fuzzing & exploiting

wireless device drivers

Vienna, 23 November 2007

Sylvester Keil Clemens Kolbitsch
sk (at) seclab (dot) tuwien (dot) ac (dot) at ck (at) seclab (dot) tuwien (dot) ac (dot) at

EEEEEEEEEE
UNIVERSITAT

DEEPSEC 2007 [TUP

VIENNA UNIVERSITY OF

UUUUUUUUUU

-
s

e 802.11 fundamentals

e 802.11 fuzzing

® Virtual 802.11| fuzzing & live demonstration

® Kernel-mode exploits primer

EEEEEEEEEE
UNIVERSITAT

DEEPSEC 2007 [TUP

VIENNA UNIVERSITY OF

UUUUUUUUUU

-
s

introduction

EEEEEEEEEE
UNIVERSITAT

DEEPSEC 2007 [TUP

VIENNA UNIVERSITY OF

UUUUUUUUUU

-
s

About us

® VWe are two students from the Technical University Vienna

® Right now we ought to be working on our master theses at the
Secure Systems Lab @ TU Vienna

® The work presented here is based on the results of a seminar
paper we wrote during a collaboration between the Secure

Systems Lab and SEC Consult

® SEC Consult also has a “Vulnerability Bonus Program” — for
details see http://www.sec-consult.com or mail to
vulnerabilities(@sec-consult.com

—] e y
DEEPSEC 2007 |TU/ or
VIENNA | Unier o pa

http://www.sec-consult.com
http://www.sec-consult.com
mailto:vulnerabilities@sec-consult.com
mailto:vulnerabilities@sec-consult.com

The playground

® Wireless networks have become a widely used
means of communication. Compatible devices are

included in most portable computers, mobile
phones, etc.

® That means, there is an increasing number of
mobile targets out there...

® What's more, the device drivers typically operate
in supervisor-mode (i.e. in kernel-space), thus
rendering vulnerabilities extremely dangerous.

———— e]
DEEPSEC 2007 |TU\E or
VIENNA | Ypivenerr or .

802.11 primer

EEEEEEEEEE
UNIVERSITAT

DEEPSEC 2007 [TUP

VIENNA UNIVERSITY OF

UUUUUUUUUU

-
s

The IEEE 802 Family

4 Y S
802.2
Logical link control (LLC)
802 802.1 Data Link
Overview Management | -~ Layer
and 802.3 : 802.11
architecture MAC Media access control (MAC)
802.3 Physical
PHY Layer
\ \ _

TECHNISCHE

VIENNA | Uniersity o

TECHNOLOGY

|

802.1 1 MAC frames

® Three types of frames: management, control and
data frames

® Management frames used to advertise and connect
to networks

[] [Information Elements] []

header body FCS
(30 byte) (up to 2312 byte) (4 byte)

— UNIVERSITAT 4
DEEPSEC=” TU- |rEEILE

802.1 | states

Authentication t DeAuthentication
Association

State 2
Classes 1,2
or

Reassociation
State 3
Classes 1,2,3
. J

EEEEEEEEEE

VIENNA | Universiry or

TTTTTTTTTT

Disassociation

802.1 1 association

i

: i

: i

: i

: i

access 0 ;

® I I

point |

: : station

: |

: i

! i

i

802.1 1 association

i 'ﬂ i
: Beacons - .
! b !
i i
i i
access : :)
: ' ' station
point ! !
i i
i i
i i
i i
i i

EEEEEEEEEE
UNIVERSITAT

DEEPSEC 2007 [TUP

VIENNA UNIVERSITY OF

UUUUUUUUUU

-
s

802.1 1 association

<« - - Probe Request

aCCessS

: station
point

EEEEEEEEEE
UNIVERSITAT

DEEPSEC 2007 [TUP

VIENNA UNIVERSITY OF

UUUUUUUUUU

-
s

802.1 1 association

~

‘: Beacons €:---> :
') Probe Request 'Q
<+ - - Probe Reques
a: Probe Response --» :
access : :)
. . ' station
point | :
i i
i i
i i
i i
i i

EEEEEEEEEE
UNIVERSITAT

DEEPSEC 2007 [TUP

VIENNA UNIVERSITY OF

UUUUUUUUUU

-
s

802.1 1 association

~

‘: Beacons €:---> :
i b i
| < - - Probe Request |a
al Probe Response --» :
access : : :
oint ; R :Q station
<« - - Authentication
p I I
I I
I I
I I
I I

EEEEEEEEEE
UNIVERSITAT

DEEPSEC 2007 [TUP

VIENNA UNIVERSITY OF

UUUUUUUUUU

-
s

802.1 1 association

~

‘ : Beacons -- - > :
I By !
I <« - - Probe Request 'Q
e. Probe Response --» !
access i ! |
I I
pOint I icati <« - - Authentication | ° station
° 1 Authentication - -+ |
I I
I I
I I
| I

EEEEEEEEEE
UNIVERSITAT

DEEPSE(C 2007 [TU|*

VIENNA | University o

UUUUUUUUUU

-
s

802.1 1 association

o
|
|
cl < == 1 | OUC I\Ck.lLICDL
|
access : -
point QE station
|
|
| |
| |
DEEPSEC 2007 [TU[E"

802.1 1 association

~
[v i
Beacons £--+»
f . [
i

3
l
<« - - Probe Request |Q

e: Probe Response --» .
access ' ' :
int ; R | station
poin ° | Authentication--+ uthentication : °
I I
I I
: <« - - Association Request | °
I I

EEEEEEEEEE
UNIVERSITAT

DEEPSEC 2007 [TUP

VIENNA UNIVERSITY OF

UUUUUUUUUU

-
s

802.1 1 association

P
| ’
‘I Beacons ¢---+»

\
| ®

e: Probe Response --»
access '

point I

<« - - Probe Request

station

< - - Authentication

I
e 1 Authentication - -+
I

- >

l l
| <« - - Association Request | °
Gl Association Response -

DEEPSEC 2007 |TU/*="

VIENNA |||||||||||

802.1 1 association

aCCess

| station
point

EEEEEEEEEE

UUUUUUUUUU

802.11 fuzzing

EEEEEEEEEE
UNIVERSITAT

DEEPSEC 2007 [TUP

VIENNA UNIVERSITY OF

UUUUUUUUUU

-
s

802.11 fuzzing issues

Fuzzers must be aware of frequency channels,
BSSIDs, states, modes, and data link encryption
(filtering may take place at hardware level!)

® Response time and timing of replies is critical (e.g.,
because of reply windows or channel hopping)

® Overload, interference, packet corruption may
occur

® Attacker and target must be co-ordinated and
target must be continuously monitored

—] e y
DEEPSEC 2007 |TU/ or
VIENNA | Unier o A

What to fuzz!?

® Some Information Elements (IE) follow type-
length-value pattern

® Type and length fields have fixed size, the value
field’s size is variable (potential overflow)

=) =)

EEEEEEEEEE
UNIVERSITAT

DEEPSEC 2007 |[TUZ

VIENNA
uuuuuuuuuu

-
s

Example: a beacon frame

()
Time-stamp Beacon Interval Capability Information
0x0 0x9 ‘MyNetwork’
(ID) (LEN) (SSID)
Ox| 0x8 11.0 (B) ...54.0 (B) Ox|
(ID) (LEN) (Supported Rates) (ID)
Ox| 0x9
(LEN) (Freq)
\. S

TECHNISCHE

D E E P S E C 2007 TU| &=

VIENNA

VIENNA UNIVERSITY OF

TECHNOLOGY

virtual 802.11 fuzzing

EEEEEEEEEE
UNIVERSITAT

DEEPSEC 2007 [TUP

VIENNA UNIVERSITY OF

UUUUUUUUUU

-
s

A novel approach

® Requirements

® Eliminate timing contraints
® Replace unstable wireless medium
® Allow guaranteed delivery

® Support advanced target monitoring

® Solution

® Move target into a virtual environment!

-

DEEPSEC 2007 [TU[=™

VIENNA UNIVERSITY OF

Advantages

Virtual wireless device (software) replaces network
hardware

® High-level IPC instead of live frame-injection

® CPU of virtual machine can be interrupted and
stopped if necessary

® Guest OS monitoring at low-level (system restart,
console output, etc.)

® Drastically simplifies complexity of fuzzing process

ey [/
DEEPSEC 2007 |TU\E or
VIENNA | Ypivenerr or A

Our solution

Develop a fuzzing “framework” on the basis of
Fabrice Bellard’s QEMU (optional ethernet card can
be added via command-line option)

® Modular design

® packets read from outgoing queue are copied to shared memory
® connected modules are notified via semaphores

® packets are read from shared memory and copied to incoming
queue

—] e y
DEEPSEC 2007 |TU/ or
VIENNA | Unier o A

System overview

-
p Dumper (RM): store outgoing packets
cPU)
.
[MMU) Listener (RM): display outgoing packets
([n r “
(Ethernet) Injector (IM): inject arbitrary packets
() ~ ”
802.11 Fuzzer () i :)
Shared memory L Stateless fuzzer (IM): reply directly)
PCI ID: 168c0013 (rev0l) Reply (RM) Access point (RM & IM)
Atheros Communications, Inc.
’ Inject (IM)
AR5212 802.1 1abg NIC (rev 01) \()) Stateful fuzzer (RM & IM): AP and fuzzer
. J

: : e]
DEEPSEC 2007 |TU\E or
VIENNA | Unenary o A

Access Point module

Broadcasts beacon frames

® Responds to incoming probe requests

® Supports complete Open System Authentication
® Responds to incoming association requests

® Features minimum implementation of ICMP

® Full logging of 802.11 traffic

® But words can only say so much...

EEEEEEEEEE

VIENNA UNIVERSITY OF

UUUUUUUUUU

Stateful fuzzer module

® |nitially, the fuzzer behaves like an access point
module, broadcasting valid beacons and responding
to probe requests

® Once authentication is complete, it is possible to
fuzz the target in state 2, e.g. transmit fuzzed
association response frames

® See it yourself...

EEEEEEEEEE
UNIVERSITAT

DEEPSEC 2007 |[TUZ

VIENNA
oooooooooo

-
s

fuzzing results

EEEEEEEEEE
UNIVERSITAT

DEEPSEC 2007 [TUP

VIENNA UNIVERSITY OF

UUUUUUUUUU

-
s

Results

We have developed a “framework” for 802.1 |
fuzzing using QEMU

® So far the framework supports fuzzing in all three
states of a target in managed mode

® A simple fuzzer using the framework and old
versions of the MadWVifi driver detected known
vulnerabilities

® A previously undocumented vulnerability was also
found!

EEEEEEEEEE

VIENNA UNIVERSITY OF

UUUUUUUUUU

The vulnerability

Our fuzzer detected a flaw in the MadWifi
implementation

® A beacon frame with a specially crafted Extended
Supported Rates information element crashes Linux
when scanning for available networks

® Sadly (uh, is deepsec blackhat?), no remote code
execution possible (but DoS)

® Recently published by SEC Consult & TU Vienna and
fixed since 0.9.3.3

EEEEEEEEEE

— UNIVERSITAT A
DEEPSEC?2007 |[TUS [@r

VIENNA

UUUUUUUUUU

kernel-mode exploits

EEEEEEEEEE
UNIVERSITAT

DEEPSEC 2007 [TUP

VIENNA UNIVERSITY OF

UUUUUUUUUU

-
s

Vulnerabilities in kernel space

EEEEEEEEEE
UNIVERSITAT

DEEPSEC 2007 [TUP

VIENNA UNIVERSITY OF

UUUUUUUUUU

-
s

Vulnerabilities in kernel space

® What types of kernel space vulnerabilities are there!?

EEEEEEEEEE
UNIVERSITAT

DEEPSEC 2007 [TUP

VIENNA UNIVERSITY OF

UUUUUUUUUU

-
s

Vulnerabilities in kernel space

® What types of kernel space vulnerabilities are there!?

® How can they be exploited (remotely)?

EEEEEEEEEE
UNIVERSITAT

DEEPSEC 2007 [TUP

VIENNA UNIVERSITY OF

UUUUUUUUUU

-
s

Vulnerabilities in kernel space

® What types of kernel space vulnerabilities are there!?
® How can they be exploited (remotely)?

® How generic are these exploits?

EEEEEEEEEE
UNIVERSITAT

DEEPSEC 2007 [TUP

VIENNA UNIVERSITY OF

UUUUUUUUUU

-
s

NULL / user-space dereference

L
o

ring0

EEEEEEEEEE
UNIVERSITAT

DEEPSEC 2007 [TUP

VIENNA UNIVERSITY OF

UUUUUUUUUU

-
s

NULL / user-space dereference

L

=.
3 .
0Q
w

ring0

EEEEEEEEEE
UNIVERSITAT

DEEPSEC 2007 [TUP

VIENNA UNIVERSITY OF

UUUUUUUUUU

-
s

NULL / user-space dereference

foo = kmalloc(size, GFP_KERNEL);

/*¥ 1f kmalloc fails, foo will be NULL */

/*¥ later on... */

ring0

I’Il‘lg3 foo->data->value = some_value;

%

-

DEEPSEC 2007 [TU[="

VIENNA |||||||||||

NULL / user-space dereference

foo = kmalloc(size, GFP_KERNEL); *

/*¥ 1f kmalloc fails, foo will be NULL */

/*¥ later on... */

ring0

I’Il‘lg3 foo->data->value = some_value;

%

-

DEEPSEC 2007 [TU[="

VIENNA |||||||||||

NULL / user-space dereference

L

=.
3 .
0Q
w

ring0

DEEPSEC =0%

foo = kmalloc(size, GFP_KERNEL); *

/*¥ 1f kmalloc fails, foo will be NULL */

/*¥ later on... */

foo->data->value = some_value;

IR

EEEEEEEEEE

NNNNNN

VIENNA UNIVERSITY OF

UUUUUUUUUU

Heap (slab) overflows

EEEEEEEEEE
UNIVERSITAT

DEEPSEC 2007 [TUP

VIENNA UNIVERSITY OF

UUUUUUUUUU

-
s

Heap (slab) overflows

® The slab allocator can create so called lookaside caches for you:
pools of memory objects (slabs) that all have the same size.

EEEEEEEEEE
UNIVERSITAT

DEEPSEC 2007 [TUP

VIENNA UNIVERSITY OF

UUUUUUUUUU

-
s

Heap (slab) overflows

® The slab allocator can create so called lookaside caches for you:
pools of memory objects (slabs) that all have the same size.

® kmalloc uses just a number of such pools!

EEEEEEEEEE
UNIVERSITAT

DEEPSEC 2007 [TUP

VIENNA UNIVERSITY OF

UUUUUUUUUU

-
s

Heap (slab) overflows

® The slab allocator can create so called lookaside caches for you:
pools of memory objects (slabs) that all have the same size.

® kmalloc uses just a number of such pools!

® A slab overflow is, if we write beyond the boundary of a slab and
into the adjacent slab.

EEEEEEEEEE
UNIVERSITAT

DEEPSEC 2007 [TUP

VIENNA UNIVERSITY OF

UUUUUUUUUU

-
s

Heap (slab) overflows

® The slab allocator can create so called lookaside caches for you:
pools of memory objects (slabs) that all have the same size.

® kmalloc uses just a number of such pools!

® A slab overflow is, if we write beyond the boundary of a slab and
into the adjacent slab.

EEEEEEEEEE
UNIVERSITAT

DEEPSEC 2007 [TUP

VIENNA UNIVERSITY OF

UUUUUUUUUU

-
s

Heap (slab) overflows

® The slab allocator can create so called lookaside caches for you:
pools of memory objects (slabs) that all have the same size.

® kmalloc uses just a number of such pools!

® A slab overflow is, if we write beyond the boundary of a slab and
into the adjacent slab.

® |f we know the contents of the adjacent slab, we might be able to
overwrite a pointer and thus create a pointer dereference exploit,
or similar scenario.

ey [/
DEEPSEC 2007 |TU\E or
VIENNA | Ypivenerr or A

-

Stack overflows

® Typically, kernel stack is 4k or 8k.

® Otherwise similar to user stack exploits:
overwrite saved return address with
buffer address.

® How do we know where to jump to? And
how do we know the location of the
saved return address?

thread info

-

VIENNA UNIVERSITY OF

UUUUUUUUUU

Stack overflows

® Typically, kernel stack is 4k or 8k.

® Otherwise similar to user stack exploits:
overwrite saved return address with
buffer address.

shellcode

nop

® How do we know where to jump to? And nop
how do we know the location of the
saved return address?

thread info

-

VIENNA UNIVERSITY OF

Stack overflows

<+— ret

® Typically, kernel stack is 4k or 8k.

® Otherwise similar to user stack exploits:
overwrite saved return address with
buffer address.

shellcode

nop

® How do we know where to jump to? And nop
how do we know the location of the
saved return address?

thread info

-
EC

DEEPSEC 2007 |[TU|#™

VIENNA UNIVERSITY OF

Stack overflows

&(jmp *%esp) <+— ret

® Typically, kernel stack is 4k or 8k.

® Otherwise similar to user stack exploits:
overwrite saved return address with
buffer address.

shellcode

nop

® How do we know where to jump to? And nop
how do we know the location of the
saved return address?

thread info

-
EC

DEEPSEC 2007 |[TU|#™

VIENNA UNIVERSITY OF

Stack overflows

<+— esp
<+— ret

&(jmp *%esp)

® Typically, kernel stack is 4k or 8k.

® Otherwise similar to user stack exploits:
overwrite saved return address with
buffer address.

shellcode

nop

® How do we know where to jump to? And nop
how do we know the location of the
saved return address?

thread info

-
EC

DEEPSEC 2007 |[TU|#™

VIENNA UNIVERSITY OF

Stack overflows

jmp -N <+— €Sp

<+— ret

&(jmp *%esp)

® Typically, kernel stack is 4k or 8k.

® Otherwise similar to user stack exploits:
overwrite saved return address with
buffer address.

shellcode

nop

® How do we know where to jump to? And nop
how do we know the location of the
saved return address?

thread info

-

VIENNA UNIVERSITY OF

Stack overflows

jmp -N

&(jmp *%esp)

® Typically, kernel stack is 4k or 8k.

<+— ret

® Otherwise similar to user stack exploits:
overwrite saved return address with
buffer address.

shellcode

nop

® How do we know where to jump to? And nop
how do we know the location of the
saved return address?

thread info

-

VIENNA UNIVERSITY OF

Stack overflows

jmp -N
: . &(jmp *%esp)
® Typically, kernel stack is 4k or 8k. &(ret)
<+ ret
® Otherwise similar to user stack exploits: &(ret)
overwrite saved return address with
shellcode
buffer address.
nop
® How do we know where to jump to? And nop

how do we know the location of the
saved return address!?

thread info

-
EC

DEEPSEC 2007 [TU]>"

VIENNA IIIIIIIIIII

Stack overflows

jmp -N
: . &(jmp *%esp)
® Typically, kernel stack is 4k or 8k. &(ret) «— esp
<+ ret
® Otherwise similar to user stack exploits: &(ret)
overwrite saved return address with
shellcode
buffer address.
nop
® How do we know where to jump to? And nop

how do we know the location of the
saved return address!?

thread info

-
EC

DEEPSEC 2007 [TU]>"

VIENNA IIIIIIIIIII

Stack overflows

jmp -N
® Typically, kernel stack is 4k or 8k. &(’n;?rei)esp) P
<+ ret
® Otherwise similar to user stack exploits: &(ret)
overwrite saved return address with
shellcode
buffer address.
nop
® How do we know where to jump to? And nop

how do we know the location of the
saved return address!?

thread info

-
EC

DEEPSEC 2007 [TU]>"

VIENNA IIIIIIIIIII

Stack overflows

jmp -N <+— €Sp
: . &(jmp *%esp)
® Typically, kernel stack is 4k or 8k. &(ret)
<+ ret
® Otherwise similar to user stack exploits: &(ret)
overwrite saved return address with
shellcode
buffer address.
nop
® How do we know where to jump to? And nop

how do we know the location of the
saved return address!?

thread info

-
EC

DEEPSEC 2007 [TU]>"

VIENNA IIIIIIIIIII

Inside ring0, now what!

EEEEEEEEEE

TTTTTTTTTT

Inside ring0, now what!

EEEEEEEEEE

TTTTTTTTTT

Inside ring0, now what!

EEEEEEEEEE

TTTTTTTTTT

Inside ring0, now what!

EEEEEEEEEE

UUUUUUUUUU

Inside ring0, now what!

EEEEEEEEEE

UUUUUUUUUU

Inside ring0, now what!

EEEEEEEEEE

UUUUUUUUUU

Inside ring0, now what!

EEEEEEEEEE

UUUUUUUUUU

Inside ring0, now what!

EEEEEEEEEE

UUUUUUUUUU

Return to ring3!

»*

r3 shellcode r0 exploit

attacker target

EEEEEEEEEE
UNIVERSITAT

DEEPSEC 2007 [TUP

VIENNA UNIVERSITY OF

UUUUUUUUUU

-
s

Metasploit’s approach

® Migration (not implemented yet)
® Stager
® Recovery

® Stage (regular ring3 payloads)

EEEEEEEEEE
UNIVERSITAT

DEEPSEC 2007 |[TUZ

VIENNA

-
s

UUUUUUUUUU

Migration

® The goal of this step, is to transition to a state

where the ring0 payload can be executed in a safe
manner.

® OnWindows it may be necessary to adjust the
current IRQL. On Linux, it may be necessary to
cleanly get out from an interrupt or softirq.

® May coincide with the stager component.

———— e]
DEEPSEC 2007 |TU\E or
VIENNA | Ypivenerr or .

® Copy the ring0 or ring3 to a suitable location

® We may only be able to access currently loaded pages

® Space between kernel stack and thread_info

® Unused entries in the IDT

® |nstall hook that will execute the payload in the

desired context

® |nterrupt handlers

® System call handlers (how do we find the system call table?)

DEEPSEC =0%

VIENNA

Recovery

® |f the system crashes after the stager has finished,
we haven’t accomplished anything

® We need to recover from the exploit and leave the
system in a safe state

® Recovery depends on the situation:

® Restore registers (but we smashed the stack...)
® Fnable interrupts or preemption

® Release spinlocks

VIENNA UNIVERSITY OF

UUUUUUUUUU

® |deally, the stage is simply a ring3 shellcode

® Depending on the migration / stager we may have

a two-level stage

® Copy ring3 payload to user-space (in context of a user-mode process)

® Adjust process privileges ;-)

® Set process saved instruction pointer or some function pointer to payload

® We hooked the sys execve system call and replaced the command to be

executed

DEEPSEC =0%

VIENNA

conclusion

EEEEEEEEEE
UNIVERSITAT

DEEPSEC 2007 [TUP

VIENNA UNIVERSITY OF

UUUUUUUUUU

-
s

Conclusion

® Fuzzing 802.11 live on the air is a cumbersome and
time-consuming process due to the limitations and

requirements of the wireless medium

® Moving the fuzzer and the target into an emulated
environment dramatically speeds up and simplifies

the process!

® Every kernel vulnerabilities is a story of its own,
but some generalizations are still possible

—] e y
DEEPSEC 2007 |TU/ or
VIENNA | Unier o A

Fabrice Bellard.“QEMU, a Fast and

Portable Dynamic Translator”

USENIX 2005 Annual Technical Conference
QEMU

http://www.gemu.org

sgrakkyu & twiz.“Attacking the Core:
Kernel Attacking Notes”
Phrack 0x0c, 0x40, #0x06

references & tools

TECHNISCHE
UNIVERSITAT

DEEPSEC 2007 |[TU!

VIENNA UNIVERSITY OF

-

http://www.seclab.tuwien.ac.at
http://www.seclab.tuwien.ac.at

Christopher Kruegel
Engin Kirda Bernhard Muller

http://www.seclab.tuwien.ac.at http://www.sec-consult.com

kudos & respect

-

DEEPSEC 2007 [TU[=™

VIENNA UNIVERSITY OF

http://www.seclab.tuwien.ac.at
http://www.seclab.tuwien.ac.at
http://www.seclab.tuwien.ac.at
http://www.seclab.tuwien.ac.at

vielen dank

