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Abstract—Neural machine translation (NMT) has been ac-
celerated by deep learning neural networks over statistical-
based approaches, due to the plethora and programmability
of commodity heterogeneous computing architectures such as
FPGAs and GPUs and the massive amount of training corpuses
generated from news outlets, government agencies and social
media. Training a learning classifier for neural networks entails
tuning hyper-parameters that would yield the best performance.
Unfortunately, the number of parameters for machine translation
include discrete categories as well as continuous options, which
makes for a combinatorial explosive problem. This research
explores optimizing hyper-parameters when training deep learn-
ing neural networks for machine translation. Specifically, our
work investigates training a language model with Marian NMT.
Results compare NMT under various hyper-parameter settings
across a variety of modern GPU architecture generations in
single node and multi-node settings, revealing insights on which
hyper-parameters matter most in terms of performance, such as
words processed per second, convergence rates, and translation
accuracy, and provides insights on how to best achieve high-
performing NMT systems.

I. INTRODUCTION

The rapid adoption of neural network (NN) based ap-
proaches to machine translation (MT) has been attributed
to the massive amounts of datasets, the affordability of
high-performing commodity computers, and the accelerated
progress in fields such as image recognition, computational
systems biology and unmanned vehicles. Research activity in
NN-based machine translation has been taking place since the
1990s, but statistical machine translation (SMT) soared along
with the successes of machine learning. SMT incorporates
a rule-based, data driven approach, and includes language
models such as word based (n-grams), phrased-based, syntax-
based and hierarchical based approaches. Neural machine
translation (NMT), on the other hand, does not require prede-
fined rules, but learns lingusitic rules from statistical models,
sequences and occurences from large corpuses. Models trained
using NNs produce even higher accuracy than existing SMT
approaches, but training time can take anywhere from days
to weeks to complete. Suboptimal strategies are often difficult
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to find, given the dimensionality and its effect on parameter
exploration.

Training a neural network involves the estimation of a huge
number of parameters. Ideally, optimization seeks to find the
global optima, but in non-convex problems such as neural
networks, global optimality is given up and local minima in the
parameter space is considered sufficient to obtain models that
will generalize beyond training data. Besides obtaining better
performance, choosing an appropriate optimization strategy
could accelerate the training phase of neural networks and
provide higher translation accuracy.

Modeling and training problems are of utmost importance
in neural machine translation systems. This work empirically
investigates a combination of optimization methods to train
a NMT system. The following concerns are addressed: trans-
lation performance, training stability, and convergence speed.
Specifically, we investigate how well, fast and stable different
optimization algorithms are able to find an appropriate local
minima, as well as how a combination of these optimizations
can solve aspects of problems that arise in model training. Re-
sults demonstrate that applying a combination of optimizations
leads to faster convergence, translation performance boost and
more regularized behavior, compared to selecting an optimizer
in isolation.

II. RELATED WORK

There are many efforts where researchers interpret the
characteristics of different optimization techniques. Moreover,
other efforts try to show the performance of optimizers in
the investigation of loss surface for image classification tasks.
Bergstra, et. al. discuss various techniques for hyper-parameter
tuning and search strategies, concluding that random search
outperforms grid search [1]. Likewise, the authors in [2], [3l]
take a Bayesian approach toward parameter estimation and
optimization. However, these efforts apply their strategies on
image recognition tasks.

Britz, et. al. study a massive analysis of NMT hyper-
parameters aiming for better optimization being robust to the
hyper-parameter variations [4]]. Likewise, Bahar et. al. compare
various optimization strategies for NMT [35]. In addition, Wu,
et. al. [6] utilized the combination of Adam and a simple
stochastic gradient descent (SGD) learning algorithm. They
run Adam for a fixed number of iterations and switch to SGD
to slow down the training phase.
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Fig. 1. RNN encoder-decoder, illustrating a sentence translation from English
to French. The architecture includes a word embedding space, a 1-of-K coding
and a recurrent state on both ends[

To the best of our knowledge, there has not been any work
comparing different optimization strategies for NMT. Most of
the work in this area focuses on the modeling problem on a
vanilla NMT task without exploring the tradeoffs of parameter
selection, in terms of performance and stability.

III. BACKGROUND

Machine translation involves model design and model train-
ing. In general, learning algorithms are viewed as a combina-
tion of selecting a model criterion (family of functions) and
training (parameterization), and a procedure for appropriately
optimizing this criterion. The next subsections discuss how
sentences are represented with a neural network and the opti-
mization objectives used for training a model for a translation
system.

A. Neural Machine Translation

Given a source f = f{ and a target f = e{ sequence,
NMT models the conditional probability of target words given
the source sequence [7]. The NMT training objective function
is to minimize the cross-entropy over S training samples
{(f®),e*))}5_, which is defined as follows:

s 1

J0) =" log p(e;|el); )

s=1 i=1

Since computing the objective function for the whole train-
ing data is expensive, the mini-batch approach randomly
selects a small number of samples and averages those samples,
resulting in mini-batch gradient calculations.

2https://devblogs.nvidia.com/introduction—neural— machine-translation- gpus- part-2/

1) Recurrent Neural Networks: A recurrent neural network
(RNN) is a neural network with h hidden states and an
optional y output, and operates on a variable length sequence
X = (x1,...,27). At each time step ¢, the hidden state h,
of the RNN is updated by

hyy = f(hy_y, ), €]

where f is a non-linear activation function, such as a sig-
moid or LSTM, and will be discussed in Section [[II-B
RNNs can learn a probability distribution over a sequence
by being trained to predict the next symbol in a sequence.
The output at each timestep ¢ is the conditional distribution
p(x¢|xi—1, ..., 21). For instance, a multinomial distribution (1-
of-K coding) can be outputted with the softmax activation
function

CXp(th<t>)
Zle exp(wj/ h(t) )

for all possible symbols j = 1, ..., K, where w; represents the
rows of weight matrix W. Thus, the result is a combination of
probabilities to compute the probability of sequence x using

p(l'tﬂ‘ = 1|l‘t_1, ...,.’13‘1) = (2)

T
p(x) = [ patlae 1, ... z1). 3)
t=1
The learned distribution is then used to sample a new sequence
by iteratively sampling a symbol at each time step. The
conditional distribution of the next symbol is defined as

P(ye|ys—1,91—2, -, y1,€) = 9(h<t>, Yt—1,C)

Note that for activation functions f and g, g must produce
valid probabilities, where a softmax is typically employed, as
defined in Eq. 2]

2) RNN Encoder-Decoder: A RNN encoder-decoder (pic-
tured in Fig. [I) encodes a variable-length sequence into a
fixed-length vector representation, and decodes a fixed-length
vector back into a variable length sequence [8]. The two
components of the RNN encoder-decoder are jointly trained
to maximize the conditional log-likelihood

N
arg max - > log po(yn o) (4)
o n=1
where 6 represents the set of model parameters, each x,,,y,
is a pair of input and output sequences from the training
set, and the output of the decoder starting from the input is
differentiable. Gradient-based algorithms are used to estimate
the model parameters, discussed in Sec A trained RNN
encoder-decoder model can be used to generate a target
sequence given an input sequence, and score a given pair of
input-output sequence, where the score is simply pg(y|x) from
Eqs [3] and
In typical machine translation systems, the goal of the
decoder is to find a translation f given source sentence e that
maximizes
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p(fle) o p(elf)p(f)

where p(e|f) is the translation model, and p(f) represents
the language model. In practice, most systems are modeled
log p(f|e) as a log-linear model with additional features and
corresponding weights:

N
log p(fle) = 3" wn fu(£, €) + logZ(e)

n=1

where f,, and w,, are the n*" feature and weight, and Z(e) is
the normalization constant that does not depend on weights.
The weights are optimized to maximize the BLEU score on
the development set.
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B. Optimization Objectives

The following subsections describe the tuning of hyper-
parameters that affect the performance of training a NMT
system.

1) SGD Optimizers: Stochastic gradient descent (SGD) is
commonly used to train neural networks. SGD updates a
set of parameters ¢, where 7 is the learning rate, or how
large the update should be, and g; represents the gradient
cost function J(-). SGD uses a scheduling-based step size
selection, which makes the learning rate 7 an important hyper-
parameter that requires careful tuning. An adaptive optimizer
separately adapts the learning rate for each parameter.

Adaptive moment estimation (Adam) accumulates the de-
caying average of past squared gradients 7;. Similar to Rm-
sProp and AdaDelta, Adam also stores the decaying mean of
past gradients m,. The moments, 7, n; are biased corrected
terms for instability against zero initialization. Equation [3]
displays SGD, AdaGrad and Adam optimizers.

2) Activation Functions: To address the vanishing gradients
problem associated with learning long-term dependencies in
RNNs, LSTMs [9] and GRUs [8] employ a gating mechanism
when computing the hidden states. Equation [6] displays the
LSTM and GRU activation functions.

For LSTMs (Eq. [6} left), note that the input ¢, forget f and
hidden h gates are the same equations except with different
parameter matrices, which represent gates that are squashed by
the sigmoid into vectors between 0 and 1 values. Multiplying
the vectors determine how much of the other vectors to let
into the current input state. g is a candidate hidden state that

TABLE I
DATASETS USED IN EXPERIMENTS.

[ [ RO—EN, ENSRO DE—EN, ENGDE |

Train corpus.bpe (2603030) corpus.bpe (4497879)
Valid | newsdev2016.bpe (1999)  newstest2014.bpe (3003)
Test | newstest2016.bpe (1999)  newstest2016.bpe (2999)

is computed based on the current input and previous hidden
state. c; serves as the internal memory, which is a combination
of the previous memory c;—; multiplied by the input gate, a
balance of two extremes of ignoring either the memory or
the new hidden state completely. Lastly, the hidden state s,
calculated as a combination of the internal memory and the
output gate.

On the other hand, a GRU (Eq. [@] right) has two gates: a
reset gate r and an update gate u. The reset gate r determines
how to combine the new input with the previous memory,
whereas the update gate u defines how much of the previous
memory to keep around. If the reset gates were set to 1’s and
the update gates to 0’s, the result would be equivalent to a
vanilla RNN.

The differences between the two approaches to compute
hidden units are that GRUs have 2 gates, whereas LSTMs
have 3 gates. GRUs do not have an internal memory and
output gates, compared with LSTM which uses c as its internal
memory and o as an output gate. The GRU input and forget
gates are coupled by an update gate z, and the reset gate r is
applied directly to the previous hidden state. Also, there is no
2nd non-linearity in GRUs, compared to LSTMs which uses
two hyperbolic tangents.

LSTM GRU
7= U(;EtUi + st_lwi) z=o0(xU" + 5.1 W?7)
f= U(:Eth + st71Wf) = U(thr + St71WT)
0=0(xU° + 5._1W?) h= tanh(:thh + (s¢t—1 0 'r)Wh)

g:tanh(th‘q—f—st,lW") St = (1*2:)Oh+ZOSt_1

ct=ci—10f+goi

s¢ = tanh(ct) o 0
(0)
3) Dropout: In a fully-connected, feed-forward neural net-
work, dropout randomly retains connections within hidden
layers while discarding others [10]. Equation [/| displays a
standard hidden update function on the left, whereas a version
that decides whether to retain a connection is displayed on the
right. §() is the thinned output layer, and retaining a network
connection is decided by a Bernoulli random variable () with

probability p(-) = 1.
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Fig. 2. BLEU scores as a function of training time (seconds), comparing GPUs (color), activation units (sub-columns), learning rates and translation directions.
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Fig. 3. Cross entropy over the number of epochs for RO — EN and EN — RO, comparing activation functions and GPUs.

C. Combination of Optimizers

Since the learning trajectory significantly affects the training
process, it is required to select and tune the proper types of
hyper-parameters to yield good performance. The construction
of the RNN cell with activation functions, the optimizer and
its learning rate, and the dropout rates all have an affect on
how the training progresses, and whether good accuracy can
be achieved.

IV. EXPERIMENTS

The experiments were carried out on the WMT 2016
translation tasks for the Romanian and German languages in
four directions: EN — RO, RO — EN, EN — DE, and DE —

EN. The datasets and its characteristics used in the experiments
are listed in Table [ with number of sentence examples in
parenthesis. Table [] shows that for WMT 2016 EN — RO
and RO — EN, the training data consisted of 2.6M English
and Romanian sentence pairs, whereas for WMT 2016 EN —
DE and DE — EN, the training corpus consisted of approx-
imately 4.5M German and English sentence pairs. Validation
was performed on 1000 sentences of the newsdev2016
corpus for RO, and on newstest2014 corpus for DE. The
newstest2016 corpus consisted of 1999 sentences for RO
and 2999 sentences for DE, and was used as the test set.
We evaluated and saved the models every 10K iterations and
stopped training after 500K iterations.

All experiments used bilingual data without additional
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TABLE I
GRAPHICAL PROCESSORS USED IN THIS EXPERIMENT.

[ [ P100 VI00 |
CUDA capability 6.0 7.0
Global memory (MB) 16276 16152
Multiprocessors (MP) 56 80
CUDA cores per MP 64 64
CUDA cores 3584 5120
GPU clock rate (MHz) 405 1380
Memory clock rate (MHz) 715 871
L2 cache size (MB) 4.194 6.291
Constant memory (bytes) 65536 65536
Shared mem blk (bytes) 49152 49152
Registers per block 65536 65536
Warp size 32 32
Max threads per MP 2048 2048
Max threads per block 1024 1024
CPU (Intel) | Ivy Bridge Haswell
[ Architecture family [ Pascal Volta |

TABLE III
HARDWARE AND EXECUTION ENVIRONMENT INFORMATION.
[ Architecture | Haswell [ Ivy Bridge |
Model E5-2698 v3 Xeon X5650
Clock speed 2.30 GHz 2.67 GHz
Node count 4, 14 6
GPUs 4 x V100 4 x P100
Memory 256 GB 50 GB
Linux kernel 3.10.0-229.14.1 2.6.32-642.4.2
Compiler CUDA v9.0.67
Flags {‘g’, ‘lineinfo’, ‘arch=sm_cc’}

monolingual data. The models were trained on Marian [12],
an efficient NMT framework written in C++ with multi-
node, multi-GPU capabilities. We used the joint byte precision
encoding (BPE) approach [[13] in both the source and target
sets, which converts words to a sequence of subwords. For
all four tasks, the number of joint-BPE operations were 20K.
All words were projected on a 512-dimensional embedding

space, with vocabulary dimensions of 66000 x 50000. The
mini-batch size was determined automatically based on the
sentence length that was able to fit in GPU global memory,
set at 13000 MB for each GPU.

Decoding was performed using beam search with a beam
size of 12. The translation portion consisted of recasing and
detokenizing the translated BPE chunks. The trained models
compared different hyper-parameter strategies, including the
type of optimizer, the activation function, and the amount of
dropout applied, as discussed in Section [[lI-C} The number of
parameters were initialized with the same random seed. The
systems were evaluated using the case-sensitive BLEU score
computed by Moses SMT [14].

We compared models trained on two different types of
GPUs (P100 Pascal, V100 Volta), listed on Table |m The
corresponding CPUs are listed on Table Each ran with
four GPUs. The dataset was partitioned across 4 GPUs, and a
copy of the model was executed on each GPU.

V. ANALYSIS

This section analyzes the results of the evaluated NMT
systems in terms of translation quality, training stability and
convergence speed.

A. Translation Qualtiy

Table [Vl shows BLEU scores calculated for four transla-
tion directions for the validation sets (top) and the test sets
(bottom), comparing learning rates, activation functions and
GPUs. Note that entries with n/a means that no results were
available, whereas entries with dnf indicates training time
that did not complete within 24 hours. For the validation sets,
LSTM was able to achieve higher accuracy rates, whereas in
the test set GRUs and LSTMs were about the same. Also,
note that the best performing learning rates were usually at a
lower value (e.g. le-3). The type of hidden unit mechanism



TABLE IV
BLEU SCORES FOR VALIDATION (TOP) AND TEST (BOTTOM) DATASETS.
ro—en en—ro de—en en—de

cell learn-rt | P100 V100 P100 V100 | P100 V100 P100 V100
GRU le-3 | 35.53 3543 19.19 19.28 | 28.00 27.84 2043  20.61
5e-3 | 3437 34.05 19.07 19.16 | 26.05 22.16 n/a 19.01

le-4 | 3547 3546 19.45 19.49 | 2737 27.81 dnf 21.41

LSTM le-3 | 3427 35.61 19.29 19.64 | 28.62 2883 21.70 21.69
5e-3 | 35.05 3499 19.48 1943 n/a 2436  18.53 18.01

le-4 | 3541 35.28 19.43 19.48 n/a 28.50 dnf dnf

GRU le-3 | 3422 34.17 19.42 19.43 | 33.03 3255 26.55 26.85
5e-3 | 33.13 3274 19.31 1897 | 31.04 26.76 n/a 26.02

le-4 | 33.67 34.44 18.98 19.69 | 33.15 33.12 dnf 28.43
LSTM le-3 | 33.10 3395 19.56 19.08 | 33.10 33.89 28.79 28.84
5e-3 | 33.10 33.52 19.13 19.51 n/a 29.16 24.12 24.12

le-4 | 33.29 3292 19.14 19.23 n/a 33.44 dnf dnf

TABLE V
DROPOUT RATES, BLEU SCORES AND TOTAL TRAINING TIME FOR TEST SET, COMPARING SYSTEMS.
ro—en de—en
cell dropout | P100 t V100 t P100 t V100 t

GRU 0.0 | 3447 6:29 34.47 4:43 32.29 9:48 31.61 6:15
0.2 | 35.53 8:48 35.43 6:21 33.03 18:47 3255 19:40

0.3 | 3536 1221 35.15 7:28 3136 10:14  31.50 9:33

0.5 | 3450 12:20 34.67 17:18 | 29.64 11:09 30.21 11:09

LSTM 0.0 | 34.84 6:29 34.65 4:46 32.84  12:17  32.88 7:37
0.2 | 3427 8:10 35.61 6:34 33.10 16:33  33.89  13:39

0.3 | 35.67 9:56 3537  11:29 | 3345 20.02 33.51 15:51

0.5 | 3450 15:13 3433 1245 | 32.67 20:02 3220 13:03

(e.g LSTM vs GRU) and the learning rate can affect the overall
accuracy achieved, as demonstrated by Table

Table displays various dropout rates applied for two
translation directions RO — EN and DE — EN, comparing
hidden units, GPUs and overall training time. The learning
rate was evaluated at 0.001, the rate that achieved the highest
BLEU score as evident in Table Generally speaking,
increasing the dropout rates also increased training time. This
may be the result of losing network connections when applying
the dropout mechanism, but at the added benefit of avoiding
overfitting. This is evident in Table [V] where applying some
form of dropout will result in a trained model achieving
higher accuracies. The best performance can be seen when
the dropout rate was set at 0.2 to 0.3. This confirms that some
form of skip connection mechanism is necessary to prevent
the overfitting of models under training.

Figure [2| shows BLEU score results as a function of training
time, comparing GPUs, activation units, learning rates and
translation directions. Note that in most cases a learning rate of
0.001 achieves the higher accuracy in most cases, at the cost of
higher training time. Also, note the correlation between longer
training time and higher BLEU scores in most cases. In some
cases, the models were able to converge at a faster rate (e.g.
Fig. [2) upper left, RO—EN, GRU with learning rate of 0.005
vs 0.001).

B. Training Stability

Figure [3] shows the cross-entropy scores for the RO —
EN and EN — RO translation tasks, comparing different
activation functions (GRU vs. LSTM), with learning rates at
0.001. Note the training stability patterns that emerge from this

plot, which is highly correlated with the translation direction.
The activation function (GRU vs LSTM) during validation
also performed similarly across GPUs and was also highly
correlated with the translation direction. Cross-entropy scores
for the EN — RO translation direction were more or less the
same. However, for RO — EN, a LSTM that executed on a
P100 converged the earliest by one iteration.

Figure ] shows the same comparison of cross-entropy scores
over epochs for DE — EN and EN — DE translation tasks.
Note that the behavior for this translation task was wildly
different for all systems. Not only did it take more epochs
to converge compared to Fig [3] but also how well the system
progressed also varies, as evident in the cross-entropy scores
during validation. When comparing hidden units, LSTMs
outperformed GRUs in all cases. When comparing GPUs,
the V100 performed better than the P100 in terms of cross-
entropy, but took longer to converge in some cases (e.g. v100-
deen-Istm, v100-ende-Istm). Also, note that the behavior of
the translation task EN — DE for a GRU hidden unit never
stabilized, as evident in both the high cross-entropy scores
and the peaks toward the end. The LSTM was able to achieve
a better cross-entropy score overall, with nearly a 8 point
difference for DE — EN, compared with the GRU.

C. Convergence Speed

Figure [5] shows the average words-per-second for the RO —
EN translation task, comparing systems. The average words-
per-second executed remained consistent across epochs. The
system that was able to achieve the most words-per-second
was v100-roen-gru-0.001, whereas the one that achieved the
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Fig. 5. Average words-per-second for the RO — EN translation task, comparing systems.

least words-per-second was the v100-roen-gru-0.005. Surpris-
ingly, the best and worst performer was the v100-roen-gru,
depending on its learning rate, with the sweet spot at 0.001.
This confirms 0.001 as the best learn rate that can execute a
decent number of words-per-second and achieve a fairly high
accuracy, as evident in previous studies, across all systems.

Table [V]] also displays words-per-second and validation,
comparing activation units, learning rates and GPUs. When
fixing learning rate, the V100 was able to execute more
words-per-second than the P100, and was able to converge
at an earlier iteration. When comparing hidden units, GRUs
were able to execute higher words per second on a GPU
and converge at a reasonable rate (at 18000 iterations) for
most learning rates, except for 5e-3. When looking at LSTMs,
words-per-second executed on a V100 was similar, although
at a higher learning rate it was able to converge at 42000
iterations, but at the cost of longer training time and slower
convergence (35000 iterations).

Table [VII|shows the corresponding total training time for the
four translation directions, comparing GPUs, activation units,
and learning rates. The dropout rate was set at 0.2, which was
the best performer in most cases (Tab [V). Table [VII] shows
that the training time increased as the learning rates were
decreased. In general, Romanian took a fraction of the time to
complete training (usually under 10 hours), whereas German
took 18-22 hours to complete training.

VI. DISCUSSION

The variation in the results, in terms of language transla-
tion, hyper-parameters, words-per-second executed and BLEU
scores, in addition to the hardware the training was executed
on demonstrates the complexity in learning the grammatical
structure between the two languages. In particular, the learning
rate set for training, the hidden unit selected for the activation
function, the optimization criterion and the amount of dropout

applied to the hidden connections all have a drastic effect
on overall accuracy and training time. Specifically, we found
that a lower learning rate achieved the best performance in
terms of convergence speed and BLEU score. Also, we found
that the V100 is able to execute more words-per-second than
the P100 in all cases. When looking at accuracy as a whole,
LSTM hidden units outperformed GRUs in all cases. Lastly,
the amount of dropout applied on a network in all cases
prevented the model from overfitting and achieve a higher
accuracy.

The multidimensionality of hyper-parameter optimization
poses a challenge in selecting the architecture design for
training NN models, as illustrated by the varying degrees of
behavior across systems and its performance outcome. This
work investigated how the varying design decisions can affect
training outcome and provides neural network designers how
to best look at which parameters affect performance, whether
accuracy, words processed per second, and convergence expec-
tation. Coupled with massive datasets for parallel text corpuses
and commodity heterogenous GPU architectures, the models
trained were able to achieve WMT grade accuracy with the
proper selection of hyper-parameter tuning.

VII. CONCLUSION

We analyzed the performance of various hyper-parameters
for training a NMT, including the optimization strategy, the
learning rate, the activation cell, and the GPU across various
systems for the WMT 2016 translation task in four translation
directions. Results demonstrate that a proper learning rate and
a minimal amount of dropout is able to prevent overfitting as
well as achieve high training accuracy.

Future work includes developing optimization methods to
evaluate how to best select hyper-parameters. By statically
analyzing the computational graph that represents a NN in



TABLE VI
WORDS-PER-SECOND (AVERAGE) AND NUMBER OF EPOCHS, COMPARING ACTIVATION UNITS, LEARNING RATES AND GPUs.
words-per-sec validation words-per-sec validation
cell learn-rt P100 V100 P100 V100 P100 V100 P100 V100
ro—en en—ro
GRU le-3 | 33009.23  45762.54 18000 18000 | 29969.14  42746.15 15000 15000
5e-3 | 32965.23  24253.14 19000 8000 30223.89  23144.62 17000 10000
le-4 | 32828.61 24341.96 44000 16000 | 29959.34  23277.51 25000 14000
LSTM le-3 | 29412.87 40534.06 15000 16000 | 27282.54  38131.13 14000 14000
5e-3 | 29536.65 40598.24 16000 16000 | 2724542  37384.46 19000 21000
le-4 | 29478.51 41441.37 40000 35000 | 27002.60 38118.79 25000 25000
de—en en—de
GRU le-3 | 28279.53  38026.87 20000 28000 | 28367.91 39995.48 10000 10000
S5e-3 | 28215.40 19819.59 25000 4000 n/a 39944.10 n/a 16000
le-4 | 28367.54 33218.70 26000 32000 dnf 39993.89 dnf 36000
LSTM le-3 | 24995.64  33507.31 16000 17000 | 25245.67 35122.54 13000 17000
S5e-3 | 25210.15 33740.92 14000 7000 25049.21  33649.20 9000 6000
le-4 dnf 34529.58 dnf 31000 dnf dnf dnf dnf
TABLE VII
TOTAL TRAINING TIME FOR FOUR TRANSLATION DIRECTIONS, COMPARING SYSTEMS.
ro—en en—To de—en en—de
cell learn-rt | P100 V100 P100 V100 | P100 V100 P100 V100
GRU le-3 8:48 6:21 7:47 5:26 18:47  19:40 9:26 6:41
5e-3 9:41 4:52 8:38 6:02 23:57 4:36 n/a 10:56
le-4 | 21:58 9:43 12:33 8:59 23:50  21:09 dnf 23:58
LSTM le-3 8:10 6:34 7:49 5:36 16:33  13:39  13:50 12:24
5e-3 9:02 6:34 10:44 8:32 n/a 5:12 9:37 4:35
le-4 | 22:29 14:05 13:46 9:45 n/a 23:57 dnf dnf

terms of instruction operations executed and resource alloca-
tion constraints, one could derive execution performance for a
given dataset without running experiments.
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