Showing How Secu

(And Hasn't) Improved After
Ten Years Of Trying

Dan Kaminsky, Chief Scientist, DKH Inc.
Michael Eddington, Partner, Déeja vu Security
Adam Cecchitti, Partner, Déja vu Security

http://www.fuzzmark.com

History (As | See It)

» 1990’s: Security == Cryptography and Java
» 2000’s: Bad guys show up, start owning
everything
> Got particularly bad in 2003
- We learn how software actually fails

» 2010’s: The decade of defense

- OK. We’ve gotten software to fail.
- How do we make software not fail?
- Have we gotten any better?

http://www.fuzzmark.com

The Push For Metrics

» Major efforts going on in the
corporate/defensive world to try to get some
sense of Return On Investment / “What
Actually Works” in defense
- Everybody’s. Getting. Owned.

- Something’s not working.

» Difference between attack and defense
- Attack doesn’t work, it’s easy to tell.

- Defense doesn’t work, it’s...not so easy.

» What sort of metrics would be helpful?

http://www.fuzzmark.com

Can We Get Metrics For
Software Quality?

» “How hard is it for an attacker to corrupt a
computer exposing this particular codebase?”

- Security is about systems, not about individual
codebases or even just computers, but bear with

me

http://www.fuzzmark.com

A Fundamental Question

» We know more things are getting
compromised
> |s this because attackers are getting better?
> Or is this because code is getting worse?

» Hypothesis: Software quality has improved
over the last ten years.

- Corrolary: Code is not getting worse; attackers are
getting better

http://www.fuzzmark.com

What Sort Of Experiments Could
We Try?

» Standard dataset usually pored through for
quality metrics: CVE
- CVE: Common Vulnerabilities and Exposures

» Information on 48,425 vulnerabilities found
(and presumably fixed) over the last ten years
or so

> This is lots of data!
o Qris it?

http://www.fuzzmark.com

The Problem with CVE

» Fundamental bias

- Conflation: Software quality with finder interest
- Interest not only in finding the bugs, but reporting the
bugs
- Major human element (at minimum,

difficult/impossible to measure as the exclusive
metric)

- Not that much finder interest that still reports back
to vendors

- We have a latency problem

http://www.fuzzmark.com

Perhaps Static Analysis?

» Could we take the source code from a large
number of projects, and look at the number
of “bad things” in the source code?
> Sort of.

> First issue: Good luck getting source code to
targets

- Could be bypassed if companies published their static
analysis rates

- This would actually be pretty cool, hint hint

- Second issue: In practice, difficult to distinguish
stylistic concerns from actual vulnerabilities

- Much bigger problem

http://www.fuzzmark.com

What About Fuzzing?

» Fuzzing: The use of a large number of
generally corrupt and machine generated test
cases to attempt to find failure modes in
software.

» Is it possible to use the results of large scale
fuzzing as a rough metric for software
quality?
> “Fuzzmarking”

- Possibly. There’s even some precedent

- BreakingPoint’s Resiliency Score against networks and
network devices

http://www.fuzzmark.com

Lets Start With The Highest Risk
Stuff

» Target Formats
- Office Documents: .doc, .xls., .ppt
- Portable Documents: .pdf

» These are the formats with the Aighest
complexity and the greatest exposure

- Also, empirically they’'ve been the ones that are
getting us owned the most

» There are two sorts of studies that can be run
against these formats

http://www.fuzzmark.com

Cross Sectional Studies:
Which Parsers Are (Maybe) Safest?

» Office Documents
- Microsoft Word/Excel/Powerpoint
- OpenOffice Writer/Calc/Impress

» Portable Documents

- Adobe Acrobat

- Foxit Reader
> GhostScript

» ...but there’s something way more interesting
we can do.

http://www.fuzzmark.com

Longitudinal Studies:
When

» We've been doing security for ten years.

» How much has software improved in those
ten years?
- Has it improved?
- If so, when?

» We’ve taken software circa 2000, 2003, 2007,
and 2010, and run synchronized fuzz tests
across all of them

> This is (potentially) a window into bugs that have
never seen the light of a CVE

- So what does the data look like?

http://www.fuzzmark.com

188,000 Crashes In 44 Days

» OK, not really.

» 175,334 crashes in ~44 days.

» Details?

- Lets talk first about process, procedure, and how
you’re going to screw this up if you try to do this.

/ /www.fuzzmark.com

http

__..._um_._uu_m {Bey pou)
"9 e
aseojay AMnn

Bupuap 39ng
jesueyaa
ue Jamoysg ‘seq
-ng doy

(Bel uaaugn)
pascuddy

{Be) uaaig)
pancaddy

eyaap
2 Bulgquin|g

e

{Bey uaaig)
{Be) pay) pancaddy
ned

uoiysadsu)
Buiieij

uopaadsu)

(Bey pay)
[[LF] (Be) pay)
ed

{Be) uasag)
paacaddy

(Bey uaaun)
paacuddy

{Bey uesign)
paroaddy

(Bey pay)
ey

uoRED Y
aua)
uonaadsu)
uopEpuUnog

SSEIDY JOMag

yBnoy uopepuncg
SAMIDG JaMaGg
BDAIDG JDIEM

uopoadsu] ybnoy Bupqun)d

esjueys2am
g Bujqunig
w2 Pel Ly

{Bey uaaun)
paacuddy

Guipping
«2PEI Ly

NX.L 0} 2aseajay

(LRI TE]

wiog

12uld o4 paiinboy
KBiaug se|jeqg jo Ano
|euld |[g2aL32313

(Bey pay)
[F |

{Bel uaaig)
pancaddy

uopoadsu]
¥3d4n 1E314323|3
uonoadsu) «opel L,
ajod-1

(Be L pay)

http://www.fuzzmar

Obtain Sample Files

» Scavenge sample files from Google

» Internet Archive

> Looking for files near the year 2000
> This did not work out so well...

http://www.fuzzmar m
Generate Fuzzed Files é

» Pre-generate all fuzzed files using Peach
» 100,000 files per format (doc, xls, ppt, pdf)

» Office: Understand OLE Storage

> Fuzz the streams in doc/xls/ppt

» PDF: Decompress streams
> (Eventually)

DO NOT CROSS

STREAMS

http://www.fuzzmar m
Peach Farm é

» Hosted fuzzing service from Déja vu Security

» You provide the target, we produce the
crashes

For this talk...

» 88 Cores of fuzzing fun
» 5 Targets

» 4 File formats

» >250 GB of logs

http://www.fuzzmar

Running of the Fuzzers

» Office 2010/2007

- Thousands of Registry Keys (File recovery)

» Office/OpenOffice

- Tens of thousands/Gigs of temp files

» OpenOffice
> “Quick Start” keeps OO in memory

» PDF _my
- Compressed/Non-Compres

http://www.fuzzmar m

Verify Logs

» Look correct?
- Was every iteration a crash? #fail
> No crashes?

» Complete set?
> Runs crash
- Machines die
- Logs misplaced

http://www.fuzzmar m

Mine Logs

» Collect interesting data

» Mine data into SQL
- Easy to query for data sets

http://www.fuzzmark.com

How Not To Fuzz Fuzzing

» “"How hard could opening a program and
reading a file be?”

» Run the same 100k files across 18 programs.
- Every file, every program, every time.
> Must open the program
- Must open, read, and parse the file.
- Must record the result.

http://www.fuzzmark.com

Opening the Program

» Personality

- Some software has very low self esteem and needs
constant attention.
- “Look what | parsed!”

- Each program ends up with it own personality
based on how many deterrents there are to fuzzing.
- Ranging from whiner to aggressive to needy.

- Occasionally 30k / 50k runs we’d have to “sweet
talk” the exe back into running.

- Some things were predictable and others
randomish.

http://www.fuzzmark.com

Personality traits

» From the program
- Auto Updaters : Version 6.2 -> 6.5
- Auto Upgraders : Version 6 -> 7
> Bundle ware / Nag ware
- Recovery of crashed files
- “Safe modes”
> Importing
> Error reporting / Crash Analysis software
» From the OS
Auto Update
Anti Virus
Scheduled scans / reboots.
Startup / OnRun / Preloaders

(¢]

(¢]

(¢]

o

http://www.fuzzmark.com

Click here to punch clippy

» From the Program
> Pop Ups
- Registration
> Surveys
- Ads
> Assistants

http://www.fuzzmark.com

Files from the internet why not
DLLs?

» Dynamic downloads
- Add Ons
- Fonts / international support
- Foxit from 2007 doesn’t have default JPEG support
- Download and install at runtimes
- Puts the program out of sync with the rest

» “Static” downloads

- Old documents linked to things all over the web.
- Parts of the fuzzed doc / pdf are just gone.
- Makes for less interesting fuzzing

http://www.fuzzmark.com

Parsing the file

» A few “docs” we crawled were really

- HTML, JPEG, TIFF, PDF, JavaScript
- Ended up with a lot of integrity checking of file

» Crawler and verifier is around 3k lines of C#
code

» Normally we wouldn’t care a crash is a crash
to us, but we wanted to make sure our file set

was valid.

http://www.fuzzmark.com

Things to check for

» Magic Number check

- Caused false positive

- Searched for JavaScript and HTML tags
» Basic length checks

- Failed downloads / truncated uploads

» Hash of file
- Resume a downloaded crawl that failed.

» Filename -> guid
- Many files on the internet share names.

“Homework1.doc”, “Expenses.xls”

http://www.fuzzmark.com

Recording the results

» Data integrity becomes very important

» Collection of crashes and mining of the data
requires more meta data the more complex
you want to be.

» Tag the results directories with
- Program name, year, date, suite, file type, version,
machine, iterations, and a guid.
- When in doubt add another guid. No for real.

> This will barely be enough to manually reconstruct
the run in the event things go wrong.

http://www.fuzzmark.com

Data Analysis
(Naive And Totally Misleading Edition)

» 175,334 Crashes Across 26 Codebases
- Word/Excel/Powerpoint 2003/2007/2010
- Acrobat/GhostView 2003/2007/2010
> Foxit 2007/2010

» One crash about every six seconds
» One crash about every ten iterations
» So What?

http://www.fuzzmark.com

You don’t fix crashes. You fix bugs.

» You don’t fix the same bug over and over

» You also don’t fix bugs in the order they
appear
> Severity matters

» How do you operationalize bug classification?

http://www.fuzzmark.com

Told you !exploitable was
important

» lexploitable: Microsoft debugger extension

that:

> A) “Bucketizes” the crash - allowing it to be
matched with similar crashes

- B) Attempts to measure the severity of the crash

» Yes, this can be done manually, but:
- Manual analysis doesn’t scale

http://www.fuzzmark.com

Unique Crashes

» 2536 Unique Major/Minor Hashes
> 1149 in Office
- 1125 in OpenOffice
> 181 in Ghostview
> 70 in Foxit
> 10 in Acrobat

http://www.fuzzmark.com
Slicing Things Down

» But that’s Major/Minor

- Most “minor hashes” represent the same underlying
bug under a single major

- Depends on the product...75-95% chance of minors
representing the same bug

> Lets be conservative -- only consider Major

» 942 Unique Major Hashes
> 440 in Office
- 396 in Open Office
- 68 in Ghostview
> 32 in Foxit
> 5in Acrobat

http://www.fuzzmark.com

What About Severity?

» 942 Unique Major Hashes
> 150 EXPLOITABLE (15%)
> 188 PROBABLY_EXPLOITABLE (19%)
> 16 PROBABLY_NOT_EXPLOITABLE (1.6%)
> 588 UNKNOWN (62%)

http://www.fuzzmark.com

Now, lets merge Severity with our
other metrics...

» This is a cross-sectional study

> |s severity equally distributed across the various
parsers?

» This is a Jongitudinal study

- |s severity equally distributed across the various
versions?

http://www.fuzzmark.com

Office vs. StarOffice 2003/7/10
(Exploitable/Probably Exploitable)

126

amOffice
aOpenOffice

N

0 .
I 2003 2007

http://www.fuzzmark.com

Ghostview vs. Foxit vs. Reader
2003/7/10 (E/PE)

1

1 14

amGhostview
apeFoxit
emReader

2010

http://www.fuzzmark.com

Systematic Fuzzing Seems To
Reflect Improving Code Quality

» Fuzzmarking is implying an across t
effect - code shipped in 2003 was o
less secure than code shipped in 20

- At least, in parsers for the highly targete
formats doc/xls/ppt/pdf

ne board
pjectively
10

d file

- We would be surprised if this effect showed up in

parsers for file formats that do not cross
boundaries (i.e. aren’t targeted)

* (But aren’t using XML/JSON)

security

http://www.fuzzmark.com

Can One Compare File Formats
With Fuzzmarking?

» The fundamental tension

- We know that some file formats “invite trouble”
- Lengths
- Explicit (especially 32 bit)
- QOverlapping
- Implicit
- Jump tables
- Diffs (“fast saving”)
> .txt is going to end up being a safer format than
.doc or .pdf
- But what about .doc vs. .pdf vs. .rtf?

http://www.fuzzmark.com
Danger!

» Absolute comparisons across file formats
suffer conflation between raw danger of the
format and quality of the fuzz tests

- Are we getting more crashes because the format
has more things to find?

- Or are we just better at finding what’s there?

http://www.fuzzmark.com

At least we know where we stand
in this case

» In our case, it’s very obvious why we have
more Office crashes than PDF crashes
- We’'re relatively document aware in doc/xls/ppt
- We’re just flipping bits on PDF
- OQur PDF fuzzer isn’t even decompressing yet

- We were surprised to see any crashes!
- (And we didn’t see any E/PE in Acrobat)

» What about Office Format vs. Office Format?

At First Glance, Does Seem Like
.doc has more bugs than others

Raw Unique

m doc m doc

| xls | xls

W ppt W ppt

Total Unique Majors Per
Total Crashes Per Type Type

http://www.fuzzmark.com

When you filter to E/PE, the
formats get equal...

Unique E/PE

.

Only Simultaneously Viewing
Severity/Version/Type Helps

50 50
40 40
-.dOC -.dOC
30 30
-.X|S -.X|S
e . PPt e . PPt

20 20 -

10 10

0

0 T T 1 T T
2003 2007 2010 2003 2007 2010

Office Doc/XLS/PPT E/PE g/pPeE”Office Doc/XLS/PPT

http://www.fuzzmark.com

Analysis

» What’s going on?
- No serious correlation between Office and
OpenOffice on .doc risk

» What’s not going on?
- .doc, .xls, and .ppt can’t actually have any security
differential

- You can reach any parser from any

- We’re not going to notice that without real/ly smart
template generation

http://www.fuzzmark.com

Office vs. StarOffice 2003/7/10
(UNKNOWN)

500

400

300

amOffice
aOpenOffice

200

100

0

2003 2007 2010

p—

http://www.fuzzmark.com

From The Unknown Data...

» 1) There’s still improvement, but not as sharp

> It’s almost like Exploitable / Probably Exploitable
bugs are more likely to be fixed than Unknown
bugs

» 2) There’s a far higher floor, even in 2010

http://www.fuzzmark.com

Ghostview vs. Foxit vs. Reader
2003/7/10 (UNKNOWN)

amGhostview
apFoxit
a=Reader

http://www.fuzzmark.com

What About PDF?

» We're still seeing improvement

» PDF had an interesting artifact in E/PE - 2003
was better than 2007
> This artifact is repeated in U - why?
- More features in 2007 parsers

- More corruption resistance in 2007 parsers
- Template preference for 2007/2010 parsers

http://www.fuzzmark.com

Another Possible Metric:
Bug Rarity Profiles

» Nate Lawson showed: Never just average
everything together. Always look at the
distributions.

» Chunking down from 174K crashes to 940
unique vulns throws away a lot of data

> |t matters: Does a given bug take 10 rounds to
find? Or 100,0007?

Number of Crashes Per Unique Bug
(A “Spectral Fingerprint” For Fuzzmarking)

100000 100000

10000 10000

1 1]
o o o
w
~l

1000 1000 s
m OW2003 U i m SW2003 U
100 m OW2003 E/PE 100 - 13 m SW2003 E/PE
il
10 10 38

9

|
I

32

1 1

1

Office 2003 OpenOffice Writer 2003

1 1 1 1 1 J
o e
N
o
N N
OI
N

http://www.fuzzmark.com

What About Bugs That Hit More
Than One Target?

» How do you correlate the same bug across
Word and Writer?

- The stack traces are different
- Obviously the Major/Minor hashes are different
o But the fuzz file is the same

» Naive Numbers

- 110,637 unique files created crashes

- 65989 (59%) crashed only one target
- 44648 (41%) crashed more than one target

http://www.fuzzmark.com

Can We Do Better With Viz?

» Can we visualize this?
> Put the filename in the center
> Treat the left side as “Office Word”
> Treat the right side as “OpenOffice Writer”

o Treat distance from the center as distance from
now

- Color by severity
- Sort by recentness of vuln * severity
- Make each pattern unique

http://www.fuzzmark.com

Office Word 2003/2007/2010 v.
OpenOffice 2003/2007/2010 [O]

'OW2003 OW2007 OW2010 fname SW2010 SW2007 SW2003
U U e0317231-E E

U U e0317231-E
0599f01b- E
7885bd51-E
8765523¢- E
3988142~ E
063b8578- E
00664426- E
b38d8edb E

T T e T e T e B e B e

m m m m m m fm I’

U
U
U
U
U
U
U

http://www.fuzzmark.com

Exploitable in Writer 2003, Unknown in
Word 2003/2007/2010

= = == = e =

= = = = = = =

395956d2-
2587045f-
13385ec/-
1bddddad
Jadeblas-
0lad7cab-
A83af705-

m m m m [m [[T

Easy Dereferencing Back To Major

Hashes

0474b7e0- PE
b3bdcbbe PE
e25d26d5- PE
dfb3eds6- PE
2d979917- PE
0lad7cab- PE
6becdlcd- PE
0474b7e0- PE

u
u
u
u
u
u
u
u

Unknown in Word 2007,

0x26461d56
0x50787170
0x50787F70
0x537e727f
0x537e727f
0x5470717b
Oxb5604095e
0x77360al19

0x41404e1b
Ox0667035a
0x41404e1b
0Ox0067035a
0x41404e1b
0x41404e1b
0x0067035a
0x41404e1b

PE in Writer 2010

Major Hashes

Other Neat Profiles (About 2000
Total)

8f854301-1 PE
Gb884b93- PE
278b6591- PE
4544d082- PE
21296171- PE
847ebae2 PE
21296171- PE
92742361- PE
bc2d4a2bd- PE
1775721d- PE

u 0599f01b- E E E
u 7885bd51-E E
u 8765523c- E E

= (= = = = = = = = [=

“Gap Years” - Unknown .]
in SW2003, PE in Sw2010 | Welcome To The Club

http://www.fuzzmark.com

Potential Issues

» Targeting an area already being swept by
defenders

- Code may look better than it actually is, because
defenders are securing stuff exposed by these very
same methods

> This is ultimately the issue with a// benchmarks

- The only question is whether these bugs are
representative of bugs that need to get fixed

- Since these are the easiest flaws for an attacker to find,
maybe this is OK

http://www.fuzzmark.com

What about the fuzzer itself?

» Bitflipping only works well against file
formats that are tightly packed
- Most new formats are all textual
- Also require complex grammars

» This is a first attempt, we intentionally didn’t
want to pack too much intelligence in

- Code coverage

- Automatic grammar extraction

- Automatic segmentation of file formats
- Manual generation of files

> Integration with memory tracing

SN

http://www.fuzzmark.com

Operational Conclusions

» Bugs aren’t rare
» Bugs aren’t hard to find

» Cross Sectional Findings
- Major document platforms may have bugs, but so
do their competitors
» Longitudinal Findings
- Everybody’s code is getting better
- Nobody’s code is perfect
> Run the latest version of everything!

http://www.fuzzmark.com

Conclusion

» Has software quality improved over the last
ten years?

- Conclusion: For the set of formats tested, we find
an unambiguous reduction in the number of
failures, particularly when those failures show signs
of being security-impacting.

» What next?

- Better fuzzing
- Releasing of data!

http://www.fuzzmark.com

Oh Yeah, Data!

» We are immediately releasing for analysis the
summary data from the fuzz run

- There’s lots of interesting meat to chew on /
visualize

- Go to for more

» We are notdropping 0Oday on anyone
> Will provide the vendors with all the test cases they
want

> |If you want the test cases, or even the stack traces,
they’ll have to give us permission ©

http://www.fuzzmark.com/

Thanks for all the fish!

Adam Cecchetti Dan Kaminsky
adam@dejavusecurity.com dan@doxpara.com
Mike Eddington

mike@dejavusecurity.com

http://dankaminsky.com

http://dejavusecurity.com
http://peachfuzzer.com

http:/ /tinyurl.com/cansecfuzz

Déja vu Security DKH Inc.

mailto:adam@dejavusecurity.com
mailto:mike@dejavusecurity.com
http://dejavusecurity.com/
http://peachfuzzer.com/
mailto:dan@doxpara.com
http://dankaminsky.com/
http://dankaminsky.com/
http://dankaminsky.com/

