|
| 1 | + |
| 2 | +# **197. Rising Temperature** |
| 3 | + |
| 4 | +## **Problem Statement** |
| 5 | +You are given a table called `Weather`, which contains daily temperature records. |
| 6 | + |
| 7 | +### **Weather Table** |
| 8 | +``` |
| 9 | ++---------------+---------+ |
| 10 | +| Column Name | Type | |
| 11 | ++---------------+---------+ |
| 12 | +| id | int | |
| 13 | +| recordDate | date | |
| 14 | +| temperature | int | |
| 15 | ++---------------+---------+ |
| 16 | +``` |
| 17 | +- `id` is the **primary key**. |
| 18 | +- Each row contains: |
| 19 | + - `recordDate`: The **date** of the temperature record. |
| 20 | + - `temperature`: The **temperature recorded** on that date. |
| 21 | + |
| 22 | +### **Task:** |
| 23 | +Find all `id`s where the **temperature** is **higher** than the **previous day's temperature**. |
| 24 | + |
| 25 | +--- |
| 26 | + |
| 27 | +## **Example 1:** |
| 28 | +### **Input:** |
| 29 | +#### **Weather Table** |
| 30 | +``` |
| 31 | ++----+------------+-------------+ |
| 32 | +| id | recordDate | temperature | |
| 33 | ++----+------------+-------------+ |
| 34 | +| 1 | 2024-08-01 | 30 | |
| 35 | +| 2 | 2024-08-02 | 32 | |
| 36 | +| 3 | 2024-08-03 | 31 | |
| 37 | +| 4 | 2024-08-04 | 35 | |
| 38 | +| 5 | 2024-08-05 | 36 | |
| 39 | ++----+------------+-------------+ |
| 40 | +``` |
| 41 | +### **Output:** |
| 42 | +``` |
| 43 | ++----+ |
| 44 | +| id | |
| 45 | ++----+ |
| 46 | +| 2 | |
| 47 | +| 4 | |
| 48 | +| 5 | |
| 49 | ++----+ |
| 50 | +``` |
| 51 | +### **Explanation:** |
| 52 | +- `id = 2`: `32 > 30` (08-02 > 08-01 ✅) |
| 53 | +- `id = 3`: `31 < 32` (Skipped ❌) |
| 54 | +- `id = 4`: `35 > 31` (08-04 > 08-03 ✅) |
| 55 | +- `id = 5`: `36 > 35` (08-05 > 08-04 ✅) |
| 56 | + |
| 57 | +--- |
| 58 | + |
| 59 | +## **Solution Approaches** |
| 60 | + |
| 61 | +### **SQL Solution (Using `LAG()` Window Function)** |
| 62 | +```sql |
| 63 | +WITH PreviousWeatherData AS |
| 64 | +( |
| 65 | + SELECT |
| 66 | + id, |
| 67 | + recordDate, |
| 68 | + temperature, |
| 69 | + LAG(temperature, 1) OVER (ORDER BY recordDate) AS PreviousTemperature, |
| 70 | + LAG(recordDate, 1) OVER (ORDER BY recordDate) AS PreviousRecordDate |
| 71 | + FROM |
| 72 | + Weather |
| 73 | +) |
| 74 | +SELECT |
| 75 | + id |
| 76 | +FROM |
| 77 | + PreviousWeatherData |
| 78 | +WHERE |
| 79 | + temperature > PreviousTemperature |
| 80 | +AND |
| 81 | + recordDate = DATE_ADD(PreviousRecordDate, INTERVAL 1 DAY); |
| 82 | +``` |
| 83 | +**Explanation:** |
| 84 | +- We use `LAG()` to fetch: |
| 85 | + - The **previous day's temperature**. |
| 86 | + - The **previous day's date**. |
| 87 | +- The `WHERE` clause filters rows where: |
| 88 | + - The **temperature is higher than the previous day**. |
| 89 | + - The **date difference is exactly 1 day**. |
| 90 | + |
| 91 | +--- |
| 92 | + |
| 93 | +### **SQL Solution (Using Self Join)** |
| 94 | +```sql |
| 95 | +SELECT w1.id |
| 96 | +FROM Weather w1 |
| 97 | +JOIN Weather w2 |
| 98 | +ON DATEDIFF(w1.recordDate, w2.recordDate) = 1 |
| 99 | +AND w1.temperature > w2.temperature; |
| 100 | +``` |
| 101 | +**Explanation:** |
| 102 | +- We **self-join** the `Weather` table. |
| 103 | +- The condition `DATEDIFF(w1.recordDate, w2.recordDate) = 1` ensures: |
| 104 | + - We are comparing **consecutive days**. |
| 105 | +- The condition `w1.temperature > w2.temperature` ensures: |
| 106 | + - We select days where the **temperature increased**. |
| 107 | + |
| 108 | +--- |
| 109 | + |
| 110 | +### **Pandas Solution** |
| 111 | +```python |
| 112 | +import pandas as pd |
| 113 | + |
| 114 | +def rising_temperature(weather: pd.DataFrame) -> pd.DataFrame: |
| 115 | + weather.sort_values(by="recordDate", inplace=True) |
| 116 | + weather["PreviousTemp"] = weather["temperature"].shift(1) |
| 117 | + weather["PreviousDate"] = weather["recordDate"].shift(1) |
| 118 | + |
| 119 | + result = weather[ |
| 120 | + (weather["temperature"] > weather["PreviousTemp"]) & |
| 121 | + ((weather["recordDate"] - weather["PreviousDate"]).dt.days == 1) |
| 122 | + ] |
| 123 | + |
| 124 | + return result[["id"]] |
| 125 | +``` |
| 126 | +**Explanation:** |
| 127 | +- We **sort** by `recordDate`. |
| 128 | +- We **shift** the temperature and date to get the previous day's values. |
| 129 | +- We **filter** where: |
| 130 | + - Temperature **increased**. |
| 131 | + - Date difference is **1 day**. |
| 132 | + |
| 133 | +--- |
| 134 | + |
| 135 | +## **File Structure** |
| 136 | +``` |
| 137 | +📂 LeetCode197 |
| 138 | +│── 📜 problem_statement.md |
| 139 | +│── 📜 sql_lag_solution.sql |
| 140 | +│── 📜 sql_self_join_solution.sql |
| 141 | +│── 📜 pandas_solution.py |
| 142 | +│── 📜 README.md |
| 143 | +``` |
| 144 | +- `problem_statement.md` → Contains the problem description. |
| 145 | +- `sql_lag_solution.sql` → Contains the SQL solution using **LAG()**. |
| 146 | +- `sql_self_join_solution.sql` → Contains the SQL solution using **Self Join**. |
| 147 | +- `pandas_solution.py` → Contains the Pandas solution. |
| 148 | +- `README.md` → Provides an overview of the problem and solutions. |
| 149 | + |
| 150 | +--- |
| 151 | + |
| 152 | +## **Useful Links** |
| 153 | +- [LeetCode Problem 197](https://leetcode.com/problems/rising-temperature/) |
| 154 | +- [SQL LAG() Function](https://www.w3schools.com/sql/sql_ref_window_functions.asp) |
| 155 | +- [SQL JOIN](https://www.w3schools.com/sql/sql_join.asp) |
| 156 | +- [Pandas shift()](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.shift.html) |
| 157 | + |
0 commit comments