Teach tuplesort.c about "top N" sorting, in which only the first N tuples
authorTom Lane <tgl@sss.pgh.pa.us>
Fri, 4 May 2007 01:13:45 +0000 (01:13 +0000)
committerTom Lane <tgl@sss.pgh.pa.us>
Fri, 4 May 2007 01:13:45 +0000 (01:13 +0000)
need be returned.  We keep a heap of the current best N tuples and sift-up
new tuples into it as we scan the input.  For M input tuples this means
only about M*log(N) comparisons instead of M*log(M), not to mention a lot
less workspace when N is small --- avoiding spill-to-disk for large M
is actually the most attractive thing about it.  Patch includes planner
and executor support for invoking this facility in ORDER BY ... LIMIT
queries.  Greg Stark, with some editorialization by moi.

13 files changed:
src/backend/executor/nodeLimit.c
src/backend/executor/nodeSort.c
src/backend/optimizer/path/costsize.c
src/backend/optimizer/plan/createplan.c
src/backend/optimizer/plan/planmain.c
src/backend/optimizer/plan/planner.c
src/backend/optimizer/util/pathnode.c
src/backend/utils/misc/guc.c
src/backend/utils/sort/tuplesort.c
src/include/nodes/execnodes.h
src/include/optimizer/cost.h
src/include/optimizer/planmain.h
src/include/utils/tuplesort.h

index bb52b0fada3bfa44d00b07d38ef42ed8660f3df3..5a32ccfc47fc38092af3b7252704e456b7dcad22 100644 (file)
@@ -280,6 +280,37 @@ recompute_limits(LimitState *node)
        /* Reset position to start-of-scan */
        node->position = 0;
        node->subSlot = NULL;
+
+       /*
+        * If we have a COUNT, and our input is a Sort node, notify it that it can
+        * use bounded sort.
+        *
+        * This is a bit of a kluge, but we don't have any more-abstract way of
+        * communicating between the two nodes; and it doesn't seem worth trying
+        * to invent one without some more examples of special communication needs.
+        *
+        * Note: it is the responsibility of nodeSort.c to react properly to
+        * changes of these parameters.  If we ever do redesign this, it'd be
+        * a good idea to integrate this signaling with the parameter-change
+        * mechanism.
+        */
+       if (IsA(outerPlanState(node), SortState))
+       {
+               SortState *sortState = (SortState *) outerPlanState(node);
+               int64 tuples_needed = node->count + node->offset;
+
+               /* negative test checks for overflow */
+               if (node->noCount || tuples_needed < 0)
+               {
+                       /* make sure flag gets reset if needed upon rescan */
+                       sortState->bounded = false;
+               }
+               else
+               {
+                       sortState->bounded = true;
+                       sortState->bound = tuples_needed;
+               }
+       }
 }
 
 /* ----------------------------------------------------------------
index 11553c9bb6e9a180615b32ee637fa613a2a00702..01d727a6ec91485aa9b6e0f92c993952891427f1 100644 (file)
@@ -89,6 +89,8 @@ ExecSort(SortState *node)
                                                                                          plannode->nullsFirst,
                                                                                          work_mem,
                                                                                          node->randomAccess);
+               if (node->bounded)
+                       tuplesort_set_bound(tuplesortstate, node->bound);
                node->tuplesortstate = (void *) tuplesortstate;
 
                /*
@@ -119,6 +121,8 @@ ExecSort(SortState *node)
                 * finally set the sorted flag to true
                 */
                node->sort_Done = true;
+               node->bounded_Done = node->bounded;
+               node->bound_Done = node->bound;
                SO1_printf("ExecSort: %s\n", "sorting done");
        }
 
@@ -167,6 +171,7 @@ ExecInitSort(Sort *node, EState *estate, int eflags)
                                                                                 EXEC_FLAG_BACKWARD |
                                                                                 EXEC_FLAG_MARK)) != 0;
 
+       sortstate->bounded = false;
        sortstate->sort_Done = false;
        sortstate->tuplesortstate = NULL;
 
@@ -307,11 +312,14 @@ ExecReScanSort(SortState *node, ExprContext *exprCtxt)
 
        /*
         * If subnode is to be rescanned then we forget previous sort results; we
-        * have to re-read the subplan and re-sort.
+        * have to re-read the subplan and re-sort.  Also must re-sort if the
+        * bounded-sort parameters changed or we didn't select randomAccess.
         *
         * Otherwise we can just rewind and rescan the sorted output.
         */
        if (((PlanState *) node)->lefttree->chgParam != NULL ||
+               node->bounded != node->bounded_Done ||
+               node->bound != node->bound_Done ||
                !node->randomAccess)
        {
                node->sort_Done = false;
index 74b4c8ed268b16ad89ce7d80b0bdf0299be29a70..c428c8159f1ea170372be8581d551ba3d670e478 100644 (file)
@@ -922,6 +922,10 @@ cost_valuesscan(Path *path, PlannerInfo *root, RelOptInfo *baserel)
  *             disk traffic = 2 * relsize * ceil(logM(p / (2*work_mem)))
  *             cpu = comparison_cost * t * log2(t)
  *
+ * If the sort is bounded (i.e., only the first k result tuples are needed)
+ * and k tuples can fit into work_mem, we use a heap method that keeps only
+ * k tuples in the heap; this will require about t*log2(k) tuple comparisons.
+ *
  * The disk traffic is assumed to be 3/4ths sequential and 1/4th random
  * accesses (XXX can't we refine that guess?)
  *
@@ -932,6 +936,7 @@ cost_valuesscan(Path *path, PlannerInfo *root, RelOptInfo *baserel)
  * 'input_cost' is the total cost for reading the input data
  * 'tuples' is the number of tuples in the relation
  * 'width' is the average tuple width in bytes
+ * 'limit_tuples' is the bound on the number of output tuples; -1 if no bound
  *
  * NOTE: some callers currently pass NIL for pathkeys because they
  * can't conveniently supply the sort keys.  Since this routine doesn't
@@ -942,11 +947,14 @@ cost_valuesscan(Path *path, PlannerInfo *root, RelOptInfo *baserel)
  */
 void
 cost_sort(Path *path, PlannerInfo *root,
-                 List *pathkeys, Cost input_cost, double tuples, int width)
+                 List *pathkeys, Cost input_cost, double tuples, int width,
+                 double limit_tuples)
 {
        Cost            startup_cost = input_cost;
        Cost            run_cost = 0;
-       double          nbytes = relation_byte_size(tuples, width);
+       double          input_bytes = relation_byte_size(tuples, width);
+       double          output_bytes;
+       double          output_tuples;
        long            work_mem_bytes = work_mem * 1024L;
 
        if (!enable_sort)
@@ -959,23 +967,39 @@ cost_sort(Path *path, PlannerInfo *root,
        if (tuples < 2.0)
                tuples = 2.0;
 
-       /*
-        * CPU costs
-        *
-        * Assume about two operator evals per tuple comparison and N log2 N
-        * comparisons
-        */
-       startup_cost += 2.0 * cpu_operator_cost * tuples * LOG2(tuples);
+       /* Do we have a useful LIMIT? */
+       if (limit_tuples > 0 && limit_tuples < tuples)
+       {
+               output_tuples = limit_tuples;
+               output_bytes = relation_byte_size(output_tuples, width);
+       }
+       else
+       {
+               output_tuples = tuples;
+               output_bytes = input_bytes;
+       }
 
-       /* disk costs */
-       if (nbytes > work_mem_bytes)
+       if (output_bytes > work_mem_bytes)
        {
-               double          npages = ceil(nbytes / BLCKSZ);
-               double          nruns = (nbytes / work_mem_bytes) * 0.5;
+               /*
+                * We'll have to use a disk-based sort of all the tuples
+                */
+               double          npages = ceil(input_bytes / BLCKSZ);
+               double          nruns = (input_bytes / work_mem_bytes) * 0.5;
                double          mergeorder = tuplesort_merge_order(work_mem_bytes);
                double          log_runs;
                double          npageaccesses;
 
+               /*
+                * CPU costs
+                *
+                * Assume about two operator evals per tuple comparison and N log2 N
+                * comparisons
+                */
+               startup_cost += 2.0 * cpu_operator_cost * tuples * LOG2(tuples);
+
+               /* Disk costs */
+
                /* Compute logM(r) as log(r) / log(M) */
                if (nruns > mergeorder)
                        log_runs = ceil(log(nruns) / log(mergeorder));
@@ -986,10 +1010,27 @@ cost_sort(Path *path, PlannerInfo *root,
                startup_cost += npageaccesses *
                        (seq_page_cost * 0.75 + random_page_cost * 0.25);
        }
+       else if (tuples > 2 * output_tuples || input_bytes > work_mem_bytes)
+       {
+               /*
+                * We'll use a bounded heap-sort keeping just K tuples in memory,
+                * for a total number of tuple comparisons of N log2 K; but the
+                * constant factor is a bit higher than for quicksort.  Tweak it
+                * so that the cost curve is continuous at the crossover point.
+                */
+               startup_cost += 2.0 * cpu_operator_cost * tuples * LOG2(2.0 * output_tuples);
+       }
+       else
+       {
+               /* We'll use plain quicksort on all the input tuples */
+               startup_cost += 2.0 * cpu_operator_cost * tuples * LOG2(tuples);
+       }
 
        /*
         * Also charge a small amount (arbitrarily set equal to operator cost) per
-        * extracted tuple.
+        * extracted tuple.  Note it's correct to use tuples not output_tuples
+        * here --- the upper LIMIT will pro-rate the run cost so we'd be double
+        * counting the LIMIT otherwise.
         */
        run_cost += cpu_operator_cost * tuples;
 
@@ -1431,7 +1472,8 @@ cost_mergejoin(MergePath *path, PlannerInfo *root)
                                  outersortkeys,
                                  outer_path->total_cost,
                                  outer_path_rows,
-                                 outer_path->parent->width);
+                                 outer_path->parent->width,
+                                 -1.0);
                startup_cost += sort_path.startup_cost;
                run_cost += (sort_path.total_cost - sort_path.startup_cost)
                        * outerscansel;
@@ -1450,7 +1492,8 @@ cost_mergejoin(MergePath *path, PlannerInfo *root)
                                  innersortkeys,
                                  inner_path->total_cost,
                                  inner_path_rows,
-                                 inner_path->parent->width);
+                                 inner_path->parent->width,
+                                 -1.0);
                startup_cost += sort_path.startup_cost;
                run_cost += (sort_path.total_cost - sort_path.startup_cost)
                        * innerscansel * rescanratio;
index 57a5a078377444c7ec1e94cc762cc7855e5f8ed5..eb4a276ff6b105d0a1bfe7427e04fb7385eb7535 100644 (file)
@@ -122,7 +122,8 @@ static MergeJoin *make_mergejoin(List *tlist,
                           Plan *lefttree, Plan *righttree,
                           JoinType jointype);
 static Sort *make_sort(PlannerInfo *root, Plan *lefttree, int numCols,
-                 AttrNumber *sortColIdx, Oid *sortOperators, bool *nullsFirst);
+                 AttrNumber *sortColIdx, Oid *sortOperators, bool *nullsFirst,
+                 double limit_tuples);
 
 
 /*
@@ -1579,7 +1580,8 @@ create_mergejoin_plan(PlannerInfo *root,
                outer_plan = (Plan *)
                        make_sort_from_pathkeys(root,
                                                                        outer_plan,
-                                                                       best_path->outersortkeys);
+                                                                       best_path->outersortkeys,
+                                                                       -1.0);
                outerpathkeys = best_path->outersortkeys;
        }
        else
@@ -1591,7 +1593,8 @@ create_mergejoin_plan(PlannerInfo *root,
                inner_plan = (Plan *)
                        make_sort_from_pathkeys(root,
                                                                        inner_plan,
-                                                                       best_path->innersortkeys);
+                                                                       best_path->innersortkeys,
+                                                                       -1.0);
                innerpathkeys = best_path->innersortkeys;
        }
        else
@@ -2589,11 +2592,13 @@ make_mergejoin(List *tlist,
  * make_sort --- basic routine to build a Sort plan node
  *
  * Caller must have built the sortColIdx, sortOperators, and nullsFirst
- * arrays already.
+ * arrays already.  limit_tuples is as for cost_sort (in particular, pass
+ * -1 if no limit)
  */
 static Sort *
 make_sort(PlannerInfo *root, Plan *lefttree, int numCols,
-                 AttrNumber *sortColIdx, Oid *sortOperators, bool *nullsFirst)
+                 AttrNumber *sortColIdx, Oid *sortOperators, bool *nullsFirst,
+                 double limit_tuples)
 {
        Sort       *node = makeNode(Sort);
        Plan       *plan = &node->plan;
@@ -2603,7 +2608,8 @@ make_sort(PlannerInfo *root, Plan *lefttree, int numCols,
        cost_sort(&sort_path, root, NIL,
                          lefttree->total_cost,
                          lefttree->plan_rows,
-                         lefttree->plan_width);
+                         lefttree->plan_width,
+                         limit_tuples);
        plan->startup_cost = sort_path.startup_cost;
        plan->total_cost = sort_path.total_cost;
        plan->targetlist = lefttree->targetlist;
@@ -2664,6 +2670,8 @@ add_sort_column(AttrNumber colIdx, Oid sortOp, bool nulls_first,
  *
  *       'lefttree' is the node which yields input tuples
  *       'pathkeys' is the list of pathkeys by which the result is to be sorted
+ *       'limit_tuples' is the bound on the number of output tuples;
+ *                             -1 if no bound
  *
  * We must convert the pathkey information into arrays of sort key column
  * numbers and sort operator OIDs.
@@ -2675,7 +2683,8 @@ add_sort_column(AttrNumber colIdx, Oid sortOp, bool nulls_first,
  * adding a Result node just to do the projection.
  */
 Sort *
-make_sort_from_pathkeys(PlannerInfo *root, Plan *lefttree, List *pathkeys)
+make_sort_from_pathkeys(PlannerInfo *root, Plan *lefttree, List *pathkeys,
+                                               double limit_tuples)
 {
        List       *tlist = lefttree->targetlist;
        ListCell   *i;
@@ -2810,7 +2819,7 @@ make_sort_from_pathkeys(PlannerInfo *root, Plan *lefttree, List *pathkeys)
        Assert(numsortkeys > 0);
 
        return make_sort(root, lefttree, numsortkeys,
-                                        sortColIdx, sortOperators, nullsFirst);
+                                        sortColIdx, sortOperators, nullsFirst, limit_tuples);
 }
 
 /*
@@ -2859,7 +2868,7 @@ make_sort_from_sortclauses(PlannerInfo *root, List *sortcls, Plan *lefttree)
        Assert(numsortkeys > 0);
 
        return make_sort(root, lefttree, numsortkeys,
-                                        sortColIdx, sortOperators, nullsFirst);
+                                        sortColIdx, sortOperators, nullsFirst, -1.0);
 }
 
 /*
@@ -2919,7 +2928,7 @@ make_sort_from_groupcols(PlannerInfo *root,
        Assert(numsortkeys > 0);
 
        return make_sort(root, lefttree, numsortkeys,
-                                        sortColIdx, sortOperators, nullsFirst);
+                                        sortColIdx, sortOperators, nullsFirst, -1.0);
 }
 
 Material *
index c0b8dab4cbcfeba8ce1850d44eb6ef528cabd177..cc053142255cc8fafdf1b77a80370c5563354bd2 100644 (file)
@@ -47,6 +47,8 @@
  * tlist is the target list the query should produce
  *             (this is NOT necessarily root->parse->targetList!)
  * tuple_fraction is the fraction of tuples we expect will be retrieved
+ * limit_tuples is a hard limit on number of tuples to retrieve,
+ *             or -1 if no limit
  *
  * Output parameters:
  * *cheapest_path receives the overall-cheapest path for the query
  *             from the plan to be retrieved
  *       tuple_fraction >= 1: tuple_fraction is the absolute number of tuples
  *             expected to be retrieved (ie, a LIMIT specification)
+ * Note that a nonzero tuple_fraction could come from outer context; it is
+ * therefore not redundant with limit_tuples.  We use limit_tuples to determine
+ * whether a bounded sort can be used at runtime.
  */
 void
-query_planner(PlannerInfo *root, List *tlist, double tuple_fraction,
+query_planner(PlannerInfo *root, List *tlist,
+                         double tuple_fraction, double limit_tuples,
                          Path **cheapest_path, Path **sorted_path,
                          double *num_groups)
 {
@@ -354,7 +360,8 @@ query_planner(PlannerInfo *root, List *tlist, double tuple_fraction,
                        /* Figure cost for sorting */
                        cost_sort(&sort_path, root, root->query_pathkeys,
                                          cheapestpath->total_cost,
-                                         final_rel->rows, final_rel->width);
+                                         final_rel->rows, final_rel->width,
+                                         limit_tuples);
                }
 
                if (compare_fractional_path_costs(sortedpath, &sort_path,
index 0aba6826102b01bb3fe1af384efcdfd659d74c8c..bb9f468f2b69d426c539689bdcc13357e281c53e 100644 (file)
@@ -61,7 +61,8 @@ static double preprocess_limit(PlannerInfo *root,
                                 double tuple_fraction,
                                 int64 *offset_est, int64 *count_est);
 static Oid *extract_grouping_ops(List *groupClause);
-static bool choose_hashed_grouping(PlannerInfo *root, double tuple_fraction,
+static bool choose_hashed_grouping(PlannerInfo *root,
+                                          double tuple_fraction, double limit_tuples,
                                           Path *cheapest_path, Path *sorted_path,
                                           Oid *groupOperators, double dNumGroups,
                                           AggClauseCounts *agg_counts);
@@ -696,6 +697,7 @@ grouping_planner(PlannerInfo *root, double tuple_fraction)
        List       *tlist = parse->targetList;
        int64           offset_est = 0;
        int64           count_est = 0;
+       double          limit_tuples = -1.0;
        Plan       *result_plan;
        List       *current_pathkeys;
        List       *sort_pathkeys;
@@ -703,8 +705,16 @@ grouping_planner(PlannerInfo *root, double tuple_fraction)
 
        /* Tweak caller-supplied tuple_fraction if have LIMIT/OFFSET */
        if (parse->limitCount || parse->limitOffset)
+       {
                tuple_fraction = preprocess_limit(root, tuple_fraction,
                                                                                  &offset_est, &count_est);
+               /*
+                * If we have a known LIMIT, and don't have an unknown OFFSET,
+                * we can estimate the effects of using a bounded sort.
+                */
+               if (count_est > 0 && offset_est >= 0)
+                       limit_tuples = (double) count_est + (double) offset_est;
+       }
 
        if (parse->setOperations)
        {
@@ -850,7 +860,7 @@ grouping_planner(PlannerInfo *root, double tuple_fraction)
                 * estimate the number of groups in the query, and canonicalize all
                 * the pathkeys.
                 */
-               query_planner(root, sub_tlist, tuple_fraction,
+               query_planner(root, sub_tlist, tuple_fraction, limit_tuples,
                                          &cheapest_path, &sorted_path, &dNumGroups);
 
                group_pathkeys = root->group_pathkeys;
@@ -864,7 +874,7 @@ grouping_planner(PlannerInfo *root, double tuple_fraction)
                {
                        groupOperators = extract_grouping_ops(parse->groupClause);
                        use_hashed_grouping =
-                               choose_hashed_grouping(root, tuple_fraction,
+                               choose_hashed_grouping(root, tuple_fraction, limit_tuples,
                                                                           cheapest_path, sorted_path,
                                                                           groupOperators, dNumGroups,
                                                                           &agg_counts);
@@ -1099,7 +1109,8 @@ grouping_planner(PlannerInfo *root, double tuple_fraction)
                {
                        result_plan = (Plan *) make_sort_from_pathkeys(root,
                                                                                                                   result_plan,
-                                                                                                                  sort_pathkeys);
+                                                                                                                  sort_pathkeys,
+                                                                                                                  limit_tuples);
                        current_pathkeys = sort_pathkeys;
                }
        }
@@ -1414,7 +1425,8 @@ extract_grouping_ops(List *groupClause)
  * choose_hashed_grouping - should we use hashed grouping?
  */
 static bool
-choose_hashed_grouping(PlannerInfo *root, double tuple_fraction,
+choose_hashed_grouping(PlannerInfo *root,
+                                          double tuple_fraction, double limit_tuples,
                                           Path *cheapest_path, Path *sorted_path,
                                           Oid *groupOperators, double dNumGroups,
                                           AggClauseCounts *agg_counts)
@@ -1499,7 +1511,7 @@ choose_hashed_grouping(PlannerInfo *root, double tuple_fraction,
        /* Result of hashed agg is always unsorted */
        if (root->sort_pathkeys)
                cost_sort(&hashed_p, root, root->sort_pathkeys, hashed_p.total_cost,
-                                 dNumGroups, cheapest_path_width);
+                                 dNumGroups, cheapest_path_width, limit_tuples);
 
        if (sorted_path)
        {
@@ -1516,7 +1528,7 @@ choose_hashed_grouping(PlannerInfo *root, double tuple_fraction,
        if (!pathkeys_contained_in(root->group_pathkeys, current_pathkeys))
        {
                cost_sort(&sorted_p, root, root->group_pathkeys, sorted_p.total_cost,
-                                 cheapest_path_rows, cheapest_path_width);
+                                 cheapest_path_rows, cheapest_path_width, -1.0);
                current_pathkeys = root->group_pathkeys;
        }
 
@@ -1533,7 +1545,7 @@ choose_hashed_grouping(PlannerInfo *root, double tuple_fraction,
        if (root->sort_pathkeys &&
                !pathkeys_contained_in(root->sort_pathkeys, current_pathkeys))
                cost_sort(&sorted_p, root, root->sort_pathkeys, sorted_p.total_cost,
-                                 dNumGroups, cheapest_path_width);
+                                 dNumGroups, cheapest_path_width, limit_tuples);
 
        /*
         * Now make the decision using the top-level tuple fraction.  First we
index ce25b077db442a0903afd30d61abdc21722c52e9..929e3eb0f23ab8fff7583cd13446a5374fed9c6d 100644 (file)
@@ -842,7 +842,8 @@ create_unique_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath)
        cost_sort(&sort_path, root, NIL,
                          subpath->total_cost,
                          rel->rows,
-                         rel->width);
+                         rel->width,
+                         -1.0);
 
        /*
         * Charge one cpu_operator_cost per comparison per input tuple. We assume
index 31fbb949fc3cacbbd7b7de18da2eeec2ed5940a4..c6124676b110f54be24cbfe69aa8b389c2b91170 100644 (file)
@@ -108,6 +108,9 @@ extern bool fullPageWrites;
 #ifdef TRACE_SORT
 extern bool trace_sort;
 #endif
+#ifdef DEBUG_BOUNDED_SORT
+extern bool optimize_bounded_sort;
+#endif
 
 #ifdef USE_SSL
 extern char *SSLCipherSuites;
@@ -966,6 +969,20 @@ static struct config_bool ConfigureNamesBool[] =
        },
 #endif
 
+#ifdef DEBUG_BOUNDED_SORT
+       /* this is undocumented because not exposed in a standard build */
+       {
+               {
+                       "optimize_bounded_sort", PGC_USERSET, QUERY_TUNING_METHOD,
+                       gettext_noop("Enable bounded sorting using heap sort."),
+                       NULL,
+                       GUC_NOT_IN_SAMPLE
+               },
+               &optimize_bounded_sort,
+               true, NULL, NULL
+       },
+#endif
+
 #ifdef WAL_DEBUG
        {
                {"wal_debug", PGC_SUSET, DEVELOPER_OPTIONS,
@@ -1711,7 +1728,7 @@ static struct config_int ConfigureNamesInt[] =
                &server_version_num,
                PG_VERSION_NUM, PG_VERSION_NUM, PG_VERSION_NUM, NULL, NULL
        },
-                               
+
        {
                {"log_temp_files", PGC_USERSET, LOGGING_WHAT,
                        gettext_noop("Log the use of temporary files larger than this number of kilobytes."),
@@ -2883,7 +2900,7 @@ InitializeGUCOptions(void)
                                                                                                   PGC_S_DEFAULT))
                                                        elog(FATAL, "failed to initialize %s to %d",
                                                                 conf->gen.name, conf->boot_val);
-                                       *conf->variable = conf->reset_val = conf->boot_val; 
+                                       *conf->variable = conf->reset_val = conf->boot_val;
                                        break;
                                }
                        case PGC_REAL:
@@ -2897,7 +2914,7 @@ InitializeGUCOptions(void)
                                                                                                   PGC_S_DEFAULT))
                                                        elog(FATAL, "failed to initialize %s to %g",
                                                                 conf->gen.name, conf->boot_val);
-                                       *conf->variable = conf->reset_val = conf->boot_val; 
+                                       *conf->variable = conf->reset_val = conf->boot_val;
                                        break;
                                }
                        case PGC_STRING:
index 50cfe13098e9abe55984b7c4029b576aecac856b..b775dd5f4cc7ce1a768026f68f275c281e070f74 100644 (file)
@@ -98,6 +98,8 @@
 
 #include "postgres.h"
 
+#include <limits.h>
+
 #include "access/heapam.h"
 #include "access/nbtree.h"
 #include "catalog/pg_amop.h"
 #include "utils/tuplesort.h"
 
 
-/* GUC variable */
+/* GUC variables */
 #ifdef TRACE_SORT
 bool           trace_sort = false;
 #endif
+#ifdef DEBUG_BOUNDED_SORT
+bool           optimize_bounded_sort = true;
+#endif
 
 
 /*
@@ -159,6 +164,7 @@ typedef struct
 typedef enum
 {
        TSS_INITIAL,                            /* Loading tuples; still within memory limit */
+       TSS_BOUNDED,                            /* Loading tuples into bounded-size heap */
        TSS_BUILDRUNS,                          /* Loading tuples; writing to tape */
        TSS_SORTEDINMEM,                        /* Sort completed entirely in memory */
        TSS_SORTEDONTAPE,                       /* Sort completed, final run is on tape */
@@ -188,6 +194,9 @@ struct Tuplesortstate
        TupSortStatus status;           /* enumerated value as shown above */
        int                     nKeys;                  /* number of columns in sort key */
        bool            randomAccess;   /* did caller request random access? */
+       bool            bounded;                /* did caller specify a maximum number of
+                                                                * tuples to return? */
+       int                     bound;                  /* if bounded, the maximum number of tuples */
        long            availMem;               /* remaining memory available, in bytes */
        long            allowedMem;             /* total memory allowed, in bytes */
        int                     maxTapes;               /* number of tapes (Knuth's T) */
@@ -234,6 +243,13 @@ struct Tuplesortstate
        void            (*readtup) (Tuplesortstate *state, SortTuple *stup,
                                                                                int tapenum, unsigned int len);
 
+       /*
+        * Function to reverse the sort direction from its current state.
+        * (We could dispense with this if we wanted to enforce that all variants
+        * represent the sort key information alike.)
+        */
+       void            (*reversedirection) (Tuplesortstate *state);
+
        /*
         * This array holds the tuples now in sort memory.      If we are in state
         * INITIAL, the tuples are in no particular order; if we are in state
@@ -347,6 +363,7 @@ struct Tuplesortstate
 #define COPYTUP(state,stup,tup) ((*(state)->copytup) (state, stup, tup))
 #define WRITETUP(state,tape,stup)      ((*(state)->writetup) (state, tape, stup))
 #define READTUP(state,stup,tape,len) ((*(state)->readtup) (state, stup, tape, len))
+#define REVERSEDIRECTION(state) ((*(state)->reversedirection) (state))
 #define LACKMEM(state)         ((state)->availMem < 0)
 #define USEMEM(state,amt)      ((state)->availMem -= (amt))
 #define FREEMEM(state,amt)     ((state)->availMem += (amt))
@@ -403,6 +420,8 @@ static void beginmerge(Tuplesortstate *state);
 static void mergepreread(Tuplesortstate *state);
 static void mergeprereadone(Tuplesortstate *state, int srcTape);
 static void dumptuples(Tuplesortstate *state, bool alltuples);
+static void make_bounded_heap(Tuplesortstate *state);
+static void sort_bounded_heap(Tuplesortstate *state);
 static void tuplesort_heap_insert(Tuplesortstate *state, SortTuple *tuple,
                                          int tupleindex, bool checkIndex);
 static void tuplesort_heap_siftup(Tuplesortstate *state, bool checkIndex);
@@ -415,6 +434,7 @@ static void writetup_heap(Tuplesortstate *state, int tapenum,
                          SortTuple *stup);
 static void readtup_heap(Tuplesortstate *state, SortTuple *stup,
                         int tapenum, unsigned int len);
+static void reversedirection_heap(Tuplesortstate *state);
 static int comparetup_index(const SortTuple *a, const SortTuple *b,
                                 Tuplesortstate *state);
 static void copytup_index(Tuplesortstate *state, SortTuple *stup, void *tup);
@@ -422,6 +442,7 @@ static void writetup_index(Tuplesortstate *state, int tapenum,
                           SortTuple *stup);
 static void readtup_index(Tuplesortstate *state, SortTuple *stup,
                          int tapenum, unsigned int len);
+static void reversedirection_index(Tuplesortstate *state);
 static int comparetup_datum(const SortTuple *a, const SortTuple *b,
                                 Tuplesortstate *state);
 static void copytup_datum(Tuplesortstate *state, SortTuple *stup, void *tup);
@@ -429,6 +450,8 @@ static void writetup_datum(Tuplesortstate *state, int tapenum,
                           SortTuple *stup);
 static void readtup_datum(Tuplesortstate *state, SortTuple *stup,
                          int tapenum, unsigned int len);
+static void reversedirection_datum(Tuplesortstate *state);
+static void free_sort_tuple(Tuplesortstate *state, SortTuple *stup);
 
 
 /*
@@ -538,6 +561,7 @@ tuplesort_begin_heap(TupleDesc tupDesc,
        state->copytup = copytup_heap;
        state->writetup = writetup_heap;
        state->readtup = readtup_heap;
+       state->reversedirection = reversedirection_heap;
 
        state->tupDesc = tupDesc;       /* assume we need not copy tupDesc */
        state->scanKeys = (ScanKey) palloc0(nkeys * sizeof(ScanKeyData));
@@ -601,6 +625,7 @@ tuplesort_begin_index(Relation indexRel,
        state->copytup = copytup_index;
        state->writetup = writetup_index;
        state->readtup = readtup_index;
+       state->reversedirection = reversedirection_index;
 
        state->indexRel = indexRel;
        /* see comments below about btree dependence of this code... */
@@ -639,6 +664,7 @@ tuplesort_begin_datum(Oid datumType,
        state->copytup = copytup_datum;
        state->writetup = writetup_datum;
        state->readtup = readtup_datum;
+       state->reversedirection = reversedirection_datum;
 
        state->datumType = datumType;
 
@@ -664,6 +690,40 @@ tuplesort_begin_datum(Oid datumType,
        return state;
 }
 
+/*
+ * tuplesort_set_bound
+ *
+ *     Advise tuplesort that at most the first N result tuples are required.
+ *
+ * Must be called before inserting any tuples.  (Actually, we could allow it
+ * as long as the sort hasn't spilled to disk, but there seems no need for
+ * delayed calls at the moment.)
+ *
+ * This is a hint only. The tuplesort may still return more tuples than
+ * requested.
+ */
+void
+tuplesort_set_bound(Tuplesortstate *state, int64 bound)
+{
+       /* Assert we're called before loading any tuples */
+       Assert(state->status == TSS_INITIAL);
+       Assert(state->memtupcount == 0);
+       Assert(!state->bounded);
+
+#ifdef DEBUG_BOUNDED_SORT
+       /* Honor GUC setting that disables the feature (for easy testing) */
+       if (!optimize_bounded_sort)
+               return;
+#endif
+
+       /* We want to be able to compute bound * 2, so limit the setting */
+       if (bound > (int64) (INT_MAX/2))
+               return;
+
+       state->bounded = true;
+       state->bound = (int) bound;
+}
+
 /*
  * tuplesort_end
  *
@@ -862,6 +922,32 @@ puttuple_common(Tuplesortstate *state, SortTuple *tuple)
                        }
                        state->memtuples[state->memtupcount++] = *tuple;
 
+                       /*
+                        * Check if it's time to switch over to a bounded heapsort.
+                        * We do so if the input tuple count exceeds twice the desired
+                        * tuple count (this is a heuristic for where heapsort becomes
+                        * cheaper than a quicksort), or if we've just filled workMem
+                        * and have enough tuples to meet the bound.
+                        *
+                        * Note that once we enter TSS_BOUNDED state we will always try
+                        * to complete the sort that way.  In the worst case, if later
+                        * input tuples are larger than earlier ones, this might cause
+                        * us to exceed workMem significantly.
+                        */
+                       if (state->bounded &&
+                               (state->memtupcount > state->bound * 2 ||
+                                (state->memtupcount > state->bound && LACKMEM(state))))
+                       {
+#ifdef TRACE_SORT
+                               if (trace_sort)
+                                       elog(LOG, "switching to bounded heapsort at %d tuples: %s",
+                                                state->memtupcount,
+                                                pg_rusage_show(&state->ru_start));
+#endif
+                               make_bounded_heap(state);
+                               return;
+                       }
+
                        /*
                         * Done if we still fit in available memory and have array slots.
                         */
@@ -878,6 +964,31 @@ puttuple_common(Tuplesortstate *state, SortTuple *tuple)
                         */
                        dumptuples(state, false);
                        break;
+
+               case TSS_BOUNDED:
+                       /*
+                        * We don't want to grow the array here, so check whether the
+                        * new tuple can be discarded before putting it in.  This should
+                        * be a good speed optimization, too, since when there are many
+                        * more input tuples than the bound, most input tuples can be
+                        * discarded with just this one comparison.  Note that because
+                        * we currently have the sort direction reversed, we must check
+                        * for <= not >=.
+                        */
+                       if (COMPARETUP(state, tuple, &state->memtuples[0]) <= 0)
+                       {
+                               /* new tuple <= top of the heap, so we can discard it */
+                               free_sort_tuple(state, tuple);
+                       }
+                       else
+                       {
+                               /* discard top of heap, sift up, insert new tuple */
+                               free_sort_tuple(state, &state->memtuples[0]);
+                               tuplesort_heap_siftup(state, false);
+                               tuplesort_heap_insert(state, tuple, 0, false);
+                       }
+                       break;
+
                case TSS_BUILDRUNS:
 
                        /*
@@ -904,6 +1015,7 @@ puttuple_common(Tuplesortstate *state, SortTuple *tuple)
                         */
                        dumptuples(state, false);
                        break;
+
                default:
                        elog(ERROR, "invalid tuplesort state");
                        break;
@@ -944,6 +1056,23 @@ tuplesort_performsort(Tuplesortstate *state)
                        state->markpos_eof = false;
                        state->status = TSS_SORTEDINMEM;
                        break;
+
+               case TSS_BOUNDED:
+
+                       /*
+                        * We were able to accumulate all the tuples required for output
+                        * in memory, using a heap to eliminate excess tuples.  Now we have
+                        * to transform the heap to a properly-sorted array.
+                        */
+                       if (state->memtupcount > 1)
+                               sort_bounded_heap(state);
+                       state->current = 0;
+                       state->eof_reached = false;
+                       state->markpos_offset = 0;
+                       state->markpos_eof = false;
+                       state->status = TSS_SORTEDINMEM;
+                       break;
+
                case TSS_BUILDRUNS:
 
                        /*
@@ -959,6 +1088,7 @@ tuplesort_performsort(Tuplesortstate *state)
                        state->markpos_offset = 0;
                        state->markpos_eof = false;
                        break;
+
                default:
                        elog(ERROR, "invalid tuplesort state");
                        break;
@@ -1004,6 +1134,15 @@ tuplesort_gettuple_common(Tuplesortstate *state, bool forward,
                                        return true;
                                }
                                state->eof_reached = true;
+
+                               /*
+                                * Complain if caller tries to retrieve more tuples than
+                                * originally asked for in a bounded sort.  This is because
+                                * returning EOF here might be the wrong thing.
+                                */
+                               if (state->bounded && state->current >= state->bound)
+                                       elog(ERROR, "retrieved too many tuples in a bounded sort");
+
                                return false;
                        }
                        else
@@ -1987,6 +2126,98 @@ tuplesort_restorepos(Tuplesortstate *state)
         ((tup1)->tupindex) - ((tup2)->tupindex) : \
         COMPARETUP(state, tup1, tup2))
 
+/*
+ * Convert the existing unordered array of SortTuples to a bounded heap,
+ * discarding all but the smallest "state->bound" tuples.
+ *
+ * When working with a bounded heap, we want to keep the largest entry
+ * at the root (array entry zero), instead of the smallest as in the normal
+ * sort case.  This allows us to discard the largest entry cheaply.
+ * Therefore, we temporarily reverse the sort direction.
+ *
+ * We assume that all entries in a bounded heap will always have tupindex
+ * zero; it therefore doesn't matter that HEAPCOMPARE() doesn't reverse
+ * the direction of comparison for tupindexes.
+ */
+static void
+make_bounded_heap(Tuplesortstate *state)
+{
+       int             tupcount = state->memtupcount;
+       int             i;
+
+       Assert(state->status == TSS_INITIAL);
+       Assert(state->bounded);
+       Assert(tupcount >= state->bound);
+
+       /* Reverse sort direction so largest entry will be at root */
+       REVERSEDIRECTION(state);
+
+       state->memtupcount = 0;         /* make the heap empty */
+       for (i=0; i<tupcount; i++)
+       {
+               if (state->memtupcount >= state->bound &&
+                       COMPARETUP(state, &state->memtuples[i], &state->memtuples[0]) <= 0)
+               {
+                       /* New tuple would just get thrown out, so skip it */
+                       free_sort_tuple(state, &state->memtuples[i]);
+               }
+               else
+               {
+                       /* Insert next tuple into heap */
+                       /* Must copy source tuple to avoid possible overwrite */
+                       SortTuple stup = state->memtuples[i];
+
+                       tuplesort_heap_insert(state, &stup, 0, false);
+
+                       /* If heap too full, discard largest entry */
+                       if (state->memtupcount > state->bound)
+                       {
+                               free_sort_tuple(state, &state->memtuples[0]);
+                               tuplesort_heap_siftup(state, false);
+                       }
+               }
+       }
+
+       Assert(state->memtupcount == state->bound);
+       state->status = TSS_BOUNDED;
+}
+
+/*
+ * Convert the bounded heap to a properly-sorted array
+ */
+static void
+sort_bounded_heap(Tuplesortstate *state)
+{
+       int             tupcount = state->memtupcount;
+
+       Assert(state->status == TSS_BOUNDED);
+       Assert(state->bounded);
+       Assert(tupcount == state->bound);
+
+       /*
+        * We can unheapify in place because each sift-up will remove the largest
+        * entry, which we can promptly store in the newly freed slot at the end.
+        * Once we're down to a single-entry heap, we're done.
+        */
+       while (state->memtupcount > 1)
+       {
+               SortTuple stup = state->memtuples[0];
+
+               /* this sifts-up the next-largest entry and decreases memtupcount */
+               tuplesort_heap_siftup(state, false);
+               state->memtuples[state->memtupcount] = stup;
+       }
+       state->memtupcount = tupcount;
+
+       /*
+        * Reverse sort direction back to the original state.  This is not
+        * actually necessary but seems like a good idea for tidiness.
+        */
+       REVERSEDIRECTION(state);
+
+       state->status = TSS_SORTEDINMEM;
+}
+
 /*
  * Insert a new tuple into an empty or existing heap, maintaining the
  * heap invariant.     Caller is responsible for ensuring there's room.
@@ -2322,6 +2553,18 @@ readtup_heap(Tuplesortstate *state, SortTuple *stup,
                                                                &stup->isnull1);
 }
 
+static void
+reversedirection_heap(Tuplesortstate *state)
+{
+       ScanKey         scanKey = state->scanKeys;
+       int                     nkey;
+
+       for (nkey = 0; nkey < state->nKeys; nkey++, scanKey++)
+       {
+               scanKey->sk_flags ^= (SK_BT_DESC | SK_BT_NULLS_FIRST);
+       }
+}
+
 
 /*
  * Routines specialized for IndexTuple case
@@ -2497,6 +2740,18 @@ readtup_index(Tuplesortstate *state, SortTuple *stup,
                                                                 &stup->isnull1);
 }
 
+static void
+reversedirection_index(Tuplesortstate *state)
+{
+       ScanKey         scanKey = state->indexScanKey;
+       int                     nkey;
+
+       for (nkey = 0; nkey < state->nKeys; nkey++, scanKey++)
+       {
+               scanKey->sk_flags ^= (SK_BT_DESC | SK_BT_NULLS_FIRST);
+       }
+}
+
 
 /*
  * Routines specialized for DatumTuple case
@@ -2601,3 +2856,19 @@ readtup_datum(Tuplesortstate *state, SortTuple *stup,
                                                        sizeof(tuplen)) != sizeof(tuplen))
                        elog(ERROR, "unexpected end of data");
 }
+
+static void
+reversedirection_datum(Tuplesortstate *state)
+{
+       state->sortFnFlags ^= (SK_BT_DESC | SK_BT_NULLS_FIRST);
+}
+
+/*
+ * Convenience routine to free a tuple previously loaded into sort memory
+ */
+static void
+free_sort_tuple(Tuplesortstate *state, SortTuple *stup)
+{
+       FREEMEM(state, GetMemoryChunkSpace(stup->tuple));
+       pfree(stup->tuple);
+}
index 8178739cf3547494d189c556cde738f647a85c6a..a00482548a2f9a7d05da392abb624ae27ea62a68 100644 (file)
@@ -1294,7 +1294,11 @@ typedef struct SortState
 {
        ScanState       ss;                             /* its first field is NodeTag */
        bool            randomAccess;   /* need random access to sort output? */
+       bool            bounded;                /* is the result set bounded? */
+       int64           bound;                  /* if bounded, how many tuples are needed */
        bool            sort_Done;              /* sort completed yet? */
+       bool            bounded_Done;   /* value of bounded we did the sort with */
+       int64           bound_Done;             /* value of bound we did the sort with */
        void       *tuplesortstate; /* private state of tuplesort.c */
 } SortState;
 
index 98266145fc2efa03cf3749363f0733f94cdcbca8..858afa6a6b2f1cd956cd6a09197a1ea1ae52ca10 100644 (file)
@@ -73,7 +73,8 @@ extern void cost_functionscan(Path *path, PlannerInfo *root,
 extern void cost_valuesscan(Path *path, PlannerInfo *root,
                                RelOptInfo *baserel);
 extern void cost_sort(Path *path, PlannerInfo *root,
-                 List *pathkeys, Cost input_cost, double tuples, int width);
+                 List *pathkeys, Cost input_cost, double tuples, int width,
+                 double limit_tuples);
 extern void cost_material(Path *path,
                          Cost input_cost, double tuples, int width);
 extern void cost_agg(Path *path, PlannerInfo *root,
index 1b09ebf11b46ccb36d0a572fca6b16fcea0e6b92..c6b0308e3ab2a2fa5c8acfadc25542cea1d33575 100644 (file)
@@ -21,7 +21,7 @@
  * prototypes for plan/planmain.c
  */
 extern void query_planner(PlannerInfo *root, List *tlist,
-                         double tuple_fraction,
+                         double tuple_fraction, double limit_tuples,
                          Path **cheapest_path, Path **sorted_path,
                          double *num_groups);
 
@@ -39,7 +39,7 @@ extern SubqueryScan *make_subqueryscan(List *qptlist, List *qpqual,
                                  Index scanrelid, Plan *subplan, List *subrtable);
 extern Append *make_append(List *appendplans, bool isTarget, List *tlist);
 extern Sort *make_sort_from_pathkeys(PlannerInfo *root, Plan *lefttree,
-                                               List *pathkeys);
+                                               List *pathkeys, double limit_tuples);
 extern Sort *make_sort_from_sortclauses(PlannerInfo *root, List *sortcls,
                                                   Plan *lefttree);
 extern Sort *make_sort_from_groupcols(PlannerInfo *root, List *groupcls,
index a0c68909dfe119151a38cf9d1e5a6dc794f1ce44..8ce165a8fcf98da874a69374fa7e7fa299e5bca0 100644 (file)
@@ -55,6 +55,8 @@ extern Tuplesortstate *tuplesort_begin_datum(Oid datumType,
                                          Oid sortOperator, bool nullsFirstFlag,
                                          int workMem, bool randomAccess);
 
+extern void tuplesort_set_bound(Tuplesortstate *state, int64 bound);
+
 extern void tuplesort_puttupleslot(Tuplesortstate *state,
                                           TupleTableSlot *slot);
 extern void tuplesort_putindextuple(Tuplesortstate *state, IndexTuple tuple);