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 1990’s:  Security == Cryptography and Java 

 2000’s:  Bad guys show up, start owning 
everything 
◦ Got particularly bad in 2003 

◦ We learn how software actually fails 

 2010’s:  The decade of defense 
◦ OK.  We’ve gotten software to fail. 

◦ How do we make software not fail? 

 Have we gotten any better? 
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 Major efforts going on in the 
corporate/defensive world to try to get some 
sense of Return On Investment / “What 
Actually Works” in defense 
◦ Everybody’s.  Getting.  Owned. 

◦ Something’s not working. 

 Difference between attack and defense 
◦ Attack doesn’t work, it’s easy to tell. 

◦ Defense doesn’t work, it’s…not so easy. 

 What sort of metrics would be helpful? 
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 “How hard is it for an attacker to corrupt a 
computer exposing this particular codebase?” 
◦ Security is about systems, not about individual 

codebases or even just computers, but bear with 
me 
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 We know more things are getting 
compromised 
◦ Is this because attackers are getting better? 

◦ Or is this because code is getting worse? 

 Hypothesis:  Software quality has improved 
over the last ten years. 
◦ Corrolary:  Code is not getting worse; attackers are 

getting better 
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 Standard dataset usually pored through for 
quality metrics: CVE 
◦ CVE:  Common Vulnerabilities and Exposures 

 Information on 48,425 vulnerabilities found 
(and presumably fixed) over the last ten years 
or so 
◦ This is lots of data! 

◦ Or is it? 
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 Fundamental bias 
◦ Conflation:  Software quality with finder interest 

 Interest not only in finding the bugs, but reporting the 
bugs 

 Major human element (at minimum, 
difficult/impossible to measure as the exclusive 
metric) 

◦ Not that much finder interest that still reports back 
to vendors 

 We have a latency problem 
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 Could we take the source code from a large 
number of projects, and look at the number 
of “bad things” in the source code? 
◦ Sort of. 
◦ First issue:  Good luck getting source code to 

targets 
 Could be bypassed if companies published their static 

analysis rates 

 This would actually be pretty cool, hint hint 

◦ Second issue: In practice, difficult to distinguish 
stylistic concerns from actual vulnerabilities 
 Much bigger problem 
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 Fuzzing:  The use of a large number of 
generally corrupt and machine generated test 
cases to attempt to find failure modes in 
software. 

 Is it possible to use the results of large scale 
fuzzing as a rough metric for software 
quality? 
◦ “Fuzzmarking” 

◦ Possibly.  There’s even some precedent 

 BreakingPoint’s Resiliency Score against networks and 
network devices 
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 Target Formats 
◦ Office Documents:  .doc, .xls., .ppt 

◦ Portable Documents:  .pdf 

 These are the formats with the highest 
complexity and the greatest exposure 
◦ Also, empirically they’ve been the ones that are 

getting us owned the most 

 There are two sorts of studies that can be run 
against these formats 
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 Office Documents 
◦ Microsoft Word/Excel/Powerpoint 

◦ OpenOffice Writer/Calc/Impress 

 Portable Documents 
◦ Adobe Acrobat 

◦ Foxit Reader 

◦ GhostScript 

 …but there’s something way more interesting 
we can do. 
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 We’ve been doing security for ten years. 
 How much has software improved in those 

ten years? 
◦ Has it improved? 
◦ If so, when? 

 We’ve taken software circa 2000, 2003, 2007, 
and 2010, and run synchronized fuzz tests 
across all of them 
◦ This is (potentially) a window into bugs that have 

never seen the light of a CVE 
◦ So what does the data look like? 
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 OK, not really. 

 175,334 crashes in ~44 days. 

 Details? 
◦ Lets talk first about process, procedure, and how 

you’re going to screw this up if you try to do this. 
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 Scavenge sample files from Google 

 Internet Archive 
◦ Looking for files near the year 2000 

◦ This did not work out so well… 

 

1 
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 Pre-generate all fuzzed files using Peach 

 100,000 files per format (doc, xls, ppt, pdf) 

 

 Office: Understand OLE Storage 
◦ Fuzz the streams in doc/xls/ppt 

 

 PDF: Decompress streams 
◦ (Eventually) 

 

2 
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 Hosted fuzzing service from Déjà vu Security 

 You provide the target, we produce the 
crashes 

 

For this talk… 

 88 Cores of fuzzing fun 

 5 Targets 

 4 File formats 

 >250 GB of logs 

 

 

3 
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 Office 2010/2007 
◦ Thousands of Registry Keys (File recovery) 

 Office/OpenOffice 
◦ Tens of thousands/Gigs of temp files 

 OpenOffice 
◦ “Quick Start” keeps OO in memory 

 PDF 
◦ Compressed/Non-Compressed 

 

4 
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 Look correct? 
◦ Was every iteration a crash? #fail 

◦ No crashes? 

 Complete set? 
◦ Runs crash 

◦ Machines die 

◦ Logs misplaced 

 

5 
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 Collect interesting data 

 Mine data into SQL 
◦ Easy to query for data sets 

 

6 
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 “How hard could opening a program and 
reading a file be?”  

 Run the same 100k files across 18 programs.  
◦ Every file, every program, every time. 

◦ Must open the program  

◦ Must open, read, and parse the file.  

◦ Must record the result.   
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 Personality  
◦ Some software has very low self esteem and needs 

constant attention. 

 “Look what I parsed!”   

◦ Each program ends up with it own personality 
based on how many deterrents there are to fuzzing. 

 Ranging from whiner to aggressive to needy.  

◦ Occasionally 30k / 50k runs we’d have to “sweet 
talk” the exe back into running. 

◦ Some things were predictable and others 
randomish.  
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 From the program  
◦ Auto Updaters    : Version 6.2 –> 6.5   
◦ Auto Upgraders  : Version 6 -> 7 
◦ Bundle ware / Nag ware  
◦ Recovery of crashed files 
◦ “Safe modes”  
◦ Importing 
◦ Error reporting / Crash Analysis software 

 From the OS  
◦ Auto Update 
◦ Anti Virus  
◦ Scheduled scans / reboots.  
◦ Startup  / OnRun / Preloaders 
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 From the Program  
◦ Pop Ups  

◦ Registration  

◦ Surveys  

◦ Ads  

◦ Assistants 
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 Dynamic downloads 
◦ Add Ons 

 Fonts / international support  

 Foxit from 2007 doesn’t have default JPEG support 

 Download and install at runtimes  

 Puts the program out of sync with the rest 

 “Static” downloads  
◦ Old documents linked to things all over the web. 

◦ Parts of the fuzzed doc / pdf are just gone.  

 Makes for less interesting fuzzing 
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 A few “docs” we crawled were really 
◦ HTML, JPEG, TIFF, PDF, JavaScript 

◦ Ended up with a lot of integrity checking of file  

 Crawler and verifier is around 3k lines of C# 
code 

 Normally we wouldn’t care a crash is a crash 
to us, but we wanted to make sure our file set 
was valid.  
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 Magic Number check  
◦ Caused false positive  

◦ Searched for JavaScript and HTML tags 

 Basic length checks 
◦ Failed downloads / truncated uploads 

 Hash of file 
◦ Resume a downloaded crawl that failed.   

 Filename -> guid  
◦ Many files on the internet share names. 

“Homework1.doc”, “Expenses.xls” 
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 Data integrity becomes very important 

 Collection of crashes and mining of the data 
requires more meta data the more complex 
you want to be.  

 Tag the results directories with  
◦ Program name, year, date, suite, file type, version, 

machine, iterations, and a guid. 

◦ When in doubt add another guid. No for real.   

◦ This will barely be enough to manually reconstruct 
the run in the event things go wrong.  
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 175,334 Crashes Across 26 Codebases 
◦ Word/Excel/Powerpoint 2003/2007/2010 

◦ Acrobat/GhostView 2003/2007/2010 

◦ Foxit 2007/2010 

 One crash about every six seconds 

 One crash about every ten iterations 

 So What? 
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 You don’t fix the same bug over and over 

 You also don’t fix bugs in the order they 
appear 
◦ Severity matters 

 How do you operationalize bug classification? 
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 !exploitable:  Microsoft debugger extension 
that: 
◦ A) “Bucketizes” the crash – allowing it to be 

matched with similar crashes 

◦ B) Attempts to measure the severity of the crash 

 Yes, this can be done manually, but: 
◦ Manual analysis doesn’t scale 
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 2536 Unique Major/Minor Hashes 
◦ 1149 in Office 

◦ 1125 in OpenOffice 

◦ 181 in Ghostview 

◦ 70 in Foxit 

◦ 10 in Acrobat 
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 But that’s Major/Minor 
◦ Most “minor hashes” represent the same underlying 

bug under a single major 
 Depends on the product…75-95% chance of minors 

representing the same bug 

◦ Lets be conservative -- only consider Major 

 942 Unique Major Hashes 
◦ 440 in Office 
◦ 396 in Open Office 
◦ 68 in Ghostview 
◦ 32 in Foxit 
◦ 5 in Acrobat 
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 942 Unique Major Hashes 
◦ 150 EXPLOITABLE (15%) 

◦ 188 PROBABLY_EXPLOITABLE (19%) 

◦ 16 PROBABLY_NOT_EXPLOITABLE (1.6%) 

◦ 588 UNKNOWN (62%) 
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 This is a cross-sectional study 
◦ Is severity equally distributed across the various 

parsers? 

 This is a longitudinal study 
◦ Is severity equally distributed across the various 

versions? 
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 Fuzzmarking is implying an across the board 
effect – code shipped in 2003 was objectively 
less secure than code shipped in 2010 
◦ At least, in parsers for the highly targeted file 

formats doc/xls/ppt/pdf 

◦ We would be surprised if this effect showed up in 
parsers for file formats that do not cross security 
boundaries (i.e. aren’t targeted) 

 (But aren’t using XML/JSON) 
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 The fundamental tension 
◦ We know that some file formats “invite trouble” 

 Lengths 

 Explicit (especially 32 bit) 

 Overlapping 

 Implicit  

 Jump tables 

 Diffs (“fast saving”) 

◦ .txt is going to end up being a safer format than 
.doc or .pdf 

 But what about .doc vs. .pdf vs. .rtf? 
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 Absolute comparisons across file formats 
suffer conflation between raw danger of the 
format and quality of the fuzz tests 
◦ Are we getting more crashes because the format 

has more things to find? 

◦ Or are we just better at finding what’s there? 
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 In our case, it’s very obvious why we have 
more Office crashes than PDF crashes 
◦ We’re relatively document aware in doc/xls/ppt 

◦ We’re just flipping bits on PDF 

 Our PDF fuzzer isn’t even decompressing yet  

 We were surprised to see any crashes! 

 (And we didn’t see any E/PE in Acrobat) 

 What about Office Format vs. Office Format? 
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 What’s going on? 
◦ No serious correlation between Office and 

OpenOffice on .doc risk 

 What’s not going on? 
◦ .doc, .xls, and .ppt can’t actually have any security 

differential 

◦ You can reach any parser from any 

◦ We’re not going to notice that without really smart 
template generation 
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 1) There’s still improvement, but not as sharp 
◦ It’s almost like Exploitable / Probably Exploitable 

bugs are more likely to be fixed than Unknown 
bugs 

 2) There’s a far higher floor, even in 2010 
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 We’re still seeing improvement 

 PDF had an interesting artifact in E/PE – 2003 
was better than 2007 
◦ This artifact is repeated in U – why? 

 More features in 2007 parsers 

 More corruption resistance in 2007 parsers 

 Template preference for 2007/2010 parsers 
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 Nate Lawson showed:  Never just average 
everything together.  Always look at the 
distributions. 

 Chunking down from 174K crashes to 940 
unique vulns throws away a lot of data 
◦ It matters:  Does a given bug take 10 rounds to 

find?  Or 100,000? 
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 How do you correlate the same bug across 
Word and Writer? 
◦ The stack traces are different 

◦ Obviously the Major/Minor hashes are different 

◦ But the fuzz file is the same 

 Naïve Numbers 
◦ 110,637 unique files created crashes 

◦ 65989 (59%) crashed only one target 

◦ 44648 (41%) crashed more than one target 
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 Can we visualize this? 
◦ Put the filename in the center 

◦ Treat the left side as “Office Word” 

◦ Treat the right side as “OpenOffice Writer” 

◦ Treat distance from the center as distance from 
now 

◦ Color by severity 

◦ Sort by recentness of vuln * severity 

◦ Make each pattern unique 
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Unknown in Word 2007, 
PE in Writer 2010 

Major Hashes 



“Gap Years” – Unknown 
in SW2003, PE in SW2010 

“Welcome To The Club” 
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 Targeting an area already being swept by 
defenders 
◦ Code may look better than it actually is, because 

defenders are securing stuff exposed by these very 
same methods 

◦ This is ultimately the issue with all benchmarks 

 The only question is whether these bugs are 
representative of bugs that need to get fixed 

 Since these are the easiest flaws for an attacker to find, 
maybe this is OK 
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 Bitflipping only works well against file 
formats that are tightly packed 
◦ Most new formats are all textual 

◦ Also require complex grammars 

 This is a first attempt, we intentionally didn’t 
want to pack too much intelligence in 
◦ Code coverage 

◦ Automatic grammar extraction 

◦ Automatic segmentation of file formats 

◦ Manual generation of files 

◦ Integration with memory tracing 
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 Bugs aren’t rare 

 Bugs aren’t hard to find 

 Cross Sectional Findings 
◦ Major document platforms may have bugs, but so 

do their competitors 

 Longitudinal Findings 
◦ Everybody’s code is getting better 

◦ Nobody’s code is perfect 

◦ Run the latest version of everything! 
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 Has software quality improved over the last 
ten years? 
◦ Conclusion:  For the set of formats tested, we find 

an unambiguous reduction in the number of 
failures, particularly when those failures show signs 
of being security-impacting. 

 What next? 
◦ Better fuzzing 

◦ Releasing of data! 
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 We are immediately releasing for analysis the 
summary data from the fuzz run 
◦ There’s lots of interesting meat to chew on / 

visualize 

◦ Go to www.fuzzmark.com for more 

 We are not dropping 0day on anyone 
◦ Will provide the vendors with all the test cases they 

want 

◦ If you want the test cases, or even the stack traces, 
they’ll have to give us permission  
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