
0-knowledge fuzzing

Vincenzo Iozzo

vincenzo.iozzo@zynamics.com

February 9, 2010

Abstract

Nowadays fuzzing is a pretty common technique
used both by attackers and software developers.
Currently known techniques usually involve
knowing the protocol/format that needs to be
fuzzed and having a basic understanding of how
the user input is processed inside the binary.
In the past since fuzzing was little-used obtain-
ing good results with a small amount of e↵ort
was possible.
Today finding bugs requires digging a lot inside
the code and the user-input as common vulner-
abilies are already identified and fixed by devel-
opers. This paper will present an idea on how
to e↵ectively fuzz with no knowledge of the user-
input and the binary.
Specifically the paper will demonstrate how tech-
niques like code coverage, data tainting and in-
memory fuzzing allow to build a smart fuzzer
with no need to instrument it.

1 Introduction

Fuzzing, or fuzz testing, is a software test-
ing methodology whose aim is to provide in-
valid, unexpected or random inputs to a pro-
gram. Although the idea behind this technique
is conceptually very simple it is a well known

and widely established methodology employed in
COTS software vulnerability discovery process.
The first appearance of fuzzing in software test-
ing dates back to 1988 by Professor Barton
Miller[1]; since then the technique has evolved
a lot and it is not only used by attackers to dis-
cover vulnerabilities but also internally by many
companies to find bugs in their software.
Over the course of time a lot of di↵erent imple-
mentations of fuzz testing have been researched,
nonetheless it is commonly believed that there
are two predominant approaches to fuzzing:
Mutation-based and Generation-based.
The former is based on random mutations of
known well-formed data, whereas the latter cre-
ates testing samples using templates describing
the format of the software input.
Both approaches have their advantages and pit-
falls. The former requires little e↵ort to be im-
plemented and it is reusable across di↵erent soft-
ware. Nonetheless given the raising interest com-
panies have shown in properly testing and devel-
oping products this approach will generally yield
worse results than generation-based fuzzers.
The second approach has the advantage of ob-
taining better results in terms of bugs found, al-
though it requires knowledge of the input format
the binary expects and its reusability is bounded
to binaries that deal with the same input format.

2



The di�culty of creating input models can range
from low for public data formats to almost infea-
sible for proprietary formats.
In order to ease the process of creating input
templates various approaches have been stud-
ied, most notably evolutionary fuzzers and in-
memory fuzzers.
Both are derived from mutation-based fuzzers
but for di↵erent purposes. The first type of
fuzzers, in fact, by employing genetic algorithms
attempts to generate sets of data which resem-
ble as precisely as possible the input format. The
latter, instead, first requires a human to manu-
ally identify specific functions inside the binary
then mutates the input in-memory in order to
prevent data validation which could lead to dif-
ferent code paths thus resulting in not fuzzing
crucial pieces of an application.
Evolutionary based fuzzers su↵er from the di�-
culty of identifying proper scoring and mutation
functions and for this approach to be e↵ective it
usually requires more time than the generation-
based one. In-memory fuzzing on the other hand
has a high rate of false positives and negatives
and it requires an expert reverse engineer in or-
der to identify proper test cases.

In this paper the author presents an approach
to fuzz testing based on in-memory fuzzing aim-
ing at limiting human intervention and minimiz-
ing the number of false positives and negatives
that currently a↵ects this technique. The pro-
posed methodology employs a range of known
metrics from both static and dynamic program
analysis together with a new technique for in-
memory fuzzing. Specifically we will use data
tainting for tracking user input, thus being able
to identify locations in-memory suitable for test-
ing; we will also employ static analysis metrics
in order to identify functions in the binary that
can be interesting from a security testing point

of view.
To the best of the author‘s knowledge there are
no public attempts at combining together these
techniques for fuzz-testing purposes. A notable
exception is Flayer which nonetheless only fo-
cuses on dynamic analysis and program paths
manipulation in order to discover software de-
fects.

The rest of this paper is organized as follows.
In section 2 we provide basic background infor-
mation on the metrics used. Section 3 discusses
related work. Section 4 presents our approach
and implementation. Finally we conclude and
discuss future work directions in Section 5.

2 Background

In this section, we present background informa-
tion on static analysis metrics, data tainting, and
in-memory fuzzing.
In our implementation we use primary two static
analysis techniques: cyclomatic complexity and
loop detection.
Cyclomatic complexity is a software metric used
to determine how complex in terms of code paths
a function is. The computation is done on the
number of edges and nodes a function contains.
Intuitively the more the structure of the function
is complicated the more complex the function
is. In [2] the connection between function com-
plexity and bugs presence has been discussed.
Although there is not always a correlation be-
tween the two, it is reasonable to assume that
more complex functions are prone to contain
bugs given the amount of code they contain.
Another metric employed is loop detection. This
algorithm takes advantage of some properties of
a function flowgraph and its dominator tree in
order to detect loops present in compiled code.

3



This technique is widely used in compilers for op-
timization purposes, and it has some interesting
aspects from a security prospective as well. It
is commonly known, in fact, that memory write
often happens inside loops and that most compil-
ers usually inline functions like memcpy so that
the function will e↵ectively result in a loop.

Another crucial piece of infrastructure for the
proposed fuzzer is the data tainting engine. The
goal of data tainting is to gather information on
how user input is propagated through a binary.
The concept of data tainting is intuitively very
simple, one or more markings are associated with
some data supposedly representing the user in-
put and those markings are propagated follow-
ing the program flow. Although it is possible to
perform data tainting using static analysis the
complexity of the task and the possible incom-
plete set of information led the author to choose
a dynamic analysis approach to the problem by
taking advantage of an existing dynamic data
tainting framework called Dytan[6]. Using dy-
namic data tainting has the benefit of obtain-
ing more precise and richer information on data
propagation although it will not be able to ex-
plore program paths that are not executed at
run-time. Given the nature of the fuzzer, ob-
taining information on non-executed code paths
is of no interest as in-memory fuzzing relies on
the ability to reach code paths by mutating a set
of known good data.

Finally in order to monitor the e↵ectiveness
of our fuzzer, we employ a software testing mea-
sure known as code coverage. This technique
verifies the degree to which the code of a pro-
gram has been tested by tracing the execution
of the binary. Although there are many di↵er-
ent implementations of code coverage all using
di↵erent criteria in terms of the kind of informa-
tion to record, the author decided to implement

the technique so that basic blocks execution is
being traced. This implementation does not
take into account code paths and therefore might
be imprecise in some circumstances, nonetheless
we consider this trade-o↵ to be acceptable as it
avoids to overly complicating the implementa-
tion and improves the fuzzer performance.

3 Related work

In this section we will briefly describe exist-
ing approaches to data tainting and in-memory
fuzzing together with a brief description of
Flayer[3] being it the closest work to the one de-
scribed in this paper.

3.1 Existing in-memory fuzzing im-

plementations

(a) Mutation loop insertion

(b) Snapshot restoration

mutation

Figure 1: Known implementations of in-memory
fuzzing

To the best of the author‘s knowledge in-

4



memory fuzzing was first introduced to the pub-
lic by Greg Hoglund of HBGary in [4] and later
further developed by Amini at al[5]. Currently
there are two public methods: Mutation loop in-
sertion and snapshot restoration mutation.
The first method works by inserting an uncon-
ditional jump from the function being tested to
a function responsible for mutating the data re-
siding in the process address space of the fuzzed
binary. At the end of the mutation function an-
other unconditional jump to the beginning of the
currently tested function is inserted. The control
flow graph of this approach is shown in 1(a).
This approach su↵ers of a number of drawbacks
with a high rate of false negatives and stack con-
sumption being the two major ones. Another
disadvantage of this method is the general insta-
bility of the memory after a few fuzzing itera-
tions.
The second approach works by inserting an un-
conditional jump from the beginning of the func-
tion being tested to a function responsible of tak-
ing a memory snapshot. This function will later
call again the tested function. At the end of the
analyzed function another unconditional jump is
inserted. The jump points to a function respon-
sible of restoring the memory, fuzzing data and
executing again the fuzzed function. A control
flow diagram employing this approach is shown
in Figure 1(b). Although this method has some
advantages in respect to the first one described,
it still su↵ers from a high false positives rate and
it is also slower given the need of continuously
having to restore process memory.

3.2 Existing data tainting implemen-

tations

Dynamic data tainting has gained momentum in
the last few years given the increase complexity

of software. A lot of implementations of data
tainting frameworks exist, for this reason the
author decided to use a framework previously
created by James Clause and Alessando Orso of
Gatech called Dytan[6]. The decision was made
based on a number of requirements.
First and foremost the ability to instrument bi-
naries without any recompilation or access to the
source code.
Another very important requirement was porta-
bility, most of the existing implementations are
based on Valgrind[7] which does not support the
Windows platform. The two most appealing
candidates were Temu[9] and Dytan.
The first one is built on the top of a modified
version of Qemu[8]. Although this would have
respected both the initial requirements we think
that a data tainting framework based on a vir-
tual machine emulator is overkill for our goals.
Besides the implementation in the author‘s opin-
ion is not yet robust enough.
Dytan is implemented as a pintool[16]. It is a
flexible framework and can run on both Linux
and Windows.

3.3 Additional related work

As already mentioned in the previous section
Flayer[3] is the most similar work to the ap-
proach discussed in this paper. The software
combines data tainting and the ability to force
code paths. Di↵erently from many other data
tainting tools Flayer has bit-precision markings.
Although this grants a higher degree of precision
in obtaining information on data propagation for
the purpose of our work byte-precision markings
are detailed enough.
Another limitation is the software the tool is
based on; as already mentioned Valgrind does
not support Windows which severly impairs the

5



usefulness of the tool.
Finally even if the main aim of the tool is not
fuzzing it has the ability of forcing code paths
and therefore it can be used to test various code
paths. This method has three main drawbacks;
the first one is a high number of false positives,
the second one is the absence of a sample which
can be later used by the attacker to reproduce
the bug and finally a problem known as code-
path explosion. This problem arises because the
number of code paths to force increases exponen-
tially with the complexity of the software.

4 Proposed approach and im-

plementation

Figure 2: Fuzzer components

In this section we will present the idea and
implementation of our work. As shown in Figure
2 our fuzzer can be divided into 4 parts.

4.1 Static analysis metrics

Static analysis algorithms are used to determine
which functions could be potentially of inter-
est for our fuzzer. We assign a higher score to
functions that have a high cyclomatic complex-
ity score and at least one loop in them; we then
consider all the functions that have loops but a
low cyclomatic complexity score and finally we
take into account the remaining functions. Ide-
ally we will add more metrics to the implementa-
tion, therefore this rather trivial scoring system

should be replaced by a more sophisticated ap-
proach which takes into account scores coming
from various metrics and weights them in respect
to their relevance from a security prospective.

Figure 3: The edge in red is missed by the ap-
proximative cyclomatic complexity formula.

Cyclomatic complexity Cyclomatic com-
plexity was first described by Robert McCabe
in [10]. The purpose of this metric is to calcu-
late the number of independent paths in a code
section. Many formulation of this metric have
been given, we briefly explain the ones that are
relevant to our fuzzer.

Definition Let G be a flowgraph, E the num-
ber of edges in G, N the number of nodes in G
and P the number of connected components in
G.
Cyclomatic complexity is defined as:

M = E �N + 2P (1)

A connected component is a subgraph in which
any two vertices are connected to each other by
paths. This formula originates from the cyclo-
matic number:

Definition Let G be a strongly connected
graph, E the number of edges in G, N the
number of nodes in G and P the number of
connected components in G.

6



The Cyclomatic number is defined as:

V (G) = E �N + P (2)

It should be notice that the cyclomatic num-
ber can be calculated only on strongly connected
graphs, that is a graph in which from every pair
of vertices there is a direct path connecting them
in both directions. McCabe proved that the flow-
graph of a function with a single entry point and
a single exit point can be considered a strongly
connected graph and therefore the cyclomatic
number theorem applies and that P = 1, thus
the resulting simplified formula is:

M = E �N + 2 (3)

Intuitively when a flowgraph has multiple exit
points the aforementioned formula doesnt hold
true anymore. Another one should be therefore
used:

Definition Let G be a flowgraph, ⇡ the number
of decision points in G and s the number of exit
points in G. Cyclomatic complexity is defined
as:

M = ⇡ � s + 2 (4)

Applying (3) to functions with multiple exit
points we will have, in fact, lower cyclomatic
complexity values by a minimum factor of 2. Fig-
ure 3 shows typical edges and connected com-
ponents missed by using (3).
Nonetheless the author believes that the less pre-
cise measurement can be used without impairing
the results.
We implemented cyclomatic complexity calcula-
tion for each function in a module by using Bin-
Navi API. A detailed explanation of the imple-
mentation can be found in[11].

(a) A

function

flowgraph,

nodes in

blue belong

to a loop

(b) Domi-

nator tree

of the

previous

function,

nodes

in green

correspond

to the

blue ones

highlighted

in picture

(a)

(c) The

nodes

in green

dominate

the node in

red in the

dominator

tree

Figure 4: Graphs used in loop detection algo-
rithm

Loop detection algorithm As previously
mentioned another metric, loop detection, is
used to select functions. The first required step
is to extract the dominator tree out of a function.
Formally:

Definition A dominator tree is a tree where
each node‘s children are the nodes it immedi-
ately dominates.
A node d is said to dominate node k if every
path from the start node s to node k must go
throught node d.

To give a visual example of a dominator tree
of a function please refer to Figure 4. Nodes in
blue in Figure 4(a) are highlighted in the dom-
inator tree in green in Figure 4(b).
There are two known algorithms used to cal-
culate the dominator tree of a flowgraph. It
is out of the scope of this paper to discuss
them. It should be noticed, though, that the

7



tool upon which we built our loop detection
algorithm, BinNavi[12], implements Lengauer-
Tarjan[13] dominator tree algorithm which is al-
most linear thus granting us a higher computa-
tional speed.
The second step is to calculate for each node its
dominators. In Figure 4(c) the dominators of
the node in red are the ones in green.
The last step is to search for edges from a node
to one of its dominators. Recalling the definition
of domination it is trivial to show that if there
is an edge from a node to one of its dominators
a loop is present.
Most complex assembly instruction sets have
what are called implicit loops instruction, for in-
stance rep movs in x86 ISA. Applying this al-
gorithm to a flowgraph will therefore miss this
type of loops.
In order to overcome this problem we will trans-
late the function to an intermediate language
called REIL[14] implemented in BinNavi. This
intermediate language provides a very small set
of instructions which helps in the process of un-
folding implicit loops.
In [15] a detailed implementation of this algo-
rithm can be found.

4.2 Data tainting

As stated before the author did not implement
the data tainting framework employed by the
fuzzer, nonetheless given the critical importance
of data tainting for this project the author thinks
it is important to briefly describe how dytan
works and how we use this framework for our
purposes.
We previously mentioned that data tainting is a
technique to track user input inside a binary.
Tracking is usually performed by assigning mark-
ings to data while executing the binary.

Each data tainting implementation can choose
the type of markings to use, more precisely it
is possible to determine the granularity of those
markings.
Dytan is able to either assign a single marking to
each piece of input or have byte-level markings.
We chose to use the second type of markings as
it is more precise but at the same time does not
cause an excessive overhead during the execu-
tion.
In order to make data tainting work it is impor-
tant to define what data needs to be tracked. In
Dytan it is possible to track user input coming
from network operations, files access and com-
mand line arguments passed to the main() func-
tion. That is system calls and functions respon-
sible for the aforementioned input sources are
monitored and their output is tracked through
the binary.
Another important factor to take into account
while implementing a data tainting tool is a
propagation policy.
A propagation policy is a set of rules followed
while taint markings are assigned during pro-
gram execution.
Dytan currently is able to perform control and
data-flow or data-flow only analysis. The former
tracks direct or transitive data assignments as
well as indirect propagation due to control flow
dependencies upon user input. The latter in-
stead can only track direct and transitive data
assignments. In our fuzzer we use the second
approach as control flow analysis does not add
any useful information on data locations to be
tested.
Another problem to tackle while creating a prop-
agation policy is how to deal with multiple mark-
ings assigned to the same input. Dytan currently
assigns to the resulting taint marking the union
of all the taint markings related to it. Although

8



for our fuzzer a di↵erent approach might grant
better results we currently use the default dytan
policy.
Finally we make dytan provide information on
every instruction that assigns taint markings.
That is for each of those instructions we obtain
the state of taint markings on machine registers
and on memory locations that are tainted at that
specific program point.

4.3 In-memory fuzzing

We presented in section 3 the two known ap-
proaches to in-memory fuzzing. In this section
we are going to present two slightly di↵erent ap-
proaches which we believe to gain better results
given the amount of information we can gather
from data tainting analysis.
We implemented our in-memory fuzzer on top
of PIN[16]. PIN has the ability to add instru-
mentation functions before and after a binary is
loaded in memory, functions and instructions.
Recalling that for each instruction that assigns
taint markings we retrieve from data tainting
analysis, we get the markings associated to ma-
chine registers and memory locations, we are
able to precisely identify program points during
binary execution that are suitable for fuzzing.
For both approaches we perform a number of
steps:

1. Install an analysis function on image load-
ing.

2. Install an analysis function before the func-
tion we are interesting in fuzzing is exe-
cuted.

3. Install an analysis function before each in-
struction that assigns taint markings.

At point 1 we search for the address of the func-
tion we are interested in fuzzing and install the
analysis function for that function. At point 2
we iterate through function instructions locating
the ones that are of interest in order to install an
analysis function as described in 3.
The first approach consists of mutating memory
locations and registers in place. That is instead
of allocating new memory and pointing instruc-
tions operands to it we modify the content of
both memory locations and registers within their
length boundaries.
We then continue the program execution until
the program quits or new data is obtained from
a tainted source.
This approach is more conservative than all the
others as it does not change the memory layout
thus the number of false positives is reduced but
at the expenses of an increased number of false
negatives.
The second approach works very similar to SRM
1(b). In addition to the first three steps we also
add an instrumentation functions at the end of
the tested function. This function will be re-
sponsible of restoring memory after fuzzing was
performed. With the second approach the mem-
ory layout is changed as the fuzzer will allocate
chunks of memory to be used during the fuzzing
phase.
As for the first approach the program execution
is continued until the application quits or new
data is obtained from a tainted source.
Although our second approach is similar to SRM
there are a few notable di↵erences that have to
be considered. First we do not take a full snap-
shot of the process memory but we only track
modifications that occurred due to fuzzing dur-
ing the execution of the tested function. The
second di↵erence is that memory is not totally
restored after the function was fuzzed, this can

9



allow us to reduce the number of false negatives
since possible bugs caused by a faulty execution
of the function are not missed by restoring the
full process memory.
It has to be noted that both approaches de-
scribed here although more e↵ective cannot be
used without a proper amount of information
gathered by the means of data tainting analy-
sis or some similar techniques.

4.4 Code coverage

The combination of code coverage with fuzz test-
ing has long been used in order to measure the
e↵ectiveness of fuzzing. We implemented code
coverage on the top of BinNavi debugging API.
The choice of using BinNavi debugger serves a
double purpose, not only we are able to imple-
ment code coverage using lightwave breakpoints
which highly reduce execution overhead but we
are also able to monitor the execution for possi-
ble faults. We decided to implement code cov-
erage at basic blocks level, that is a breakpoint
is set at the beginning of each basic block in the
tested binary. We perform code coverage first
when the binary is executed with a known good
sample, later it is calculated again every time
the program is fuzzed. We require the fuzzing
sample to perform at least as good as the known
good sample, we also set a threshold defining the
upper-bound after which the sample reaches the
”halting point”. The ”halting point” is the point
where the fuzzing process is re-initialized with a
new known good sample as shown in Figure 2.
Formally:

Definition Let C be the code coverage score
of a known good sample, C1 the code coverage
score of a fuzzing sample, t a user supplied
delta.

The following must hold true:

C1  C + t (5)

The halting point is defined as:

C1 = C + t (6)

The code coverage score is calculated as fol-
lows:

Definition Let BBt be the totality of basic
blocks in a binary, BBf the number of basic
blocks touched in a single execution.
The code coverage score is defined as:

C =
BBf

BBt
(7)

A detailed implementation of code coverage
using BinNavi API can be found in [17].

5 Results and future work

In this paper we have described a new approach
to fuzz testing which highly reduce instrumenta-
tion costs thus resulting very useful when dealing
with large proprietary applications.
We have also shown how it is possible to com-
bine static and dynamic analysis techniques to
triage interesting functions from a security test-
ing point of view.
Finally we have proposed a new approach to in-
memory fuzzing which is more precise and less
prone to false negatives than previous known
techniques.
We do not have enough data to determine
whether this approach has better results com-
pared to other fuzzing techniques.
The author believes that compared to other
mutation-based and evolutionary-based method-
ologies the one proposed in this paper will have

10



better results. In comparison to generation-
based fuzzers our technique will have better re-
sults when dealing with complex software but
worse results when the software input is simple.
The main direction of future work will be focused
on reducing false positives by employing con-
straint reasoners to determine whether a given
bug is reproducible with valid but unexpected
input.
Another important challenge is to implement
more static analysis metrics to triage functions
with a higher degree of precision.

Acknowledgments

The author would like to thank Thomas Dullien,
Dino Dai Zovi and Shauvik Roy Choudhary for
their suggestions and help while researching the
topic.
The author would also like to thank James
Clause and Alessandro Orso for having provided
access to dytan source code and their help while
testing and improving the original code base.
Finally we want to thank all the people who have
reviewed the paper.

References

[1] B.P. Miller, L. Fredriksen, and B. So: ”An
Empirical Study of the Reliability of UNIX
Utilities”, Communications of the ACM 33,
12 (December 1990)

[2] Kan: Metrics and Models in Software
Quality Engineering. Addison-Wesley. pp.
316317.

[3] W. Drewry, T. Ormandy: Flayer:exposing
application internals, Proceedings of the

first USENIX workshop on O↵ensive Tech-
nologies.

[4] G. Hoglund: Runtime Decompilation: The
GreyBox process for Exploiting Software,
Black Hat DC 2003

[5] M. Sutton, A. Greene, P. Amini:
Fuzzing:brute force vulnerability discovery.
Addison-Wesley.

[6] J.Clause, W. Li, A. Orso: Dytan:a generic
dynamic taint analysis framework, Proceed-
ings of the 2007 international symposium on
Software testing and analysis

[7] Valgrind: http://www.valgrind.org

[8] Qemu: http://www.qemu.org

[9] Temu:http://bitblaze.cs.berkeley.edu/temu.html

[10] T. J. McCabe: A Complexity measure,
IEEE transactions on software engineering,
vol. se-2, no.4, december 1976

[11] V. Iozzo: Scripting with BinNavi - Cyclo-
matic Complexity

[12] BinNavi: http://www.zynamics.com/binnavi.html

[13] T. Lengauer and R. E. Tarjan: A fast algo-
rithm for nding dominators in a owgraph,
ACM Transactions on Programming Lan-
guages and Systems

[14] T. Dullien, S. Porst: REIL: A platform-
independent intermediate representation of
disassembled code for static code analysis,
CanSecWest 2009

[15] V. Iozzo: Finding interesting loops us-
ing(Mono)REIL

[16] PIN: http://www.pintool.org

11

ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz.pdf
ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz.pdf
ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz.pdf
ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz.pdf
http://portal.acm.org/citation.cfm?id=1323277
http://portal.acm.org/citation.cfm?id=1323277
http://portal.acm.org/citation.cfm?id=1323277
http://portal.acm.org/citation.cfm?id=1323277
http://www.blackhat.com/presentations/bh-federal-03/bh-fed-03-hoglund.pdf
http://www.blackhat.com/presentations/bh-federal-03/bh-fed-03-hoglund.pdf
http://www.blackhat.com/presentations/bh-federal-03/bh-fed-03-hoglund.pdf
http://www.fuzzing.org
http://www.fuzzing.org
http://portal.acm.org/citation.cfm?id=1273490
http://portal.acm.org/citation.cfm?id=1273490
http://portal.acm.org/citation.cfm?id=1273490
http://portal.acm.org/citation.cfm?id=1273490
http://www.valgrind.org
http://www.qemu.org
http://bitblaze.cs.berkeley.edu/temu.html
http://www.literateprogramming.com/mccabe.pdf
http://www.literateprogramming.com/mccabe.pdf
http://www.literateprogramming.com/mccabe.pdf
http://viozzo.wordpress.com/2009/12/11/scripting-with-binnavi-cyclomatic-complexity/
http://viozzo.wordpress.com/2009/12/11/scripting-with-binnavi-cyclomatic-complexity/
http://www.zynamics.com/binnavi.html
http://portal.acm.org/citation.cfm?id=357071&dl=
http://portal.acm.org/citation.cfm?id=357071&dl=
http://portal.acm.org/citation.cfm?id=357071&dl=
http://portal.acm.org/citation.cfm?id=357071&dl=
http://zynamics.com/downloads/csw09.pdf
http://zynamics.com/downloads/csw09.pdf
http://zynamics.com/downloads/csw09.pdf
http://zynamics.com/downloads/csw09.pdf
http://viozzo.wordpress.com/2009/12/18/finding-interesting-loops-using-monoreil/
http://viozzo.wordpress.com/2009/12/18/finding-interesting-loops-using-monoreil/
http://www.pintool.org


[17] V. Iozzo: Code coverage and BinNavi

12

http://blog.zynamics.com/2010/01/24/code-coverage-and-binnavi

