
Babysitting an Army of Babysitting an Army of
MonkeysMonkeys
An analysis of fuzzing 4 products with 5 lines of An analysis of fuzzing 4 products with 5 lines of
PythonPython
An analysis of fuzzing 4 products with 5 lines of An analysis of fuzzing 4 products with 5 lines of
PythonPython

 Charlie MillerCharlie Miller
Independent Security EvaluatorsIndependent Security Evaluators

cmiller@securityevaluators.comcmiller@securityevaluators.com

mailto:cmiller@securityevaluators.com

I talk about how to find I talk about how to find
bugs in this talkbugs in this talk

I don’t talk about the I don’t talk about the
details of the bugs I details of the bugs I

foundfound
If you want 0-days, run If you want 0-days, run
my 5 lines of Python my 5 lines of Python

You’ll find some...You’ll find some...
I guarantee it!I guarantee it!

and you’ll feel all warm and you’ll feel all warm
and fuzzy insideand fuzzy inside

Who I amWho I am

First to hack the iPhone, G1 PhoneFirst to hack the iPhone, G1 Phone

Pwn2Own winner, 2008, 2009Pwn2Own winner, 2008, 2009

AuthorAuthor

Mac Hackers HandbookMac Hackers Handbook

Fuzzing for Software Security Testing and Quality Fuzzing for Software Security Testing and Quality
AssuranceAssurance

Media whoreMedia whore

OverviewOverview

The fuzzing setupThe fuzzing setup

Fuzzing PDF’s, Preview and Adobe Acrobat ReaderFuzzing PDF’s, Preview and Adobe Acrobat Reader

Fuzzing PPT’s, OpenOffice and MS PowerPointFuzzing PPT’s, OpenOffice and MS PowerPoint

Fuzzing “truths” revealedFuzzing “truths” revealed

About this talkAbout this talk

Most fuzzing talks take one of two formsMost fuzzing talks take one of two forms

I fuzzed and found this/these bugsI fuzzed and found this/these bugs

Here is a new, smarter way to fuzzHere is a new, smarter way to fuzz

These talks are about success, but real fuzzing is about failure, These talks are about success, but real fuzzing is about failure,
i.e.i.e. most test cases most test cases don’tdon’t crash the target crash the target

Very few talks that give realistic pictures of actual fuzzingVery few talks that give realistic pictures of actual fuzzing

By sharing results, both positive and negative, we can learn By sharing results, both positive and negative, we can learn
about fuzzing and improve our techniquesabout fuzzing and improve our techniques

Other talks to check outOther talks to check out

Fuzz by NumberFuzz by Number, Charlie Miller, 2008, , Charlie Miller, 2008,
http://cansecwest.com/csw08/csw08-miller.pdfhttp://cansecwest.com/csw08/csw08-miller.pdf

!exploitable and Effective Fuzzing Strategies !exploitable and Effective Fuzzing Strategies
as a Regular Part of Testingas a Regular Part of Testing, Jason Shirk, 2009, , Jason Shirk, 2009,
http://dragos.com/psj09/exploitable%20and%20Effective%20Fuzzing%20Strategies.pptxhttp://dragos.com/psj09/exploitable%20and%20Effective%20Fuzzing%20Strategies.pptx

Effective Fuzzing StrategiesEffective Fuzzing Strategies, David Molnar and , David Molnar and
Lars Opstad, 2010, Lars Opstad, 2010,
http://www.cert.org/vuls/discovery/downloads/CERT-presentation-dmolnar-larsop.pdfhttp://www.cert.org/vuls/discovery/downloads/CERT-presentation-dmolnar-larsop.pdf

http://cansecwest.com/csw08/csw08-miller.pdf
http://dragos.com/psj09/exploitable%20and%20Effective%20Fuzzing%20Strategies.pptx
http://www.cert.org/vuls/discovery/downloads/CERT-presentation-dmolnar-larsop.pdf

Questions to ponderQuestions to ponder

How many crashes can you expect?How many crashes can you expect?

How many of these are unique?How many of these are unique?

How many are “exploitable”?How many are “exploitable”?

How important is the initial file when fuzzing?How important is the initial file when fuzzing?

Are some bugs harder to find than others?Are some bugs harder to find than others?

How do post analysis tools compare?How do post analysis tools compare?

When have you fuzzed enough?When have you fuzzed enough?

How hard do various vendors fuzz and how many bugs do How hard do various vendors fuzz and how many bugs do
they find?they find?

A Historical PerspectiveA Historical Perspective
Microsoft Windows Vista File Fuzzing effortMicrosoft Windows Vista File Fuzzing effort

15 months, 350mil iterations, 250+ file parsers15 months, 350mil iterations, 250+ file parsers

~1.4mil iterations per parser (on average)~1.4mil iterations per parser (on average)

300+ issues fixed300+ issues fixed

This talkThis talk

3 months, 7mil iterations, ~4 parsers3 months, 7mil iterations, ~4 parsers

~1.8m iterations per parser (on average)~1.8m iterations per parser (on average)

However, quality is more important than quantityHowever, quality is more important than quantity

My quality is purposefully very poor, should find much less than My quality is purposefully very poor, should find much less than
MS!MS!

The Fuzzing SetupThe Fuzzing Setup

Fuzzing typesFuzzing types

Dumb fuzzing (mutational)Dumb fuzzing (mutational)

Take a good input (file/packet/command line/etc) and Take a good input (file/packet/command line/etc) and
add anomalies to itadd anomalies to it

Very easy to conductVery easy to conduct

Smart fuzzing (generation based)Smart fuzzing (generation based)

Create invalid inputs from “scratch”, Create invalid inputs from “scratch”, i.e.i.e. RFC, RE RFC, RE

Very hard, but explores every detail of protocolVery hard, but explores every detail of protocol

Compromise for the lazyCompromise for the lazy

Dumb fuzzing with lots of different initial filesDumb fuzzing with lots of different initial files

Single dumb fuzzing session will only fuzz the Single dumb fuzzing session will only fuzz the
protocol ‘features’ present in the initial fileprotocol ‘features’ present in the initial file

With enough initial files, hopefully you can With enough initial files, hopefully you can
fuzz all the ‘features’fuzz all the ‘features’

Still are screwed by things like CRC, Still are screwed by things like CRC,
compression, compression, etc.etc.

Selection of initial filesSelection of initial files

Download every file you can find on the InternetDownload every file you can find on the Internet

Find the minimal subset that has the same code coverage Find the minimal subset that has the same code coverage
as the large setas the large set

Example: PDFExample: PDF

Found 80,000 PDF’s on InternetFound 80,000 PDF’s on Internet

Used Adobe Reader + Valgrind in Linux to measure Used Adobe Reader + Valgrind in Linux to measure
code coveragecode coverage

Reduced to 1,515 files of ‘equivalent’ code coverageReduced to 1,515 files of ‘equivalent’ code coverage

Same bang as fuzzing all 80k in 2% of the timeSame bang as fuzzing all 80k in 2% of the time

The 5 lines of PythonThe 5 lines of Python

Just change random bytes to random valuesJust change random bytes to random values

Don’t insert bytes, remove bytesDon’t insert bytes, remove bytes

Easiest (dumbest) conceivable way to fuzzEasiest (dumbest) conceivable way to fuzz

Shouldn’t find any bugs...Shouldn’t find any bugs...

numwrites=random.randrange(math.ceil((float(len(buf)) / FuzzFactor)))+1for j in numwrites=random.randrange(math.ceil((float(len(buf)) / FuzzFactor)))+1for j in
range(numwrites):rbyte = random.randrange(256)rn = range(numwrites):rbyte = random.randrange(256)rn =
random.randrange(len(buf))buf[rn] = "%c"%(rbyte);random.randrange(len(buf))buf[rn] = "%c"%(rbyte);
numwrites=random.randrange(math.ceil((float(len(buf)) / FuzzFactor)))+1for j in numwrites=random.randrange(math.ceil((float(len(buf)) / FuzzFactor)))+1for j in
range(numwrites):rbyte = random.randrange(256)rn = range(numwrites):rbyte = random.randrange(256)rn =
random.randrange(len(buf))buf[rn] = "%c"%(rbyte);random.randrange(len(buf))buf[rn] = "%c"%(rbyte);

Other detailsOther details

Ran it in a parallelized way using my fuzzing framework, TiamatRan it in a parallelized way using my fuzzing framework, Tiamat

Used 1-5 Mac OS X computers, some of them virtualUsed 1-5 Mac OS X computers, some of them virtual

Including 2 Pwn2Own prizes!Including 2 Pwn2Own prizes!

Open/Closed files using AppleScriptOpen/Closed files using AppleScript

Monitored CPU activity to know when to launch next fileMonitored CPU activity to know when to launch next file

Ran fixed number of iterations of each file (2000 or 1200)Ran fixed number of iterations of each file (2000 or 1200)

Estimated for 3 week runsEstimated for 3 week runs

Recorded repeatable crashes (either native or with glibmalloc)Recorded repeatable crashes (either native or with glibmalloc)

Originally, this slide was my whole talk...Originally, this slide was my whole talk...

The part about The part about
babysittingbabysitting

Things didn’t always go smoothlyThings didn’t always go smoothly

At least my kids learned how to not At least my kids learned how to not
report bugsreport bugs

Click Click
“Ignore”“Ignore”

The vendors could at least The vendors could at least
pay my power bill!pay my power bill!

Power Power
goes goes

way up!way up!

Tools usedTools used

libgmalloc: uses guard pages to find when heap libgmalloc: uses guard pages to find when heap
overflows first occur (like libefence), OS Xoverflows first occur (like libefence), OS X

CrashWrangler: Apple tool to bin crashes and CrashWrangler: Apple tool to bin crashes and
determine exploitability, OS Xdetermine exploitability, OS X

memcheck: Valgrind tool which simulates memcheck: Valgrind tool which simulates
program execution and records invalid memory program execution and records invalid memory
operations, Linux and OS Xoperations, Linux and OS X

!exploitable: MS tool used to bin crashes and !exploitable: MS tool used to bin crashes and
determine exploitability, Windowsdetermine exploitability, Windows

Final thoughts: Fuzzing as Final thoughts: Fuzzing as
FilteringFiltering

Fuzzing isn’t about creating and running test Fuzzing isn’t about creating and running test
case, it’s about filteringcase, it’s about filtering

Start with a ton of test casesStart with a ton of test cases

Filter those to the ones that cause a crashFilter those to the ones that cause a crash

Filter those to the ones that represent unique Filter those to the ones that represent unique
crashescrashes

Filter those to the ones that are exploitableFilter those to the ones that are exploitable

Adobe Adobe
Acrobat Acrobat
ReaderReader
(PDF)(PDF)
(PDF)(PDF)

Reader statsReader stats

Reader 9.2.0Reader 9.2.0

3,036,000 test cases tested3,036,000 test cases tested

Maximum test cases/min 132Maximum test cases/min 132

Minimum test cases/min 7Minimum test cases/min 7

34 unique34 unique

3 exploitable3 exploitable

11 Invalid reads11 Invalid reads2 Invalid writes2 Invalid writes
5 Use of 5 Use of

uninitialized variablesuninitialized variables100 unique EIPs100 unique EIPs2582 crashes (.09%)2582 crashes (.09%)
40 40

crascras
heshes

3333
uniquuniqu

ee

44
Probably notProbably not
exploitableexploitable

1717
UnknownUnknown

88
ProbablyProbably

exploitableexploitable

44
explexpl
oitaoita
bleble

20 unique*20 unique*

*valgrind failed frequently*valgrind failed frequently
cause acrobat has problems even with clean filescause acrobat has problems even with clean files

2 Process 2 Process
terminatedterminated

3,036,000 fuzzed files3,036,000 fuzzed files1515 files1515 files

Points of interestPoints of interest

Acrobat Reader, under valgrind, has lots of errorsAcrobat Reader, under valgrind, has lots of errors

Examples: mismatched malloc/freeExamples: mismatched malloc/free

Don’t know how it runs normally....Don’t know how it runs normally....

Ignoring these errors makes you miss lots of crashesIgnoring these errors makes you miss lots of crashes

100 unique EIPs, around 20-40 repro’d with binning tools100 unique EIPs, around 20-40 repro’d with binning tools

3-4 exploitables, according to tools3-4 exploitables, according to tools

Disagreement about what files cause what crashes and which Disagreement about what files cause what crashes and which
are exploitableare exploitable

Crash !exploitable Crashwrangler Valgrind

Crash 1 Exploitable is_exploitable=yes Process terminated

Crash 2 Exploitable is_exploitable= no Valgrind failed

Crash 3 Exploitable is_exploitable= no Uninitialized variable

Crash 4 Exploitable is_exploitable= no Process terminated

Crash 5 Probably Exploitable is_exploitable= no Valgrind failed

Crash 6 Probably Exploitable is_exploitable= no Valgrind failed

Crash 7 Probably Exploitable is_exploitable= no Valgrind failed

Crash 8 Probably Exploitable is_exploitable= no Valgrind failed

Crash 9 Probably Exploitable is_exploitable= no Invalid write

Crash 10 Probably Exploitable is_exploitable= no Uninitialized variable

Crash 11 Probably Exploitable is_exploitable= no Invalid write

Crash 12 Probably Exploitable is_exploitable= no Invalid write

Crash 13 Probably Exploitable is_exploitable= no Invalid write

Crash 14 Probably Exploitable is_exploitable= no Valgrind failed

Crash 15 not on win is_exploitable=yes Uninitialized variable

Crash 16 not on win is_exploitable=yes Uninitialized variable

Comparisons of Comparisons of
exploitablesexploitables

Number of times each crash Number of times each crash
occurredoccurred

Reader crash rarity infoReader crash rarity info

100 different crashes100 different crashes

57 were found exactly once57 were found exactly once

Either rare or lots of manifestations of one bugEither rare or lots of manifestations of one bug

81 were found less than 10 times81 were found less than 10 times

Rare?Rare?

7 were found more than 60 times7 were found more than 60 times

Common bugsCommon bugs

4 were found more than 100 times4 were found more than 100 times

Very common bugsVery common bugs

One crash found 1452 timesOne crash found 1452 times

This one crash is responsible for 56% of crashes in the testingThis one crash is responsible for 56% of crashes in the testing

Choice of initial fileChoice of initial file

1515 different files1515 different files

Crashes at 100 different EIP’sCrashes at 100 different EIP’s

All crashes occurred when fuzzing only 192 filesAll crashes occurred when fuzzing only 192 files

No crashes from 87% of initial files!!!No crashes from 87% of initial files!!!

All files but one found between 1-3 crashesAll files but one found between 1-3 crashes

1 file found 32 crashes (all but one with invalid EIP)1 file found 32 crashes (all but one with invalid EIP)

Probably one (really nasty) bugProbably one (really nasty) bug

These bugs all coalesced when used libgmallocThese bugs all coalesced when used libgmalloc

Crashes found per file# Crashes found per file

To find an exploitableTo find an exploitable

For the 4 !exploitables, lets see info about other crashes For the 4 !exploitables, lets see info about other crashes
that crashed at the same EIPthat crashed at the same EIP

Crash 1: 2 files, each crashed once or twice Crash 1: 2 files, each crashed once or twice

Crash 2: 2 files, each crashed there onceCrash 2: 2 files, each crashed there once

Crash 3: 2 files, each crashed there twiceCrash 3: 2 files, each crashed there twice

Crash 4: 42 files crashed there from 1 to 63 timesCrash 4: 42 files crashed there from 1 to 63 times

Earliest test case to find one of these was the 486th Earliest test case to find one of these was the 486th
iterationiteration

Last was the 1923rd iteration (of 2000)Last was the 1923rd iteration (of 2000)

More on finding More on finding
exploitablesexploitables

Find the first 3 exploitables in 9 test cases out of 3 millionFind the first 3 exploitables in 9 test cases out of 3 million

Only 6 of 1515 files generate the first 3 Only 6 of 1515 files generate the first 3

If you fuzz each file 500 times, you find 1 exploitableIf you fuzz each file 500 times, you find 1 exploitable

1000 times, you find 21000 times, you find 2

1500 times, you find 31500 times, you find 3

2000 times, you find 42000 times, you find 4

What happens if you iterate 3000, 100000, 100000000?What happens if you iterate 3000, 100000, 100000000?

How many iterations How many iterations
(theoretical)(theoretical)

Run long enough, your fuzzer will find every bug (it is Run long enough, your fuzzer will find every bug (it is
capable of finding)capable of finding)

Presumably, this gets harder and harderPresumably, this gets harder and harder

End up with some idealized graph of iterations vs bugs End up with some idealized graph of iterations vs bugs
foundfound

When this curve becomes sufficiently flat, stop fuzzingWhen this curve becomes sufficiently flat, stop fuzzing Stop Stop
fuzzingfuzzing

iterations# iterations

#
 b

u
g

s
fo

u
n
d

#
 b

u
g

s
fo

u
n
d

iterations to find crashes# iterations to find crashes

More iterations would have probably found more bugsMore iterations would have probably found more bugs
(Curve isn’t flat yet)(Curve isn’t flat yet)

Progress?Progress?

Oct 13, 2009Oct 13, 2009
9.29.2

Probably not exploitable 4

Unknown 17

Probably exploitable 8

Exploitable 4

Dec 1, 2009Dec 1, 2009
““FuzzFuzz
ing ing

ReadRead
er - er -

LessoLesso
ns ns

LearnLearn
ed”ed”

Progress?Progress?

Oct 13, 2009Oct 13, 2009
9.29.2

Probably not exploitable 4

Unknown 17

Probably exploitable 8

Exploitable 4

Dec 1, Dec 1,
20092009

““FuzzFuzz
ing ing

ReadRead
er - er -

LessoLesso
ns ns

LearnLearn
ed”ed”

Jan 13, 2010Jan 13, 2010
9.39.3

Probably not exploitable 4

Unknown 16

Probably exploitable 8

Exploitable 4

Feb 16, Feb 16,
20102010
9.3.19.3.1

Probably not exploitable 4

Unknown 14

Probably exploitable 9

Exploitable 4

PreviewPreview
(PDF)(PDF)
(PDF)(PDF)

Preview General InfoPreview General Info

Default Mac OS X PDF viewerDefault Mac OS X PDF viewer

Tested: Mac OS X 10.6.1Tested: Mac OS X 10.6.1

These bugs show up in Safari tooThese bugs show up in Safari too

2,790,000 test cases tested2,790,000 test cases tested

Maximum testcases/min: 160Maximum testcases/min: 160

Minimum testcases/min: 4Minimum testcases/min: 4

Total run time: Approximately 3 weeksTotal run time: Approximately 3 weeks

157,337 crashes 157,337 crashes
(5.6%)(5.6%)

1373 unique 1373 unique
EIPsEIPs

1395 PDFs (incomplete data)1395 PDFs (incomplete data)

61 “exploitable”61 “exploitable”

2,790,000 fuzzed files2,790,000 fuzzed files1056 repro’d1056 repro’d
281 unique281 unique

228 unique228 unique

129 Invalid reads129 Invalid reads17 Invalid writes17 Invalid writes
46 Use of 46 Use of

uninitialized variablesuninitialized variables

36 Process 36 Process
terminatedterminated

Talking pointsTalking points

Umm...they haven’t fuzzed thisUmm...they haven’t fuzzed this

no !exploitable since Preview OS X onlyno !exploitable since Preview OS X only

Around 250 unique crashesAround 250 unique crashes

Around 60 exploitableAround 60 exploitable

This is an overestimate, at least one bug This is an overestimate, at least one bug
manifests itself in lots of crashes and manifests itself in lots of crashes and
libgmalloc fails to bin it properlylibgmalloc fails to bin it properly

Number of times each crash Number of times each crash
occurredoccurred
(by EIP)(by EIP)
(by EIP)(by EIP)

More crash rarity infoMore crash rarity info

Crashes at 1373 unique EIP’sCrashes at 1373 unique EIP’s

791 EIP’s were found exactly one time (57.6%)791 EIP’s were found exactly one time (57.6%)

Either rare or lots of manifestations of one bugEither rare or lots of manifestations of one bug

341 were found between 1 and 10 times341 were found between 1 and 10 times

rare?rare?

82 were found more than 100 times82 were found more than 100 times

Common bugsCommon bugs

26 were found more than 1000 times26 were found more than 1000 times

Very common bugsVery common bugs

One EIP found in crashes 15,368 timesOne EIP found in crashes 15,368 times

times exploitable crash # times exploitable crash
occurredoccurred

““Exploitables”Exploitables”

““exploitable” crashes at 61 EIP’s according to exploitable” crashes at 61 EIP’s according to
libgmalloc+crashwrangerlibgmalloc+crashwranger

1 EIP was found 155 times1 EIP was found 155 times

42 were found only once42 were found only once

lots of rare ones or a few nasty oneslots of rare ones or a few nasty ones

56 were found less than 10 times56 were found less than 10 times

of crashes at EIP by # of crashes at EIP by
initial fileinitial file

File choicesFile choices

1395 files1395 files

1 file found 58 “unique” crashes, by EIP1 file found 58 “unique” crashes, by EIP

68 files (5%) found 20 or more different 68 files (5%) found 20 or more different
crashescrashes

162 files (12%) found 162 files (12%) found nono crashes crashes

440 files (31%) found 2 or fewer crashes440 files (31%) found 2 or fewer crashes

Number of files which find each Number of files which find each
exploitableexploitable

Files and exploitablesFiles and exploitables

61 crashes exploitable (by EIP)61 crashes exploitable (by EIP)

49 files found the most common exploitable crash49 files found the most common exploitable crash

Only 2 crashes were found by more than 10 starting Only 2 crashes were found by more than 10 starting
filesfiles

42 (69%) crashes were found by exactly one 42 (69%) crashes were found by exactly one
starting filestarting file

50 (82%) crashes were found by at most two 50 (82%) crashes were found by at most two
starting filesstarting files

More on file choicesMore on file choices

These 1399 files were not randomly chosen, These 1399 files were not randomly chosen,
they are very special!they are very special!

Yet, even with these, almost a third find almost Yet, even with these, almost a third find almost
nothingnothing

So...If you randomly pick files to fuzz with, you So...If you randomly pick files to fuzz with, you
probably won’t find any interesting bugs probably won’t find any interesting bugs

Should have fuzzed Should have fuzzed
longerlonger

crashes and exploitables found by iterationcrashes and exploitables found by iteration

Fixes through time (unique by Fixes through time (unique by
valgrind)valgrind)
10.6.110.6.1

Sept 10, 2009Sept 10, 2009

228 crashes228 crashes
(by EIP)(by EIP)

10.6.210.6.2
Nov 2, 2009Nov 2, 2009

187 crashes187 crashes
(by EIP)(by EIP)

2010-012010-01
Jan 19, 2010Jan 19, 2010

177 crashes177 crashes
(by EIP)(by EIP)

Safari 4.0.5Safari 4.0.5
Mar 11, 2010Mar 11, 2010175 175

crashcrash
eses
(by (by
EIP)EIP)

Fixes through time, by Fixes through time, by
typetype

10.6.110.6.1

10.6.210.6.2 2010_012010_01

4.0.54.0.5

All bugs will be gone All bugs will be gone
by...by...

according to linear regression all bugs will be according to linear regression all bugs will be
fixed sometime in 2012 fixed sometime in 2012

iPhoneiPhone

iPhone 3.1.2, not jailbrokeniPhone 3.1.2, not jailbroken

iPhone doesn’t have Preview, but MobileSafari will display iPhone doesn’t have Preview, but MobileSafari will display
PDF’sPDF’s

Much of the complexity of PDF’s is ignored, e.g. fontsMuch of the complexity of PDF’s is ignored, e.g. fonts

Recall Preview had 281 unique crashes (libgmalloc)Recall Preview had 281 unique crashes (libgmalloc)

22 crashed MobileSafari, all at unique pc22 crashed MobileSafari, all at unique pc

7.8% of crashes affected both7.8% of crashes affected both

None of the corresponding Preview crashes were None of the corresponding Preview crashes were
“exploitable”“exploitable”

PDF showdownPDF showdown

100 crashes100 crashes
30-40 unique30-40 unique

3-10 exploitable3-10 exploitable

1373 crashes1373 crashes
230-280 unique230-280 unique

30-60 exploitable30-60 exploitable

Open OfficeOpen Office
(PPT)(PPT)
(PPT)(PPT)

OpenOfficeOpenOffice

OpenOffice 3.1.1, impressOpenOffice 3.1.1, impress

610,400 test cases tested610,400 test cases tested

Maximum testcases/min: 15Maximum testcases/min: 15

Minimum testcases/min: <1Minimum testcases/min: <1

Total run time: Approximately 3 weeksTotal run time: Approximately 3 weeks

105 crashes105 crashes
27 unique27 unique

10 exploitable10 exploitable

186 crashes186 crashes
36 unique36 unique

14 Invalid reads14 Invalid reads7 Invalid writes7 Invalid writes
8 Use of 8 Use of

uninitialized variablesuninitialized variables205 unique EIPs205 unique EIPs40369 crashes (6.6%)40369 crashes (6.6%)
193 193
crascras
heshes

22
Probably notProbably not
exploitableexploitable

4242
UnknownUnknown

1212
ProbablyProbably

exploitableexploitable

1212
explexpl
oitaoita
bleble

7 Process 7 Process
terminatedterminated

6868
uniquuniqu

ee 610,400 fuzzed files610,400 fuzzed files496 files496 files

Some thoughtsSome thoughts

Around 200 crashesAround 200 crashes

Don’t know why half don’t crash under Don’t know why half don’t crash under
libgmalloclibgmalloc

Around 30-70 unique crashesAround 30-70 unique crashes

Around 10-12 exploitable crashes, as reported Around 10-12 exploitable crashes, as reported
by toolsby tools

Crash !exploitable Crashwrangler Valgrind

-921- Unknown is_exploitable=yes Invalid read

-1200- Unknown is_exploitable=yes Invalid read

-896- Unknown, Probably,
Exploitable

is_exploitable=yes Invalid read, uninit

-723- Unknown, Probably,
Exploitable

is_exploitable=yes Invalid read

-209- Unknown is_exploitable=yes Invalid read

-328- Unknown is_exploitable=yes Invalid read

-909- Unknown is_exploitable=yes Invalid write

-702- Exploitable is_exploitable=yes Invalid write

-783- Exploitable is_exploitable=yes Invalid write

-119- no crash is_exploitable=yes Invalid write

-1049- Exploitable is_exploitable=no Terminated

-719- Exploitable is_exploitable=no Invalid read

-733- Exploitable is_exploitable=no Invalid write

Comparisons of Comparisons of
exploitablesexploitables

708708
723723

crash binning crash binning
exploitablesexploitables

119119

GetPrevPGetPrevP
araara

+238636+238636

1003366e1003366e

outlineroutliner
+72+72

676676

783783

627627

7878

1b1511b151

70270262316231
77

497a4497a4

PrevPara+PrevPara+
2386123861

896896

947947

209209

120120
00

921921

exploitable=yesexploitable=yes
exploitable=noexploitable=no
ExploitableExploitable
Probably Probably
exploitableexploitable
UnknownUnknown

328328

909909

719719

104104
99

733733

Crash binning failCrash binning fail

These 2 tools disagree more than they agreeThese 2 tools disagree more than they agree

valgrind disagrees on the binning too...valgrind disagrees on the binning too...

At least one (and possibly both) of these tools At least one (and possibly both) of these tools
suck at binning crashessuck at binning crashes

At least one (and possibly both) of these tools At least one (and possibly both) of these tools
suck at determining exploitabilitysuck at determining exploitability

Crash rarityCrash rarity

Stupid outlierStupid outlier

OO crash rarityOO crash rarity

600,000 test cases, 205 different crashes600,000 test cases, 205 different crashes

149 were found exactly once (73%)149 were found exactly once (73%)

186 were found less than 10 times (91%)186 were found less than 10 times (91%)

6 were found more than 200 times6 were found more than 200 times

2 were found more than 1800 times2 were found more than 1800 times

One crash found 36,288 timesOne crash found 36,288 times

This one crash is responsible for 90% of crashes in This one crash is responsible for 90% of crashes in
the testingthe testing

Choice of initial fileChoice of initial file

496 different files496 different files

Crashes at 205 different EIP’sCrashes at 205 different EIP’s

All but 5 files found at least one crashAll but 5 files found at least one crash

2 files found 12 crashes2 files found 12 crashes

Here choice of initial file doesn’t seem so Here choice of initial file doesn’t seem so
importantimportant

Crashes from initial fileCrashes from initial file

Files to find exploitablesFiles to find exploitables

496 initial files, 12 exploitable crashes (!496 initial files, 12 exploitable crashes (!
exploitable)exploitable)

One crash was found by 13 files (2.6%)One crash was found by 13 files (2.6%)

2 crashes were found by 3 files (0.6%)2 crashes were found by 3 files (0.6%)

Rest were found by exactly one file (0.2%)Rest were found by exactly one file (0.2%)

Very rare to download a file, fuzz it, and Very rare to download a file, fuzz it, and
discover exploitable bugsdiscover exploitable bugs

Time to unique crash (!Time to unique crash (!
exploitable)exploitable)

iterations to find crashes (blue) vs. exploitable (red)# iterations to find crashes (blue) vs. exploitable (red)

Microsoft OfficeMicrosoft Office
(PPT)(PPT)
(PPT)(PPT)

MS Office PowerPointMS Office PowerPoint

MS PowerPoint 2008 for Mac, 12.2.3 (091001)MS PowerPoint 2008 for Mac, 12.2.3 (091001)

MS Office PowerPoint 2007 SP2 MSO MS Office PowerPoint 2007 SP2 MSO
(12.0.6425.1000) for !exploitable purposes(12.0.6425.1000) for !exploitable purposes

595,200 test cases tested595,200 test cases tested

Maximum testcases/min: 34Maximum testcases/min: 34

Minimum testcases/min: 1Minimum testcases/min: 1

Total run time: Approximately 3 weeksTotal run time: Approximately 3 weeks

146 crashes146 crashes
82 unique82 unique

30 exploitable30 exploitable

157 crashes157 crashes
56 unique56 unique

34 Invalid reads34 Invalid reads10 Invalid writes10 Invalid writes
10 Use of 10 Use of

uninitialized variablesuninitialized variables174 unique EIPs174 unique EIPs4440 crashes (0.7%)4440 crashes (0.7%)

2 Other2 Other

2424
uniquuniqu

ee

28 28
crascras
heshes

33
Probably notProbably not
exploitableexploitable

99
UnknownUnknown

66
ProbablyProbably

exploitableexploitable

66
explexpl
oitaoita
bleble 595,200 fuzzed files595,200 fuzzed files496 files496 files

PowerPoint thoughtsPowerPoint thoughts

Didn’t see nearly as many crashes in Windows Didn’t see nearly as many crashes in Windows
PowerPoint as in PowerPoint for MacPowerPoint as in PowerPoint for Mac

Significantly different code base?Significantly different code base?

Reliance on different OS libraries, memory Reliance on different OS libraries, memory
management?management?

Almost every Windows crash was unique (24/28)Almost every Windows crash was unique (24/28)

Seem to be a high percentage of “exploitable” Seem to be a high percentage of “exploitable”
crashescrashes

Hand checkingHand checking
Test case !exploitable crashwrangler Hand check on Mac

-541- exploitable no Probably not

-235- exploitable yes Looks exploitable

-1173- exploitable no Probably not

-1035-p exploitable no Probably not

-840- exploitable no Probably not

-1071 exploitable no Probably not

-269 Probably exploitable no Probably not

-600 Probably exploitable no Probably not

-115 Probably exploitable no Probably not

-1035-f Probably exploitable yes Looks exploitable

-407 Probably exploitable no Probably not

-215 Probably exploitable no Probably not

-830 Unknown no Dunno

-1186 Unknown no Probably not

-1007- Unknown no Probably not

-801 Unknown yes Probably not

-27- Unknown no Probably not

-1195- Unknown no Probably not

-246 Unknown no Probably not

-625 Unknown no Dunno

-500- Unknown yes Looks exploitable

-1126- Probably not exploitable no Probably not

-274-M Probably not exploitable yes Looks exploitable

-1069 Probably not exploitable no Probably not

-274-g no crash no Looks exploitable

More hand checkingMore hand checking

If you disregard the “dunnos”If you disregard the “dunnos”

Crashwranger agrees with me over 95% of the time!Crashwranger agrees with me over 95% of the time!

One single false positive, one false negativeOne single false positive, one false negative

!exploitable agrees 26% of the time!exploitable agrees 26% of the time

Hand checking was on Mac not WindowsHand checking was on Mac not Windows

!exploitable had both Type 1 and Type 2 errors!exploitable had both Type 1 and Type 2 errors

Crash rarityCrash rarity

174 crashes (by EIP)174 crashes (by EIP)

108 found only once (62%)108 found only once (62%)

149 found less than 10 times (86%)149 found less than 10 times (86%)

8 crashes found more than 100 times8 crashes found more than 100 times

1 crash found 935 times1 crash found 935 times

Crash rarityCrash rarity

Unique crashes by fileUnique crashes by file

More crashes by fileMore crashes by file

79 files found nothing79 files found nothing

203 found 2 or fewer crashes203 found 2 or fewer crashes

7 files found 10 or more crashes7 files found 10 or more crashes

1 file found 25 crashes1 file found 25 crashes

Crashes by iteration number Crashes by iteration number
(OS X)(OS X)

Crashes by iteration # Crashes by iteration #
(Win)(Win)

PPT showdownPPT showdown

205 crashes205 crashes
30-70 unique30-70 unique

10-12 exploitable10-12 exploitable

174 crashes174 crashes
30-80 unique30-80 unique

6-30 exploitable6-30 exploitable

Fuzzing “truths” Fuzzing “truths”
revealedrevealed

CaveatsCaveats

Only 4 data pointsOnly 4 data points

I present the data, you draw your own I present the data, you draw your own
conclusionsconclusions

Crashes per unique crash Crashes per unique crash
(by EIP)(by EIP)

Expect lots of crashes between unique crashesExpect lots of crashes between unique crashes

Anywhere between 25 and 200, depending on the programAnywhere between 25 and 200, depending on the program

Choice of initial filesChoice of initial files

Over 25% of files found 2 or fewer different crashesOver 25% of files found 2 or fewer different crashes

Except OpenOffice, >10% of files found no crashesExcept OpenOffice, >10% of files found no crashes

These files represent less than 2% of Internet filesThese files represent less than 2% of Internet files

Bug rarityBug rarity
Crashes are rare and beautiful eventsCrashes are rare and beautiful events

55-75% of crashes are only found once55-75% of crashes are only found once

80-90% of crashes are found 10 or less times80-90% of crashes are found 10 or less times

Unique crashes per Unique crashes per
exploitableexploitable

Expect somewhere between 3-12 different Expect somewhere between 3-12 different
unique crashes between “exploitables”unique crashes between “exploitables”

!exploitable bug !exploitable bug
classificationsclassifications

Expect roughly 12-25% of crashes to be exploitableExpect roughly 12-25% of crashes to be exploitable

Expect roughly 35-50% of crashes to be at least Expect roughly 35-50% of crashes to be at least
probably exploitableprobably exploitable

Valgrind bug typesValgrind bug types
Expect a rough split of 40/20/20/20 for Expect a rough split of 40/20/20/20 for
Read/Write/Uninitialized/TerminatedRead/Write/Uninitialized/Terminated

iterations# iterations

Expect to fuzz more than 2000 iterations per fileExpect to fuzz more than 2000 iterations per file

VendorsVendors

Despite the fun I had, please fuzz your productsDespite the fun I had, please fuzz your products

You’re not doing a good enough job at thisYou’re not doing a good enough job at this

Especially some of you!Especially some of you!

Fix the bugs you find, eventually someone else will find Fix the bugs you find, eventually someone else will find
themthem

This talk isn’t designed to embarrass you, just to This talk isn’t designed to embarrass you, just to
present my findingspresent my findings

If you’re embarrassed, good, do something about itIf you’re embarrassed, good, do something about it

Questions?Questions?

E-mail me: E-mail me: cmiller@securityevaluators.comcmiller@securityevaluators.com

Follow me: @0xcharlieFollow me: @0xcharlie

mailto:cmiller@securityevaluators.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90

