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About us

• We are two students from the Technical University Vienna

• Right now we ought to be working on our master theses at the 
Secure Systems Lab @ TU Vienna

• The work presented here is based on the results of a seminar 
paper we wrote during a collaboration between the Secure 
Systems Lab and SEC Consult

• SEC Consult also has a “Vulnerability Bonus Program” – for 
details see http://www.sec-consult.com or mail to 
vulnerabilities@sec-consult.com

http://www.sec-consult.com
http://www.sec-consult.com
mailto:vulnerabilities@sec-consult.com
mailto:vulnerabilities@sec-consult.com


The playground

• Wireless networks have become a widely used 
means of communication. Compatible devices are 
included in most portable computers, mobile 
phones, etc.

• That means, there is an increasing number of 
mobile targets out there…

• What’s more, the device drivers typically operate 
in supervisor-mode (i.e. in kernel-space), thus 
rendering vulnerabilities extremely dangerous.



802.11 primer
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802.11 MAC frames

header
(30 byte)

body
(up to 2312 byte)

FCS
(4 byte)

Information ElementInformation Elements …FC …AddressesAddresses

• Three types of frames: management, control and 
data frames

• Management frames used to advertise and connect 
to networks



802.11 states

DeAuthentication
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State 2
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State 3
Classes 1, 2, 3

Authentication

Association
or

Reassociation
Disassociation
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802.11 fuzzing



802.11 fuzzing issues

• Fuzzers must be aware of frequency channels, 
BSSIDs, states, modes, and data link encryption 
(filtering may take place at hardware level!)

• Response time and timing of replies is critical (e.g., 
because of reply windows or channel hopping)

• Overload, interference, packet corruption may 
occur

• Attacker and target must be co-ordinated and 
target must be continuously monitored



What to fuzz?

• Some Information Elements (IE) follow type-
length-value pattern

• Type and length fields have fixed size, the value 
field’s size is variable (potential overflow)

type valuelength



Example: a beacon frame

FCS

Time-stamp

FC Source Destination BSSIDID 0x00

Beacon Interval Capability Information

0x0
(ID)

0x9
(LEN)

‘MyNetwork’
(SSID)

0x1
(ID)

0x8
(LEN)

11.0 (B) . . . 54.0 (B)
(Supported Rates)

0x1
(ID)

0x1
(LEN)

0x9
(Freq)



virtual 802.11 fuzzing



A novel approach

• Requirements

• Eliminate timing contraints

• Replace unstable wireless medium

• Allow guaranteed delivery

• Support advanced target monitoring

• Solution

• Move target into a virtual environment!



Advantages

• Virtual wireless device (software) replaces network 
hardware

• High-level IPC instead of live frame-injection

• CPU of virtual machine can be interrupted and 
stopped if necessary

• Guest OS monitoring at low-level (system restart, 
console output, etc.)

• Drastically simplifies complexity of fuzzing process



Our solution

• Develop a fuzzing “framework” on the basis of 
Fabrice Bellard’s QEMU (optional ethernet card can 
be added via command-line option)

• Modular design

• packets read from outgoing queue are copied to shared memory

• connected modules are notified via semaphores

• packets are read from shared memory and copied to incoming 
queue



…

System overview

Dumper (RM): store outgoing packets

Listener (RM): display outgoing packets

Injector (IM): inject arbitrary packets

Stateless fuzzer (IM): reply directly

Access point (RM & IM)

Stateful fuzzer (RM & IM):  AP and fuzzer

CPU

MMU

Ethernet

QEMU

Reply (RM)

Inject (IM)

Shared memory
802.11 Fuzzer

PCI ID: 168c0013 (rev01)
Atheros Communications, Inc.
AR5212 802.11abg NIC (rev 01)



Access Point module

• Broadcasts beacon frames

• Responds to incoming probe requests

• Supports complete Open System Authentication

• Responds to incoming association requests

• Features minimum implementation of ICMP

• Full logging of 802.11 traffic

• But words can only say so much…



Stateful fuzzer module

• Initially, the fuzzer behaves like an access point 
module, broadcasting valid beacons and responding 
to probe requests

• Once authentication is complete, it is possible to 
fuzz the target in state 2, e.g. transmit fuzzed 
association response frames

• See it yourself…



fuzzing results



Results

• We have developed a “framework” for 802.11 
fuzzing using QEMU

• So far the framework supports fuzzing in all three 
states of a target in managed mode

• A simple fuzzer using the framework and old 
versions of the MadWifi driver detected known 
vulnerabilities

• A previously undocumented vulnerability was also 
found!



The vulnerability

• Our fuzzer detected a flaw in the MadWifi 
implementation

• A beacon frame with a specially crafted Extended 
Supported Rates information element crashes Linux 
when scanning for available networks

• Sadly (uh, is deepsec blackhat?), no remote code 
execution possible (but DoS)

• Recently published by SEC Consult & TU Vienna and 
fixed since 0.9.3.3
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Vulnerabilities in kernel space

• What types of kernel space vulnerabilities are there?

• How can they be exploited (remotely)?

• How generic are these exploits?
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Heap (slab) overflows

• The slab allocator can create so called lookaside caches for you: 
pools of memory objects (slabs) that all have the same size.

• kmalloc uses just a number of such pools!

• A slab overflow is, if we write beyond the boundary of a slab and 
into the adjacent slab.

• If we know the contents of the adjacent slab, we might be able to 
overwrite a pointer and thus create a pointer dereference exploit, 
or similar scenario.

slab slabslabbuffer
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Return to ring3!

targetattacker

r0 exploitr3 shellcode



Metasploit’s approach

• Migration (not implemented yet)

• Stager

• Recovery

• Stage (regular ring3 payloads)



Migration

• The goal of this step, is to transition to a state 
where the ring0 payload can be executed in a safe 
manner.

• On Windows it may be necessary to adjust the 
current IRQL. On Linux, it may be necessary to 
cleanly get out from an interrupt or softirq.

• May coincide with the stager component.



Stager

• Copy the ring0 or ring3 to a suitable location

• We may only be able to access currently loaded pages

• Space between kernel stack and thread_info

• Unused entries in the IDT

• Install hook that will execute the payload in the 
desired context

• Interrupt handlers

• System call handlers (how do we find the system call table?)



Recovery

• If the system crashes after the stager has finished, 
we haven’t accomplished anything

• We need to recover from the exploit and leave the 
system in a safe state

• Recovery depends on the situation:

• Restore registers (but we smashed the stack…)

• Enable interrupts or preemption

• Release spinlocks



Stage

• Ideally, the stage is simply a ring3 shellcode

• Depending on the migration / stager we may have 
a two-level stage

• Copy ring3 payload to user-space (in context of a user-mode process)

• Adjust process privileges ;-)

• Set process saved instruction pointer or some function pointer to payload

• We hooked the sys_execve system call and replaced the command to be 
executed
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Conclusion

• Fuzzing 802.11 live on the air is a cumbersome and 
time-consuming process due to the limitations and 
requirements of the wireless medium

• Moving the fuzzer and the target into an emulated 
environment dramatically speeds up and simplifies 
the process!

• Every kernel vulnerabilities is a story of its own, 
but some generalizations are still possible
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