Skip to content

Commit 508608e

Browse files
authored
Code.py
Implementation of the all the supervised learning algorithms on the breast cancer datasets.
1 parent b5463eb commit 508608e

File tree

1 file changed

+102
-0
lines changed

1 file changed

+102
-0
lines changed

Code.py

Lines changed: 102 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,102 @@
1+
‘‘‘Importing the function’’’
2+
from sklearn import tree
3+
from sklearn.neural_network import MLPClassifier
4+
#import matplotlib.pyplot as plt
5+
from sklearn.naive_bayes import GaussianNB as p
6+
from sklearn.metrics import confusion_matrix
7+
from sklearn.neighbors import KNeighborsClassifier
8+
from sklearn.model_selection import cross_val_score
9+
from sklearn import svm
10+
import math
11+
import numpy as np
12+
import pandas as pd
13+
14+
#‘‘‘K-Nearest Neighbors Function’’’
15+
16+
17+
def KNN(x_training,y_training,x_testing,y_testing):
18+
print("\nKNN")
19+
clf=KNeighborsClassifier(n_neighbors=9)
20+
clf.fit(x_training,y_training)
21+
cvs=cross_val_score(clf,x_testing,y_testing,cv=5)
22+
result=clf.predict(x_testing)
23+
cmknn=confusion_matrix(y_testing,result)
24+
print("Confusion_Matrix\n\n",cmknn)
25+
print("Accuracy =",((cmknn[0][0]+cmknn[1][1])/len(y_testing))*100)
26+
print("Mean=",cvs.mean())
27+
28+
#‘‘‘NaiveB Function’’’
29+
30+
def NaiveB(x_training,y_training,x_testing,y_testing):
31+
print("\n\nNaiveBaysian")
32+
gnb=p()
33+
gnb.fit(x_training,y_training)
34+
y_pre=gnb.predict(x_testing)
35+
cm=confusion_matrix(y_testing,y_pre)
36+
print("Confusion_Matrix\n",cm)
37+
print("Accuracy=",((cm[0][0]+cm[1][1])/len(y_testing)*100))
38+
39+
#‘‘‘Decision Tree Function’’’
40+
41+
def DecisionTree(x_training,y_training,x_testing,y_testing):
42+
print("\n\nDecision Tree")
43+
clf=tree.DecisionTreeClassifier()
44+
clf=clf.fit(x_training,y_training)
45+
y_predict=clf.predict(x_testing)
46+
CM=confusion_matrix(y_testing,y_predict)
47+
accuracy=sum(CM.diagonal())/len(y_test)
48+
print("Confusion_Matrix\n",CM)
49+
print("Accuracy=",accuracy*100)
50+
51+
#‘‘‘Artificial Neural Network Function’’’
52+
53+
def NeuralNetwork(x_training,y_training,x_testing,y_testing):
54+
print("\n\n Artificial Neural Network")
55+
56+
clf = MLPClassifier(solver='lbfgs', alpha=1e-
57+
5,hidden_layer_sizes=(5,3),random_state=1) #default hidden layer=100
58+
59+
clf.fit(x_training,y_training) #The default solver ‘adam’ works pretty well on
60+
relatively large datasets
61+
y_predict=clf.predict(x_testing)
62+
cm=confusion_matrix(y_testing,y_predict)
63+
print("Confusion matrix\n\n",cm)
64+
print("Accuracy=",sum(cm.diagonal())/len(x_testing)*100)
65+
66+
#‘‘‘Support Vector Machine Function’’’
67+
68+
def SVM(x_training,y_training,x_testing,y_testing):
69+
print("\n\nSVM")
70+
clf = svm.SVC(gamma='auto')
71+
clf.fit(x_training,y_training)
72+
y_predict=clf.predict(x_testing)
73+
cm=confusion_matrix(y_testing,y_predict)
74+
print("Confusion matrix\n\n",cm)
75+
print("Accuracy=",sum(cm.diagonal())/len(x_testing)*100)
76+
77+
#‘‘‘Algorithm’’’
78+
79+
def algorithm(x_train,y_train,x_test,y_test):
80+
acc=[]
81+
NaiveB(x_train,y_train,x_test,y_test,acc)
82+
KNN(x_train,y_train,x_test,y_test,acc)
83+
DecisionTree(x_train,y_train,x_test,y_test,acc)
84+
NeuralNetwork(x_train,y_train,x_test,y_test,acc)
85+
SVM(x_train,y_train,x_test,y_test,acc)
86+
87+
#‘‘‘Importing csv file’’’
88+
89+
d=pd.read_csv("breast_cancer_weka_dataset.csv")
90+
c=d.copy()
91+
x_train=c.loc[:350,:"mitosis"]
92+
y_train=c.loc[:350,"class"]
93+
x_test=c.loc[350:,:"mitosis"]
94+
y_test=c.loc[350:,"class"]
95+
96+
#‘‘‘Applying function’’’
97+
98+
NaiveB(x_train,y_train,x_test,y_test)
99+
KNN(x_train,y_train,x_test,y_test)
100+
DecisionTree(x_train,y_train,x_test,y_test)
101+
NeuralNetwork(x_train,y_train,x_test,y_test)
102+
SVM(x_train,y_train,x_test,y_test)

0 commit comments

Comments
 (0)