|
| 1 | +use std::collections::LinkedList; |
| 2 | +use std::vec::Vec; |
| 3 | + |
| 4 | +/// Struct representing an Eulerian Path in a directed graph. |
| 5 | +pub struct EulerianPath { |
| 6 | + n: usize, // Number of nodes in the graph |
| 7 | + edge_count: usize, // Total number of edges in the graph |
| 8 | + in_degree: Vec<usize>, // In-degrees of nodes |
| 9 | + out_degree: Vec<usize>, // Out-degrees of nodes |
| 10 | + path: LinkedList<usize>, // Linked list to store the Eulerian path |
| 11 | + graph: Vec<Vec<usize>>, // Adjacency list representing the directed graph |
| 12 | +} |
| 13 | + |
| 14 | +impl EulerianPath { |
| 15 | + /// Creates a new instance of EulerianPath. |
| 16 | + /// |
| 17 | + /// # Arguments |
| 18 | + /// |
| 19 | + /// * `graph` - A directed graph represented as an adjacency list. |
| 20 | + /// |
| 21 | + /// # Returns |
| 22 | + /// |
| 23 | + /// A new EulerianPath instance. |
| 24 | + pub fn new(graph: Vec<Vec<usize>>) -> Self { |
| 25 | + let n = graph.len(); |
| 26 | + Self { |
| 27 | + n, |
| 28 | + edge_count: 0, |
| 29 | + in_degree: vec![0; n], |
| 30 | + out_degree: vec![0; n], |
| 31 | + path: LinkedList::new(), |
| 32 | + graph, |
| 33 | + } |
| 34 | + } |
| 35 | + |
| 36 | + /// Finds an Eulerian path in the directed graph. |
| 37 | + /// |
| 38 | + /// # Returns |
| 39 | + /// |
| 40 | + /// An `Option` containing the Eulerian path if it exists, or `None` if no Eulerian path exists. |
| 41 | + pub fn find_eulerian_path(&mut self) -> Option<Vec<usize>> { |
| 42 | + self.initialize(); |
| 43 | + |
| 44 | + if !self.has_eulerian_path() { |
| 45 | + return None; |
| 46 | + } |
| 47 | + |
| 48 | + let start_node = self.find_start_node(); |
| 49 | + self.traverse(start_node); |
| 50 | + |
| 51 | + if self.path.len() != self.edge_count + 1 { |
| 52 | + return None; |
| 53 | + } |
| 54 | + |
| 55 | + let mut solution = Vec::with_capacity(self.edge_count + 1); |
| 56 | + while let Some(node) = self.path.pop_front() { |
| 57 | + solution.push(node); |
| 58 | + } |
| 59 | + |
| 60 | + Some(solution) |
| 61 | + } |
| 62 | + |
| 63 | + /// Initializes the degree vectors and counts the total number of edges in the graph. |
| 64 | + fn initialize(&mut self) { |
| 65 | + for (from, neighbors) in self.graph.iter().enumerate() { |
| 66 | + for &to in neighbors { |
| 67 | + self.in_degree[to] += 1; |
| 68 | + self.out_degree[from] += 1; |
| 69 | + self.edge_count += 1; |
| 70 | + } |
| 71 | + } |
| 72 | + } |
| 73 | + |
| 74 | + /// Checks if the graph has an Eulerian path. |
| 75 | + /// |
| 76 | + /// # Returns |
| 77 | + /// |
| 78 | + /// `true` if an Eulerian path exists, `false` otherwise. |
| 79 | + fn has_eulerian_path(&self) -> bool { |
| 80 | + if self.edge_count == 0 { |
| 81 | + return false; |
| 82 | + } |
| 83 | + |
| 84 | + let (mut start_nodes, mut end_nodes) = (0, 0); |
| 85 | + for i in 0..self.n { |
| 86 | + let in_degree = self.in_degree[i] as i32; |
| 87 | + let out_degree = self.out_degree[i] as i32; |
| 88 | + |
| 89 | + if (out_degree - in_degree) > 1 || (in_degree - out_degree) > 1 { |
| 90 | + return false; |
| 91 | + } else if (out_degree - in_degree) == 1 { |
| 92 | + start_nodes += 1; |
| 93 | + } else if (in_degree - out_degree) == 1 { |
| 94 | + end_nodes += 1; |
| 95 | + } |
| 96 | + } |
| 97 | + |
| 98 | + (end_nodes == 0 && start_nodes == 0) || (end_nodes == 1 && start_nodes == 1) |
| 99 | + } |
| 100 | + |
| 101 | + /// Finds the starting node for the Eulerian path. |
| 102 | + /// |
| 103 | + /// # Returns |
| 104 | + /// |
| 105 | + /// The index of the starting node. |
| 106 | + fn find_start_node(&self) -> usize { |
| 107 | + let mut start = 0; |
| 108 | + for i in 0..self.n { |
| 109 | + if self.out_degree[i] - self.in_degree[i] == 1 { |
| 110 | + return i; |
| 111 | + } |
| 112 | + if self.out_degree[i] > 0 { |
| 113 | + start = i; |
| 114 | + } |
| 115 | + } |
| 116 | + start |
| 117 | + } |
| 118 | + |
| 119 | + /// Traverses the graph to find the Eulerian path recursively. |
| 120 | + /// |
| 121 | + /// # Arguments |
| 122 | + /// |
| 123 | + /// * `at` - The current node being traversed. |
| 124 | + fn traverse(&mut self, at: usize) { |
| 125 | + while self.out_degree[at] != 0 { |
| 126 | + let next = self.graph[at][self.out_degree[at] - 1]; |
| 127 | + self.out_degree[at] -= 1; |
| 128 | + self.traverse(next); |
| 129 | + } |
| 130 | + self.path.push_front(at); |
| 131 | + } |
| 132 | +} |
| 133 | + |
| 134 | +#[cfg(test)] |
| 135 | +mod tests { |
| 136 | + use super::*; |
| 137 | + |
| 138 | + /// Creates an empty graph with `n` nodes. |
| 139 | + fn create_empty_graph(n: usize) -> Vec<Vec<usize>> { |
| 140 | + vec![Vec::new(); n] |
| 141 | + } |
| 142 | + |
| 143 | + /// Adds a directed edge from `from` to `to` in the graph. |
| 144 | + fn add_directed_edge(graph: &mut [Vec<usize>], from: usize, to: usize) { |
| 145 | + graph[from].push(to); |
| 146 | + } |
| 147 | + |
| 148 | + #[test] |
| 149 | + fn good_path_test() { |
| 150 | + let n = 7; |
| 151 | + let mut graph = create_empty_graph(n); |
| 152 | + |
| 153 | + add_directed_edge(&mut graph, 1, 2); |
| 154 | + add_directed_edge(&mut graph, 1, 3); |
| 155 | + add_directed_edge(&mut graph, 2, 2); |
| 156 | + add_directed_edge(&mut graph, 2, 4); |
| 157 | + add_directed_edge(&mut graph, 2, 4); |
| 158 | + add_directed_edge(&mut graph, 3, 1); |
| 159 | + add_directed_edge(&mut graph, 3, 2); |
| 160 | + add_directed_edge(&mut graph, 3, 5); |
| 161 | + add_directed_edge(&mut graph, 4, 3); |
| 162 | + add_directed_edge(&mut graph, 4, 6); |
| 163 | + add_directed_edge(&mut graph, 5, 6); |
| 164 | + add_directed_edge(&mut graph, 6, 3); |
| 165 | + |
| 166 | + let mut solver = EulerianPath::new(graph); |
| 167 | + |
| 168 | + assert_eq!( |
| 169 | + solver.find_eulerian_path().unwrap(), |
| 170 | + vec![1, 3, 5, 6, 3, 2, 4, 3, 1, 2, 2, 4, 6] |
| 171 | + ); |
| 172 | + } |
| 173 | + |
| 174 | + #[test] |
| 175 | + fn small_path_test() { |
| 176 | + let n = 5; |
| 177 | + let mut graph = create_empty_graph(n); |
| 178 | + |
| 179 | + add_directed_edge(&mut graph, 0, 1); |
| 180 | + add_directed_edge(&mut graph, 1, 2); |
| 181 | + add_directed_edge(&mut graph, 1, 4); |
| 182 | + add_directed_edge(&mut graph, 1, 3); |
| 183 | + add_directed_edge(&mut graph, 2, 1); |
| 184 | + add_directed_edge(&mut graph, 4, 1); |
| 185 | + |
| 186 | + let mut solver = EulerianPath::new(graph); |
| 187 | + |
| 188 | + assert_eq!( |
| 189 | + solver.find_eulerian_path().unwrap(), |
| 190 | + vec![0, 1, 4, 1, 2, 1, 3] |
| 191 | + ); |
| 192 | + } |
| 193 | +} |
0 commit comments