
Dan Kaminsky, Chief Scientist, DKH Inc.
Michael Eddington, Partner, Déjà vu Security

Adam Cecchitti, Partner, Déjà vu Security

http://www.fuzzmark.com

 1990’s: Security == Cryptography and Java

 2000’s: Bad guys show up, start owning
everything
◦ Got particularly bad in 2003

◦ We learn how software actually fails

 2010’s: The decade of defense
◦ OK. We’ve gotten software to fail.

◦ How do we make software not fail?

 Have we gotten any better?

http://www.fuzzmark.com

 Major efforts going on in the
corporate/defensive world to try to get some
sense of Return On Investment / “What
Actually Works” in defense
◦ Everybody’s. Getting. Owned.

◦ Something’s not working.

 Difference between attack and defense
◦ Attack doesn’t work, it’s easy to tell.

◦ Defense doesn’t work, it’s…not so easy.

 What sort of metrics would be helpful?

http://www.fuzzmark.com

 “How hard is it for an attacker to corrupt a
computer exposing this particular codebase?”
◦ Security is about systems, not about individual

codebases or even just computers, but bear with
me

http://www.fuzzmark.com

 We know more things are getting
compromised
◦ Is this because attackers are getting better?

◦ Or is this because code is getting worse?

 Hypothesis: Software quality has improved
over the last ten years.
◦ Corrolary: Code is not getting worse; attackers are

getting better

http://www.fuzzmark.com

 Standard dataset usually pored through for
quality metrics: CVE
◦ CVE: Common Vulnerabilities and Exposures

 Information on 48,425 vulnerabilities found
(and presumably fixed) over the last ten years
or so
◦ This is lots of data!

◦ Or is it?

http://www.fuzzmark.com

 Fundamental bias
◦ Conflation: Software quality with finder interest

 Interest not only in finding the bugs, but reporting the
bugs

 Major human element (at minimum,
difficult/impossible to measure as the exclusive
metric)

◦ Not that much finder interest that still reports back
to vendors

 We have a latency problem

http://www.fuzzmark.com

 Could we take the source code from a large
number of projects, and look at the number
of “bad things” in the source code?
◦ Sort of.
◦ First issue: Good luck getting source code to

targets
 Could be bypassed if companies published their static

analysis rates

 This would actually be pretty cool, hint hint

◦ Second issue: In practice, difficult to distinguish
stylistic concerns from actual vulnerabilities
 Much bigger problem

http://www.fuzzmark.com

 Fuzzing: The use of a large number of
generally corrupt and machine generated test
cases to attempt to find failure modes in
software.

 Is it possible to use the results of large scale
fuzzing as a rough metric for software
quality?
◦ “Fuzzmarking”

◦ Possibly. There’s even some precedent

 BreakingPoint’s Resiliency Score against networks and
network devices

http://www.fuzzmark.com

 Target Formats
◦ Office Documents: .doc, .xls., .ppt

◦ Portable Documents: .pdf

 These are the formats with the highest
complexity and the greatest exposure
◦ Also, empirically they’ve been the ones that are

getting us owned the most

 There are two sorts of studies that can be run
against these formats

http://www.fuzzmark.com

 Office Documents
◦ Microsoft Word/Excel/Powerpoint

◦ OpenOffice Writer/Calc/Impress

 Portable Documents
◦ Adobe Acrobat

◦ Foxit Reader

◦ GhostScript

 …but there’s something way more interesting
we can do.

http://www.fuzzmark.com

 We’ve been doing security for ten years.
 How much has software improved in those

ten years?
◦ Has it improved?
◦ If so, when?

 We’ve taken software circa 2000, 2003, 2007,
and 2010, and run synchronized fuzz tests
across all of them
◦ This is (potentially) a window into bugs that have

never seen the light of a CVE
◦ So what does the data look like?

http://www.fuzzmark.com

 OK, not really.

 175,334 crashes in ~44 days.

 Details?
◦ Lets talk first about process, procedure, and how

you’re going to screw this up if you try to do this.

http://www.fuzzmark.com

http://www.fuzzmark.com

 Scavenge sample files from Google

 Internet Archive
◦ Looking for files near the year 2000

◦ This did not work out so well…

1

http://www.fuzzmark.com

 Pre-generate all fuzzed files using Peach

 100,000 files per format (doc, xls, ppt, pdf)

 Office: Understand OLE Storage
◦ Fuzz the streams in doc/xls/ppt

 PDF: Decompress streams
◦ (Eventually)

2

http://www.fuzzmark.com

 Hosted fuzzing service from Déjà vu Security

 You provide the target, we produce the
crashes

For this talk…

 88 Cores of fuzzing fun

 5 Targets

 4 File formats

 >250 GB of logs

3

http://www.fuzzmark.com

 Office 2010/2007
◦ Thousands of Registry Keys (File recovery)

 Office/OpenOffice
◦ Tens of thousands/Gigs of temp files

 OpenOffice
◦ “Quick Start” keeps OO in memory

 PDF
◦ Compressed/Non-Compressed

4

http://www.fuzzmark.com

 Look correct?
◦ Was every iteration a crash? #fail

◦ No crashes?

 Complete set?
◦ Runs crash

◦ Machines die

◦ Logs misplaced

5

http://www.fuzzmark.com

 Collect interesting data

 Mine data into SQL
◦ Easy to query for data sets

6

http://www.fuzzmark.com

 “How hard could opening a program and
reading a file be?”

 Run the same 100k files across 18 programs.
◦ Every file, every program, every time.

◦ Must open the program

◦ Must open, read, and parse the file.

◦ Must record the result.

http://www.fuzzmark.com

 Personality
◦ Some software has very low self esteem and needs

constant attention.

 “Look what I parsed!”

◦ Each program ends up with it own personality
based on how many deterrents there are to fuzzing.

 Ranging from whiner to aggressive to needy.

◦ Occasionally 30k / 50k runs we’d have to “sweet
talk” the exe back into running.

◦ Some things were predictable and others
randomish.

http://www.fuzzmark.com

 From the program
◦ Auto Updaters : Version 6.2 –> 6.5
◦ Auto Upgraders : Version 6 -> 7
◦ Bundle ware / Nag ware
◦ Recovery of crashed files
◦ “Safe modes”
◦ Importing
◦ Error reporting / Crash Analysis software

 From the OS
◦ Auto Update
◦ Anti Virus
◦ Scheduled scans / reboots.
◦ Startup / OnRun / Preloaders

http://www.fuzzmark.com

 From the Program
◦ Pop Ups

◦ Registration

◦ Surveys

◦ Ads

◦ Assistants

http://www.fuzzmark.com

 Dynamic downloads
◦ Add Ons

 Fonts / international support

 Foxit from 2007 doesn’t have default JPEG support

 Download and install at runtimes

 Puts the program out of sync with the rest

 “Static” downloads
◦ Old documents linked to things all over the web.

◦ Parts of the fuzzed doc / pdf are just gone.

 Makes for less interesting fuzzing

http://www.fuzzmark.com

 A few “docs” we crawled were really
◦ HTML, JPEG, TIFF, PDF, JavaScript

◦ Ended up with a lot of integrity checking of file

 Crawler and verifier is around 3k lines of C#
code

 Normally we wouldn’t care a crash is a crash
to us, but we wanted to make sure our file set
was valid.

http://www.fuzzmark.com

 Magic Number check
◦ Caused false positive

◦ Searched for JavaScript and HTML tags

 Basic length checks
◦ Failed downloads / truncated uploads

 Hash of file
◦ Resume a downloaded crawl that failed.

 Filename -> guid
◦ Many files on the internet share names.

“Homework1.doc”, “Expenses.xls”

http://www.fuzzmark.com

 Data integrity becomes very important

 Collection of crashes and mining of the data
requires more meta data the more complex
you want to be.

 Tag the results directories with
◦ Program name, year, date, suite, file type, version,

machine, iterations, and a guid.

◦ When in doubt add another guid. No for real.

◦ This will barely be enough to manually reconstruct
the run in the event things go wrong.

http://www.fuzzmark.com

 175,334 Crashes Across 26 Codebases
◦ Word/Excel/Powerpoint 2003/2007/2010

◦ Acrobat/GhostView 2003/2007/2010

◦ Foxit 2007/2010

 One crash about every six seconds

 One crash about every ten iterations

 So What?

http://www.fuzzmark.com

 You don’t fix the same bug over and over

 You also don’t fix bugs in the order they
appear
◦ Severity matters

 How do you operationalize bug classification?

http://www.fuzzmark.com

 !exploitable: Microsoft debugger extension
that:
◦ A) “Bucketizes” the crash – allowing it to be

matched with similar crashes

◦ B) Attempts to measure the severity of the crash

 Yes, this can be done manually, but:
◦ Manual analysis doesn’t scale

http://www.fuzzmark.com

 2536 Unique Major/Minor Hashes
◦ 1149 in Office

◦ 1125 in OpenOffice

◦ 181 in Ghostview

◦ 70 in Foxit

◦ 10 in Acrobat

http://www.fuzzmark.com

 But that’s Major/Minor
◦ Most “minor hashes” represent the same underlying

bug under a single major
 Depends on the product…75-95% chance of minors

representing the same bug

◦ Lets be conservative -- only consider Major

 942 Unique Major Hashes
◦ 440 in Office
◦ 396 in Open Office
◦ 68 in Ghostview
◦ 32 in Foxit
◦ 5 in Acrobat

http://www.fuzzmark.com

 942 Unique Major Hashes
◦ 150 EXPLOITABLE (15%)

◦ 188 PROBABLY_EXPLOITABLE (19%)

◦ 16 PROBABLY_NOT_EXPLOITABLE (1.6%)

◦ 588 UNKNOWN (62%)

http://www.fuzzmark.com

 This is a cross-sectional study
◦ Is severity equally distributed across the various

parsers?

 This is a longitudinal study
◦ Is severity equally distributed across the various

versions?

http://www.fuzzmark.com

126

12
7

73
62

20

0

20

40

60

80

100

120

140

2003 2007 2010

Office

OpenOffice

http://www.fuzzmark.com

1

7

3

14

1
0

2

4

6

8

10

12

14

16

2003 2007 2010

Ghostview

Foxit

Reader

http://www.fuzzmark.com

 Fuzzmarking is implying an across the board
effect – code shipped in 2003 was objectively
less secure than code shipped in 2010
◦ At least, in parsers for the highly targeted file

formats doc/xls/ppt/pdf

◦ We would be surprised if this effect showed up in
parsers for file formats that do not cross security
boundaries (i.e. aren’t targeted)

 (But aren’t using XML/JSON)

http://www.fuzzmark.com

 The fundamental tension
◦ We know that some file formats “invite trouble”

 Lengths

 Explicit (especially 32 bit)

 Overlapping

 Implicit

 Jump tables

 Diffs (“fast saving”)

◦ .txt is going to end up being a safer format than
.doc or .pdf

 But what about .doc vs. .pdf vs. .rtf?

http://www.fuzzmark.com

 Absolute comparisons across file formats
suffer conflation between raw danger of the
format and quality of the fuzz tests
◦ Are we getting more crashes because the format

has more things to find?

◦ Or are we just better at finding what’s there?

http://www.fuzzmark.com

 In our case, it’s very obvious why we have
more Office crashes than PDF crashes
◦ We’re relatively document aware in doc/xls/ppt

◦ We’re just flipping bits on PDF

 Our PDF fuzzer isn’t even decompressing yet

 We were surprised to see any crashes!

 (And we didn’t see any E/PE in Acrobat)

 What about Office Format vs. Office Format?

Total Crashes Per Type
Total Unique Majors Per
Type

106523
19575

47637

Raw

doc

xls

ppt
428

181

225

Unique

doc

xls

ppt

http://www.fuzzmark.com

107

91

110

Unique E/PE

doc

xls

ppt

Office Doc/XLS/PPT E/PE
OpenOffice Doc/XLS/PPT
E/PE

0

10

20

30

40

50

60

2003 2007 2010

.doc

.xls

.ppt

0

10

20

30

40

50

60

2003 2007 2010

.doc

.xls

.ppt

http://www.fuzzmark.com

 What’s going on?
◦ No serious correlation between Office and

OpenOffice on .doc risk

 What’s not going on?
◦ .doc, .xls, and .ppt can’t actually have any security

differential

◦ You can reach any parser from any

◦ We’re not going to notice that without really smart
template generation

http://www.fuzzmark.com

334 327

198

409

252

166

0

100

200

300

400

500

2003 2007 2010

Office

OpenOffice

http://www.fuzzmark.com

 1) There’s still improvement, but not as sharp
◦ It’s almost like Exploitable / Probably Exploitable

bugs are more likely to be fixed than Unknown
bugs

 2) There’s a far higher floor, even in 2010

http://www.fuzzmark.com

3

35

15 15

1 1

4

0 0

5

10

15

20

25

30

35

40

2003 2007 2010

Ghostview

Foxit

Reader

http://www.fuzzmark.com

 We’re still seeing improvement

 PDF had an interesting artifact in E/PE – 2003
was better than 2007
◦ This artifact is repeated in U – why?

 More features in 2007 parsers

 More corruption resistance in 2007 parsers

 Template preference for 2007/2010 parsers

http://www.fuzzmark.com

 Nate Lawson showed: Never just average
everything together. Always look at the
distributions.

 Chunking down from 174K crashes to 940
unique vulns throws away a lot of data
◦ It matters: Does a given bug take 10 rounds to

find? Or 100,000?

Office 2003 OpenOffice Writer 2003

10

29

11

3

0

0

21

38

13

10

7

0

0 10 20 30 40

1

10

100

1000

10000

100000

SW2003 U

SW2003 E/PE

9

5

0

0

0

0

32

12

12

7

4

0

0 10 20 30 40

1

10

100

1000

10000

100000

OW2003 U

OW2003 E/PE

http://www.fuzzmark.com

 How do you correlate the same bug across
Word and Writer?
◦ The stack traces are different

◦ Obviously the Major/Minor hashes are different

◦ But the fuzz file is the same

 Naïve Numbers
◦ 110,637 unique files created crashes

◦ 65989 (59%) crashed only one target

◦ 44648 (41%) crashed more than one target

http://www.fuzzmark.com

 Can we visualize this?
◦ Put the filename in the center

◦ Treat the left side as “Office Word”

◦ Treat the right side as “OpenOffice Writer”

◦ Treat distance from the center as distance from
now

◦ Color by severity

◦ Sort by recentness of vuln * severity

◦ Make each pattern unique

http://www.fuzzmark.com

http://www.fuzzmark.com

Unknown in Word 2007,
PE in Writer 2010

Major Hashes

“Gap Years” – Unknown
in SW2003, PE in SW2010

“Welcome To The Club”

http://www.fuzzmark.com

 Targeting an area already being swept by
defenders
◦ Code may look better than it actually is, because

defenders are securing stuff exposed by these very
same methods

◦ This is ultimately the issue with all benchmarks

 The only question is whether these bugs are
representative of bugs that need to get fixed

 Since these are the easiest flaws for an attacker to find,
maybe this is OK

http://www.fuzzmark.com

 Bitflipping only works well against file
formats that are tightly packed
◦ Most new formats are all textual

◦ Also require complex grammars

 This is a first attempt, we intentionally didn’t
want to pack too much intelligence in
◦ Code coverage

◦ Automatic grammar extraction

◦ Automatic segmentation of file formats

◦ Manual generation of files

◦ Integration with memory tracing

http://www.fuzzmark.com

 Bugs aren’t rare

 Bugs aren’t hard to find

 Cross Sectional Findings
◦ Major document platforms may have bugs, but so

do their competitors

 Longitudinal Findings
◦ Everybody’s code is getting better

◦ Nobody’s code is perfect

◦ Run the latest version of everything!

http://www.fuzzmark.com

 Has software quality improved over the last
ten years?
◦ Conclusion: For the set of formats tested, we find

an unambiguous reduction in the number of
failures, particularly when those failures show signs
of being security-impacting.

 What next?
◦ Better fuzzing

◦ Releasing of data!

http://www.fuzzmark.com

 We are immediately releasing for analysis the
summary data from the fuzz run
◦ There’s lots of interesting meat to chew on /

visualize

◦ Go to www.fuzzmark.com for more

 We are not dropping 0day on anyone
◦ Will provide the vendors with all the test cases they

want

◦ If you want the test cases, or even the stack traces,
they’ll have to give us permission 

http://www.fuzzmark.com/

Déjà vu Security DKH Inc.

Adam Cecchetti

adam@dejavusecurity.com

Mike Eddington

mike@dejavusecurity.com

http://dejavusecurity.com

http://peachfuzzer.com

Dan Kaminsky
dan@doxpara.com

http://dankaminsky.com

http://tinyurl.com/cansecfuzz

mailto:adam@dejavusecurity.com
mailto:mike@dejavusecurity.com
http://dejavusecurity.com/
http://peachfuzzer.com/
mailto:dan@doxpara.com
http://dankaminsky.com/
http://dankaminsky.com/
http://dankaminsky.com/

