_2 in the structure

params.m_1 = 4.5; // initializing m_1
double m_1_conv = params.m_1; // Implicit conversion
params.m_1 = 2*params.m_1 + 1; // Operations are also possible
cout << params.m_1 << endl; // >> 10.0
cout << params.m_2 << endl; // >> Error: m_2 has not been initialized !

Converting explicitly to the underlying value

double m_1 = params.m_1.get();

Note The explicit conversion with .get()must be used when the implicit conversion
is not possible. For most purposes, the implicit conversion is enough.

The param_t struct also has public methods:

• print() writes the content of the structure i.e. all parameters and their values. This
function can be called with uninitialized parameters for which the value is replaced

117

by the word uninitialized. With a params_t params object, it can be called simply
with params.print();.

• reset() resets all parameters to uninitialized values. This is handy to ensure that
old values will not be used between two logically distinct uses of the structure. By
resetting the structure, it is guaranteed that all parameters used next are properly
initialized (otherwise an error is raised). With a params_t params object, it can be
called simply with params.reset();.

Special parameters There are two parameters that can appear in param_t indepen-
dently of the model:

• Finite: This parameter is real and is supplemented by MARTY in front of each local
term in one-loop results, i.e. in front of the finite part coming from local terms in
dimensional regularization. This can be set to 1 by default, or 0 to remove local
terms. See also the LoopTools manual [2] for more information.

• reg_prop: This parameter is real and is added by MARTY in propagators to avoid
divergences. In most cases this parameter can be set to 0. An example is for Wilson
coefficients in 4-fermion processes for which it can be necessary to set a small value
for this parameter (such as 1e-3 for example) to avoid a 0

0
that naturally appears

in the result and is difficult to address at the symbolic level.

7.2.3 Spectrum generation

Files src/global.cpp and include/global.h contain the spectrum generator. The spec-
trum calculation always goes by three steps:

• Initialization of input parameters for the spectrum (mass matrices for the di-
agonalization or other input parameters of mass functions such as MW = 1

2
gv for

which g and v must be defined).

• Calculation of the spectrum by the library. Input and output parameters are
all in the param_t structure.

• Calculation of theoretical quantities with the spectrum that has been calcu-
lated.

The user interface to update the spectrum from the model parameters is presented in
sample code 74.

118

Sample code 74: Spectrum generation

Updating masses and mixings by diagonalizing mass matrices

updateDiagonalization(params);

Updating (scalar) masses and widths

updateMassExpressions(params);

Updating the entire spectrum

updateSpectrum(params);

Note In this example, params is a param_t object of which all input parameters for
the spectrum have been initialized.

Note The updateSpectrum() function is equivalent to the combination of
updateDiagonalization() and updateMassExpressions().

7.2.4 Meta-programming features

While the libraries automatically generated by MARTY are hard-coded, there are features
allowing to automate several tasks, with the parameters in param_t or the functions.

It is possible to loop over the functions in the library. Furthermore, to each parameter
in param_t and function is associated a name that can be used to recover the object at
run-time. In particular, from a character string it is possible to obtain a parameter or
a function. These features can prevent having to write hard code to use a large number
of parameters or functions. Hence, by choosing wisely the names given to functions and
parameters when using MARTY to generate the library, it is possible to greatly facilitate
the use of the library. The way to loop over functions is presented in sample code 75 and
the way to access functions or parameters with their names is shown in sample code 76.

Sample code 75: Looping over functions

f_G is the collection of all functions in the library and can be found in the file
include/group_g.h. It is possible to iterate over it and select functions depending
on their names (attribute name of type char const*).

param_t params; // Must be initialized
for (const auto &f : f_G) {

if (f.name[0] == 'p') // If the function name starts with p
{

complex<double> res = f(params);
// Do something with res

}
}

Note It is also possible to loop over f_G with an index, using f_G.size() and
f_G[i](params).

119

Sample code 76: Accessing parameters and functions

Knowing the name of a parameter or function, it is possible to recover the
underlying object. In the following, we consider a param_t params structure with
two parameters m_1 and m_2, and a function named M2 (e.g. calculating a squared
amplitude).

Obtaining a function from its name

auto f = fmap_G["M2"];
complex<double> res = f(params);
// do something with res

Obtaining a parameter from its name

params.m_1 = 1;
// for a real param:
auto m_1_from_name = params.realParams["m_1"];
// // for a complex param:
// auto m_1_from_name = params.complexParams["m_1"];
*m_1_from_name = 2;
cout << params.m_1 << endl; // >> 2

Note The parameter obtained from the map is a pointer so that it is possible to
directly access the object stored in the param_t struct. It is therefore necessary to
use *.

120

Chapter 8

Options

8.1 The FeynOptions class

This class can be given when asking for an amplitude to customize the output. It is well
documented concerning general options and filters that are briefly discussed in this section.
Its purpose is to provide a simple way to customize the result for one particular amplitude
(or more), avoiding then global options. The basic use of FeynOptions is introduced in
sample code 77, for detailed explanations see the documentation of FeynOptions.

Sample code 77: Using custom options for amplitudes

Creating the FeynOptions object and using it for an amplitude calculation

FeynOptions customOptions;
// Set different options, in general looking like:
// customOptions.someSetterFunction(...); // typically filters
// customOptions.someAttribute = ...; // typically local options
auto res = model.computeAmplitude(

Order::OneLoop,
{Incoming("h"), Outgoing("A"), Outgoing("A")},
customOptions // send the options to this function,

// always as last parameter
);

8.1.1 Local options

Local options are a set of public boolean variables mimicking global options that are
detailed in section 8.2. When the FeynOptions object is created, all these options are
copied from the global ones and can then be modified in the object. This feature allows
to have the choice to:

• Modify global options to make the behavior of all following calculations similar.

• Modify local options, in the FeynOptions object, to affect only the calculations to
which this set of options is given.

For more information about local options, see the the documentation.

121

https://marty.in2p3.fr/doc/marty/html/classmty_1_1FeynOptions.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1FeynOptions.html

8.1.2 Filters

One of the main use cases of the FeynOptions class are filters. They are functions, boolean
predicates1 allowing MARTY to filter out parts of an amplitude calculation. There are two
types of filters:

• Feynman rules filters are applied before a calculation, this prevents a lot of calcu-
lations because there is less diagrams to search for, and to calculate. Those filters
must take a InteractionTerm (see the documentation) as parameter and return a
boolean, true if the term must be kept.

• Feynman diagrams filters are applied before returning the amplitude result to the
user. This option must not be preferred as the calculation goes further before the
filter is applied, however it is necessary for complex filtering behaviors. Those filters
must take a FeynmanDiagram (see the documentation) as parameter and return a
boolean, true if the diagram must be kept.

Filters are designed to be user-defined, and MARTY of course provides some common
built-in ones. A filter must return true if the object (interaction term, diagram) must
be kept, and false otherwise. Filters are implemented in the file filters.h and defined in
mty::filter.

Sample code 78: Apply filters in amplitudes

From a lambda expression

FeynOptions options;
options.addFilters(

// Disabling the Z boson
[&](InteractionTerm const &term) {

return !term.contains(model.getParticle("Z"));
},
// Forwing the W boson in diagrams
[&](FeynmanDiagram const &diagram) {

return diagram.contains(model.getParticle("W"));
}

);

Using built-in filters

FeynOptions options;
options.addFilters(

filter::disableParticle("Z"),
filter::forceParticle("W")

);

See also filters.h for more details about built-in filters.

See also Documentation of InteractionTerm and FeynmanDiagram to learn how
to get relevant physical information from those objects.

1A predicate is a function taking a priori any kind of arguments to return a boolean value, true or
false.

122

https://marty.in2p3.fr/doc/marty/html/classmty_1_1InteractionTerm.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1FeynmanDiagram.html
https://marty.in2p3.fr/doc/marty/html/filters_8h.html
https://marty.in2p3.fr/doc/marty/html/filters_8h.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1InteractionTerm.html
https://marty.in2p3.fr/doc/marty/html/classmty_1_1FeynmanDiagram.html

8.1.3 Amplitude selection

In case all contributions must be calculated but the user wants to separate them, it is
possible to apply filters on the full amplitude to extract only a part of it in a similar way
as in sample code 78. This is shown in sample code 79.

Sample code 79: Select parts of amplitudes

From an amplitude calculation such as the electron self-energy in the SM

auto ampl = model.computeAmplitude(
OneLoop,
{Incoming("e"), Outgoing("e")}

);

Filter out only e.g. the W or Z contributions:

auto ampl_W = ampl.filterOut(
[&](FeynmanDiagram const &diagram) {

return diagram.contains(model.getParticle("W"));
}

);
auto ampl_Z = ampl.filterOut(

[&](FeynmanDiagram const &diagram) {
return diagram.contains(model.getParticle("Z"));

}
);

Note ampl_W and ampl_Z are regular amplitude objects that contain a part of
ampl and do not require any additional calculation.

See also Documentation of FeynmanDiagram to learn how to get relevant physical
information from it.

8.2 Global options

All the options presented in the following are boolean variables defined in the file mrtOp-
tions.h or in CSL. They can be changed at any time to customize MARTY’s calculations
and outputs.

8.2.1 CSL options

CSL also has a similar option system that is detailed in its manual. CSL options lie in the
namespace csl::option:: while MARTY options are in the namespace mty::option::. This
will cause ambiguity for the compiler and users will have to specify the library namespace
when using an option as demonstrated in sample code 80.

123

https://marty.in2p3.fr/doc/marty/html/classmty_1_1FeynmanDiagram.html
https://marty.in2p3.fr/doc/marty/html/mrtOptions_8h.html
https://marty.in2p3.fr/doc/marty/html/mrtOptions_8h.html
https://marty.in2p3.fr/doc/csl-manual.pdf

Sample code 80: Set up options

Modifying CSL options

csl::option::printIndexIds = false;

Modifying MARTY options

mty::option::excludeTadpoles = true;

Note The library namespace csl:: and mty:: have to be specified for options as
both libraries use a option:: namespace.

See also The CSL manual for details about CSL options.

8.3 General options
showDiagrams If true, GRAFED will be launched after each amplitude calculation
by default, except for Feynman rules. If not defaulted, diagrams display can be triggered
by calling the function Show() as presented in section 6.4.

Default value: false.

amputateExternalLegs External legs can be removed from an amplitude calculation.
This is equivalent to calculate an effective Feynman rule for a given process, using the
vertex in an effective theory for example. Users should know however that as equations
of motions cannot be applied without external legs, results may be less simplified than in
the standard calculation.

Default value: false.

displayAbbreviations By default, the list of all abbreviations used by MARTY will be
displayed together with results when calling the Display() function presented in section
6.4. This option can be disabled.

Default value: true.

displayIntegralArgs As demonstrated in section 6.4.4, MARTY introduces scalar quan-
tities deriving form one-loop integrals, namely quantities such as Cij(pi,mj) depending
on momenta and masses in the loop. Arguments are numerous and in general prevent
one to correctly read a symbolic result. They are then by default not shown, and MARTY
simply prints Cij.

Default value: false.

diagonalizeSymbolically If set to true, irreducible mass matrices with more than two
fields will be diagonalized introducing symbolic masses and mixings to help later numerical
diagonalization (see section 5.5.3) when calling the diagonalizeMassMatrices() method
of the ModelBuilder class.

124

https://marty.in2p3.fr/doc/csl-manual.pdf
https://marty.in2p3.fr/doc/marty/html/classmty_1_1ModelBuilder.html

Default value: false.

8.3.1 Amplitude calculation options

simplifyAmplitudes All the simplifications presented in section 6.4 can be disabled
if one wants to see a bare amplitude expression. Without simplifications, the amplitude
corresponds to application of Feynman rules.2

Default value: true.

simplifyConjugationMatrix The conjugation matrix C = iγ0γ2 arises when one uses
Majorana fermions or fermion-number violating interaction as chargino-fermion-sfermion
interactions in the MSSM. This matrix should not appear in final results for amplitudes,
as it can always be simplified out by standard prescriptions. This simplifications can be
disabled if one wants to see the explicit conjugation dependence of the amplitude.

Default value: true.

discardLowerOrders When calculating an amplitude at the one-loop level, tree-level
diagrams are ignored by default. If one wants to get the full results, tree-level included,
this option can be set to false.

Default value: true.

excludeTadpoles If set to true tadpole diagrams, i.e. rank 1 1-point functions with
one unique external leg, are ignored in amplitudes.

Default value: false.

computeFirstIntegral If set to false, the tensor reduction introducing the scalar
quantities presented in section 6.4.4 is not performed by MARTY, and one can get a re-
sult with an explicit momentum integral at the one-loop level.

Default value: true.

searchAbreviations If set to false, many (but not all) abbreviations will be disabled
in calculations. This is not recommended, in particular for large results, but can be used
in simple toy models to have more verbose results that do not require to read abbreviation
values.

Default value: true.

abbreviateColorStructures By default color structures left in amplitudes, that could
not be simplified, are stored in dedicated abbreviations. This option can be disabled.

Default value: true.
2Some simple tensor simplifications, index contractions, are still done by MARTY in any case.

125

decomposeInOperators Amplitudes can be decomposed in an operator basis the same
way as it is done for the calculation of Wilson coefficients (see section 6.7). By default
this option is false, and one term of the amplitude corresponds to one Feynman diagram.
If true, terms are merged and factored by operator structures. For processes with many
diagrams and few different operators, it is recommended to set this option to true, as
it will considerably lower the number of terms in the amplitude. For the calculation of
squared amplitudes for example, it can be useful.

Default value: false.

applyEquationsOfMotion If set to false, equations of motion for spin 1 and spin 1/2
particles will not be applied. Note that one can also disable equations of motion for a
particular field giving it as an off-shell insertion as demonstrated in section 6.4.1.

Default value: true.

addLocalTerms If set to false, local terms described in section 6.4.4 are not added in
the amplitude. This can be used for example to get only the divergent part of an integral,
to obtain NLO corrections for example.

Default value: true.

126

Chapter 9

Built-in models

There is in MARTY several built-in models. We did not do extensive tests on all of them
yet. One may use them and do calculations in them, but keeping in mind that Feynman
rules must should be checked before using the output of MARTY, in particular for large
models such as the Standard Model and its extensions. Users may at any time create the
models presented in the following, and show the content to be able tu use them as this
user manual presents. The method to display a model is presented in sample code 81.

Sample code 81: Display models

Displaying a model in standard output

cout << model << endl;

Note If the model is very large, one can redirect the standard output to a file
writing ./program.x > data.txt for example.

There is two types of models. For all models up to the 2HDM, they are in the form of
C++ code doing model building as presented in chapter 5. These models are in directories

marty/include
marty/src

for header and source files respectively. Models can also be in the form of C++ code
generated automatically. For large models that takes several minutes / hours to built
from scratch1, we generated automatically the C++ code corresponding to the final La-
grangians to save time at the beginning of a program using them. These models are in
directories

marty/models/include
marty/models/src

for header and source files respectively, and for now concerns the pMSSM and uMSSM
(respectively phenomenological and unconstrained Minimal Super-symmetric Standard
Model). The pMSSM for example takes 15 min to build from scratch, but can be loaded
entirely in about 2 sec using the code generated automatically. As the code is not written
directly by a human, it can be less pleasant to read.

For simple models there is also .json files defining model gauges and particle contents.
This feature is not used anymore because MARTY’s interface for model building is more
practical than in the past. This is why the present manual does not assess the .json
model files while some of the following models still use this kind of inputs.

1From a high energy Lagrangian, breaking symmetries, making replacements etc.

127

9.1 Simple models

9.1.1 Scalar theory

The theory presented here consists in a unique scalar field φ, real (self-conjugate). Sup-
posing that the field has a mass m, the Lagrangian is

Lφ =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

3!
φ3. (9.1)

Here λ is as a small parameter that we can develop in perturbation theory. The 3! is a
combinatorial factor corresponding to the permutation symmetry of the three powers of
φ in the interaction term. It is conventional and it allows to get a simple Feynman rule
for the vertex. Feynman rules for this theory are presented in figure 9.1. A sample using

φ(p) φ(p) =
i

p2 −m2
.

(a) Propagator

φ(p1)

φ(p2)

φ(p3)

= −iλ.

(b) 3-vertex

Figure 9.1: Feynman rules for the scalar φ3 theory.

this model can be found in

scripts/sampleScalar.cpp

9.1.2 Scalar QED

The so-called scalar QED (sQED) is composed in its simpler form by a massive charged
scalar (φ) coupled to a photon-type particle, i.e. a mass-less spin 1 boson (Aµ) gauging a
U(1) symmetry group. The lagrangian reads

LsQED = (Dµφ)∗Dµφ−m2φ∗φ− 1

4
F µνFµν , (9.2)

where

Dµφ ≡ (∂µ − igc(φ)Aµ)φ, (9.3)
Fµν ≡ ∂µAν − ∂νAµ (9.4)

with g the U(1) gauge coupling, and c(φ) the charge of φ under this symmetry. Writing
explicitly the interaction Lagrangian, we get (setting a -1 charge for φ)

Lint = g2AµA
µφ∗φ+ igAµ(φ∂µφ

∗ − φ∗∂µφ). (9.5)

Feynman rules for sQED are shown figure 9.2. This model can been found in

models/files/sQED.json

and a sample program using it in

scripts/sampleSQED.cpp

128

Aµ(p) Aν(p)

(a) Vector propagator

=
−igµν
p2

. φ(p) φ∗(p)

(b) Scalar propagator

=
i

p2 −m2
.

φ

φ̄

Aµ

Aν

(c) 4-vertex

= ig2gµν .

φ

φ∗

Aµ

p1

p2

(d) 3-vertex

= −ig(p1 − p2)µ.

Figure 9.2: Feynman rules for the scalar QED model.

9.1.3 QED

The QED in its simpler form describes one charged fermion ψe (spin 1/2) carrying an
electric charge of -1. The gauge group is composed of one U(1) group. This group is
abelian and has one generator, the photon Aµ in our case, that interacts with the electron
through the covariant derivative. The Lagrangian is

LQED = ψ̄e
(
i /D −me

)
ψe −

1

4
FµνF

µν , (9.6)

or more explicitly

LQED = ψ̄eα1
iγµα1α2

∂µψeα2 −meψ̄eαψeα −
1

4
F µνFµν − ieψ̄eα1

γµα1α2
Aµψeα2 , (9.7)

withme the mass of the electron (the photon is mass-less), e the electromagnetic constant,
and Fµν the field strength of Aµ as usual.

The photon has the same propagator as in scalar QED (see figure 9.2). Feynman rules
specific to QED are presented in 9.3. QED can been found in MARTY’s code in

ψe(p)α ψe(p)β =
i(/p+m)βα

p2 −m2
.

(a) electron propagator

ψe(p1)α

ψ̄e(p2)β

A(p3)µ = −ieγµβα

(b) Vertex

Figure 9.3: Feynman rules for the electron in QED. The photon has the same propagator
as in scalar QED. In contrary to scalar QED the interaction vertex does not depend on
any impulsion.

include/QED.h
src/QED.cpp

or in a sample code

scripts/sampleQED.cpp

129

GA
µ (p1)

GB
ν (p2)

GC
ρ (p3)

(a) 3-gluon vertex

= gfABC [gµν(p1 − p2)ρ
+gµρ(p3 − p1)ν
+gνρ(p2 − p3)µ].

GA
µ (p1)

GD
σ (p4)

GB
ν (p2)

GC
ρ (p3)

(b) 4-gluon vertex

= ig2[fEABfECD(gµσgνρ − gµρgνσ)
+fEACfEBD(gµσgνρ − gµνgρσ)
+fEADfEBC(gµρgνσ − gµνgρσ)].

Figure 9.4: Feynman rules for gluon auto interactions. All momenta in the 3-vertex
are by convention incoming (towards the vertex). The 4-gluon vertex is suppressed by an
additional power of the coupling constant g with respect to the 3-gluon vertex.

9.1.4 QCD

SU(3) has eight generators for eight gluons, that interact with quarks (that have a non
trivial representation of SU(3)) and themselves. Gluon auto-interactions come from the
non-abelian property of the group, i.e. generators do not commute anymore:[

TA, TB
]
≡ ifABCTC , fABC 6= 0, (9.8)

with TA the eight SU(3) generators and fABC its structure constants. In the abelian case,
U(1) for example, there is only one generator that obviously commutes with itself,

[T, T] = 0. (9.9)

The gluon themselves have then a covariant derivative in order to keep the kinetic
term gauge invariant, and in particular

GA
µν ≡ ∂µG

A
ν − ∂νGA

µ + fABCGB
µG

C
ν , (9.10)

with GA
µ the gluon field of SU(3) index A going from 1 to 8, fABC structure constants of

the SU(3) group.

LQCD = −1

4
GA
µνG

Aµν =− 1

4

(
∂µG

A
ν − ∂νGA

µ

) (
∂µGAν − ∂νGAµ

)
(9.11)

− gfABC(∂µG
A
ν)GBµCCν (9.12)

− 1

4
g2fEABfECDGA

µG
B
ν G

CµGDν . (9.13)

One can see in the Lagrangian a standard kinetic term, a 3-vertex with a derivative
(implies a momentum in the Feynman rule), and a 4-vertex suppressed by an additional
power of g. The Feynman rules of these two vertices are presented in figure 9.4.

Feynman rules for fermion gauge interactions are drawn in figure 9.5. We use here only
u and d quarks in the triplet representation of SU(3). QCD can been found in MARTY’s
code in

130

uαi

ūβj

GAµ

(a) u gauge interaction

= igγµβαT
A
ji (R3)

dαi

d̄βj

GAµ

(b) d gauge interaction

= igγµβαT
A
ji (R3)

Figure 9.5: Gauge interactions for our custom QCD model. The two different rules are
identical and depend on the SU(3) generator of the triplet R3 representation.

include/QCD.h
src/QCD.cpp

or in a sample code

scripts/sampleQCD.cpp

9.1.5 Electro-weak model

The gauge is

GGW = SU(2)L × U(1)Y . (9.14)

SU(2)L has three generators that we call W i
µ by convention (i goes from 1 to 3). The

"L" stands for "Left" because only left-handed fermions are coupled to the gauge bosons.
U(1)Y is the hypercharge interaction, similar to the electromagnetism. Its generator is
noted Bµ. The initial matter content is presented in table 9.1.

This initial model is broken into a U(1)em symmetry group, recovering Standard model
particles, in particular the first generation of fermions and the Higgs boson.

This model is one of the most complicated model whose Lagrangian is still contained
in one sheet of paper, so let us present it explicitly. Without taking leptons into accounts,

Particle SU(2)L × U(1)Y
H (2, 1/2)
QL (2, 1/6)
uR (1, 2/3)
dR (1, −1/3)
LL (2, −1/2)
eR (1, −1)

Table 9.1: Matter content of the Electro-weak model implemented in MARTY.

131

the final Lagrangian is

LEW = +
1

2
∂µh∂

µh− 1

2
m2
hh

2

+ iūL/∂uL + iūR/∂uR −mu (ūLuR + ūRuL)

+ id̄L/∂dL + id̄R/∂dR −md

(
d̄LdR + d̄RdL

)
− 1

4
AµνA

µν

− 1

2
W+
µνW

−µν +m2
WW

+
µ W

−µ

− 1

4
ZµνZ

µν +
1

2
m2
ZZµZ

µ

− m2
h

2v
h3 − m2

h

8v2
h4

− mu

v
hūu

− md

v
hd̄d

+
2

3
eū /Au− 1

3
ed̄ /Ad

+
2

3
e tan θW ūR /ZuR −

1

3
e tan θW d̄R /ZdR

+
1

6
e tan θW ūL /ZuL −

1

2
e cot θW ūL /ZuL

+
1

6
e tan θW d̄L /ZdL +

1

2
e cot θW d̄L /ZdL

+
ve2

2 sin2 θW
W+µW−

µ h+
e2

4 sin2 θW
W+µW−

µ h
2

+
ve2

4 cos2 θW sin2 θW
ZµZµh+

e2

8 cos2 θW sin2 θW
ZµZµh

2

+ e2AµAνW
+µW−ν − e2AµA

µW+
ν W

−ν

+ ieAµW
+
ν W

−µν − ieAµW−
ν W

+µν + ieW+
µ W

−
ν A

µν

+ e2 cot2 θWZµZνW
+µW−ν − e2 cot2 θWZµZ

µW+
ν W

−ν

+ ie cot θWZµW
+
ν W

−µν − ie cot θWZµW
−
ν W

+µν + ie cot θWW
+
µ W

−
ν Z

µν

+
e2

2 sin2 θW
W+
µ W

+µW−
ν W

−ν − e2

2 sin2 θW
W+
µ W

−µW−
ν W

+ν

+ e2 cot θWAµZνW
+µW−ν + e2 cot θWAµZνW

−µW+ν − 2e2 cot θWAµZ
µW+νW−

ν

(9.15)

Feynman Rules for this Lagrangian are presented in figures 9.6, 9.7 and 9.8. A sample
program using this model can be found in

scripts/sampleElectroWeak.cpp

132

h(p1)

h(p2)

h(p3)

(a) h3 vertex

= −3i
m2
h

v
.

h(p1)

h(p2)

h(p3)

h(p4)

(b) h4 vertex

= −3i
m2
h

v2
.

h(p1)

u(p2)α

ū(p3)β

(c) huū vertex

= −imu

v
δαβ, h(p1)

d(p2)α

d̄(p3)β

(d) hdd̄ vertex

= −imd

v
δαβ.

h(p1)

W+(p2)µ

W−(p3)ν

(e) hW+W− vertex

= iv
e2

2 sin2 θW
gµν .

h(p1) W+(p3)µ

W−(p4)νh(p2)

(f) hhW+W− vertex

= i
e2

2 sin2 θW
gµν . h(p1)

Z(p2)µ

Z(p3)ν

(g) hZZ vertex

= 2i
M2

Z

v
gµν .

h(p1) Z(p3)µ

Z(p4)νh(p2)

(h) hhZZ vertex

= 2i
M2

Z

v2
gµν .

Figure 9.6: Feynman rules for the Higgs interactions in a simple Electro-weak model.

133

u(p1)α

ū(p2)β

A(p3)µ

(a) ūAu vertex

=
2

3
ieγµβα.

d(p1)α

d̄(p2)β

A(p3)µ

(b) d̄Ad vertex

= −1

3
ieγµβα.

uL(p1)α

d̄L(p2)β

W+(p3)µ

(c) ūLWdL vertex

=
−ie√

2 sin θW
γµβα.

uR(p1)α

ūR(p2)β

Z(p3)µ

(d) ūRZuR vertex

= −2

3
ie tan θWγ

µ
βα.

dR(p1)α

d̄R(p2)β

Z(p3)µ

(e) d̄RZdR vertex

=
1

3
ie tan θWγ

µ
βα.

uL(p1)α

ūL(p2)β

Z(p3)µ

(f) ūLZuL vertex

=

(
−1

6
ie tan θW +

1

2
ie cot θW

)
γµβα.

dL(p1)α

d̄L(p2)β

Z(p3)µ

(g) d̄LZdL vertex

=

(
−1

6
ie tan θW −

1

2
ie cot θW

)
γµβα.

Figure 9.7: Feynman rules for fermion gauge interactions in a simple electroweak model
with uL/R and dL/R as fermions.

134

W+(p1)µ

W−(p2)ν

A(p3)ρ

(a) WWA vertex

= ie
(
gµν(p2 − p1)ρ + gµρ(p1 − p3)ν + gνρ(p3 − p2)µ

)
.

W+(p1)µ

W−(p2)ν

Z(p3)ρ

(b) WWZ vertex

= ie cot θW
(
gµν(p2 − p1)ρ + gµρ(p1 − p3)ν + gνρ(p3 − p2)µ

)
.

W+(p1)µ

W−(p2)ν

W+(p3)ρ

W−(p4)σ

(c) WWWW vertex

= −i e2

sin2 θW

(
gµνgρσ + gµσgνρ − 2gµρgνσ

)
.

W+(p1)µ

W−(p2)ν

Z(p3)ρ

Z(p4)σ

(d) WWZZ vertex

= ie2 cot2 θW
(
gµρgνσ + gµσgνρ − 2gµνgρσ

)
.

W+(p1)µ

W−(p2)ν

A(p3)ρ

A(p4)σ

(e) WWAA vertex

= ie2
(
gµρgνσ + gµσgνρ − 2gµνgρσ

)
.

W+(p1)µ

W−(p2)ν

A(p3)ρ

Z(p4)σ

(f) WWAZ vertex

= ie2 cot θW
(
gµρgνσ + gµσgνρ − 2gµνgρσ

)
.

Figure 9.8: Feynman rules for gauge bosons interactions in a simple electroweak model.

135

9.2 Standard Model (SM)
The Standard Model can be found in

include/SM.h
src/SM.cpp

The final Lagrangian is built explicitly in the broken SU(3)C × U(1)em gauge. On can
build a Standard Model in MARTY following prescriptions given in sample code 82. Users
also can access SM input values in the file SM.h, that are used in the Lagrangian.

Sample code 82: The Standard Model

Building a Standard Model

SM_Model SM;// Use SM

Getting input values

Expr alpha_em = sm_input::alpha_em;
Expr M_W = sm_input::M_W;

See also Documentation of SM.h.

9.3 2 Higgs Doublet Model (2HDM)
2HDM models consist in adding a second Higgs doublet in the theory, identical to the
first one. Their is then 8 Higgs-type degrees of freedom (dof) instead of 4 in the SM.
These dof will (after the Electro-weak symmetry breaking) give 4 physical states and
three Goldstone bosons:

• h0 and H0, scalar particles.

• A0, a pseudo-scalar particle (eigenvalue -1 with respect to the parity operator).

• H±, a charged Higgs (complex, counts for 2 degrees of liberty).

9.3.1 The high-energy Lagrangian

The higgs sector

The two Higgs’ are SU(2)L doublets carrying a +1 hyper-charge, Φ1 and Φ2 respectively.
Their potential is (omitting SU(2)L indices)

−VΦ1,Φ2 =m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −m2
12

(
Φ†1Φ2 + Φ†2Φ1

)
+
λ1

2

(
Φ†1Φ1

)2

+
λ2

2

(
Φ†2Φ2

)2

+λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†1Φ2

)
+
λ5

2

[(
Φ†1Φ2

)2

+
(

Φ†2Φ1

)2
]
.

(9.16)

This potential is the most general one allowing to perform properly a symmetry break-
ing. It has eight real parameters. Minimizing this potential by searching (classical) solu-
tions of

∂VΦ1,Φ2

∂Φ†i
= 0, (9.17)

136

https://marty.in2p3.fr/doc/marty/html/SM_8h.html
https://marty.in2p3.fr/doc/marty/html/SM_8h.html

and
∂2VΦ1,Φ2

∂Φi∂Φ†i
> 0, (9.18)

for each i that takes the value 0 or 1. Solutions are

Φ1 =

(
0
v1√

2

)
, (9.19)

Φ2 =

(
0
v2√

2

)
. (9.20)

Quantum mechanically, we interpret this minimum as the Vacuum Expectation Value
(VEV) of the different fields 〈Φ1〉 and 〈Φ2〉. We then expand around these minima to get
degrees of freedom (dof) with no VEV. In our case, it is convenient to define

Φi ≡
(

φ+
i

(vi + ρi + iηi) /
√

2

)
, i = 1, 2. (9.21)

We indeed have 8 dof as before: φ+
i are two complex fields so have four dof, ρi and ηi

are four real fields, 4 dof also.
Then, expanding VΦ1,Φ2 in the new fields, one finds 3 and 4 legs interactions between

all the scalars, and non diagonal mass matrices. We want in general to diagonalize all of
them in a theory. This is because what we can observe in the real world are eigenstates
of the free Hamiltonian (without interaction). The free Hamiltonian being composed by
kinetic and mass terms, diagonalize it is equivalent to consider only the mass matrix of
the system2.

In our case, there is 3 mass matrices, each mixing two particles. First the φ+
i matrix

M2
φ defined by

L 3 −φ−i (M2
φ)ijφ

+
j (9.22)

reads

M2
φ =

 v2

v1

m2
12 − (λ4 + λ5)v2

2 −m2
12 + (λ4 + λ5)v1v2

−m2
12 + (λ4 + λ5)v1v2

v1

v2

m2
12 − (λ4 + λ5)v2

1

 (9.23)

=
(
m2

12 − (λ4 + λ5)v1v2

)
·

 v2

v1

−1

−1
v1

v2

 . (9.24)

Its eigenvalues are

λ+ =
(
m2

12/(v1v2)− λ4 − λ5

)
(v2

1 + v2
2) ≡ m2

+, (9.25)
λ− = 0. (9.26)

The massive state is the charged higgs H± of mass m+. The mass-less one is two of
the three Goldstone bosons of the spontaneous symmetry breaking, G±. Then, the mass
matrix of ηi defined by

L 3 −1

2
ηi(M

2
η)ijηj (9.27)

2Kinetic terms are always fully symmetric by a SO(N) (or SU(N) for complex fields). Rotating fields
to go in the mass-diagonal basis keeps kinetic terms diagonal as well, and the Hamiltonian is diagonalized.

137

reads
M2

η =
m2
A

v2
1 + v2

2

(
v2

2 −v1v2

−v1v2 v2
1

)
. (9.28)

Its eigenvalues are

λ+ =
(
m2

12/(v1v2)− 2λ5

)
(v2

1 + v2
2) ≡ m2

A, (9.29)
λ− = 0. (9.30)

The massive state is the pseudo-scalar A0 of mass mA. The mass-less one is the last
Goldstone bosons G0. Finally, the mass matrix of ρi defined the same way as for ηi has a
non zero determinant and has two non zero eigenvalues, two physical massive states. The
matrix M2

ρ reads  m2
12

v2

v1

+ λ1v
2
1 −m2

12

v2

v1

+ λ345v1v2

−m2
12

v2

v1

+ λ345v1v2 m2
12

v1

v2

+ λ2v
2
2

 , (9.31)

with λ345 ≡ λ3 +λ4 +λ5. Its eigenvalues may be determined exactly but have complicated
expressions. It is convenient to define the rotation angle α that allows to get the two mass
eigenstates h0 and H0, h0 lighter by definition. Their expression is

h0 = −ρ1 sinα + ρ2 cosα, (9.32)
H0 = ρ1 cosα + ρ2 sinα. (9.33)

The standard model Higgs boson is then, expressed as a function of the two neutral Higgs
bosons,

h0
SM = ρ1 cos β + ρ2 sin β (9.34)

= cos(α− β)H0 + sin(α− β)h0, (9.35)

where β is defined by tan β ≡ v2

v1

. It relates the two VEVs, and is in particular the rotation

angle that give Goldstone bosons (G± and G0) when diagonalizing mass matrices. If one
wants to have a theory with a SM-like Higgs boson, there is then two possibilities.

• α = β. In this case, h0
SM = H0. Then the lighter Higgs h0 could be discovered in

colliders (m < 125 GeV).

• α = β + π/2. Here h0
SM = h0 and the missing massive state H0 must be searched at

higher energies (m > 125 GeV).

To summary transformations from equation 9.21 to physical Higgs (and Goldstone)
bosons, let’s see transfer matrices explicitly. First, we have defined(

φ+
1

φ+
2

)
=

(
cos β − sin β
sin β cos β

)
·
(
G±

H±

)
. (9.36)

Then, for pseudo-scalar bosons, we have(
η1

η2

)
=

(
cos β − sin β
sin β cos β

)
·
(
G0

A0

)
. (9.37)

Finally, the two scalar Higgs states are defined through(
ρ1

ρ2

)
=

(
− sinα cosα
cosα sinα

)
·
(

h0

H0

)
. (9.38)

138

Type UR DR ER
I + + +
II + - -
III / Flipped + - +
IV / Lepton specific + + -

Table 9.2: The two first types of 2HDM models. They are defined by the Z2 charges of
right-handed fermions telling if they couple to Φ1 (charge -1) or Φ2 (charge +1) through
Yukawas.

The fermion sector

The Higgs doublets couple to fermions through Yukawa interactions. For each fermion
that has a left part in the doublet representation of SU(2)L and a right part in the singlet
one, one can write the Yukawa Lagrangian:

L 3 −ψ̄L
I
iΦ1iy

IJ
1 ψJR − ψ̄L

I
iΦ2iy

IJ
2 ψJR, (9.39)

with y1 and y2 two matrices in flavor space (3-dimensional in our case). After the sym-
metry breaking, these terms yield interactions between fermions and Higgs bosons, and
the fermion mass matrices

M IJ = yIJ1

v1√
2

+ yIJ2

v2√
2
. (9.40)

Here in general, y1 and y2 cannot be diagonalized simultaneously. In that case, Higgs
couplings to fermions will not be diagonal and vertices like b → sh0 are allowed. In
the real world, flavor changing neutral currents (FCNC) are extremely rare (suppressed)
and we only observe it in the quark sector. This means that a tree-level FCNC (and
in particular on the lepton sector) would be extremely hard to justify in a model that
has to fit data. To avoid tree-level FCNC, we have to make assumptions on Yukawa
couplings. Either each fermion couples to only one Higgs doublet, or to both if they may
be diagonalized simultaneously. Here we consider the first case.

For standard model fermions, there is three different Yukawa couplings. Y U for UR,
Y D for DR (both coupled to QL the SU(2)L doublet) and Y L for ER coupled to LL3. The
Yukawa Lagrangian reads

− LYuk =
2∑
i=1

[
Q̄LΦ̃iY

U
i UR + Q̄LΦiY

D
i DR + L̄LΦiY

L
i ER + h.c.

]
, (9.41)

where Φ̃i ≡ iσ2Φ∗i =

(
Φ2∗
i

−Φ1∗
i

)
. Each Yukawa may come either from Φ1 or Φ2. This

corresponds to a Z2 charge: +1 if coupled to Φ2 only, -1 if coupled to Φ1 only. Without
loss of generality, UR has always a charge +1. We will define here four types of 2HDM
models. They are defined by the Z2 charges of the three right-handed fermion families as
shown table 9.2. Regarding conventions, beware that only types I and II are well defined.
For the two other types, names may vary. In particular type III may refer to the one in
table 9.2 or to a general flavor mixing 2HDM model.

3LL contains left-handed neutrinos and charged leptons. We do not consider here a right-handed
neutrino NR.

139

After the symmetry breaking, applying all rotations and the exact Z2 symmetry to
Yukawas, one gets the final Lagrangian

−LYuk =
∑
f=u,d,l

mf

v

(
ξfh f̄fh

0 + ξfH f̄fH
0 − iξfAf̄γ

5fA0
)

+
∑
u,d

√
2Vud
v

ū
(
muξ

u
APL +mdξ

d
APR

)
dH+ + h.c.

+
∑
l

√
2ml

v
ξlAν̄llRH

+ + h.c.,

(9.42)

where v ≡
√
v2

1 + v2
2 and ξu,d,lh,H,A are trigonometric factors depending on the type of model

considered. Table 9.3 shows the values of these parameters as a function of the mixing
angles α and β. PL/R are chirality projectors for fermions defines by

PL/R ≡
1∓ γ5

2
. (9.43)

One important feature to note is the pseudo-scalar coupling of A0 to fermions (through
γ5) that differs from h0 and H0, proportional to the identity. This is due to the fact that
A0 comes with an additional factor of i in couplings (from definition of equation 9.21 and
mixing 9.37). When adding left-handed terms of h0 and H0, one gets

mf

v
ξfh
(
f̄Lh

0fR + h.c.
)

(9.44)

=
mf

v
ξfh
(
f̄Lh

0fR + f̄Rh
0fL
)

(9.45)

=
mf

v
ξfh f̄ (PL + PR) fh0 (9.46)

=
mf

v
ξfh f̄fh

0, (9.47)

and similarly for H0. However, the factor of i with A0 induces a sign in the hermitic
conjugate and finally one gets

mf

v
ξfA
(
if̄LA

0fR + h.c.
)

(9.48)

=
mf

v
ξfA
(
if̄LA

0fR − if̄RA0fL
)

(9.49)

= i
mf

v
ξfAf̄ (PL − PR) fA0 (9.50)

= −imf

v
ξfAf̄γ

5fA0. (9.51)

140

Type I Type II Type III (Flipped) Type IV (Lepton specific)
ξuh cosα/ sin β cosα/ sin β cosα/ sin β cosα/ sin β
ξdh cosα/ sin β − sinα/ cos β − sinα/ cos β cosα/ sin β
ξeh cosα/ sin β − sinα/ cos β cosα/ sin β − sinα/ cos β
ξuH sinα/ sin β sinα/ sin β sinα/ sin β sinα/ sin β
ξdH sinα/ sin β cosα/ cos β cosα/ cos β sinα/ sin β
ξeH sinα/ sin β cosα/ cos β sinα/ sin β cosα/ cos β
ξuA − cot β − cot β − cot β − cot β
ξdA cot β − tan β − tan β cot β
ξeA cot β − tan β cot β − tan β

Table 9.3: Yukawa couplings of u, d, l to the neutral Higgs bosons h0, H0, A0 in the four
different models.

9.3.2 Samples

The 2HDM model can be found in

include/2HDM.h
src/2HDM.cpp

and in a sample code

scripts/sample2HDM.cpp

Creating a 2HDM model, one has to give the type as presented in sample code 83.

Sample code 83: 2HDM

Creating a 2HDM of a given type

TwoHDM_Model<1> THDM_type1;
TwoHDM_Model<2> THDM_type2;
TwoHDM_Model<3> THDM_type3;
TwoHDM_Model<4> THDM_type4;

9.4 Minimal Supersymmetric Standard Model (MSSM)

The MSSM follows conventions of [35]. There is two types of models, the unconstrained
MSSM (uMSSM) with 105 parameters and a lighter model, the phenomenological MSSM
(pMSSM) with 19 parameters.

9.4.1 Unconstrained MSSM

The model-building version can be found in

include/MSSM.h
src/MSSM.cpp

141

Ways to build the unconstrained MSSM are presented in sample code 84. The full La-
grangian of the unconstrained MSSM has not yet been generated as C++ code. One can
then get it waiting about 2 hours while MARTY breaks the full Lagrangian. In an upcoming
version we will include the explicit MSSM Lagrangian to allow one in practice to use this
model, waiting only a few seconds to load it.

Sample code 84: Unconstrained MSSM

Building the uMSSM from scratch (few hours of calculations)

MSSM_Model uMSSM;

Loading the final Low Energy uMSSM Model in an upcoming version

MSSM_LEM uMSSM;

Accessing MSSM input values

Expr mu = mssm_input::mu;
Expr tanb = mssm_input::tanb;

See also Documentation of file MSSM.h.

9.4.2 Phenomenological MSSM

The model-building version and final version of the model can be found respectively in

include/PMSSM.h
src/PMSSM.cpp

and

models/include/pmssm.h
models/src/pmssm_<spec>.cpp (several files <spec> for this model)

Ways to build the phenomenological MSSM are presented in sample code 85.
Sample code 85: Phenomenological MSSM

Building the pMSSM from scratch (few minutes of calculations)

PMSSM_Model pMSSM;

Loading the final Low Energy pMSSM Model (few seconds to load)

PMSSM_LEM pMSSM;

Accessing pMSSM input values

Expr mu = mssm_input::mu;
Expr tanb = mssm_input::tanb;

See also Documentation of file PMSSM.h.

142

https://marty.in2p3.fr/doc/marty/html/MSSM_8h.html
https://marty.in2p3.fr/doc/marty/html/PMSSM_8h.html

Chapter 10

Debugging MARTY programs

10.1 Common mistakes

This section is about mistakes made by user that lead errors or bad results in a normal
run-time of MARTY.

10.1.1 Model Building mistakes

Model building is probably the biggest source of user mistakes because there is many
features, implying many possibilities to use MARTY the wrong way.

First, naming conventions in a model require attention, as any object that has not
been explicitly defined by the user can be accessed with its name. If one tries to get a
particle, a gauged group with a wrong name, MARTY will complain and stop the program.
As there is for now no separate treatment of regular and LATEX names, built-in particle
names in MARTY use LATEX format to display nicely in GRAFED. These errors are easy to
fix as MARTY explicitly says that a given name has not been found (for a particle, a group,
a coupling etc).

More subtle issues will come from indices in tensors. When adding user-defined La-
grangian terms, one has to give correct indices to tensors and particles is the expression.
A valid index structure must respect a few conditions:

• A Lagrangian is scalar, so no free index is allowed in its terms.

• One index must appear twice in a product. More occurrences1 will induce errors as
CSL will not be able to know which indices are contracted with each other.

• If a sum appears in a sub-expression, free indices should be the same in each terms
of the sum.

These errors can be slightly more difficult to find as a non valid index structure can cause
an error later in the program, and in general will be raised by CSL, not MARTY. In the case
an error message concerning indices is raised, we recommend to check all user-defined
indexed expressions given to MARTY, even if they do not seem directly related2. Index
manipulations in CSL and MARTY are rather stable, and an index error is more likely to

1An index must also not be alone, otherwise it is a free index.
2This of course if there is no obvious cause for the bug.

143

come from the user-defined program than from the core of CSL or MARTY. In particular,
users should be careful about squared expressions such as

L 3 λ
(
H†iHi

)2

= λH†iHiH
†
jHj. (10.1)

By hand one can replace indices when expanding the product but CSL does not do
such renaming automatically in all cases. Considering a Particle H, an Index i and
an Expr lambda one should then not write code like

Expr prod = GetComplexConjugate(H(i)) * H(i);
model.addLagrangianTerm(

lambda * prod * prod
); // Bad !

as it will result in four times the same index "i" in the interaction term, and very probably
an error at run-time later on. One must instead use pow_s() or the CSL interface function
RenamedIndices() that deep copies an expression, renaming all indices:

model.addLagrangianTerm(
lambda * pow_s(GetComplexConjugate(H(i)) * H(i), 2)
); // Good, the pow is handled correctly !

or

Expr prod = GetComplexConjugate(H(i)) * H(i);
model.addLagrangianTerm(

lambda * prod * RenamedIndices(prod)
); // Good !

When doing model building, mistakes about the physics can be made. These errors
are no longer ill-defined program behaviors but will lead to bad results. They can be
very difficult to find as they depend in particular on the conventions that are used. To
reduce the chances do to such mistakes, we encourage users to display regularly the model
while modifying it, checking that the state is indeed what one expects. Once the model
is finished, Feynman rules must be double checked (when possible) because they are the
building blocks of all further calculations done with MARTY.

10.1.2 Calculation mistakes

There is not many mistakes that a user can do while asking MARTY to calculate theoretical
quantities, as the interface is reduced to the strict minimum. The only worth addressing
mistake in that sense is about field insertions. When giving external legs to calculate am-
plitudes, a mistake in incoming / outgoing or particle / antiparticle properties is possible.
It that case, it will probably result in an absence of diagram, a zero amplitude. If one gets
an abnormal null result, it probably comes from wrong insertions. When the amplitude
is not equal to zero, it is easier to see the problem when displaying Feynman diagrams
with GRAFED, as one will immediately notice that they do not correspond to what was
expected.

10.2 GNU Debugger (GDB)
We tried in MARTY’s interface to implement as many tests as possible to tell users the
problems encountered at run-time. Typically, the program stops if an error has been

144

found3. In that case or if the program crashes because of a state we did not think of,
GDB is a good option. In the directory marty one can put a program file program.cpp in
scripts/ and type

$ make program_debug.x

and finally launch the program using gdb:

$ gdb -ex run bin/program_debug.x

The program runs, and when it crashes (being a real crash or one provoked by an error
raising in MARTY) one can type

> where

This will show the stack trace, i.e. the successive functions called before the crash, with
precise line numbers. This method is very effective to understand a crash. Once found,
one may see that the crash comes from a bad use of MARTY and be able to solve the
problem, or from MARTY itself. In the latter case please report the problem to us.

10.3 The author(s)
We always are available for discussion if one encounters an issue with MARTY. It is a big
code that can do many things, implying that users will have questions and problems.
Thanks to the fact that MARTY is very general there is not many issues we cannot solve
easily simply by discussing with a user. Any needed correction, interface improvement or
extension can be considered.

3There is in particular no warning in MARTY.

145

146

Bibliography

[1] Wolfram Research, Inc., “Mathematica, Version 12.1.”
https://www.wolfram.com/mathematica.

[2] T. Hahn and M. Perez-Victoria, Automatized one loop calculations in
four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153
[hep-ph/9807565].

[3] F. Staub, Exploring new models in all detail with SARAH, Adv. High Energy Phys.
2015 (2015) 840780 [1503.04200].

[4] A. Alloul et al., FeynRules 2.0 - A complete toolbox for tree-level phenomenology,
Comput. Phys. Commun. 185 (2014) 2250 [1310.1921].

[5] A. Semenov, LanHEP: A Package for the automatic generation of Feynman rules in
field theory. Version 3.0, Comput. Phys. Commun. 180 (2009) 431 [0805.0555].

[6] A. Pukhov et al., CompHEP: A Package for evaluation of Feynman diagrams and
integration over multiparticle phase space, hep-ph/9908288.

[7] CompHEP collaboration, CompHEP 4.4: Automatic computations from
Lagrangians to events, Nucl. Instrum. Meth. A 534 (2004) 250 [hep-ph/0403113].

[8] G. Uhlrich, F. Mahmoudi and A. Arbey, MARTY – Modern ARtificial Theoretical
phYsicist: A C++ framework automating theoretical calculations Beyond the
Standard Model, Computer Physics Communications 264 (2021) 107928.

[9] B. Stroustrup and H. Sutter, “C++ Core Guidelines.”
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.

[10] The ISO C++ committee, “C++ Standard Library.”
https://en.cppreference.com/w/cpp.

[11] F. Mahmoudi, SuperIso: A Program for calculating the isospin asymmetry of
B → K∗γ gamma in the MSSM, Comput. Phys. Commun. 178 (2008) 745
[0710.2067].

[12] F. Mahmoudi, SuperIso v2.3: A Program for calculating flavor physics observables
in Supersymmetry, Comput. Phys. Commun. 180 (2009) 1579 [0808.3144].

[13] F. Mahmoudi, SuperIso v3.0, flavor physics observables calculations: Extension to
NMSSM, Comput. Phys. Commun. 180 (2009) 1718.

[14] A. Arbey and F. Mahmoudi, SuperIso Relic: A Program for calculating relic density
and flavor physics observables in Supersymmetry, Comput. Phys. Commun. 181
(2010) 1277 [0906.0369].

147

https://www.wolfram.com/mathematica
https://doi.org/10.1016/S0010-4655(98)00173-8
https://arxiv.org/abs/hep-ph/9807565
https://doi.org/10.1155/2015/840780
https://doi.org/10.1155/2015/840780
https://arxiv.org/abs/1503.04200
https://doi.org/10.1016/j.cpc.2014.04.012
https://arxiv.org/abs/1310.1921
https://doi.org/10.1016/j.cpc.2008.10.012
https://arxiv.org/abs/0805.0555
https://arxiv.org/abs/hep-ph/9908288
https://doi.org/10.1016/j.nima.2004.07.096
https://arxiv.org/abs/hep-ph/0403113
https://doi.org/10.1016/j.cpc.2021.107928
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://en.cppreference.com/w/cpp
https://doi.org/10.1016/j.cpc.2007.12.006
https://arxiv.org/abs/0710.2067
https://doi.org/10.1016/j.cpc.2009.02.017
https://arxiv.org/abs/0808.3144
https://doi.org/10.1016/j.cpc.2009.05.001
https://doi.org/10.1016/j.cpc.2010.03.010
https://doi.org/10.1016/j.cpc.2010.03.010
https://arxiv.org/abs/0906.0369

[15] A. Arbey and F. Mahmoudi, SuperIso Relic v3.0: A program for calculating relic
density and flavour physics observables: Extension to NMSSM, Comput. Phys.
Commun. 182 (2011) 1582.

[16] A. Arbey, F. Mahmoudi and G. Robbins, SuperIso Relic v4: A program for
calculating dark matter and flavour physics observables in Supersymmetry, Comput.
Phys. Commun. 239 (2019) 238 [1806.11489].

[17] P. Cvitanović, Group Theory, Princeton University Press (2008).

[18] A. Denner et al., Feynman rules for fermion-number-violating interactions, Nuclear
Physics B 387 (1992) 467.

[19] R. Feger, T.W. Kephart and R.J. Saskowski, LieART 2.0 – A Mathematica
application for Lie Algebras and Representation Theory, Computer Physics
Communications 257 (2020) 107490.

[20] P. Cvitanovic, Group theory for Feynman diagrams in non-Abelian gauge theories,
Phys. Rev. D 14 (1976) 1536.

[21] M.D. Schwartz, Quantum Field Theory and the Standard Model, Cambridge
University Press (Mar, 2014).

[22] J.C. Romão and J.P. Silva, A resource for signs and feynman diagrams of the
standard model, International Journal of Modern Physics A 27 (2012) 1230025.

[23] T. van Ritbergen, A. Schellekens and J. Vermaseren, Group theory factors for
Feynman diagrams, Int. J. Mod. Phys. A 14 (1999) 41 [hep-ph/9802376].

[24] S. Okubo, Casimir Invariants and Vector Operators in Simple Lie Algebra, J. Math.
Phys. 18 (1977) 2382.

[25] A. Denner et al., Compact Feynman rules for Majorana fermions, Phys. Lett. B
291 (1992) 278.

[26] C.C. Nishi, Simple derivation of general Fierz-type identities, American Journal of
Physics 73 (2005) 1160–1163.

[27] A. Denner, Techniques for calculation of electroweak radiative corrections at the one
loop level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307
[0709.1075].

[28] G. Sulyok, A closed expression for the UV-divergent parts of one-loop tensor
integrals in dimensional regularization, Physics of Particles and Nuclei Letters 14
(2017) 631–643.

[29] G. Passarino and M. Veltman, One Loop Corrections for e+e− Annihilation Into
µ+µ− in the Weinberg Model, Nucl. Phys. B 160 (1979) 151.

[30] R.K. Ellis et al., One-loop calculations in quantum field theory: From Feynman
diagrams to unitarity cuts, Physics Reports 518 (2012) 141–250.

[31] A.J. Buras, Weak Hamiltonian, CP violation and rare decays, in Les Houches
Summer School in Theoretical Physics, Session 68: Probing the Standard Model of
Particle Interactions, Jun, 1998 [hep-ph/9806471].

148

https://doi.org/10.1016/j.cpc.2011.03.019
https://doi.org/10.1016/j.cpc.2011.03.019
https://doi.org/10.1016/j.cpc.2019.01.014
https://doi.org/10.1016/j.cpc.2019.01.014
https://arxiv.org/abs/1806.11489
https://doi.org/10.1016/j.cpc.2020.107490
https://doi.org/10.1016/j.cpc.2020.107490
https://doi.org/10.1103/PhysRevD.14.1536
https://doi.org/10.1142/s0217751x12300256
https://doi.org/10.1142/S0217751X99000038
https://arxiv.org/abs/hep-ph/9802376
https://doi.org/10.1063/1.523225
https://doi.org/10.1063/1.523225
https://doi.org/10.1016/0370-2693(92)91045-B
https://doi.org/10.1016/0370-2693(92)91045-B
https://doi.org/10.1119/1.2074087
https://doi.org/10.1119/1.2074087
https://doi.org/10.1002/prop.2190410402
https://arxiv.org/abs/0709.1075
https://doi.org/10.1134/s154747711704015x
https://doi.org/10.1134/s154747711704015x
https://doi.org/10.1016/0550-3213(79)90234-7
https://doi.org/10.1016/j.physrep.2012.01.008
https://arxiv.org/abs/hep-ph/9806471

[32] A.J. Buras, Gauge Theory of Weak Decays: The Standard Model and the Expedition
to New Physics Summits, Cambridge University Press (2020),
10.1017/9781139524100.

[33] P.Z. Skands et al., SUSY Les Houches accord: Interfacing SUSY spectrum
calculators, decay packages, and event generators, JHEP 07 (2004) 036
[hep-ph/0311123].

[34] B. Allanach et al., SUSY Les Houches Accord 2, Comput. Phys. Commun. 180
(2009) 8 [0801.0045].

[35] S.P. Martin, A supersymmetry primer, Advanced Series on Directions in High
Energy Physics (1998) 1–98.

149

https://doi.org/10.1017/9781139524100
https://doi.org/10.1088/1126-6708/2004/07/036
https://arxiv.org/abs/hep-ph/0311123
https://doi.org/10.1016/j.cpc.2008.08.004
https://doi.org/10.1016/j.cpc.2008.08.004
https://arxiv.org/abs/0801.0045
https://doi.org/10.1142/9789812839657_0001
https://doi.org/10.1142/9789812839657_0001

	Introduction
	Basics
	Philosophy
	+CSL+
	The Expr type
	Modifying expressions
	Accessing sub-expressions
	Tensors
	Deeper features

	Basic principles

	Quantum Fields
	Different types of quantum fields
	Overview
	Fermions
	Vectors
	Scalars

	Using and modifying a Particle
	Getting particles
	Basic properties
	Gauge and Flavor representations

	Quantum Fields in expressions
	Indices
	Space-time point
	Creating an expression from a Particle
	Type system
	Polarization field

	Models
	Introduction
	ModelData interface
	Adding / Removing particles
	Managing couplings
	Lagrangian
	Adding Lagrangian terms
	Fermion number violating interactions
	Group theory objects

	Group theory
	Semi-simple Lie algebras
	Principle
	Semi-simple Lie algebras in +MARTY+

	Irreducible representations
	Highest-weight state
	The su(2) example
	The su(3) example
	Irreducible representations in +MARTY+

	Product decomposition
	Gauge representations
	Dynkin labels for common representations
	su(N)
	so(N)
	sp(N)
	E6
	E7
	E8
	F4
	G2

	Model Building
	Recipe
	Gauge Group
	Particle content
	Completing the Lagrangian
	ModelBuilder interface
	Replacements
	Symmetry breaking
	Diagonalization
	Other features

	Calculations
	General principles
	Feynman Rules
	Get Feynman rules
	Read Feynman rules

	Gauge fixing
	Amplitude
	External legs
	Finding diagrams
	Initial amplitude expression
	Simplify the expression

	Squared Amplitude
	Decay widths
	Wilson coefficients
	Definitions
	Wilson coefficient extraction
	Calculation details
	Conclusion on the extraction of Wilson coefficients

	Automating calculations

	Code generation
	Library generation
	General principles
	Spectrum generation
	LHA Reader

	The generated libraries
	Layout
	The +param_t+ structure
	Spectrum generation
	Meta-programming features

	Options
	The FeynOptions class
	Local options
	Filters
	Amplitude selection

	Global options
	+CSL+ options

	General options
	Amplitude calculation options

	Built-in models
	Simple models
	Scalar theory
	Scalar QED
	QED
	QCD
	Electro-weak model

	Standard Model (SM)
	2 Higgs Doublet Model (2HDM)
	The high-energy Lagrangian
	Samples

	Minimal Supersymmetric Standard Model (MSSM)
	Unconstrained MSSM
	Phenomenological MSSM

	Debugging +MARTY+ programs
	Common mistakes
	Model Building mistakes
	Calculation mistakes

	GNU Debugger (GDB)
	The author(s)

