|
| 1 | +import numpy as np |
| 2 | +import matplotlib.pyplot as plt |
| 3 | + |
| 4 | +def estimate_coef(x, y): |
| 5 | + # number of observations/points |
| 6 | + n = np.size(x) |
| 7 | + |
| 8 | + # mean of x and y vector |
| 9 | + m_x = np.mean(x) |
| 10 | + m_y = np.mean(y) |
| 11 | + |
| 12 | + # calculating cross-deviation and deviation about x |
| 13 | + SS_xy = np.sum(y*x) - n*m_y*m_x |
| 14 | + SS_xx = np.sum(x*x) - n*m_x*m_x |
| 15 | + |
| 16 | + # calculating regression coefficients |
| 17 | + b_1 = SS_xy / SS_xx |
| 18 | + b_0 = m_y - b_1*m_x |
| 19 | + |
| 20 | + return (b_0, b_1) |
| 21 | + |
| 22 | +def plot_regression_line(x, y, b): |
| 23 | + # plotting the actual points as scatter plot |
| 24 | + plt.scatter(x, y, color = "m", |
| 25 | + marker = "o", s = 30) |
| 26 | + |
| 27 | + # predicted response vector |
| 28 | + y_pred = b[0] + b[1]*x |
| 29 | + |
| 30 | + # plotting the regression line |
| 31 | + plt.plot(x, y_pred, color = "g") |
| 32 | + |
| 33 | + # putting labels |
| 34 | + plt.xlabel('x') |
| 35 | + plt.ylabel('y') |
| 36 | + |
| 37 | + # function to show plot |
| 38 | + plt.show() |
| 39 | + |
| 40 | +def main(): |
| 41 | + # observations / data |
| 42 | + x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) |
| 43 | + y = np.array([1, 3, 2, 5, 7, 8, 8, 9, 10, 12]) |
| 44 | + |
| 45 | + # estimating coefficients |
| 46 | + b = estimate_coef(x, y) |
| 47 | + print("Estimated coefficients:\nb_0 = {} \ |
| 48 | + \nb_1 = {}".format(b[0], b[1])) |
| 49 | + |
| 50 | + # plotting regression line |
| 51 | + plot_regression_line(x, y, b) |
| 52 | + |
| 53 | +if __name__ == "__main__": |
| 54 | + main() |
0 commit comments