Game Boy: Complete Technical Reference
gekkio
https://gekkio. fi
February 5, 2026

Revision 177

©@®O

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International
License.

https://gekkio.fi
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Preface

IMPORTANT: This document focuses at the moment on
1st and 2nd generation devices (models before the Game

Boy Color), and some hardware details are very different
in later generations.

Be very careful if you make assumptions about later gen-
eration devices based on this document!

How to read this document

& Speculation

This is something that hasn’'t been verified, but would make a lot of sense.

O Caveat

This explains some caveat about this documentation that you should know.

© Warning

This is a warning about something.

0.1 Formatting of numbers

When a single bit is discussed in isolation, the value looks like this: 0, 1.

Binary numbers are prefixed with @b like this: @b0101101, 0b11011, 0bOVVVVV. Values are
prefixed with zeroes when necessary, so the total number of digits always matches the number
of digits in the value.

Hexadecimal numbers are prefixed with 0x like this: 0x1234, 0xDEADBEEF, 0xFF@4. Values are
prefixed with zeroes when necessary, so the total number of characters always matches the
number of nibbles in the value.

Examples:
4-bit 8-bit 16-bit
Binary 0b0101 0b10100101 ©bOLLV101010100101
Hexadecimal 0x5 OxA5 OxQAAS

0.2 Register definitions

Register 0.1: ©x1234 - This is a hardware register definition

RM-0 | R/ U-1 R0 | RrR1 | Rrx W-1)
VALUE <1:0> BIGVAL<7:5> FLAG
bit 7 | 6 5 4 | 3 | 2 1 bit 0
Top row legend:
R Bit can be read.
W Bit can be written. If the bit cannot be read, reading returns a constant value defined
in the bit list of the register in question.
U Unimplemented bit. Writing has no effect, and reading returns a constant value defined
in the bit list of the register in question.
-n Value after system reset: 0, 1, or x.
Bit is set.
0 Bit is cleared.
X Bit is unknown (e.g. depends on external things such as user input)

Middle row legend:

VALUE<1:0>

Bits 1 and 0 of VALUE

Unimplemented bit

BIGVAL<T:5>

Bits 7, 6, 5 of BIGVAL

FLAG

Single-bit value FLAG

In this example:

+ After system reset, VALUE is @b01, BIGVAL is either 0b@10 or @b@11, FLAG is @b1.
+ Bits 5 and 0 are unimplemented. Bit 5 always returns 1, and bit 0 always returns o.

* Both bits of VALUE can be read and written. When this register is written, bit 7 of the written
value goes to bit 1 of VALUE.

* FLAG can only be written to, so reads return a value that is defined elsewhere.

* BIGVAL cannot be written to. Only bits 5-7 of BIGVAL are defined here, so look elsewhere for
the low bits 0-4.

Contents

Preface e 2
How toread thisdocument i i i i i it e e e e e e e e e e 3
0.1 Formattingof numbers 3
0.2 Register definitions e 4
L0 0 1 o= o 1 5
I Game Boy console architecture o Lol e 9
1 Introduction e 10
72 @ Lo Y of 7«3 12
2.1 Systemclock L e e e e 12
System clock frequency L. 12

2.2 Clock periods, T-cycles,and M-cycles 12
II SharpSMB3 CPU COKe i i it i e i e e e e e e e e e e e e et e e s e e 14
B Introduction e 15
3.1 History . o o o e e e e e e e e 15

4 Simplemodel e e e e e e e e e e e 16
5 CPUcOoretiming i i i i it i e e e e e e e e e e e e e e 17
5.1 Fetch/executeoverlap e 17
Fetch/execute overlap timingexample o e 17

6 Sharp SM83instructionset i e e 19
6.1 OVEIVIEW o e e e e e e e e e e e e e e e e e e 19
CBopcode prefiXx o o e e 19
Undefined opcodes e e e e 19

6.2 8-bitload instructions e e e e e 20
LD r, r': Load register (register) o e e e e e e 20

LD r, n: Load register (immediate) 21

LD r, (HL): Load register (indirect HL) 22

LD (HL), r: Load from register (indirectHL), 23

LD (HL), n: Load from immediate data (indirect HL) 24

LD A, (BQ): Load accumulator (indirectBC) e 25

LD A, (DE): Load accumulator (indirectDE) 26

LD (BC), A: Load from accumulator (indirectBC) 27

LD (DE), A: Load from accumulator (indirect DE) 28

LD A, (nn): Load accumulator (direct) e 29

LD (nn), A: Load from accumulator (direct) e 30

LDH A, (C): Load accumulator (indirect @xFFoo+C) 31

LDH (C), A: Load from accumulator (indirect@xFFee+C) 32

LDH A, (n): Load accumulator (direct@xFFoQ+n) e 33

LDH (n), A: Load from accumulator (direct @xFF@@+n) 34

LD A, (HL-): Load accumulator (indirect HL, decrement) 35

LD (HL-), A: Load from accumulator (indirect HL, decrement) 36

LD A, (HL+): Load accumulator (indirect HL, increment) 37

LD (HL+), A: Load from accumulator (indirect HL, increment) 38

6.3 16-bitloadinstructions e e e 39
LD rr, nn: Load 16-bit register / registerpair 39

LD (nn), SP: Load from stack pointer (direct) 40

LD SP, HL: Load stack pointer from HL 41
PUSH rr: Pushtostack e e e e e e 42
POPrr:Popfromstack e 43
LD HL, SP+e: Load HL from adjusted stack pointer 44
6.4 8-bit arithmetic and logical instructions 45
ADD r: Add (register) o i e e e e e 45
ADD (HL): Add (indirect HL) e 46
ADD n: Add (immediate) e e e e e 47
ADCr: Add with carry (register) e 48
ADC (HL): Add with carry (indirect HL) 49
ADC n: Add with carry (immediate) L 50
SUB r: Subtract (register) e e 51
SUB (HL): Subtract (indirect HL) e 52
SUB n: Subtract (immediate) e 53
SBCr: Subtract with carry (register) o 54
SBC (HL): Subtract with carry (indirectHL) 55
SBC n: Subtract with carry (immediate) oo, 56
CPr:Compare (register) o i i e e e e e e e e e e 57
CP (HL): Compare (indirect HL) o e 58
CP n: Compare (immediate) e e 59
INCr:Increment (register) o e e e 60
INC (HL): Increment (indirect HL) o e e 61
DECr: Decrement (register) o o i i e e e e 62
DEC (HL): Decrement (indirect HL) @ o v it e e 63
AND r: Bitwise AND (register) o e e 64
AND (HL): Bitwise AND (indirect HL) e 65
AND n: Bitwise AND (immediate) e 66
ORr: Bitwise OR (register) o e e e e e e e 67
OR (HL): Bitwise OR (indirect HL) o i e s e e e e e e e 68
OR n: Bitwise OR (immediate) e e 69
XORr: Bitwise XOR (register) o i i e e e 70
XOR (HL): Bitwise XOR (indirect HL) o e 71
XOR n: Bitwise XOR (immediate) e 72
CCF: Complementcarryflag o o e 73
SCF:Setcarryflag e e e 74
DAA: Decimal adjust accumulator L 75
CPL: Complementaccumulator e 76
6.5 16-bit arithmeticinstructions e 77
INCrr: Increment 16-bitregister e 77
DEC rr: Decrement 16-bitregister 78
ADD HL, rr: Add (16-bitregister) e 79
ADD SP, e: Add to stack pointer (relative) o 80
6.6 Rotate, shift, and bit operation instructions 82
RLCA: Rotate left circular (accumulator) e 82
RRCA: Rotate right circular (accumulator) 83
RLA: Rotate left (accumulator) e 84
RRA: Rotate right (accumulator) e 85
RLC r: Rotate left circular (register) 86

RLC (HL): Rotate left circular (indirect HL) v v 87

RRC r: Rotate right circular (register) 89
RRC (HL): Rotate right circular (indirect HL) 90
RLr: Rotate left (register) o e e e e e 92

RL (HL): Rotate left (indirect HL) i i e e 93
RRr:Rotateright (register) e 95

RR (HL): Rotate right (indirect HL) i 96
SLA r: Shift left arithmetic (register) 98
SLA (HL): Shift left arithmetic (indirectHL) 99
SRA r: Shift right arithmetic (register) 101
SRA (HL): Shift right arithmetic (indirectHL) 102
SWAP r: Swap nibbles (register) L 104
SWAP (HL): Swap nibbles (indirect HL) o 105
SRLr: Shiftright logical (register) 106
SRL (HL): Shift right logical (indirect HL) 107
BIT b, r: Test bit (register) e 109
BIT b, (HL): Test bit (indirect HL) e e s 110
RES b, r: Reset bit (register) e 111
RES b, (HL): Reset bit (indirect HL) o ot e 112
SET b, r: Set bit (register) e 113
SET b, (HL): Set bit (indirect HL) e 114
6.7 Control flow instructions e e e e 116
JIPNNIJump .« e e e e e 116
JPHL: Jumpto HL e e 117
JPcc, nn:Jump (conditional) L e 118
JRe:Relative jump L e 120
JR ¢, e: Relative jump (conditional) o 121
CALL nn: Call function e e e e e 123
CALL cc, nn: Call function (conditional) 124
RET: Return from function e 126
RET cc: Return from function (conditional) 127
RETL Return from interrupthandler 128
RST n: Restart / Call function (implied) 129
6.8 Miscellaneous instructions e 130
HALT: Halt systemclock 130
STOP: Stop systemand mainclocks 130
DI: Disable interrupts e e 130

EL Enableinterrupts e e e 131
NOP: Nooperation e e e e e 132

III Game Boy SoC peripheralsandfeatures 134
7 BOOt ROM e 135
7.1 BOOtROMUtypes e e e e e 136
DMGboot ROM e e e e e 136
MGB boot ROM o e e e e e e 136
SGBboOt ROM e e e e e e 136
SGB2 boot ROM o e 136
Early DMG boot ROM ("DMGO0”) o o i e e e e e e e e e e e e e e e 136

8 DMA (Direct MemMOrY ACCESS) . « v v v v v v i et e e e et e e e e et e et e e e e e e 137

8.1 Object Attribute Memory (OAM)DMA e 137

OAM DMA addressdecoding o o i i i e e e 138

OAM DMA transfertiming 138
OAMDMADbus conflicts e e e 138

9 PPU (Picture ProcessingUnit) i ittt 139
10 Port P1 (Joypad, Super Game Boy communication) 140
11 Serial communication L e e e e e e e e e e e e 141
IV Game Boygamecartridges i e e e e e e e 142
12 MBCImapperchip o e e e e e e e e 143
12.1 MBCT registers i e e e e e e e e e e e e e e e 143
12.2 ROM in the 0x0000-OXTFFF area v v v it e e e e e e e e 145
ROM bankingexample 1 145

ROM bankingexample 2 146

12.3 RAM in the 0xAQR0-0xBFFF @rea o v v v i i e e e e e e e e e e 146
RAM banking example 1 e 146

12.4 MBC1 multicarts ("MBCTM") e e 147
ROM bankingexample 1 147
Detectingmulticarts e e e e e e 147

125 Dumping MBCT carts o o i e e e e 148
13 MBC2mapperchip i e e e e e e e e e e e e e e e e 149
13.1 MBC2registers o e e e e e e 149
13.2 ROM in the 0x0000-0XTFFF area v v v v vt i e e e e e e e e e e e e e e e 150
13.3 RAM in the 0xAGQ0-0xBFFF @rea« o v v vt it e e et e e 150
13.4 Dumping MBC2 carts o e e e e e e e e 151
14 MBC3mapperchip o e e e e e e e e e e e e 152
15 MBC30mapperchip o o i i e e e e e e e e e e e e e e e 153
16 MBCSmapperchip o e e e e e e e e e 154
16.1 MBC5registers e e e e e e e 154
17 MBComapperchip o e e e e e e e e e e 156
18 MBCT i e 157
19 HuC-1mapperchip ot e e e e e e e e e e 158
20 HuC-3mapperchip o i e e e e e e e e e 159
21 MMIMOT . . . e 160
22 TAMAS . . e 161
Appendices L e e e e e e e e e e e e e e e e e e e 162
A Instructionsettables o i e e 163
B Memorymaptables e 166
C GameBoyexternalbus e e 171
C.1 BUStIMINGS o e e e e e 171
D Chippinouts o i ittt e e e et e e e et e 173
D.1 CPUChIPS o e e 173
D.2 Cartridge chips e e e 173
Bibliography e e e e e e 174

Partl

Game Boy console architecture

Chapter 1
Introduction

The original Game Boy and its successors were the most popular and financially successful
handheld consoles in the 1990s and early 2000s with several millions units sold and a large
catalogue of officially published games. Unlike many older consoles, Game Boys use only
a single integrated System-on-a-Chip (SoC) for almost everything, and this SoC includes the
processor (CPU) core, some memories, and various peripherals.

The Game Boy SoC is sometimes called the “CPU", even though it has a large amount of
other peripherals as well. For example, the Game Boy Pocket SoC literally has the text
“CPU MGB" on it, even though the CPU core takes only a small fraction of the entire chip
area. This terminology is therefore misleading, and is like calling a computer mother-
board and all connected expansion cards and storage devices the “CPU".

This document always makes a clear distiction between the entire chip (SoC) and the
processor inside it (the CPU core).

Most Game Boy consoles are handhelds, starting from the original Game Boy in 1989, ending
with the Game Boy Micro in 2005. In addition to handheld devices, Game Boy SoCs are also used
in some accessories meant for other consoles, such as the Super Game Boy for the SNES/SFC.

Game Boy consoles and their SoCs can be categorized based on three supported technical
architectures:

+ GB: the original Game Boy architecture with a Sharp SM83 CPU core and 4-level grayscale
graphics

* GBC: a mostly backwards compatible extension to the GB architecture that adds color graph-
ics and small improvements

* GBA: a completely different architecture based on the ARM processor instruction set and a
completely redesigned set of peripherals. This document does not cover GBA architecture,
because it has little in common with GB/GBC. GBA-based consoles and chips are only
mentioned for their backwards compatibility with GB/GBC architectures.

Table 1.1 lists all officially released Game Boy consoles, including handhelds and accessories for
other consoles. Every model has an internal codename, such as original Game Boy's codename
Dot Matrix Game (DMG), that is also present on the mainboard.

10

This document refers to different console models usually by their unique codename to
prevent confusion. For example, using the abbreviation GBP could refer to either Game
Boy Pocket or Game Boy Player, but there’s no confusion when MGB and GBS are used
instead.

In this document GBC refers to the technical architecture, while CGB refers to Game Boy
Color consoles specifically. Likewise, GBA refers to the architecture and AGB to exactly
one console model.

Console name Codename | SoC type | GB | GBC | GBA
Handhelds

Game Boy DMG DMG-CPU |

Game Boy Pocket MGB CPUMGB | v

Game Boy Light MGL CPUMGB | v

Game Boy Color CGB CPUCGB |/ |v
Game Boy Advance AGB CPUAGB |/ |v v/
Game Boy Advance SP [AGS CPUAGB |/ |v v/
Game Boy Micro OXY CPU AGB 4
Accessories

Super Game Boy SGB SGB-CPU | v

Super Game Boy 2 SGB2 CPUSGB2 | v

Game Boy Player GBS CPUAGB |/ |v v/

Table 1.1: Summary of Game Boy consoles

11

Chapter 2
Clocks

2.1 System clock

The system oscillator is the primary clock source in a Game Boy system, and it generates the
system clock. AlImost all other clocks are derived from the system clock using prescalers / clock
dividers, but there are some exceptions:

« If a Game Boy is set up to do a serial transfer in secondary mode, the serial data register
is directly clocked using the serial clock signal coming from the link port. Two Game Boys
connected with a link cable never have precisely the same clock phase and frequency relative
to each other, so the serial clock of the primary side has no direct relation to the system clock
of the secondary side.

« The inserted game cartridge may use other clock(s) internally. A typical example in some
official games is the Real Time Clock (RTC), which is based on a 32.768 kHz oscillator and a
clock-domain crossing circuit so that RTC data can be read using the cartridge bus while the
RTC circuit is ticking independently using its own clock.

The Game Boy SoC uses two pins for the system oscillator: XI and XO. These pins along with
some external components can be used to form a Pierce oscillator circuit. Alternatively, the XI
pin can be driven directly with a clock signal originating from somewhere else, and the XO pin
can be left unconnected.

System clock frequency

In DMG and MGB consoles the system oscillator circuit uses an external quartz crystal with a
nominal frequency of 4.194304 MHz (= 222 MHz = 4 MiHz) to form a Pierce oscillator circuit. This
frequency is considered to be the standard frequency of a Game Boy.

In SGB the system oscillator input is directly driven by the ICD2 chip on the SGB cartridge. The
clock is derived via /5 division of the main SNES / SFC clock, which has a different frequency
depending on the console region (21.447 MHz NTSC, 21.281 MHz PAL). The SNES / SFC clock
does not divide into 4.194304 MHz with integer division, so the clock seen by the SGB SoC is
not the same as in DMG and MGB consoles. The frequency is higher, so everything is sped up
by a small amount and audio has a slightly higher pitch.

In SGB2, just like SGB, the system oscillator input is driven by the ICD2 chip, but instead of
using the SNES / SFC clock, the ICD2 chip is driven by a Pierce oscillator circuit with a 20.971520
MHz crystal. ICD2 then divides this frequency by /5 to obtain the final frequency seen by the
SGB2 SoC, which is 4.194304 MHz that matches the standard DMG / MGB frequency.

2.2 Clock periods, T-cycles, and M-cycles

In digital logic, a clock switches between low and high states and every transition happens on
a clock edge, which might be a rising edge (low — high transition) or a falling edge (high — low
transition). A single clock period is measured between two edges of the same type, so that the
clock goes through two opposing edges and returns to its original state after the clock period.
The typical convention is that a clock period consists of a rising edge and a falling edge.

In addition to the system clock and other clocks derived from it, Game Boy systems also use
inverted clocks in some peripherals, which means the rising edge of an inverted clock may
happen at the same time as a falling edge of the original clock. Figure 2.1 shows two clock

12

periods of the system clock and an inverted clock derived from it, and how they are out of phase
due to clock inversion.

+ period 1 period 1

CLK 4 MiHz

Inverted 4 MiHz

also
a period

also
a period

Figure 2.1: Example clock periods

TIR T1F T2R T2F T3R T3F T4R T4F

CLK 4 MiHz T |22 |||

PHI 1 MiHz

Figure 2.2: Clock edges in a machine cycle

13

Part II
Sharp SM83 CPU core

14

Chapter 3
Introduction

The CPU core in the Game Boy SoC is a custom Sharp design that hasn't publicly been given
a name by either Sharp or Nintendo. However, using old Sharp datasheets and databooks as
evidence, the core has been identified to be a Sharp SM83 CPU core, or at least something
that is 100% compatible with it. SM83 is a custom CPU core used in some custom Application
Specific Integrated Chips (ASICs) manufactured by Sharp in the 1980s and 1990s.

© Warning

Some sources claim Game Boy uses a “modified” Zilog Z80 or Intel 8080 CPU core.
While the SM83 resembles both and has many identical instructions, it can't execute all
Z80/8080 programs, and finer details such as timing of instructions often differ.

SM83 is an 8-bit CPU core with a 16-bit address bus. The Instruction Set Architecture (ISA) is
based on both Z80 and 8080, and is close enough to Z80 that programmers familiar with Z80
assembly can quickly become productive with SM83 as well. Some Z80 programs may also work
directly on SM83, assuming only opcodes supported by both are used and the program is not
sensitive to timing differences.

2 Speculation

Sharp most likely designed SM83 to closely resemble Z80, so it would be easy for
programmers already familiar with the widely popular Z80 to write programs for it.
However, SM83 is not a “modified Z80" because the internal implementation is completely
different. At the time Sharp also manufactured real Z80 chips such as LHO080 under a
license from Zilog, so they were familiar with Z80 internals but did not directly copy the
actual implementation of the CPU core. If you compare photos of a decapped Z80 chip
and a GB SoC, you will see two very different-looking CPU cores.

3.1 History

The first known mention of the SM83 CPU core is in Sharp Microcomputers Data Book (1990),
where it is listed as the CPU core used in the SM8320 8-bit microcomputer chip, intended for
inverter air conditioners [1]. The data book describes some details of the CPU core, such as a
high-level overview of the supported instructions, but precise details such as full opcode tables
are not included. Another CPU core called SM82 is also mentioned, but based on the details it's
clearly a completely different one.

The SM83 CPU core later appeared in Sharp Microcomputer Data Book (1996), where it is listed
as the CPU core in the SM8311/SM8313/SM8314/SM8315 8-bit microcomputer chips, meant for
home appliances [2]. This data book describes the CPU core in much more detailed manner,
and other than some mistakes in the descriptions, the details seem to match what is known
about the GB SoC CPU core from other sources.

15

Chapter 4

Simple

model
SM83 CPU core
—_——— e |
Interrupt signals | SoC
(REQ in, ACK out) | interrupts
Control unit 3 € >
|
|
| SoC
8-bit CPU data bus I internal
Register file I((bidirectional))|(data bus N
[r | E | I
-]
B C ! |
D E |
H L b IDU | SoC
PC 16-bit I internal
SP T N address bus
7
16-bit CPU address bus |
(output only) |
|

Figure 4.3: Simple model of the SM83 CPU core

Figure 4.3 shows a simplified model of the SM83 CPU core. The core interacts with the rest

of the SoC usi
controlled by t

ng interrupt signals, an 8-bit bidirectional data bus, and a 16-bit address bus
he CPU core.

The main subsystems of the CPU core are as follows:

Control unit

Register file

ALU

IDU

The control unit decodes the executed instructions and generates control
signals for the rest of the CPU core. It is also responsible for checking and
dispatching interrupts.

The register file holds most of the state of the CPU inside registers. It contains
the 16-bit Program Counter (PC), the 16-bit Stack Pointer (SP), the 8-bit Accu-
mulator (A), the Flags register (F), general-purpose register pairs consisting of
two 8-bit halves such as BC, DE, HL, and the special-purpose 8-bit registers
Instruction Register (IR) and Interrupt Enable (IE).

An 8-bit Arithmetic Logic Unit (ALU) has two 8-bit input ports and is capable of
performing various calculations. The ALU outputs its result either to the register
file or the CPU data bus.

A dedicated 16-bit Increment/Decrement Unit (IDU) is capable of performing
only simple increment/decrement operations on the 16-bit address bus value,
but they can be performed independently of the ALU, improving maximum
performance of the CPU core. The IDU always outputs its result back to the
register file, where it can be written to a register pair or a 16-bit register.

16

Chapter 5
CPU core timing

5.1 Fetch/execute overlap

Sharp SM83 uses a microprocessor design technique known as fetch/execute overlap to improve
CPU performance by doing opcode fetches in parallel with instruction execution whenever
possible. Since the CPU can only perform one memory access per M-cycle, itis worth it to try to
do memory operations as soon as possible. Also, when doing a memory read, the CPU cannot
use the data during the same M-cycle so the true minimum effective duration of instructions
is 2 machine cycles, not 1 machine cycle.

Every instruction needs one machine cycle for the fetch stage, and at least one machine cycle
for the decode/execute stage. However, the fetch stage of an instruction always overlaps with
the last machine cycle of the execute stage of the previous instruction. The overlapping execute
stage cycle may still do some work (e.g. ALU operation and/or register writeback) but memory
access is reserved for the fetch stage of the next instruction.

Since all instructions effectively last one machine cycle longer, fetch/execute overlap is usually
ignored in documentation intended for programmers. It is much easier to think of a program
as a sequence of non-overlapping instructions and consider only the execute stages when
calculating instruction durations. However, when emulating a SM83 CPU core, understanding
and emulating the overlap can be useful.

O Warning

Sharp SM831x is a family of single-chip SoCs from Sharp that use the SM83 CPU core,
and their datasheet [3] includes a description of fetch/execute overlap. However, the
description is not completely correct and can in fact be misleading.

For example, the timing diagram includes an instruction that does not involve opcode
fetch at all, and memory operations for two instructions are shown to happen at the
same time, which is not possible.

Fetch/execute overlap timing example

Let's assume the CPU is executing a program that starts from the address 0x1000 and contains
the following instructions:

0x1000 INC A
0x1001 LDH (n), A
0x1003 RST 0x08
0x0008 NOP

The following timing diagram shows all memory operations done by the CPU, and the fetch
and execute stages of each instruction:

17

CLK 4 MiHz
PHI 1 MiHz
Mem R/W
Mem addr
Before INC A
INC A

LDH (n), A
RST 0x08
NOP

After NOP

JUuvuryurirvrryryuryrrrryryuryrrrruuyuuyye

Jo—rr =7 7 7 I °—J ©$1_1T 1

LI LT

—(Riopcode | R:opcode | R:n] w:A] Riopcode }—————{W:msb(PC)] W:Isb(PC) J Rropcode] R:opcode }

—oxteee] oxtoor | oxtoe2] oxFroosn | oxtees }——{ sp-1 | sp2

]| oxeees | oxoooo)

~ execute }

execute [

—{M1:fetch [M2: execute }

————— M1:fetch | M2-4: execute }
{“m1:fetch | M2-5: execute —-
{M1:fetch [M2: execute }-
{ M1: fetch ’

Figure 5.4: Fetch/execute overlap example

18

Chapter 6
Sharp SM83 instruction set

6.1 Overview
CB opcode prefix

Undefined opcodes

19

6.2 8-bit load instructions

LD r, r': Load register (register)
Load to the 8-bit register r, data from the 8-bit registerr'.

Opcode 0bo1xxxyyy/various Duration 1 machine cycle
Length 1 byte: opcode Flags -
Simple timing and pseudocode

M-cycle
Mem R/W

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x41: # example: LD B, C
B=2C

Detailed timing and pseudocode

M-cycle — VL
Addr bus —
Data bus —

IDUop —

ALU op — ey

Misc op — S
M2/M1

if IR == 0x41: # example: LD B, C
IR, intr = fetch_cycle(addr=PC); PC = PC + 1; B = C

20

LD r, n: Load register (immediate)
Load to the 8-bit register r, the immediate datan.
Opcode 0boRxxx110/various Duration 2 machine cycles

Length 2 bytes: opcode +n Flags -
Simple timing and pseudocode

M-cycle —{ W X 2 -
Mem R/W —{"opcode X Rn)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x06: # example: LD B, n
B = read_memory(addr=PC); PC = PC + 1

Detailed timing and pseudocode

M-cycle — i X
Addr bus — (
Data bus — (—Z—mem
(
(
(

M2 M3/M1)

PC PC

IR «<— mem

IDUop —
ALU op —
Misc op —

PC—PC+1 PC—PC+1

r«—27Z

X
X
X
X
X
X

U U

M2
if IR == ©0x06: # example: LD B, n
Z = read_memory(addr=PC); PC = PC + 1
M3/M1
IR, intr = fetch_cycle(addr=PC); PC = PC + 1; B = Z

21

LD r, (HL): Load register (indirect HL)
Load to the 8-bit register r, data from the absolute address specified by the 16-bit register HL.
Opcode 0bo1xxx110/various Duration 2 machine cycles

Length 1 byte: opcode Flags -
Simple timing and pseudocode

M-cycle —{ W X 2 -
Mem R/W —{— _opcode {™ Ridaa)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x46: # example: LD B, (HL)
B = read_memory(addr=HL)

Detailed timing and pseudocode

M-cycle — M1 M2 M3/M1 o
Addr bus —

X
(
Data bus — (—Z—mem
(
(
(

HL PC

IR «<— mem

PC—PC+1

IDUop —
ALU op —
Misc op —

r«—27Z

X
X
X
X
X
X

U U

M2
if IR == 0x46: # example: LD B, (HL)
Z = read_memory(addr=HL)
M3/M1
IR, intr = fetch_cycle(addr=PC); PC = PC + 1; B = Z

22

LD (HL), r: Load from register (indirect HL)
Load to the absolute address specified by the 16-bit register HL, data from the 8-bit register r.
Opcode 0bo1110xxx/various Duration 2 machine cycles

Length 1 byte: opcode Flags -
Simple timing and pseudocode

M-cycle —{ W X 2 -
Mem R/W —{— opcode ™ Widaa)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x70: # example: LD (HL), B
write_memory(addr=HL, data=B)

Detailed timing and pseudocode

M-cycle — i X
Addr bus — (
Data bus — (—mem—~
(
(
(

M2 M3/M1)

HL PC

IR «<— mem

IDUop —
ALU op —
Misc op —

PC—PC+1

X
X
X
X
X
X

P O L R L

M2

if IR == Ox70: # example: LD (HL), B
write_memory(addr=HL, data=B)
M3/M1
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

23

LD (HL), n: Load from immediate data (indirect HL)
Load to the absolute address specified by the 16-bit register HL, the immediate data n.
Opcode 0b00110110/0x36 Duration 3 machine cycles

Length 2 bytes: opcode +n Flags -
Simple timing and pseudocode

M-cycle —{ [X M2 X V3 =
Mem R/W —{Zopcode ¥ Rin X Win)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x36:
n = read_memory(addr=PC); PC = PC + 1
write_memory(addr=HL, data=n)

Detailed timing and pseudocode

M2 M3

M-cycle — Wi
Addr bus —
Data bus —

IDUop —

ALU op —

Misc op —

PC HL PC

Z <— mem mem «—Z IR <— mem

PC—PC+1 PC—PC+1

- e e aa
-
- U U

M2
if IR == 0x36:
Z = read_memory(addr=PC); PC = PC + 1
M3
write_memory(addr=HL, data=Z)
M4/M1
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

24

LD A, (BC): Load accumulator (indirect BC)
Load to the 8-bit A register, data from the absolute address specified by the 16-bit register BC.
Opcode 0b00VV1010/0x0A Duration 2 machine cycles

Length 1 byte: opcode Flags -
Simple timing and pseudocode

M-cycle —{ W X 2 -
Mem R/W —{— _opcode {™ Ridaa)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0Ox0A:
A = read_memory(addr=BC)

Detailed timing and pseudocode

M-cycle — M1 M2 M3/M1 o
Addr bus —

X
(
Data bus — (—Z—mem
(
(
(

BC PC

IR «<— mem

PC—PC+1

IDUop —
ALU op —
Misc op —

A—Z

X
X
X
X
X
X

U U

M2
if IR == Ox0A:
Z = read_memory(addr=BC)
M3/M1
IR, intr = fetch_cycle(addr=PC); PC = PC + 1; A = Z

25

LD A, (DE): Load accumulator (indirect DE)
Load to the 8-bit A register, data from the absolute address specified by the 16-bit register DE.
Opcode 0b00011010/0x1A Duration 2 machine cycles

Length 1 byte: opcode Flags -
Simple timing and pseudocode

M-cycle —{ W X 2 -
Mem R/W —{— _opcode {™ Ridaa)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0Ox1A:
A = read_memory(addr=DE)

Detailed timing and pseudocode

M-cycle — M1 M2 M3/M1 o
Addr bus —

X
(
Data bus — (—Z—mem
(
(
(

DE PC

IR «<— mem

PC—PC+1

IDUop —
ALU op —
Misc op —

A—Z

X
X
X
X
X
X

U U

M2
if IR == Ox1A:
Z = read_memory(addr=DE)
M3/M1
IR, intr = fetch_cycle(addr=PC); PC = PC + 1; A = Z

26

LD (BC), A: Load from accumulator (indirect BC)

Load to the absolute address specified by the 16-bit register BC, data from the 8-bit A register.
Opcode 0b0RVVV10/0x02 Duration 2 machine cycles

Length 1 byte: opcode Flags -
Simple timing and pseudocode

M-cycle —{ W X 2 -
Mem R/W —{— opcode ™ Widaa)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x02:
write_memory(addr=BC, data=A)

Detailed timing and pseudocode

M-cycle — M1 M2 M3/M1 o
Addr bus —

X
(
Data bus — (mem—a
(
(
(

BC PC

IR «<— mem

PC—PC+1

IDUop —
ALU op —
Misc op —

X
X
X
X
X
X

P O L R L

M2
if IR == 0x02:
write_memory(addr=BC, data=A)
M3/M1
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

27

LD (DE), A: Load from accumulator (indirect DE)

Load to the absolute address specified by the 16-bit register DE, data from the 8-bit A register.
Opcode 0b0VV10010/0x12 Duration 2 machine cycles

Length 1 byte: opcode Flags -
Simple timing and pseudocode

M-cycle —{ W X 2 -
Mem R/W —{— opcode ™ Widaa)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x12:
write_memory(addr=DE, data=A)

Detailed timing and pseudocode

M-cycle — M1 M2 M3/M1 o
Addr bus —

X
(
Data bus — (mem—a
(
(
(

DE PC

IR «<— mem

PC—PC+1

IDUop —
ALU op —
Misc op —

X
X
X
X
X
X

P O L R L

M2
if IR == 0x12:
write_memory(addr=DE, data=A)
M3/M1
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

28

LD A, (nn): Load accumulator (direct)
Load to the 8-bit A register, data from the absolute address specified by the 16-bit operand nn.

Opcode 0b11111010/0xFA Duration 4 machine cycles
Length 3 bytes: opcode + LSB(nn) + MSB(nn) Flags -
Simple timing and pseudocode

M-cycle — M1 X M2 X M3 X M4)
Mem R/W — opcode X R: Isb nn X__Rmsbnn X R: data)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == OxFA:
nn_lsb = read_memory(addr=PC); PC = PC + 1
nn_msb = read_memory(addr=PC); PC = PC + 1
nn = unsigned_16(1lsb=nn_Isb, msb=nn_msb)
A = read_memory(addr=nn)

Detailed timing and pseudocode

M2 M3 M4

M-cycle — i X
Addr bus — (
Data bus — (—Z—mem
(
(
(

M5/M1)

PC PC Wz PC

W «— mem Z — mem IR < mem

PC—PC+1 PC—PC+1 PC—PC+1

IDUop —
ALU op —
Misc op —

A—Z

e

X
X
X
X
X
X

U U

M2

if IR == OxFA:
Z = read_memory(addr=PC); PC
M3

W = read_memory(addr=PC); PC = PC + 1
M4
Z
H
I

PC + 1

= read_memory(addr=wz)
MS/M1
R, intr = fetch_cycle(addr=PC); PC = PC + 1; A = Z

29

LD (nn), A: Load from accumulator (direct)
Load to the absolute address specified by the 16-bit operand nn, data from the 8-bit A register.

Opcode 0b11101010/0xEA Duration 4 machine cycles
Length 3 bytes: opcode + LSB(nn) + MSB(nn) Flags -
Simple timing and pseudocode

M-cycle — M1 X M2 X M3 X M4)
Mem R/W — opcode X R: Isb nn X__Rmsbnn X W: data)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == OxEA:
nn_lsb = read_memory(addr=PC); PC = PC + 1
nn_msb = read_memory(addr=PC); PC = PC + 1
nn = unsigned_16(1lsb=nn_Isb, msb=nn_msb)
write_memory(addr=nn, data=A)

Detailed timing and pseudocode

M2 M3 M4

M-cycle — i X
Addr bus — (
Data bus — (—Z—mem
(
(
(

M5/M1)

PC PC Wz PC

W «— mem mem «— A IR < mem

PC—PC+1 PC—PC+1 PC—PC+1

IDUop —
ALU op —

Misc op —

e
-
- U U

M2
if IR == OxEA:
Z = read_memory(addr=PC); PC
M3
W = read_memory(addr=PC); PC = PC + 1
M4
write_memory(addr=WZ, data=A)
MS5/M1
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

PC + 1

30

LDH A, (C): Load accumulator (indirect 0xFFo0+C)

Load to the 8-bit A register, data from the address specified by the 8-bit C register. The full
16-bit absolute address is obtained by setting the most significant byte to 0xFF and the least
significant byte to the value of C, so the possible range is 0xFFO0-0xFFFF.

Opcode 0b11110010/0xF2 Duration 2 machine cycles
Length 1 byte: opcode Flags -
Simple timing and pseudocode

M-cycle —{ W X 2 -
Mem R/W —{— opcode {™ Ridaa)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0OxF2:
A = read_memory(addr=unsigned_16(1sb=C, msb=0xFF))

Detailed timing and pseudocode

M-cycle — i X
Addr bus — (
Data bus — (—Z—mem
(
(
(

M2 M3/M1)

QxFFRO+C PC

IR <— mem

IDUop —
ALU op —
Misc op —

A—Z

X
X
X
X PC—PC+1
X
X

U U

M2

if IR == OxF2:
Z = read_memory(addr=unsigned_16(1sb=C, msb=0xFF))
M3/M1
IR, intr = fetch_cycle(addr=PC); PC = PC + 1; A = Z

31

LDH (C), A: Load from accumulator (indirect 0xFFo0o+C)

Load to the address specified by the 8-bit C register, data from the 8-bit A register. The full
16-bit absolute address is obtained by setting the most significant byte to 0xFF and the least
significant byte to the value of C, so the possible range is 0xFFO0-0xFFFF.

Opcode 0b11100010/0xE2 Duration 2 machine cycles
Length 1 byte: opcode Flags -
Simple timing and pseudocode

M-cycle —{ W X 2 -
Mem R/W —{— _opcode ™ Widaa)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == OxE2:
write_memory(addr=unsigned_16(1sb=C, msb=0xFF), data=A)

Detailed timing and pseudocode

M-cycle — i X
Addr bus — (
Data bus — (—mem—a
(
(
(

M2 M3/M1)

QxFFRO+C PC

IR <— mem

IDUop —
ALU op —
Misc op —

X
X
X
X PC—PC+1
X
X

P O L R L

M2

if IR == OxE2:
write_memory(addr=unsigned_16(1sb=C, msb=0xFF), data=A)
M3/M1
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

32

LDH A, (n): Load accumulator (direct 0xFFe0+n)

Load to the 8-bit A register, data from the address specified by the 8-bit immediate datan. The
full 16-bit absolute address is obtained by setting the most significant byte to 0xFF and the
least significant byte to the value of n, so the possible range is 0xFFOR-0xFFFF.

Opcode 0b11110000/0xF0O Duration 3 machine cycles
Length 2 bytes: opcode +n Flags -
Simple timing and pseudocode

M-cycle —{ [X M2 X V3 =
Mem R/W opcode X Rin X R: data)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xF0O:
n = read_memory(addr=PC); PC = PC + 1
A = read_memory(addr=unsigned_16(1sb=n, msb=0xFF))

Detailed timing and pseudocode

M3

M-cycle — i X
Addr bus — (
Data bus — (—Z—mem
(
(
(

M2 M4/M1)

PC QxFFOO+Z PC

Z <— mem IR «<— mem

IDUop —
ALU op —
Misc op —

PC—PC+1 PC—PC+1

A—Z

-
- U U

M2
if IR == 0xFO:
Z = read_memory(addr=PC); PC = PC + 1
M3
Z = read_memory(addr=unsigned_16(1lsb=7Z, msb=0xFF))
M4/M1
IR, intr = fetch_cycle(addr=PC); PC = PC + 1; A = Z

33

LDH (n), A: Load from accumulator (direct 0xFF@0+n)

Load to the address specified by the 8-bit immediate data n, data from the 8-bit A register. The
full 16-bit absolute address is obtained by setting the most significant byte to 0xFF and the
least significant byte to the value of n, so the possible range is 0xFFOR-0xFFFF.

Opcode 0b11100000/0xEQ Duration 3 machine cycles
Length 2 bytes: opcode +n Flags -
Simple timing and pseudocode

M-cycle —{ [X M2 X V3 =
Mem R/W opcode X Rin X W: data)

opcode = read_memory(addr=PC); PC = PC + 1

if opcode == 0OxEO:
n = read_memory(addr=PC); PC = PC + 1
write_memory(addr=unsigned_16(1lsb=n, msb=0xFF), data=A)

Detailed timing and pseudocode

M-cycle — i X
Addr bus — (
Data bus — (—Z—mem
(
(
(

M2 M3 M4/M1)

PC QxFFOO+Z PC

mem «— A IR < mem

IDUop —
ALU op —
Misc op —

PC—PC+1

X
X
X
_PC—PC+1
X
X

-
- U U

M2
if IR == 0OxEO:
Z = read_memory(addr=PC); PC = PC + 1
M3
write_memory(addr=unsigned_16(1sb=Z, msb=0xFF), data=A)
M4/M1
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

34

LD A, (HL-): Load accumulator (indirect HL, decrement)

Load to the 8-bit A register, data from the absolute address specified by the 16-bit register HL.
The value of HL is decremented after the memory read.

Opcode 0b00111010/0x3A Duration 2 machine cycles
Length 1 byte: opcode Flags -
Simple timing and pseudocode

M-cycle —{ W W -
Mem R/IW —H opcode X R: data)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x3A:
A = read_memory(addr=HL); HL = HL - 1

Detailed timing and pseudocode

M-cycle — W1 X
Addr bus — (
Data bus — (—Z—mem
(
(
(

M2 M3/M1)

HL PC

IR < mem

IDUop —
ALU op —
Misc op —

HL < HL-1 PC— PC+1

A—Z

X
X
X
X
X
X

U U

M2
if IR == 0x3A:
Z = read_memory(addr=HL); HL = HL - 1
M3/M1
IR, intr = fetch_cycle(addr=PC); PC = PC + 1; A = Z

35

LD (HL-), A: Load from accumulator (indirect HL, decrement)

Load to the absolute address specified by the 16-bit register HL, data from the 8-bit A register.
The value of HL is decremented after the memory write.

Opcode 0b00110010/0x32 Duration 2 machine cycles
Length 1 byte: opcode Flags -
Simple timing and pseudocode

M-cycle —{ W W -
Mem R/W opcode X W: data)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x32:
write_memory(addr=HL, data=A); HL = HL - 1

Detailed timing and pseudocode

M-cycle — W1 X
Addr bus — (
Data bus — (mem—a
(
(
(

M2 M3/M1)

HL PC

IR < mem

IDUop —
ALU op —
Misc op —

HL < HL-1 PC— PC+1

X
X
X
X
X
X

U O L R N

M2
if IR == 0x32:
write_memory(addr=HL, data=A); HL = HL - 1
M3/M1
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

36

LD A, (HL+): Load accumulator (indirect HL, increment)

Load to the 8-bit A register, data from the absolute address specified by the 16-bit register HL.
The value of HL is incremented after the memory read.

Opcode 0b00101010/0x2A Duration 2 machine cycles
Length 1 byte: opcode Flags -
Simple timing and pseudocode

M-cycle —{ W W -
Mem R/IW —H opcode X R: data)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x2A:
A = read_memory(addr=HL); HL = HL + 1

Detailed timing and pseudocode

M-cycle — W1 X
Addr bus — (
Data bus — (—Z—mem
(
(
(

M2 M3/M1)

HL PC

IR < mem

IDUop —
ALU op —
Misc op —

HL < HL +1 PC— PC+1

A—Z

X
X
X
X
X
X

U U

M2
if IR == 0Ox2A:
Z = read_memory(addr=HL); HL = HL + 1
M3/M1
IR, intr = fetch_cycle(addr=PC); PC = PC + 1; A = Z

37

LD (HL+), A: Load from accumulator (indirect HL, increment)

Load to the absolute address specified by the 16-bit register HL, data from the 8-bit A register.
The value of HL is incremented after the memory write.

Opcode 0b00100010/0x22 Duration 2 machine cycles
Length 1 byte: opcode Flags -
Simple timing and pseudocode

M-cycle —{ W W -
Mem R/W opcode X W: data)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x22:
write_memory(addr=HL, data=A); HL = HL + 1

Detailed timing and pseudocode

M-cycle — M1 M2 M3/M1)
Addr bus —

X
(
Data bus — (mem—a
(
(
(

HL PC

IR < mem

IDUop —
ALU op —
Misc op —

X
X
X
HL—HL+1 Y PC—PC+1
X
X

U O L R N

M2
if IR == 0x22:
write_memory(addr=HL, data=A); HL = HL + 1
M3/M1
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

38

6.3 16-bit load instructions

LD rr, nn: Load 16-bit register / register pair
Load to the 16-bit register rr, the immediate 16-bit data nn.
Opcode 0boRxx00Q1/various Duration 3 machine cycles

Length 3 bytes: opcode + LSB(nn) + MSB(nn) Flags -
Simple timing and pseudocode

M-cycle —{ M X M2 X B =
Mem R/W opcode X R:Isb nn X Rmsbn)

opcode = read_memory(addr=PC); PC = PC + 1

if opcode == 0x01: # example: LD BC, nn
nn_lsb = read_memory(addr=PC); PC = PC + 1
nn_msb = read_memory(addr=PC); PC = PC + 1
nn = unsigned_16(1sb=nn_Isb, msb=nn_msb)
BC = nn

Detailed timing and pseudocode

M-cycle — W1
Addr bus —
Data bus —

IDUop —

ALU op —

Misc op —

M2 M3 M4/M1 +

PC PC PC

Z — mem W «— mem IR «— mem

PC—PC+1

e e

X
X
X
PC—PC+1 f PC—PC+1
X
X

T i e
J J U

rr — WZ

M2
if IR == 0x01: # example: LD BC, nn
Z = read_memory(addr=PC); PC = PC + 1
M3
W = read_memory(addr=PC); PC = PC + 1
M4/M1
IR, intr = fetch_cycle(addr=PC); PC = PC + 1; BC = WZ

39

LD (nn), SP: Load from stack pointer (direct)
Load to the absolute address specified by the 16-bit operand nn, data from the 16-bit SP register.
Opcode 0b0VVV1000/0x08 Duration 5 machine cycles

Length 3 bytes: opcode + LSB(nn) + MSB(nn) Flags -
Simple timing and pseudocode

M-cycle —{ M1 X M2 X V3 X M4 X M5 =
Mem R/W — opcode X R:Z X R:W X W: SPH X W: SPL)

opcode = read_memory(addr=PC); PC = PC + 1

if opcode == 0x08:
nn_lsb = read_memory(addr=PC); PC = PC + 1
nn_msb = read_memory(addr=PC); PC = PC + 1
nn = unsigned_16(1lsb=nn_Isb, msb=nn_msb)
write_memory(addr=nn, data=1sb(SP)); nn = nn
write_memory(addr=nn, data=msb(SP))

+
.

Detailed timing and pseudocode

M-cycle — i X
Addr bus — (
Data bus — (—Z—mem
(
(
(

M2 M3 X M4 M5 M6/M1)

PC PC X Wz Wz PC

W—mem \ mem«— SPL mem — SPH IR < mem

IDUop —
ALU op —
Misc op —

PC—PC+1 PC—PC+1 X WZ —WZ+1

X
X

PC—PC+1

e
-
- U U

M2
if IR == 0x08:
Z = read_memory(addr=PC); PC = PC + 1
M3
W = read_memory(addr=PC); PC = PC + 1
M4
write_memory(addr=WZ, data=1sb(SP)); WZ = WZ + 1
MS
write_memory(addr=WZ, data=msb(SP))
M6/M1
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

40

LD SP, HL: Load stack pointer from HL
Load to the 16-bit SP register, data from the 16-bit HL register.

Opcode 0b11111001/0xF9 Duration 2 machine cycles
Length 1 byte: opcode Flags -
Simple timing and pseudocode

M-cycle —{ W X 2 -
Mem R/W —{—_opode ¥)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xF9:
SP = HL

Detailed timing and pseudocode

M-cycle — M1 M2 M3/M1 o
Addr bus —

X
(
Data bus — (
(
(
(

HL PC

IR «<— mem

IDUop —
ALU op —
Misc op —

X
X
X
SP — HL Y PC—PC+1
X
X

P O L R L

if IR == OxF9:
SP = HL

IR, intr = fetch_cycle(addr=PC); PC = PC + 1

41

PUSH rr: Push to stack
Push to the stack memory, data from the 16-bit register rr.
Opcode 0b11xx0101/various Duration 4 machine cycles

Length 1 byte: opcode Flags -
Simple timing and pseudocode

M-cycle — M1 X M2 X M3 X M4)
M em R/W _(opcode X x W: msb rr X W:Isbrr)

opcode = read_memory(addr=PC); PC = PC + 1

if opcode == 0xC5: # example: PUSH BC
SP =SP -1
write_memory(addr=SP, data=msb(BC)); SP = SP - 1
write_memory(addr=SP, data=1sb(BC))

Detailed timing and pseudocode

M-cycle — i X Y
Addr bus — (X
Data bus — (Y mem — msbrr | mem<isbrr J IR mem
(X
(X
(X

M2 X M3 X M4 M5/M1)

SP X SP X SP PC

IDUop —
ALU op —
Misc op —

SP—sP-1 X sp—sp-1_ X SP — SP PC —PC+1

X X
X X

P O L R L

M2
if IR == 0xC5: # example: PUSH BC
SP = SP - 1
M3
write_memory(addr=SP, data=msb(BC)); SP = SP
M4
write_memory(addr=SP, data=1sb(BC))
MS5/M1
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

|
[N

42

POP rr: Pop from stack
Pops to the 16-bit register rr, data from the stack memory.

This instruction does not do calculations that affect flags, but POP AF completely replaces the
F register value, so all flags are changed based on the 8-bit data that is read from memory.

Opcode 0b11xx0001/various Duration 3 machine cycles
Length 1 byte: opcode Flags See the instruction description
Simple timing and pseudocode

M —cycle — M1 X M2 X M3 -
Mem R/W — opcode X R:Isb rr X R:msbrr)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xC1: # example: POP BC
1sb = read_memory(addr=SP); SP = SP + 1
msb = read_memory(addr=SP); SP = SP + 1
BC = unsigned_16(1lsb=1sb, msb=msb)

Detailed timing and pseudocode

M-cycle — Wi
Addr bus —
Data bus —

IDUop —

ALU op —

Misc op —

M2 M3 M4/M1)

SP SP PC

Z — mem W — mem IR < mem

SP—SP+1 SP—SP+1 PC— PC+1

e e e
e e e T
S oS S S o
J J U U

rr — WZ

M2
if IR == 0xC1: # example: POP BC
Z = read_memory(addr=SP); SP = SP + 1
M3
W = read_memory(addr=SP); SP = SP + 1
M4/M1
IR, intr = fetch_cycle(addr=PC); PC = PC + 1; BC = WZ

43

LD HL, SP+e: Load HL from adjusted stack pointer
Load to the HL register, 16-bit data calculated by adding the signed 8-bit operand e to the 16-
bit value of the SP register.

Opcode 0b11111000/0xF8 Duration 3 machine cycles
Length 2 bytes: opcode +e Flags Z=0,N=0,H=W,C=%W
Simple timing and pseudocode

M-cycle —{ M X vz Y B -
Mem R/W —{_opcode X Re X)

opcode = read_memory(addr=PC); PC = PC + 1

if opcode == 0xF8:
e = signed_8(read_memory(addr=PC)); PC = PC + 1
result, carry_per_bit = SP + e

HL = result
flags.Z = ©
flags.N = 0

flags.H = 1 if carry_per_bit[3] else @
flags.C = 1 if carry_per_bit[7] else @

Detailed timing and pseudocode

M-cycle — W1
Addr bus —
Data bus —

IDUop —

ALU op —

Misc op —

M2 M3 M4/M1)

PC

IR — mem

X
0x0000 X PC
Z < mem x

PC—PC+1 X PC—PC+1

L—SPL+z [H<SPH+cadj

X

e e a
oS S 2 s S >
- U U

M2
if IR == 0xF8:
Z = read_memory(addr=PC); PC = PC + 1
M3
result, carry_per_bit = 1sb(SP) + Z
L = result

flags.Z = 0
flags.N = 0
flags.H = 1 if carry_per_bit[3] else 0
flags.C = 1 if carry_per_bit[7] else 0

Z_sign = bit(7, Z)

M4/M1

adj = OxFF if Z_sign else 0x00

result = msb(SP) + adj + flags.C

H = result

IR, intr = fetch_cycle(addr=PC); PC = PC + 1

44

6.4 8-bit arithmetic and logical instructions

ADD r: Add (register)
Adds to the 8-bit A register, the 8-bit register r, and stores the result back into the A register.

Opcode 0b100ROxxx/Various Duration 1 machine cycle
Length 1 byte: opcode Flags Z=W,N=0,H=%W,C=%W
Simple timing and pseudocode

M-cycle
Mem R/W

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x80: # example: ADD B
result, carry_per_bit = A + B
A = result
flags.Z = 1 if result == 0 else 0
flags.N = 0
flags.H = 1 if carry_per_bit[3] else 0
flags.C = 1 if carry_per_bit[7] else 0

Detailed timing and pseudocode

M-cycle — M1 X M2/M1 o
Addr bus —
Data bus —

IDUop —

ALUop —

Miscop — E—
M2/M1

if IR == 0x80: # example: ADD B
result, carry_per_bit = A + B
A = result
flags.Z = 1 if result == 0 else @
flags.N %]
flags.H = 1 if carry_per_bit[3] else 0
flags.C = 1 if carry_per_bit[7] else 0
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

45

ADD (HL): Add (indirect HL)
Adds to the 8-bit A register, data from the absolute address specified by the 16-bit register HL,
and stores the result back into the A register.

Opcode 0b10000110/0x86 Duration 2 machine cycles
Length 1 byte: opcode Flags Z=W,N=0,H=W,C=%W
Simple timing and pseudocode

M-cycle —{ Wi s -
Mem R/W — opcode X R: data)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x86:
data = read_memory(addr=HL)
result, carry_per_bit = A + data
A = result
flags.Z 1 if result == 0 else 0
flags.N = 0
flags.H = 1 if carry_per_bit[3] else @
flags.C = 1 if carry_per_bit[7] else @

Detailed timing and pseudocode

M-cycle — W1 X X
Addr bus — (X
Data bus — (—zZ—mem | R mem
(X
(X
(X

M2 M3/M1)

HL PC

IDUop —
ALU op —
Misc op —

PC— PC+1

A—A+7Z

U U

M2

if IR == 0x86:
Z = read_memory(addr=HL)
M3/M1
result, carry_per_bit = A + Z
A = result
flags.Z = 1 if result == 0 else 0
flags.N = 0
flags.H = 1 if carry_per_bit[3] else 0
flags.C = 1 if carry_per_bit[7] else 0
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

46

ADD n: Add (immediate)
Adds to the 8-bit A register, the immediate data n, and stores the result back into the A register.
Opcode 0b11000110/0xC6 Duration 2 machine cycles

Length 2 bytes: opcode +n Flags Z=%W,N=0,H=%W,C=W
Simple timing and pseudocode

M-cycle —{ W —w -
Mem R/W —{"opcode ¥ Rn)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xC6:
n = read_memory(addr=PC); PC = PC + 1
result, carry_per_bit = A + n
A = result
flags.Z = 1 if result == 0 else 0
flags.N = 0
flags.H = 1 if carry_per_bit[3] else 0
flags.C = 1 if carry_per_bit[7] else 0

Detailed timing and pseudocode

M-Cyde — M1 M2 M3/M1 e
Addr bus —
Data bus —
IDUop —
ALU op —

Miscop —

PC PC

Z — mem IR <— mem

A—A+Z

e S e e e

X
X
X
PC—PC+1 f PC—PC+1
X
X

- J U

M2

if IR == 0xC6:
Z = read_memory(addr=PC); PC = PC + 1
M3/M1
result, carry_per_bit = A + Z
A = result
flags.Z = 1 if result == 0 else O
flags.N = 0
flags.H = 1 if carry_per_bit[3] else 0
flags.C = 1 if carry_per_bit[7] else 0
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

47

ADC r: Add with carry (register)

Adds to the 8-bit A register, the carry flag and the 8-bit register r, and stores the result back
into the A register.

Opcode 0b10001xxx/various Duration 1 machine cycle
Length 1 byte: opcode Flags Z=W,N=0,H=W,C=%W
Simple timing and pseudocode

M-cycle
Mem R/W

opcode = read_memory(addr=PC); PC = PC + 1

if opcode == 0x88: # example: ADC B
result, carry_per_bit = A + B + flags.C
A = result

flags.Z = 1 if result == 0 else 0
flags.N = 0

flags.H = 1 if carry_per_bit[3] else @
flags.C = 1 if carry_per_bit[7] else @

Detailed timing and pseudocode

M-cycle — M1 X M2/M1)
Addr bus —
Data bus —

IDUop —

ALUop —

Misc op — R
M2/M1

if IR == 0x88: # example: ADC B
result, carry_per_bit = A + B + flags.C
A = result
flags.Z = 1 if result == 0 else 0
flags.N = 0
flags.H = 1 if carry_per_bit[3] else 0
flags.C = 1 if carry_per_bit[7] else 0
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

48

ADC (HL): Add with carry (indirect HL)
Adds to the 8-bit A register, the carry flag and data from the absolute address specified by the
16-bit register HL, and stores the result back into the A register.

Opcode 0b10001110/0x8E Duration 2 machine cycles
Length 1 byte: opcode Flags Z=W,N=0,H=W,C=%W
Simple timing and pseudocode

M-cycle —{ Wi s -
Mem R/W — opcode X R: data)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == Ox8E:
data = read_memory(addr=HL)
result, carry_per_bit = A + data + flags.C
A = result
flags.Z 1 if result == 0 else 0
flags.N = 0
flags.H = 1 if carry_per_bit[3] else @
flags.C = 1 if carry_per_bit[7] else @

Detailed timing and pseudocode

M-cycle — W1 X X
Addr bus — (X
Data bus — (—zZ—mem | R mem
(X
(X
(X

M2 M3/M1)

HL PC

IDUop —
ALU op —
Misc op —

PC— PC+1

A—A+Z

U U

M2

if IR == 0x8E:
Z = read_memory(addr=HL)
M3/M1
result, carry_per_bit = A + Z + flags.C
A = result
flags.Z = 1 if result == 0 else 0
flags.N = 0
flags.H = 1 if carry_per_bit[3] else 0
flags.C = 1 if carry_per_bit[7] else 0
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

49

ADC n: Add with carry (immediate)
Adds to the 8-bit A register, the carry flag and the immediate data n, and stores the result back
into the A register.

Opcode 0b11001110/0xCE Duration 2 machine cycles
Length 2 bytes: opcode +n Flags Z=W,N=0,H=W,C=%W
Simple timing and pseudocode

M-cycle — M1 X M2 -
Mem R/W —{opcode X Rn)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xCE:
n = read_memory(addr=PC); PC = PC + 1
result, carry_per_bit = A + n + flags.C
A = result
flags.Z 1 if result == 0 else 0
flags.N = 0
flags.H = 1 if carry_per_bit[3] else @
flags.C = 1 if carry_per_bit[7] else @

Detailed timing and pseudocode

M-cycle — W1
Addr bus —
Data bus —

IDUop —

ALU op —

Misc op —

M2 M3/M1)

PC PC

PC— PC+1 PC— PC+1

A—A+Z

e e a

X
X
Z—mem | IR<mem
X
X
X

U U

M2

if IR == 0xCE:
Z = read_memory(addr=PC); PC = PC + 1
M3/M1
result, carry_per_bit = A + Z + flags.C
A = result
flags.Z = 1 if result == 0 else 0
flags.N = 0
flags.H = 1 if carry_per_bit[3] else 0
flags.C = 1 if carry_per_bit[7] else 0
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

50

SUB r: Subtract (register)

Subtracts from the 8-bit A register, the 8-bit register r, and stores the result back into the A
register.

Opcode 0b10010xxx/various Duration 1 machine cycle
Length 1 byte: opcode Flags Z=W,N=1,H=%W,C=%W
Simple timing and pseudocode

M-cycle
Mem R/W

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x90: # example: SUB B
result, carry_per_bit = A - B
A = result

flags.Z = 1 if result == 0 else 0
flags.N =1

flags.H = 1 if carry_per_bit[3] else @
flags.C = 1 if carry_per_bit[7] else @

Detailed timing and pseudocode

M-cycle — M1 X M2/M1)
Addr bus —
Data bus —

IDUop —

ALUop —

Misc op — R
M2/M1

if IR == 0x90: # example: SUB B
result, carry_per_bit = A - B
A = result
flags.Z = 1 if result == 0 else 0
flags.N =1
flags.H = 1 if carry_per_bit[3] else 0
flags.C = 1 if carry_per_bit[7] else 0
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

51

SUB (HL): Subtract (indirect HL)
Subtracts from the 8-bit A register, data from the absolute address specified by the 16-bit
register HL, and stores the result back into the A register.

Opcode 0b10010110/0x96 Duration 2 machine cycles
Length 1 byte: opcode Flags Z=W,N=1,H=%W,C=%W
Simple timing and pseudocode

M-cycle —{ Wi s -
Mem R/W — opcode X R: data)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x96:
data = read_memory(addr=HL)
result, carry_per_bit = A - data
A = result
flags.Z 1 if result == 0 else 0
flags.N =1
flags.H = 1 if carry_per_bit[3] else @
flags.C = 1 if carry_per_bit[7] else @

Detailed timing and pseudocode

M-cycle — W1 X X
Addr bus — (X
Data bus — (—zZ—mem | R mem
(X
(X
(X

M2 M3/M1)

HL PC

IDUop —
ALU op —
Misc op —

PC— PC+1

A—A-7Z

U U

M2

if IR == 0x96:
Z = read_memory(addr=HL)
M3/M1
result, carry_per_bit = A - Z
A = result
flags.Z = 1 if result == 0 else 0
flags.N =1
flags.H = 1 if carry_per_bit[3] else 0
flags.C = 1 if carry_per_bit[7] else 0
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

52

SUB n: Subtract (immediate)
Subtracts from the 8-bit A register, the immediate data n, and stores the result back into the A
register.

Opcode 0b11010110/0xD6 Duration 2 machine cycles
Length 2 bytes: opcode +n Flags Z=W,N=1,H=%W,C=%W
Simple timing and pseudocode

M-cycle — M1 X M2 -
Mem R/W —{opcode X Rn)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xD6:
n = read_memory(addr=PC); PC = PC + 1
result, carry_per_bit = A - n
A = result
flags.Z 1 if result == 0 else 0
flags.N =1
flags.H = 1 if carry_per_bit[3] else @
flags.C = 1 if carry_per_bit[7] else @

Detailed timing and pseudocode

M-cycle — W1
Addr bus —
Data bus —

IDUop —

ALU op —

Misc op —

M2 M3/M1)

PC PC

PC— PC+1 PC— PC+1

A—A-7Z

e e a

X
X
Z—mem | IR<mem
X
X
X

U U

M2

if IR == 0xD6:
Z = read_memory(addr=PC); PC = PC + 1
M3/M1
result, carry_per_bit = A - Z
A = result
flags.Z = 1 if result == 0 else 0
flags.N =1
flags.H = 1 if carry_per_bit[3] else 0
flags.C = 1 if carry_per_bit[7] else 0
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

53

SBC r: Subtract with carry (register)

Subtracts from the 8-bit A register, the carry flag and the 8-bit register r, and stores the result
back into the A register.

Opcode 0b10011xxx/various Duration 1 machine cycle
Length 1 byte: opcode Flags Z=W,N=1,H=%W,C=%W
Simple timing and pseudocode

M-cycle
Mem R/W

opcode = read_memory(addr=PC); PC = PC + 1

if opcode == 0x98: # example: SBC B
result, carry_per_bit = A - B - flags.C
A = result

flags.Z = 1 if result == 0 else 0
flags.N =1

flags.H = 1 if carry_per_bit[3] else @
flags.C = 1 if carry_per_bit[7] else @

Detailed timing and pseudocode

M-cycle — M1 X M2/M1)
Addr bus —
Data bus —

IDUop —

ALUop —

Miscop — ———)
M2/M1

if IR == 0x98: # example: SBC B
result, carry_per_bit = A - B - flags.C
A = result
flags.Z = 1 if result == 0 else 0
flags.N =1
flags.H = 1 if carry_per_bit[3] else 0
flags.C = 1 if carry_per_bit[7] else 0
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

54

SBC (HL): Subtract with carry (indirect HL)
Subtracts from the 8-bit A register, the carry flag and data from the absolute address specified
by the 16-bit register HL, and stores the result back into the A register.

Opcode 0b10011110/0x9E Duration 2 machine cycles
Length 1 byte: opcode Flags Z=W,N=1,H=%W,C=%W
Simple timing and pseudocode

M-cycle —{ Wi s -
Mem R/W — opcode X R: data)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == OxOE:
data = read_memory(addr=HL)
result, carry_per_bit = A - data - flags.C
A = result
flags.Z 1 if result == 0 else 0
flags.N =1
flags.H = 1 if carry_per_bit[3] else @
flags.C = 1 if carry_per_bit[7] else @

Detailed timing and pseudocode

M-cycle — W1 X X
Addr bus — (X
Data bus — (—zZ—mem | R mem
(X
(X
(X

M2 M3/M1)

HL PC

IDUop —
ALU op —
Misc op —

PC— PC+1

A—A-Z

U U

M2

if IR == Ox9E:
Z = read_memory(addr=HL)
M3/M1
result, carry_per_bit = A - Z - flags.C
A = result
flags.Z = 1 if result == 0 else 0
flags.N =1
flags.H = 1 if carry_per_bit[3] else 0
flags.C = 1 if carry_per_bit[7] else 0
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

55

SBC n: Subtract with carry (immediate)
Subtracts from the 8-bit A register, the carry flag and the immediate data n, and stores the
result back into the A register.

Opcode 0b11011110/0xDE Duration 2 machine cycles
Length 2 bytes: opcode +n Flags Z=W,N=1,H=%W,C=%W
Simple timing and pseudocode

M-cycle — M1 X M2 -
Mem R/W —{opcode X Rn)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0OxDE:
n = read_memory(addr=PC); PC = PC + 1
result, carry_per_bit = A - n - flags.C
A = result
flags.Z 1 if result == 0 else 0
flags.N =1
flags.H = 1 if carry_per_bit[3] else @
flags.C = 1 if carry_per_bit[7] else @

Detailed timing and pseudocode

M-cycle — W1
Addr bus —
Data bus —

IDUop —

ALU op —

Misc op —

M2 M3/M1)

PC PC

PC— PC+1 PC— PC+1

A—A-Z

e e a

X
X
Z—mem | IR<mem
X
X
X

U U

M2

if IR == 0OxDE:
Z = read_memory(addr=PC); PC = PC + 1
M3/M1
result, carry_per_bit = A - Z - flags.C
A = result
flags.Z = 1 if result == 0 else 0
flags.N =1
flags.H = 1 if carry_per_bit[3] else 0
flags.C = 1 if carry_per_bit[7] else 0
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

56

CP r: Compare (register)

Subtracts from the 8-bit A register, the 8-bit register r, and updates flags based on the result.
This instruction is basically identical to SUB r, but does not update the A register.

Opcode 0b10111xxx/various Duration 1 machine cycle
Length 1 byte: opcode Flags Z=W,N=1,H=%W,C=%W
Simple timing and pseudocode

M-cycle
Mem R/W

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xB8: # example: CP B
result, carry_per_bit = A - B
flags.Z = 1 if result == 0 else 0
flags.N 1
flags.H = 1 if carry_per_bit[3] else @
flags.C = 1 if carry_per_bit[7] else @

Detailed timing and pseudocode

M-cycle — M1 X M2/M1)
Addr bus —
Data bus —

IDUop —

ALU op —

Misc op — R
M2/M1

if IR == 0xB8: # example: CP B
result, carry_per_bit = A - B
flags.Z = 1 if result == 0 else 0
flags.N =1
flags.H = 1 if carry_per_bit[3] else 0
flags.C = 1 if carry_per_bit[7] else 0
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

57

CP (HL): Compare (indirect HL)

Subtracts from the 8-bit A register, data from the absolute address specified by the 16-bit
register HL, and updates flags based on the result. This instruction is basically identical to SUB
(HL), but does not update the A register.

Opcode 0b10111110/0xBE Duration 2 machine cycles
Length 1 byte: opcode Flags Z=W,N=1,H=W,C=%W
Simple timing and pseudocode

M-cycle —{ W = -
Mem R/W —{— opcode {™ Ridaa)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == OxBE:
data = read_memory(addr=HL)
result, carry_per_bit = A - data
flags.Z = 1 if result == 0 else 0
flags.N =1
flags.H = 1 if carry_per_bit[3] else O
flags.C = 1 if carry_per_bit[7] else O

Detailed timing and pseudocode

M-cycle — W Y
Addr bus — (
Data bus — (—Z—mem
(
(
(

M2 M3/M1 +

HL PC

IR < mem

PC—PC+1

IDUop —
ALU op —
Miscop —

A-Z

X
X
X
X
X
X

U I L

M2
if IR == OxBE:
Z = read_memory(addr=HL)
M3/M1
result, carry_per_bit = A - Z
flags.Z = 1 if result == 0 else 0
flags.N 1
flags.H = 1 if carry_per_bit[3] else @
flags.C = 1 if carry_per_bit[7] else 0
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

58

CP n: Compare (immediate)
Subtracts from the 8-bit A register, the immediate data n, and updates flags based on the result.
This instruction is basically identical to SUB n, but does not update the A register.

Opcode 0b11111110/0xFE Duration 2 machine cycles
Length 2 bytes: opcode +n Flags Z=W,N=1,H=%W,C=%W
Simple timing and pseudocode

M-cycle — M1 X M2 -
Mem R/W —{opcode X Rn)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == OxFE:
n = read_memory(addr=PC); PC = PC + 1
result, carry_per_bit = A - n
flags.Z = 1 if result == 0 else 0
flags.N 1
flags.H = 1 if carry_per_bit[3] else @
flags.C = 1 if carry_per_bit[7] else @

Detailed timing and pseudocode

M-cycle — W1 2
Addr bus —
Data bus —
IDUop —
ALU op —

Misc op —

M3/M1)

PC PC

PC— PC+1 PC— PC+1

A-Z

e e a

X
X
Z—mem _J IR<mem
X
X
X

U U

M2
if IR == OxFE:
Z = read_memory(addr=PC); PC = PC + 1
M3/M1
result, carry_per_bit = A - Z
flags.Z = 1 if result == 0 else 0

flags.N =1
flags.H = 1 if carry_per_bit[3] else 0
flags.C = 1 if carry_per_bit[7] else 0

59

INC r: Increment (register)
Increments data in the 8-bit register r.

Opcode 0boRxxx100/various Duration 1 machine cycle
Length 1 byte: opcode Flags Z=W,N=0,H=%W
Simple timing and pseudocode

M-cycle
Mem R/W

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x04: # example: INC
result, carry_per_bit =B + 1

B = result

flags.Z = 1 if result == 0 else 0
flags.N 9]

flags.H = 1 if carry_per_bit[3] else 0

93]

Detailed timing and pseudocode

M-cycle — M1 X M2/M1 -
Addr bus —
Data bus —

IDU op —

ALUop —

Miscop — E—
M2/M1

if IR == 0x04: # example: INC B
result, carry_per_bit =B + 1
B = result
flags.Z = 1 if result == 0 else 0
flags.N %]
flags.H = 1 if carry_per_bit[3] else 0
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

60

INC (HL): Increment (indirect HL)
Increments data at the absolute address specified by the 16-bit register HL.
Opcode 0b00110100/0x34 Duration 3 machine cycles

Length 1 byte: opcode Flags Z=W,N=0,H=%W
Simple timing and pseudocode

M-cycle — M1 X M2 X M3)
Mem R/W — opcode X R: data X W: data)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x34:
data = read_memory(addr=HL)
result, carry_per_bit = data + 1
write_memory(addr=HL, data=result)
flags.Z = 1 if result == 0 else 0
flags.N = 0
flags.H = 1 if carry_per_bit[3] else 0

Detailed timing and pseudocode

M-cycle — W Y
Addr bus — (
Data bus — (—Z—mem
(
(
(

M2 M3 M4/M1 +

HL HL PC

mem «— ALU IR < mem

IDUop —
ALU op —
Misc op —

mem «— Z +1

X
X
X
X PC—PC+1
X
X

s B B e o >
— J U U

M2

if IR == 0x34:
Z = read_memory(addr=HL)
M3
result, carry_per_bit = 7Z + 1
write_memory(addr=HL, data=result)
flags.Z = 1 if result == 0 else @

flags.N = 0
flags.H = 1 if carry_per_bit[3] else 0
M4/M1

IR, intr = fetch_cycle(addr=PC); PC = PC + 1

61

DEC r: Decrement (register)
Decrements data in the 8-bit register r.

Opcode 0boRxxx101/various Duration 1 machine cycle
Length 1 byte: opcode Flags Z=W,N=1,H=%W
Simple timing and pseudocode

M-cycle
Mem R/W

opcode = read_memory(addr=PC); PC = PC + 1
example: DEC B
if opcode == 0x05:
result, carry_per_bit =B - 1
B = result
flags.Z = 1 if result == 0 else 0
flags.N =1
flags.H = 1 if carry_per_bit[3] else 0

Detailed timing and pseudocode

M-cycle — M1 X M2/M1 -
Addr bus —
Data bus —

IDU op —

ALUop —

Miscop — E—
M2/M1

if IR == 0x05: # example: DEC B
result, carry_per_bit =B - 1
B = result
flags.Z = 1 if result == 0 else 0
flags.N =1
flags.H = 1 if carry_per_bit[3] else 0
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

62

DEC (HL): Decrement (indirect HL)
Decrements data at the absolute address specified by the 16-bit register HL.
Opcode 0b00110101/0x35 Duration 3 machine cycles

Length 1 byte: opcode Flags Z=W,N=1,H=%W
Simple timing and pseudocode

M-cycle — M1 X M2 X M3)
Mem R/W — opcode X R: data X W: data)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x35:
data = read_memory(addr=HL)
result, carry_per_bit = data - 1
write_memory(addr=HL, data=result)
flags.Z = 1 if result == 0 else 0
flags.N =1
flags.H = 1 if carry_per_bit[3] else 0

Detailed timing and pseudocode

M-cycle — W Y
Addr bus — (
Data bus — (—Z—mem
(
(
(

M2 M3 M4/M1 +

HL HL PC

mem «— ALU IR < mem

IDUop —
ALU op —
Misc op —

mem «—Z-1

X X
X X
X X
X X PC—PC+1
X X
X X

- J U U

M2

if IR == 0x35:
Z = read_memory(addr=HL)
M3
result, carry_per_bit =72 - 1
write_memory(addr=HL, data=result)
flags.Z = 1 if result == 0 else @

flags.N =1
flags.H = 1 if carry_per_bit[3] else 0
M4/M1

IR, intr = fetch_cycle(addr=PC); PC = PC + 1

63

AND r: Bitwise AND (register)
Performs a bitwise AND operation between the 8-bit A register and the 8-bit register r, and
stores the result back into the A register.

Opcode 0b10100xxx/various Duration 1 machine cycle
Length 1 byte: opcode Flags Z=W,N=0,H=1,C=0
Simple timing and pseudocode

M-cycle
Mem R/W

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xAQ: # example: AND
result = A& B
A = result

vs]

flags.Z = 1 if result == 0 else 0
flags.N = 0
flags.H =1
flags.C = ©

Detailed timing and pseudocode

M-cycle — M1 X M2/M1)
Addr bus —
Data bus —

IDUop —

ALUop —

Miscop — ———)
M2/M1

if IR == OxAQ: # example: AND B
result = A& B
A = result
flags.Z =
flags.N =
flags.H
flags.C
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

if result == 0 else 0

1
Q
1
]

64

AND (HL): Bitwise AND (indirect HL)
Performs a bitwise AND operation between the 8-bit A register and data from the absolute
address specified by the 16-bit register HL, and stores the result back into the A register.

Opcode 0b10100110/0xA6 Duration 2 machine cycles
Length 1 byte: opcode Flags Z=W,N=0,H=1,C=0
Simple timing and pseudocode

M-cycle —{ Wi s -
Mem R/W — opcode X R: data)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xA6G:

data = read_memory(addr=HL)

result = A & data

A = result

flags.Z = 1 if result == 0 else 0
flags.N = 0
flags.H =1
flags.C = ©

Detailed timing and pseudocode

M-cycle — W1 X X
Addr bus — (X
Data bus — (—zZ—mem | R mem
(X
(X
(X

M2 M3/M1

HL

IDUop —
ALU op —
Misc op —

PC— PC+1

A—AandZ

=

PC)
)
)
)
)

M2

if IR == 0OxAG:
Z = read_memory(addr=HL)
M3/M1
result = A & Z
A = result
flags.Z =
flags.N =
flags.H
flags.C
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

if result == 0 else 0

1
Q
1
Q

65

AND n: Bitwise AND (immediate)

Performs a bitwise AND operation between the 8-bit A register and immediate data n, and
stores the result back into the A register.

Opcode 0b11100110/0xE6 Duration 2 machine cycles

Length 2 bytes: opcode +n Flags Z=W,N=0,H=1,C=0

Simple timing and pseudocode

M-cycle — M1 X M2 -
Mem R/W —{opcode X Rn)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == OxEG6G:
n = read_memory(addr=PC); PC = PC + 1
result = A& n
A = result

flags.Z = 1 if result == 0 else 0
flags.N = 0
flags.H =1
flags.C = ©

Detailed timing and pseudocode

M-cycle — W1
Addr bus —
Data bus —

IDUop —

ALU op —

Misc op —

M2 M3/M1)

PC PC

Z — mem IR — mem

A—AandZ

e e a

X
X
X
PC—PC+1 Y PC—PC+1
X
X

U U

M2

if IR == OxEG:
Z = read_memory(addr=PC); PC = PC + 1
M3/M1
result = A & Z
A = result
flags.Z =
flags.N =
flags.H
flags.C
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

if result == 0 else 0

1
Q
1
Q

66

OR r: Bitwise OR (register)

Performs a bitwise OR operation between the 8-bit A register and the 8-bit register r, and stores
the result back into the A register.

Opcode 0b10110xxx/various Duration 1 machine cycle
Length 1 byte: opcode Flags Z=W,N=0,H=0,C=0
Simple timing and pseudocode

M-cycle
Mem R/W

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xBO: # example: OR B

result = A | B

A = result

flags.Z = 1 if result == 0 else 0
flags.N = 0
flags.H = ©
flags.C = ©

Detailed timing and pseudocode

M-cycle — M1 X M2/M1)
Addr bus —
Data bus —

IDUop —

ALUop —

Miscop — ———)
M2/M1

if IR == 0xBO: # example: OR B
result = A | B
A = result
flags.Z =
flags.N =
flags.H
flags.C
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

if result == 0 else 0

1
Q
]
]

67

OR (HL): Bitwise OR (indirect HL)
Performs a bitwise OR operation between the 8-bit A register and data from the absolute
address specified by the 16-bit register HL, and stores the result back into the A register.

Opcode 0b10110110/0xB6 Duration 2 machine cycles
Length 1 byte: opcode Flags Z=W,N=0,H=0,C=0
Simple timing and pseudocode

M-cycle —{ Wi s -
Mem R/W — opcode X R: data)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xB6:

data = read_memory(addr=HL)

result = A | data

A = result

flags.Z = 1 if result == 0 else 0
flags.N = 0
flags.H = ©
flags.C = ©

Detailed timing and pseudocode

M-cycle — W1 X X
Addr bus — (X
Data bus — (—zZ—mem | R mem
(X
(X
(X

M2 M3/M1

HL

IDUop —
ALU op —
Misc op —

PC— PC+1

A—Aorz

=

PC)
)
)
)
)

M2

if IR == 0xB6:
Z = read_memory(addr=HL)
M3/M1
result = A | Z
A = result
flags.Z =
flags.N =
flags.H
flags.C
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

if result == 0 else 0

1
Q
]
Q

68

OR n: Bitwise OR (immediate)

Performs a bitwise OR operation between the 8-bit A register and immediate datan, and stores
the result back into the A register.

Opcode 0b11110110/0xF6 Duration 2 machine cycles

Length 2 bytes: opcode +n Flags Z=W,N=0,H=0,C=0

Simple timing and pseudocode

M-cycle — M1 X M2 -
Mem R/W —{opcode X Rn)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0OxF6:
n = read_memory(addr=PC); PC = PC + 1
result = A [n
A = result

flags.Z = 1 if result == 0 else 0
flags.N = 0
flags.H = ©
flags.C = ©

Detailed timing and pseudocode

M-cycle — W1
Addr bus —
Data bus —

IDUop —

ALU op —

Misc op —

M2 M3/M1)

PC PC

PC— PC+1 PC— PC+1

A—Aorz

e e a

X
X
Z — mem Y IR—mem
X
X
X

U U

M2

if IR == 0OxF6:
Z = read_memory(addr=PC); PC = PC + 1
M3/M1
result = A | Z
A = result
flags.Z =
flags.N =
flags.H
flags.C
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

if result == 0 else 0

1
Q
]
Q

69

XOR r: Bitwise XOR (register)
Performs a bitwise XOR operation between the 8-bit A register and the 8-bit register r, and
stores the result back into the A register.

Opcode 0b10101xxx/various Duration 1 machine cycle
Length 1 byte: opcode Flags Z=W,N=0,H=0,C=0
Simple timing and pseudocode

M-cycle
Mem R/W

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == OxA8: # example: XOR
result = A" B
A = result

vs]

flags.Z = 1 if result == 0 else 0
flags.N = 0
flags.H = ©
flags.C = ©

Detailed timing and pseudocode

M-cycle — M1 X M2/M1)
Addr bus —
Data bus —

IDUop —

ALUop —

Misc op — O
M2/M1

if IR == 0xA8: # example: XOR B
result = AN B
A = result
flags.Z =
flags.N =
flags.H
flags.C
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

if result == 0 else 0

1
Q
]
]

70

XOR (HL): Bitwise XOR (indirect HL)
Performs a bitwise XOR operation between the 8-bit A register and data from the absolute
address specified by the 16-bit register HL, and stores the result back into the A register.

Opcode 0b10101110/0xAE Duration 2 machine cycles
Length 1 byte: opcode Flags Z=W,N=0,H=0,C=0
Simple timing and pseudocode

M-cycle —{ Wi s -
Mem R/W — opcode X R: data)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == OxAE:

data = read_memory(addr=HL)

result = A /A data

A = result

flags.Z = 1 if result == 0 else 0
flags.N = 0
flags.H = ©
flags.C = ©

Detailed timing and pseudocode

M-cycle — W1 X X
Addr bus — (X
Data bus — (—zZ—mem | R mem
(X
(X
(X

M2 M3/M1

HL

IDUop —
ALU op —
Misc op —

PC— PC+1

A «— AxorZ

=

PC)
)
)
)
)

M2

if IR == OxAE:
Z = read_memory(addr=HL)
M3/M1
result = AN 7Z
A = result
flags.Z =
flags.N =
flags.H
flags.C
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

if result == 0 else 0

1
Q
]
Q

71

XOR n: Bitwise XOR (immediate)

Performs a bitwise XOR operation between the 8-bit A register and immediate data n, and
stores the result back into the A register.

Opcode 0b11101110/0xEE Duration 2 machine cycles

Length 2 bytes: opcode +n Flags Z=W,N=0,H=0,C=0

Simple timing and pseudocode

M-cycle — M1 X M2 -
Mem R/W —{opcode X Rn)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == OxEE:
n = read_memory(addr=PC); PC = PC + 1
result = A M n
A = result

flags.Z = 1 if result == 0 else 0
flags.N = 0
flags.H = ©
flags.C = ©

Detailed timing and pseudocode

M-cycle — W1
Addr bus —
Data bus —

IDUop —

ALU op —

Misc op —

M2 M3/M1)

PC PC

Z — mem IR — mem

A «— AxorZ

e e a

X
X
X
PC—PC+1 Y PC—PC+1
X
X

U U

M2

if IR == OxEE:
Z = read_memory(addr=PC); PC = PC + 1
M3/M1
result = AN 7Z
A = result
flags.Z =
flags.N =
flags.H
flags.C
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

if result == 0 else 0

1
Q
]
Q

72

CCF: Complement carry flag
Flips the carry flag, and clears the N and H flags.

Opcode 0b00111111/0x3F Duration 1 machine cycle
Length 1 byte: opcode Flags N=0,H=0,C=%
Simple timing and pseudocode

M-cycle
Mem R/W

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x3F:

flags.N 9]

flags.H = @

flags.C = ~flags.C

Detailed timing and pseudocode

M-cycle — M1 X M2/M1 -
Addr bus —
Data bus —

IDU op —

ALUop —

Miscop — E—
M2/M1
if IR == Ox3F:

flags.N = 0

flags.H = 0

flags.C = ~flags.C
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

73

SCF: Set carry flag

Sets the carry flag, and clears the N and H flags.
Opcode 0b00110111/0x37 Duration 1 machine cycle

Length 1 byte: opcode Flags N=0,H=0,C=1
Simple timing and pseudocode

M-cycle
Mem R/W

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x3T:

flags.N = @
flags.H =
flags.C =1

Detailed timing and pseudocode

M-Cyde — M1 X M2/M1)
Addr bus —
Data bus —

IDUop —

ALUop —

Miscop — E—
M2/M1
if IR == 0x37:

flags.N = 0

flags.H = ©

flags.C =1

IR, intr = fetch_cycle(addr=PC); PC = PC + 1

74

DAA: Decimal adjust accumulator
TODO

Opcode 0b00100111/0x27
Length 1 byte: opcode

Simple timing and pseudocode

M-cycle
Mem R/W

Detailed timing and pseudocode

M-cycle — IV T
Addr bus —
Data bus —

IDUop —

ALUop —

Misc op — S
TODO

Duration 1 machine cycle

Flags

75

Z=®,H=0,C=%W

CPL: Complement accumulator
Flips all the bits in the 8-bit A register, and sets the N and H flags.

Opcode 0b00101111/0x2F Duration 1 machine cycle
Length 1 byte: opcode Flags N=1H=1
Simple timing and pseudocode

M-cycle
Mem R/W

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x2F:
A = ~A
flags.N
flags.H

1
[N

Detailed timing and pseudocode

M-Cyde — M1 X M2/M1)
Addr bus —
Data bus —

IDUop -

ALUop —

Miscop — E—
M2/M1
if IR == Ox2F:

A = ~A

flags.N =1

flags.H =1

IR, intr = fetch_cycle(addr=PC); PC = PC + 1

76

6.5 16-bit arithmetic instructions

INC rr: Increment 16-bit register
Increments data in the 16-bit register rr.
Opcode 0boRxx0011/various Duration 2 machine cycles

Length 1 byte: opcode Flags -
Simple timing and pseudocode

M-cycle —{ W W -
Mem R/W —{__opcode ¥)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x03:
BC = BC + 1

Detailed timing and pseudocode

M—cycle — M1 M2 M3/M1)
Addr bus —

X
(
Data bus — (
(
(
(

T PC

PC—PC+1

rr —rr+1

IDUop —
ALU op —
Misc op —

X
X
X IR—mem
X
X
X

P O L R L

if IR == 0x03:
BC = BC + 1

IR, intr = fetch_cycle(addr=PC); PC = PC + 1

77

DEC rr: Decrement 16-bit register
Decrements data in the 16-bit register rr.

Opcode 0boRxx1011/various Duration 2 machine cycles
Length 1 byte: opcode Flags -
Simple timing and pseudocode

M-cycle —{ W X 2 -
Mem R/W —{—_opode ¥)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x0B:
BC = BC - 1

Detailed timing and pseudocode

M-cycle — i X
Addr bus — (
Data bus — (

(
(
(

M2 M3/M1)

rr PC

IR «<— mem

IDUop —
ALU op —
Misc op —

X

X

X
rre—rr-1___\ PC—PC+1

X

X

P O L R L

if IR == Ox0B:
BC = BC - 1

IR, intr = fetch_cycle(addr=PC); PC = PC + 1

78

ADD HL, rr: Add (16-bit register)
Adds to the 16-bit HL register pair, the 16-bit register rr, and stores the result back into the HL
register pair.

Opcode 0booxx1001/various Duration 2 machine cycles
Length 1 byte: opcode Flags N=0,H=W,C=%W
Simple timing and pseudocode

M-cycle —{ W —w -
Mem R/W —{__opcede X)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x0@9: # example: ADD HL, BC
result, carry_per_bit = HL + BC
HL = result
flags.N %]
flags.H = 1 if carry_per_bit[11] else @
flags.C = 1 if carry_per_bit[15] else @

Detailed timing and pseudocode

M-cycle — W1 X
Addr bus — (
Data bus — (

(
(
(

M2 M3/M1

0x0000

IDUop —
ALU op —
Misc op —

PC— PC+1

L—L+Isbrr H—H+.msbrr

X -
X PC)
{__R—mem)
X)
X)
X)

M2

if IR == 0x@9: # example: ADD HL, BC
result, carry_per_bit =L + C
L = result
flags.N = @
flags.H = 1 if carry_per_bit[3] else 0
flags.C = 1 if carry_per_bit[7] else 0
M3/M1
result, carry_per_bit = H + B + flags.C
H = result
flags.N = 0
flags.H = 1 if carry_per_bit[3] else 0
flags.C = 1 if carry_per_bit[7] else 0
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

79

ADD SP, e: Add to stack pointer (relative)
Loads to the 16-bit SP register, 16-bit data calculated by adding the signed 8-bit operand e to
the 16-bit value of the SP register.

Opcode 0b11101000/0xE8 Duration 4 machine cycles
Length 2 bytes: opcode +e Flags Z=0,N=0,H=W,C=%W
Simple timing and pseudocode

M-cycle —{ W Y Mz Y B Y W -
Mem R/W —{"opcode X R X Y

J

opcode = read_memory(addr=PC); PC = PC + 1

if opcode == OxES8:
e = signed_8(read_memory(addr=PC)); PC = PC + 1
result, carry_per_bit = SP + e

SP = result
flags.Z = ©
flags.N = 0

flags.H = 1 if carry_per_bit[3] else @
flags.C = 1 if carry_per_bit[7] else @

Detailed timing and pseudocode

M-cycle — W1
Addr bus —
Data bus —

IDUop —

ALU op —

Misc op —

M2 M3 M4 M5/M1)

PC 0x0000 0x0000 PC

Z — mem ALU

PC— PC+1

Z—SPL+Z W «— SPH +¢ adj

SP — WZ

e e a
oS S 2 S o
o S B g o >

X
X
ALU Y IR—mem
X
X
X

)
)
PC—PC+1)
)
)

M2
if IR == OxES8:
Z = read_memory(addr=PC); PC = PC + 1
M3
result, carry_per_bit = 1sb(SP) + Z
Z = result

flags.Z = 0

flags.N = 0

flags.H = 1 if carry_per_bit[3] else 0
flags.C = 1 if carry_per_bit[7] else 0
M4

result = msb(SP) + adj + flags.C

W = result

M5/M1

IR, intr = fetch_cycle(addr=PC); PC = PC + 1; SP = WZ

80

81

6.6 Rotate, shift, and bit operation instructions

RLCA: Rotate left circular (accumulator)
Rotates the 8-bit A register value left in a circular manner (carry flag is updated but not used).
Every bit is shifted to the left (e.g. bit 1 value is copied from bit 0). Bit 7 is copied both to bit

0 and the carry flag. Note that unlike the related RLC r instruction, RLCA always sets the zero
flag to 0 without looking at the resulting value of the calculation.

Carry A register
Before [C] [B7IB6]b5]b4]b3[b2]b1[b0]

After [b7] [B6]b5]b4[b3]b2[b1 b0 [B7]

Opcode 0b00CVV111/0x0T Duration 1 machine cycle
Length 1 byte: opcode Flags Z=0,N=0,H=0,C=%W
Simple timing and pseudocode

M-cycle
Mem R/W

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x0QT:

b7 = A[T]

A = from_bits(7..1=A[6..0], 0=bT)
flags.Z = ©

flags.N = 0

flags.H = ©

flags.C =1 if bT else 0

Detailed timing and pseudocode

M-cycle — M1 X M2/M1)
Addr bus —
Data bus —

IDUop —

ALU op —

Misc op — O
M2/M1
if IR == 0x0T:

b7 = A[7]

result = from_bits(7..1=A[6..0], 0=bT)
A = result

flags.Z = @
flags.N = @
flags.H = @
flags.C =1 if b7 else 0

IR, intr = fetch_cycle(addr=PC); PC = PC + 1

82

RRCA: Rotate right circular (accumulator)
Rotates the 8-bit A register value right in a circular manner (carry flag is updated but not used).
Every bit is shifted to the right (e.g. bit 1 value is copied to bit 0). Bit 0 is copied both to bit 7

and the carry flag. Note that unlike the related RRC r instruction, RRCA always sets the zero
flag to 0 without looking at the resulting value of the calculation.

A register Carry
Before [B7]b6]b5][b4[b3[b2][b1 [b0]

After [00 [b7]b6]b5[b4[b3]b2 b1]

Opcode 0b00CO1111/0x0F Duration 1 machine cycle
Length 1 byte: opcode Flags Z=0,N=0,H=0,C=%W
Simple timing and pseudocode

M-cycle
Mem R/W

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0OxOF:

bd = A[Q]

A = from_bits(7=b@, 6..0=A[T..1])
flags.Z = ©

flags.N = 0

flags.H = ©

flags.C =1 if bO else 0

Detailed timing and pseudocode

M-cycle — M1 e)
Addr bus —
Data bus —

IDUop —

ALU op —

Misc op — ————)
M2/M1
if IR == OxOF:

bo = A[0Q]

result = from_bits(7=b@, 6..0=A[T..1])
A = result

flags.
flags.
flags.

9]

=0

9]
flags. 1

Q I 2 N
I

if bO else 0

83

RLA: Rotate left (accumulator)

Rotates the 8-bit A register value left through the carry flag.

Every bit is shifted to the left (e.g. bit 1 value is copied from bit 0). The carry flag is copied to bit
0, and bit 7 is copied to the carry flag. Note that unlike the related RL r instruction, RLA always
sets the zero flag to 0 without looking at the resulting value of the calculation.

Carry A register
Before [C] [B7Z]b6]b5]b4][b3[b2][b1[b0]

After [66]65 64 63 62 b1 [0 C |

Opcode 0b00R10111/0x17
Length 1 byte: opcode

Simple timing and pseudocode

M-cycle
Mem R/W

Duration 1 machine cycle
Flags 7-0,N=0,H=0,C=%

opcode = read_memory(addr=PC); PC = PC + 1

if opcode == Ox1T7:

b7 = A[T]

A = from_bits(7..1=A[6..0], 0=flags.C)
flags.Z = ©

flags.N = 0

flags.H = ©

flags.C =1 if bT else 0

Detailed timing and pseudocode

M-cycle — M1 e)
Addr bus —
Data bus —

IDUop —

ALU op —

Misc op — ————)
M2/M1
if IR == Ox17:

b7 = A[7]

result = from_bits(7..1=A[6..0], ©@=flags.C)

A = result
flags.
flags.
flags.

9]

=0

9]
flags. 1

Q I 2 N
I

if b7 else 0

84

RRA: Rotate right (accumulator)

Rotates the 8-bit A register value right through the carry flag.

Every bit is shifted to the right (e.g. bit 1 value is copied to bit 0). The carry flag is copied to bit
7, and bit O is copied to the carry flag. Note that unlike the related RR r instruction, RRA always
sets the zero flag to 0 without looking at the resulting value of the calculation.

A register

Before [B7]b6]b5][b4[b3[b2][b1 [b0]

After [C [b7]b6]b5]b4[b3]b2]b1]

Opcode 0b00O11111/0x1F
Length 1 byte: opcode

Simple timing and pseudocode

M-cycle
Mem R/W

opcode =

flags.
flags.
flags.
flags.

Z
N
H
C

Carry

Duration 1 machine cycle

Flags 7-0,N=0,H=0,C=%

read_memory(addr=PC); PC = PC + 1
if opcode == Ox1F:
bo = A[0]
A = from_bits(7=flags.C, 6..0=A[7..1])

Q
Q
Q
1

if bO else 0

Detailed timing and pseudocode

M-cycle
Addr bus
Data bus

IDU op

ALU op

Misc op

M2/M1

if IR == Ox1F:

— M1 X M2/M1)
-
-
~
~
— —)

bo = A[0Q]

result = from_bits(7=flags.C, 6..0=A[7..1])
A = result

flags.
flags.
flags.
flags.

Q I 2 N

0
Q
Q
1

if bO else 0

85

RLC r: Rotate left circular (register)

Rotates the 8-bit register r value left in a circular manner (carry flag is updated but not used).

Every bit is shifted to the left (e.g. bit 1 value is copied from bit 0). Bit 7 is copied both to bit 0
and the carry flag.

Carry Register r
Before [C] [B7]b6]b5]b4]b3[b2]b1[b0]

After [B7] [B6]65]b4]b3[b2]b1 b0 [B7]

Opcode 0bORVROxxx/Various Duration 2 machine cycles
Length 2 bytes: CB prefix + opcode Flags Z=%W,N=0,H=0C=%W
Simple timing and pseudocode

M-cycle —{ W —w -
Mem R/W CB prefix X opcode)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xCB: # CB prefix

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x00: # example: RLC B
b7 = B[7]
B = from_bits(7..1=B[6..0], 0=bT)
flags.Z =1 if B == 0 else @
flags.N = 0
flags.H = 0
flags.C =1 if b7 else 0
Detailed timing and pseudocode
M-cycle — M1 X M2 X M3/M1 -
Addr bus — (pC X PC)
Data bus — (CRemem Y Remem)
IDUop — (— Pc—pcr1_ Y Pc—rpcr1)
ALU op — (e)
Misc op — (X)
M2

if IR == 0xCB:

cb_mode =1

IR = fetch_cycle(addr=PC); PC = PC + 1

M3/M1

if cb_mode and IR == 0x00: # example: RLC B
b7 = B[7]
result = from_bits(7..1=B[6..0Q], 0=bT)
B = result
flags.Z = 1 if result == 0 else 0

flags.N = 0
flags.H = 0
flags.C =1 if bT else 0

IR, intr = fetch_cycle(addr=PC); PC = PC + 1

86

RLC (HL): Rotate left circular (indirect HL)

Rotates, the 8-bit data at the absolute address specified by the 16-bit register HL, left in a
circular manner (carry flag is updated but not used).

Every bit is shifted to the left (e.g. bit 1 value is copied from bit 0). Bit 7 is copied both to bit 0
and the carry flag.

Carry Data at address HL
Before [C] [B7Z]b6]b5]b4][b3[b2][b1[b0]

After [b7] [B6]b5]b4[b3]b2[b1 [b0 [B7]

Opcode 0x06 Duration 4 machine cycles
Length 2 bytes: CB prefix + opcode Flags Z=W,N=0,H=0,C=%W
Simple timing and pseudocode

M-cycle — M1 X M2 X M3 X M4 =
Mem R/W —{__Bprefix___ Y opcode X R data X Wdaa

]

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xCB: # CB prefix
opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x06:
data = read_memory(addr=HL)
b7 = data[T7]
result = from_bits(7..1=data[6..0], 0=bT)
flags.Z = 1 if result == 0 else 0

flags.N = 0
flags.H = ©
flags.C =1 if bT else 0

write_memory(addr=HL, data=result)

87

Detailed timing and pseudocode

M-cycle
Addr bus
Data bus

IDU op

ALU op

Misc op

M2

if IR == 0xCB:

cb_mode

—

M1 M2 M3

M4

M5/M1

e

1

PC HL

HL

PC

IR — mem Z — mem

mem «— ALU

IR — mem

PC— PC+1

PC— PC+1

mem «rlc Z

P S N S e
oS P 2 S S >

oS S B S S >

U O L I W

IR = fetch_cycle(addr=PC); PC = PC + 1

M3

if cb_mode and IR == 0x06:
Z = read_memory(addr=HL)

M4

b7 = Z[7]
result = from_bits(7..1=2[6..0], 0=bT)

flags.
flags.
flags.
flags.
write_memory(addr=HL, data=result)

T =2 N

C

MS5/M1
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

1 if result == 0 else @
%]

%]

1 if b7 else 0

88

RRC r: Rotate right circular (register)
Rotates the 8-bit register r value right in a circular manner (carry flag is updated but not used).

Every bit is shifted to the right (e.g. bit 1 value is copied to bit 0). Bit 0 is copied both to bit 7
and the carry flag.

Register r Carry
Before [B7]b6]b5[b4[b3]b2]b1 [60]

After [b@ [BT]B6 b5 [b4[b3[b2[b1]

Opcode 0bRVV1xxx/Various Duration 2 machine cycles
Length 2 bytes: CB prefix + opcode Flags Z=%W,N=0,H=0C=%W
Simple timing and pseudocode

M-cycle —{ W —w -
Mem R/W CB prefix X opcode)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xCB: # CB prefix

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x0@8: # example: RRC B
bo = B[Q]
B = from_bits(7..1=B[7..1], 0=bQ)
flags.Z =1 if B == 0 else @
flags.N = 0
flags.H = 0
flags.C =1 if b0 else 0
Detailed timing and pseudocode
M-cycle — M1 X M2 X M3/M1 -
Addr bus — (pC X PC)
Data bus — (CRemem Y Remem)
IDUop — (— Pc—pcr1_ Y Pc—rpcr1)
ALU op — (e)
Misc op — (X)
M2

if IR == 0xCB:

cb_mode =1

IR = fetch_cycle(addr=PC); PC = PC + 1

M3/M1

if cb_mode and IR == 0x08: # example: RRC B
b0 = B[Q]
result = from_bits(7..1=B[7..1], 0=b0)
B = result
flags.Z = 1 if result == 0 else 0

flags.N = 0
flags.H = 0
flags.C =1 if bO else 0

IR, intr = fetch_cycle(addr=PC); PC = PC + 1

89

RRC (HL): Rotate right circular (indirect HL)

Rotates, the 8-bit data at the absolute address specified by the 16-bit register HL, right in a
circular manner (carry flag is updated but not used).

Every bit is shifted to the right (e.g. bit 1 value is copied to bit 0). Bit 0 is copied both to bit 7
and the carry flag.

Data at address HL Carry
Before [B7]b6]b5][b4[b3[b2][b1 [b0]

After [00 [b7]b6]b5[b4[b3]b2 b1]

Opcode 0x0E Duration 4 machine cycles
Length 2 bytes: CB prefix + opcode Flags Z=W,N=0,H=0,C=%W
Simple timing and pseudocode

M-cycle — M1 X M2 X M3 X M4 =
Mem R/W —({"_Bprefix __{_ opcode Y Rdata ¥ Widata)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xCB: # CB prefix
opcode = read_memory(addr=PC); PC = PC + 1
if opcode == OxOE:
data = read_memory(addr=HL)
b = data[Q]
result = from_bits(7=b@, 6..0=data[7..1])
flags.Z = 1 if result == 0 else 0

flags.N = 0
flags.H = ©
flags.C =1 if bO else 0

write_memory(addr=HL, data=result)

90

Detailed timing and pseudocode

M2 M3

M4

M5/M1

e

M-cycle — W1

Addr bus —

PC HL

HL

PC

IR — mem Z — mem

Data bus —

mem «— ALU

IR — mem

PC— PC+1

IDUop —

PC— PC+1

mem « rrc Z

ALU op —

P S N S e
oS P 2 S S >

Misc op —

oS S B S S >

U O L I W

M2
if IR == 0xCB:
cb_mode = 1

IR = fetch_cycle(addr=PC); PC = PC + 1

M3
if cb_mode and IR == OxOE:
Z = read_memory(addr=HL)

M4

bo = Z[0]

result = from_bits(7=b@, 6..0=2[7..1])
flags.Z = 1 if result == 0 else O
flags.N = 0

flags.H = 0

flags.C =1 if b0 else 0

write_memory(addr=HL, data=result)
MS5/M1

IR, intr = fetch_cycle(addr=PC); PC = PC + 1

91

RL r: Rotate left (register)
Rotates the 8-bit register r value left through the carry flag.

Every bit is shifted to the left (e.g. bit 1 value is copied from bit 0). The carry flag is copied to bit
0, and bit 7 is copied to the carry flag.

Carry Register r
Before [C] [B7]b6]b5]b4]b3[b2]b1[b0]

After [E6]65]b4 b3 b2 b1 [b0] C |

Opcode 0boRA10xxx/Various Duration 2 machine cycles
Length 2 bytes: CB prefix + opcode Flags Z=%W,N=0,H=0C=%W
Simple timing and pseudocode

M-cycle —{ W —w -
Mem R/W CB prefix X opcode)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xCB: # CB prefix
opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x10: # example: RL B
b7 = B[7]
B = from_bits(7..1=B[6..0], ©=flags.C)
flags.Z =1 if B == 0 else @
flags.N = 0
flags.H = 0
flags.C =1 if b7 else 0

Detailed timing and pseudocode

M-cycle — Wi X
Addr bus — (
Data bus — (CR—mem
(
(
(

M2 M3/M1

PC

IR <— mem

IDUop —
ALU op —
Misc op —

r—rlr

=

PC)
)
)
)
)

X
X
X
PC—PC+1 PC—PC+1
X
X

M2
if IR == 0xCB:
cb_mode =1
IR = fetch_cycle(addr=PC); PC = PC + 1
M3/M1
if cb_mode and IR == 0x10: # example: RL B
b7 = B[7]
result = from_bits(7..1=B[6..0], ©0=flags.C)
B = result
flags.Z = 1 if result == 0 else 0

flags.N = 0
flags.H = 0
flags.C =1 if bT else 0

IR, intr = fetch_cycle(addr=PC); PC = PC + 1

92

RL (HL): Rotate left (indirect HL)

Rotates, the 8-bit data at the absolute address specified by the 16-bit register HL, left through
the carry flag.

Every bit is shifted to the left (e.g. bit 1 value is copied from bit 0). The carry flag is copied to bit
0, and bit 7 is copied to the carry flag.

Carry Data at address HL
Before [C] [B7Z]b6]b5]b4][b3[b2][b1[b0]

After [66]65 64 63 62 b1 [0 C |

Opcode 9x16 Duration 4 machine cycles
Length 2 bytes: CB prefix + opcode Flags Z=W,N=0,H=0,C=%W
Simple timing and pseudocode

M-cycle — M1 X M2 X M3 X M4 =
Mem R/W —({"_Bprefix __{_ opcode Y Rdata ¥ Widata)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xCB: # CB prefix
opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x16:
data = read_memory(addr=HL)
b7 = data[T7]
result = from_bits(7..1=data[6..0], ©=flags.C)
flags.Z = 1 if result == 0 else 0

flags.N = 0
flags.H = ©
flags.C =1 if bT else 0

write_memory(addr=HL, data=result)

93

Detailed timing and pseudocode

M-cycle
Addr bus
Data bus

IDU op

ALU op

Misc op

M2

if IR == 0xCB:

cb_mode

—

M1 M2 M3

M4

M5/M1

e

1

PC HL

HL

PC

IR — mem Z — mem

mem «— ALU

IR — mem

PC— PC+1

PC— PC+1

mem «—rlZ

P S N S e
oS P 2 S S >

oS S B S S >

U O L I W

IR = fetch_cycle(addr=PC); PC = PC + 1

M3

if cb_mode and IR == 0x16:
Z = read_memory(addr=HL)

M4

b7 = Z[7]

result = from_bits(7..1=2[6..0], ©@=flags.C)
flags.
flags.
flags.
flags.
write_memory(addr=HL, data=result)

T =2 N

C

MS5/M1
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

1 if result == 0 else @
%]

%]

1 if b7 else 0

94

RR r: Rotate right (register)
Rotates the 8-bit register r value right through the carry flag.

Every bit is shifted to the right (e.g. bit 1 value is copied to bit 0). The carry flag is copied to bit
7, and bit 0 is copied to the carry flag.

Register r Carry
Before [B7]b6]b5[b4[b3]b2]b1 [60]

After [C_ [B7]b6]b5[b4[b3[b2][b1]

Opcode 0boA11xxx/Various Duration 2 machine cycles
Length 2 bytes: CB prefix + opcode Flags Z=%W,N=0,H=0C=%W
Simple timing and pseudocode

M-cycle —{ W —w -
Mem R/W CB prefix X opcode)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xCB: # CB prefix
opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x18: # example: RR B
bo = B[O]
B = from_bits(7=flags.C, 6..0=B[7..1])
flags.Z =1 if B == 0 else @
flags.N = 0
flags.H = 0
flags.C =1 if b0 else 0

Detailed timing and pseudocode

M-cycle — Wi X
Addr bus — (
Data bus — (CR—mem
(
(
(

M2 M3/M1

PC

IR <— mem

IDUop —
ALU op —
Misc op —

PC— PC+1 PC— PC+1

T« ITYr

X -
X PC)
X)
X)
X)
X)

M2
if IR == 0xCB:
cb_mode =1
IR = fetch_cycle(addr=PC); PC = PC + 1
M3/M1
if cb_mode and IR == 0x18: # example: RR B
b0 = B[Q]
result = from_bits(7=flags.C, 6..0=B[7..1])
B = result
flags.Z = 1 if result == 0 else 0

flags.N = 0
flags.H = 0
flags.C =1 if bO else 0

IR, intr = fetch_cycle(addr=PC); PC = PC + 1

95

RR (HL): Rotate right (indirect HL)

Rotates, the 8-bit data at the absolute address specified by the 16-bit register HL, right through
the carry flag.

Every bit is shifted to the right (e.g. bit 1 value is copied to bit 0). The carry flag is copied to bit
7, and bit 0 is copied to the carry flag.

Data at address HL Carry
Before [B7]b6]b5][b4[b3[b2][b1 [b0]

After [C [b7]b6]b5]b4[b3]b2]b1]

Opcode 0x1E Duration 4 machine cycles
Length 2 bytes: CB prefix + opcode Flags Z=W,N=0,H=0,C=%W
Simple timing and pseudocode

M-cycle — M1 X M2 X M3 X M4 =
Mem R/W —({"_Bprefix __{_ opcode Y Rdata ¥ Widata)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xCB: # CB prefix
opcode = read_memory(addr=PC); PC = PC + 1
if opcode == Ox1E:
data = read_memory(addr=HL)
b = data[Q]
result = from_bits(7=flags.C, 6..0=data[T7..1])
flags.Z = 1 if result == 0 else 0

flags.N = 0
flags.H = ©
flags.C =1 if bO else 0

write_memory(addr=HL, data=result)

96

Detailed timing and pseudocode

M-cycle
Addr bus
Data bus

IDU op

ALU op

Misc op

M2
if IR ==
cb_mode

—

M1 M2 M3

M4

M5/M1

e

0xCB:

1

PC HL

HL

PC

IR — mem Z — mem

mem «— ALU

IR — mem

PC— PC+1

PC— PC+1

mem «—rrZ

P S N S e
oS P 2 S S >

oS S B S S >

U O L I W

IR = fetch_cycle(addr=PC); PC = PC + 1

M3

if cb_mode and IR == Ox1E:
Z = read_memory(addr=HL)

M4

bo = Z[0]

result = from_bits(7=flags.C, 6..0=2[7..1])
flags.
flags.
flags.
flags.
_memory(addr=HL, data=result)

write
M5/

Q I 2 N

M1

1 if result == 0 else @
%]

%]

1 if b0 else 0

IR, intr = fetch_cycle(addr=PC); PC = PC + 1

97

SLA r: Shift left arithmetic (register)
Shifts the 8-bit register r value left by one bit using an arithmetic shift.

Bit 7 is shifted to the carry flag, and bit 0 is set to a fixed value of 0.

Carry Register r
Before [C] [B7Z]b6]b5]b4][b3[b2][b1[b0]

After [66]b5]b4[b3]b2]bt [bo @]

Opcode 0boo100xxx/Various Duration 2 machine cycles
Length 2 bytes: CB prefix + opcode Flags Z=W,N=0,H=0,C=%W
Simple timing and pseudocode

M-cycle —{ Wi —w -
Mem R/W —{Bprefix_J— opcode)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xCB: # CB prefix
opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x20: # example: SLA B
b7 = B[7]
B = from_bits(7..1=B[6..0], 0=0)

flags.Z =1 if B == 0 else 0
flags.N = 0

flags.H = ©

flags.C =1 if bT else 0

Detailed timing and pseudocode

M2 M3/M1)

M-cycle — W1
Addr bus —
Data bus —

IDUop —

ALU op —

Misc op —

PC PC

IR — mem IR — mem

PC— PC+1 PC— PC+1

r«—slar

e e

X
X
X
X
X
X

U U

M2
if IR == 0xCB:
cb_mode =1
IR = fetch_cycle(addr=PC); PC = PC + 1
M3/M1
if cb_mode and IR == 0x20: # example: SLA B
b7 = B[7]
result = from_bits(7..1=B[6..0], 0=0)
B = result
flags.Z = 1 if result == 0 else 0
flags.N = 0
flags.H 9]
flags.C =1 if bT else 0
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

98

SLA (HL): Shift left arithmetic (indirect HL)

Shifts, the 8-bit value at the address specified by the HL register, left by one bit using an
arithmetic shift.

Bit 7 is shifted to the carry flag, and bit 0 is set to a fixed value of 0.

Carry Data at address HL
Before [C] [B7]b6]b5]b4]b3[b2]b1[b0]

After [E6]65 b4 b3 b2 b1 [b0 @]

Opcode 0x26 Duration 4 machine cycles
Length 2 bytes: CB prefix + opcode Flags Z=%W,N=0,H=0C=%W
Simple timing and pseudocode

M-cycle —{ W ——w —w T)
Mem R/W — CB prefix X opcode X R: data X W: data)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xCB: # CB prefix
opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x26:
data = read_memory(addr=HL)
b7 = data[7]
result = from_bits(7..1=data[6..0], 0=0)
data = result

flags.Z =1 if B == 0 else @
flags.N = 0

flags.H = 0

flags.C =1 if b7 else 0

99

Detailed timing and pseudocode

M-cycle
Addr bus
Data bus

IDU op

ALU op

Misc op

M2

if IR == 0xCB:

cb_mode

—

M1 M2 M3

M4

M5/M1

e

1

PC HL

HL

PC

IR — mem Z — mem

mem «— ALU

IR — mem

PC— PC+1

PC— PC+1

mem «slaZ

P S N S e
oS P 2 S S >

oS S B S S >

U O L I W

IR = fetch_cycle(addr=PC); PC = PC + 1

M3

if cb_mode and IR == 0x26:
Z = read_memory(addr=HL)

M4

b7 = Z[7]
result = from_bits(7..1=2[6..0], 0=0)

flags.
flags.
flags.
flags.
write_memory(addr=HL, data=result)

T =2 N

C

MS5/M1
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

1 if result == 0 else @
%]

%]

1 if b7 else 0

100

SRA r: Shift right arithmetic (register)
Shifts the 8-bit register r value right by one bit using an arithmetic shift.

Bit 7 retains its value, and bit 0 is shifted to the carry flag.

Register r Carry
Before [B7]b6]b5][b4[b3[b2][b1 [b0]

After [B7]b7]06]b5]b4 [b3]b2]b1]

Opcode 0bo101xxx/various Duration 2 machine cycles
Length 2 bytes: CB prefix + opcode Flags Z=W,N=0,H=0,C=%W
Simple timing and pseudocode

M-cycle —{ Wi —w -
Mem R/W —{Bprefix_J— opcode)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xCB: # CB prefix
opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x28: # example: SRA B
bo = B[0]
B = from_bits(7=B[7], 6..0=B[7..1])

flags.Z =1 if B == 0 else 0
flags.N = 0

flags.H = ©

flags.C =1 if bO else 0

Detailed timing and pseudocode

M2 M3/M1)

M-cycle — W1
Addr bus —
Data bus —

IDUop —

ALU op —

Misc op —

PC PC

IR — mem IR — mem

PC— PC+1 PC— PC+1

r «—Srar

e e

X
X
X
X
X
X

U U

M2
if IR == 0xCB:
cb_mode =1
IR = fetch_cycle(addr=PC); PC = PC + 1
M3/M1
if cb_mode and IR == 0x28: # example: SRA B
bo = B[Q]
result = from_bits(7=B[7], 6..0=B[7..1])
B = result
flags.Z = 1 if result == 0 else 0
flags.N = 0
flags.H 9]
flags.C =1 if bO else 0
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

101

SRA (HL): Shift right arithmetic (indirect HL)

Shifts, the 8-bit value at the address specified by the HL register, right by one bit using an
arithmetic shift.

Bit 7 retains its value, and bit 0 is shifted to the carry flag.

Data at address HL Carry
Before [B7]b6]b5[b4[b3]b2]b1 [60]

After [B7]BT]b6]b5[b4[b3[b2][b1]

Opcode 0x2E Duration 4 machine cycles
Length 2 bytes: CB prefix + opcode Flags Z=%W,N=0,H=0C=%W
Simple timing and pseudocode

M-cycle —{ W ——w —w T)
Mem R/W — CB prefix X opcode X R: data X W: data)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xCB: # CB prefix
opcode = read_memory(addr=PC); PC = PC + 1
if opcode == Ox2E:
data = read_memory(addr=HL)
b = data[Q]
result = from_bits(7=0, 6..0=data[7..1])
data = result

flags.Z = 1 if result == 0 else O
flags.N = 0

flags.H = 0

flags.C =1 if b0 else 0

102

Detailed timing and pseudocode

M-cycle
Addr bus
Data bus

IDU op

ALU op

Misc op

M2
if IR ==
cb_mode

—

M1 M2 M3 M4

M5/M1

e

0xCB:
=1

PC HL HL

PC

IR — mem Z — mem mem «— ALU

IR — mem

PC— PC+1

PC— PC+1

mem « sra Z

P S N S e
oS P 2 S S >
oS S B S S >

U O L I W

IR = fetch_cycle(addr=PC); PC = PC + 1

M3

if cb_mode and IR == Ox2E:
Z = read_memory(addr=HL)

M4
bo =

Z[0]

result = from_bits(7=0, 6..0=2[7..1])

flags.
flags.
flags.
flags.

write
M5/

Q I 2 N

1 if result == 0 else @
%]

%]

1 if b0 else 0

_memory(addr=HL, data=result)

M1

IR, intr = fetch_cycle(addr=PC); PC = PC + 1

103

SWAP r: Swap nibbles (register)
Swaps the high and low 4-bit nibbles of the 8-bit register r.

Register r
Before |b7|b6|b5 |b4 |b3[b2|b1|ba]|

After |b3]b2[b1 |bo [bT|b6 b5 [b4 |

Opcode 0bo110xxx/various Duration 2 machine cycles
Length 2 bytes: CB prefix + opcode Flags Z=%W,N=0,H=0,C=0
Simple timing and pseudocode

M-cycle —{ W W -
Mem R/W CB prefix X opcode)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xCB: # CB prefix
opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x30: # example: SWAP B
B = from_bits(7..4=B[3..0], 3..0=B[7..4])

flags.Z =1 if B == 0 else @
flags.N = @
flags.H = @
flags.C = @

Detailed timing and pseudocode

M-cycle — M M2
Addr bus —

X X
(X
Data bus — (CRemem | R mem
(X
(X
(X

M3/M1 -

PC PC

PC—PC+1 PC—PC+1

IDUop —
ALU op —
Misc op —

r —swapr

U U

M2
if IR == 0xCB:
cb_mode =1
IR = fetch_cycle(addr=PC); PC = PC + 1
M3/M1
if cb_mode and IR == 0x30: # example: SWAP B
result = from_bits(7..4=B[3..0], 3..0=B[7..4])
B = result
flags.Z =
flags.N
flags.H
flags.C =
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

if result == 0 else 0

1
0
0
0

104

SWAP (HL): Swap nibbles (indirect HL)

Swaps the high and low 4-bit nibbles of the 8-bit data at the absolute address specified by the
16-bit register HL.

Data at address HL
Before [b7|b6|b5|b4 |b3|b2|b1 |ba |

After |b3|b2|b1 |bo [b7]|b6 b5 |b4 |

Opcode 0x36 Duration 4 machine cycles
Length 2 bytes: CB prefix + opcode Flags Z=W,N=0,H=0,C=0
Simple timing and pseudocode

M-cycle —{ Y) vz Y B Y Va -
Mem R/W —{_CBprefix opcode X R: data X W: data)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == OxCB: # CB prefix
opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x36:
data = read_memory(addr=HL)
result = from_bits(7..4=data[3..0], 3..0=data[7..4])

flags.Z = 1 if result == 0 else O
flags.N = 0
flags.H = 0
flags.C = ©

write_memory(addr=HL, data=result)

Detailed timing and pseudocode

M-cycle — W1
Addr bus —
Data bus —

IDUop —

ALU op —

Misc op —

M2 M3 X M4 M5/M1)

PC

IR «— mem

X
HL X HL X PC
X

Z — mem Y mem —ALU IR < mem

PC — PC+1 X X PC—PC+1

Y _mem —swapz X

X X

e e e
e e e
- J U

M2
if IR == 0xCB:
cb_mode =1
IR = fetch_cycle(addr=PC); PC = PC + 1
M3
if cb_mode and IR == 0x36:
Z = read_memory(addr=HL)
M4
result = from_bits(7..4=Z[3..0], 3..0=Z[7..4])

flags.Z = 1 if result == 0 else 0
flags.N = 0

flags.H = 0

flags.C = 0

write_memory(addr=HL, data=result)
M5/M1

IR, intr = fetch_cycle(addr=PC); PC = PC + 1

105

SRL r: Shift right logical (register)

Shifts the 8-bit register r value right by one bit using a logical shift.

Bit 7 is set to a fixed value of 0, and bit 0 is shifted to the carry flag.

Register r

Carry

Before [B7]b6]b5][b4[b3[b2][b1 [b0]

After [@ [b7]b6]b5][b4[b3]b2]b1]

Opcode 0boo111xxx/various
Length 2 bytes: CB prefix + opcode

Simple timing and pseudocode

M-cycle —{
Mem R/W —

opcode =

opcode

M1

M2

e

CB prefix

opcode

)

Duration 2 machine cycles

Flags

read_memory(addr=PC); PC = PC + 1
if opcode == 0xCB: # CB prefix

if opcode == 0x28: # example: SRL B
b@ = B[O]
B = from_bits(7=0, 6..0=B[7..1])
1 if B == 0 else 0

flags.
flags.
flags.
flags.

Z
N
H
C

Q
Q

1 if bO else 0

Detailed timing and pseudocode

M-cycle
Addr bus
Data bus

IDU op

ALU op

Misc op

M2

if IR == 0xCB:

cb_mode

—

M1

M2

1

PC

PC

IR — mem

IR — mem

PC— PC+1

PC— PC+1

r —srlr

e e

X
X
X
X
X
X

U U

IR = fetch_cycle(addr=PC); PC = PC +

M3/M1

if cb_mode and IR == 0x28:

bo = B[0]
result = from_bits(7=0, 6..0=B[7..1])

B = result

flags
flags
flags

flags.C =1 if bO else 0
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

W/
N
H

example:

1 if result == 0 else 0

Q
Q

read_memory(addr=PC); PC = PC + 1

M3/M1)

1

SRL B

106

Z=W,N=0,H=0,C=%W

SRL (HL): Shift right logical (indirect HL)

Shifts, the 8-bit value at the address specified by the HL register, right by one bit using a logical
shift.

Bit 7 is set to a fixed value of 0, and bit 0 is shifted to the carry flag.

Data at address HL Carry
Before [B7]b6]b5[b4[b3]b2]b1 [60]

After [@]B7]b6]b5[b4[b3[b2][b1]

Opcode 0x3E Duration 4 machine cycles
Length 2 bytes: CB prefix + opcode Flags Z=%W,N=0,H=0C=%W
Simple timing and pseudocode

M-cycle —{ W ——w —w T)
Mem R/W — CB prefix X opcode X R: data X W: data)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xCB: # CB prefix
opcode = read_memory(addr=PC); PC = PC + 1
if opcode == Ox3E:
data = read_memory(addr=HL)
b = data[Q]
result = from_bits(7=0, 6..0=data[7..1])

flags.Z = 1 if result == 0 else O
flags.N = 0
flags.H = 0

flags.C =1 if b0 else 0
write_memory(addr=HL, data=result)

107

Detailed timing and pseudocode

M-cycle
Addr bus
Data bus

IDU op

ALU op

Misc op

M2
if IR ==
cb_mode

—

M1 M2 M3

M4

M5/M1

e

0xCB:

1

PC HL

HL

PC

IR — mem Z — mem

mem «— ALU

IR — mem

PC— PC+1

PC— PC+1

mem « srl Z

P S N S e
oS P 2 S S >

oS S B S S >

U O L I W

IR = fetch_cycle(addr=PC); PC = PC + 1

M3

if cb_mode and IR == Ox3E:
Z = read_memory(addr=HL)

M4

bo = Z[0]
result = from_bits(7=0, 6..0=2[7..1])

flags.
flags.
flags.
flags.
_memory(addr=HL, data=result)

write
M5/

Q I 2 N

M1

1 if result == 0 else @
%]

%]

1 if b0 else 0

IR, intr = fetch_cycle(addr=PC); PC = PC + 1

108

BIT b, r: Test bit (register)
Tests the bit b of the 8-bit register r.
The zero flag is set to 1 if the chosen bit is 0, and 0 otherwise.

Opcode 0bo1xxxxxx/various Duration 2 machine cycles
Length 2 bytes: CB prefix + opcode Flags Z=%W,N=0,H=1
Simple timing and pseudocode

M-cycle —{ W W -
Mem R/W —{CBoprefix X opcode)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xCB: # CB prefix
opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x40: # example: BIT 0, B

flags.Z = 1 if B[Q] == 0@ else 0O
flags.N = 0
flags.H = 1

Detailed timing and pseudocode

M-cycle — M1 X

Addr bus — (
Data bus — (CR—mem

(

(

(

M2 M3/M1

PC

IR «<— mem

IDUop —
ALU op —
Misc op —

PC—PC+1 PC—PC+1

bitb, r

)_
PC)
)
)
)
)

X
X
X
X
X
X

M2
if IR == 0xCB:
cb_mode = 1
IR = fetch_cycle(addr=PC); PC = PC + 1

M3/M1

if cb_mode and IR == 0x40: # example: BIT 0, B
flags.Z = 1 if B[Q] == @ else O
flags.N = 0
flags.H = 1

IR, intr = fetch_cycle(addr=PC); PC = PC + 1

109

BIT b, (HL): Test bit (indirect HL)
Tests the bit b of the 8-bit data at the absolute address specified by the 16-bit register HL.
The zero flag is set to 1 if the chosen bit is 0, and 0 otherwise.

Opcode 0bo1xxx110/various Duration 3 machine cycles
Length 2 bytes: CB prefix + opcode Flags Z=%W,N=0,H=1

Simple timing and pseudocode

M -cycIe — M1 X M2 X M3)
Mem R/W — CB prefix X opcode X R: data)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xCB: # CB prefix
opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x46: # example: BIT 0, (HL)
data = read_memory(addr=HL)

flags.Z = 1 if data[@] == 0 else 0
flags.N = 0
flags.H = 1

Detailed timing and pseudocode

M-cycle — W1
Addr bus —
Data bus —

IDUop —

ALU op —

Misc op —

M2 M3 M4/M1)

PC HL PC

IR «— mem Z — mem IR «— mem

PC—PC+1 PC—PC+1

bitb, Z

PN S N S e
oS P 2 S g
- U U

M2
if IR == 0xCB:
cb_mode =1
IR = fetch_cycle(addr=PC); PC = PC + 1
M3
if cb_mode and IR == 0x46: # example: BIT 0, (HL)
Z = read_memory(addr=HL)

M4/M1

flags.Z = 1 if Z[Q] == @ else O
flags.N = 0

flags.H = 1

IR, intr = fetch_cycle(addr=PC); PC = PC + 1

110

RES b, r: Reset bit (register)
Resets the bit b of the 8-bit register r to 0.

Opcode 0b10xxxxxx/various Duration 2 machine cycles
Length 2 bytes: CB prefix + opcode Flags -
Simple timing and pseudocode

M-cycle —{ W X 2 -
Mem R/W CB prefix X opcode)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xCB: # CB prefix
opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x80: # example: RES 0, B
B = from_bits(7..1=B[7..1], 0=0)

Detailed timing and pseudocode

M-cycle — i X
Addr bus — (
Data bus — (CR—mem
(
(
(

M2 M3/M1

PC

IR <~ mem

IDUop —
ALU op —
Misc op —

PC—PC+1 PC—PC+1

T« resb,r

X -
X PC)
X)
X)
X)
X)

M2
if IR == 0xCB:
cb_mode =1
IR = fetch_cycle(addr=PC); PC = PC + 1
M3/M1
if cb_mode and IR == 0x80: # example: RES 0, B
B = from_bits(7..1=B[7..1], ©0=0)
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

111

RES b, (HL): Reset bit (indirect HL)
Resets the bitb of the 8-bit data at the absolute address specified by the 16-bit register HL, to 0.

Opcode 0b10xxx110/various Duration 4 machine cycles
Length 2 bytes: CB prefix + opcode Flags -
Simple timing and pseudocode

M-cycle — M1 X M2 X M3 X M4)
Mem R/W CB prefix X opcode X R: data X W: data)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xCB: # CB prefix
opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x86: # example: RES 0, (HL)
data = read_memory(addr=HL)
result = from_bits(7..1=data[7..1], 0=0)
write_memory(addr=HL, data=result)

Detailed timing and pseudocode

M-cycle — i X
Addr bus — (
Data bus — (CR—mem
(
(
(

M2 M3 X M4 M5/M1)

PC

X
HL X HL X PC
X

Z — mem Y mem —ALU IR < mem

IDUop —
ALU op —
Misc op —

PC «— PC+1 X __PC—PC+1

X _mem —resb,z X

X X

-
- U U

M2
if IR == 0xCB:
cb_mode =1
IR = fetch_cycle(addr=PC); PC = PC + 1
M3
if cb_mode and IR == 0x86: # example: RES 0, (HL)
Z = read_memory(addr=HL)
M4
result = from_bits(7..1=Z[7..1], 0=0)
write_memory(addr=HL, data=result)
MS5/M1
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

112

SET b, r: Set bit (register)
Sets the bit b of the 8-bit register r to 1.

Opcode 0b11xxxxxx/various Duration 2 machine cycles
Length 2 bytes: CB prefix + opcode Flags -
Simple timing and pseudocode

M-cycle —{ W X 2 -
Mem R/W CB prefix X opcode)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xCB: # CB prefix
opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xCO: # example: SET 0, B
B = from_bits(7..1=B[7..1], ©=1)

Detailed timing and pseudocode

M-cycle — i X
Addr bus — (
Data bus — (CR—mem
(
(
(

M2 M3/M1

PC

IR <~ mem

IDUop —
ALU op —
Misc op —

PC—PC+1 PC—PC+1

r < setb,r

X -
X PC)
X)
X)
X)
X)

M2
if IR == 0xCB:
cb_mode =1
IR = fetch_cycle(addr=PC); PC = PC + 1
M3/M1
if cb_mode and IR == 0xCO: # example: SET 0, B
B = from_bits(7..1=B[7..1], 0=1)
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

113

SET b, (HL): Set bit (indirect HL)
Sets the bit b of the 8-bit data at the absolute address specified by the 16-bit register HL, to 1.
Opcode 0b11xxx11@/various Duration 4 machine cycles

Length 2 bytes: CB prefix + opcode Flags -
Simple timing and pseudocode

M-cycle — M1 X M2 X M3 X M4)
Mem R/W CB prefix X opcode X R: data X W: data)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xCB: # CB prefix
opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xC6: # example: SET 0, (HL)
data = read_memory(addr=HL)
result = from_bits(7..1=data[7..1], 0=1)
write_memory(addr=HL, data=result)

Detailed timing and pseudocode

M-cycle — i X
Addr bus — (
Data bus — (CR—mem
(
(
(

M2 M3 X M4 M5/M1)

PC

X
HL X HL X PC
X

Z — mem Y mem —ALU IR < mem

IDUop —
ALU op —
Misc op —

PC «— PC+1 X __PC—PC+1

X _mem —setb,z X

X X

-
- U U

M2
if IR == 0xCB:
cb_mode =1
IR = fetch_cycle(addr=PC); PC = PC + 1
M3
if cb_mode and IR == 0xC6: # example: SET 0, (HL)
Z = read_memory(addr=HL)
M4
result = from_bits(7..1=Z[7..1], 0=1)
write_memory(addr=HL, data=result)
MS5/M1
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

114

115

6.7 Control flow instructions

JP nn: Jump

Unconditional jump to the absolute address specified by the 16-bit immediate operand nn.

Opcode 0b11000011/0xC3
Length 3 bytes: opcode + LSB(nn) + MSB(nn) Flags
Simple timing and pseudocode

Duration 4 machine cycles

J

|V|-CyC|e — M X M2 X M3 X M
Mem R/W — opcode X R: Isb(nn) X R: msb(nn) X
opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xC3:

nn_lsb = read_memory(addr=PC); PC = PC + 1

nn_msb = read_memory(addr=PC); PC = PC + 1

nn = unsigned_16(1sb=nn_Isb, msb=nn_msb)
PC = nn

Detailed timing and pseudocode

M—cycle — M1 M2 M3 M4

M5/M1

-

Addr bus

PC PC 0x0000

PC

Data bus

Z — mem

IR <~ mem

IDU op

PC—PC+1 PC—PC+1

PC—PC+1

ALU op

e e
T i e

X
X
W<—mem [
X
X
X

P O L R L

PC — WZ

Misc op

M2
if IR == 0xCS3:
Z = read_memory(addr=PC); PC
M3
W = read_memory(addr=PC); PC
M4
PC = WZ
M5/M1
IR, intr

fetch_cycle(addr=PC); PC = PC + 1

116

JP HL: Jump to HL
Unconditional jump to the absolute address specified by the 16-bit register HL.

Opcode 0b11101001/0xE9 Duration 1 machine cycle
Length 1 byte: opcode Flags -
Simple timing and pseudocode

M-cycle
Mem R/W

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == OxEO9:
PC = HL

Detailed timing and pseudocode

M-cycle — M1 X M2/M1 o
Addr bus —
Data bus —

IDUop —

ALUop — —

Miscop — E—
M2/M1

if IR == OxE9:
IR, intr = fetch_cycle(addr=HL); PC = HL + 1

117

O Warning

In some documentation this instruction is written as JP [HL]. This is very misleading,
since brackets are usually used to indicate a memory read, and this instruction simply
copies the value of HL to PC.

JP cc, nn: Jump (conditional)

Conditional jump to the absolute address specified by the 16-bit operand nn, depending on the
condition cc.

Note that the operand (absolute address) is read even when the condition is false!

Opcode 0b110xx@10/various Duration 4 machine cycles (cc=true)
3 machine cycles (cc=false)

Length 3 bytes: opcode + LSB(nn) + MSB(nn) Flags -

Simple timing and pseudocode

M-cycle — E) Mz) E) M4 -
Mem R/W — opcode X R: Isb(nn) X R: msb(nn) X

cc=true

J

cc=false

M-cycle — M1 X M2 X M3)
Mem R/W —H opcode X___Risbpn) X~ Rimsbn))

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xC2: # example: JP NZ, nn
nn_lsb = read_memory(addr=PC); PC = PC + 1
nn_msb = read_memory(addr=PC); PC = PC + 1
nn = unsigned_16(1lsb=nn_1sb, msb=nn_msb)
if Iflags.Z: # cc=true
PC = nn

118

Detailed timing and pseudocode

M-cycle
Addr bus
Data bus

IDU op

ALU op

Misc op

cc=true

M-cycle
Addr bus
Data bus

IDU op

ALU op

Misc op

cc=false

if IR == 0xC2:

Z = read_memory(addr=PC); PC

W = read_memory(addr=PC); PC

if Iflags.Z:

PC = WZ

IR, intr
else:

IR, intr

-

o U U U

— M1 X M2 X M3 X M4 X M5/M1
— (PC X PC X 0x0000 X PC
— (Z—mem Y wWemem X X IR—mem
— (pc—pc+1 X PpPc—pc+1 X X PC—PC+1
— { X X X
— (X cccheck X pc—wz X
— M1 X M2 X M3 X M4/M1)
— (PC X PC X PC)
— (Z—mem Y Wemem Y TR<—mem)
— (pc—pc+1 X Pc—pc+1 Y PC—PC+1)
— { X X)
— { X cccheck X)
= PC + 1
= PC + 1

fetch_cycle(addr=PC); PC

fetch_cycle(addr=PC); PC

119

PC + 1

PC + 1

JR e: Relative jump
Unconditional jump to the relative address specified by the signed 8-bit operand e.

Opcode 0b00V11000/0x18 Duration 3 machine cycles
Length 2 bytes: opcode +e Flags -
Simple timing and pseudocode

M-cycle —{ [X M2 X V3 =
Mem R/W —{opcode J ®ee X)

opcode = read_memory(addr=PC); PC = PC + 1

if opcode == 0x18:
e = signed_8(read_memory(addr=PC)); PC = PC + 1
PC = PC + e

Detailed timing and pseudocode

M2 M3 M4/M1)

M-cycle — Wi
Addr bus —
Data bus —

IDUop —

ALU op —

Misc op —

PC PCH Wz

Z <— mem ALU IR <— mem

PC <« PC+1 W «— adj PCH PC—WZ+1

Z—PCL+Z

- e e aa
-

X
X
X
X
X
X

P O L R L

M2
if IR == 0x18:
Z = read_memory(addr=PC); PC = PC + 1
M3
Z_sign = bit(7, Z)
result, carry_per_bit = Z + 1sb(PC)
Z = result
adj = 1 if carry_per_bit[7] and not Z_sign else
-1 if not carry_per_bit[7] and Z_sign else

0
W = msb(PC) + adj
M4/M1

IR, intr = fetch_cycle(addr=WZ); PC = WZ + 1

120

JR cc, e: Relative jump (conditional)

Conditional jump to the relative address specified by the signed 8-bit operand e, depending on
the condition cc.

Note that the operand (relative address offset) is read even when the condition is false!

Opcode 0boO1xx00A/various Duration 3 machine cycles (cc=true)
2 machine cycles (cc=false)

Length 2 bytes: opcode +e Flags -

Simple timing and pseudocode

M-cycle — M1 X M2 X M3)
Mem R/W —{"opcode ¥ Re Y

cc=true

J

cc=false

M-cycle — W —w -
Mem R/W —{"opcode Y Re)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x20:
e = signed_8(read_memory(addr=PC)); PC = PC + 1
if Iflags.Z: # cc=true
PC = PC + e

121

Detailed timing and pseudocode

M2 M3 M4/M1)

M-cycle — w1 X X Y
Addr bus — (X X
Data bus — (—zemem Y AW Y R—men
(X X
(X X
(X X

PC PCH Wz

cc=true

PC— PC+1 PC— WZ+1

IDUop —
ALU op —

Misc op —

W — adj PCH

Z—PCL+Z

o U U U

cc check

M-cycle — M1 w2
Addr bus —

X
(
Data bus — (—Z—mem
(
(
(

M3/M1 -

PC PC

IR < mem

cc=false

IDUop —
ALU op —
Miscop —

X

X)

X)
PC—PC+1 Y PC—PC+1)

X)

X)

cc check

M2
if IR == 0x20:
Z = read_memory(addr=PC); PC = PC + 1
if Iflags.Z: # cc=true
M3
Z_sign = bit(7, Z)
result, carry_per_bit = Z + 1sb(PC)
Z = result
adj =1 if carry_per_bit[7] and not Z_sign else
-1 if not carry_per_bit[7] and Z_sign else

9]
W = msb(PC) + adj
M4/M1

IR, intr = fetch_cycle(addr=WZ); PC = WZ + 1
else: # cc=false

M3/M1

IR, intr = fetch_cycle(addr=PC); PC = PC + 1

122

CALL nn: Call function
Unconditional function call to the absolute address specified by the 16-bit operand nn.
Opcode 0b11001101/0xCD Duration 6 machine cycles

Length 3 bytes: opcode + LSB(nn) + MSB(nn) Flags -
Simple timing and pseudocode

M-cycle — M1 X M2 X M3 X M4 X M5 X M6)
Mem R/W —{ opcode X _Risbom) __J__ _Remsben) X N Wmsb(PCor3) Y Welsb(PCor3))

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xCD:
nn_lsb = read_memory(addr=PC); PC = PC + 1
nn_msb = read_memory(addr=PC); PC = PC + 1
nn = unsigned_16(1lsb=nn_Isb, msb=nn_msb)
SP = SP -1
write_memory(addr=SP, data=msb(PC)); SP = SP - 1
write_memory(addr=SP, data=1sb(PC))
PC = nn

Detailed timing and pseudocode

M3 M4 M5 M6

M-cycle — M1 X

Addr bus — (
Data bus — (—Z—mem

(

(

(

M2 M7/M1)

PC PC SP SP SP PC

W «— mem mem «— PCH mem « PCL IR < mem

IDUop —
ALU op —
Misc op —

PC—PC+1 PC—PC+1 SP—SP-1 SP—SP-1 SP—sp PC—PC+1

e
e
oS P o S g o<
oS oS o S o<
- U U

PC — WZ

M2
if IR == 0xCD:
Z = read_memory(addr=PC); PC
M3
W = read_memory(addr=PC); PC = PC + 1
M4
SP = SP - 1
M5
write_memory(addr=SP, data=msb(PC)); SP
MO
write_memory(addr=SP, data=1sb(PC)); PC = WZ
M7/M1
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

PC + 1

SP -1

123

CALL cc, nn: Call function (conditional)

Conditional function call to the absolute address specified by the 16-bit operand nn, depending
on the condition cc.

Note that the operand (absolute address) is read even when the condition is false!

Opcode 0b110xx100/various Duration 6 machine cycles (cc=true)
3 machine cycles (cc=false)

Length 3 bytes: opcode + LSB(nn) + MSB(nn) Flags -

Simple timing and pseudocode

M-cycle — M1 X M2 X M3 M4 X M5 X M6 o
Mem R/W opcode X Rilsb(n) X___Rmsbn) X X W:msb(PCo*3) Y W:Isb(PCot3))

S

cc=true

cc=false

M—cycle — M1 X M2 X M3 -
Mem R/W — opcode X R: Isb(nn) X R: msb(nn))

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xC4: # example: CALL NZ, nn
nn_lsb = read_memory(addr=PC); PC = PC + 1
nn_msb = read_memory(addr=PC); PC = PC + 1
nn = unsigned_16(1lsb=nn_1sb, msb=nn_msb)
if Iflags.Z: # cc=true
SP = SP - 1
write_memory(addr=SP, data=msb(PC)); SP = SP - 1
write_memory(addr=SP, data=1sb(PC))
PC = nn

124

Detailed timing and pseudocode

M-cycle — M1

M2

M3

M4

M5

M6

M7/M1

-

Addr bus —
Data bus —
IDUop —
ALU op —
Misc op —

cc=true

PC

PC

SP

SP

SP

PC

Z — mem

mem «— PCH

mem «— PCL

IR — mem

PC—PC+1

PC—PC+1

SP—SP-1

SP—SP-1

SP « SP

PC—PC+1

X
(
(
(
{
{

o PR P P S S

X
X
W—mem X
X
X
X

cc check

T e e

PC — WZ

o U U U

M-cycle — M1

M2

M3

M4/M1

Addr bus —
Data bus —
IDUop —
ALU op —
Miscop —

cc=false

M2
if IR == 0xC4: # example:

M3

W = read_memory(addr=PC); PC

if Iflags.Z: # cc=true
M4
SP = SP - 1
MO

write_memory(addr=SP, data=msb(PC)); SP

MO

write_memory(addr=SP, data=1sb(PC)); PC

MT7/M1

PC

PC

PC

Z — mem

PC —PC+1

PC —PC+1

PC —PC+1

e e e e

o PR oS oS oS o<

X
X
W—mem X IR—mem
X
X
X

o J U U

cc check

CALL
Z = read_memory(addr=PC); PC

N

Z, nn

PC + 1

PC + 1

IR, intr = fetch_cycle(addr=PC); PC =

else: # cc=false
M4/M1

IR, intr = fetch_cycle(addr=PC); PC =

125

SP -1

WZ

PC + 1

PC + 1

RET: Return from function
Unconditional return from a function.

Opcode 0b11001001/0xC9 Duration 4 machine cycles
Length 1 byte: opcode Flags -
Simple timing and pseudocode

M-cycle — M1 X M2 X M3 X M4)
M em R/W — opcode X R: Isb(PC) X R:msb(PQ) X

J

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xC9:
1sb = read_memory(addr=SP); SP = SP + 1
msb = read_memory(addr=SP); SP = SP + 1
PC = unsigned_16(1lsb=1sb, msb=msb)

Detailed timing and pseudocode

M-cycle — Wi
Addr bus —
Data bus —

IDUop —

ALU op —

Misc op —

M2 M3 M4 M5/M1)

Sp SP 0x0000 PC

Z < mem W «— mem IR < mem

SP—sSP+1 SP—sSP+1 PC—PC+1

- e e aa
e
oS oS 2 S > o<
- U U

PC — WZ

M2
if IR == 0xC9:
Z = read_memory(addr=SP); SP = SP + 1
M3
W = read_memory(addr=SP); SP = SP + 1
M4
PC = WZ
MS5/M1
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

126

RET cc: Return from function (conditional)

Conditional return from a function, depending on the condition cc.

Opcode 0b110xx000/various

Duration 5 machine cycles (cc=true)
2 machine cycles (cc=false)

-

o J U U

Length 1 byte: opcode Flags -
Simple timing and pseudocode
M-cycle — W —w) EE X w -
cc=true
Mem R/W —H opcode X X RiIsb(PQ) X Rmsb(PO) X)
cc=false M-cycle — W) }-
Mem R/W —{opcode)
opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xCO: # example: RET NZ
if Iflags.Z: # cc=true
1sb = read_memory(addr=SP); SP = SP + 1
msb = read_memory(addr=SP); SP = SP + 1
PC = unsigned_16(1lsb=1sb, msb=msb)
Detailed timing and pseudocode
M-Cyde — M1 X M2 X M3 X M4 X M5 X M6/M1
Addr bus — (0x0000 X P X P X 0x0000 X PC
Data bus — (__z—mem X wWcmem X 1R —mem
cc=true IDUop — (X _sP—sp+1__ X sp—sp+1_ X X Pc—pc+1
ALU op — (X X X X
Misc op — (e X) Y pcowz)
M—cycle — M1 X M2 X M3/M1 -
Addr bus — (0x0000 X PC)
_ Data bus — (—Remem)
cc=false IDUop — (Fc—rcsi)
ALU op — { X)
Miscop — (cccheck X)
M2
if IR == 0xCO: # example: RET NZ
if Iflags.Z: # cc=true
M3
Z = read_memory(addr=SP); SP = SP + 1
M4
W = read_memory(addr=SP); SP = SP + 1
MO
PC = WZ
M6/M1
IR, intr = fetch_cycle(addr=PC); PC = PC + 1
else: # cc=false
M3
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

127

RETI: Return from interrupt handler
Unconditional return from a function. Also enables interrupts by setting IME=1.

Opcode 0b11011001/0xD9 Duration 4 machine cycles
Length 1 byte: opcode Flags -
Simple timing and pseudocode

M-cycle — M1 X M2 X M3 X M4)
M em R/W — opcode X R: Isb(PC) X R:msb(PQ) X

J

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0xD9:
1sb = read_memory(addr=SP); SP = SP + 1
msb = read_memory(addr=SP); SP = SP + 1
PC = unsigned_16(1lsb=1sb, msb=msb)
IME =1

Detailed timing and pseudocode

M2 M3 M4

M-cycle — i X
Addr bus — (
Data bus — (—Z—mem
(
(
(

M5/M1)

Sp SP 0x0000 PC

IR <~ mem

SP—sSP+1 SP—sSP+1 PC—PC+1

IDUop —
ALU op —

Misc op —

X
X
W—mem
X
X

e
oS P oS S > o<
- U U

Y PC — Wz, IME 1

M2
if IR == 0xD9:
Z = read_memory(addr=SP); SP = SP + 1

M3

W = read_memory(addr=SP); SP = SP + 1
M4

PC = WZ; IME = 1

MS5/M1

IR, intr = fetch_cycle(addr=PC); PC = PC + 1

128

RST n: Restart / Call function (implied)
Unconditional function call to the absolute fixed address defined by the opcode.
Opcode 0b11xxx111/various Duration 4 machine cycles

Length 1 byte: opcode Flags -
Simple timing and pseudocode

M-cycle — M1 X M2 X M3 X M4)
Mem R/W —{___opcode X X W.msbpc__ }___wisbpC__)

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == OxDF: # example: RST 0x18
n = 0x18
SP = SP - 1
write_memory(addr=SP, data=msb(PC)); SP = SP - 1
write_memory(addr=SP, data=1sb(PC))
PC = unsigned_16(1lsb=n, msb=0x00)

Detailed timing and pseudocode

M-cycle — i X
Addr bus — (
Data bus — (

(
(
(

M2 M3 M4 M5/M1)

SP SP SP PC

mem «— PCH mem « PCL IR < mem

IDUop —
ALU op —
Misc op —

SP—SP-1 SP—SP-1 SP—SP PC—PC+1

oS P o S g o<
- U U

PC — addr

M2
if IR == OxDF: # example: RST 0x18
SP = SP - 1
M3
write_memory(addr=SP, data=msb(PC)); SP
M4
write_memory(addr=SP, data=1sb(PC)); PC = 0x0018
MS5/M1
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

SP -1

129

6.8 Miscellaneous instructions

HALT: Halt system clock
TODO

STOP: Stop system and main clocks
TODO

DI: Disable interrupts

Disables interrupt handling by setting IME=0 and cancelling any scheduled effects of the EI
instruction if any.

Opcode 0b11110011/0xF3 Duration 1 machine cycle
Length 1 byte: opcode Flags -
Simple timing and pseudocode

M-cycle
Mem R/W

opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0OxF3:
IME = ©

Detailed timing and pseudocode

M-cycle — M1 X M2/M1)

Addr bus —
Data bus —
IDUop —
ALUop — —
Misc op —
M2/M1

if IR == 0OxF3:
interrupt checking is suppressed so fetch_cycle(..) is not used
IR = read_memory(addr=PC); PC = PC + 1; IME = O

130

EI: Enable interrupts

Schedules interrupt handling to be enabled after the next machine cycle.

Opcode 0b11111011/0xFB Duration 1 machine cycle
Length 1 byte: opcode Flags -
Simple timing and pseudocode

M-cycle
Mem R/W
opcode = read_memory(addr=PC); PC = PC + 1

if opcode == 0OxFB:
IME_next =1

Detailed timing and pseudocode

M-cycle — M1 X M2/M1 o
Addr bus —
Data bus —

IDUop —

ALUop — —

Miscop —
M2/M1

if IR == OxFB:
IR, intr = fetch_cycle(addr=PC); PC = PC + 1; IME =1

131

NOP: No operation

No operation. This instruction doesn't do anything, but can be used to add a delay of one
machine cycle and increment PC by one.

Opcode 0b0RVVVV/0x00 Duration 1 machine cycle
Length 1 byte: opcode Flags -
Simple timing and pseudocode

M-cycle
Mem R/W
opcode = read_memory(addr=PC); PC = PC + 1
if opcode == 0x00:

nothing

Detailed timing and pseudocode

M-cycle — M1 X M2/M1)

Addr bus —
Data bus —
IDUop —
ALU op — R
Misc op — R
M2/M1

if IR == 0x00:
IR, intr = fetch_cycle(addr=PC); PC = PC + 1

132

133

Part III

Game Boy SoC peripherals and features

134

Chapter 7
Boot ROM

The Game Boy SoC includes a small embedded boot ROM, which can be mapped to the
0x0000-0x0FF memory area. While mapped, all reads from this area are handled by the boot
ROM instead of the external cartridge, and all writes to this area are ignored and cannot be
seen by external hardware (e.g. the cartridge MBC).

The boot ROM is enabled by default, so when the system exits the reset state and the CPU
starts execution from address 0x0000, it executes the boot ROM instead of instructions from
the cartridge ROM. The boot ROM is responsible for showing the initial logo, and checking that
avalid cartridge is inserted into the system. If the cartridge is valid, the boot ROM unmaps itself
before execution of the cartridge ROM starts at 0x0100. The cartridge ROM has no chance of
executing any instructions before the boot ROM is unmapped, which prevents the boot ROM
from being read byte by byte in normal conditions.

O Warning

Don't confuse the boot ROM with the additional SNES ROM in SGB/SGB2 that is executed
by the SNES CPU.

Register 7.1: 0xFF50 - BOOT - Boot ROM lock register

U U U U U U U R/W-0
BOOT_OFF
bit 7 6 5 4 3 2 1 bit @

bit 7-1 Unimplemented: Ignored during writes, reads are undefined

bit0 BOOT_OFF: Boot ROM lock bit
ob1 = Boot ROM is disabled and 0x0000-0x00FF works normally.
0bo = Boot ROM is active and intercepts accesses to 0x0000-0xQ0FF .

BOOT_OFF can only transition from @bo to @b1, so once @b1 has been written, the boot
ROM is permanently disabled until the next system reset. Writing @@ when BOOT_OFF
is @b@ has no effect and doesn’t lock the boot ROM.

The 1-bit BOOT register controls mapping of the boot ROM. Once @b1 has been written to it to
unmap the boot ROM, it can only be mapped again by resetting the system.

135

7.1 Boot ROM types

Type |CRC32|MD5 SHA1

D M G 59c8598e 32fbbd84168d3482956eb3c5051637f5 | 4ed31ec6b@b175bb109c@eb5fd3d193da823339f

M G B 6920754 T1a378e71££30b2d8a1f02bf5c7896aa | 4e68f9dad3c310e84c523654b9026e51 f26ceT fO

SG B ec8a83b9 d574d4f9c12£305074798f54c091a8b4 | aa2f50a77dfb4823da96ba99309085a3c6278515

SG BZ 53d0dd63 e0430bca9925fb9882148fd2dc2418c1 | 93407eal0d2f30ab96a314d8ecad4felb0aea734

DMGO | c2£5cco7 | a8f84a0ac44da5d3tOeel9foceadase | 8bd501e31921e9601788316dbd3ce9833a97bebe

Table 7.1: Summary of boot ROM file hashes

DMG boot ROM

The most common boot ROM is the DMG boot ROM used in almost all original Game Boy units.
If a valid cartridge is inserted, the boot ROM scrolls a logo to the center of the screen, and plays
a “di-ding” sound recognizable by most people who have used Game Boy consoles.

This boot ROM was originally dumped by neviksti in 2003 by decapping the Game Boy SoC and
visually inspecting every single bit.

MGB boot ROM

This boot ROM was originally dumped by Bennvenn in 2014 by using a simple clock glitching
method that only requires one wire.

SGB boot ROM

This boot ROM was originally dumped by Costis Sideris in 2009 by using an FPGA-based clock
glitching method [4].

SGB2 boot ROM

This boot ROM was originally dumped by gekkio in 2015 by using a Teensy 3.1 -based clock
glitching method [5].

Early DMG boot ROM (“DMG0")

Very early original Game Boy units released in Japan (often called “DMG0”) included the launch
version “DMG-CPU"” SoC chip, which used a different boot ROM than later units.

This boot ROM was originally dumped by gekkio in 2016 by using a clock glitching method
invented by BennVenn.

136

Chapter 8
DMA (Direct Memory Access)

8.1 Object Attribute Memory (OAM) DMA

OAM DMA is a high-throughput mechanism for copying data to the OAM area (a.k.a. Object
Attribute Memory, a.k.a. sprite memory). It can copy one byte per machine cycle without
involving the CPU at all, which is much faster than the fastest possible memcpy routine that
can be written with the SM83 instruction set. However, a transfer cannot be cancelled and the
transfer length cannot be controlled, so the DMA transfer always updates the entire OAM area
(= 160 bytes) even if you actually want to just update the first couple of bytes.

The Game Boy CPU chip contains a DMA controller that coordinates transfers between a
source area and the OAM area independently of the CPU. While a transfer is in progress, it
takes control of the source bus and the OAM area, so some precaution is needed with memory
accesses (including instruction fetches) to avoid OAM DMA bus conflicts. OAM DMA uses a
different address decoding scheme than normal memory accesses, so the source bus is always
either the external bus or the video RAM bus, and the contents normally visible to the CPU in
the 0xFEQ0-0xFFFF address range cannot be used as a source for OAM DMA transfers.

The upper 8 bits of the OAM DMA source address are stored in the DMA register, while the lower
8 bits used by both the source and target address are stored in the DMA controller and are not
accessible directly. A transfer always begins with 0x00 in the lower bits and copies exactly 160
bytes, so the lower bits are never in the 0xA0-0xFF range.

Writing to the DMA register updates the upper bits of the DMA source address and also triggers
an OAM DMA transfer request, although the DMA transfer does not begin immediately.

Register 8.1: 0xFF46 - DMA - OAM DMA control register
RW-x | Rax | rwx | rwx | rRawex | rwex | rwx | Rax
DMA<T:0>
bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | »bito

bit 7-0 DMA<7:0>: OAM DMA source address
Specifies the top 8 bits of the OAM DMA source address.

Writing to this register requests an OAM DMA transfer, but it's just a request and the
actual DMA transfer starts with a delay.

Reading this register returns the value that was previously written to the register. The
stored value is not cleared on reset, so the initial value before the first write is unknown
and should not be relied on.

© Warning

Avoid writing 0xEQ-0xFF to the DMA register, because some poorly designed flash carts
can trigger bus conflicts or other dangerous behaviour.

137

OAM DMA address decoding

The OAM DMA controller uses a simplified address decoding scheme, which leads to some
addresses being unusable as source addresses. Unlike normal memory accesses, OAM DMA
transfers interpret all accesses in the 0xAQ00-0xFFFF range as external RAM transfers. For
example, if the OAM DMA wants to read 0xFF0o, it will output @xFFe@ on the external address
bus and will assert the external RAM chip select signal. The P1 register which is normally at
0xFF00 is not involved at all, because OAM DMA address decoding only uses the external bus
and the video RAM bus. Instead, the resulting behaviour depends on several factors, including
the connected cartridge. Some flash carts are not prepared for this unexpected scenario, and

a bus conflict or worse behaviour can happen.

DMA register value

Used bus

Asserted chip select signal

0x00-0xTF external bus external ROM (A15)
0x80-0x9F video RAM bus | video RAM (MCS)
0xAQ-0xFF external bus external RAM (CS)

Table 8.1: OAM DMA address decoding scheme

OAM DMA transfer timing
TODO

OAM DMA bus conflicts
TODO

138

Chapter 9
PPU (Picture Processing Unit)

Register 9.1: 0xFF40 - LCDC - PPU control register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LCD_EN WIN_MAP WIN_EN TILE_SEL BG_MAP OBJ_SIZE OBJ_EN BG_EN

bit 7 5 4 3 2 1 bit 0

Register 9.2: 0xFF41 - STAT - PPU status register
U R/W-0 R/W-0 R/W-0 R/W-0 R-0 R0 | RO
INTR_LYC INTR_M2 INTR_M1 INTR_M@ | LYC_STAT LCD_MODE <1 : @5
bit 7 6 5 4 3 2 1 | »bito
Register 9.3: 0xFF42 - SCY - Vertical scroll register

R/W-0 rRwo | rwoe | rwo | rRwo | rwe | ruwo | RwWo
SCY<7:0>

bit 7 6 | 5 | 4 | 3 | 2 | 1 | bito

Register 9.4: 0xFF43 - SCX - Horizontal scroll register

R/W-0 rRWwo | rwoe | RrRwoe | rRwo | rwe | RrRuwoe | Rwo
SCX<T7:0>

bit 7 6 | 5 | 4 | 3 | 2 | 1 | bito

Register 9.5: 0xFF44 - LY - Scanline register
R-0 rRo | ro | re | re | rRo | rRo [ro

LY<T7:0>

bit 7 6 | 5 | 4 | 3 | 2 | 1 | »bito

Register 9.6: 0xFF45 - LYC - Scanline compare register

R/W-0 rRWwo | rwo | rRwo | rRwo | rwoe | rRuwo | RwWo
LYC<T7:0>

bit 7 6 | 5 | 4 | 3 | 2 | 1 | bito

139

Chapter 10

Port P1 (Joypad, Super Game Boy communica-

tion)

Register 10.1: @xFF00 - P1 - Joypad/Super Game Boy communication register

U U W-0 W-0 R-x R-x R-x R-x
P15 P14 P13 P12 P11 P10
bit 7 6 5 4 3 2 1 bit @

bit 7-6 Unimplemented: Ignored during writes, reads are undefined

bit 5 P15
bit 4 P14
bit 3 P13
bit 2 P12
bit 1 P11
bit 0 P10

140

Chapter 11
Serial communication

Register 11.1: 0xFFQ1 - SB - Serial data register

rwo | rwoe | RrRwoe | rRwo | rwe | RrRwoe | rRwo | ruwo

SB<T7:0>

bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | »bito

bit 7-0 SB<7:0>: Serial data

Register 11.2: 0xFF@2 - SC - Serial control register

R/W-0 U U U U U U R/W-0
SIO_EN SIO_CLK
bit 7 6) 4 3 2 1 bit 0

bit7 SIO_EN
bit 6-1 Unimplemented: Ignored during writes, reads are undefined
bit0 SIO_CLK

141

Part 1V

Game Boy game cartridges

142

Chapter 12
MBC1 mapper chip

The majority of games for the original Game Boy use the MBC1 chip. MBC1 supports ROM sizes
up to 16 Mbit (128 banks of 0x4000 bytes) and RAM sizes up to 256 Kbit (4 banks of 0x2000
bytes). The information in this section is based on my MBC1 research, Tauwasser’s research
notes [6], and Pan Docs [7].

12.1 MBC1 registers

O Caveat

These registers don't have any standard names and are usually referred to using their
address ranges or purposes instead. This document uses names to clarify which register
is meant when referring to one.

The MBC1 chip includes four registers that affect the behaviour of the chip. Of the cartridge
bus address signals, only A13-A15 are connected to the MBC, so lower address bits don't matter
when the CPU is accessing the MBC and all registers are effectively mapped to address ranges
instead of single addresses. All registers are smaller than 8 bits, and unused bits are simply
ignored during writes. The registers are not directly readable.

Register 12.1: 0x0000-0x1FFF - RAMG - MBC1 RAM gate register
u U u u wo [we | weo | wo
RAMG<3:0>
bit 7 6 5 4 3 | 2 | 1 | »bito

bit 7-4 Unimplemented: Ignored during writes

bit 3-0 RAMG<3:0>: RAM gate register
0b1010 = enable access to chip RAM
All other values disable access to chip RAM

The RAMG register is used to enable access to the cartridge SRAM if one exists on the
cartridge circuit board. RAM access is disabled by default but can be enabled by writing to the
0x000P-0x1FFF address range a value with the bit pattern ob1010 in the lower nibble. Upper
bits don't matter, but any other bit pattern in the lower nibble disables access to RAM.

When RAM access is disabled, all writes to the external RAM area 0xA000-0xBFFF are ignored,
and reads return undefined values. Pan Docs recommends disabling RAM when it's not being
accessed to protect the contents [7].

143

& Speculation

We don't know the physical implementation of RAMG, but it's certainly possible that the
0b1010 bit pattern check is done at write time and the register actually consists of just a
single bit.

Register 12.2: 0x2000-0x3FFF - BANK1 - MBC1 bank register 1
u U U weo | we | we | weo | wa
BANK1 <4:0>
bit 7 6 5 4 | 3 | 2 | 1 | bito

bit 7-5 Unimplemented: Ignored during writes

bit 4-0 BANK1<4:0>: Bank register 1
Never contains the value 0b00000.
If 2b00000 is written, the resulting value will be 0boA1 instead.

The 5-bit BANKT1 register is used as the lower 5 bits of the ROM bank number when the CPU
accesses the 0x4000-0x7FFF memory area.

MBC1 doesn't allow the BANK1 register to contain zero (bit pattern 0b@ooeo), so the initial value
at reset is @beEA1 and attempting to write b0V will write 0bo1 instead. This makes it
impossible to read banks 0x00, 0x20, 0x40 and 0x60 from the 0x4000-0x7FFF memory area,
because those bank numbers have 0booo0 in the lower bits. Due to the zero value adjustment,
requesting any of these banks actually requests the next bank (e.g. 9x21 instead of 0x20).

Register 12.3: 0x4000-0x5FFF - BANK2 - MBC1 bank register 2
u u u U u U wo [wo
BANK2<1 : 0>

bit 7 6 5 4 3 2 1 | bit @

bit 7-2 Unimplemented: Ignored during writes
bit 1-0 BANK2<1:0>: Bank register 2

The 2-bit BANK2 register can be used as the upper bits of the ROM bank number, or as the 2-bit
RAM bank number. Unlike BANK1, BANK2 doesn't disallow zero, so all 2-bit values are possible.

144

Register 12.4: 0x6000-0xTFFF - MODE - MBC1 mode register

U U U U U U U W-0
MODE
bit 7 6) 4 3 2 1 bit 0

bit 7-1 Unimplemented: Ignored during writes

bit0 MODE: Mode register
ob1 = BANK2 affects accesses to 0x0000-0x3FFF, 0x4000-0xTFFF, 0xAQQ0-0xBFFF
0bo = BANK2 affects only accesses to 0x4000-0x7FFF

The MODE register determines how the BANK2 register value is used during memory accesses.
© Warning

Most documentation, including Pan Docs [7], calls value @b@ ROM banking mode, and
value@b1 RAM banking mode. This terminology reflects the common use cases, but “RAM
banking” is slightly misleading because value ob1 also affects ROM reads in multicart
cartridges and cartridges that have a 8 or 16 Mbit ROM chip.

12.2 ROM in the 0x0000-0x7FFF area

In MBC1 cartridges, the A0-A13 cartridge bus signals are connected directly to the correspond-
ing ROM pins, and the remaining ROM pins (A14-A20) are controlled by the MBC1. These
remaining pins form the ROM bank number.

When the 0x0000-0x3FFF address range is accessed, the effective bank number depends on
the MODE register. In MODE 0bo the bank number is always 0, but in MODE @b1 it's formed by
shifting the BANK2 register value left by 5 bits.

When the 0x4000-0x7FFF addess range is accessed, the effective bank number is always a
combination of BANK1 and BANK2 register values.

If the cartridge ROM is smaller than 16 Mbit, there are less ROM address pins to connect to
and therefore some bank number bits are ignored. For example, 4 Mbit ROMs only need a 5-
bit bank number, so the BANK2 register value is always ignored because those bits are simply
not connected to the ROM.

ROM address bits

Accessed address Bank number | Address within bank
20-19 | 18-14 13-0
0x0000-0x3FFF, MODE =0b0 | ©b00 | ©b000VO A<13:0>
0x0000-0x3FFF, MODE =0b1 | BANK2 | 9b00000 A<13:0>
0x4000-0x'TFFF BANK2 [BANK1 A<13:0>

Table 12.1: Mapping of physical ROM address bits in MBC1 carts

ROM banking example 1

Let's assume we have previously written 0x12 to the BANK1 register and obo1 to the BANK2
register. The effective bank number during ROM reads depends on which address range we

read and on the value of the MODE register:

145

Value of the BANK 1 register ©b10010

Value of the BANK 2 register obe1
Effective ROM bank number
(reading 0x4000-0x7FFF)

Effective ROM bank number
(reading 0x0000-0x3FFF, MODE = 0b0)

Effective ROM bank number
(reading 0x0000-0x3FFF, MODE =0b1)

0b011001@ (= 50 =0x32)
0boRYYRL (= 0 =0x00)

0b01000RY (= 32 = 0x20)

ROM banking example 2

Let's assume we have previously requested ROM bank number 68, MBC1 mode is 0b@, and we
are now reading a byte from 0x72A7. The actual physical ROM address that will be read is going
to be 0x1132A7 and is constructed in the following way:

Value of the BANK 1 register ©b00100

Value of the BANK 2 register ©b10@

ROM bank number 0b1000100 (= 68 =0x44)
Address being read 0b2111 0010 1010 0111 (=0OxT72AT7)

Actual physical ROM address 0b1 0001 0011 0010 1010 0111 (= 0©x1132AT)

12.3 RAM in the 0xAQ00-0xBFFF area

Some MBC1 carts include SRAM, which is mapped to the 0xAQ00-0xBFFF area. If no RAM is
present, or RAM is not enabled with the RAMG register, all reads return undefined values and
writes have no effect.

On boards that have RAM, the A0-A12 cartridge bus signals are connected directly to the
corresponding RAM pins, and pins A13-A14 are controlled by the MBC1. Most of the time the
RAM size is 64 Kbit, which corresponds to a single bank of 0x2000 bytes. With larger RAM sizes
the BANK2 register value can be used for RAM banking to provide the two high address bits.

In MODE obo the BANK2 register value is not used, so the first RAM bank is always mapped to
the 0xAQO-0xBFFF area. In MODE ob1 the BANK2 register value is used as the bank number.

RAM address bits
Accessed address Bank number | Address within bank
14-13 12-0
0xAQRR-0xBFFF, MODE = 0b0 ©bo0o A<12:0>
0xAQPR-0xBFFF, MODE =0b1 BANK2 A<12:0>

Table 12.2: Mapping of physical RAM address bits in MBC1 carts

RAM banking example 1

Let's assume we have previously written 0b10 to the BANK2 register, MODE is ob1, RAMG is
0b1010 and we are now reading a byte from 0xB123. The actual physical RAM address that will
be read is going to be ©x5123 and is constructed in the following way:

146

Value of the BANK 2 register 0b10
Address being read 0b1011 0001 0010 0011 (=0©xB123)
Actual physical RAM address ©0b101 0001 0010 0011 (=0©x5123)

12.4 MBC1 multicarts (“MBC1M")

MBC1 is also used in a couple of “multicart” cartridges, which include more than one game on
the same cartridge. These cartridges use the same regular MBC1 chip, but the circuit board is
wired a bit differently. This alternative wiring is sometimes called “MBC1M", but technically the
mapper chip is the same. All known MBC1 multicarts use 8 Mbit ROMs, so there’s no definitive
wiring for other ROM sizes.

In MBC1 multicarts bit 4 of the BANK1 register is not physically connected to anything, so it's
skipped. This means that the bank number is actually a 6-bit number. In all known MBC1 multi-
carts the games reserve 16 banks each, so BANK2 can actually be considered “game number”,
while BANK1 is the internal bank number within the selected game. At reset BANK2 is ©b0o,
and the “game” in this slot is actually a game selection menu. The menu code selects MODE
ob1 and writes the game number to BANK2 once the user selects a game.

From a ROM banking point of view, multicarts simply skip bit 4 of the BANK1 register, but
otherwise the behaviour is the same. MODE @b1 guarantees that all ROM accesses, including
accesses to 0x000-0x3FFF, use the BANK2 register value.

ROM address bits
Accessed address Bank number Address within bank
19-18 17-14 13-0
0x0000-0x3FFF, MODE =0b0 | ©boo ©b0LO A<13:0>
0x0000-0x3FFF, MODE =0b1 | BANK2 0bLO A<13:0>
0x4000-0xTFFF BANK2 [BANK1<3:0> A<13:0>

Table 12.3: Mapping of physical ROM address bits in MBC1 multicarts

ROM banking example 1

Let's assume we have previously requested “game number” 3 (=0b11) and ROM bank number
29 (=0x1D), MBC1 mode is@b1, and we are now reading a byte from 0x6C15. The actual physical
ROM address that will be read is going to be 0xF6C15 and is constructed in the following way:

Value of the BANK 1 register ob11101

Value of the BANK 2 register ob11

ROM bank number 0b111101 (=61 =0x%3D)
Address being read 0b0110 1100 0001 0101 (= 0©x6C15)

Actual physical ROM address 0b1111 0110 1100 0001 0101 (= OxF6C15)

Detecting multicarts

MBC1 multicarts are not detectable by simply looking at the ROM header, because the ROM type
value is just one of the normal MBC1 values. However, detection is possible by going through
BANK2 values and looking at “bank 0” of each multicart game and doing some heuristics based

147

on the header data. All the included games, including the game selection menu, have proper
header data. One example of a good heuristic is logo data verification.

So, if you have a 8 Mbit cart with MBC1, first assume that it's a multicart and bank numbers
are 6-bit values. Set BANK1 to zero and loop through the four possible BANK2 values while
checking the data at 0x0104-0x0133. In other words, check logo data starting from physical
ROM locations 0x00104, 0x40104, 0x80104, and 0xC0104. If proper logo data exists with most
of the BANK2 values, the cart is most likely a multicart. Note that multicarts can just have two
actual games, so one of the locations might not have the header data in place.

12.5 Dumping MBC1 carts

MBC1 cartridge dumping is fairly straightforward with the right hardware. The total number
of banks is read from the header, and each bank is read one byte at a time. However, BANK1
register zero-adjustment and multicart cartridges need to be considered in ROM dumping
code.

Banks 0x20, 0x40 and 0x60 can only be read from the 0x0000-0x3FFF memory area and only
when MODE register value is@b1. Using MODE @b1 has no undesirable effects when doing ROM
dumping, so using it at all times is recommended for simplicity.

Multicarts should be detected using the logo check described earlier, and if a multicart is
detected, BANK1 should be considered a 4-bit register in the dumping code.

BANK1 0x2000
BANK2 = 0x4000
MODE = ©0x6000
write_byte(MODE, 0x01)
for bank in range(@, num_banks):
write_byte(BANK1, bank)
if is_multicart:
write_byte(BANK2, bank >> 4)
bank_start = 0x4000 if bank & 0x0f else 0x0000
else:
write_byte(BANK2, bank >> 5)
bank_start = 0x4000 if bank & Ox1f else 0x0000
for addr in range(bank_start, bank_start + 0x4000):
buf += read_byte(addr)
Listing 12.1: Python pseudo-code for MBC1 ROM dumping

148

Chapter 13
MBC2 mapper chip

MBC2 supports ROM sizes up to 2 Mbit (16 banks of 0x4000 bytes) and includes an internal
512x4 bit RAM array, which is its unique feature. The information in this section is based on my
MBC2 research, Tauwasser’s research notes [8], and Pan Docs [7].

& Speculation

MBC1 is strictly more powerful than MBC2 because it supports more ROM and RAM. This
raises a very important question: why does MBC2 exist? It's possible that Nintendo tried
to integrate a small amount of RAM on the MBC chip for cost reasons, but it seems that
this didn’t work out very well since all later MBCs revert this design decision and use
separate RAM chips.

13.1 MBC2 registers

O Caveat

These registers don't have any standard names and are usually referred to using one of
their addresses or purposes instead. This document uses names to clarify which register
is meant when referring to one.

The MBC2 chip includes two registers that affect the behaviour of the chip. The registers
are mapped a bit differently compared to other MBCs. Both registers are accessible within
0x0000-0x3FFF, and within that range, the register is chosen based on the A8 address signal.
In practice, this means that the registers are mapped to memory in an alternating pattern. For
example, 0x0000, 0x2000 and 0x3000 are RAMG, and 0x0100, 0x2100 and 0x3100 are ROMB.
Both registers are smaller than 8 bits, and unused bits are simply ignored during writes. The
registers are not directly readable.

Register 13.1: 0x0000-0x3FFF when A8=0b0 - RAMG - MBC2 RAM gate register
u U U U wo [we | weo | wo
RAMG<3:0>
bit 7 6 5 4 3 | 2 | 1 | bito

bit 7-4 Unimplemented: Ignored during writes

bit 3-0 RAMG<3:0>: RAM gate register
0b1010 = enable access to chip RAM
All other values disable access to chip RAM

The 4-bit MBC2 RAMG register works in a similar manner as MBC1 RAMG, so the upper bits
don't matter and only the bit pattern @b1010 enables access to RAM.

149

When RAM access is disabled, all writes to the external RAM area 0xA000-0xBFFF are ignored,
and reads return undefined values. Pan Docs recommends disabling RAM when it's not being
accessed to protect the contents [7].

& Speculation

We don't know the physical implementation of RAMG, but it's certainly possible that the
0b1010 bit pattern check is done at write time and the register actually consists of just a
single bit.

Register 13.2: 0x0000-0x3FFF when A8=0b1 - ROMB - MBC2 ROM bank register
u u u u wo [we | weo | wa
ROMB<3:0>
bit 7 6 5 4 3 | 2 | 1 | »bito

bit 3-0 ROMB<3:0>: ROM bank register
Never contains the value 2b00Q.
If 0b0000 is written, the resulting value will be 0boo01 instead.

The 4-bit ROMB register is used as the ROM bank number when the CPU accesses the
0x4000-0xTFFF memory area.

Like MBC1 BANK1, the MBC2 ROMB register doesn’t allow zero (bit pattern 0b0ooQ) in the
register, so any attempt to write @boooo writes 0boo1 instead.
13.2 ROM in the 0x0000-0xT7FFF area

In MBC2 cartridges, the A0-A13 cartridge bus signals are connected directly to the correspond-
ing ROM pins, and the remaining ROM pins (A14-A17) are controlled by the MBC2. These
remaining pins form the ROM bank number.

When the 0x0000-0x3FFF address range is accessed, the effective bank number is always O.

When the 0x4000-0xTFFF address range is accessed, the effective bank number is the current
ROMB register value.

ROM address bits

Accessed address | Bank number | Address within bank
17-14 13-0
0x0000—-0x3FFF ©bRL A<13:0>
0x4000-0xTFFF ROMB A<13:0>

Table 13.1: Mapping of physical ROM address bits in MBC2 carts

13.3 RAM in the 0xAQ00-0xBFFF area

All MBC2 carts include SRAM, because it is located directly inside the MBC2 chip. These car-
tridges never use a separate RAM chip, but battery backup circuitry and a battery are optional.
If RAM is not enabled with the RAMG register, all reads return undefined values and writes have
no effect.

150

MBC2 RAM is only 4-bit RAM, so the upper 4 bits of data do not physically exist in the chip.
When writing to it, the upper 4 bits are ignored. When reading from it, the upper 4 data signals
are not driven by the chip, so their content is undefined and should not be relied on.

MBC2 RAM consists of 512 addresses, so only A0-A8 matter when accessing the RAM region.
There is no banking, and the 0xA000-0xBFFF area is larger than the RAM, so the addresses
wrap around. For example, accessing 0xAQ00 is the same as accessing 0xA200, so it is possible
to write to the former address and later read the written data using the latter address.

RAM address bits
Accessed address

8-0
0xAQYO-0xBFFF A<8.0>
Table 13.2: Mapping of physical RAM address bits in MBC2 carts

13.4 Dumping MBC2 carts

MBC2 cartridges are very simple to dump. The total number of banks is read from the header,
and each bank is read one byte at a time. ROMB zero adjustment must be considered in the
ROM dumping code, but this only means that bank 0 should be read from 0x0000-0x3FFF and
not from 0x4000-0x7FFF like other banks.

ROMB = 0x2100
for bank in range(@, num_banks):
write_byte(ROMB, bank)
bank_start = 0x4000 if bank > 0 else 0x0000
for addr in range(bank_start, bank_start + 0x4000):
buf += read_byte(addr)
Listing 13.2: Python pseudo-code for MBC2 ROM dumping

151

Chapter 14
MBC3 mapper chip

MBC3 supports ROM sizes up to 16 Mbit (128 banks of 0x4000 bytes), and RAM sizes up to 256
Kbit (4 banks of 0x2000 bytes). It also includes a real-time clock (RTC) that can be clocked with
a quartz crystal on the cartridge even when the Game Boy is powered down. The information
in this section is based on my MBC3 research, and Pan Docs [7].

152

Chapter 15
MBC30 mapper chip

MBC30 is a variant of MBC3 used by Japanese Pokemon Crystal to support a larger ROM chip
and a larger RAM chip. Featurewise MBC30 is almost identical to MBC3, but supports ROM sizes
up to 32 Mbit (256 banks of 0x4000 bytes), and RAM sizes up to 512 Kbit (8 banks of 0x2000
bytes). Information in this section is based on my MBC30 research.

© Warning

The circuit board of Japanese Pokemon Crystal includes a 1 Mbit RAM chip, but MBC30
is limited to 512 Kbit RAM. One of the RAM address pins is unused, so half of the RAM is
wasted and is inaccessible without modifications. So, the game only uses 512 Kbit and
there is a mismatch between accessible and the physical amounts of RAM.

153

Chapter 16
MBC5 mapper chip

The majority of games for Game Boy Color use the MBC5 chip. MBC5 supports ROM sizes up
to 64 Mbit (512 banks of 0x4000 bytes), and RAM sizes up to 1 Mbit (16 banks of 0x2000 bytes).
The information in this section is based on my MBC5 research, and The Cycle-Accurate Game
Boy Docs [9].

16.1 MBC5 registers

Register 16.1: 0x0000-0x1FFF - RAMG - MBC5 RAM gate register
we | weo | we | wo | we | we | wo | wo
RAMG<T7:0>
bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | »bito

bit 7-0 RAMG<7:0>: RAM gate register
0b0VVR1010 = enable access to cartridge RAM
All other values disable access to cartridge RAM

The 8-bit MBC5 RAMG register works in a similar manner as MBC1 RAMG, but it is a full 8-bit
register so upper bits matter when writing to it. Only @b00001010 enables RAM access, and all
other values (including 0b10001010 for example) disable access to RAM.

When RAM access is disabled, all writes to the external RAM area 0xA000-0xBFFF are ignored,
and reads return undefined values. Pan Docs recommends disabling RAM when it's not being
accessed to protect the contents [7].

2 Speculation

We don't know the physical implementation of RAMG, but it's certainly possible that the
0boRVR1010 bit pattern check is done at write time and the register actually consists of
just a single bit.

Register 16.2: 0x2000-0x2FFF - ROMBO - MBC5 lower ROM bank register
wo [we | weo | we | we | weo | weo [wa
ROMBO<7:0>
bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | »bito

bit 7-0 ROMBO0<7:0>: Lower ROM bank register

The 8-bit ROMBO register is used as the lower 8 bits of the ROM bank number when the CPU
accesses the 0x4000-0x7FFF memory area.

154

Register 16.3: 0x3000-0x3FFF - ROMB1 - MBC5 upper ROM bank register

U U U U U U U W-0
ROMB1
bit 7 6) 4 3 2 1 bit 0

bit 7-1 Unimplemented: Ignored during writes
bit0 ROMB1: Upper ROM bank register

The 1-bit ROMB1 register is used as the most significant bit (bit 9) of the ROM bank number
when the CPU accesses the 0x4000-0x7FFF memory area.

Register 16.4: 0x4000-0x5FFF - RAMB - MBC5 RAM bank register
u U U U weo | we | wo | wo
RAMB<3:0>
6 5 4 3 | 2 | 1 | bito

bit 7

bit 7-4 Unimplemented: Ignored during writes

bit 3-0 RAMB<3:0>: RAM bank register

The 4-bit RAMB register is used as the RAM bank number when the CPU accesses the
0xAQQR-0xBFFF memory area.

155

Chapter 17
MBC6 mapper chip

MBC6 supports ROM sizes up to 16 Mbit (256 banks of 0x2000 bytes), and RAM sizes up to 4 Mbit
(128 banks of 0x1000 bytes). The information in this section is based on my MBC6 research.

156

Chapter 18
MBC7

TODO.

157

Chapter 19
HuC-1 mapper chip

HuC-1 supports ROM sizes up to 8 Mbit (64 banks of 0x4000 bytes), and RAM sizes up to 256
Kbit (4 banks of x2000 bytes). It also includes a sensor and a LED for infrared communication.
The information in this section is based on my HuC-1 research.

158

Chapter 20
HuC-3 mapper chip

HuC-3 supports ROM sizes up to 16 Mbit (128 banks of ©x4000 bytes), and RAM sizes up to 1
Mbit (16 banks of 0x2000 bytes). Like HuC-1, it includes support for infrared communication,
but also includes a real-time-clock (RTC) and output pins used to control a piezoelectric buzzer.
The information in this section is based on my HuC-3 research.

159

Chapter 21
MMMO1

TODO.

160

Chapter 22
TAMAS

TODO.

161

Appendices

162

Appendix A
Instruction set tables

These tables include all the opcodes in the Sharp SM83 instruction set. The style and layout of
these tables was inspired by the opcode tables available at pastraiser.com [10].

163

X0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xa xb xc xd xe xf
ox NOP LD BC,nn LD (BC),A INC BC INC B DEC B LD B,n RLCA LD (nn),SP ADD HL,BC LD A, (BC) DEC BC INC C DEC C LD C,n RRCA
1x STOP LD DE,nn LD (DE),A INC DE INC D DEC D LD D,n RLA JR e ADD HL,DE LD A, (DE) DEC DE INC E DEC E LD E,n RRA
2x JR NZ,e LD HL,nn LD (HL+),A INC HL INC H DEC H LD H,n DAA JR Z,e ADD HL,HL LD A, (HL+) DEC HL INC L DEC L LD L,n CPL
3x JR NC,e LD SP,nn LD (HL-),A INC SP INC (HL) DEC (HL) LD (HL),n SCF JR C,e ADD HL,SP LD A, (HL-) DEC SP INC A DEC A LD A,n CCF
4x LD B,B LD B,C LD B,D LD B,E LD B,H LD B,L LD B, (HL) LD B,A LD C,B LD C,C LD C,D LD C,E LD C,H LD C,L LD C, (HL) LD C,A
5x LD D,B LD D,C LD D,D LD D,E LD D,H LD D,L LD D, (HL) LD D,A LD E,B LD E,C LD E,D LD E,E LD E,H LD E,L LD E, (HL) LD E,A
6x LD H,B LD H,C LD H,D LD H,E LD H,H LD H,L LD H, (HL) LD H,A LD L,B LD L,C LD L,D LD L,E LD L,H LD L,L LD L, (HL) LD L,A
x LD (HL),B LD (HL),C LD (HL),D LD (HL),E LD (HL),H LD (HL),L HALT LD (HL),A LD A,B LD A,C LD A,D LD AE LD AH LD A,L LD A, (HL) LD A,A
8x ADD B ADD C ADD D ADD E ADD H ADD L ADD (HL) ADD A ADC B ADC C ADC D ADC E ADC H ADC L ADC (HL) ADC A
9x SUB B SUB C SUB D SUB E SUB H SUB L SUB (HL) SUB A SBC B SBC C SBC D SBC E SBC H SBC L SBC (HL) SBC A
ax AND B AND C AND D AND E AND H AND L AND (HL) AND A XOR B XO0R C XOR D XOR E XOR H XOR L XOR (HL) XO0R A
bx OR B OR C OR D OR E OR H OR L OR (HL) OR A CP B CP C CP D CP E CP H CP L CP (HL) CP A
cx RET NZ POP BC JP NZ,nn JP nn CALL NZ,nn PUSH BC ADD n RST 0x00 RET Z RET JP Z,nn CB op CALL Z,nn CALL nn ADC n RST 0x08
dx RET NC POP DE JP NC,nn - CALL NC,nn PUSH DE SUB n RST 0x10 RET C RETI JP C,nn - CALL C,nn - SBC n RST 0x18
ex LDH (n),A POP HL LDH (C),A - - PUSH HL AND n RST 0x20 ADD SP,e JP HL LD (nn),A - - - XOR n RST 0x28
fx LDH A, (n) POP AF LDH A, (C) DI - PUSH AF OR n RST 0x30 LD HL,SP+e LD SP,HL LD A, (nn) EI - - CP n RST 0x38

Legend:

Table A.1: Sharp SM83 instruction set

8-bit loads

16-bit loads

8-bit arithmetic/logical

16-bit arithmetic

Rotates, shifts, and bit operations

Control flow

Miscellaneous

Undefined

n unsigned 8-bit immediate data

nn unsigned 16-bit immediate data

e signed 8-bit immediate data

164

Table A.2: Sharp SM83 CB-prefixed instructions

165

Appendix B
Memory map tables

166

bit 7

5

4 3

2

1

bit 0

0xFFOQ P1

P15 buttons P14 d-pad P13 @ start

P12 @ select

P110OB

P10©A

0xFFoO1 SB

SB<7:0>

0xFFO2 SC

SIO_EN

SIO_FAST

SIO_CLK

OxFFO3

0xFFo4 DIV

DIVH<7:0>

0xFFO5 TIMA

TIMA<7:0>

0xFFO6 TMA

TMA<7:0>

OxFFOT TAC

TAC_EN

TAC_CLK<1:0>

QxFFO8

QxFFO9

OxFFOA

OxFFoB

OxFFoC

OxFF@D

OxFFOE

OxFFOF IF

IF_JOYPAD IF_SERIAL

IF_TIMER

IF_STAT

IF_VBLANK

0xFF10 NR10

0xFF11 NR11

0xFF12 NR12

0xFF13 NR13

0xFF14 NR14

OxFF15

0xFF16 NR21

OxFF17 NR22

OxFF18 NR23

OxFF19 NR24

OxFF1A NR30

0xFF1B NR31

0xFF1C NR32

0xFF1D NR33

OxFF1E NR34

OxFF1F

bit 7

5

4 | 3

bit 0

Table B.3: 0xFFxx registers: @xFFO@-0xFF1F

167

bit 7

bit 0

0xFF20 NR41

OxFF21 NR42

0xFF22 NR43

0xFF23 NR44

0xFF24 NR50

0xFF25 NR51

0xFF26 NR52

OxFF27

OxFF28

OxFF29

OxFF2A

QxFF2B

QxFF2C

QxFF2D

OxFF2E

OxFF2F

0xFF30 WAV00

0xFF31 WAVO1

OxFF32 WAV02

OxFF33 WAV03

0xFF34 WAV04

0xFF35 WAV05

0xFF36 WAV06

OxFF37 WAVO7

0xFF38 WAV08

0xFF39 WAV09

0xFF3A WAV10

OxFF3B WAV11

OxFF3C WAV12

OxFF3D WAV13

OxFF3E WAV14

OxFF3F WAV15

bit 7

5

4

3

bit 0

Table B.4: 0xFFxx registers: 0xFF20-0xFF 3F

168

bit 7

6

5

4

3

2

1

bit 0

0xFF40 LCDC

LCD_EN

WIN_MAP

WIN_EN

TILE_SEL

BG_MAP

OBJ_SIZE

OBJ_EN

BG_EN

OxFF41 STAT

INTR_LYC

INTR_M2

INTR_M1

INTR_MO

LYC_STAT

LCD_MODE<1:0>

0xFF42 SCY

0xFF43 SCX

OxFF44 LY

0xFF45 LYC

0xFF46 DMA

DMA<7:0>

0xFF47 BGP

0xFF48 OBPO

0xFF49 OBP1

OxFF4A WY

OxFF4B WX

OxFF4C 7777

OxFF4D KEY1

KEY1_FAST

KEY1_EN

OxFF4E

OxFF4F VBK

VBK<1:0>

0xFF50 BOOT

BOOT_OFF

0xFF51 HDMA1

0xFF52 HDMA2

0xFF53 HDMA3

0xFF54 HDMA4

0xFF55 HDMAS

OxFF56 RP

OxFF5T

QxFF58

QxFF59

QxFF5A

OxFF5B

QxFF5C

@xFF5D

OxFF5E

OxFF5F

bit 7

5

4

3

bit 0

Table B.5: 0xFFxx registers: 0xFF40-0xFF5F

169

bit 7 6

bit 0

QxFF60O 7777

QxFF61

QxFF62

OxFF63

OxFF64

OxFF65

OxFF66

OxFF6T

0xFF68 BCPS

0xFF69 BPCD

0xFF6A OCPS

0xFF6B OCPD

OxFF6C 7777

QxFF6D

OxFF6E

OxFF6F

0xFF70 SVBK

SVBK<1:0>

OxFFT1

QxFFT72 7777

OxFFT73 7777

OxFFT74 7777

QxFFT5 7?7?

OxFF76 PCM12

PCM12_CH2

PCM12_CH1

OxFF77 PCM34

PCM34_CH4

PCM34_CH3

QxFFT78

QxFFT79

QxFFTA

OxFF7B

OxFFT7C

OxFFTD

OxFFTE

OxFFTF

OxFFFF IE

IE_UNUSED<2:0>

IE_JOYPAD

IE_SERIAL

IE_TIMER IE_STAT

IE_VBLANK

bit 7 6

5

4

3

2 1

bit 0

Table B.6: 0xFFxx registers: 0xFF60-0xFF7F, OxFFFF

170

Appendix C

Game Boy external bus

C.1 Bus timings

CLK 4 MiHz
PHI 1 MiHz
AO0-A14

RD

WR

A15

CS

Data

Figure C.5: External bus idle machine cycle

CLK4 MiHz LI LT LI
PHI1MiHz . L__ [

AO-A14 X____addr
RD _
WR
A5 T [
CS

Data ——(@)

a) 0x0VV-OXTFFF’

CLK 4 MiHz
PHI 1 MiHz
AO-A14

RD

WR

A15

CS

Data

CLK 4 MiHz
PHI 1 MiHz
AO-A14

RD

WR

A15

CS

Data

X

addr

C) OxFEQO-OxFFFF

X addr

55 jRR VBEERARREEE
S TR

>_

b) 0xA@O-0xFDFF

Figure C.6: External bus CPU read machine cycles

"Does not apply to 0x000-0x00FF accesses while the boot ROM is enabled. Boot ROM accesses do not affect

the external bus, so it is in the idle state.

171

CLK 4 MiHz
PHI 1 MiHz
AO0-A14

RD

WR

A15

CS

Data

CLK 4 MiHz
PHI 1 MiHz
AO-A14

RD

WR

A15

CS

Data

——_daa__}
a) 0x0VV-OxXTFFF’

CLK 4 MiHz
PHI 1 MiHz
AO-A14

RD

WR

A15

CS

Data

CLK 4 MiHz
PHI 1 MiHz
AO0-A14

RD

WR

A15

CS

Data

X

addr

C) OxFEQO-OxFFFF

(e

b) 0xA@O-0xFDFF

Figure C.7: External bus CPU write machine cycles

uururer
e EEREERER SAmaaas R
O adr X@

—

a—

— data

a) 0x0VV-OXTFFF’

CLK 4 MiHz
PHI 1 MiHz
AO-A14

RD

WR

A15

CS

Data

_
_

—

gEglgigh
EaEEaaRa aanEns
ST

a1

a—

—

— data

b) 0xA@RO-0xFFFF

Figure C.8: External bus timings for OAM DMA read machine cycles

Appendix D
Chip pinouts

D.1 CPU chips D.2 Cartridge chips
cEREEEEEEEEEEEEEEREEEREE!) Ny
niezoNsvE LarSIEegIeIMYs —1 1o vee (24

% PI2 caa-aw > [S] oL dE=E= ; = ; = ; = MAG g% 2 Dl E 23

5 5 AT —2 D2 WR —gi

681 scx MA3 31— & p3 A15 21

69 36

10 ?DNUT mf ECH —S {4 ALy 20

1L REs MAQ |34 6 {13 A3 L9

25 Mo 22~ —Z 1 AAth RA14 |18

T8 vt |3 —8 | RaM_cs Rats (L1

—I5 { pui Mp2 32— —9 | RAM_CS RAL6 |16

o2 I gre 10 | RESET RA17 5

% W MD5 % Al izp RA18 |24

TR R M0 25~ -2 fenp ROM_CS (13-
23993995923 EI93322805885%

ARARARERE AERSARARRARARR Figure D.11: MBC1 (Sharp SOP24-P-450) [6]
Figure D.9: DMG/SGB CPU (Sharp QFP0S0-

P-1420)
_1 | ﬁ vVCC | 28
mmmmmmm ol el <] el o o o] o] o]]]] o] —2 0 WR (2L
o e e s e e i s 26
oo |me SS3EgHg33I303JI3VEGERMEE |, 5% NETs
66 1 ¢ Sck 39 —
671 ¢k sout |38 -5 1Ay A8 23
o Moo ST —Z { GND_RAM As |22
TN Moz 35 -8 In5 VCC_RAM |21
% P12 MD3 % 9 Ipo A5 20
I i % D1 RAL4 %
% P10 MD5 % T D2 RA15 T
=12 MD6 —=——
i | e mebE
E%‘ Zgi 27 14 GND_ RES 15
19 {rp VIN |26
Lﬁ OOOOOO KA
mmmmmmm f o2 TS0S 90 nam e
R EEEEEEEEEEEREEEE! Figure D.12: MBC2 (Sharp SOP28-P-450) [8]
Figure D.10: MGB/SGB2 CPU (Sharp QFP080- §|Q| §|E| 8| 2|2| :|
03353733
ARA22 TOEEIEEa RA15 16
—26 1 An16 RAL4 15
—27f pn15 RAM_CS |4
—28 | pa1g RESET |43
—29 1 pp13 D7 (L2
_30 | WR D6 111
el o Fr
B MI9%2caam L
IZ<&azaa
~| | M| | O] O IN| ©

Figure D.13: MBC5 (Sharp QFP32-P-0707)

173

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

“Microcomputers Data Book (1990).” Sharp Corporation. [Online]. Available: https://
archive.org/details/bitsavers_sharpdataBomputersDataBook_31076011

“Microcomputer Data Book (1996).” Sharp Corporation. [Online]. Available: https://
archive.org/details/bitsavers_sharpdataBomputerDataBook_13840187

“SM8311/SM8313/SM8314/SM8315 - 8-Bit Single-Chip Microcomputers (Controllers For
Home Appliances).” Sharp Corporation.

Costis Sideris, “The quest for dumping GameBoy Boot ROMs!.” [Online]. Available: http://
www.its.caltech.edu/~costis/sgb_hack/

gekkio, “Dumping the Super Game Boy 2 boot ROM.” [Online]. Available: https://gekkio.
fi/blog/2015/dumping-the-super-game-boy-2-boot-rom/

Tauwasser, “MBC1 - Tauwasser's Wiki.” [Online]. Available: https://wiki.tauwasser.eu/view/
MBC1

Pan of ATX, M. Fayzullin, P. Felber, P. Robson, and M. Korth, “Pan Docs - Everything
You Always Wanted To Know About GAMEBOY.” [Online]. Available: http://bgb.bircd.org/
pandocs.htm

Tauwasser, “MBC2 - Tauwasser's Wiki.” [Online]. Available: https://wiki.tauwasser.eu/view/
MBC2

Antonio Nifio Diaz (AntonioND), “The Cycle-Accurate Game Boy Docs.” [Online]. Available:
https://github.com/AntonioND/giibiiadvance/tree/master/docs

“Gameboy CPU (LR35902) instruction set.” [Online]. Available: http://www.pastraiser.com/
cpu/gameboy/gameboy_opcodes.html

174

https://archive.org/details/bitsavers_sharpdataBomputersDataBook_31076011
https://archive.org/details/bitsavers_sharpdataBomputersDataBook_31076011
https://archive.org/details/bitsavers_sharpdataBomputerDataBook_13840187
https://archive.org/details/bitsavers_sharpdataBomputerDataBook_13840187
http://www.its.caltech.edu/~costis/sgb_hack/
http://www.its.caltech.edu/~costis/sgb_hack/
https://gekkio.fi/blog/2015/dumping-the-super-game-boy-2-boot-rom/
https://gekkio.fi/blog/2015/dumping-the-super-game-boy-2-boot-rom/
https://wiki.tauwasser.eu/view/MBC1
https://wiki.tauwasser.eu/view/MBC1
http://bgb.bircd.org/pandocs.htm
http://bgb.bircd.org/pandocs.htm
https://wiki.tauwasser.eu/view/MBC2
https://wiki.tauwasser.eu/view/MBC2
https://github.com/AntonioND/giibiiadvance/tree/master/docs
http://www.pastraiser.com/cpu/gameboy/gameboy_opcodes.html
http://www.pastraiser.com/cpu/gameboy/gameboy_opcodes.html

	Preface
	How to read this document
	Formatting of numbers
	Register definitions

	Contents
	Game Boy console architecture
	Introduction
	Clocks
	System clock
	System clock frequency

	Clock periods, T-cycles, and M-cycles

	Sharp SM83 CPU core
	Introduction
	History

	Simple model
	CPU core timing
	Fetch/execute overlap
	Fetch/execute overlap timing example

	Sharp SM83 instruction set
	Overview
	CB opcode prefix
	Undefined opcodes

	8-bit load instructions
	LD r, r': Load register (register)
	LD r, n: Load register (immediate)
	LD r, (HL): Load register (indirect HL)
	LD (HL), r: Load from register (indirect HL)
	LD (HL), n: Load from immediate data (indirect HL)
	LD A, (BC): Load accumulator (indirect BC)
	LD A, (DE): Load accumulator (indirect DE)
	LD (BC), A: Load from accumulator (indirect BC)
	LD (DE), A: Load from accumulator (indirect DE)
	LD A, (nn): Load accumulator (direct)
	LD (nn), A: Load from accumulator (direct)
	LDH A, (C): Load accumulator (indirect 0xFF00+C)
	LDH (C), A: Load from accumulator (indirect 0xFF00+C)
	LDH A, (n): Load accumulator (direct 0xFF00+n)
	LDH (n), A: Load from accumulator (direct 0xFF00+n)
	LD A, (HL-): Load accumulator (indirect HL, decrement)
	LD (HL-), A: Load from accumulator (indirect HL, decrement)
	LD A, (HL+): Load accumulator (indirect HL, increment)
	LD (HL+), A: Load from accumulator (indirect HL, increment)

	16-bit load instructions
	LD rr, nn: Load 16-bit register / register pair
	LD (nn), SP: Load from stack pointer (direct)
	LD SP, HL: Load stack pointer from HL
	PUSH rr: Push to stack
	POP rr: Pop from stack
	LD HL, SP+e: Load HL from adjusted stack pointer

	8-bit arithmetic and logical instructions
	ADD r: Add (register)
	ADD (HL): Add (indirect HL)
	ADD n: Add (immediate)
	ADC r: Add with carry (register)
	ADC (HL): Add with carry (indirect HL)
	ADC n: Add with carry (immediate)
	SUB r: Subtract (register)
	SUB (HL): Subtract (indirect HL)
	SUB n: Subtract (immediate)
	SBC r: Subtract with carry (register)
	SBC (HL): Subtract with carry (indirect HL)
	SBC n: Subtract with carry (immediate)
	CP r: Compare (register)
	CP (HL): Compare (indirect HL)
	CP n: Compare (immediate)
	INC r: Increment (register)
	INC (HL): Increment (indirect HL)
	DEC r: Decrement (register)
	DEC (HL): Decrement (indirect HL)
	AND r: Bitwise AND (register)
	AND (HL): Bitwise AND (indirect HL)
	AND n: Bitwise AND (immediate)
	OR r: Bitwise OR (register)
	OR (HL): Bitwise OR (indirect HL)
	OR n: Bitwise OR (immediate)
	XOR r: Bitwise XOR (register)
	XOR (HL): Bitwise XOR (indirect HL)
	XOR n: Bitwise XOR (immediate)
	CCF: Complement carry flag
	SCF: Set carry flag
	DAA: Decimal adjust accumulator
	CPL: Complement accumulator

	16-bit arithmetic instructions
	INC rr: Increment 16-bit register
	DEC rr: Decrement 16-bit register
	ADD HL, rr: Add (16-bit register)
	ADD SP, e: Add to stack pointer (relative)

	Rotate, shift, and bit operation instructions
	RLCA: Rotate left circular (accumulator)
	RRCA: Rotate right circular (accumulator)
	RLA: Rotate left (accumulator)
	RRA: Rotate right (accumulator)
	RLC r: Rotate left circular (register)
	RLC (HL): Rotate left circular (indirect HL)
	RRC r: Rotate right circular (register)
	RRC (HL): Rotate right circular (indirect HL)
	RL r: Rotate left (register)
	RL (HL): Rotate left (indirect HL)
	RR r: Rotate right (register)
	RR (HL): Rotate right (indirect HL)
	SLA r: Shift left arithmetic (register)
	SLA (HL): Shift left arithmetic (indirect HL)
	SRA r: Shift right arithmetic (register)
	SRA (HL): Shift right arithmetic (indirect HL)
	SWAP r: Swap nibbles (register)
	SWAP (HL): Swap nibbles (indirect HL)
	SRL r: Shift right logical (register)
	SRL (HL): Shift right logical (indirect HL)
	BIT b, r: Test bit (register)
	BIT b, (HL): Test bit (indirect HL)
	RES b, r: Reset bit (register)
	RES b, (HL): Reset bit (indirect HL)
	SET b, r: Set bit (register)
	SET b, (HL): Set bit (indirect HL)

	Control flow instructions
	JP nn: Jump
	JP HL: Jump to HL
	JP cc, nn: Jump (conditional)
	JR e: Relative jump
	JR cc, e: Relative jump (conditional)
	CALL nn: Call function
	CALL cc, nn: Call function (conditional)
	RET: Return from function
	RET cc: Return from function (conditional)
	RETI: Return from interrupt handler
	RST n: Restart / Call function (implied)

	Miscellaneous instructions
	HALT: Halt system clock
	STOP: Stop system and main clocks
	DI: Disable interrupts
	EI: Enable interrupts
	NOP: No operation

	Game Boy SoC peripherals and features
	Boot ROM
	Boot ROM types
	DMG boot ROM
	MGB boot ROM
	SGB boot ROM
	SGB2 boot ROM
	Early DMG boot ROM ("DMG0")

	DMA (Direct Memory Access)
	Object Attribute Memory (OAM) DMA
	OAM DMA address decoding
	OAM DMA transfer timing
	OAM DMA bus conflicts

	PPU (Picture Processing Unit)
	Port P1 (Joypad, Super Game Boy communication)
	Serial communication

	Game Boy game cartridges
	MBC1 mapper chip
	MBC1 registers
	ROM in the 0x0000-0x7FFF area
	ROM banking example 1
	ROM banking example 2

	RAM in the 0xA000-0xBFFF area
	RAM banking example 1

	MBC1 multicarts ("MBC1M")
	ROM banking example 1
	Detecting multicarts

	Dumping MBC1 carts

	MBC2 mapper chip
	MBC2 registers
	ROM in the 0x0000-0x7FFF area
	RAM in the 0xA000-0xBFFF area
	Dumping MBC2 carts

	MBC3 mapper chip
	MBC30 mapper chip
	MBC5 mapper chip
	MBC5 registers

	MBC6 mapper chip
	MBC7
	HuC-1 mapper chip
	HuC-3 mapper chip
	MMM01
	TAMA5

	Appendices
	Instruction set tables
	Memory map tables
	Game Boy external bus
	Bus timings

	Chip pinouts
	CPU chips
	Cartridge chips

	Bibliography

