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e 802.11 fundamentals

e 802.11 fuzzing

® Virtual 802.11| fuzzing & live demonstration

® Kernel-mode exploits primer
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introduction
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About us

® VWe are two students from the Technical University Vienna

® Right now we ought to be working on our master theses at the
Secure Systems Lab @ TU Vienna

® The work presented here is based on the results of a seminar
paper we wrote during a collaboration between the Secure

Systems Lab and SEC Consult

® SEC Consult also has a “Vulnerability Bonus Program” — for
details see http://www.sec-consult.com or mail to
vulnerabilities(@sec-consult.com
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The playground

® Wireless networks have become a widely used
means of communication. Compatible devices are

included in most portable computers, mobile
phones, etc.

® That means, there is an increasing number of
mobile targets out there...

® What's more, the device drivers typically operate
in supervisor-mode (i.e. in kernel-space), thus
rendering vulnerabilities extremely dangerous.
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802.11 primer
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The IEEE 802 Family

4 Y S
802.2
Logical link control (LLC)
802 802.1 Data Link
Overview Management | -~ Layer
and 802.3 : 802.11
architecture MAC Media access control (MAC)
802.3 Physical
PHY Layer
\ \ \_
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802.1 1 MAC frames

® Three types of frames: management, control and
data frames

® Management frames used to advertise and connect
to networks

[ ] [ Information Elements ] [ ]

header body FCS
(30 byte) (up to 2312 byte) (4 byte)
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802.1 | states

Authentication t DeAuthentication
Association

State 2
Classes 1,2
or

Reassociation
State 3
Classes 1,2,3
. J
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802.1 1 association
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802.1 1 association

i 'ﬂ i
: Beacons - .
! b !
i i
i i
access : : )
: ' ' station
point ! !
i i
i i
i i
i i
i i

EEEEEEEEEE
UNIVERSITAT

DEEPSEC 2007 [TUP

VIENNA UNIVERSITY OF

UUUUUUUUUU

-
s




802.1 1 association

<« - - Probe Request

aCCessS

: station
point
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802.1 1 association
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802.1 1 association
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802.1 1 association
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802.1 1 association
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802.1 1 association
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802.1 1 association
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802.1 1 association
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802.11 fuzzing
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802.11 fuzzing issues

Fuzzers must be aware of frequency channels,
BSSIDs, states, modes, and data link encryption
(filtering may take place at hardware level!)

® Response time and timing of replies is critical (e.g.,
because of reply windows or channel hopping)

® Overload, interference, packet corruption may
occur

® Attacker and target must be co-ordinated and
target must be continuously monitored
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What to fuzz!?

® Some Information Elements (IE) follow type-
length-value pattern

® Type and length fields have fixed size, the value
field’s size is variable (potential overflow)
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Example: a beacon frame

( )
Time-stamp Beacon Interval Capability Information
0x0 0x9 ‘MyNetwork’
(ID) (LEN) (SSID)
Ox| 0x8 11.0 (B) ...54.0 (B) Ox|
(ID) (LEN) (Supported Rates) (ID)
Ox| 0x9
(LEN) (Freq)
\. S
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virtual 802.11 fuzzing
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A novel approach

® Requirements

® Eliminate timing contraints
® Replace unstable wireless medium
® Allow guaranteed delivery

® Support advanced target monitoring

® Solution

® Move target into a virtual environment!
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Advantages

Virtual wireless device (software) replaces network
hardware

® High-level IPC instead of live frame-injection

® CPU of virtual machine can be interrupted and
stopped if necessary

® Guest OS monitoring at low-level (system restart,
console output, etc.)

® Drastically simplifies complexity of fuzzing process
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Our solution

Develop a fuzzing “framework” on the basis of
Fabrice Bellard’s QEMU (optional ethernet card can
be added via command-line option)

® Modular design

® packets read from outgoing queue are copied to shared memory
® connected modules are notified via semaphores

® packets are read from shared memory and copied to incoming
queue

— ] e y
DEEPSEC 2007 |TU/ or
VIENNA | Unier o A




System overview

-
p Dumper (RM): store outgoing packets
cPU )
.
[ MMU ) Listener (RM): display outgoing packets
([ n r “
( Ethernet ) Injector (IM): inject arbitrary packets
( ) ~ ”
802.11 Fuzzer ( ) i : )
Shared memory L Stateless fuzzer (IM): reply directly )
PCI ID: 168c0013 (rev0l) Reply (RM) Access point (RM & IM)
Atheros Communications, Inc.
’ Inject (IM)
AR5212 802.1 1abg NIC (rev 01) \( )) Stateful fuzzer (RM & IM): AP and fuzzer
. J
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Access Point module

Broadcasts beacon frames

® Responds to incoming probe requests

® Supports complete Open System Authentication
® Responds to incoming association requests

® Features minimum implementation of ICMP

® Full logging of 802.11 traffic

® But words can only say so much...
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Stateful fuzzer module

® |nitially, the fuzzer behaves like an access point
module, broadcasting valid beacons and responding
to probe requests

® Once authentication is complete, it is possible to
fuzz the target in state 2, e.g. transmit fuzzed
association response frames

® See it yourself...
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fuzzing results
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Results

We have developed a “framework” for 802.1 |
fuzzing using QEMU

® So far the framework supports fuzzing in all three
states of a target in managed mode

® A simple fuzzer using the framework and old
versions of the MadWVifi driver detected known
vulnerabilities

® A previously undocumented vulnerability was also
found!
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The vulnerability

Our fuzzer detected a flaw in the MadWifi
implementation

® A beacon frame with a specially crafted Extended
Supported Rates information element crashes Linux
when scanning for available networks

® Sadly (uh, is deepsec blackhat?), no remote code
execution possible (but DoS)

® Recently published by SEC Consult & TU Vienna and
fixed since 0.9.3.3
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kernel-mode exploits
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Vulnerabilities in kernel space
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Vulnerabilities in kernel space

® What types of kernel space vulnerabilities are there!?
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Vulnerabilities in kernel space

® What types of kernel space vulnerabilities are there!?

® How can they be exploited (remotely)?
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Vulnerabilities in kernel space

® What types of kernel space vulnerabilities are there!?
® How can they be exploited (remotely)?

® How generic are these exploits?
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NULL / user-space dereference

L
o

ring0
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NULL / user-space dereference

L

=.
3 .
0Q
w

ring0
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NULL / user-space dereference

foo = kmalloc(size, GFP_KERNEL);

/*¥ 1f kmalloc fails, foo will be NULL */

/*¥ later on... */

ring0

I’Il‘lg3 foo->data->value = some_value;

%
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NULL / user-space dereference

foo = kmalloc(size, GFP_KERNEL); *

/*¥ 1f kmalloc fails, foo will be NULL */

/*¥ later on... */

ring0

I’Il‘lg3 foo->data->value = some_value;

%
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NULL / user-space dereference

L

=.
3 .
0Q
w

ring0

DEEPSEC =0%

foo = kmalloc(size, GFP_KERNEL); *

/*¥ 1f kmalloc fails, foo will be NULL */

/*¥ later on... */

foo->data->value = some_value;

IR
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Heap (slab) overflows
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Heap (slab) overflows

® The slab allocator can create so called lookaside caches for you:
pools of memory objects (slabs) that all have the same size.
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Heap (slab) overflows

® The slab allocator can create so called lookaside caches for you:
pools of memory objects (slabs) that all have the same size.

® kmalloc uses just a number of such pools!
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Heap (slab) overflows

® The slab allocator can create so called lookaside caches for you:
pools of memory objects (slabs) that all have the same size.

® kmalloc uses just a number of such pools!

® A slab overflow is, if we write beyond the boundary of a slab and
into the adjacent slab.
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Heap (slab) overflows

® The slab allocator can create so called lookaside caches for you:
pools of memory objects (slabs) that all have the same size.

® kmalloc uses just a number of such pools!

® A slab overflow is, if we write beyond the boundary of a slab and
into the adjacent slab.

EEEEEEEEEE
UNIVERSITAT

DEEPSEC 2007 [TUP

VIENNA UNIVERSITY OF

UUUUUUUUUU

-
s




Heap (slab) overflows

® The slab allocator can create so called lookaside caches for you:
pools of memory objects (slabs) that all have the same size.

® kmalloc uses just a number of such pools!

® A slab overflow is, if we write beyond the boundary of a slab and
into the adjacent slab.

® |f we know the contents of the adjacent slab, we might be able to
overwrite a pointer and thus create a pointer dereference exploit,
or similar scenario.
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Stack overflows

® Typically, kernel stack is 4k or 8k.

® Otherwise similar to user stack exploits:
overwrite saved return address with
buffer address.

® How do we know where to jump to? And
how do we know the location of the
saved return address?

thread info
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Stack overflows

® Typically, kernel stack is 4k or 8k.

® Otherwise similar to user stack exploits:
overwrite saved return address with
buffer address.

shellcode

nop

® How do we know where to jump to? And nop
how do we know the location of the
saved return address?

thread info
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Stack overflows

<+— ret

® Typically, kernel stack is 4k or 8k.

® Otherwise similar to user stack exploits:
overwrite saved return address with
buffer address.

shellcode

nop

® How do we know where to jump to? And nop
how do we know the location of the
saved return address?

thread info
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Stack overflows

&(jmp *%esp) <+— ret

® Typically, kernel stack is 4k or 8k.

® Otherwise similar to user stack exploits:
overwrite saved return address with
buffer address.

shellcode

nop

® How do we know where to jump to? And nop
how do we know the location of the
saved return address?

thread info
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Stack overflows

<+— esp
<+— ret

&(jmp *%esp)

® Typically, kernel stack is 4k or 8k.

® Otherwise similar to user stack exploits:
overwrite saved return address with
buffer address.

shellcode

nop

® How do we know where to jump to? And nop
how do we know the location of the
saved return address?

thread info
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Stack overflows

jmp -N <+— €Sp

<+— ret

&(jmp *%esp)

® Typically, kernel stack is 4k or 8k.

® Otherwise similar to user stack exploits:
overwrite saved return address with
buffer address.

shellcode

nop

® How do we know where to jump to? And nop
how do we know the location of the
saved return address?

thread info
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Stack overflows

jmp -N

&(jmp *%esp)

® Typically, kernel stack is 4k or 8k.

<+— ret

® Otherwise similar to user stack exploits:
overwrite saved return address with
buffer address.

shellcode

nop

® How do we know where to jump to? And nop
how do we know the location of the
saved return address?

thread info
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Stack overflows

jmp -N
: . &(jmp *%esp)
® Typically, kernel stack is 4k or 8k. &(ret)
<+ ret
® Otherwise similar to user stack exploits: &(ret)
overwrite saved return address with
shellcode
buffer address.
nop
® How do we know where to jump to? And nop

how do we know the location of the
saved return address!?

thread info
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Stack overflows

jmp -N
: . &(jmp *%esp)
® Typically, kernel stack is 4k or 8k. &(ret) «— esp
<+ ret
® Otherwise similar to user stack exploits: &(ret)
overwrite saved return address with
shellcode
buffer address.
nop
® How do we know where to jump to? And nop

how do we know the location of the
saved return address!?

thread info
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Stack overflows

jmp -N
® Typically, kernel stack is 4k or 8k. &(’n;?rei)esp) P
<+ ret
® Otherwise similar to user stack exploits: &(ret)
overwrite saved return address with
shellcode
buffer address.
nop
® How do we know where to jump to? And nop

how do we know the location of the
saved return address!?

thread info
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Stack overflows

jmp -N <+— €Sp
: . &(jmp *%esp)
® Typically, kernel stack is 4k or 8k. &(ret)
<+ ret
® Otherwise similar to user stack exploits: &(ret)
overwrite saved return address with
shellcode
buffer address.
nop
® How do we know where to jump to? And nop
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saved return address!?

thread info

-
EC

DEEPSEC 2007 [TU]>"

VIENNA IIIIIIIIIII




Inside ring0, now what!
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Inside ring0, now what!
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Inside ring0, now what!
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Inside ring0, now what!
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Inside ring0, now what!
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Inside ring0, now what!
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Return to ring3!

»*

r3 shellcode r0 exploit

attacker target
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Metasploit’s approach

® Migration (not implemented yet)
® Stager
® Recovery

® Stage (regular ring3 payloads)
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Migration

® The goal of this step, is to transition to a state

where the ring0 payload can be executed in a safe
manner.

® OnWindows it may be necessary to adjust the
current IRQL. On Linux, it may be necessary to
cleanly get out from an interrupt or softirq.

® May coincide with the stager component.

———— e ]
DEEPSEC 2007 |TU\E or
VIENNA | Ypivenerr or .




® Copy the ring0 or ring3 to a suitable location

® We may only be able to access currently loaded pages

® Space between kernel stack and thread_info

® Unused entries in the IDT

® |nstall hook that will execute the payload in the

desired context

® |nterrupt handlers

® System call handlers (how do we find the system call table?)

DEEPSEC =0%

VIENNA




Recovery

® |f the system crashes after the stager has finished,
we haven’t accomplished anything

® We need to recover from the exploit and leave the
system in a safe state

® Recovery depends on the situation:

® Restore registers (but we smashed the stack...)
® Fnable interrupts or preemption

® Release spinlocks
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® |deally, the stage is simply a ring3 shellcode

® Depending on the migration / stager we may have

a two-level stage

® Copy ring3 payload to user-space (in context of a user-mode process)

® Adjust process privileges ;-)

® Set process saved instruction pointer or some function pointer to payload

® We hooked the sys execve system call and replaced the command to be

executed
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conclusion
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Conclusion

® Fuzzing 802.11 live on the air is a cumbersome and
time-consuming process due to the limitations and

requirements of the wireless medium

® Moving the fuzzer and the target into an emulated
environment dramatically speeds up and simplifies

the process!

® Every kernel vulnerabilities is a story of its own,
but some generalizations are still possible
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