o e ___:.L_:. - .
'I S =1 4 1 'I".
T o
.r ;e w3 [|
o . k. ol
"' & 3 i 3 \
. 4 -)
|
-4 = £ gl il hak 2 - s 1 "E .":-'!:'.“.‘-:."'-i-
Gr o ! _, '
) i L » | Y P =
b .'.F' " ik =
r - = ﬂ II b ™
= i Ao o

._._.Il""llf H

“8 ol fuzzing 4 products with 5 lines of

fuzzing 4 products with 5 lines of

[Charlie Miller

Independent Security Evaluators

cmiller@securityevaluators.com

mailto:cmiller@securityevaluators.com

ik about how to
bugs in this talk

You’ll find some...
I guarantee It!

and fuzzy inside

Who | am

First to hack the iPhone, G1 Phone
Pwn20wn winner, 2008, 2009
Author

» Mac Hackers Handbook

*» Fuzzing for Software Security Testing and Quality
Assurance

Media whore

Overview

* The fuzzing setup
*» Fuzzing PDF’s, Preview and Adobe Acrobat Reader
* Fuzzing PPT’s, OpenOffice and MS PowerPoint

* Fuzzing “truths” revealed

About this talk

® Most fuzzing talks take one of two forms
® | fuzzed and found this/these bugs
® Here Is a new, smarter way to fuzz

® These talks are about success, but real fuzzing is about failure,
I.e. most test cases don’t crash the target

® \Very few talks that give realistic pictures of actual fuzzing

® By sharing results, both positive and negative, we can learn
about fuzzing and improve our technigues

Other talks to check out

* Fuzz by Number, Charlie Miller, 2008,

» lexploitable and Effective Fuzzing Strategies
as a Regular Part of Testing, Jason Shirk, 2009,

» Effective Fuzzing Strategies, David Molnar and
Lars Opstad, 2010,

http://cansecwest.com/csw08/csw08-miller.pdf
http://dragos.com/psj09/exploitable%20and%20Effective%20Fuzzing%20Strategies.pptx
http://www.cert.org/vuls/discovery/downloads/CERT-presentation-dmolnar-larsop.pdf

Questions to ponder

How many crashes can you expect?

* How many of these are unique?

* How many are “exploitable”?

How important is the initial file when fuzzing?
Are some bugs harder to find than others?
How do post analysis tools compare?

When have you fuzzed enough?

How hard do various vendors fuzz and how many bugs do
they find?

A Historical Perspective

*» Microsoft Windows Vista File Fuzzing effort
*» 15 months, 350mil iterations, 250+ file parsers
» ~1.4mil iterations per parser (on average)
» 300+ issues fixed
*» This talk
* 3 months, 7mil iterations, ~4 parsers
x ~1.8m iterations per parser (on average)
» However, quality is more important than quantity

* My quality is purposefully very poor, should find much less than
MS!

The Fuzzing Setup

Fuzzing types

x Dumb fuzzing (mutational)

® Take a good input (file/packet/command line/etc) and
add anomalies to it

® \ery easy to conduct
x Smart fuzzing (generation based)
® Create Iinvalid inputs from “scratch”, i.e. RFC, RE

® Very hard, but explores every detail of protocol

Compromise for the lazy

» Dumb fuzzing with lots of different initial files

» Single dumb fuzzing session will only fuzz the
protocol ‘features’ present in the initial file

*» With enough initial files, hopefully you can
fuzz all the ‘features’

» Still are screwed by things like CRC,
compression, etc.

Selection of Initial files

» Download every file you can find on the Internet

* Find the minimal subset that has the same code coverage
as the large set

» Example: PDF

Found 80,000 PDF’s on Internet

Used Adobe Reader + Valgrind in Linux to measure
code coverage

Reduced to 1,515 files of ‘equivalent’ code coverage

Same bang as fuzzing all 80k in 2% of the time

The 5 lines of Python

*» Just change random bytes to random values
*» Don't insert bytes, remove bytes
» Easiest (dumbest) conceivable way to fuzz

*» Shouldn’t find any bugs...

numwrites=random.randrange(math.ceil((float(len(buf)) / FuzzFactor)))+1for j in
range(numwrites):rbyte = random.randrange(256)rn =
random.randrange(len(buf))buf[rn] = "%c"%(rbyte);
numwrites=random.randrange(math.ceil((float(len(buf)) / FuzzFactor)))+1for j in
range(numwrites):rbyte = random.randrange(256)rn =
random.randrange(len(buf))buf[rn] = "%c"%(rbyte);

Other detalls

= Ran it in a parallelized way using my fuzzing framework, Tiamat
® Used 1-5 Mac OS X computers, some of them virtual

® Including 2 Pwn20wn prizes! o\
®x Open/Closed files using AppleScript o ,. : e

®x Monitored CPU activity to know when to launch next "f,_;_.'i“ﬁé

® Ran fixed number of iterations of each file (2000 or

® Estimated for 3 week runs

Wi ropll b3 remkar] st Coemepnin | skl dgeaen o P
i il @ e o, e s (he Pomer Botion agas

The vendors could at least

pay my power b

Power
goes
way up!

fe)
o
iy
S
E
3
=
S
o |
)

D e A
Hﬂmnwn .._,,v__su?wn.r y.ﬂruﬂ.ﬁn.?..h.

Tools used

* libgmalloc: uses guard pages to find when heap
overflows first occur (like libefence), OS X

*» CrashWrangler: Apple tool to bin crashes and
determine exploitability, OS X

* memcheck: Valgrind tool which simulates
program execution and records invalid memory
operations, Linux and OS X

» lexploitable; MS tool used to bin crashes and
determine exploitability, Windows

Final thoughts: Fuzzing as
Filtering

Fuzzing isn’t about creating and running test
case, it's about filtering

Start with a ton of test cases
Filter those to the ones that cause a crash

Filter those to the ones that represe
crashes

Adobe
Acrobat
Reader

(PDF)

(PDF)

Reader stats

Reader 9.2.0
3,036,000 test cases tested
Maximum test cases/min 132

Minimum test cases/min 7

784 files

oy
3 expl@itable
34 unique
20 unique*
2 Process
terminated

*valgrind failed frequently
cause acrobat has problems even with clean files

Points of interest

Acrobat Reader, under valgrind, has lots of errors

x Examples: mismatched malloc/free

= Don’t know how it runs normally....

®x |[gnoring these errors makes you miss lots of crashes
100 uniqgue EIPs, around 20-40 repro’d with binning tools
3-4 exploitables, according to tools

Disagreement about what files cause what crashes and which
are exploitable

Comparisons of

exploitables

Crash
Crash 1
Crash 2
Crash 3
Crash 4
Crash 5
Crash 6
Crash 7
Crash 8
Crash 9
Crash 10
Crash 11
Crash 12
Crash 13
Crash 14
Crash 15
Crash 16

!exploitable
Exploitable
Exploitable
Exploitable
Exploitable

Probably Exploitable
Probably Exploitable
Probably Exploitable
Probably Exploitable
Probably Exploitable
Probably Exploitable
Probably Exploitable
Probably Exploitable
Probably Exploitable
Probably Exploitable
not on win

not on win

Crashwrangler
is_exploitable=yes
is_exploitable= no
is_exploitable= no
Is_exploitable= no
is_exploitable= no
is_exploitable= no
is_exploitable= no
is_exploitable= no
is_exploitable= no
is_exploitable= no
is_exploitable= no
is_exploitable= no
is_exploitable= no
is_exploitable= no
is_exploitable=yes
is_exploitable=yes

Valgrind
Process terminated
Valgrind failed
Uninitialized variable
Process terminated
Valgrind failed
Valgrind failed
Valgrind failed
Valgrind failed
Invalid write
Uninitialized variable
Invalid write
Invalid write
Invalid write
Valgrind failed
Uninitialized variable
Uninitialized variable

Number of times each crash
occurred

0
1 6 11 16 21 2b 31 36 41 46 51 56 &1 66 71 76 Bl 86 91 96 101

Reader crash rarity info

100 different crashes

57 were found exactly once

» Either rare or lots of manifestations of one bug
81 were found less than 10 times

» Rare?

7/ were found more than 60 times

* Common bugs

4 were found more than 100 times

* Very common bugs

One crash found 1452 times

* This one crash is responsible for 56% of crashes in the testing

Choice of initial file

1515 different files

Crashes at 100 different EIP’'s

All crashes occurred when fuzzing only 192 files

* No crashes from 87% of initial files!!!

All files but one found between 1-3 crashes

1 file found 32 crashes (all but one with invalid EIP)
* Probably one (really nasty) bug

*» These bugs all coalesced when used libgmalloc

o
U—
),
O
®
-
D
@,
y—
wn
O,
O
0
(O
O
H:

To find an exploitable

* For the 4 lexploitables, lets see info about other crashes
that crashed at the same EIP

*» Crash 1: 2 files, each crashed once or twice

* Crash 2: 2 files, each crashed there once

* Crash 3: 2 files, each crashed there twice

* Crash 4: 42 files crashed there from 1 to 63 times

 Farliest test case to find one of these was the 486th
iteration

® | ast was the 1923rd iteration (of 2000)

More on finding
exploitables

Find the first 3 exploitables in 9 test cases out of 3 million
Only 6 of 1515 files generate the first 3

If you fuzz each file 500 times, you find 1 exploitable

®x 1000 times, you find 2

® 1500 times, you find 3

®x 2000 times, you find 4

What happens if you iterate 3000, 100000, 1000000007

How many iterations
(theoretical)

* Run long enough, your fuzzer will find every bug (it is
capable of finding)

®x Presumably, this gets harder and harder

* End up with some idealized graph of iterations vs bugs
found

* \When this curve becomes sufficiently flat, stop fuzzing

bugs found

#

/teratons

1terations to find crashes

400 600 g00 1000 1200 1400 1600 1800 2000

More iterations would have probably found more bugs
(Curve isn’t flat yet)

Ywaobe Reader

Probably not exploitable
Unknown

Probably exploitable
- - -— -

oet-13, /
9.2

?

Preview
(PDF)
(PDF)

Preview General Info

» Default Mac OS X PDF viewer
» Tested: Mac OS X 10.6.1
*» These bugs show up in Safari too
x» 2,790,000 test cases tested
» Maximum testcases/min: 160
* Minimum testcases/min: 4

» Jotal run time: Approximately 3 weeks

Lie . !
B % 2 >
R # - i
P &
w& R R o

1373 unique 157,337 crashes
EIPs (5.60%)

™

228 unique

36, Process.

Talking points

* Umm...they haven’t fuzzed this

* no !exploitable since Preview OS X only
*» Around 250 unigue crashes

» Around 60 exploitable

* This Is an overestimate, at least one bug
manifests itself in lots of crashes and
lilbgmalloc fails to bin it properly

Number of times each cras
occurred
(by EIP)

Number times found

More crash rarity info

* Crashes at 1373 unique EIP’s
» 791 EIP’s were found exactly one time (57.6%)

* Either rare or lots of manifestations of one bug /i

» 341 were found between 1 and 10 times *
* rare?

82 were found more than 100 times
* Common bugs
26 were found more than 1000 tirr-1es
* Very common bugs

One EIP found Iin crashes 15,368 times

times exploitable crash
occurred

B0
B
42
20

a

1 357 9111315171921 23 252729313335373594143454 7455153555 75961

“Exploitables”

» “exploitable” crashes at 61 EIP’'s according to
libgmalloc+crashwranger

» 1 EIP was found 155 times
*» 42 were found only once
» |ots of rare ones or a few nasty ones

* 56 were found less than 10 times

of crashes at EIP by
Initial file

number of unique crashes

File choices

» 1395 files
»] file found 58 “unigue” crashes, by EIP

x 68 files (5%) found 20 or more different
crashes

x 162 files (12%) found no crashes

» 440 files (31%) found 2 or fewer cras}!

Number of files which find each
exploitable

1 35 7 91113151719212325272931333537354143454 /455153555755961

Files and exploitables

*» 61 crashes exploitable (by EIP)
* 49 files found the most common exploitable crash

* Only 2 crashes were found by more than 10 starting
HIIES

®» 42 (69%) crashes were found by exactly one
starting file

* 50 (82%) crashes were found by at most two
starting files

More on file choices

» These 1399 files were not randomly chosen,
they are very special!

x Yet, even with these, almost a third find almost
nothing

* 50...If you randomly pick files to fuzz with, you
probably won't find any interesting bugs

Should have fuzzed

crashes and exploitables found by iteration

satmemS through time (unique by
’}"Wm?”]?“‘i”’nd)

) 53 es

(b\(b':y' P)

Fixes through time, by
type

@ Jnvalid Read @ Invalid Write @ Uninitialized Variable Terminated

10.6.2 2010 01

''''''''''''''
'''''''''''''''''
I Tl Dot Tl Do e

All bugs will be gone

 Preview Crashes

1 o4 132 183

according to linear regression all bugs will be
fixed sometime in 2012

.2, Not jallbroken

* [Phone doesn’t have Preview, but MobileSafari will display
PDF’s

» Much of the complexity of PDF’s is ignored, e.g. fonts
» Recall Preview had 281 unique crashes (libgmalloc)
x 22 crashed MobileSafari, all at unique pc

» 7.8% of crashes affected both

* None of the corresponding Preview crashes were
“exploitable”

Adobe’ Reader

100 crashes 1373 crashes
30-40 unique 230-280 unique
3-10 exploitable 30-60 exploitable

Open Office s
(PPT)

OpenOffice

OpenOffice 3.1.1, impress
610,400 test cases tested
Maximum testcases/min: 15
Minimum testcases/min: <1

Total run time: Approximately 3 weeks

6%)
ed files

10 explbitable

27 unique . v 186 crashes

36 unique

/ Process
terminated

Some thoughts

x Around 200 crashes

* Don't know why half don’t crash under
libgmalloc

» Around 30-70 unique crashes

*» Around 10-12 exploitable crashes, as reported
by tools

Comparisons of

exploitables

Crash
-921-
-1200-
-896-

-7123-

-209-
-328-
-909-
-702-
-783-
-119-
-1049-
-719-
-733-

!exploitable
Unknown

Unknown

Unknown, Probably,

Exploitable

Unknown, Probably,

Exploitable
Unknown

Unknown
Unknown
Exploitable
Exploitable
no crash
Exploitable
Exploitable
Exploitable

Crashwrangler
is_exploitable=yes
is_exploitable=yes

is_exploitable=yes
is_exploitable=yes

is_exploitable=yes
Is_exploitable=yes
Is_exploitable=yes
Is_exploitable=yes
Is_exploitable=yes
is_exploitable=yes
is_exploitable=no
is_exploitable=no

is_exploitable=no

Valgrind
Invalid read

Invalid read

Invalid read, uninit

Invalid read

Invalid read
Invalid read
Invalid write
Invalid write
Invalid write
Invalid write
Terminated
Invalid read

Invalid write

crash binning
exploitables

P e e
M M

PrevPara+
23861

exploitable=yes

Exploitable
Probably
exploitable
Unknown

=
?EEKHKKH}

RIS,

Crash binning fall

These 2 tools disagree more than they agree
valgrind disagrees on the binning too...

At least one (and possibly both) of these tools
suck at binning crashes

At least one (and possibly both) of these tools
suck at determining exploitability

Crash rarity

Stupid outlier

OO crash rarity

*» 600,000 test cases, 205 different crashes
» 149 were found exactly once (73%)

» 186 were found less than 10 times (91%)
*» 6 were found more than 200 times

» 2 were found more than 1800 times

*» One crash found 36,288 times

*» This one crash is responsible for 90% of crashes in
the testing

Choice of initial file

» 490 different files

» Crashes at 205 different EIP’s

» All but 5 files found at least one crash
x 2 files found 12 crashes

* Here choice of initial file doesn’t seem so
important

| file

|a

Talle

-
®,
U
V)
),
o
V)
(O
| -
O

Files to find exploitables

» 496 initial files, 12 exploitable crashes (!
exploitable)

* One crash was found by 13 files (2.6%)
» 2 crashes were found by 3 files (0.6%)
» Rest were found by exactly one file (0.2%)

» Very rare to download a file, fuzz it, and
discover exploitable bugs

Time to unique crash (!
exploitable)

70
50
50
40
30

20

1000 1200

terations to find crashes (blue) vs. exploitable (re

Microsoft Office .

(PPT) ‘
(PPT)

MS Office PowerPoint

MS PowerPoint 2008 for Mac, 12.2.3 (091001)

» MS Office PowerPoint 2007 SP2 MSO
(12.0.6425.1000) for !exploitable purposes

595,200 test cases tested
Maximum testcases/min: 34
Minimum testcases/min: 1

Total run time: Approximately 3 weeks

30 explbitable

82 unique . v 157 crashes

56 unique

2 Other

PowerPoint thoughts

* Didn’t see nearly as many crashes in Windows
PowerPoint as in PowerPoint for Mac

® Significantly different code base?

®x Reliance on different OS libraries, memory
management?

* Almost every Windows crash was unigque (24/28)

*x Seem to be a high percentage of “exploitable”
crashes

Hand checking

Test case
-541-
PELE
-1173-

-1035-p
-840-
-1071
-269
-600
-115
-1035-f
-407
-215
-830
-1186
-1007-
-801
L =
-1195-
-246
-625
-500-
-1126-
-274-M
-1069

lexploitable
exploitable
exploitable
exploitable
exploitable
exploitable
exploitable
Probably exploitable
Probably exploitable
Probably exploitable
Probably exploitable
Probably exploitable
Probably exploitable
Unknown
Unknown
Unknown
Unknown
Unknown
Unknown
Unknown
Unknown
Unknown
Probably not exploitable
Probably not exploitable
Probably not exploitable

crashwrangler
no
yes
no
no
no
no
no
no
no
yes
no
no
no
no
no
yes
no
no
no
no
yes
no
yes

no

Hand check on Mac
Probably not
Looks exploitable
Probably not
Probably not
Probably not
Probably not
Probably not
Probably not
Probably not
Looks exploitable
Probably not
Probably not
Dunno
Probably not
Probably not
Probably not
Probably not
Probably not
Probably not
Dunno
Looks exploitable
Probably not
Looks exploitable

Probably not

More hand checking

® |f you disregard the “dunnos”
® Crashwranger agrees with me over 95% of the time!
® One single false positive, one false negative
® lexploitable agrees 26% of the time
® Hand checking was on Mac not Windows

® lexploitable had both Type 1 and Type 2 errors

Crash rarity

174 crashes (by EIP)

108 found only once (62%)

149 found less than 10 times (86%)
8 crashes found more than 100 times

1 crash found 935 times

Crash rarity

e

hes by f

m
|

Unique cras

More crashes by file

» 79 files found nothing
x 203 found 2 or fewer crashes
x 7/ files found 10 or more crashes

= 1 file found 25 crashes

Crashes by iteration number
(OS X)

Crashes by iteration #
(Win)

PPT showdown

205 crashes 174 crashes
30-70 unique 30-80 unique
10-12 exploitable 6-30 exploitable

Fuzzing “truths”
revealed

Caveats

* Only 4 data points

» | present the data, you draw your own
conclusions

Crashes per unigue crash
(by EIP)

® Expect lots of crashes between unigue crashes

® Anywhere between 25 and 200, depending on the program

— 200
)

~ 100
ettt s b

Reader

Preview

- 0
PowerPoint

OpenOffice = Crashes per unique crash

Choice of initial files

B Over 25% of files found 2 or fewer different crashes
B Except OpenOffice, >10% of files found no crashes

® These files represent less than 2% of Internet files

Preview %
penOfﬂce

" 25 9% files found no crashes
o = % files found 2 or fewer crashes

Reader

PowerPoint

OpenOffice

PowerPoint " % crashes found once
" % crashes found 10 or less times

Unique crashes per
exploitable

» Expect somewhere between 3-12 different
unique crashes between “exploitables”

.r e me e ® il o 6
fssiistaist Preview : i -0
Open Office i _ :
PowerPoint 8 # unique crashes per exploitable=yes
| # unique crashes per [EXPLOITABLE

lexploitable bug
classifications

» Expect roughly 12-25% of crashes to be exploitable

= Expect roughly 35-50% of crashes to be at least
probably exploitable

20 # Exploitable
— 10 B # Probably exploitable
Unknown
Probably not exploitable

Valgrind bug types

» Expect a rough split of 40/20/20/20 for
Read/Write/Uninitialized/Terminated

S L s
R R R e R ey
i T
Terminated/Other
Reader CFtem : — 0 M # Uninitialized Variables
review OpenOffice # Invalid Write

PowerPoint # Invalid Read

1terations

B Expect to fuzz more than 2000 iterations per file

400 600 BOO 1000 1200 1400 1600 1BOO 2000 i) 400 B0 1200

100 i] 200 400 eD0 BOO 1000 1200 1400 1600 1800 2000

Vendors

* Despite the fun | had, please fuzz your products
®* You're not doing a good enough job at this

®x Especially some of you!

* Fix the bugs you find, eventually someone else will find
them

x This talk isn’t desighed to embarrass you, just to
present my findings

® |f you're embarrassed, good, do something about it

Questions?

x E-malil me:

* Follow me: @Oxcharlie

mailto:cmiller@securityevaluators.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90

