
fuzzing & exploiting
wireless device drivers

Clemens Kolbitsch
ck (at) seclab (dot) tuwien (dot) ac (dot) at

Sylvester Keil
sk (at) seclab (dot) tuwien (dot) ac (dot) at

Vienna, 23 November 2007

Agenda

• 802.11 fundamentals

• 802.11 fuzzing

• Virtual 802.11 fuzzing & live demonstration

• Kernel-mode exploits primer

introduction

About us

• We are two students from the Technical University Vienna

• Right now we ought to be working on our master theses at the
Secure Systems Lab @ TU Vienna

• The work presented here is based on the results of a seminar
paper we wrote during a collaboration between the Secure
Systems Lab and SEC Consult

• SEC Consult also has a “Vulnerability Bonus Program” – for
details see http://www.sec-consult.com or mail to
vulnerabilities@sec-consult.com

http://www.sec-consult.com
http://www.sec-consult.com
mailto:vulnerabilities@sec-consult.com
mailto:vulnerabilities@sec-consult.com

The playground

• Wireless networks have become a widely used
means of communication. Compatible devices are
included in most portable computers, mobile
phones, etc.

• That means, there is an increasing number of
mobile targets out there…

• What’s more, the device drivers typically operate
in supervisor-mode (i.e. in kernel-space), thus
rendering vulnerabilities extremely dangerous.

802.11 primer

The IEEE 802 Family

802
Overview

and
architecture

802.1
Management

802.2
Logical link control (LLC)

802.3
MAC

802.3
PHY

802.11
Media access control (MAC)

802.11
PHY

802.11
PHY

802.11
PHY

Data Link
Layer

Physical
Layer

802.11 MAC frames

header
(30 byte)

body
(up to 2312 byte)

FCS
(4 byte)

Information ElementInformation Elements …FC …AddressesAddresses

• Three types of frames: management, control and
data frames

• Management frames used to advertise and connect
to networks

802.11 states

DeAuthentication

State I
Class 1

State 2
Classes 1, 2

State 3
Classes 1, 2, 3

Authentication

Association
or

Reassociation
Disassociation

802.11 association

stationaccess
point

802.11 association

stationaccess
point

Beacons1

802.11 association

stationaccess
point

Beacons1

2Probe Request

802.11 association

stationaccess
point

Beacons1

2Probe Request
3 Probe Response

802.11 association

stationaccess
point

Beacons1

2Probe Request
3 Probe Response

4Authentication

802.11 association

stationaccess
point

Beacons1

Authentication5

2Probe Request
3 Probe Response

4Authentication

802.11 association

stationaccess
point

Beacons1

Authentication5

2Probe Request
3 Probe Response

4Authentication

State 2

802.11 association

stationaccess
point

Beacons1

Authentication5

2Probe Request
3 Probe Response

4Authentication

6Association Request

802.11 association

stationaccess
point

Beacons1

Association Response7

Authentication5

2Probe Request
3 Probe Response

4Authentication

6Association Request

802.11 association

stationaccess
point

Beacons1

Association Response7

Authentication5

2Probe Request
3 Probe Response

4Authentication

6Association Request

State 3

802.11 fuzzing

802.11 fuzzing issues

• Fuzzers must be aware of frequency channels,
BSSIDs, states, modes, and data link encryption
(filtering may take place at hardware level!)

• Response time and timing of replies is critical (e.g.,
because of reply windows or channel hopping)

• Overload, interference, packet corruption may
occur

• Attacker and target must be co-ordinated and
target must be continuously monitored

What to fuzz?

• Some Information Elements (IE) follow type-
length-value pattern

• Type and length fields have fixed size, the value
field’s size is variable (potential overflow)

type valuelength

Example: a beacon frame

FCS

Time-stamp

FC Source Destination BSSIDID 0x00

Beacon Interval Capability Information

0x0
(ID)

0x9
(LEN)

‘MyNetwork’
(SSID)

0x1
(ID)

0x8
(LEN)

11.0 (B) . . . 54.0 (B)
(Supported Rates)

0x1
(ID)

0x1
(LEN)

0x9
(Freq)

virtual 802.11 fuzzing

A novel approach

• Requirements

• Eliminate timing contraints

• Replace unstable wireless medium

• Allow guaranteed delivery

• Support advanced target monitoring

• Solution

• Move target into a virtual environment!

Advantages

• Virtual wireless device (software) replaces network
hardware

• High-level IPC instead of live frame-injection

• CPU of virtual machine can be interrupted and
stopped if necessary

• Guest OS monitoring at low-level (system restart,
console output, etc.)

• Drastically simplifies complexity of fuzzing process

Our solution

• Develop a fuzzing “framework” on the basis of
Fabrice Bellard’s QEMU (optional ethernet card can
be added via command-line option)

• Modular design

• packets read from outgoing queue are copied to shared memory

• connected modules are notified via semaphores

• packets are read from shared memory and copied to incoming
queue

…

System overview

Dumper (RM): store outgoing packets

Listener (RM): display outgoing packets

Injector (IM): inject arbitrary packets

Stateless fuzzer (IM): reply directly

Access point (RM & IM)

Stateful fuzzer (RM & IM): AP and fuzzer

CPU

MMU

Ethernet

QEMU

Reply (RM)

Inject (IM)

Shared memory
802.11 Fuzzer

PCI ID: 168c0013 (rev01)
Atheros Communications, Inc.
AR5212 802.11abg NIC (rev 01)

Access Point module

• Broadcasts beacon frames

• Responds to incoming probe requests

• Supports complete Open System Authentication

• Responds to incoming association requests

• Features minimum implementation of ICMP

• Full logging of 802.11 traffic

• But words can only say so much…

Stateful fuzzer module

• Initially, the fuzzer behaves like an access point
module, broadcasting valid beacons and responding
to probe requests

• Once authentication is complete, it is possible to
fuzz the target in state 2, e.g. transmit fuzzed
association response frames

• See it yourself…

fuzzing results

Results

• We have developed a “framework” for 802.11
fuzzing using QEMU

• So far the framework supports fuzzing in all three
states of a target in managed mode

• A simple fuzzer using the framework and old
versions of the MadWifi driver detected known
vulnerabilities

• A previously undocumented vulnerability was also
found!

The vulnerability

• Our fuzzer detected a flaw in the MadWifi
implementation

• A beacon frame with a specially crafted Extended
Supported Rates information element crashes Linux
when scanning for available networks

• Sadly (uh, is deepsec blackhat?), no remote code
execution possible (but DoS)

• Recently published by SEC Consult & TU Vienna and
fixed since 0.9.3.3

kernel-mode exploits

Vulnerabilities in kernel space

Vulnerabilities in kernel space

• What types of kernel space vulnerabilities are there?

Vulnerabilities in kernel space

• What types of kernel space vulnerabilities are there?

• How can they be exploited (remotely)?

Vulnerabilities in kernel space

• What types of kernel space vulnerabilities are there?

• How can they be exploited (remotely)?

• How generic are these exploits?

NULL / user-space dereference

ring0 ring3

NULL / user-space dereference

ring0 ring3

NULL / user-space dereference

ring0 ring3

…

foo = kmalloc(size, GFP_KERNEL);

/* if kmalloc fails, foo will be NULL */

…

/* later on... */

foo->data->value = some_value;

NULL / user-space dereference

ring0 ring3

…

foo = kmalloc(size, GFP_KERNEL);

/* if kmalloc fails, foo will be NULL */

…

/* later on... */

foo->data->value = some_value;

NULL / user-space dereference

ring0 ring3

…

foo = kmalloc(size, GFP_KERNEL);

/* if kmalloc fails, foo will be NULL */

…

/* later on... */

foo->data->value = some_value;

Heap (slab) overflows

Heap (slab) overflows

• The slab allocator can create so called lookaside caches for you:
pools of memory objects (slabs) that all have the same size.

Heap (slab) overflows

• The slab allocator can create so called lookaside caches for you:
pools of memory objects (slabs) that all have the same size.

• kmalloc uses just a number of such pools!

Heap (slab) overflows

• The slab allocator can create so called lookaside caches for you:
pools of memory objects (slabs) that all have the same size.

• kmalloc uses just a number of such pools!

• A slab overflow is, if we write beyond the boundary of a slab and
into the adjacent slab.

Heap (slab) overflows

• The slab allocator can create so called lookaside caches for you:
pools of memory objects (slabs) that all have the same size.

• kmalloc uses just a number of such pools!

• A slab overflow is, if we write beyond the boundary of a slab and
into the adjacent slab.

slab slabslabbuffer

Heap (slab) overflows

• The slab allocator can create so called lookaside caches for you:
pools of memory objects (slabs) that all have the same size.

• kmalloc uses just a number of such pools!

• A slab overflow is, if we write beyond the boundary of a slab and
into the adjacent slab.

• If we know the contents of the adjacent slab, we might be able to
overwrite a pointer and thus create a pointer dereference exploit,
or similar scenario.

slab slabslabbuffer

Stack overflows

• Typically, kernel stack is 4k or 8k.

• Otherwise similar to user stack exploits:
overwrite saved return address with
buffer address.

• How do we know where to jump to? And
how do we know the location of the
saved return address?

thread_info

...

Stack overflows

• Typically, kernel stack is 4k or 8k.

• Otherwise similar to user stack exploits:
overwrite saved return address with
buffer address.

• How do we know where to jump to? And
how do we know the location of the
saved return address?

thread_info

...

nop

nop

...

...

shellcode

Stack overflows

• Typically, kernel stack is 4k or 8k.

• Otherwise similar to user stack exploits:
overwrite saved return address with
buffer address.

• How do we know where to jump to? And
how do we know the location of the
saved return address?

thread_info

...

nop

nop

...

...

shellcode

ret

Stack overflows

• Typically, kernel stack is 4k or 8k.

• Otherwise similar to user stack exploits:
overwrite saved return address with
buffer address.

• How do we know where to jump to? And
how do we know the location of the
saved return address?

thread_info

...

&(jmp *%esp)

nop

nop

...

...

shellcode

ret

Stack overflows

• Typically, kernel stack is 4k or 8k.

• Otherwise similar to user stack exploits:
overwrite saved return address with
buffer address.

• How do we know where to jump to? And
how do we know the location of the
saved return address?

thread_info

esp

...

&(jmp *%esp)

nop

nop

...

...

shellcode

ret

Stack overflows

• Typically, kernel stack is 4k or 8k.

• Otherwise similar to user stack exploits:
overwrite saved return address with
buffer address.

• How do we know where to jump to? And
how do we know the location of the
saved return address?

thread_info

esp

...

jmp -N

&(jmp *%esp)

nop

nop

...

...

shellcode

ret

Stack overflows

• Typically, kernel stack is 4k or 8k.

• Otherwise similar to user stack exploits:
overwrite saved return address with
buffer address.

• How do we know where to jump to? And
how do we know the location of the
saved return address?

thread_info

ret

...

jmp -N

&(jmp *%esp)

nop

nop

...

...

shellcode

Stack overflows

• Typically, kernel stack is 4k or 8k.

• Otherwise similar to user stack exploits:
overwrite saved return address with
buffer address.

• How do we know where to jump to? And
how do we know the location of the
saved return address?

thread_info

ret

...

jmp -N

&(jmp *%esp)

...

&(ret)

&(ret)

nop

nop

...

...

shellcode

Stack overflows

• Typically, kernel stack is 4k or 8k.

• Otherwise similar to user stack exploits:
overwrite saved return address with
buffer address.

• How do we know where to jump to? And
how do we know the location of the
saved return address?

thread_info

ret
esp

...

jmp -N

&(jmp *%esp)

...

&(ret)

&(ret)

nop

nop

...

...

shellcode

Stack overflows

• Typically, kernel stack is 4k or 8k.

• Otherwise similar to user stack exploits:
overwrite saved return address with
buffer address.

• How do we know where to jump to? And
how do we know the location of the
saved return address?

thread_info

ret

esp

...

jmp -N

&(jmp *%esp)

...

&(ret)

&(ret)

nop

nop

...

...

shellcode

Stack overflows

• Typically, kernel stack is 4k or 8k.

• Otherwise similar to user stack exploits:
overwrite saved return address with
buffer address.

• How do we know where to jump to? And
how do we know the location of the
saved return address?

thread_info

ret

...

jmp -N

&(jmp *%esp)

...

&(ret)

&(ret)

nop

nop

...

...

shellcode

esp

Inside ring0, now what?

ring0

ring3

Inside ring0, now what?

ring0

ring3

Inside ring0, now what?

ring0

ring3

Inside ring0, now what?

ring0

ring3

Inside ring0, now what?

ring0

ring3

Inside ring0, now what?

ring0

ring3

Inside ring0, now what?

ring0

ring3

Inside ring0, now what?

ring0

ring3

Return to ring3!

targetattacker

r0 exploitr3 shellcode

Metasploit’s approach

• Migration (not implemented yet)

• Stager

• Recovery

• Stage (regular ring3 payloads)

Migration

• The goal of this step, is to transition to a state
where the ring0 payload can be executed in a safe
manner.

• On Windows it may be necessary to adjust the
current IRQL. On Linux, it may be necessary to
cleanly get out from an interrupt or softirq.

• May coincide with the stager component.

Stager

• Copy the ring0 or ring3 to a suitable location

• We may only be able to access currently loaded pages

• Space between kernel stack and thread_info

• Unused entries in the IDT

• Install hook that will execute the payload in the
desired context

• Interrupt handlers

• System call handlers (how do we find the system call table?)

Recovery

• If the system crashes after the stager has finished,
we haven’t accomplished anything

• We need to recover from the exploit and leave the
system in a safe state

• Recovery depends on the situation:

• Restore registers (but we smashed the stack…)

• Enable interrupts or preemption

• Release spinlocks

Stage

• Ideally, the stage is simply a ring3 shellcode

• Depending on the migration / stager we may have
a two-level stage

• Copy ring3 payload to user-space (in context of a user-mode process)

• Adjust process privileges ;-)

• Set process saved instruction pointer or some function pointer to payload

• We hooked the sys_execve system call and replaced the command to be
executed

conclusion

Conclusion

• Fuzzing 802.11 live on the air is a cumbersome and
time-consuming process due to the limitations and
requirements of the wireless medium

• Moving the fuzzer and the target into an emulated
environment dramatically speeds up and simplifies
the process!

• Every kernel vulnerabilities is a story of its own,
but some generalizations are still possible

references & tools

Fabrice Bellard. “QEMU, a Fast and
Portable Dynamic Translator”

USENIX 2005 Annual Technical Conference
QEMU
http://www.qemu.org

sgrakkyu & twiz. “Attacking the Core:
Kernel Attacking Notes”

Phrack 0x0c, 0x40, #0x06

http://www.seclab.tuwien.ac.at
http://www.seclab.tuwien.ac.at

kudos & respect

Christopher Kruegel
Engin Kirda

http://www.seclab.tuwien.ac.at
Bernhard Müller

http://www.sec-consult.com

http://www.seclab.tuwien.ac.at
http://www.seclab.tuwien.ac.at
http://www.seclab.tuwien.ac.at
http://www.seclab.tuwien.ac.at

vielen dank

