
1

GitFourchette
User’s Guide

September 2025 (GitFourchette version 1.5.0)
© 2025 Iliyas Jorio
https://gitfourchette.org

https://gitfourchette.org/

2

p. 4

p. 5
p. 5
p. 6
p. 7

p. 8
p. 8
p. 8
p. 9
p. 9

p. 10

p. 11
p. 11
p. 12
p. 12
p. 13
p. 14
p. 14
p. 15
p. 15
p. 16

p. 17
p. 17
p. 17
p. 18
p. 19
p. 19

p. 21
p. 21
p. 21
p. 22
p. 23

p. 24
p. 24
p. 24
p. 25
p. 26
p. 26

p. 28
p. 28
p. 29
p. 29
p. 30

Contents
1. Welcome to GitFourchette!

2. Cloning or Creating a Repository
Cloning a repository from a remote host
Creating a blank repository from scratch
Initializing a repository from existing sources on your machine

3. A Tour of the Main Window
Tab Bar
Sidebar
File List
Commit History & Diff View
Handy shortcuts

4. Exploring the Commit History
Overview of the Commit History
Author vs. Committer
Finding a commit
Exploring the changes in a commit
Returning to an item you’ve previously visited
Advanced: Chronological vs. Topological sorting
Context menu reference
Commit History context menu
File List context menu (when exploring a commit)

5. Making a Commit
Crash course: What’s in a commit?
Jumping to the Working Directory
Staging and unstaging files
Finalizing the commit (the Commit dialog)
Your commits are local until you push them

6. Managing Changes in the Working Directory
Staging and discarding individual hunks or lines
Stashing changes
Rescuing changes that you discarded by mistake
File List context menu (in the Working Directory)

7. Reading and Editing Diffs
Old and new revisions
What’s in a hunk?
Manipulating hunks
Manipulating individual lines
The gutter

8. Managing Your Branches
Creating a new branch
Switching to another branch
Merging another branch into yours
Organizing your branches in folders

3

p. 30
p. 30
p. 31

p. 33
p. 33
p. 33
p. 33
p. 34

p. 36
p. 36
p. 36
p. 37
p. 38

p. 39
p. 39
p. 39
p. 40
p. 40

p. 42
p. 42
p. 42

p. 44
p. 44
p. 44
p. 45
p. 46
p. 47

p. 48
p. 48
p. 49
p. 49

p. 51
p. 51
p. 52
p. 52
p. 53

p. 54
p. 54
p. 54
p. 54

Sorting branches in the Sidebar
Hiding branches in the Commit History
Sidebar context menu for local branches

9. Fetch, Pull & Push: Syncing Branches With Remotes
Setting an upstream branch
Fetching new commits on a branch
Pulling new commits into your branch
Pushing a branch to a remote

10. Managing Remote Servers and Remote-Tracking Branches
Adding a new remote
Sidebar context menu for remotes
Sidebar context menu for remote-tracking branches
Sorting remote-tracking branches in the Sidebar

11. Advanced Commit Techniques
Setting aside your commit message for later
Amending a commit
Cherry-picking a commit from another branch
Editing a commit’s author or committer

12. Signing Commits
Creating a signed commit
Verifying signed commits in the Commit History

13. Resolving Merge Conflicts
What’s a merge conflict?
In practice
Merging a file with an external tool
Concluding the merge
Aborting a merge

14. Blame & File History
Overview of Blame Window controls
The file history menu
The blame gutter

15. Custom Commands
Argument placeholders
Titles and separators
Keyboard shortcuts
Confirmation prompt

16. Limitations
Supported operating systems
Tentative feature roadmap
Improved compatibility with vanilla Git since v1.5.0

4

Welcome to GitFourchette!
Welcome to GitFourchette, the comfortable Git UI for Linux!

Explore your repositories easily. Craft commits intuitively. With its comfortable Qt
interface, GitFourchette will become your sidekick to navigate and get work done in your
Git repositories.

This document is part user’s guide, part reference. It will get you up to speed on common
use cases so you can feel at home in GitFourchette. Interspersed throughout the guide are
command tables detailing more advanced features.

This guide assumes you’re familiar with the basic tenets of Git, especially commits,
branches, and remotes. If you need a refresher on those, I recommend skimming chapters
2 and 3 of the “Pro Git” book—or, for a more relaxed read, “How Git Works”. These books
will teach you some Git commands, but the very same concepts apply in GitFourchette.

About the project

I started out writing GitFourchette in my spare time to scratch my itch for a Git UI I’d feel
cozy in. After plenty of “dogfooding it” to develop my other projects, I’m finally taking the
plunge and releasing it publicly—maybe it’ll become your favorite Git client too.

GitFourchette is free—both as in beer and as in freedom. But if it helped you get work
done, feel free to buy me a coffee! Any contribution will encourage the continuation of the
project. Thank you!

https://git-scm.com/book
https://wizardzines.com/zines/git
https://github.com/jorio
https://ko-fi.com/jorio

5

Cloning or Creating a Repository
First things first—we need a repository to work on! Of course, GitFourchette can open any
repository you already have on your disk: go to File ‣ Open Repository or press Ctrl O .

But beyond opening an existing repo, you can also clone a repository from a remote, or
initialize a new repository on your machine.

If you’re dipping your toes in Git, I recommend cloning a repository so that you see what
GitFourchette is like in a “real” repo that already has some history. Here’s a URL you can
try to clone: https://github.com/libgit2/pygit2

Cloning a repository from a remote host
In Git parlance, cloning means to download a repository, typically from a remote host.

Go to File ‣ Clone Repository or press Ctrl Shift N . The “Clone” dialog appears:

The Clone dialog.

Let’s review the fields and options in this dialog:

6

Fields and options in the Clone dialog

Choice Description

URL GitFourchette automatically fills in the URL from your clipboard
if possible. You can use the ssh/https button to convert the URL to
another protocol.

Clone into Where to save the repository on your machine. This must be an
empty directory; it will be created if it doesn’t exist. GitFourchette
automatically suggests a path when you enter an URL, but you
can click Browse to set your own empty directory. You can also
type in a path manually; the “~” character will expand to your
home directory.

Recurse into
submodules

Tick this to clone the submodules recursively, if the repository
has any. If you’re unsure, just keep this ticked—it doesn’t hurt
even if there are no submodules.

Shallow clone Tick this if you don’t need the repository’s full commit history.
This may speed up the download and save some disk space, but
you won’t be able to look up old commits. Shallow cloning only
fetches the most recent commits on each branch (you can specify
how many).

Log in to SSH remotes
with custom key file

By default, OpenSSH automatically looks for a matching key in
your ~/.ssh directory if an SSH remote requires authentication.
Tick this to bypass automatic key detection and specify a key file
to connect to remotes in this repo.

After cloning, you can change or remove the custom key file in
Repo ‣ Repository Settings.

Status This box will display download progress information.

When you’re satisfied with your settings, click the Clone button and wait for the download
to complete.

NOTE

Log in to SSH remotes with custom key file is particularly useful if you have multiple
repos requiring different credentials—for example, if you juggle between two accounts
for personal and work projects.

After cloning the repo, you can change or remove the custom key file via Repo ‣
Repository Settings.

NOTE

By default, Clone into automatically suggests your Downloads folder, but you can change
the default location to something else. After filling in a path for Clone into, long-click
the Browse button and choose Set as default clone location.

7

Creating a blank repository from scratch
Go to File ‣ New Repository or press Ctrl N . A folder picker appears.

In the folder picker, create an empty folder for your repo. It’s important that the folder be
empty to start a blank repository from scratch! (GitFourchette will ask you to confirm if
you give it a non-empty folder.)

Click Create repo here when you’re ready. Welcome to your new repository! Some
operations, such as creating branches, require that you create an initial commit (see
Making a Commit).

Initializing a repository from existing sources on your machine
Go to File ‣ New Repository or press Ctrl N . A folder picker appears.

Navigate to the root folder of your source code, then click Create repo here. GitFourchette
will ask you to confirm to initialize a repository in a non-empty folder.

The entire contents of your source tree will now appear as unstaged files in the Working
Directory. At this point, you should stage all relevant files and create the initial commit
(see Making a Commit).

8

A Tour of the Main Window
Once you’ve created or opened a repository in GitFourchette, the main window presents
you with these elements:

1. Tab Bar: Lets you switch between the open repositories in your session.

2. Commit History: A list of commits in the repository.

3. Sidebar: Lets you jump to various facets of your repository.

4. File List: Files modified by a commit; or list of files with uncommitted changes.

5. Diff View: Shows what’s changed in the selected file.

6. Status bar: Tells you if GitFourchette is busy with a long operation, otherwise displays
helpful contextual hints.

Tab Bar
Use the tab bar to switch between multiple repositories.

GitFourchette remembers open tabs when you quit. It will automatically restore your tabs
next time you launch it.

2 Double-click a tab to open the repo’s root directory in your file manager.

1

2

3

4 5

6

9

The Sidebar.

Sidebar
The sidebar exposes various facets of your repository:

 your working directory, where you can review the uncommitted
changes and prepare a commit;

 local branches (including the “HEAD”);

 remote servers and remote-tracking branches;

 tags;

 stashes;

 submodules.

From the sidebar, you can:

 Left-click on any item to jump to it.

 Right-click on any item to reveal contextual actions.

File List
The File List shows a list of modified files in the working directory or in
a past commit. In the File List, you can:

 Left-click on a file to show its changes in the Diff View.

 Right-click on a file to perform actions on it. Those depend on whether you’re
exploring a past commit or preparing a new commit.

Hover over a file to reveal a tooltip with more details about it.

Each file is adorned by a little icon describing its status:

A Added R Renamed/moved (and possibly modified)

D Deleted T Type changed (e.g. regular file became a symlink)

M Modified ? Merge conflict (only in the Working Directory)

Commit History & Diff View
Those elements warrant dedicated chapters:

Exploring the Commit History

Reading and Editing Diffs

10

Handy shortcuts
TIP

Press Alt 1 to get keyboard focus on the Sidebar.
Press Alt 2 to get keyboard focus on the Commit History.
Press Alt 3 to get keyboard focus on the File List.
Press Alt 4 to get keyboard focus on the Diff View.
Press Ctrl [to select the previous file in the list.
Press Ctrl] to select the next file in the list.

11

Exploring the Commit History
The Commit History displays a list of commits in the repository, along with a graph to
visualize how the branches evolve.

You can left-click on any commit to explore its contents, or right-click to perform an
action with the commit.

TIP

Press Alt 2 to get keyboard focus on the Commit History.

Overview of the Commit History

1. Hash: The first few characters of the commit’s SHA-1 hash. It uniquely identifies the
commit.

2. Graph: A visualization of the branches at this point in history. The dot represents the
commit itself.

3. Ref Boxes: Colored boxes shown for each reference to this commit by:

The tip of a local branch, in purple, e.g.

The tip of a remote branch, in teal, e.g.

Tags, in yellow, e.g.

4. Commit Summary: The first line of the commit message. An ellipsis (…) indicates that
the message is truncated; hover over it to reveal the full message in a tooltip.

5. Author Name/Date: Who created the commit and when. See Author vs. Committer.

6. Search Bar: Bring it up with Ctrl F when the Commit History has keyboard focus. See
Finding a commit.

1

2

3

4

5

6

12

NOTE

You can customize the appearance of some of these items in Settings ‣ Commit
History. For example, you can tweak:

Author column: full name, last name only, initials, email, etc.;

Date/time formats: ISO, U.S., European, etc.;

Row spacing and alternating background color…

Author vs. Committer
The Commit History displays information about a commit’s author: their name and the
date at which they made the commit. But in some cases, a commit might have been revised
by someone else than the original author—this person is called the committer.

An asterisk (*) appears after the author’s name and/or date if they differ from the
committer’s for any given commit.

NOTE

You can always hover over the author’s name or date to reveal a tooltip with details
about the people involved in making the commit.

Sample tooltip where the author (top) and committer (bottom) are
distinct people.

Timestamps displayed in the Commit History are relative to your local time. The
author/committer tooltip (see above) shows the original timezones.

Finding a commit
The Commit History has a Search Bar. Press Ctrl F to invoke it (the Commit History
must have keyboard focus). Start typing, and a yellow highlight will appear in matching
commits.

13

Searching for a word in the Commit History.

You can search for:

The first couple characters of a commit’s SHA-1 hash.

Any part of a commit message. If the search term is found beyond the first line of the
message, the ellipsis (…) will be highlighted in yellow.

A commit’s author name.

TIP

The / key also works for bringing up the Search Bar.
Press F3 or Shift F3 to find the next or previous occurrence of the search term.
Press Esc to close the Search Bar.

NOTE

Search is limited to the commits loaded in memory. To find an old commit in a long-
lived repository, you may want to review Settings ‣ Commit History ‣ Load up to #
commits.

Exploring the changes in a commit
Once you’ve selected a commit in the Commit History, the lower half of the main window
is dedicated to exploring the contents of the commit.

1. Header: The first line in the commit message.
Click Info to view detailed metadata about the commit.
Click the maximize button to expand the Commit Explorer.

1

2 3

14

2. File List: All files modified by this commit in relation to its parents.
 Left-click on a file and the Diff View will show what’s changed in it.
 Right-click on a file to open a context menu with advanced operations.

3. Diff View: Displays the changes introduced by the commit in the selected file.
The Diff View is covered in detail in its own chapter: Reading and Editing Diffs.

Returning to an item you’ve previously visited
As you navigate your repository, GitFourchette keeps track of where you’ve been. Much like
a Web browser, you can go “back” and “forward” among the items you’ve viewed recently.

To return to an item you’ve previously visited, use the Back and Forward buttons in
the Tool Bar, or press Ctrl ← and Ctrl → . You can also use your mouse’s back/forward
buttons.

Advanced: Chronological vs. Topological sorting
Out of the box, the Commit History displays commits in chronological order. You can
switch to topological sorting in Settings ‣ Commit History ‣ Sort commits.

Chronological mode lets you stay on top of the latest activity in the repository. The most
recent commits always show up at the top of the graph. However, the graph can get messy
when multiple branches receive commits in the same time frame.

Chronological mode. New commits trickle into the graph in the exact
order they are being made, but the intertwining of branches can get

messy.

Topological mode makes the graph easier to read. It attempts to present sequences of
commits within a branch in a linear fashion. Since this is not a strictly chronological mode,
you may have to do more scrolling to see the latest changes in various branches.

15

Topological mode. Commits are neatly grouped according to the
branch they belong to, but chronology isn’t respected across different

branches.

Context menu reference

Commit History context menu

 Right-click on any commit in the Commit History to reveal a context menu with the
following actions:

Actions in the Commit History context menu

Action Description

New Branch Here Create a new branch that will point to this commit. See Creating a
new branch.

Tag This Commit Create a tag on this commit.

Check Out Enter “Detached HEAD” mode on this commit, or switch to a
branch pointing here (if any).

Reset HEAD Here Make the current HEAD point to the selected commit.

Cherry Pick Apply the changes from this commit to your working directory.
See Cherry-picking a commit from another branch.

Revert Undo the changes in this commit. Reversal applied to your
working directory.

Export As Patch Format the changes in this commit as a “unified diff” patch file.

Copy Commit Hash Copy this commit’s full SHA-1 hash to the clipboard.

Verify Signature Validate the commit’s GPG signature. Only available for signed
commits. See Verifying signed commits in the Commit History.

Get Info Display the commit’s full message, authors, and other details.

TIP
2 Double-click on a commit to check out that commit.

16

File List context menu (when exploring a commit)

 Right-click on a file while exploring a commit to reveal a context menu with the
following actions:

Actions in the File List context menu (while exploring a commit from the History)

Action Description

Open Diff in New
Window

Open this diff in a detached window within GitFourchette. The
window will be closed when you close this repository.

Open Diff In… Open this diff in an external program. Set up the external diff tool
in Settings ‣ External Tools.

Export Diff As Patch Save this change as a “unified diff” patch file.

Revert This Change Undo the changes in this file only. Reversal applied to your
working copy.

Restore File Revision Overwrite your working copy of this file with a past revision (As
Of/Before the commit). Warning: your copy will be overwritten
—make sure you’ve backed up any pending changes!

Open File In… View this revision of the file in an external program. Set up the
external editor in Settings ‣ External Tools.

Save A Copy Save a copy of a past revision of the file to the location of your
choice.

Open Folder Reveal your working copy of this file in your system’s file manager
if the file still exists in your working directory (if it doesn’t, it may
have been deleted or moved by an ulterior commit).

Copy Path Copy the absolute path to this file to the clipboard.

17

Making a Commit
This chapter will teach you to create your own commits with GitFourchette.

Crash course: What’s in a commit?
The contents of a Git repository evolve through a series of commits. A commit is a record
of the state of the files in the repo.

More practically, you can think of a commit as a small milestone in your work on the
repository: do some work, then commit your work when you’re ready to move on to another
task.

In practice, creating a commit entails:

1. Making some modifications to files in the repository (outside GitFourchette);

2. Vetting which file modifications to include in the commit (this is called staging the
files);

3. Composing a short message that describes the changes since the previous commit.

When you’ve just finished making the commit, it becomes the HEAD commit—meaning
that it’s at the tip of the current branch.

Each commit is identified by a unique SHA-1 hash of its contents and metadata (parents,
message, author). Because of this unique hash, commits are immutable: the slightest
modification to an existing commit would result in a different hash, and thereby a different
commit.

Jumping to the Working Directory
In GitFourchette, you can prepare commits from the Working Directory. You can get
there:

From the Sidebar: Click Working Directory.

From the Commit History: Click Working Directory at the top of the history.

From anywhere: Press Ctrl G (think “Go” to workdir).

The Working Directory displays any files that have changed since the HEAD commit:

18

1. Unstaged Changes: List of files that have changed since the HEAD commit, but that you
haven’t staged for commit yet.

2. Staged Changes: List of changed files that are ready to be committed.

3. Diff View: Displays the differences in the selected file between your working version
and the state of this file at the HEAD commit.

NOTE

The number of uncommitted changes is shown next to Working Directory in the
Sidebar.

Staging and unstaging files
After you’ve made some changes to files in the repository (outside of GitFourchette), the
modified files show up in the Unstaged box.

To prepare a commit, you must decide which of these files to include in the commit—this is
called staging the files. Select some files, then press the Stage button. Notice that the
files you’ve staged have moved to the Staged box.

The staging area, with some files ready to be committed.

If you change your mind about staging a file, select it in the Staged box, then click
 Unstage. The file will move back to the Unstaged box.

1

2

3

19

To get rid of an unwanted modification in the Unstaged box, select the unstaged file and
click Discard. (You can rescue changes that you’ve discarded by mistake.)

When you’re satisfied with your selection of staged files, click the large Commit files
button. This brings up the Commit dialog where you can describe your commit and finalize
it.

TIP

Press Alt 3 to get keyboard focus on the file lists.
Press Enter to move the selected files to the other box (unstaged // staged).
Press Del to discard changes to the selected unstaged files.
Press Ctrl S to finalize the commit.
Middle-click on a file to stage or unstage it (this behavior must be enabled in Settings
‣ Advanced ‣ Middle-click file name to stage).

Finalizing the commit (the Commit dialog)
Clicking the Commit files button in the main window brings up the Commit dialog,
where you’ll be able to type up a commit message then confirm the commit.

The Commit dialog.

A commit message consists of:

A mandatory summary line. Describe your changes in a few words so other people—
including future you—can learn what your commit is about at a glance. Keep it concise:
proper Git etiquette mandates to keep the summary under 50 characters and to avoid
going over 72. (The character counter beside this field can help you stick to this
guideline.)

An optional long-form description. Feel free to provide as much context for your
changes as necessary in this field.

When you’re ready, click Commit—and you’re done! Notice your new commit in the
Commit History: the HEAD branch now points to it, e.g. .

20

Your commits are local until you push them
So, you’ve created a commit. But it’s just sitting on your machine, for now—GitFourchette
doesn’t send it to any remote servers automatically.

Notice that right after creating a commit, your HEAD branch has moved to your new
commit () but the remote server hasn’t budged ().

This is nice, because it gives you a chance to amend your commit before anyone knows
you’ve made a mistake in it.

Once you’re satisfied with your work, push your branch to a remote so the world can see
what you’ve been working on.

21

Managing Changes in the Working Directory
This chapter will teach you some techniques to manage and edit your uncommitted
changes so you can prepare commits with more precision. We’ll assume you’re already
familiar with staging and unstaging files (see Making a Commit).

Staging and discarding individual hunks or lines
Sometimes, you might be ready to commit specific parts of a file—but you might still be
working on other parts of that file.

Fortunately, you don’t have to stage the entire file every time you want to make a commit.
The Diff View lets you stage small pieces of code in a file:

You can stage a single hunk without staging the full file.

You can even stage individual lines if a hunk isn’t granular enough.

Hand-picked lines ready to be staged in the Diff View.

Stashing changes
If your working directory contains changes that you’re not ready to commit yet, you can
stash them. Stashing safely tucks away your changes to a stash, then it restores the affected
files to their unchanged state. When you’re ready to resume working on the stashed
changes, you can apply the stash back to your working directory.

This is handy when you want to reset your working directory to a clean slate without losing
work in progress.

To create a stash, go to Repo ‣ Stash Changes; or, select some files in the File List, right-
click and choose Stash Changes. This opens the “New Stash” dialog where you can
customize the contents of the stash before confirming:

22

The New Stash dialog.

Fields in the New Stash dialog

Item Description

Optional stash
message

Describe the contents of your stash here. Or not—it’s up to you.
Stashes are meant to be temporary, so this message is optional.

Retain stashed
changes in working
directory

Unticked by default, since the most common use case for stashes
is to set aside some work in progress and clean up your working
directory. Tick this if you want to stash the changes and keep
them in your working directory anyway.

Files to stash Select the files to include in the stash. Unticked files will not be
part of the stash and will remain in your working directory.

Your new stash appears in the Sidebar’s Stashes section. To restore a stash to your
working directory, right-click on it in the Sidebar and choose Apply.

WARNING

If you stash a file that contains both staged and unstaged changes, those will be
“flattened” in the stash.

NOTE

Stashes are only saved locally on your machine. They cannot be shared with others
(unlike “shelves” in Perforce).

TIP

Press Ctrl Alt S to create a new stash.

Rescuing changes that you discarded by mistake
Did you mistakenly Discard some change that you actually meant to keep?

Don’t panic—GitFourchette backs up the last 250 discarded changes by default. Go to Help ‣
Open Trash and your system’s file manager will reveal the trash folder.

23

In the trash, discarded changes are stored as .patch files that you can apply to your working
directory. To do so, drag-and-drop a patch file from your file manager to GitFourchette’s
main window.

Applying the patch might fail if your working directory has evolved too much. In this case,
try applying the patch with git apply (unfortunately, GitFourchette’s patcher is a bit brittle
for now and vanilla git apply is more robust).

NOTE

You can customize how many files to keep in the trash in Settings ‣ Trash.

File List context menu (in the Working Directory)
The Stage/Unstage/Discard buttons around the file lists should cover most of your basic
staging needs.

 Right-click on a file in one of the File Lists to open a context menu with advanced
operations:

Actions in the File List context menu (in the Working Directory)

Action Description

Stage File Stage all changes in the selected file.

Unstage File Unstage all changes in the selected file.

Discard Changes Discard the changes in the selected files. Your working copy of the
file will be identical to the state of the file on the HEAD commit.

Stash Changes Save the changes in the selected file to a “stash”, then (optionally)
revert the file to its unmodified state. See Stashing changes.

Revert Mode Change If this file’s mode has changed (most commonly, the executable
bit “+x”), you can use this command to restore the previous mode.

Ignore Untracked File New in v1.3.0: Add this file to .gitignore or .git/info/exclude. You
will be able to customize the path pattern to your liking.

Open Diff In… Open this diff in an external program. Set up the external diff tool
in Settings ‣ External Tools.

Export Diff As Patch Save this change as a “unified diff” patch file.

Edit In… Edit the working copy of this file in an external program. Set up
the external editor in Settings ‣ External Tools.

Edit HEAD Version In… View the “unmodified” revision of this file (as of the HEAD
commit) in an external program. Set up the external editor in
Settings ‣ External Tools.

Open Folder Reveal this file in your system’s file manager.

Copy Path Copy the absolute path to this file to the clipboard.

24

Reading and Editing Diffs
The Diff View shows the evolution of a file between two revisions.

It also gives you powerful tools to help you prepare commits with more precision. You can
use it to stage or discard pieces of code at finer levels than the entire file.

The Diff View.

TIP

Press Alt 4 to get keyboard focus on the Diff View.

Old and new revisions
The Diff View compares an old revision of a file to a new revision of the same file.

Depending on where you’re diffing the file, the old and new revisions being compared vary:

Diffing a file in: “Old” revision is: “New” revision is:

An unstaged change From the index From your working copy

A staged change At the HEAD commit From the index

A commit from the history Before the commit At the commit

What’s in a hunk?
The Diff View only displays the sections of the file that have been modified. These sections
are called hunks.

25

A sample hunk.

Each hunk consists of:

A header line starting with @@, detailing the line numbers affected by the hunk. It’s
shown in blue.

A couple of context lines, which don’t change in either revision of the file. They’re a
visual aid to help you situate the hunk in the file. These are shown in black and white.

In between the context lines, the meat of the hunk—a block of modified lines:
Red lines represent deletions. (They’re gone from the new revision.)
Green lines represent additions. (They appeared in the new revision.)

NOTE

Are you red/green colorblind? Switch to a yellow/blue color scheme in Settings ‣
Code ‣ “-/+” colors.

Manipulating hunks
The power of the Diff View is that you can stage and unstage individual hunks without
staging or unstaging the entire file.

 Right-click on a hunk to reveal these actions:

Item Available in Description

Stage Hunk Unstaged change Stage just this hunk; leave other changes alone

Discard Hunk Unstaged change Discard just this hunk; leave other changes
alone

Unstage Hunk Staged change Unstage just this hunk; leave other changes
alone

Revert Hunk Past commits Undo the changes in this hunk (reversal applied
to your working copy)

Export Hunk As
Patch

Anywhere Save a patch file containing only this hunk in
“unified diff” format

NOTE

If you’re not seeing hunk-related actions, make sure your text selection is empty.

26

Manipulating individual lines
If hunks aren’t granular enough for you, you can even manipulate diffs line-by-line.

Select a piece of code with your mouse in the Diff View. Notice the blue outline
surrounding the actionable lines:

Blue outline around selected lines in the Diff View. (Color may vary
on your system.)

 Right-click on a line selection to reveal similar actions as the hunk context menu, only
these will just apply to your picked lines:

Item Available in Description

Stage Lines Unstaged change Stage just these lines; leave other changes alone

Discard Lines Unstaged change Discard just these lines; leave other changes
alone

Unstage Lines Staged change Unstage just these lines; leave other changes
alone

Revert Lines Past commits Undo the changes in these lines (reversal
applied to your working copy)

Export Lines As
Patch

Anywhere Save a patch file containing only these lines
(plus a couple context lines) in “unified diff”
format

TIP

With a selection of unstaged lines: press Enter to stage them or Del to discard them.
With a selection of staged lines: press Del to unstage them.

The gutter
Attached to the left side of the code, the gutter displays line numbers in the old and new
revisions (left and right columns, respectively).

27

The gutter beside a code hunk. This hunk covers old lines #1-9 (left)
and new lines #1-7 (right). Old lines #4-6 were deleted, and new line

#4 was added in their place.

As you hover over a line in the gutter, notice that your cursor flips over (). This indicates
that left-clicking there will select the entire corresponding line in the diff.

To select multiple lines, click on the gutter and drag your mouse to expand the selection.
You can also just click on one line, then Shift -click on another line to select all the lines in
between.

Some special lines can be double-clicked to select blocks of code effortlessly:

2 Double-click the dashed line next to a hunk header to select the entire hunk.
2 Double-click the line number for a red or green line to select adjacent red/green

lines around it.

Once you’ve selected lines from the gutter, you can right-click to access the usual line
selection actions (stage, discard, etc.).

28

Local branches in the Sidebar.
“master” is checked out.

Managing Your Branches
All of the local branches in your repository are listed
under Local Branches in the sidebar (or just Branches if
the sidebar is narrow).

A little head is shown next to your current HEAD
branch, i.e. the currently checked-out branch.

TIP

Press Ctrl H to jump to the HEAD.

Creating a new branch
You can start a new branch from several places:

From the Commit History: Right-click on any commit, then select New Branch Here.

From the Sidebar: Right-click on any local or remote branch, then select New Branch
Here.

From the Tool Bar: Click the Branch button to start a branch off the HEAD commit.

After you’ve triggered one of the actions above, the “New Branch” dialog will let you set up
the branch:

The New Branch dialog.

29

Fields in the New Branch dialog

Item Description

Name You can name your branch however you want, bar some
restrictions. GitFourchette will let you know if the name you’ve
entered isn’t compliant.

Switch to branch after
creating

Tick this to switch to the new branch after creating it. Otherwise,
the repository will remain on the current branch.

…then recurse into
submodules

Tick this to update the submodules after switching to the new
branch. (Only available if your repository uses submodules.)

Track upstream branch If a remote branch points to the target commit for the new
branch, you can make it the upstream for the new branch. (You
can always change the upstream later.)

TIP

Press Ctrl B to create a new branch on the current HEAD commit.

Switching to another branch
You can switch to another branch from the Sidebar, or from the Commit History.

From the Sidebar, 2 double-click any local branch. You will be asked to confirm the
switch. If your repository has any submodules, you will also be asked whether to update
them.

From the Commit History, 2 double-click a commit that is the tip of a local branch
(these commits are adorned with a purple box – e.g.). This brings up the
“Check out Commit” dialog, which lets you confirm the switch.

After switching to another branch, notice that the HEAD branch has changed in the
Sidebar, as well as in the Commit History (e.g.).

NOTE

You can’t switch to a remote branch. To achieve something similar, you can create a
local branch that tracks the remote branch, then switch to it: right-click on the remote
branch in the Sidebar then select New Local Branch Here.

Merging another branch into yours
You can merge any local or remote branch into your current branch:

From the Sidebar: Right-click on the branch you’d like to merge from, then select
Merge into (current branch).
From the Commit History: Right-click on the tip of the branch you’d like to merge
from, then select Merge into (current branch).

https://git-scm.com/docs/git-check-ref-format

30

GitFourchette will attempt to fast-forward your current branch to the branch you’re
merging from. This avoids creating a merge commit.

If fast-forwarding isn’t possible, GitFourchette will ask you to resolve the merge conflicts.
hen, conclude the merge by creating a merge commit. Read Resolving Merge Conflicts for
more details.

Organizing your branches in folders
Your local branches can be organized in folders. Just like paths in a file system,
GitFourchette treats the slash character / in a branch name as a “folder separator”.

For example, if your repository contains branches foo/branch1, foo/branch2 and
foo/branch3, then GitFourchette will group all three of these under the folder foo.

NOTE

Folders are automatically inferred from the names of your branches; you can’t “create”
folders per se. To conjure up a new folder, rename one of your branches, and insert a
slash / in its name: e.g. rename mybranch to newfolder/mybranch.

Folders can be nested. The sidebar will combine chains of nested folders when possible.

 Right-click on a folder to open a context menu that will let you act on all branches
within it. You can:

Actions in the Branch Folder context menu (from the Sidebar)

Action Description

Rename Folder Rename the part preceding “/” for all branches in the folder.

Delete Folder Delete all local branches in the folder.

Hide Folder Hide all branches in the folder from the commit history.

Sorting branches in the Sidebar
To select the sorting mode for your local branches in the Sidebar, right-click on Local
Branches and pick an option under Sort Branches.

Branches can be sorted:

by their name, or

by the date of the latest commit at the tip of each branch.

Note that this will only change the order of the branches in the Sidebar, not in the Commit
History.

31

Hiding branches in the Commit History
You can hide any branch from the Commit History.

Move your mouse pointer over one of the branches in the Sidebar and an eye icon () will
appear. Click it, and the branch will be hidden from the graph, as indicated by a crossed-
out eye icon (). To unhide the branch, click the eye icon again.

Hovering over a branch in the Sidebar.

NOTE

Even if you hide a branch, it may still be shown in the Commit History if another visible
branch points to the same commit.

New in v1.3.0: You can also show a single branch and hide all others. Move your mouse
cursor over the eye icon in the sidebar, then middle-click it. An inverted eye icon () will
appear, indicating that the graph only displays this one branch.

Hiding all but one branch.

Sidebar context menu for local branches
 Right-click on a local branch in the Sidebar to bring up a context menu with the

following actions:

32

Actions in the Local Branch context menu (from the Sidebar)

Actions Description

Switch to (branch) Switch to the branch (also known as “checking out” the branch).

Merge Into (current
branch)

Merge the branch into your current branch. See also: Resolving
Merge Conflicts.

Fetch (upstream) Download new commits from the upstream branch, but don’t
bring them into the local branch. (You can look at the new
commits in the Commit History and decide to merge later on.)
See Fetching new commits on a branch.

Pull From (upstream) Download new commits from the upstream, then bring them into
the local branch, via a merge commit if necessary. See Pulling
new commits into your branch.

Fast-forward to
(upstream)

Move the tip of the branch to the tip of the upstream branch (only
if that’s possible without merging).

Push to (upstream) Publish your new commits to the upstream branch (on the
remote). See Pushing a branch to a remote.

Upstream branch Select which remote branch the local branch should track. See
Setting an upstream branch.

Rename Rename the branch locally (won’t affect the upstream branch).

Delete Delete the branch locally (won’t affect the upstream branch).

New Branch Here Create a new branch on the same target commit. See Creating a
new branch.

 Hide in Graph Toggle the visibility of this branch in the graph.

 Hide All But This Toggle the exclusive visibility of this branch in the graph.

TIP
2 Double-click on a local branch in the Sidebar to switch to it.

When a local branch has keyboard focus in the Sidebar, hit Enter to switch to it, F2 to
rename it, or Del to delete it.

33

Fetch, Pull & Push: Syncing Branches With
Remotes

Setting an upstream branch
Fetch and Pull are operations that synchronize a local branch with a remote branch.

Before you can Fetch or Pull a local branch, you must bind it to a remote branch. That
remote branch is then said to be the upstream for the local branch.

You can change a local branch’s upstream at any time, even after the branch has been
created. To do so, right-click on the local branch in the Sidebar and select Upstream
Branch; a submenu appears, revealing all known remote branches. Pick the desired remote
branch to set as the new upstream.

You can also clear the upstream reference with Stop tracking upstream branch under the
same submenu; Fetch and Pull will stop working on this branch.

NOTE

If the remote branch you’re looking for is missing from the Upstream Branch submenu,
your remote-tracking branches might be out of date. Right-click on the remote in the
Sidebar and select Fetch All Remote Branches, then see if the expected remote branch
comes up.

NOTE

Unlike Fetch and Pull, Push doesn’t require the local branch to have an upstream.

Fetching new commits on a branch
The “fetch” operation downloads new commits from the remote server. It updates remote-
tracking branches only; your local branches are left intact. After a fetch, you can look at
the new commits in the Commit History and decide whether you want to merge them into
your local branch.

You can fetch any local branch that has an upstream. Right-click on the local branch in the
Sidebar, then pick Fetch (upstream name). (If Fetch is grayed out, select an upstream first.)

You can also fetch a remote-tracking branch directly: right-click on it the Sidebar, then
pick Fetch New Commits.

You can update all remote-tracking branches at once for any given remote: right-click on
the remote in the Sidebar, then pick Fetch All Remote Branches.

Pulling new commits into your branch
The “pull” operation fetches the latest commits from a remote branch, then it integrates
them into your local branch, via a merge commit if necessary.

34

Pulling is only possible on the currently checked-out branch, and it must have an
upstream.

To pull the current branch, click Pull in the Tool Bar.

Pulling has one of three outcomes:

Remote branch has no new commits: GitFourchette will tell you that your branch is
already up-to-date.

Remote branch has new commits: GitFourchette will fast-forward your branch to the
remote branch.

Remote branch has diverged from your local branch: A merge is necessary to
reconcile your branch with the remote. You will be asked to resolve the merge conflicts,
and conclude the merge by creating a merge commit. (See Resolving Merge Conflicts
for more information.)

In any case, GitFourchette will tell you what needs to be done to complete the pull, and
you’ll have a chance to confirm or cancel.

TIP

Press Ctrl Shift P to pull the current branch.

Pushing a branch to a remote
The “push” operation uploads your commits on a branch to the remote repository.

You can push any local branch, even if it’s not assigned an upstream:

From the Sidebar: Right-click the local branch you’d like to push, then select Push.

From the Tool Bar: Click Push to push the currently checked-out branch.

The “Push Branch” dialog appears, where you can review the parameters before
proceeding:

35

The Push Branch dialog.

Fields in the Push Branch dialog

Item Description

Local branch Select which branch to push among all the local branches in your
repository. By default, your current branch is selected.

Push to By default, the local branch’s upstream is automatically selected.
But you don’t have to push to the upstream: you can select any
remote branch to upload to. You can even create a whole new
branch on the remote.

Force push USE WITH EXTREME CAUTION—May cause data loss! If your
local branch has diverged from the remote branch, the remote
server will reject the push. Force push lets you bypass this
restriction and overwrite the remote branch with the contents of
your local branch.

Track this remote
branch after pushing

Tick this to set the local branch’s upstream to the remote branch
you selected for Push to. (Grayed out if the selected remote
branch is already the upstream.)

Status This box displays network information during the push.

After a successful push, notice that the remote branch now points to the same commit as
your local branch. The Commit History displays the tip of a remote branch with a teal box,
which you should now see next to the purple box for your local branch. (e.g.).

WARNING

Don’t tick “Force Push” unless you really know what you are doing! Force-pushing is
generally frowned upon because it rewrites history for other users of the remote. This
might mess up your teammates’ workflow and/or cause data loss!

TIP

Press Ctrl P to push the current branch.

36

Remotes in the Sidebar

Managing Remote Servers and Remote-
Tracking Branches

All of the remote servers added to your repository are
listed under Remotes in the sidebar.

In turn, remote-tracking branches are listed under their
respective remotes.

Adding a new remote
Right-click on Remotes in the sidebar and select Add Remote (or just double-click on
Remotes) to bring up the “Add Remote” dialog:

The Add Remote dialog.

Fields in the Add Remote dialog

Item Description

URL The URL will be used to fetch from, and push to, this remote.
GitFourchette automatically fills in the URL from your clipboard
if possible. You can use the ssh/https button to convert the URL to
another protocol.

Name You can name the remote however you want, bar some
restrictions. GitFourchette will let you know if the name you’ve
entered isn’t compliant.

Sidebar context menu for remotes
 Right-click on a remote in the sidebar to bring up a context menu with the following

actions:

https://git-scm.com/docs/git-check-ref-format

37

Actions in the Remote context menu (from the Sidebar)

Action Description

Edit Remote Edit the remote’s name and URL. This is essentially the same
dialog as Add Remote.

Fetch All Remote
Branches

Fetch all remote-tracking branches from this remote. After this
operation, remote-tracking branches may appear or disappear
depending on activity on the remote. Won’t touch your local
branches.

Remove Remote Delete this remote from your local repository. Won’t have any
effect on the server itself.

Visit Web Page Open your web browser to the home page for this repository (e.g.
on github.com if that’s where your repo is hosted).

Copy Remote URL Copies the remote’s URL to the clipboard.

 Hide in Graph Toggle the visibility of this remote’s branches in the graph.

 Hide All But This Toggle the exclusive visibility of this remote’s branches in the
graph.

TIP
2 Double-click on a remote to edit it.

When a remote has keyboard focus in the sidebar, hit Enter to edit it, or Del to remove
it.

Sidebar context menu for remote-tracking branches
 Right-click on a remote-tracking branch in the sidebar to bring up a context menu with

the following actions:

38

Actions in the Remote-Tracking Branch context menu (from the Sidebar)

Action Description

Start Local Branch
From Here

Create a new local branch that targets the tip of the remote-
tracking branch.

Fetch New Commits Fetch new commits from the remote on this specific remote-
tracking branch only.

Merge Into (current
branch)

Merge the remote-tracking branch into your current local branch.
This will attempt a fast-forward if possible. See also: Resolving
Merge Conflicts.

Rename Branch on
Remote

Instruct the remote server to rename this branch. (This will
rename the branch for all users of the remote!)

Delete Branch on
Remote

Instruct the remote server to delete this branch. (Make sure this
branch isn’t needed by anybody else that uses this remote!)

Visit Web Page Open your web browser to the page for this branch on the host’s
web site (e.g. github.com).

 Hide in Graph Toggle the visibility of this branch in the graph.

 Hide All But This Toggle the exclusive visibility of this branch in the graph.

TIP
2 Double-click on a remote-tracking branch to start a local branch from it.

When a remote-tracking branch has keyboard focus in the sidebar, hit Enter to start a
local branch from it, or Del to delete it from the remote.

Sorting remote-tracking branches in the Sidebar
Like local branches, remote-tracking branches can be sorted in the sidebar:

by their name, or

by the date of the latest commit at the tip of each branch.

To select a sorting mode, right-click on Remotes in the sidebar and pick an option under
Sort Remote Branches By.

39

Advanced Commit Techniques

Setting aside your commit message for later
If you back out of the Commit dialog by clicking Cancel, GitFourchette will save your
message as a draft. The draft message is shown in the Working Directory row at the top of
the Commit History.

A commit message draft as shown in the Commit History.

Next time you press the Commit files button, the Commit dialog will fill in the commit
message with your draft.

To clear the draft message, right-click Working Directory in the Commit History, then
choose Clear Draft Message.

Amending a commit
If you’ve just made a commit and you realize you’ve made a mistake in it, you can amend
the commit. Amending updates the contents and/or metadata of the HEAD commit.

WARNING

Attention Beginners! Use “amend” ONLY on a commit that you haven’t pushed yet! If
you’ve already pushed a commit to a remote, DON’T AMEND IT and fix your mistake in
a new commit instead.

GitFourchette won’t stop you from amending a commit that has already been pushed,
because this is a legitimate use case if you really know what you’re doing. However, you
run the risk of the remote rejecting your amended commit next time you push. And
while force-pushing is an option, it’s extremely dangerous because it may cause data
loss in your repo or for your teammates.

If you’re at all unsure, steer clear of the Amend feature until you’re more confident with
Git.

To amend the HEAD commit:

1. First, stage any additional changes you’d like to roll into the HEAD commit. (If you
simply want to edit the HEAD commit’s message, you can actually leave the Staged box
empty here.)

2. Click the pulldown arrow attached to the right of the Commit files button. In the
menu that appears, choose Amend latest commit. (Or just press Ctrl Shift S .)

The “Amend Commit” window appears. It’s very similar to the “Commit” dialog we’ve
walked through earlier. One key difference is that “Amend Commit” fills in the message of

40

the HEAD commit for you. You can leave it be, or you can edit it.

By default, the original commit’s author information will be left intact, but the amended
commit will automatically record you as the committer. You can customize this via Edit
Author and preview the result with the eye button (, see Editing a commit’s author or
committer).

NOTE

To be exact, amending doesn’t really modify the existing commit. Remember, commits
are immutable: each commit is identified by a unique hash of its contents and metadata
(message, author, etc.). So, amending actually produces a new commit, then rewrites
history to “replace” the HEAD commit.

Cherry-picking a commit from another branch
Cherry-picking lets you bring a single commit from another branch into your current
branch. This is useful to obtain changes from another branch without merging it in (when
you’re not interested in the rest of the branch).

To cherry-pick a commit, locate it in the Commit History, right-click it and choose Cherry-
Pick in the context menu. GitFourchette will apply the changes from the commit to your
working directory.

Your repository will enter the special “cherry-picking” state, as shown by a banner below
the Sidebar. In this state, some operations are restricted, so you should conclude the
cherry-pick as soon as possible. To conclude the cherry-pick:

If cherry-picking was successful (as indicated by a green banner below the Sidebar),
you should conclude the cherry-pick by committing the cherry-picked changes.
GitFourchette encourages you to do so immediately after a successful cherry-pick.

If cherry-picking caused merge conflicts (as indicated by a yellow banner below the
Sidebar), you will have to resolve the conflicts first. Read Resolving Merge Conflicts for
more information.

NOTE

You’re free to stage additional changes before concluding the cherry-pick, for example if
you need to adjust some code to the incoming changes.

If you change your mind, you can get your repository out of the “cherry-picking” state by
clicking Abort Cherry-Pick in the Cherry-Picking banner.

WARNING

Aborting a cherry-pick will discard all staged changes—whether they originate from the
cherry-picked commit or not!

Editing a commit’s author or committer
In the Commit dialog, notice the Edit Author checkbox. Tick it to edit the
author/committer’s identity and timestamp that will be associated with the commit.

41

In the Commit dialog, ticking “Edit Author” reveals the author
editor.

Click the eye button () to preview the authorship information that will be embedded into
the commit.

NOTE

Edit Author is meant for one-off adjustments. If you need to set up your default identity,
you can do so elsewhere:

System-wide identity: Go to File ‣ Git Identity to set up your default identity for new
commits in all repositories on your system going forward. (Mac: App menu ‣ Git
Identity)

Repo-specific identity: Go to Repo ‣ Repository Settings and tick Create commits
under a custom identity in this repo. This identity will only apply to the current repo.

42

Signing Commits

Creating a signed commit
New in v1.5.0: The key icon at the bottom of the Commit Dialog indicates whether

your commit will be GPG-signed.

 A green key means your commit will be signed.

 A gray key means your commit will not be signed.

You can click the key icon to enable or disable signing for the commit you’re about to
make.

The signing key button in the Commit Dialog.

After making a signed commit, you should see a green seal icon next to your name in
the Commit History.

What to do if signing isn’t available

NOTE

To be able to sign commits, you must first set up user.signingKey in your Git
configuration. See Pro Git – Signing Your Work to get started.

Check that you’ve set user.signingKey in your Git configuration. This is required to
specify what key to sign your commits with.

If you’ve set up your signing key and you want all commits to be signed, check that
you’ve enabled commit.gpgSign in your Git configuration.

Verifying signed commits in the Commit History
New in v1.5.0: To enable automatic verification of signed commits in the Commit

History, go to Settings ‣ Commit History and tick Verify signed commits on the fly.

As commits scroll into view, GitFourchette will then call git verify-commit automatically to
verify their signatures. The verification status is materialized by a seal icon next to the
author’s name:

https://git-scm.com/book/en/v2/Git-Tools-Signing-Your-Work

43

 Verification pending

 Verification failed (e.g. missing key)

 Good signature; Key not fully trusted

 Good signature; Key trusted

 Key or signature expired

 Key revoked or signature invalid

(No seal icon: Commit isn’t signed.)

Troubleshooting failed verifications (“question mark” seal icons)

Your GPG keychain must contain the signer’s public key to be able to verify their commits.

Frequently, verification will fail () because GPG can’t find the signer’s public key in your
keychain. You can import their public key from a trusted source, then force GitFourchette
to verify the commit again (right-click on the commit and select Verify Signature).

TIP

You can try gpg --search-keys to import a key from your keyserver. For example, the
following command lets you import a key owned by GitHub that is commonly used to
sign commits made with their web interface:

gpg --search-keys B5690EEEBB952194

44

Resolving Merge Conflicts

What’s a merge conflict?
You may sometimes run into merge conflicts as you merge another branch into your
current branch.

When a file has been modified on your branch, and you’re merging another branch that
has made different changes to the same file, a merge conflict occurs. In this case,
GitFourchette isn’t sure which version of the file to keep, so it’s up to you to resolve the
conflict.

Once you’ve resolved all conflicts, you should conclude the merge by creating a so-called
merge commit with the affected files (along with additional changes if necessary, for
example to adjust the rest of your code to the incoming changes). You prepare that commit
by staging files as usual, but the commit will have two parents instead of one.

In practice
When there’s a merge conflict, some operations in your repository will be restricted, such
as making a commit or switching branches. So, it’s best to resolve the conflict as soon as
you can.

As long as your working directory contains conflicted files, a yellow “Merging” banner
appears below the Sidebar, and the file lists in the Working Directory show pending
conflicts with a question-mark icon (?). Select one of the conflicting files, and a Conflict
View appears in lieu of the usual Diff View.

Sample merge conflict.

In a merge conflict, the current version of the file is referred to as “ours”, and the
incoming version (from the branch being merged) is “theirs”.

From the Conflict View, you can resolve the conflict in one of three ways:

45

Alternatives in the Conflict View

Choice Description

Keep OURS Reject incoming changes. The file won’t be modified from its
current state in HEAD.

Accept THEIRS Accept incoming changes. The file will be replaced with the
incoming version.

Merge both versions See Merging a file with an external tool.

NOTE

The alternatives above apply to most merge conflicts. In some unusual cases, you may
be offered more specialized options.

TIP

To batch resolve conflicts, you can select them together in the File List, right-click,
and choose Resolve By Accepting Theirs or Resolve By Keeping Ours in the context
menu.

Merging a file with an external tool
Sometimes, accepting or rejecting the entire file is inadequate. There might be changes to
combine in both “our” and “their” revision—this calls for more granular merging.
GitFourchette doesn’t offer a line-by-line merge tool (yet?), but it can leverage an external
merging program.

NOTE

GitFourchette supports standalone merge tools such as KDiff3, Meld, P4Merge, etc.; as
well as the “merge” mode in several code editors, including JetBrains IDEs (PyCharm,
IntelliJ), VS Code, GVim, etc.

To select a merge tool, go to Settings ‣ External Tools ‣ Merge Tool. Chances are your
favorite tool is available among the predefined commands. Otherwise, you can enter
your own command (feel free to open an issue to suggest it).

Flatpak users: To use a Flatpak merge tool, be sure to pick one of the flatpak run
commands available at the bottom of the presets in Settings ‣ External Tools. In
addition, note that the Flatpak version of GitFourchette itself automatically wraps all
external commands in a flatpak-spawn call.

In the Conflict View, the last option for fixing a conflict is a large Merge both versions in
(External Tool) button. Click it, and GitFourchette will launch the merge program and wait
for you to complete the merge in it.

When you’re done merging, save the file in your merge tool and return to GitFourchette
(you may have to quit the tool). GitFourchette will pick up that the merge is complete and
will prompt you to confirm or discard your merge.

https://apps.kde.org/kdiff3
https://meldmerge.org/
https://www.perforce.com/products/helix-core-apps/merge-diff-tool-p4merge
https://github.com/jorio/gitfourchette/issues

46

After finishing a merge in an external tool, return to the Conflict
View to resolve the conflict with your merge.

If you discard the merge, the conflict will remain and you’ll have to resolve it again. If you
confirm, the conflict will vanish and, in most cases, turn into a modification (M), ready to
stage and commit.

Concluding the merge
Once all conflicts are resolved in your working directory, the yellow Merging banner in the
sidebar will turn green to inform you that no conflicts remain.

The Merging banner (below the Sidebar) turns green after resolving
all merge conflicts.

When you see this, you should stage the conflict resolutions and commit your work to
conclude the merge. Once you’ve made the merge commit, the banner will vanish and you
can resume working in your repository as usual.

47

NOTE

A merge commit typically has two parent commits. As you prepare the merge, the graph
displays the links to the parents that your future merge commit will have, once created.

Preview of the future merge commit’s parents in the graph. Note
the two dashed lines linking the Working Directory to the branches

being merged.

Aborting a merge
If you change your mind about a merge, you can get your repository out of the “merging”
state at any time.

To do so, click the Abort Merge button in the Merging banner below the sidebar. Aborting
the merge will clear all unresolved conflicts, and all staged files will be reset.

WARNING

Make sure there are no staged changes you want to keep before aborting a merge—all
staged changes will be lost, even if they aren’t conflicting!

48

Blame & File History
New in v1.4.0.

The Blame Window lets you retrace the history of a specific file. It gives you access to:

A filtered commit history with only the relevant commits that made changes to this file;

A line-by-line breakdown of the last commit that is responsible for each part of the file.

To open the Blame Window, right-click on any file in the File List, then select Blame File.
This is available both in the Working Directory and while exploring commits.

TIP

After selecting a file, you can press Ctrl L to open the Blame Window.

You can also drag a file from your system’s file manager and drop it on GitFourchette’s
main window. If the file belongs to the current repository, GitFourchette will open a
Blame Window for you.

Overview of Blame Window controls

1. File History Menu: Displays the relevant commits that contributed to this file. Pull
down this menu to examine an older or newer revision of the file (more details below).

2. Back/Forward Buttons: Use these to return to a revision that you’ve looked at
previously. You can also use your mouse’s back/forward buttons.

3. Newer/Older Buttons: Use these to navigate to a newer or older revision in the
file’s history.

4. Reveal Full Commit: Click this to reveal the current commit in the main window.

5. Blame Gutter: Line-by-line revision history (more details below).

6. Commit Information Tooltip: Hover over the Gutter to bring up a tooltip with detailed
information about a revision.

1
2 3 4

5

6

49

TIP

 Hold Shift while clicking the newer/older buttons to jump to the top/bottom revisions
in the history.

The file history menu
Pull down the File History menu to reveal a list of commits that directly contributed to the
file (including any uncommitted changes). To explore the contents of the file at another
point of its history, select any commit in the list.

The File History menu in the Blame Window.

NOTE

This list only shows commits that share ancestry with the commit from which you
initiated the blame. Changes to this file in unmerged (i.e. unrelated) branches aren’t
shown.

The graph shown in the file history menu is a simplified representation of commit
ancestry chains. That is, a link between two commits in the file history graph does not
always represent a direct parent-child link, because any commits that don’t contribute to
the file are omitted.

50

The Blame Gutter.

The blame gutter
Attached to the left side of the code, the Blame Gutter
shows which commit is responsible for each line in the file.
In other words, it tells you “who is to blame” for each piece
of text in the file.

The background colors in the Blame Gutter give you an
overview of the age of each line in the file. Think of these
colors as a “heatmap” for recentness: the deeper the shade
of orange, the more recent the line.

Any lines that were directly modified by the exact commit
that you’ve selected in the File History menu are shown in
bold in the gutter.

NOTE

In the gutter’s color scheme, the “age” of a line is relative
to the revision you’re viewing. A deep orange means that
the line is recent relative to the revision that is currently
selected in the file history menu.

Hover over any part of the Blame Gutter to reveal a tooltip with more details about the
commit that is to blame for the attached text.

 Right-click on any section of the Blame Gutter for additional actions:

Blame File at Commit – Explore the contents of the file as of the given commit.

Show Commit in Repo – Select the given commit in the Main Window so you can
explore this commit in the broader context of the repository.

Get Commit Info – Shows essentially the same information as the Blame Gutter tooltips,
in copy/pastable form.

51

Custom Commands
New in v1.3.0.

You can augment GitFourchette’s capabilities with custom commands tailored to your
workflow. These let you launch commands in a terminal directly from GitFourchette.

You can even send items that you manipulate in the UI as arguments to the commands.
These include the selected commit, file, branch, etc.

To define custom commands, go to Settings ‣ Custom Commands and simply enter
some commands (one per line). Here is a useful sample to get you started:

Feel free to copy/paste this sample into Custom Commands.

git rebase -i $COMMIT # &Interactive Rebase

git rebase --continue # &Continue Rebase

? git rebase --abort # &Abort Rebase

git diff $COMMIT HEAD # Diff Commit With &HEAD

After you click OK in the Settings, notice the Commands menu that appears in the main
menu bar. You’re now ready to invoke your commands from this menu.

The Commands menu that appears once you’ve defined at least one
Custom Command.

TIP

If you’ve chosen to hide the menu bar, you can also access your commands via a
pulldown menu attached to the Terminal button in the toolbar.

TIP

To select which terminal program to use, go to Settings ‣ External Tools ‣ Terminal.

Argument placeholders
You may use the following placeholders in your commands:

52

Token Description

$COMMIT SHA-1 hash of the selected commit in the history

$FILE Path to the selected file (relative)

$FILEABS Path to the selected file (absolute)

$FILEDIR Path to rthe selected file’s parent directory (relative)

$FILEDIRABS Path to the selected file’s parent directory (absolute)

$HEAD SHA-1 hash of the HEAD commit

$HEADBRANCH Ref name of the HEAD branch

$HEADUPSTREAM Ref name of the HEAD branch’s upstream

$REF Name of the selected ref in the sidebar (local branches, remote
branches, tags)

$REMOTE Name of the selected remote in the sidebar

$WORKDIR Path to the repository’s working directory (absolute)

Titles and separators
The # character starts a comment until the end of the line.

If you add a comment after a command (on the same line), then the comment will serve as
the title of the command in the menu.

To create a separator in the menu, insert a comment line of dashes (#---) in between two
commands.

echo 'hello world 1'

The command above had no custom title.

Let's define a custom title for the next one.

echo 'hello world 2' # Say Hello (this is a custom title)

Let's add a separator in the menu.

echo 'hello world 3'

Keyboard shortcuts
When you set a custom title for a command, you can define an accelerator key for this
command by inserting & before some letter in the command title.

For example, titling a command &Rebase would assign accelerator key R to the command.

53

You can trigger accelerator keys in one of two ways:

Press Ctrl K , then your command’s accelerator key (e.g. Ctrl K then R).

NOTE

Let go of Ctrl K before pressing the accelerator key.

Or, pull down the Commands menu with Alt C , then press your accelerator key (e.g.
Alt C then R).

Confirmation prompt
By default, when you trigger any custom command, GitFourchette will give you a chance to
review the prepared command before it’s sent to the terminal (with the proper
substitutions).

You can turn off this behavior by unticking the checkbox at Settings ‣ Custom
Commands ‣ Ask for confirmation before running any command.

If you’ve turned off the confirmation dialog for all commands, you can still force it to
appear before specific commands. To do so, prepend the commands of your choice with
the ? character. We strongly recommend doing this for commands that may have
destructive effects!

For example, ? git rebase --abort will always ask you to confirm, even if you’ve unticked Ask
for confirmation.

54

Limitations

Supported operating systems
GitFourchette is built primarily for Linux and it fits in great with KDE Plasma. It also runs
fine on macOS, but Linux remains the primary target and there’s no official Mac support
(yet).

I don’t have time to support Windows. GitFourchette does start from source on Windows,
but some important features will not work.

Tentative feature roadmap
Support for these features may be implemented eventually, depending on demand,
funding, and how much free time I can carve out for the project:

Rebase

Improved LFS support

Improved compatibility with vanilla Git since v1.5.0
New in v1.5.0. Starting with v1.5.0, GitFourchette now uses Git itself to edit repositories

and communicate with remotes. This improves compatibility with workflows that depend
on OpenSSH, hooks, etc.

For performance, GitFourchette still uses libgit2 to build its model of the repository, but all
operations that write to the repo or use the network now use Git directly.

The Flatpak version uses an embedded Git distribution by default. You can switch to
another Git instance via Settings ‣ Git Integration.

	Contents
	Welcome to GitFourchette!
	Cloning or Creating a Repository
	Cloning a repository from a remote host
	Creating a blank repository from scratch
	Initializing a repository from existing sources on your machine

	A Tour of the Main Window
	Tab Bar
	Sidebar
	File List
	Commit History & Diff View
	Handy shortcuts

	Exploring the Commit History
	Overview of the Commit History
	Author vs. Committer
	Finding a commit
	Exploring the changes in a commit
	Returning to an item you’ve previously visited
	Advanced: Chronological vs. Topological sorting
	Context menu reference
	Commit History context menu
	File List context menu (when exploring a commit)

	Making a Commit
	Crash course: What’s in a commit?
	Jumping to the Working Directory
	Staging and unstaging files
	Finalizing the commit (the Commit dialog)
	Your commits are local until you push them

	Managing Changes in the Working Directory
	Staging and discarding individual hunks or lines
	Stashing changes
	Rescuing changes that you discarded by mistake
	File List context menu (in the Working Directory)

	Reading and Editing Diffs
	Old and new revisions
	What’s in a hunk?
	Manipulating hunks
	Manipulating individual lines
	The gutter

	Managing Your Branches
	Creating a new branch
	Switching to another branch
	Merging another branch into yours
	Organizing your branches in folders
	Sorting branches in the Sidebar
	Hiding branches in the Commit History
	Sidebar context menu for local branches

	Fetch, Pull & Push: Syncing Branches WithRemotes
	Setting an upstream branch
	Fetching new commits on a branch
	Pulling new commits into your branch
	Pushing a branch to a remote

	Managing Remote Servers and Remote-Tracking Branches
	Adding a new remote
	Sidebar context menu for remotes
	Sidebar context menu for remote-tracking branches
	Sorting remote-tracking branches in the Sidebar

	Advanced Commit Techniques
	Setting aside your commit message for later
	Amending a commit
	Cherry-picking a commit from another branch
	Editing a commit’s author or committer

	Signing Commits
	Creating a signed commit
	Verifying signed commits in the Commit History

	Resolving Merge Conflicts
	What’s a merge conflict?
	In practice
	Merging a file with an external tool
	Concluding the merge
	Aborting a merge

	Blame & File History
	Overview of Blame Window controls
	The file history menu
	The blame gutter

	Custom Commands
	Argument placeholders
	Titles and separators
	Keyboard shortcuts
	Confirmation prompt

	Limitations
	Supported operating systems
	Tentative feature roadmap
	Improved compatibility with vanilla Git since v1.5.0

