
European Workshop on Reinforcement Learning 14 (2018) October 2018, Lille, France.

ACCME: Actively Compressed Conditional Mean
Embeddings for Model-Based Reinforcement Learning

Ronnie Stafford r.stafford.12@ucl.ac.uk

John Shawe-Taylor j.shawe-taylor@ucl.ac.uk

Department of Computer Science

University College London

London, UK

Abstract

We present a novel approach for integrating deep non-linear parametric function approxi-
mators into an existing reinforcement learning (RL) control algorithm while maintaining
stable policy updates. Actively compressed conditional mean embeddings (ACCME) replaces
computationally expensive batch kernel regression with a stochastically-trained neural
network architecture for learning the kernel weights of a conditional mean embedding
(CME) transition model. The embeddings model is then used in a model-based dynamic
programming (DP) control algorithm. The ACCME variant i) improves the practicality of
continual training of a CME model in online and data-abundant environments, ii) maintains
a fast-evaluated contraction constraint by a sparse softmax activation function. Additionally
we propose a neurobiologically-inspired mechanism for adding and removing states from
the set of successor states that the embedding is defined over. This is in contrast to the
original CME and later the compressed CME (CCME) models that only add new states
to the set, which is problematic for maintaining non-parametric value functions in large
Markov decision processes (MDPs).

Keywords: Online Model-Based Reinforcement Learning, Neural Networks, Sparsity,
Dynamic Programming, Policy Iteration, Continuous Learning.

1. Introduction

Existing model-based control algorithms either i) separate transition models and policies
(Weber et al., 2017; Ha and Schmidhuber, 2018) in order to plan with simulated rollouts
or ii) use models as a source of predicted one-step transitions to augment model-free value
function updates (Sutton, 1991; Gu et al., 2016). Both approaches render policy improvement
guarantees not entirely forthcoming and in general there is no consensus on how best to
integrate rich online models within RL while maintaining stable policy updates.

We focus on an existing model-based policy iteration (PI) (Howard, 1960) algorithm whose
models are integral to the Bellman operator (T πv)(s) := r(s, π(s))+γES′∼p(·|s,π(s))[v(s′)]
(Sutton and Barto, 1998) where value functions v : S→R are defined over all states s∈S. We
assume interaction with a Markov decision process (MDP) M := {S,A, p, r, γ} possessing
an unknown average reward function r(s,a):=ER∼PR(·|s,π(s))[R]∈[0, Rmax], discrete actions
set A, continuous states S and unknown transition dynamics p(s′|s,a). Agents draw actions
from a deterministic policy π :S→A and seek to learn an optimal policy that maximises the
collection of cumulative discounted reward. If S is discrete, both the reward function and

c©2018 Ronnie Stafford and John Shawe-Taylor.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/.

https://creativecommons.org/licenses/by/4.0/

Stafford and Shawe-Taylor

the transition dynamics E(s,a) :=ES′∼p(·|s,a)[v(s′)] are known, then through contraction
arguments (Szepesvári, 2010) the Bellman operator T π is non-expansive in || · ||∞. Then
vp := (T π)pv0 where vp=[vp(s1), ..., vp(s|S|)]

> and vπ= limp→∞(vp) is the fixed point of
T π, which is PI’s policy evaluation step. The policy improvement step performs a greedy
update πvp(s) := arg maxa∈A[r(s,a) + γES′∼p(·|s,π(s))[vp(s

′)]]. By alternating between policy
evaluation and policy improvement steps, the policy converges to the optimal policy.

Each PI iteration scales ∼ O(|S|2) and is therefore intractable for continuous state spaces.
Usually a linear function approximation v(s) ≈ 〈v,φ(s)〉F is adopted in some function space
F⊂RS with state features φ :S →F . Traditional approximate DP chooses a parametric F
where an explicit φ is either assumed a-priori or learnt. However in the policy evaluation
step this approximate scheme requires solving the projected Bellman equations (Bertsekas,
2011) and may also induce policy chatter (Gordon, 1995; Munos, 2003).

1.1 Approximate PI with Finite Induced Pseudo MDPs

Algorithms that work with non-parametric F whose φ is implicit, allow value functions to
be defined over a discrete set of states. This gives the opportunity to solve the Bellman
equation exactly on these discrete states, even if S is continuous. By choosing F as a
reproducing kernel Hilbert space (RKHS) (Shawe-Taylor and Cristianini, 2004) HL with
kernel L:S×S→R, a CME (Grünewälder et al., 2012a) approximates the expectation in T π

by

ES′∼p(·|s,a)[v(S′)] ≈ 〈v, µ̂CME(s,a)〉HL
=
〈
v,

nk∑
j=1

αj(s,a)φ(s′j)
〉
HL

,

=

nk∑
j=1

αj(s,a)v(s′j) =: Êµ̂(s,a), s′∈Sk, nk=|Sk|, (1)

where Sk is the discrete set of successor states in the transition data Dk := {(s,a, r, s′)i}nk
i=1

collected up to the kth policy iteration from interacting with M. The second line (equation
(1)) is due to the reproducing property (Aronszajn, 1950), µ̂CME is the empirical conditional
mean embedding (Song et al., 2009), L(s′i, s

′
j) := 〈φ(s′i), φ(s′j)〉HL

is the state kernel evaluation

at (s′i, s
′
j) and α := [α1, ...αnk

]> are the kernel weights to be determined as a function
of S×A. Formalised by Yao et al. (2014), replacing the dynamics term in T π with its
finite induced pseudo-MDP Êµ, forms an approximate Bellman operator T̂ πµ :V →V (where
V:={v(s′1), .., v(s′nk

)}). Value functions can then be solved exactly by policy evaluation over
Sk if there is a contraction mapping enforced by the constraint ||α(s′,a)||1≤1 ∀(s′,a)∈Sk×A.
Greedy policy improvement suboptimality (Singh and Yee, 1994) is established as a function
of model accuracy i.e. the more accurate the pseudo MDP to the true dynamics, the less
suboptimal the greedy policy update.

The CME algorithm uses batch regularised kernel regression to estimate a pseudo-MDP
which is equivalent to calculating the conditional weights α(·). We focus on developing the
CME into a fully online algorithm whose model can be continuously updated. We replace
batch kernel regression, which scales ∼O(n 3

k) every time a model update is required, with a
neural architecture trained using stochastic gradient descent (SGD). This is tantamount to
replacing some of the non-parametric model components with a deep neural architecture.

2

Actively Compressed CMEs

Critically however, we retain the non-parametric characteristics of the value function so
that we can still execute exact policy evaluation in a pseudo-MDP. This is achieved by
i) driving back-propagation with a non-parametric loss function and ii) maintaining the
contraction constraint with a sparse softmax activation function. Our method is directly
compared throughout to the compressed CME (CCME) Lever et al. (2016), which also
provides methods to scale the CME algorithm, in particular by the compression of the set
Sk.

2. ACCME

Online Dynamics Model Notation from Lever et al. (2016) is adopted to denote the
compression set of successor states Ck⊆Sk that the compressed version of the embedding
(1) is defined over. The explanation of ACCME’s method of maintaining Ck is deferred
until below. We modify the (batch regularised) CME empirical risk minimisation problem
(Grünewälder et al., 2012b,a) by replacing the conditional kernel weights with a vector-valued
neural network αθ :S×A→R|Ck|,

θ̂= arg min
θ

[
1

2nk

nk∑
i=1

||ΦCkαθ(si,ai)− φ(s′i)||2F + Ω(θ)], (2)

where αθ(·) := [α1(·), .., α|Ck|(·)]
>, ΦCk := [φ(s′1), .., φ(s′|Ck|)], network weights θ, F=HL and

Ω is a regulariser whose description is deferred until below. We re-emphasize that L :S×S→R
is a reproducing kernel such that L(s′m, s

′
n)=〈φ(s′m),φ(s′n)〉HL

which defines a kernel ma-
trix whose entries are Lij :=L(s′i, s

′
j). We adopt the notation LCkCk as the kernel ma-

trix over the entire compression set at the kth policy iteration and define the vector
Ls′iCk := [L(s′i, s

′
1), ..., L(s′i, s

′
|Ck|)]. Differentiating equation (2) with respect to a weight θ∈θ

gives a non-parametric gradient signal,

∂Lα
∂θ

∣∣∣∣
B

=
1

m

m∑
i=1

(
α>θ (si,ai)LCkCk−Ls′iCk

)∂αθ
∂θ

∣∣∣∣
(si,ai)

+ ∂θΩ(θ), (3)

where ∂θΩ(θ) is a subgradient (applied in a non-standard way whose explanation is deferred
until below). The derivative is evaluated over a minibatch B := {(s,a, s′)i}mi=1 drawn from an
experience replay (Mnih et al., 2015) memory B∼Dk, which is a repository of all transitions
experienced up to the kth policy iteration. Equation (3) drives a standard backprop that
updates weights θ ← θ−η ∂Lα∂θ

∣∣
B−η∂θΩ(θ) with learning rate η.

Architecture and Contraction Constraint A CME naturally decomposes the kernel
weights into αCCME(·)=Wψ(·) where W is a weight matrix and ψ(·) is non-parametric
representation over S×A (which for a CCME at iteration k is based on a sparsified set of
state-actions Qk). ACCME parametrises this decomposition as αθ(·)=σ(Wψϑ(·)) where
W∈R|Ck|×dim(ψ) is the last layer weights and ψϑ(·) is the rest of the network up to the
penultimate layer with weights ϑ (see figure 1 i)). We use the notation θ:={W,ϑ} as the
set of all weights. Setting σ(·)=TopNmax(·):=Softmax

(
KeepTopN(·)

)
(Shazeer et al.,

2017) as the final layer’s activation function, then the pseudo-MDP contraction constraint is
satisfied. The network output α(s,a)∈RN is fixed N -sparse where N is chosen a-priori and
sorting the raw activations costs ∼O(N |Ck|). Note that Lever et al. (2016) lazily enforce
their contraction constraint only when the CCME embedding is evaluated. In contrast

3

Stafford and Shawe-Taylor

ACCME’s constraint is an integral part of the model architecture and is both present during
training and is fast-evaluated.

Figure 1: i) Last layer weight groups wg are indexed by g and accumulated in
W := [w1, ...,w|Ck|]

>. When a new state is added Ck←Ck ∪ s′new, then a new weight group
wnew is initialised and added to W. ii) Backprop a sparse gradient signal; active weight
groups wg∈G are updated in the standard way, inactive wg 6∈ G weight groups are shrunk
by a truncated group lasso update. iii) When after training with M minibatches at the kth

policy iteration, then for all g where ||wg||2 has remained 0 for the last 3
4M minibatches,

wg is removed from W and s′g from Ck.

∂L
∂α

∣∣
B

∂L
∂ψ

∣∣
B

wg

ψϑ(·)

Wψϑ(·) αθ(·)

αg(·)

αnew(·)

i) Feed Forward Architecture.

Wψϑ(·)

∂Lα
∂α

∣∣
B

∂Lα
∂ψ

∣∣
B

w∈G

w 6∈G

ii) Backprop sparse ∂Lα
∂α

∣∣
B.

∂L
∂α

∣∣
B

∂L
∂ψ

∣∣
B

Wψϑ(·) αθ(·)

∇ψL(B)

iii) Remove all ||wg||2=0.

Compression Set It is possible to use the Lasso algorithm in Lever et al. (2016) to
maintain Ck as more transition data is experienced, however this set is not adaptive and will
always grow. We offer an alternative mechanism that adaptively removes successor states
and can either be used on its own or in conjunction with the CCME’s Lasso algorithm. We
refer to figure 1 ii) and iii) in the following discussion.

We modify the online truncated gradient (Langford et al., 2009) for lasso (Tibshirani,
1996) into a group lasso (Yuan and Lin, 2006) variant. For each minibatch B, then due
to the last layer’s sparse activation function, only a subset G of weight groups wg will be
involved in the embedding’s activation. Therefore a sparse gradient signal provides only
updates to last layer weights in G. Our novel approach is to apply truncated group lasso
shrinkage to weight groups that are not in G. Infrequently used wg are therefore driven to
zero over M minibatches. This is equivalent to applying the truncated L21 shrinkage to the
inactive weight groups in the last layer. The subgradient term in equation (3) is therfore
replaced by the following function acting on the last layer weights,

T active(wgj ,wg, ηgj) =


max(0, wgj−ηgjλ21|wgj |/||wg||2) wgj>0,wg 6∈G,
min(0, wgj+ηgjλ21|wgj |/||wg||2) wgj<0,wg 6∈G,
wgj − ηλ2wgj otherwise,

(4)

4

Actively Compressed CMEs

where the weight element is defined wgj := Wgj . Critically the last term is an L2-norm
shrinkage that stops the last layer weights from growing out of control (which is exacerbated
due to the adding and removing of weight groups). At the end of training with M minibatches
at each kth policy iteration, then for all groups ||wg||2 that have remained at zero for the
last Igaze=

3
4M minibatches are removed from W and their corresponding states s′ are

removed from Ck. In practice it was found that the regulariser be applied to the middle
third minibatches at each policy iteration.

Learning the Reward Function ACCME also learns the immediate reward function
using loss Lr|B:= 1

2m

∑m
i=1 ||rβ(si,ai)− ri||22, where reward estimate rβ(s,a)=β>ψϑ(si,ai)

uses the learnt representation over states and actions that already exists in the embedding
network. Reward weights β are updated using

∂Lr
∂β

∣∣∣∣
B

=
1

m

m∑
i=1

(
rβ(si,ai)−ri

)
ψϑ(si,ai), (5)

such that β←β−η ∂Lr∂β

∣∣
B. The gradient signal ∂Lr∂ψ

∣∣
B is collected with the embedding’s ∂Lα

∂ψ

∣∣
B

and backpropagated to the rest of the network during training.

3. Experiments

Algorithm 1 refers to the full ACCME implementation. Table 1 shows algorithm component
computational complexities comparing our architecture to the kernel-based CME and CCME
algorithms. The NK-CCME variant is the prequel to ACCME which has the same neural
architecture but like the CCME, uses Lasso to only add states to C and assumes knowledge
of the reward function. Note that c is the fixed incomplete Cholesky decomposition size,
N∗L1-Proj and N∗Lasso are the lazily constrained sparse embedding sizes (which are not* strictly
constant over any set of state-actions) and CCME Lasso components have complexity
l=f(|Ck|, c) e.g l=c|Ck|2 (Friedman et al., 2010) or l=c|Ck| (Efron et al., 2004) (see Lever
et al. (2016) for more details).

Table 1: Computational complexity of algorithm components.

Algorithm: Discrete S CME CCME NK-CCME ACCME
Constraint: L1ProjSparse LassoSparse Softmax TopNmax TopNmax

i) C maintenance − − l l l |Ck|
ii) α model update (full) − n3

k |Qk|3+|Ck|3 |Ck|2 N |Ck| N |Ck|
iii) ||α(s,a)||1≤1 − nk l |Ck| N |Ck| N |Ck|
iv) v̂πk=(T̂ πkµ)Jevalv0 Jeval|S|2 n2

k+JevalN
∗
L1-Projnk |Ck|2+JevalN

∗
Lasso|Ck| (1+Jeval)|Ck|2 |Ck|2+JevalN |Ck| |Ck|2+JevalN |Ck|

v) πk(s) |A||S| |A|nk |A|l |A||Ck| |A|N |Ck| |A|N |Ck|

Figures 2 to 4 show variables (from left to right) vs. kth policy iteration, where the
variables are i) empirical average cumulative discounted reward, ii) the average model update
times and iii) the average planning time. Also compared are CCME algorithms for two types
of lazy constraints L1ProjSparse and LassoSparse. The prequel NKCCME is also included
where full softmax and sparse TopN softmax are the last layer activation functions. The final
ACCME results include two variants where the first assumes the known reward function
and ACCME-R learns the unknown reward function. Figure 5 shows how the compression
set size varies over the life of each algorithm. Three model-free (value-based) DQN (Mnih

5

Stafford and Shawe-Taylor

et al., 2015)-# algorithms are also shown where ‘#’ refers to the number of TD updates the
Q-network experiences at each transition.

During each experiment each variable was sampled 20 times at each policy iteration,
then this was averaged over 20 experiments to provide error bars. From top to bottom the
results of three control tasks are included where CartPole and Quadrocopter Navigation
are taken from Lever et al. (2016), whose trajectory lengths are H=100, thus nnew=200
samples are added to experience replay every kth iteration. An additional quadrocopter
holding pattern experiment is included whose objective is to get the quadrocopter to assume
an orbital holding pattern 10m in diameter whose H=200. This task was created to test
the algorithm’s handling of data abundance. For CartPole |A| = 3 (where dim(A)=1) but
for the quadrocopter tasks |A|=81 (where dim(A)=3 and dim(A)=2 for the navigation
and holding pattern respectively). The state space for CartPole has dim(S)=2 and for the
quadrocopters dim(S)=13.

4. Discussion

We provide empirical evidence in figures 2 to 5 to claim that ACCME although somewhat
sacrifices the CCME’s sample efficiency (yet it remains competitive to model-free DQN), it
improves upon several CCME practical shortcomings: i) ACCME model updates do not
suffer from increasing computational costs that full CCME updates incur as k increases
(middle column). CCME’s suffer this mainly due to a combination of the the cross validation
scheme used in matching pursuit to sparsify ψ(·) and the final batch regression on the weights.
ii) CCME’s have to solve a Lasso minimisation problem every time the lazy contraction
constraint is enforced and this is costly for large action spaces during planning (third column).
ACCME’s fast-evaluated activation function mitigates this problem. iii) Using the CCME’s
Lasso algorithm to maintain C is demonstrated to work in the NKCCME variant, however
this leads to compression sets increasing in size (figure 5). ACCME’s truncated gradient
algorithm is demonstrated to show C maintaining a consistent size.

5. Related Work

Biologically inspired mechanisms to prune and compress artificial networks to improve
computational/memory costs and improve generalisation (LeCun et al., 1990) are widespread.
The use of group lasso regularisers to enforce network structural sparsity has also been
extensively studied (Kong et al., 2014; Yoon and Hwang, 2017; Wen et al., 2016; Lebedev
and Lempitsky, 2016). However a naive application of group lasso subgradients to shrink
group weights does not produce sparsity amongst weight groups. As discussed by Langford
et al. (2009), no ||wg||2 can ever reach exactly zero and instead an arbitrary fine-tuned
threshold parameter is required to define when a weight group can be pruned. Exact
sparsity is a critical requirement for ACCME in order to effectively remove states from the
compression set without disrupting the function approximator. Our group lasso version of
the truncated gradient algorithm does produce sparsity by zeroing weights as they pass zero.
This technique has proven effective across several RL control tasks without additional fine
tuning. To the best of our knowledge, shrinking non-active weight groups (induced by a
sparse softmax activation function during backprop) for each minibatch is novel.

6

Actively Compressed CMEs

Algorithm 1 ACCME-R Policy Iteration

1: Input: Unknown M={S,A, P, PR, γ}, start-state distribution P1, kernel L :S×S→R,
trajectory length H, shared ANN ψϑ(·, ·), sparse top-N count N .

2: Parameters: Sample count nnew=2H, minibatch size m=20, minibatch count M=3000,
λ2=1×10−4, λ21=1×10−1, η21=1, Jimp=10, Jeval=4000, compression set C.

3: Output: πk(s)≈π∗(s) ∀s ∈ S.
4: Initialise: ϑ, β∼N (0, σ2=0.01), W(0)=∅, C0=∅, α(·, ·):=σ(W(0)ψϑ(·, ·)),
r(·, ·):=β>ψϑ(·, ·), q0(·, ·)=r(·, ·), D0=∅, n0=0, π1(·)=greedya∈A(q0(·,a)).

5: for k = 1, 2, ... do . kth policy iteration master index
6: Data acquisition: From behaviour policy ρπk collect Dnew={si,ai, ri, s′i}

nk-1+nnew
i=nk-1+1

7: Dk←Dk−1∪Dnew, S ′new={s′i}
nk-1+nnew
i=nk-1+1 , nk←nk-1+nnew. . aggregate data

8: Augment C: Ck←Ck−1∪S ′new, Wnew←Rnnew×dim(ψ)∼N (0, σ2) ,
W(k)←[W(k−1); Wnew].

9: Train model: α(·, ·), Ck, r(·, ·)←Train
(
α(·, ·), Ck, r(·, ·), Dk

)
.

10: Planning: over v:=[v(s′1), ..., v(s′|Ck|)]
>, (T̂ πkµ v)(·):=r(s′, πk(·))+γα>(·, πk(·))v

11: for i = 1 to Jimp do . planning index
12: v←0
13: for j = 1 to Jeval do . exact policy evaluation
14: v←T̂ πkµ v
15: end for
16: πk(·)←greedya∈A[r(·,a)+γα>(·,a)v] . policy improvement
17: end for
18: πk+1(·)←πk(·)
19: end for
20: return πk+1(·)

1: function Train(α(·, ·), C, r(·, ·), D)
2: for i = 1 to M do
3: Draw minibatch B∼D
4: β←β−η ∂Lr∂β

∣∣
B . update all reward weights.

5: for each wgj∈W do . update all last layer embedding weights
6: wgj←Tactive

(
wgj ,wg, ηgj

)
. diminish inactive weights

7: wgj←wgj−ηgj ∂Lα∂wgj

∣∣
B . sparse non-parametric gradient signal

8: end for
9: ϑ←ϑ−η

[(
∂Lα
∂ψ +∂Lr

∂ψ

)∂ψ
∂ϑ

]∣∣
B , ∀ϑ∈ϑ . update the rest of the network

10: end for
11: for each wg∈W do . remove wg that have been zeroed
12: if ||wg||2 remained 0 over the last 3

4M minibatches then
13: W←W\wg, C←C\s′g . remove weight group from W and state from C
14: end if
15: end for
16: return α(·, ·), C, r(·, ·).

7

Stafford and Shawe-Taylor

Figure 2: Cart Pole

Figure 3: Quadrocopter Navigation

Figure 4: Quadrocopter Holding Pattern

Figure 5: Compression points (CartPole, Quadrocopter Navigation and Quadrocopter
Holding Pattern)

8

Actively Compressed CMEs

References

Nachman Aronszajn. Theory of Reproducing Kernels. Transactions of the American Mathe-
matical Society, 68(3):337–404, 1950. URL http://www.jstor.org/stable/1990404.

Dimitri Bertsekas. Approximate policy iteration: A survey and some new methods. Journal
of Control Theory and Applications, 9(3):310–335, 2011.

Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani, Hemant Ishwaran, Keith
Knight, Jean Michel Loubes, Pascal Massart, David Madigan, Greg Ridgeway, Saharon
Rosset, J. I. Zhu, Robert A. Stine, Berwin A. Turlach, Sanford Weisberg, Iain Johnstone,
and Robert Tibshirani. Least angle regression. Annals of Statistics, 32(2):407–499, 2004.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Regularization Paths for Generalized
Linear Models via Coordinate Descent. Journal Of Statistical Software, 33(1), 2010. URL
https://www.jstatsoft.org/index.

Geoffrey Gordon. Stable Function Approximation in Dynamic Programming. In Proceedings
of the 12th International Conference on Machine Learning (ICML), 1995.

Steffen Grünewälder, Guy Lever, Luca Baldassarre, Arthur Gretton, and Massimiliano Pontil.
Modelling transition dynamics in MDPs with RKHS embeddings. In Proceedings of the
29th International Conference on Machine Learning (ICML), pages 535–542, Edinburgh,
Scotland, UK, 2012a.

Steffen Grünewälder, Guy Lever, Luca Baldassarre, Sam Patterson, Arthur Gretton, and
Massimiliano Pontil. Conditional Mean Embeddings as Regressors. In Proceedings of the
29th International Conference on Machine Learning (ICML), pages 1823–1830, Edinburgh,
Scotland, UK, 2012b.

Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous Deep Q-
Learning with Model-based Acceleration. Proceedings of the 33rd International Conference
on Machine Learning (ICML), 2016.

David Ha and Jürgen Schmidhuber. World Models. CoRR, 2018. doi: 10.5281/zenodo.
1207631. URL http://arxiv.org/abs/1803.10122.

Ronald A. Howard. Dynamic Programming and Markov Processes. MIT Press, Cambridge,
MA, USA, 1960.

Deguang Kong, Ryohei Fujimaki, Ji Liu, Feiping Nie, and Chris Ding. Exclusive
Feature Learning on Arbitrary Structures via L12-norm. In Z Ghahramani, M Welling,
C Cortes, N D Lawrence, and K Q Weinberger, editors, Advances in Neural Information
Processing Systems 27, pages 1655–1663, 2014. URL https://papers.nips.cc/paper/

5631-exclusive-feature-learning-on-arbitrary-structures-via-ell{_}12-norm.

John Langford, Lihong Li, and Tong Zhang. Sparse Online Learning via Truncated Gradient.
Journal of Machine Learning Research (JMLR), 10(1):777–801, 2009. URL http://www.

jmlr.org/papers/volume10/langford09a/langford09a.pdf.

9

http://www.jstor.org/stable/1990404
https://www.jstatsoft.org/index
http://arxiv.org/abs/1803.10122
https://papers.nips.cc/paper/5631-exclusive-feature-learning-on-arbitrary-structures-via-ell{_}12-norm
https://papers.nips.cc/paper/5631-exclusive-feature-learning-on-arbitrary-structures-via-ell{_}12-norm
http://www.jmlr.org/papers/volume10/langford09a/langford09a.pdf
http://www.jmlr.org/papers/volume10/langford09a/langford09a.pdf

Stafford and Shawe-Taylor

Vadim Lebedev and Victor Lempitsky. Fast ConvNets Using Group-wise Brain Damage.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. URL
http://arxiv.org/abs/1506.02515.

Yann LeCun, John S Denker, and Sara A Solla. Optimal Brain Damage. In D S Touretzky,
editor, Advances in Neural Information Processing Systems 2, pages 598–605. Morgan-
Kaufmann, 1990. URL http://papers.nips.cc/paper/250-optimal-brain-damage.

pdf.

Guy Lever, John Shawe-Taylor, Ronnie Stafford, and Csaba Szepesvári. Compressed
Conditional Mean Embeddings for Model-Based Reinforcement Learning. In Association
for the Advancement of Artificial Intelligence (AAAI), pages 1779–1787, Phoenix, Arizona,
2016. URL http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12436.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei a Rusu, Joel Veness, Marc
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski,
Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan
Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 2015. URL http://dx.doi.

org/10.1038/nature14236.

Rémi Munos. Error Bounds for Approximate Policy Iteration. Proceedings of the 20th
International Conference on Machine Learning (ICML), 2:560–567, 2003.

John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, 1 edition, jun 2004. ISBN 0521813972.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-
Experts Layer. International Conference on Learning Representations (ICLR), 2017. URL
http://arxiv.org/abs/1701.06538.

Satinder Singh and Richard Yee. An Upper Bound on the Loss from Approximate Optimal-
Value Functions. Machine Learning, 16(3):227–233, sep 1994. URL http://dx.doi.org/

10.1023/A:1022693225949.

Le Song, Jonathan Huang, Alex Smola, and Kenji Fukumizu. Hilbert Space Embeddings of
Conditional Distributions with Applications to Dynamical Systems. In Proceedings of the
26th International Conference on Machine Learning (ICML), pages 961–968, 2009. URL
http://portal.acm.org/citation.cfm?doid=1553374.1553497.

Richard Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM
SIGART Bulletin, 2:160–163, 1991.

Richard Sutton and Andrew Barto. Reinforcement Learning: An Introduction. A Bradford
Book - MIT Press, Cambridge, MA, USA, 1st edition, mar 1998. ISBN 0262193981.

Csaba Szepesvári. Algorithms for Reinforcement Learning, volume 4 of Synthesis Lectures
on Artificial Intelligence and Machine Learning. Morgan & Claypool, San Rafael, CA,
USA, jan 2010. URL http://dx.doi.org/10.2200/s00268ed1v01y201005aim009.

10

http://arxiv.org/abs/1506.02515
http://papers.nips.cc/paper/250-optimal-brain-damage.pdf
http://papers.nips.cc/paper/250-optimal-brain-damage.pdf
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12436
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature14236
http://arxiv.org/abs/1701.06538
http://dx.doi.org/10.1023/A:1022693225949
http://dx.doi.org/10.1023/A:1022693225949
http://portal.acm.org/citation.cfm?doid=1553374.1553497
http://dx.doi.org/10.2200/s00268ed1v01y201005aim009

Actively Compressed CMEs

Robert Tibshirani. Regression selection and shrinkage via the lasso. Journal of the Royal Sta-
tistical Society B, 58(1):267–288, 1996. URL http://citeseer.ist.psu.edu/viewdoc/

summary?doi=10.1.1.35.7574.

Theophane Weber, Sébastien Racanière, David P Reichert, Lars Buesing, Arthur Guez,
Danilo Jimenez Rezende, Adrià Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yujia
Li, Razvan Pascanu, Peter Battaglia, David Silver, and Daan Wierstra. Imagination-
Augmented Agents for Deep Reinforcement Learning. CoRR, abs/1707.0, 2017. URL
http://arxiv.org/abs/1707.06203.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning Struc-
tured Sparsity in Deep Neural Networks. In 30th Conference on Neural Informa-
tion Processing Systems (NIPS 2016), 2016. URL http://papers.nips.cc/paper/

6504-learning-structured-sparsity-in-deep-neural-networks.

Hengshuai Yao, Csaba Szepesvári, Bernardo Avila Pires, and Xinhua Zhang. Pseudo-MDPs
and Factored Linear Action Models. In Adaptive Dynamic Programming and Reinforcement
Learning (ADPRL), pages 1–9, 2014.

Jaehong Yoon and Sung Ju Hwang. Combined Group and Exclusive Sparsity for Deep Neural
Networks. In Proceedings of the 34 th International Conference on Machine Learning
(ICML), Sydney, Australia, 2017.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society. Series B: Statistical Methodology, 68(1):49–67,
2006. URL http://pages.stat.wisc.edu/{~}myuan/papers/glasso.final.pdf.

11

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.7574
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.7574
http://arxiv.org/abs/1707.06203
http://papers.nips.cc/paper/6504-learning-structured-sparsity-in-deep-neural-networks
http://papers.nips.cc/paper/6504-learning-structured-sparsity-in-deep-neural-networks
http://pages.stat.wisc.edu/{~}myuan/papers/glasso.final.pdf

	Introduction
	Approximate PI with Finite Induced Pseudo MDPs

	ACCME
	Experiments
	Discussion
	Related Work

