OCPI 2.3.0

Open Charge Point Interface

https://github.com/ocpi & https://evroaming.org/

document version 2.3.0, 2025-02-21

Table of Contents

1. OCPI
1.1. OCPI 2.3.0
1.2.0CP12.2.1
1.3.0CPI1 2.2
1.3.1. Changes/New functionality:
1.4. Introduction and background
2. Terminology and Definitions
2.1. Requirement Keywords
2.2. Abbreviations
2.3. EV Charging Market Roles
2.3.1. Typical OCPI implementations per Role
2.4. Terminology
2.5. Provider and Operator abbreviation
2.6. Charging topology
2.7. Variable names
2.8. Cardinality
2.9. Data Retention
2.9.1. Between OCPI version
3. Supported Topologies
3.1. Peer-to-peer
3.2. Multiple peer-to-peer connections
3.3. Peer-to-peer multiple the same roles
3.4. Peer-to-peer dual roles
3.5. Peer-to-peer mixed roles
3.6. Multiple peer-to-peer
3.7. Platforms via Hub
3.8. Platforms via Hub and direct
4. Transport and format
4.1.JSON / HTTP implementation guide
4.1.1. Security and authentication
4.1.2. Authorization header
4.1.3. Pull and Push
4.1.4. Request format
4.1.4.1.GET
4.1.4.2.PUT
4.1.4.3. PATCH
4.1.5. Client Owned Object Push
4.1.5.1. Errors
4.1.6. Client Owned Object Pull

4.1.7. Response format

4.1.7.1. Example
4.1.7.2. Example
4.1.7.3. Example
4.1.7.4. Example
4.1.7.5. Example

: Version information response (list of objects)

: Version details response (one object)

: Tokens GET Response with one Token object. (CPO end-point) (one object)
: Tokens GET Response with list of Token objects. (eMSP end-point) (list of objects)

: Response with an error (contains no data field)

© 00 1 0 9 9 G R R R

NN RN NN NN N RN RN RN RN N N R R S S S e S e e e S e s S s s s e
D U U R R R W WW WO OO0 W VW O O OO U R WWWN R R R O O

4.1.8. Non-specified JSON fields
4.1.9. Message Routing
4.1.9.1. Platforms
4.1.9.2. Message Routing Headers
4.1.9.3. Broadcast Push
4.1.9.4. Open Routing Request
4.1.9.5. GET All via Hubs

4.1.9.6. Overview of required/optional routing headers for different scenarios

4.1.9.7. GET All via Hubs
4.1.9.8. Timestamps and Objects send via Hubs
4.1.10. No data available
4.2. Unique message IDs
4.3. Interface endpoints
4.4. Offline behaviour

5. Status codes

5.1. 1xxx: Success
5.2. 2xxx: Client errors
5.3. 3xxX: Server errors

5.4. 4xxx: Hub errors

6. Versions module

6.1. Version information endpoint
6.1.1. Data
6.1.2. Version class
6.1.3. GET
6.1.3.1. Example
6.2. Version details endpoint
6.2.1. Data
6.2.2. Endpoint class
6.2.3. InterfaceRole enum
6.2.4. ModuleID OpenEnum
6.2.5. VersionNumber OpenEnum
6.2.5.1. Custom Modules
6.2.6. GET
6.2.6.1. Examples

7. Credentials module

7.1. Use cases
7.1.1. Registration
7.1.2. Updating to a newer version
7.1.3. Changing endpoints for the current version
7.1.4. Updating the credentials and resetting the credentials token
7.1.5. Errors during registration
7.1.6. Required endpoints not available
7.2. Interfaces and endpoints
7.2.1. GET Method
7.2.2. POST Method
7.2.3. PUT Method
7.2.4. DELETE Method

26
27
27
27
28
30
31
32
35
35
36
36
37
37
39
39
39
40
40
41
41
41
41
41
42
42
42
43
43
43
44
44
44
44
46
46
46
48
48
48
49
49
49
49
50
50
50

7.3. Object description
7.3.1. Credentials object
7.3.2. Examples
7.4. Data types
7.4.1. CredentialsRole class
8. Locations module
8.1. Flow and Lifecycle
8.1.1. No public charging or roaming
8.1.2. Group of Charge Points
8.1.3. OCPP 1.x Charge Points with multiple connectors per EVSE
8.2. Interfaces and endpoints
8.2.1. Sender Interface
8.2.1.1. GET Method
8.2.2. Receiver Interface
8.2.2.1. GET Method
8.2.2.2. PUT Method
8.2.2.3. PATCH Method
8.3. Object description
8.3.1. Location Object
8.3.1.1. Example public charging location
8.3.1.2. Example destination charging location
8.3.1.3. Example destination charging location not published, but paid guest usage possible
8.3.1.4. Example charging location with limited visibility
8.3.1.5. Example private charge point with eMSP app control
8.3.1.6. Example charge point in a parking garage with opening hours
8.3.2. EVSE Object
8.3.3. Connector Object
8.3.4. Parking object
8.4. Data types
8.4.1. AdditionalGeoLocation class
8.4.2. BusinessDetails class
8.4.3. Capability OpenEnum
8.4.4. ConnectorCapability OpenEnum
8.4.5. ConnectorFormat enum
8.4.6. ConnectorType OpenEnum
8.4.7. EnergyMix class
8.4.7.1. Examples
8.4.8. EnergySource class
8.4.9. EnergySourceCategory enum
8.4.10. Environmentallmpact class
8.4.11. EnvironmentallmpactCategory OpenEnum
8.4.12. EVSEParking class
8.4.13. EVSEPosition enum
8.4.14. ExceptionalPeriod class
8.4.15. Facility OpenEnum
8.4.16. GeoLocation class

8.4.17. Hours class

50
50
51
53
53
54
54
54
54
55
55
55
56
58
58
59
60
61
62
64
66
67
67
68
69
71
72
73
75
75
75
76
76
77
77
79
79
80
80
80
80
81
81
81
82
82
83

8.4.17.1. Example: 24/7 open with exceptional closing.

8.4.17.2. Example: Opening Hours with exceptional closing.

8.4.17.3. Example: Opening Hours with exceptional opening.

8.4.18. Image class
8.4.19. ImageCategory OpenEnum
8.4.20. ParkingDirection enum
8.4.21. ParkingRestriction OpenEnum
8.4.22. ParkingType OpenEnum
8.4.23. PowerType enum
8.4.24. PublishTokenType class
8.4.25. RegularHours class
8.4.25.1. Example
8.4.26. Status enum
8.4.27. StatusSchedule class
8.4.28. VehicleType OpenEnum
9. Sessions module
9.1. Flow and Lifecycle
9.1.1. Push model
9.1.2. Pull model
9.1.3. Set: Charging Preferences
9.1.4. Reservation
9.2. Interfaces and Endpoints
9.2.1. Sender Interface
9.2.1.1. GET Method
9.2.1.2. PUT Method
9.2.2. Receiver Interface
9.2.2.1. GET Method
9.2.2.2. PUT Method
9.2.2.3. PATCH Method
9.3. Object description
9.3.1. Session Object
9.3.1.1. Examples
9.3.2. ChargingPreferences Object
9.4. Data types
9.4.1. ChargingPreferencesResponse enum
9.4.2. ProfileType enum
9.4.3. SessionStatus enum
10. CDRs module
10.1. Flow and Lifecycle
10.1.1. Credit CDRs
10.1.2. Push model
10.1.3. Pull model
10.2. Interfaces and Endpoints
10.2.1. Sender Interface
10.2.1.1. GET Method
10.2.2. Receiver Interface
10.2.2.1. GET Method

83
84
84
85
85
86
86
87
87
87
88
88
89
89
90
91
91
91
91
91
91
92
92
92
93
94
94
95
96
97
97
99
100
100
100
101
101
102
102
102
102
103
103
103
103
104
104

10.2.2.2. POST Method
10.3. Object description
10.3.1. CDR Object
10.3.1.1. Example of a CDR
10.4. Data types
10.4.1. AuthMethod enum
10.4.2. CdrDimension class
10.4.3. CdrDimensionType enum
10.4.4. CdrLocation class
10.4.5. CdrToken class
10.4.6. ChargingPeriod class
10.4.7. SignedData class
10.4.8. SignedValue class
11. Tariffs module
11.1. Flow and Lifecycle
11.1.1. Push model
11.1.2. Pull model
11.2. Interfaces and Endpoints
11.2.1. Sender Interface
11.2.1.1. GET Method
11.2.2. Receiver Interface
11.2.2.1. GET Method
11.2.2.2. PUT Method
11.2.2.3. DELETE Method
11.3. Object description
11.3.1. Tariff Object
11.3.1.1. Examples
11.4. Data types
11.4.1. DayOfWeek enum
11.4.2. PriceComponent class
11.4.2.1. Example Tariff
11.4.3. PriceLimit class
11.4.4. ReservationRestrictionType enum
11.4.5. TariffElement class
11.4.6. TariffDimensionType enum
11.4.7. TariffRestrictions class
11.4.7.1. Example: Tariff with max_power Tariff Restrictions
11.4.7.2. Example: Tariff with max_duration Tariff Restrictions
11.4.8. TariffType enum
11.4.9. TaxIncluded enum
12. Tokens module
12.1. Flow and Lifecycle
12.1.1. Push model
12.1.2. Pull model
12.1.3. Real-time authorization
12.2. Interfaces and endpoints

12.2.1. Receiver Interface

105
106
106
110
111
111
111
111
112
113
114
114
115
116
116
116
116
116
116
117
118
118
119
120
120
120
122
140
140
140
141
144
144
144
144
145
147
148
149
149
150
150
150
150
150
151
151

12.2.1.1. GET Method
12.2.1.2. PUT Method
12.2.1.3. PATCH Method
12.2.2. Sender Interface
12.2.2.1. GET Method
12.2.2.2. POST Method
12.3. Object description
12.3.1. AuthorizationInfo Object
12.3.2. Token Object
12.3.2.1. Examples
12.4. Data types
12.4.1. AllowedType enum
12.4.2. EnergyContract class
12.4.3. LocationReferences class
12.4.4. TokenType OpenEnum
12.4.5. WhitelistType enum
13. Commands module
13.1. Flow
13.2. Interfaces and endpoints
13.2.1. Receiver Interface
13.2.1.1. POST Method
13.2.1.2. Request Body
13.2.2. Sender Interface
13.2.2.1. POST Method
13.2.2.2. Request Body
13.3. Object description
13.3.1. CancelReservation Object
13.3.2. CommandResponse Object
13.3.3. CommandResult Object
13.3.4. ReserveNow Object
13.3.5. StartSession Object
13.3.6. StopSession Object
13.3.7. UnlockConnector Object
13.4. Data types

13.4.1. CommandResponseType enum

13.4.2. CommandResultType enum
13.4.3. CommandType OpenEnum
14. ChargingProfiles module
14.1. Smart Charging Topologies

14.1.1. The eMSP generates ChargingProfiles.
14.1.2. The eMSP delegated Smart Charging to SCSP.
14.1.3. The CPO delegated Smart Charging to SCSP.

14.2. Use Cases
14.3. Flow

14.3.1. Example of setting/updating a ChargingProfile by the Sender (typically the SCSP or eMSP)
14.3.2. Example of a setting/updating a ChargingProfile by the SCSP via the eMSP
14.3.3. Example of a removing/clearing ChargingProfile sent by the Sender (typically the eMSP or SCSP)

151
152
153
153
153
154
156
156
156
157
158
158
158
159
159
159
161
161
165
165
165
165
166
167
167
167
167
167
168
168
169
170
171
171
171
171
172
173
173
174
174
174
175
175
176
177
178

14.3.4. Example of a removing/clearing ChargingProfile send by the SCSP via the eMSP 178

14.3.5. Example of a GET ActiveChargingProfile send by the Sender (typically the eMSP or SCSP) 179
14.3.6. Example of a GET ActiveChargingProfile send by the SCSP via eMSP 180
14.3.7. Example of the Receiver (typically the CPO) sending an updated ActiveChargingProfile 180
14.3.8. Example of the Receiver (typically the CPO) sending an updated ActiveChargingProfile to the SCSP
via the eMSP 181
14.4. Interfaces and endpoints 181
14.4.1. Receiver Interface 181
14.4.1.1. GET Method 182
14.4.1.2. PUT Method 183
14.4.1.3. Request Body 183
14.4.1.4. DELETE Method 184
14.4.2. Sender Interface 184
14.4.2.1. POST Method 185
14.4.2.2. Request Body 185
14.4.2.3. Response Body 186
14.4.2.4. PUT Method 186
14.4.2.5. Request Body 186
14.4.2.6. Response Body 187
14.5. Object description 187
14.5.1. ChargingProfileResponse Object 187
14.5.2. ActiveChargingProfileResult Object 187
14.5.3. ChargingProfileResult Object 187
14.5.4. ClearProfileResult Object 188
14.5.5. SetChargingProfile Object 188
14.6. Data types 188
14.6.1. ActiveChargingProfile class 188
14.6.2. ChargingRateUnit enum 188
14.6.3. ChargingProfile class 189
14.6.4. ChargingProfilePeriod class 189
14.6.5. ChargingProfileResponseType enum 190
14.6.6. ChargingProfileResultType enum 190
15. HubClientInfo module 191
15.1. Scenarios 191
15.1.1. Another Party becomes CONNECTED 191
15.1.2. Another Party goes OFFLINE 191
15.1.3. Another Party becomes PLANNED 191
15.1.4. Another Party becomes SUSPENDED 191
15.2. Flow and Life-cycle 191
15.2.1. Push model 191
15.2.2. Pull model 192
15.2.3. Still alive check. 192
15.3. Interfaces 192
15.3.1. Receiver Interface 192
15.3.1.1. GET Method 193
15.3.1.2. PUT Method 193

15.3.2. Sender Interface 194

15.3.2.1. GET Method 194

15.3.2.2. Request Parameters 194
15.3.2.3. Response Data 195

15.4. Object description 195
15.4.1. ClientInfo Object 195
15.5. Data types 195
15.5.1. ConnectionStatus enum 195
16. Payments module 197
16.1. Usage Flows 197
16.2. Terminal Assignment 197
16.3. Terminal Activation 198
16.4. Transaction 198
16.5. Interfaces and Endpoints 199
16.5.1. Sender Interface 199
16.5.1.1. Terminals Interface 199
16.5.1.2. Financial Advice Confirmation Interface 199
16.5.1.3. GET Terminals Method 200
16.5.1.4. GET Terminal Method 200
16.5.1.5. PATCH Terminal Method 201
16.5.1.6. PUT Terminal Method 201
16.5.1.7. POST Activate Terminal Method 202
16.5.1.8. POST Deactivate Terminal Method 203
16.5.1.9. GET Financial Advice Confirmations Method 203
16.5.1.10. GET Financial Advice Confirmation Method 204
16.5.2. Receiver Interface 205
16.5.2.1. Terminals Interface 205
16.5.2.2. Financial Advice Confirmation Interface 205
16.5.2.3. GET Terminal Method 205
16.5.2.4. POST Terminal Method 205
16.5.2.5. GET Financial Advice Confirmation Method 206
16.5.2.6. POST Financial Advice Confirmation Method 207

16.6. Object description 207
16.6.1. Terminal Object 207
16.6.1.1. Examples 208
16.6.2. Financial Advice Confirmation Object 209
16.6.2.1. Examples 210

16.7. Data types 211
16.7.1. InvoiceCreator enum 211
16.7.2. CaptureStatusCode enum 211
17. Types 212
17.1. class 212
17.2. enum 212
17.3. OpenEnum type 212
17.4. CiString type 212
17.5. DateTime type 212
17.6. DisplayText class 213

17.7. number type 213

17.8. Price class
17.9. TaxAmount class
17.10. Role enum
17.11. string type
17.12. URL type

18. Changelog
18.1. Changes between 2.2.1-d2 and 2.3.0
18.2. Changes between 2.2.1 and 2.2.1-d2
18.3. Changes between OCPI 2.2 and 2.2.1
18.4. Changes between OCPI 2.1.1 and 2.2

213
213
214
214
214
215
215
215
216
217

OCPI12.3.0

Copyright © 2014 - 2025 EVRoaming Foundation. All rights reserved.

This document is made available under the Creative Commons Attribution- NoDerivatives 4.0 International Public

License

(https://creativecommons.org/licenses/by-nd/4.0/legalcode).

EVRoaming Foundation

.) EVRoaming Foundation

Realising cross-border charging

OCPI is developed and managed by the EVRoaming Foundation. The EVRoaming Foundation is a contributor based
organisation. Everyone can join the EVRoaming Foundation via https://www.evroaming.org

The EVRoaming Foundation aims to keep OCPI as free from IPR as possible. If you want to contribute by adding new
functionality or features, you are required to send us the signed Contributor Agreement (CA) document before
contributing. To get the CA, ask for it by sending an email to: info@evroaming.org.

https://creativecommons.org/licenses/by-nd/4.0/legalcode
https://www.evroaming.org
mailto:info@evroaming.org

Version History

Version

2.3.0-rc2

2.2.1-d2

221

2.2-d2

Date

2025-01-16

2023-09-07

2021-10-06

2020-06-12

OCPI12.3.0

Author

Greg Fitzpatrick
ChargeHub

Petar Jovevski
Metergram

Robert Gliguroski
Metergram

Philipp Fischbacher
ChargePoint
Reinier Lamers
SWTCH Energy

Jakub Karbownik
Ekoenergetyka
Rudolph Froger
TandemDrive
Robert de Leeuw
EVA Global
Reinier Lamers
thomer

Robert de Leeuw
ithomer

Reinier Lamers
thomer

Robert de Leeuw
ithomer

Description

* Make OCPI extensible

* Add vehicle types to EVSE

Add list of accepted eMSPs to EVSE

* Add a Parking object linked to EVSE

* Information for people with disabilities
» Support for North American taxes

* 15118 Plug and Charge compatibility flags on
Connectors

* Make Hub support incremental from regular multi-
party Platform support

Documentation update.

final release of OCPI 2.2.1.
Added country_code and party_id to CdrToken class.

Fixed datatype of CDR SignedData URL.
Improved some descriptions.

Fixed length of CDR SignedData, increased to 5000.
Change signed data related fields to string

postal_code optional in CdrLocation.

state added to CdrLocation.

AC_2_PHASE and AC_2_PHASE_SPLIT added to PowerType
in Connector

Additional types added to ConnectorType in Connector
Added connector_id to StartSession command and
START_SESSION_CONNECTOR_REQUIRED to EVSE Capabilities.
Added optional field: home_charging_compensation to CDR.
Improved description.examples Tariff for step_size

2nd documentation revision of the OCPI 2.2 spec.
Contains textual improvements and fixes some of the
examples.

Most improvements in the tarrifs module, especially
step_size is better explained.

OCPI12.3.0

Version Date Author Description
2.2 2019-09-30 Robert de Leeuw Added support for Roaming Hubs
ihomer Adds support for Platforms with multiple/different roles,

additional roles

Adds support for smart charging

Lots of improvements to existing modules
See changelog

2.1.1-d2 2019-06-21 Robert de Leeuw Fixes the command module documentation, fixes a lot of
ihomer examples, lots of small textual improvements: see
changelog
2.1.1 2017-06-08 Robert de Leeuw Fixed 4 bugs found in OCPI 2.1, lots of small textual
ihomer improvements: see changelog
2.1 2016-04-08 Robert de Leeuw Added command module.
ihomer Added support for real-time authorization.

Lots of small improvements: see changelog

2.0-d2 2016-02-15 Robert de Leeuw 2nd documentation revision of the OCPI 2.0 spec.
ihomer Only documentation updated: ConnectorType of
Connector

was not visible, credentials clarified, location URL
segments incorrect (now string, was int),

minor textual updates.

DateTime with timezones is still an issue

2.0 2015-12-30 Robert de Leeuw First official release of OCPI.
ithomer
Simon Philips
Becharged
Chris Zwirello
The New Motion
Simon Schilling

0.4 2014-11-04 Olger Warnier First draft of OCPI. (Also known as Draft v4)
The New Motion

0.3 2014-05-06 Olger Warnier First draft of OCPI. (Also known as Draft v3)
The New Motion

Document revisions There can be multiple documentation revisions of the same version of the OCPI protocol.

The newer documentation revisions of the same protocol version can never change the content of the messages: no
new fields or renaming of fields. A new revision can only clarify/fix texts/descriptions and fix typos etc.

These documentation revisions (not the first) will be named: d2, d3, d4 etc.
Examples:

* OCPI 2.1.1 is a different protocol version of OCPI than OCPI 2.1.

* OCPI 2.2-d2 is the same protocol version as OCPI 2.2, but a newer documentation revision.

OCPI12.3.0

1. OCPI

1.1. OCP1 2.3.0

OCPI 2.3.0 is a release with only the minimal changes to 2.2.1 that are necessary to meet two requirements: first, to
comply with new laws and regulations coming into effect in 2025, and second, to provide room for custom
extensions to OCPI without breaking compatibility without other implementers.

The changes that are made to address these requirements are:

* make it possible to define extra modules, fields, enumeration values for certain enums,

add a Parking object to give information about the parking at an EVSE, and whether it is suitable for heavy-duty
vehicles or people with disabilities,

support EVSE information for people with disabilities,

support North American tax structures,

* include some straightforward enumeration values from the OCPI 3.0 draft, including the ones indicating ISO
15118 support, and

* add a new field in the Credentials object to give a hub’s party ID, which allows platforms with hub support to
connect to platforms that don’t implement hub functionality.

add new Payments module

1.2. 0CP12.2.1

During implementation of OCPI 2.2 some issues where found that required updating the protocol to fix them. These
are all minor changes, so most OCPI 2.2 implementations would need no, or only minor changes, to upgrade to OCPI
2.2.1.

For more information on detailed changes see changelog.

1.3. OCPI 2.2

OCPI 2.2 includes new functionality and improvements, compared to OCPI 2.1.1.

1.3.1. Changes/New functionality:

* Support for Hubs
* Message routing headers

e Hub Client Info

Support Platforms with multiple/different roles, additional roles
» Charging Profiles

» Preference based Smart Charging

* Improvements:

* CDRs: Credit CDRs, VAT, Calibration law/Eichrecht support, Session_id, AuthorizationReference,

OCPI12.3.0

CdrLocation, CdrToken

* Sessions: VAT, CdrToken, How to add a Charging Period

Tariffs: Tariff types, Min/Max price, reservation tariff, Much more examples
* Locations: Multiple Tariffs, Lots of small improvements
» Tokens: Group_id, energy contract

* Commands: Cancel Reservation added

For more information on detailed changes see changelog.

1.4. Introduction and background

The Open Charge Point Interface (OCPI) enables a scalable, automated EV roaming setup between Charge Point
Operators and e-Mobility Service Providers. It supports authorization, charge point information exchange (including
live status updates and transaction events), charge detail record exchange, remote charge point commands and the
exchange of smart-charging related information between parties.

It offers market participants in EV an attractive and scalable solution for (international) roaming between networks,
avoiding the costs and innovation-limiting complexities involved with today’s non-automated solutions or with
central roaming hubs. As such it helps to enable EV drivers to charge everywhere in a fully-informed way, helps the
market to develop quickly and helps market players to execute their business models in the best way.

What does it offer (main functionality):

* A good roaming system (for bilateral usage and/or via a Roaming Hub).
» Real-time information about location, availability and price.

* A uniform way of exchanging data (Notification Data Records and Charge Data Records), before during and
after the transaction.

» Remote mobile support to access any Charge Point without pre-registration.

This document describes a combined set of standards based on the work done in the past. Next to that, the evolution
of these standards and their use are taken into account and some elements have been updated to match current use.

OCPI is developed with support of:

evRoaming4EU project and its partners:

Realizing cross-border charging in Europe

‘: evRoaming4€EU

ECISS project and its partners:

=CISS

From electric vehicle to smart society

OCPI12.3.0

The latest version of this specification can be found here: https://github.com/ocpi/ocpi

https://github.com/ocpi/ocpi

OCPI12.3.0

2. Terminology and Definitions

2.1. Requirement Keywords

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",

"RECOMMENDED",

"MAY", and "OPTIONAL" in this document are to be interpreted as described in

https://www.ietf.org/rfc/rfc2119.txt.

2.2. Abbreviations

Abbr.

CDR
CPO
eMSP
EV

EVSE

JSON
NAP
NSP
OCPP
SCSP
PTP

PSp

Description

Charge Detail Record.
Charging Point Operator.
e-Mobility Service Provider.
Electric Vehicle.

Electric Vehicle Supply Equipment. Is considered as an independently operated and managed
part of a Charge Point that can deliver energy to one EV at a time.

JavaScript Object Notation.
National Access Point.
Navigation Service Provider.
Open Charge Point Protocol.
Smart Charging Service Provider.
Payment Terminal Provider.

Payment Service Provider.

2.3. EV Charging Market Roles

In the EV Charging landscape, different market roles can be identified.

Role

CPO

eMSP

NAP

NSP

Description
Charging Point Operator. Operates a network of Charge Points.
e-Mobility Service Provider. Gives EV drivers access to charging services.

National Access Point. Provides a national database with all (public) charging
locations. Information can be sent and retrieved from the NAP. This makes it
different from a typical NSP.

Navigation Service Provider. Provides EV drivers with location information of Charge
Points. Usually only interested in Location information.

https://www.ietf.org/rfc/rfc2119.txt

OCPI12.3.0

Role Description

Roaming Hub A business that facilitates roaming by offering integration with multiple roaming
partners through one technical connection.

SCSP Smart Charging Service Provider. Provides Smart Charging service to other parties.
Might use a lot of different inputs to calculate Smart Charging Profiles.

PTP Payment Terminal Provider. Refers to the party operating the payment terminal
management system. This can be the terminal vendor (re/seller) and manufacturer

PSP Payment Service Provider. Refers to the party providing acquiring services, which is
typically a bank or institution that accepts and processes electronic payments.
Merchant can enter into a direct contract with an acquirer or use the services of an
intermediary (a payment service provider)

Some of these roles can be combined in one company. A Platform can provide service for multiple CPOs or eMSPs,
but also for both eMSPs and CPOs.

OCPI 2.0 and OCPI 2.1.1 had a very strict definition of roles: only CPO and eMSP. But this is rare in the real world,
there are almost no parties that are strictly CPO or eMSP and have their own platform. In the real world, lots of
parties provide service to CPOs that are not running their own platform. A lot of CPOs are also eMSP. With OCPI 2.1.1
and earlier that meant having to set up an OCPI connection per role.

OCPI 2.2 introduced more roles and abstracts the role from the OCPI connection itself. OCPI 2.2, 2.2.1 and 2.3.0 are
described in terms of about Platforms connecting to Platforms. The Platform itself is not a role. The Platform
provides services for 1 or more roles.

Examples of platforms:

* A pure CPO: Not providing services to other CPOs. Not being an eMSP. Running its own software that connects
via OCPL
Is defined in OCPI as a Platform has 1 CPO role, the CPO role of that company.

* A Company that has a cloud-based eMSP software solution, it offers to companies that want to be eMSP, but
don’t want to host/run their own software.
Is a Platform that has a number of eMSP roles, one for each eMSP the company is providing services for. Not for
this company itself because the company itself is not an eMSP.

* A Company that operates public Charge Points and also provides eMSP service to EV drivers, running their own
software platform.
Is seen in OCPI as a Platform that has 2 roles: CPO and eMSP for this company.

* If one the companies above starts to offer their service to other CPOs and eMSP, it is in OCPI still seen as 1
platform. This platform then provides multiple CPO and eMSP roles.

* A Roaming Hub is in OCPI terms also a Platform. Other OCPI Platforms can connect to it.

2.3.1. Typical OCPI implementations per Role

The following table shows the typical modules implemented by the different roles. These are not required. The table
shows the typical communication role: Receiver, Sender or Both.

Modules

CDRs

Charging Profiles
Commands
Credentials

Hub Client Info
Locations
Sessions

Tariffs

Tokens
Payments

Versions

OCPI12.3.0

CPO eMSP Roaming NSP NAP SCSP PTP
Hub

Sender Receiver Both Receiver

Receiver Both Sender

Receiver Sender Both Sender

Both Both Both Both Both Both Both

Receiver Receiver Sender Receiver Receiver Receiver

Sender Receiver Both Receiver Both Receiver

Sender Receiver Both Receiver Receiver

Sender Receiver Both Receiver Both Receiver

Receiver Sender Both

Receiver Sender

Both Both Both Both Both Both Both

2.4. Terminology

Term

Broadcast Push

Charge Point

Payment Terminal

Client Owned Objects

Configuration Module

Description

When communicating via a Hub, a data owner can do a single call to the Hub, the
Hub then calls all receiving systems.
See: Broadcast push

The physical system where an EV can be charged. A Charge Point has one or more
EVSEs. Sometimes called Charging Station

A payment terminal allows a merchant to capture card information and to transmit
this data to the acquiring party for authorization and finally to transfer funds to the
merchant. In order to provide acquiring services on a payment terminal strict
protocols and certifications apply.

In a normal REST interface the server is the owner of data, when a new resource is
created by calling POST, the server creates the URL where the resource can be found
by a client.

OCPI is different, in most modules the owner is the party pushing data to a server, to
inform them of updates.

For example Locations, the CPO owns a Location (Charge Point), when a new Charge
Point is added, the CPO calls PUT on the eMSP systems to inform them about new
locations.

See: Client Owned Objects

OCPI Module needed to setup and maintain OCPI connections, but does not provide
information for the EV driver: Credentials, Versions and Hub Client Info.
Configuration Modules do NOT use message routing.

Term

Functional Module

Hub

Open Routing Request

Platform

Pull

Push

OCPI12.3.0

Description

OCPI Module that provides functionality/information for the EV Driver, such as:
Tokens, Locations, CDRs etc.
Functional Modules use message routing.

Functionality in an OCPI platform to route OCPI requests and responses based on
their content.

This is for Platforms that are connected via a Hub. When a system sends a pull
request to the Hub, and does not know, or care about, the owner of information, but
asks the Hub to route the GET to the correct Platform. The Hub finds the correct
Platform and routes the request to that Platform.

See: Open Routing Request

Software that provides services via OCPI A platform can provide service for a single
eMSP or CPO, or for multiple CPOs or eMSPs.

It can even provide services for both eMSPs and CPOs at the same time.

A Platform will typically only provide services for a single Roaming Hub, through the
Platform’s Hub functionality.

A system calls GET request to retrieve information from the system that owns the
data.

The system (owning the data) actively calls POST/PUT/PATCH to update other systems
with new/updated information.

2.5. Provider and Operator abbreviation

In OCPI it is advised to use eMI3/IDACS compliant names for Contract IDs and EVSE IDs. The provider and the
operator name is important here, to target the right provider or operator, they need to be known upfront, at least

between the cooperating parties.

In several standards, an issuing authority is mentioned that will keep a central registry of known Providers and

Operators.

For more information about the format requirements for Contract IDs and EVSE IDs, and for authorities issuing

Party IDs for providers or operators, see the EV Roaming Foundation’s webpage on Contract and EVSE IDs:

https://evroaming.org/contract-evse-ids/.

2.6. Charging topology

The charging topology, as relevant to the eMSP, consists of three entities:

* Connector is a specific socket or cable available for the EV to make use of.

» EVSE is the part that controls the power supply to a single EV in a single session. An EVSE may provide multiple

connectors but only one of these can be active at the same time.

* Location is a group of one or more EVSEs that belong together geographically or spatially.

10

https://evroaming.org/contract-evse-ids/

OCPI12.3.0

EVSE A1 EVSE A3 EVSE B1 EVSE B3 EVSE B4
©0e [OXO) ©0 ©0
@Qee EVSE A2 OO ©00 OO
©0©) ©0© C® ©0)
©0 1
QeeQ
N 00 N\ /
\ . EVSE B2 \ /
I ©X0 \ /
Connectors %@@@ 41— Fonnectors
Location A Location B

Figure 1. Charging Topology schematic

A Location is typically the exact location of one or more EVSESs, but it can also be the entrance of a parking garage or
a gated community. It is up to the CPO to use whatever makes the most sense in a specific situation. Once arrived at
the location, any further instructions to reach the EVSE from the Location are stored in the EVSE object itself (such
as the floor number, visual identification or manual instructions).

2.7. Variable names

To prevent issues with capitals in variable names, the naming in JSON is not CamelCase but snake_case. All variables
are lowercase and include an underscore for a whitespace.

2.8. Cardinality

When defining the cardinality of a field, the following symbols are used throughout this document:

Symbol Description Type

? An optional object. If not set, it might be null, or the field might be omitted. When the field is = Object
set to null or omitted and it has a default value, the value is the default value.

1 Required object. Object
* A list of zero or more objects. If empty, it might be null, [] or the field might be omitted. [Object]
+ Alist of at least one object. [Object]

2.9. Data Retention

OCPI does not specify how long a system should store data. Companies are RECOMMENDED to make this part of

11

OCPI12.3.0

business contracts. Parties also will need to oblige to local legislation.

2.9.1. Between OCPI version

When a new version of OCPI is implemented, the data exchanged via the old version does not have to be available
via the newer version of OCPI. Hence, the Version end-point will probably have different end-points per version. So
when an object is stored with a URL that contains a version, it is NOT REQUIRED to be available at a URL with a

different version number.

12

OCPI12.3.0

3. Supported Topologies

OCPI started as a bilateral protocol, for peer-to-peer communication. Soon parties started to use OCPI via Hubs, but
OCPI 2.1.1 and earlier were not designed for that. OCPI 2.2 introduced a solution for this: message routing.

OCPI 2.2 introduced Platforms that connect via OCPI instead of CPO and eMSP, more on this in: EV Charging Market
Roles

3.1. Peer-to-peer

The simplest topology is a bilateral connection: peer-to-peer between two platforms, and in the most simple version
each platform only has 1 role.

PLATFORM PLATFORM
OCPI

Figure 2. peer-to-peer topology example

3.2. Multiple peer-to-peer connections

A more real-world topology where multiple parties connect their platforms and each platform only has 1 role. (Not
every party necessarily connects with all the other parties with the other role).

PLATFORM PLATFORM [PLATFORM] PLATFORM

eMSP1 eMSP3 eMSP2 eMSP4
OCPI y y OCPI

PLATFORM ([PLATFORM ([PLATFORM

Figure 3. Multiple peer-to-peer topology example

13

OCPI12.3.0

3.3. Peer-to-peer multiple the same roles

Some parties provide for example CPO or eMSP services for other companies. So the platform hosts multiple parties
with the same role. This topology is a bilateral connection: peer-to-peer between two platforms, and both platforms
can have multiple roles.

PLATFORM
ocPl PLATFORM
eMSP1 CPO1
eMSP3

Figure 4. peer-to-peer with multiple roles topology example

3.4. Peer-to-peer dual roles

Some parties have dual roles, most of the companies are CPO and eMSP. This topology is a bilateral connection: peer-
to-peer between two platforms, and both platforms have the CPO and the eMSP roles.

PLATFORM oCPI PLATFORM

eMSP1 eMSP2

CPO2

CPO1

Figure 5. peer-to-peer with both CPO and eMSP roles topology example

14

OCPI12.3.0

3.5. Peer-to-peer mixed roles

Some parties have dual roles, or provide them to other parties and then connect to other companies that do the
same. This topology is a bilateral connection: peer-to-peer between two platforms, and both platforms have multiple
different and also the same roles.

PLATFORM OCPI PLATFORM

eMSP1 eMSP4

eMSP2 CPO5

CPO1 CPOG6

CPO2 CPO7

it
4

Figure 6. peer-to-peer with mixed roles topology example

15

OCPI12.3.0

3.6. Multiple peer-to-peer

More a real-world topology when OCPI is used between market parties without a hub, all parties are platforms with
multiple roles.

Disadvantage of this: requires a lot of connections between platforms to be setup, tested and maintained.

PLATFORM | [PLATFORM
eMSP1 eMSP3
OCPI
eMSP2 CPO3
OCPI
OCPI OCPI
[PLATFORM PLATFORM

CPO1 eMSP4

OCPI

CPO2 CPO4

Figure 7. peer-to-peer with mixed roles topology example

16

3.7. Platforms via Hub

This topology has all Platforms only connect via a Hub, all communication goes via the Hub.

PLATFORM

eMSP5

PLATFORM

eMSP3

eMSP4

HEH

OCPI

OCPI12.3.0

OCPI

PLATFORM

eMSP1

eMSP2

OCPI

PLATFORM

Hub

PLATFORM

CPO5

OCPI

OCPI

OCPI

Figure 8. Platforms connected via a Hub topology example

17

PLATFORM

CPO3

CPO4

Hitl

PLATFORM

CPO1

CPO2

OCPI12.3.0

3.8. Platforms via Hub and direct

Not all Platforms will only communicate via a Hub. There might be different reasons for Platforms to still have peer-
to-peer connections. The Hub might not yet support new functionality. The Platforms use a custom module for some

new project, which is not supported by the Hub. etc.

PLATFORM | PLATFORM

eMSP5 CPO5
OCPI

PLATFORM ocP! ocp! PLATFORM
‘emsps CPO3
PLATFORM |
eMSP4 oo Hub och CPO4
OCPI OCPI
PLATFORM PLATFORM
eMSP1 CPO1
OCPI
eMSP2 CPO2

Figure 9. Platforms connected via a Hub and directly topology example

18

OCPI12.3.0

4. Transport and format

4.1.JSON / HTTP implementation guide

The OCPI protocol is based on HTTP and uses the JSON format. It follows a RESTful architecture for web services
where possible.

4.1.1. Security and authentication

The interfaces are protected on the HTTP transport level, with SSL and token-based authentication. Please note that
this mechanism does not require client-side certificates for authentication, only server-side certificates to set up a
secure SSL connection.

4.1.2. Authorization header

Every OCPI HTTP request MUST add an 'Authorization' header. The header looks as follows:

Authorization: Token ZWImM2IzOTktNzc5Zi@@NDk3LT1i0WQtYWM2YWQzY2MONGQyCg==

NOTE HTTP header names are case-insensitive

The literal 'Token' indicates that the token-based authentication mechanism is used, in OCPI this is called the
'credentials token'. 'Credentials tokens' are exchanged via the credentials module. These are different 'tokens' than
the Tokens exchanged via the Token Module: Tokens used by drivers to authorize charging. To prevent confusion,
when talking about the token used here in the HTTP Authorization header, call them: 'Credentials Tokens'.

After the literal 'Token', there SHALL be one space, followed by the 'encoded token'. The encoded token is obtained
by encoding the credentials token to an octet sequence with UTF-8 and then encoding that octet sequence with
Base64 according to RFC 4648.

So for example, to use the credentials token 'example-token' in an OCPI request, one should include this header:

Authorization: Token ZXhhbXBsZS10b2t1bgo=

Many OCPI 2.1.1 and 2.2 implementations do not Base64 encode the credentials token when
including it in the 'Authorization' header. Since OCPI 2.2-d2 the OCPI specification documents

NOTE clearly require Base64 encoding the credentials token in the header value. Implementations that
wish to be compatible with non-encoding 2.1.1 and 2.2 implementations have to choose the right
way to parse and write authorization headers by either trial and error or configuration flags.

The credentials token must uniquely identify the requesting party. This way, the server can use the information in
the Authorization header to link the request to the correct requesting party’s account.

If the header is missing or the credentials token doesn’t match any known party then the server SHALL respond
with an HTTP 401 - Unauthorized status code.

When a server receives a request with a valid CREDENTIALS_TOKEN_A, on another module than: credentials or

19

https://datatracker.ietf.org/doc/html/rfc4648#section-4

OCPI12.3.0

versions, the server SHALL respond with an HTTP 4071 - Unauthorized status code.

4.1.3. Pull and Push
OCPI supports both Pull and Push models.

» Push: Changes in objects and new objects are sent (semi) real-time to the receiver.

* Pull: Receiver request a (full) list of objects periodically.

OCPI doesn’t require parties to implement Push. Pull is required, a receiver needs to be able to get in-sync after a
period of connection loss.

It is possible to implement a Pull only OCPI implementation, it might be a good starting point for an OCPI
implementation. However, it is strongly advised to implement Push for production systems that have to handle
some load, especially when several clients are requesting long lists frequently. Push implementations tend to use
fewer resources. It is therefore advised to clients pulling lists from a server to do this on a relative low polling
interval: think in hours, not minutes, and to introduce some splay (randomize the length of the poll interface a bit).

4.1.4. Request format

The request method can be any of GET, POST, PUT, PATCH or DELETE. The OCPI protocol uses them in a way similar
to REST APIs.

Method Description

GET Fetches objects or information.

POST Creates new objects or information.

PUT Updates existing objects or information.

PATCH Partially updates existing objects or information.
DELETE Removes existing objects or information.

The HTTP header: Content-Type SHALL be set to application/json for any request that contains a message body:
POST, PUT and PATCH. When no body is present, probably in a GET or DELETE, then the Content-Type header MAY
be omitted.

4.1.4.1. GET

A server is not required to return all objects to a client, the server might for example not send all CDRs to a client,
because some CDRs do not belong to this client.

When a client receives objects from the server that contain invalid JSON or invalid OCPI objects (For example:
missing fields), the client has no way of letting this know to the server. It is advised to log these errors and contact
the server administrator about this. When a list of objects contains some objects that are correct and some with
'‘problems' the client should at least process the correct OCPI objects.

Pagination

All GET methods that return a list of objects have pagination, this allows a client and server to control the number of
objects returned in the response to a GET request, while still enabling the client to retrieve all objects by doing

20

OCPI12.3.0

multiple requests with different parameters. Without pagination, the server has to return all objects in one response
that could potentially contain millions of objects.

To enable pagination of the returned list of objects, additional URL parameters are allowed for the GET request and
additional headers need to be added to the response.

Paginated Request

The following table lists all the parameters that have to be supported but might be omitted by a client request.

Parameter Datatype Description

date_from DateTime Only return objects that have last_updated after or equal to this Date/Time (inclusive).

date_to DateTime Only return objects that have last_updated up to this Date/Time, but not including
(exclusive).

offset int The offset of the first object returned. Default is 0 (the first object).

limit int The maximum number of objects to GET. The server might decide to return fewer

objects, either because there are no more objects, or the server limits the maximum

number of objects to return. This is to prevent, for example, overloading the system.

The date_from is inclusive and date_to exclusive, this way, when sequential requests with to the same end-point are
done, the next interval will have no overlap and the date_from of the next interval is simply the date_to of the

previous interval.

Example: With offset=0 and limit=10 the server shall return the first 10 records (if 10 objects match the request).
Then the next page starts with offset=10.

Paginated Response

For pagination to work correctly, it is important that multiple calls to the same URL (including query parameters):
result in the same objects being returned by the server. For this to be the case, the sequence of objects mustn’t
change, or as little as possible. It is best practice to return the oldest objects first, that is, order the objects by
creation date ascending. While a client crawls over the pages (multiple GET requests every time to the 'next' page
Link), a new object might be created on the server. The client detects this: the X-Total-Count will be higher on the
next call. Even so, the client does not have to retry any requests when this happens because only the last page will
be different. This means the client will not be required to crawl all pages all over again. When the client has reached
to last page it has retrieved all relevant pages and is up to date.

Some query parameters can cause concurrency problems. For example the date_to query
parameter. When there are for example 1000 objects matching a query for all objects with date_to
NOTE before 2016-01-01. While crawling over the pages one of these objects is updated. The client detects
this: X-Total-Count will be lower in the next request. It is advised to redo the previous GET with the
offset lowered by 1 (if the offset was not 0) and after that continue crawling the 'next' page links.

HTTP headers that have to be added to any paginated GET response.

21

HTTP Header

Link

X-Total-Count

X-Limit

Datatype

String

int

int

OCPI12.3.0

Description

Link to the 'next’ page should be provided when this is NOT the last page.
The Link should also contain any filters present in the original request. See
the examples below.

(Custom HTTP Header) The total number of objects available in the server
system that match the given query (including the given query parameters,
for example: date_to and date_from but excluding limit and offset) and that
are available to this client. For example: The CPO server might return less
CDR objects to an eMSP than the total number of CDRs available in the CPO
system.

(Custom HTTP Header) The maximum number of objects that the server
can return. Note that this is an upper limit. If there are not enough
remaining objects to return, fewer objects than this upper limit number
will be returned, X-Limit SHALL then still show the upper limit, not the
number of objects returned.

NOTE HTTP header names are case-insensitive

Pagination Examples

Example of a required OCPI pagination link header:

Link: <https://www.server.com/ocpi/cpo/2.2.1/cdrs/?offset=150&1imit=50>; rel="next"

After the client has called the given "next" page URL above the Link parameter will most likely look like this:

Link: <https://www.server.com/ocpi/cpo/2.2.1/cdrs/?0ffset=200&1imit=50>; rel="next"

Example of a query with filters: Client does a GET to:

https://www.server.com/ocpi/cpo/2.2.1/cdrs/?date_from=2016-01-01700:00:00Z&date_t0=2016-12-31723:59:59Z

The server should return (when the server has enough objects and the limit is the amount of objects the server

wants to send is 100.) (This example should have been on 1 line, but didn’t fit the paper width.)

Link: <https://www.server.com/ocpi/cpo/2.2.1/cdrs/?offset=100

&1limit=100&date_from=2016-01-01700:00:00Z&date_to=2016-12-31723:59:597>; rel="next"

Example of a server limiting the amount of objects returned: Client does a GET to:

https://www.server.com/ocpi/cpo/2.2.1/cdrs/?1imit=2000

The server should return (when the server has enough objects and the limit is the amount of objects the server

wants to send is 100.) The X-Limit HTTP header should be set to 100 as well.

22

OCPI12.3.0

Link: <https://www.server.com/ocpi/cpo/2.2.1/cdrs/?0ffset=100&1imit=100>; rel="next"

4.1.4.2. PUT

A PUT request must specify all required fields of an object (similar to a POST request). Optional fields that are not
included will revert to their default value which is either specified in the protocol or NULL.

4.1.4.3. PATCH

A PATCH request must only specify the object’s identifier (if needed to identify this object) and the fields to be
updated. Any fields (both required or optional) that are left out remain unchanged.

The MIME-type of the request body is: application/json and may contain the data as documented for each endpoint.

In case a PATCH request fails, the client is expected to call the GET method to check the state of the object in the
other party’s system. If the object doesn’t exist, the client should do a PUT.

4.1.5. Client Owned Object Push

Normal client/server RESTful services work in a way where the Server is the owner of the objects that are created.
The client requests a POST method with an object to the end-point URL. The response sent by the server will contain
the URL to the new object. The client will request only one server to create a new object, not multiple servers.

Many OCPI modules work differently: the client is the owner of the object and only pushes the information to one or
more servers for information sharing purposes. For example the CPO owns the Tariff objects and pushes them to a
couple of eMSPs, so each eMSP gains knowledge of the tariffs that the CPO will charge them for their customers'
sessions. eMSP might receive Tariff objects from multiple CPOs. They need to be able to make a distinction between
the different tariffs from different CPOs.

The distinction between objects from different CPOs/eMSPs is made based on a {country_code} and {party_id}. The
country_code’s and party_id’s of the parties on the other platform are received during the credentials handshake in
the CredentialsRoles. The roles exchanged during the credentials handshake provide the server with details needed
to determine which URLs a client might use.

Client Owned Object URL definition: {base-ocpi-url}/{end-point}/{country-code}/{party-id}/{object-id}

Example of a URL to a Client Owned Object
https://www.server.com/ocpi/cpo/2.2.1/tariffs/NL/TNM/14

POST is not supported for these kinds of modules. PUT is used to send new objects to the servers.

To identify the owner of data, the party generating the information that is provided to other parties via OCPL, a 'Data
owner' is provided at the beginning of every module that has a clear owner.

4.1.5.1. Errors

When a client tries to access an object with a URL that has a different country_code and/or party_id than one of the
CredentialsRoles given during the credentials handshake, it is allowed to respond with an HTTP 404 status code, this
way blocking client access to objects that do not belong to them.

23

OCPI12.3.0

When a client pushes a Client Owned Object, but the {object-id} in the URL is different from the id in the object
being pushed, server implementations are advised to return an OCPI status code: 2001.

4.1.6. Client Owned Object Pull

When doing a GET on the Sender interface of a module, the owner of an object can be determined by looking at the
{country_code} and {party_id} in the object itself.

When one or more objects, returned in the response, do not meet one of the CredentialsRoles given during the
credentials handshake, these objects may be ignored.

4.1.7. Response format

The content that is sent with all the response messages is an 'application/json' type and contains a JSON object with
the following properties:

Property Type Card Description

data Array or *or ? Contains the actual response data object or list of objects from each
Object or request, depending on the cardinality of the response data, this is an
String array (card. * or +), or a single object (card. 1 or ?)

status_code int 1 OCPI status code, as listed in Status Codes, indicates how the request

was handled. To avoid confusion with HTTP codes, OCPI status codes
consist of four digits.

status_message string ? An optional status message which may help when debugging.
timestamp DateTime 1 The time this message was generated.

For brevity’s sake, any further examples used in this specification will only contain the value of the "data" field. In
reality, it will always have to be wrapped in the above response format.

When a request cannot be accepted, the type response depends on the type of error. For more information see:
Status codes

For errors on the HTTP layer, use HTTP error response codes, including the response format above, that contains
more details. HTTP status codes are described on w3.org.

Earlier versions of the OCPI 2.2.1 did not clearly specify what should be in the data field of the
response format for every request. We advise that in cases where the specification does not
explicitly specify what to put in the data field for the response to a certain request, the platform

NOTE receiving the response accept both the data field being absent and the data field being present with
any possible value. We also advise that in such cases, platform sending the response leave the data
field unset in the response format. This applies for example to PUT requests when pushing Session
objects, and PATCH requests to add charging periods to Sessions.

4.1.7.1. Example: Version information response (list of objects)

"data": [{

24

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

OCPI12.3.0

"version": "2.1.1",
"url": "https://example.com/ocpi/cpo/2.1.1"
oA

"version": "2.2",
"url": "https://example.com/ocpi/cpo/2.2"

H,
"status_code": 1000,

"status_message": "Success",
"timestamp": "2015-06-30T21:59:597"

4.1.7.2. Example: Version details response (one object)

{
"data": {
"version": "2.2",
"endpoints": [{
"identifier": "credentials",
"role": "SENDER",
"url": "https://example.com/ocpi/cpo/2.2/credentials”
bo 4
"identifier": "locations",
"role": "SENDER",
"url": "https://example.com/ocpi/cpo/2.2/1locations"
H
Bo
"status_code": 1000,
"status_message": "Success",
"timestamp": "2015-06-30721:59:597"
}

4.1.7.3. Example: Tokens GET Response with one Token object. (CPO end-point) (one object)

{
"data": {
"country_code": "DE",
"party_id": "TNM",
"uid": "012345678",
"type": "RFID",
"contract_id": "FA54320",
"visual_number": "DF000-2001-8999",
"jssuer": "TheNewMotion",
"valid": true,
"whitelist": "ALLOWED",
"last_updated": "2015-06-29T722:39:09Z"
B
"status_code": 1000,
"status_message": "Success",
"timestamp": "2015-06-30T21:59:597"

4.1.7.4. Example: Tokens GET Response with list of Token objects. (eMSP end-point) (list of
objects)

{
"data": [{
"country_code": "NL",
"party_id": "TNM",
"uid": "100012",
"type": "RFID",
"contract_id": "FA54320",

25

OCPI12.3.0

"visual_number": "DF000-2001-8999",

"jssuer": "TheNewMotion",

"valid": true,

"whitelist": "ALWAYS",

"last_updated": "2015-06-21T722:39:05Z"
oA

"country_code": "NL",

"party_id": "TNM",

"uid": "100013",

"type": "RFID",

"contract_id": "FA543A5",

"visual_number": "DF000-2001-9000",

"issuer": "TheNewMotion",

"valid": true,

"whitelist": "ALLOWED",

"last_updated": "2015-06-28T711:21:092"
Bo 4

"country_code": "NL",

"party_id": "TNM",

"uid": "100014",

"type": "RFID",

"contract_id": "FA543BB",

"visual_number": "DF000-2001-9010",

"issuer": "TheNewMotion",

"valid": false,

"whitelist": "ALLOWED",

"last_updated": "2015-05-29T10:12:26Z"
H,
"status_code": 1000,
"status_message": "Success",
"timestamp": "2015-06-30721:59:597"

4.1.7.5. Example: Response with an error (contains no data field)

{
"status_code": 2001,
"status_message": "Missing required field: type",
"timestamp": "2015-06-30T21:59:59Z"

}

4.1.8. Non-specified JSON fields

An OCPI Platform SHALL NOT reject request or response payloads based on the presence of JSON object field names
that are not documented in this specification.

OCPI implementers are encouraged to extend OCPI with new fields to address needs that are not foreseen by the
specification and to adhere to the spirit of RFC 6648 when doing so.

When extending OCPI with such non-specified fields, implementers:

SHOULD assume that their extensions will eventually be incorporated into OCPI or otherwise become widely
used,

SHOULD choose meaningful field names that are currently unused to the best of their knowledge,

SHOULD NOT use name prefixes like "x-" or "custom" to indicate the non-specified nature of these field names,
and

* SHOULD consult further guidance on extending OCPI at https://evroaming.org/extending-ocpi/.

26

https://datatracker.ietf.org/doc/html/rfc6648
https://evroaming.org/extending-ocpi/

OCPI12.3.0

4.1.9. Message Routing

When the development of OCPI was started, it was designed for peer-to-peer communication between CPO and
eMSP. This has advantages, but also disadvantages. Having to set up and maintain OCPI connections to a lot of
parties requires more effort than doing it for only a couple of connections. By communication via one or more Hubs,
the amount of OCPI connections is reduced, while still being able to offer roaming to a lot of different parties and
customers.

With the introduction of Message Routing, OCPI is now better usable for communication via Hubs.

All examples/sequence diagrams in this section use the roles CPO and eMSP as examples, they could be switched, it
could be other roles.

4.1.9.1. Platforms

With Message Routing functionality it also becomes possible to support Platforms that host multiple roles. A lot of
parties are not only CPO or eMSP. Most are both CPO and eMSP. Some parties are doing business in multiple
countries, which means to operate with different country_codes Some parties have a platform on which the host
service for other CPOs/eMSPs. Some parties are themselves CPO and host CPO services for others, but other parties
are (themselves) not a CPO or other role in the EV charging landscape but do provide service to CPOs/eMSPs, etc.

4.1.9.2. Message Routing Headers

When OCPI is used to communicate to/from a Platform or via a Hub (which is the most common usage of OCPI, only
exception is a peer-to-peer connection between two parties that both have only one OCPI party and role
implemented.) the following four HTTP headers are to be added to any request/response to allow messages to be
routed.

When implementing OCPI these four headers SHALL be implemented for any request/response to/from a Functional
Module. This does not mean they have to be present in all request. There are situation/special request where some
headers can or shall be omitted, See: Open Routing Request

Only requests/responses from Function Modules: such as: Tokens, Locations, CDRs etc. SHALL be routed, so need the
routing headers.

The requests/responses to/from Configuration Modules: Credentials, Versions and Hub Client Info are not to be
routed, and are for Platform-to-Platform or Platform-to-Hub communication. Thus routing headers SHALL NOT be
used with these modules.

HTTP Header Datatype Description
OCPI-to-party-id CiString(3 'party id' of the connected party this message is to be sent to.
)

OCPI-to-country-code CiString(2 'country code' of the connected party this message is to be sent to.
)

OCPI-from-party-id CiString(3 'party id' of the connected party this message is sent from.
)

OCPI-from-country- CiString(2 'country code' of the connected party this message is sent from.
code)

27

OCPI12.3.0

NOTE HTTP header names are case-insensitive
CPO1 HUB MSP1
I I I
1 1 1
I HTTP: GET ! !
| TO: MSP1 I I
' FROM: CPO1 >i :
I
HTTP: GET !
TO: MSP1 |
FROM:CPO1 |
Ve
HTTP: RESPONSE
TO: CPO1
FROM: MSP1
< .
HTTP: RESPONSE l
TO: CPO1
*(FROM:MSPl
]

Figure 10. Example sequence diagram of a GET for 1 Object from a CPO to an eMSP.

CPO1 HUB1 HUB2 MSP1
I I I I
I I I I
| HTTP: PUT ! ! !
. TO: MSP1 : : :
' FROM: CPO1 ! ! !

> | |
HTTP: PUT ; !
TO: MSP1 |
FROM: CPO1):_ :
1
HTTP: PUT ;
TO: MSP1 !
FROM: CPO1 >
HTTP: RESPONSE 200
TO: CPO1

FROM: MSP1
<

HTTP: RESPONSE 200

i

]

TO: CPO1 l

FROM: MSP1 !

< . l

HTTP: RESPONSE 200 ! !

TO: CPO1 | |
FROM: MSP1 ;

1 1

1 1

< i

Figure 11. Example sequence diagram of a PUT via 2 Hubs.

4.1.9.3. Broadcast Push

For simplicity, connected clients might push (POST, PUT, PATCH) information to all connected clients with an
"opposite role", for example: CPO pushing information to all eMSPs and NSPs, eMSP pushing information to all CPOs.
(The role "Other" is seen as an eMSP type of role, so Broadcast Push from a CPO is also sent to "Other". Messages

28

OCPI12.3.0

from "Other" are only sent to CPOs and not to eMSPs though.)

When using Broadcast Push, the Hub broadcasts received information to all connected clients. To send data through
a Hub might be very useful to share information like Locations or Tokens with all parties connected to the Hub that
have implemented the corresponding module. This means only one request to the Hub will be necessary, as all
connected clients will be served by the Hub.

To send a Broadcast Push, the client uses the party-id and country-code of the Hub in the 'OCPI-to-' headers. The Hub
parses the request and sends a response to the client, which optionally contains its own party-id and country-code
in the 'OCPI-from-' headers. The Hub then sends the pushed data to any client implementing the corresponding
applicable module, using its own party-id and country-code in the 'OCPI-from-' headers. The client receiving a Push
from a Hub (with the Hubs information in the 'OCPI-from-' headers) will respond to this Push with the Hubs party-id
and country-code in the 'OCPI-to-' headers.

GET SHALL NOT be used in combination with Broadcast Push. If the requesting party wants to GET information of
which it does not know the receiving party, an Open Routing Request MUST be used. (see below)

Broadcast Push SHALL only be used with information that is meant to be sent to all other parties. It is useful to
share data like Tokens and Locations, but not so much for CDRs and Sessions as these pieces of information are
specific to only one party and are possibly even protected by GDPR or other laws.

NOTE For "Client Owned Objects", the party-id and country-code in the URL segments will still be the
original party-id and country-code from the original client sending the Broadcast Push to the Hub.

29

OCPI12.3.0

CPO1 HUB MSP1

MSP2

MSP3

I

I
HTTP: PUT i
TO: HUB .
FROM: CPO1 -
HTTP: RESPONSE 200?
TO: CPO1
FROM: HUB

HTTP: PUT
TO: MSP1
FROM: HUB

>

HTTP: RESPONSE 401
TO: HUB
FROM: MSP1

<

HTTP: PUT
TO: MSP2
FROM: HUB

HTTP: RESPONSE 200
TO: HUB
FROM: MSP2

<

Y

HTTP: PUT
TO: MSP3
FROM: HUB

HTTP: RESPONSE 200
TO: HUB

FROM: MSP3
L

Y

Figure 12. Example sequence diagram of a Broadcast Push from a CPO to multiple eMSPs.

4.1.9.4. Open Routing Request

When a Hub has the intelligence to route messages based on the content of the request, or the requesting party does
not know the destination of a request, the 'OCPI-to-' headers can be omitted in the request towards the Hub. The
Hub can then decide to which party a request needs to be routed, or that it needs to be broadcasted if the

destination cannot be determined.

This has nothing to do with Broadcast Push though, as Broadcast Push only works for the Push model, not for GET

requests.

Open Routing Requests are possible for GET (Not GET ALL), POST, PUT, PATCH and DELETE.

30

OCPI12.3.0

CPO1 HUB eMSP1 eMSP2 | | eMSP3
]]]]]
| | | | |
| HTTP: GET | | | |
' FROM: CPO1

V 1 1 I

Determine : : :

routin : : :

DIRE. I I I

HTTP: GET | I I

TO: MSP2 ! ! !

FROM: CPO]{) 1 :

HTTP: RESPONSE 200 |

TO: CPO1 ! l

 FROM: MSP2 |

]]]

HTTP: RESPONSE 200 | | |
TO: CPO1 1 1 1
FROM: MSP2 ! ! !
< I I I

Figure 13. Example sequence diagram of a open routing GET from a CPO via the Hub.

4.1.9.5. GET All via Hubs

A client (Receiver) can request a GET on the Sender interface of a module implemented by a Hub. To request a GET
All from a Hub, the client uses the party-id and country-code of the Hub in the 'OCPI-to-' headers, and calls the GET
method on the Sender interface of a module.

The Hub can then combine objects from different connected parties and return them to the client.

The client can determine the owner of the objects by looking at the county_code and party_id in the individual
objects returned by the hub.

31

OCPI12.3.0

CPO1 HUB eMSP1 eMSP2 eMSP3

HTTP: PUT
TO:HUB
< FROM: MsP1

HTTP: RESPONSE 200
TO: MSP1
FROM: HUB

HTTP: PUT
TO:HUB
_ FROM: MSP3

W

HTTP: RESPONSE 200
TO: MSP3
FROM: HUB

HTTP: PUT
TO:HUB
_ FROM: MSP2

W

HTTP: RESPONSE 200
TO: MSP2
FROM: HUB

HTTP: GET
TO:HUB
FROM: CPO1

A
Vad
HTTP: RESPONSE 200

TO: CPO1
FROM: HUB

Figure 14. Example sequence diagram of a GET All via the Hub, .

4.1.9.6. Overview of required/optional routing headers for different scenarios

The following section shows which headers are required/optional and which 'OCPI-to-'/'OCPI-from-' IDs need to be
used.

This is not an exclusive list, combinations are possible.

Party to Party (without Hub)

This table contains the description of which headers are required to be used for which message when a request is
sent directly from one platform provider to another platform provider, without a Hub in between. The headers are
addressing the parties to/from which the message is sent, not the platform itself.

Name Route TO Headers FROM Headers

Direct request Requesting platform provider to Receiving-party Requesting-party
Receiving platform provider

Direct response Receiving platform provider to = Requesting-party Receiving-party
Requesting platform provider

32

Platform

HT
TO
FR(

Platform

MSP1

IP: GET
MSP1
DM: CPO1

HT]
TQ
FR

TP: RESPONSE
: CPO1
OM: MSP1

Figure 15. Example sequence diagram of a GET for 1 Object from a CPO on one platform to an MSP on

another platform directly (without a Hub)

Party to Party via Hub

This table contains the description of which headers are required to be used for which message when a request is

OCPI12.3.0

routed from one platform to another platform via a Hub.

Name

Direct request
Direct request
Direct response

Direct response

Route

Requesting platform to Hub
Hub to receiving platform
Receiving platform to Hub

Hub to requesting platform

TO Headers
Receiving-party
Receiving-party
Requesting-party

Requesting-party

Figure 16. Example sequence diagram of a GET for 1 Object from one Platform to another Platform via a

Hub

Platform Platform
CPO1 HUB MSP1
| | |
I I I
| HTTP: GET . |
| TOj] MSP1 I |
' FROM: CPO1): !

I
HTTP: GET !
TO: MSP1 |
FROM: CPO1 | _ |
Ve
HTTP: RESPONSE
TO: CPO1
FROM: MSP1
< OM: MS .
HTTP: RESPONSE I
TQ: CPO1 !
_'(FROM: MSP1 | i
1 1 1

33

FROM Headers
Requesting-party
Requesting-party
Receiving-party

Receiving-party

Party to Party Broadcast Push

OCPI12.3.0

This table contains the description of which headers are required to be used for which message when a request is a

Broadcast Push to the Hub.

Name
Broadcast request
Broadcast response

Broadcast request

Route

Hub to requesting platform

Hub to receiving platform

TO Headers

Requesting platform to Hub Hub

Requesting-party

Receiving-party

Broadcast response Receiving platform to Hub Hub
Platform Platform
CPO1 HUB MSP1

| |

I |

! HTTP: PUT |

i TO] HUB |

! FROM: CPO1 !

Ve

HTTP: RESPONSE
TQ: CPO1
FROM: HUB

_'(

HTTP: PUT
TO: MSP1
FROM: HUB

HTTP: RESPON
TO: HUB
FROM: MSP1

FROM Headers
Requesting-party
Hub

Hub

Receiving-party

Figure 17. Example sequence diagram of Broadcast Push from one Platform to another Platform via a Hub

Party to Party Open Routing Request

This table contains the description of which headers are required to be used for which message when the routing of

a request needs to be determined by the Hub itself. For an Open Routing Request, the TO headers in the request

from the requesting party to the Hub MUST be omitted.

Name

Open request
Open request
Open response

Open response

Route

Requesting platform to Hub
Hub to receiving platform
Receiving platform to Hub

Hub to requesting platform

34

TO Headers

Receiving-party
Requesting-party

Requesting-party

FROM Headers
Requesting-party
Requesting-party
Receiving-party

Receiving-party

OCPI12.3.0

Platform Platform Platform || Platform
CPO1 HUB eMSP1 eMSP2 eMSP3
1 1 1 1 1
] I]]]
| HTJP: GET ! ! ! !
, FROM: CPO1)L : : :

Determine : : :

routing l l l

D] : |

HTTP: GET | I I

TO: MS§P2 | ; ;

FROM: CPO]JI) 1 :

1 1

HTTR: RESPONSE| 200 I

TO: QPO1 | I

< FRONI: MSP2 ;

1 1 1

HTTP: RESPONSE 200 : : :
TQ: CPO1 1 1 1
FROM: MSP2 : : :
< . l l l
]]]

Figure 18. Example sequence diagram of a open routing between platforms GET from a CPO via the Hub

4.1.9.7. GET All via Hubs

This table contains the description of which headers are required to be used when doing a GET All via a Hub. For a
GET All via Hub: The HTTP Method SHALL be GET, The call is to a Senders Interface, the TO headers in the request to
the Hub has to be set to the Hub.

Name Route TO Headers FROM Headers
GET All via Hubs request = Requesting platform to Hub Hub Requesting-party
GET All via Hubs Hub to receiving platform Requesting-party Hub
response
Platform
CPO1 HUB
| |
I |
! HTTP: GET !
i TOJHUB I
' FROM: CPO1 :
: >
HTTP: RESPONSE 200
TQ: CPO1
FROM: HUB
I I

Figure 19. Example sequence diagram of a GET All via the Hub, .

4.1.9.8. Timestamps and Objects send via Hubs

When OCPI Objects are sent via Hubs, the 1ast_updated fields SHALL NOT be updated by the Hub.

35

OCPI12.3.0

4.1.10. No data available

There are rare situation, probably use cases not foreseen by the team developing OCPI, where a certain field, that is
required, cannot be filled. In such cases, and only in such cases, it is allowed to set a string field to the value: #NA.

#NA is not allowed to be used when a party does not have or want to provide the data, but is able to provide the data
when they would spend time/resources to get/provide the data.

4.2. Unique message IDs

For debugging issues, OCPI implementations are required to include unique IDs via HTTP headers in every

request/response.
HTTP Header Description
X-Request-ID Every request SHALL contain a unique request ID, the response to this request SHALL
contain the same ID.
X-Correlation-ID Every request/response SHALL contain a unique correlation ID, every response to this
request SHALL contain the same ID.
NOTE HTTP header names are case-insensitive

It is advised to used GUID/UUID as values for X-Request-ID and X-Correlation-ID.

When a Hub forwards a request to a party, the request to this party SHALL contain a new unique value in the X-
Request-ID HTTP header, not a copy of the X-Request-ID HTTP header taken from the incoming request that is being
forwarded.

When a Hub forwards a request to a party, the request SHALL contain the same X-Correlation-ID HTTP header (with
the same value).

CPO MSP

Request
X-Request-ID: 774321
X-Correlation-1D: 123456

>

Request
X-Request-ID: 774321
X-Correlation-ID: 123456

Figure 20. Example sequence diagram of the uses of X-Request-ID and X-Correlation-ID in a peer-to-peer
topology.

36

OCPI12.3.0

X-Request-ID: 991234
X-Correlation-ID: 123456

>

CPO HUB MSP
I I I
I I I
: Request : :
i X-Request-ID: 774321 | |
! X-Correlation-ID: 123456)_:_ :

]
Request ;
I
I
|

Response
X-Request-ID: 991234
< X-Correlation-1D: 123456

Request
X-Request-ID: 774321
L X-Correlation-1D: 123456

Figure 21. Example sequence diagram of the uses of X-Request-ID and X-Correlation-ID in a topology with a
Hub.

4.3. Interface endpoints

As OCPI contains multiple interfaces. Different endpoints are available for messaging. The protocol is designed such
that the exact URLSs of the endpoints can be defined by each party. It also supports an interface per version.

The locations of all the version-specific endpoints can be retrieved by fetching the API information from the
versions endpoint. Each version-specific endpoint will then list the available endpoints for that version. It is strongly
recommended to insert the protocol version into the URL.

For example: /ocpi/cpo/2.2.7/1locations and /ocpi/emsp/2.2.1/1locations.

The URLs of the endpoints in this document are descriptive only. The exact URL can be found by fetching the
endpoint information from the API info endpoint and looking up the identifier of the endpoint.

Operator interface Identifier = Example URL

Credentials credentials https://example.com/ocpi/cpo/2.2.1/credentials
Charging location details locations https://example.com/ocpi/cpo/2.2.1/1locations
eMSP interface Identifier Example URL

Credentials credentials | https://example.com/ocpi/emsp/2.2.1/credentials
Charging location updates locations https://example.com/ocpi/emsp/2.2.1/1locations

4.4. Offline behaviour

During communication over OCPIL one of the communicating parties might be unreachable for an undefined
amount of time. OCPI works event-based, new messages and status are pushed from one party to another. When
communication is lost, updates cannot be delivered.

37

OCPI12.3.0

OCPI messages SHOULD NOT be queued. When a client does a POST, PUT or PATCH request and that request fails or
times out, the client should not queue the message and retry the same message again later.

When the connection is re-established, it is up to the target-server of a connection to GET the current status from to
source-server to get back to a synchronized state.

For example:

* CDRs of the period of communication loss can be retrieved with a GET command on the CDRs module, with
filters to retrieve only CDRs of the period since the last CDR has been received.

« Status of EVSEs (or Locations) can be retrieved by calling a GET on the Locations module.

38

OCPI12.3.0

5. Status codes

There are two types of status codes:

» Transport related (HTTP)

* Content related (OCPI)

The transport layer ends after a message is correctly parsed into a (semantically unvalidated) JSON structure. When
a message does not contain a valid JSON string, the HTTP error 400 - Bad request MUST be returned.

If a request is syntactically valid JSON and addresses an existing resource, a HTTP error MUST NOT be returned.
Those requests are supposed to have reached the OCPI layer.

In case of a GET request, when the resource does NOT exist, the server SHOULD return a HTTP 404 - Not Found.
When the server receives a valid OCPI object it SHOULD respond with:

* HTTP 200 - Ok when the object already existed and has successfully been updated.
o HTTP 201 - Created when the object has been newly created in the server system.

Requests that reach the OCPI layer SHOULD return an OCPI response message with a status_code field as defined
below.

Custom status code range values SHALL NOT be used by standard OCPI module as described in this document!
When custom status codes are used, keep in mind that different custom modules could use the same values with a
different meaning, as they are not standardized.

Range Description

1xxx Success

2XXX Client errors — The data sent by the client can not be processed by the server
3xxx Server errors — The server encountered an internal error

When the status code is in the success range (1xxx), the data field in the response message SHOULD contain the
information as specified in the protocol. Otherwise the data field is unspecified and MAY be omitted, set to null or
something else that could help to debug the problem from a programmer’s perspective. For example, it could specify
which fields contain an error or are missing.

5.1. 1xxx: Success

Code Description
1000 Generic success code
19xx Reserved range for custom success status codes (1900-1999).

5.2. 2xxx: Client errors

Errors detected by the server in the message sent by a client where the client did something wrong.

39

OCPI12.3.0

Code Description

2000 Generic client error

2001 Invalid or missing parameters , for example: missing last_updated field in a PATCH
request.

2002 Not enough information, for example: Authorization request with too little information.

2003 Unknown Location, for example: Command: START_SESSION with unknown location.

2004 Unknown Token, for example: 'real-time' authorization of an unknown Token.

29xx Reserved range for custom client error status codes (2900-2999).

5.3. 3xxx: Server errors

Error during processing of the OCPI payload in the server. The message was syntactically correct but could not be
processed by the server.

Code Description
3000 Generic server error
3001 Unable to use the client’s API. For example during the credentials registration: When

the initializing party requests data from the other party during the open POST call to its
credentials endpoint. If one of the GETs can not be processed, the party should return
this error in the POST response.

3002 Unsupported version

3003 No matching endpoints or expected endpoints missing between parties. Used during the
registration process if the two parties do not have any mutual modules or endpoints
available, or the minimal implementation expected by the other party is not been met.

39xx Reserved range for custom server error status codes (3900-3999).

5.4. 4xxx: Hub errors

When a server encounters an error, client side error (2xxx) or server side error (3xxx), it sends the status code to
the Hub. The Hub SHALL then forward this error to the client which sent the request (when the request was not a
Broadcast Push).

For errors that a Hub encounters while routing messages, the following OCPI status codes shall be used.

Code Description

4000 Generic error

4001 Unknown receiver (TO address is unknown)

4002 Timeout on forwarded request (message is forwarded, but request times out)
4003 Connection problem (receiving party is not connected)

49xx Reserved range for custom hub error status codes (4900-4999).

40

OCPI12.3.0

6. Versions module

Type: Configuration Module

This is the required base module of OCPI. This module is the starting point for any OCPI connection. Via this module,
clients can learn which versions of OCPI a server supports, and which modules it supports for each of the versions.

6.1. Version information endpoint

This endpoint lists all the available OCPI versions and the corresponding URLs to where version specific details such
as the supported endpoints can be found.

Endpoint structure definition:

No structure defined. This is open for every party to define themselves.
Examples:

https://www.server.com/ocpi/cpo/versions
https://www.server.com/ocpi/emsp/versions
https://ocpi.server.com/versions

The exact URL to the implemented version endpoint should be given (offline) to parties that want to communicate
with your OCPI implementation.

Both, CPOs and eMSPs MUST implement such a version endpoint.

Method Description

GET Fetch information about the supported versions.
6.1.1. Data

Type Card. Description

Version + A list of supported OCPI versions.

6.1.2. Version class

Property Type Card Description

version VersionNumber 1 The version number.

url URL 1 URL to the endpoint containing version specific information.
6.1.3. GET

Fetch all supported OCPI versions of this CPO or eMSP.

41

OCPI2.3.0
6.1.3.1. Example

[
{
"version": "2.1.1",
"url": "https://www.server.com/ocpi/2.1.1"
To
{

"version": "2.2.1",
"url": "https://www.server.com/ocpi/2.2.1"
}
1

6.2. Version details endpoint

Via the version details, the parties can exchange which modules are implemented for a specific version of OCP]I,
which interface role is implemented, and what the endpoint URL is for this interface.

Parties that are both CPO and eMSP (or a Hub) can implement one version endpoint that covers both roles. With the
information that is available in the version details, parties don’t need to implement a separate endpoint per role
(CPO or eMSP) anymore. In practice this means that when a company is both a CPO and an eMSP and it connects to
another party that implements both interfaces, only one OCPI connection is needed.

NOTE OCPI 2.2 introduced the role field in the version details. Older versions of OCPI do not support this.

Endpoint structure definition:
No structure defined. This is open for every party to define themselves.

Examples:
https://www.server.com/ocpi/cpo/2.2.1
https://www.server.com/ocpi/emsp/2.2.1

https://ocpi.server.com/2.2.1/details

This endpoint lists the supported endpoints and their URLs for a specific OCPI version. To notify the other party that
the list of endpoints of your current version has changed, you can send a PUT request to the corresponding
credentials endpoint (see the credentials chapter).

Both the CPO and the eMSP MUST implement this endpoint.

Method Description

GET Fetch information about the supported endpoints for this version.
6.2.1. Data

Property Type Card Description

version VersionNumber 1 The version number.

42

OCPI12.3.0

Property Type Card Description

endpoints Endpoint + A list of supported endpoints for this version.
6.2.2. Endpoint class

Property Type Card Description

identifier ModuleID 1 Endpoint identifier.

role InterfaceRol 1 Interface role this endpoint implements.

e
url URL 1 URL to the endpoint.

for the credentials module, the value of the role property is not relevant as this module is the same
NOTE for all roles. It is advised to send "SENDER" as the InterfaceRole for one’s own credentials endpoint
and to disregard the value of the role property of the Endpoint object for other platforms’

credentials modules.

6.2.3. InterfaceRole enum

Value Description

SENDER Sender Interface implementation. Interface implemented by the owner of data, so the
Receiver can Pull information from the data Sender/owner.

RECEIVER Receiver Interface implementation. Interface implemented by the receiver of data, so
the Sender/owner can Push information to the Receiver.

6.2.4. ModuleID OpenEnum

The Module identifiers for each endpoint are described in the beginning of each Module chapter. The following table
contains the list of modules in this version of OCPI. Most modules (except Credentials & Registration) are optional,
but there might be dependencies between modules. If there are dependencies between modules, it will be
mentioned in the affected module description.

Module ModuleID Remark

CDRs cdrs

Charging Profiles chargingprofiles

Commands commands

Credentials & Registration credentials Required for all implementations.

The role field has no function for this module.

Hub Client Info hubclientinfo

Locations locations

43

OCPI12.3.0

Module ModuleID Remark
Sessions sessions

Tariffs tariffs

Tokens tokens

6.2.5. VersionNumber OpenEnum

List of known versions.

Value Description

2.0 OCPI version 2.0

2.1 OCPI version 2.1 (DEPRECATED, do not use, use 2.1.1 instead)
2.1.1 OCPI version 2.1.1

2.2 OCPI version 2.2 (DEPRECATED, do not use, use 2.2.1 instead)
2.2.1 OCPI version 2.2.1

2.3.0 OCPI version 2.3.0 (this version)

6.2.5.1. Custom Modules

Parties are allowed to create custom modules or customized versions of the existing modules. To do so, the
ModuleID enum can be extended with additional custom modulelIDs. These custom moduleIDs MAY only be sent to
parties with which there is an agreement to use a custom module. Do NOT send custom modulelIDs to parties you
are not 100% sure will understand the custom modulelDs. It is advised to use a prefix (e.g. country-code + party-id)
for any custom modulelD, this ensures that the moduleID will not be used for any future module of OCPI.

For example: nltnm-tokens

6.2.6. GET

Fetch information about the supported endpoints and their URLs for this OCPI version.

6.2.6.1. Examples

Simple version details example: CPO with only 2 modules.

{
"version": "2.2",
"endpoints": [
{
"identifier": "credentials",
"role": "SENDER",
"url": "https://example.com/ocpi/2.2/credentials"”
B
{

"identifier": "locations",
"role": "SENDER",
"url": "https://example.com/ocpi/cpo/2.2/1locations"
}
1

44

OCPI12.3.0

Simple version details example: party with both CPO and eMSP with only 2 modules.

In this case the credentials module is not defined twice as this module is the same for all roles.

{
"version": "2.2",
"endpoints": [
{
"identifier": "credentials",
"role": "RECEIVER",
"url": "https://example.com/ocpi/2.2/credentials"”

"identifier": "locations",
"role": "SENDER",
" "https://example.com/ocpi/cpo/2.2/1ocations"

"

url":

"identifier": "tokens",
"role": "RECEIVER",
"url": "https://example.com/ocpi/cpo/2.2/tokens"

"identifier": "locations",
"role": "RECEIVER",
"url": "https://example.com/ocpi/msp/2.2/1locations"

"identifier": "tokens",
"role": "SENDER",
" "https://example.com/ocpi/msp/2.2/tokens"

"

url":

45

OCPI12.3.0

7. Credentials module

Module Identifier: credentials
Type: Configuration Module

The credentials module is used to exchange the credentials token that has to be used by parties for authorization of
requests.

Every OCPI request is required to contain a credentials token in the HTTP Authorization header.

7.1. Use cases

7.1.1. Registration

To start using OCPI, the Platforms will need to exchange credentials tokens.

To start the exchange of credentials tokens, one platform has to be selected as Sender for the Credentials module.
This has to be decided between the Platforms (outside of OCPI) before they first connect.

To start the credentials exchange, the Receiver Platform must create a unique credentials token: CREDENTIALS_TOKEN_A
that has to be used to authorize the Sender until the credentials exchange is finished. This credentials token along
with the versions endpoint SHOULD be sent to the Sender in a secure way that is outside the scope of this protocol.

The Sender starts the registration process, retrieves the version information and details (using CREDENTIALS_TOKEN_A
in the HTTP Authorization header). The Sender generates a unique credentials token: CREDENTIALS_TOKEN_B, sends it
to the Receiver in a POST request to the credentials module of the Receiver. The Receiver stores CREDENTIALS_TOKEN_B
and uses it for any requests to the Sender Platform, including the version information and details.

The Receiver generates a unique credentials token: CREDENTIALS_TOKEN_C and returns it to the Sender in the response
to the POST request from the Sender.

After the credentials exchange has finished, the Sender SHALL use CREDENTIALS_TOKEN_C in future OCPI request to the
Receiver Platform. The CREDENTIALS_TOKEN_A can then be thrown away, it MAY no longer be used.

(In the sequence diagrams below we use relative paths as short resource identifiers to illustrate API endpoints;
please note that they should be absolute URLs in any working implementation of OCPI.)

46

OCPI12.3.0

OCPI Registration process

~

Sender Receiver
l Offline 1
Generate token: CREDENTIALS_TOKEN_A
<

send information via e-mail
(CREDENTIALS_TOKEN_A,

P "https://company.com/ocpi/cpo/versions", ...)

o I

—
{ OCPI
The Sender uses CREDENTIALS_TOKEN_A
GET /ocpi/cpo/versions « | | as authentication to fetch information
- from the Receiver.
 Available versions
Pick latest mutual version (e.g. 2.2).
GET /ocpi/cpo/2.2 -
Ve

(Available endpoints forv2.2] H
Store version and endpoints
Generate token: CREDENTIALS_TOKEN_B
POST /ocpi/cpo/2.2/credentials
("/ocpilfemspl/versions”, CREDENTIALS_TOKEN_B, ...)

The Receiver does not directly respond to the POST request
The Receiver first needs to retrieve the versions and endpoints
from the Sender before responding with CREDENTIALS_TOKEN_C

Store CREDENTIALS_TOKEN_B

_ GET /ocpi/lemsp/versions

Available versions

............ >

_ GET /ocpi/lemsp/2.2
[~

Available endpoints for v2.2

............)

The Receiver knows it's version 2.2 because
of the endpoint the Sender has used. The URL
is retrieved from the available versions.

Store version and endpoints

<

from the Sender above.

The Receiver generates CREDENTIALS_TOKEN_C and returns
it in the response to the HTTP POST credentials request

Store updated credentials with
CREDENTIALS_TOKEN_C

Figure 22. The OCPI registration process

Generate CREDENTIALS_TOKEN_C

«]

By returning new credentials for the Receiver,

| Credentials with CREDENTIALS_TOKEN_C for eMSP the initial setup token (CREDENTIALS_TOKEN_A)

has now become invalid.

47

OCPI12.3.0

Due to its symmetric nature of the credentials module, any platform can be Sender and or the Receiver for this
module.

7.1.2. Updating to a newer version

At some point, both platforms will have implemented a newer OCPI version. To start using the newer version, one
platform has to send a PUT request to the credentials endpoint of the other platform.

OCPI Update process

Sender Receiver
I I
I I
I GET /ocpi/cpo/versions !
V.
Available versions u
(..

Pick latest mutual version (e.g. 2.0). |

|

< .
|

I

GET /ocpi/cpo/2.0/

Ve
< Available endpoints for v2.0 u

|
Store version and endpoints I
<« |
I
|
I

PUT /ocpi/cpo/2.0/credentials

N
Vad
< GET /ocpi/emsp/versions
Available versions
...)

_ GET /ocpi/lemsp/2.0/
S

The Receiver knows it's version 2.0 because
Available endpoints forv20 > of the endpoint the Sender has used. The URL
is retrieved from the available versions.

Store version and endpoints

<

< Return updated credentials for Sender

Store updated credentials

T;

Figure 23. The OCPI update process

7.1.3. Changing endpoints for the current version
This can be done by following the update procedure for the same version.

By sending a PUT request to the credentials endpoint of this version, the other platform will fetch and store the
corresponding set of endpoints.

7.1.4. Updating the credentials and resetting the credentials token

The credentials (or parts thereof, such as the credentials token) can be updated by sending the new credentials via a

48

OCPI12.3.0

PUT request to the credentials endpoint of the current version, similar to the update procedure described above.

Security advices: When one of the connecting platforms suspects that a credentials token is compromised, that
platform SHALL initiate a credentials token update as soon as possible. It is advisable to renew the credentials
tokens at least once a month, in case it was not detected that the credentials where compromised.

7.1.5. Errors during registration

When the server connects back to the client during the credentials registration, it might encounter problems. When
this happens, the server should add the status code 3001 in the response to the POST from the client.

7.1.6. Required endpoints not available

When two platforms connect, it might happen that one of the platforms expects a certain endpoint to be available at
the other platform.

For example: a Platform with a CPO role could only want to connect when the CDRs endpoint is available in an
platform with an eMSP role.

In case the Sender (starting the credentials exchange process) cannot find the endpoints it expects, it is expected
NOT to send the POST request with credentials to the Receiver. Log a message/notify the administrator to contact the
administrator of the Receiver platform.

In case the Receiver platform that cannot find the endpoints it expects, then it is expected to respond to the request
with the status code 3003.

7.2. Interfaces and endpoints

The Credentials module is different from all other OCPI modules. This module is symmetric, it has to be
implemented by all OCPI implementations, and all implementations need to be able call this module on any other
platform, and have to be able the handle receiving the request from another party.

Example: /ocpi/2.2.7/credentials and /ocpi/emsp/2.2.1/credentials

Method Description

GET Retrieves the credentials object to access the server’s platform.

POST Provides the server with a credentials object to access the client’s system (i.e. register).

PUT Provides the server with an updated credentials object to access the client’s system.

PATCH n/a

DELETE Informs the server that its credentials to the client’s system are now invalid (i.e. unregister).

7.2.1. GET Method

Retrieves the credentials object to access the server’s platform. The request body is empty, the response contains the
credentials object to access the server’s platform. This credentials object also contains extra information about the
server such as its business details.

49

OCPI12.3.0

7.2.2. POST Method

Provides the server with credentials to access the client’s system. This credentials object also contains extra
information about the client such as its business details.

A POST initiates the registration process for this endpoint’s version. The server must also fetch the client’s endpoints
for this version.

If successful, the server must generate a new credentials token and respond with the client’s new credentials to
access the server’s system. The credentials object in the response also contains extra information about the server
such as its business details.

This method MUST return a HTTP status code 405: method not allowed if the client has already been registered
before.

7.2.3. PUT Method

Provides the server with updated credentials to access the client’s system. This credentials object also contains extra
information about the client such as its business details.

A PUT will switch to the version that contains this credentials endpoint if it’s different from the current version. The
server must fetch the client’s endpoints again, even if the version has not changed.

If successful, the server must generate a new credentials token for the client and respond with the client’s updated
credentials to access the server’s system. The credentials object in the response also contains extra information
about the server such as its business details.

This method MUST return a HTTP status code 405: method not allowed if the client has not been registered yet.

7.2.4. DELETE Method

Informs the server that its credentials to access the client’s system are now invalid and can no longer be used. Both
parties must end any automated communication. This is the unregistration process.

This method MUST return a HTTP status code 405: method not allowed if the client has not been registered before.

7.3. Object description

7.3.1. Credentials object

Property Type Card Description

token string(64) 1 The credentials token for the other party to authenticate in
your system. It should only contain printable non-whitespace
ASCII characters, that is, characters with Unicode code points
from the range of U+0021 up to and including U+007E.

url URL 1 The URL to your API versions endpoint.

50

OCPI 2.3.0
Property Type Card Description

hub_party_id CiString(5) ? The Hub party of this platform. The two-letter country code and
three-character party ID are concatenated together in this field
as one five-character string.

roles CredentialsRole + List of the roles this platform provides.

NOTE In OCPI 2.3.0, unlike in OCPI 2.2 or 2.2.1, Roaming Hubs' platforms are expected to include the
parties that are reachable through the Roaming Hub in the list in roles.

Every role needs a unique combination of: role, party_id and country_code.

A platform can have the same role more than once, each with its own unique party_id and country_code, for
example when a CPO provides 'white-label' services for 'virtual' CPOs.

One or more roles and thus party_id and country_code sets are provided here to inform a server about the party_id
and country_code sets a client will use when pushing Client Owned Objects. This helps a server to determine the
URLs a client will use when pushing a Client Owned Object. The country_code is added to make certain the URL used
when pushing a Client Owned Object is unique as there might be multiple parties in the world with the same
party_id. The combination of country_code and party_id should always be unique though. A party operating in
multiple countries can always use the home country of the company for all connections.

For example: EVSE IDs can be pushed under the country and provider identification of a company, even if the EVSEs
are actually located in a different country. This way it is not necessary to establish one OCPI connection per country
a company operates in.

The party_id and country_code given here have no direct link with the eMI3/IDACS format EVSE IDs and Contract IDs
that might be used in the different OCPI modules. A party implementing OCPI MAY push EVSE IDs with an
eMI3/IDACS spot operator different from the OCPI party_id and/or the country_code.

A Platform that supports Hub functionality with the Message routing headers SHALL give the country code and
party ID of the Hub in the hub_party_id field.

7.3.2. Examples

Example of a minimal CPO credentials object:

"token": "ebf3b399-779f-4497-9b9d-acbad3cc44d2"”,
"url": "https://example.com/ocpi/versions",
"roles": [{

"role": "CPO",

"party_id": "EXA",

"country_code": "NL",

"business_details": {

"name": "Example Operator"

}

]

Example of a combined CPO/eMSP credentials object:

51

OCPI12.3.0

{
"token": "9e80a9c4-28be-11e9-b210-d663bd873d93",
"url": "https://ocpi.example.com/versions",
"roles": [{
"role": "CPO",
"party_id": "EXA",
"country_code": "NL",
"business_details": {
"name": "Example Operator"
}
bo 4
"role": "EMSP",
"party_id": "EXA",
"country_code": "NL",
"business_details": {
"name": "Example Provider"
}
H
}

Example of a CPO credentials object with full business details:

"token": "9e80ae10-28be-11e9-b210-d663bd873d93",
"url": "https://example.com/ocpi/versions"”,
"roles": [{
"role": "CPO",
"party_id": "EXA",
"country_code": "NL",
"business_details": {
"name": "Example Operator",
"logo": {
"url": "https://example.com/img/logo.jpg",
"thumbnail": "https://example.com/img/logo_thumb.jpg",
"category": "OPERATOR",
"type": "jpeg",
"width": 512,
"height": 512
}

"

ebsite": "http://example.com"

}H

Example of a CPO credentials object for a platform that provides services for 3 CPOs:

"token": "9e80aca8-28be-11e9-b210-d663bd873d93",
"url": "https://ocpi.example.com/versions",
"roles": [{
"role": "CPO",
"party_id": "EX0",
"country_code": "NL",
"business_details": {
"name": "Excellent Operator"
}
Fo A
"role": "CPO",
"party_id": "PFC",
"country_code": "NL",
"business_details": {
"name": "Plug Flex Charging"
}
bo €

52

OCPI12.3.0

"role": "CPO",
"party_id": "CGP",
"country_code": "NL",
"business_details": {
"name": "Charging Green Power"

}
}H

7.4. Data types

7.4.1. CredentialsRole class

Property Type Card Description

role Role 1 Type of role.

business_details BusinessDetails 1 Details of this party.

party_id CiString(3) 1 CPO, eMSP (or other role) ID of this party (following the ISO-
15118 standard).

country_code CiString(2) 1 IS0O-3166 alpha-2 country code of the country this party is

operating in.

53

OCPI12.3.0

8. Locations module

Module Identifier: locations

Data owner: (PO

Type: Functional Module

The Location objects live in the CPO back-end system. They describe the charging locations of an operator.

Module dependency: the Receiver endpoint is dependent on the Tariffs module

8.1. Flow and Lifecycle

The Locations module has the Location as base object. Each Location can have multiple EVSEs (1:n) and each EVSE
can have multiple Connectors (1:n). With the methods in the Receiver interface, Location data and status
information can be shared with for example an eMSP and NSP. Updates can be made to a whole Location, but also
only to an EVSE or a single Connector.

When a CPO creates Location objects, it pushes them to connected eMSP by calling PUT on the Receivers Locations
endpoint. eMSPs who do not support Push mode need to call GET on the CPOs Locations endpoint to receive the new
object. This should be done regularly to stay up to date with the CPOs data, but not too often in order to keep the
load low.

If the CPO wants to replace a Location related object, they again push it to the eMSP systems by calling PUT on their
Locations endpoint.

Any changes to a Location related object can also be pushed to connected eMSPs by calling the PATCH method on the
eMSPs Locations endpoint, but using PATCH mode, only actual changes should be pushed. Providers who do not
support Push mode need to call GET on the CPOs Locations endpoint to receive the updates.

When the CPO wants to delete an EVSE from the list of active EVSEs, they MUST update the EVSE’s status field to
REMOVED and call the PUT or PATCH on the eMSP system. A Location without any valid EVSE object can be considered
expired and should no longer be displayed. There is no way to entirely delete Locations, EVSEs and Connectors as
there are other modules like sessions that depend on them. If it was possible to remove these objects, those links
would no longer work.

When the CPO is not sure about the state or existence of a Location, EVSE or Connector object in the eMSP’s system,
the CPO can perform a GET request to validate the object in the eMSP’s system.

Private charging Locations, that are not to be used for public charging, SHALL NOT be published via OCPL

8.1.1. No public charging or roaming

When a Location is not available for either Public Charging or Roaming, it is RECOMMENDED to NOT send that
Location via OCPI to receiving parties.

8.1.2. Group of Charge Points

OCPP 2.0 supports a 3-tier model:

54

OCPI12.3.0

» Highest level is a Charge Point
* A Charge Point can have one or more EVSEs.

» Every EVSE can have one or more Connectors.
OCPI does not have this model:

* OCPI has Location at the highest level.
» Each location can have multiple EVSE

» Every EVSE can have one or more Connectors.
When mapping OCPP Charge Points to OCPI, there are 2 options:

* One Location for a group of Charge Points at the same location. (preferred)

* One Location per Charge Point at the same location.
OCPI prefers the first method. An EV driver does not care if a Location consists of one Charge Point with a very large
amount of EVSEs, or a large amount of Charge Points with only one EVSE. The EV driver wants to know how many

EVSEs are available. Grouping Charge Points in the same location into one OCPI Location will show better on a map
that shows Charging Locations.

NOTE By definition, an EVSE can only charge one EV at a time.

8.1.3. OCPP 1.x Charge Points with multiple connectors per EVSE

OCPP 1.x was not designed to support the 3-tier model. It had no notion of EVSEs. The Open Charge Alliance has
written an Application Note: "Multiple Connectors per EVSE in a OCPP 1.x implementation”

The workaround:

» Define one 'virtual' EVSE per Connector.

* When a connector of an hardware EVSE becomes unavailable, set all 'virtual' EVSEs for all the connectors of the
hardware EVSE to unavailable. etc.

8.2. Interfaces and endpoints

There are both, a Sender and a Receiver interface for Locations. It is advised to use the Push direction from Sender
to Receiver during normal operation in order to keep the latency of updates low. The Sender interface is meant to be
used when the connection between two parties is established for the first time, to retrieve the current list of
Location objects with the current status, and when the Receiver is not 100% sure the Location cache is entirely up-
to-date (i.e. to perform a full sync). The Receiver can also use the Sender GET Object interface to retrieve a specific
Location, EVSE or Connector. This feature might be used by an Receiver that wants information about a specific
Location, but has not implemented the Receiver Locations interface (i.e. cannot receive Push).

8.2.1. Sender Interface

Typically implemented by market roles like: CPO.

55

OCPI12.3.0

Method Description

GET Fetch a list of Locations, last updated between the {date_from} and {date_to} (paginated), or get a
specific Location, EVSE or Connector.

POST n/a
PUT n/a
PATCH n/a
DELETE n/a

8.2.1.1. GET Method

Depending on the URL Segments provided, the GET request can either be used to retrieve information about a list of
available Locations (with EVSEs and Connectors) at a CPO (GET List) or it can be used to retrieve information about
one specific Location, EVSE or Connector (GET Object).

GET List: Request Parameters

Endpoint structure definition:
{locations_endpoint_url}?[date_from={date_from}]&[date_to={date_to}]&[offset={offset}]&[limit={1imit}]
Examples:
https://www.server.com/ocpi/cpo/2.2.1/1locations/?date_from=2019-01-28T712:00:00&date_t0=2019-01-29T712:00:00
https://ocpi.server.com/2.2.1/1locations/?offset=50
https://www.server.com/ocpi/2.2.1/locations/?date_from=2019-01-29712:00:00&1imit=100
https://www.server.com/ocpi/cpo/2.2.1/1locations/?offset=5081imit=100

If the optional parameters {date_from} and/or {date_to} are provided, only Locations with (last_updated) between
the given {date_from} (including) and {date_to} (excluding) will be returned. In order for this to work properly, the
following logic MUST be implemented accordingly: If an EVSE is updated, also the 'parent' Location’s last_updated
field needs to be updated. Similarly, if a Connector is updated, the EVSE’s last_updated and the Location’s
last_updated fields need to be updated.

This request is paginated, it supports the pagination related URL parameters.

Parameter Datatype Requ Description
ired
date_from DateTime no Only return Locations that have last_updated after or equal to this

Date/Time (inclusive).

date_to DateTime no Only return Locations that have last_updated up to this Date/Time, but
not including (exclusive).

offset int no The offset of the first object returned. Default is 0.

limit int no Maximum number of objects to GET.

56

OCPI12.3.0

GET List: Response Data

This endpoint returns a list of Location objects. The header will contain the pagination related headers.

Each object must contain all required fields. Fields that are not specified may be considered as null values. Any old
information that is not specified in the response is considered no longer valid. For requests that use pagination, the
response data provided by all the pages together is the new truth. Any old information not contained in any of the
pages needs to be considered no longer valid.

Type Card Description

Location * List of all Locations with valid EVSEs.

GET Object: Request Parameters

Endpoint structure definition for retrieving a Location, EVSE or Connector:
{locations_endpoint_url}/{location_id}[/{evse_uid}][/{connector_id}]
Examples:

https://www.server.com/ocpi/cpo/2.2.1/1locations/LOCT
https://www.server.com/ocpi/cpo/2.2.1/1locations/L0C1/3256

https://www.server.com/ocpi/cpo/2.2.1/1locations/L0C1/3256/1

The following parameters can be provided as URL segments in the same order.

Parameter Datatype Requ Description
ired
location_id CiString(36) ' yes Location.id of the Location object to retrieve.
evse_uid CiString(36) no Evse.uid, required when requesting an EVSE or Connector object.
connector_id CiString(36) no Connector.id, required when requesting a Connector object.

GET Object: Response Data

The response contains the requested object.

Type Card Description

Choice: one of three

> Location 1 If a Location object was requested: the Location object.
> EVSE 1 If an EVSE object was requested: the EVSE object.
> Connector 1 If a Connector object was requested: the Connector object.

57

OCPI12.3.0

8.2.2. Receiver Interface
Typically implemented by market roles like: eMSP and NSP.

Locations are Client Owned Objects, so the end-points need to contain the required extra fields: {party_id} and
{country_code}.

Endpoint structure definition:
{locations_endpoint_url}/{country_code}/{party_id}/{location_id}[/{evse_uid}][/{connector_id}]
Examples:

https://www.server.com/ocpi/emsp/2.2.1/1locations/BE/BEC/LOCT
https://server.com/ocpi/2.2.1/1locations/BE/BEC/LOC1/3256

https://ocpi.server.com/2.2.1/1locations/BE/BEC/LOC1/3256/1

Method Description

GET Retrieve a Location as it is stored in the eMSP system.

POST n/a (use PUT)

PUT Push new/updated Location, EVSE and/or Connector to the eMSP.

PATCH Notify the eMSP of partial updates to a Location, EVSE or Connector (such as the status).
DELETE n/a (use PATCH to update the status to REMOVED as described in Flow and Lifecycle)

8.2.2.1. GET Method

If the CPO wants to check the status of a Location, EVSE or Connector object in the eMSP system, it might GET the
object from the eMSP system for validation purposes. The CPO is the owner of the objects, so it would be illogical if
the eMSP system had a different status or was missing an object. If a discrepancy is found, the CPO might push an
update to the eMSP via a PUT or PATCH call.

Request Parameters

The following parameters can be provided as URL segments.

Parameter Datatype Requ Description

ired
country_code CiString(2) yes Country code of the CPO requesting data from the eMSP system.
party_id CiString(3) | yes Party ID (Provider ID) of the CPO requesting data from the eMSP

system.

location_id CiString(36) ' yes Location.id of the Location object to retrieve.
evse_uid CiString(36) no Evse.uid, required when requesting an EVSE or Connector object.
connector_id CiString(36) no Connector.id, required when requesting a Connector object.

58

OCPI12.3.0

Response Data

The response contains the requested object.

Type Card Description

Choice: one of three

> Location 1 If a Location object was requested: the Location object.
> EVSE 1 If an EVSE object was requested: the EVSE object.
> Connector 1 If a Connector object was requested: the Connector object.

8.2.2.2. PUT Method

The CPO pushes available Location, EVSE or Connector objects to the eMSP. PUT can be used to send new Location
objects to the eMSP but also to replace existing Locations.

When the PUT only contains a Connector Object, the Receiver SHALL also set the new last_updated value on the
parent EVSE and Location Objects.

When the PUT only contains a EVSE Object, the Receiver SHALL also set the new last_updated value on the parent
Location Object.

Request Parameters

This is an information Push message, the objects pushed will not be owned by the eMSP. To make distinctions
between objects being pushed to an eMSP from different CPOs, the {party_id} and {country_code} have to be
included in the URL (as URL segments, as described in the Receiver Interface).

Parameter Datatype Requ Description
ired

country_code CiString(2) yes Country code of the CPO requesting this PUT to the eMSP system. This
SHALL be the same value as the country_code in the Location object
being pushed.

party_id CiString(3) | yes Party ID (Provider ID) of the CPO requesting this PUT to the eMSP
system. This SHALL be the same value as the party_id in the Location
object being pushed.

location_id CiString(36) | yes Location.id of the new Location object, or the Location of which an

EVSE or Connector object is pushed.

evse_uid CiString(36) no Evse.uid, required when an EVSE or Connector object is pushed.
connector_id CiString(36) no Connector.id, required when a Connector object is pushed.
Request Body

The request body contains the new/updated object.

When the PUT contains a Connector Object, the Receiver SHALL also set the new last_updated value on the parent
EVSE and Location Objects.

59

OCPI12.3.0

When the PUT contains a EVSE Object, the Receiver SHALL also set the new last_updated value on the parent
Location Object.

Type Card Description

Choice: one of three

> Location 1 New Location object, or Location object to replace.
> EVSE 1 New EVSE object, or EVSE object to replace.
> Connector 1 New Connector object, or Connector object to replace.

Example: add an EVSE

To add an EVSE, simply put the full object in an update message, including all its required fields. Since the id will be
new to the eMSP’s system, the receiving party will know that it is a new object. When not all required fields are
specified, the object may be discarded.

PUT To URL: https://www.server.com/ocpi/emsp/2.2.1/1locations/NL/TNM/1012/3256

{
"uid": "3256",
"evse_id": "BE*BEC*E041503003",
"status": "AVAILABLE",
"capabilities": ["RESERVABLE"],
"connectors": [
{
"id": "1",
"standard": "IEC_62196_T2",
"format": "SOCKET",
"tariff_ids": ["14"]
}
P
"floor": -1,
"physical_reference": 3,
"last_updated": "2019-06-24T12:39:09Z"

8.2.2.3. PATCH Method

Same as the PUT method, but only the fields/objects that have to be updated have to be present. Other fields/objects
that are not specified as part of the request are considered unchanged. Therefore, this method is not suitable to
remove information shared earlier.

Any request to the PATCH method SHALL contain the last_updated field.

When the PATCH is on a Connector Object, the Receiver SHALL also set the new last_updated value on the parent
EVSE and Location Objects.

When the PATCH is on a EVSE Object, the Receiver SHALL also set the new last_updated value on the parent
Location Object.

Example: a simple status update

This is the most common type of update message. It is used to notify eMSPs that the status of an EVSE changed. In

60

OCPI12.3.0

this case it is the EVSE with uid 3255 of the Location with id 1012.

PATCH To URL: https://www.server.com/ocpi/emsp/2.2.1/1locations/NL/TNM/1012/3255

{
"status": "CHARGING",

"last_updated": "2019-06-24T12:39:092"
}

Example: change the location name

In this example the name of the Location with id 1012 is being updated.

PATCH To URL: https://www.server.com/ocpi/emsp/2.2.1/locations/NL/TNM/1012

{

"name": "Interparking Gent Zuid",
"last_updated": "2019-06-24T712:39:09Z"
}

Example: set tariff update

In this example Connector 2 of EVSE 1 of Location 1012 receives a new pricing scheme.

PATCH To URL: https://www.server.com/ocpi/emsp/2.2.1/1locations/NL/TNM/1012/3255/2
{

"tariff_ids": ["15"],

"last_updated": "2019-06-24T12:39:097"
}

Example: delete an EVSE

An EVSE can be deleted by updating its status property.

PATCH To URL: https://www.server.com/ocpi/emsp/2.2.1/1locations/NL/TNM/1012/3256

{
"status": "REMOVED",
"last_updated": "2019-06-24T12:39:092"
}
NOTE To inform eMSPs that an EVSE is scheduled for removal, the status_schedule field can be used._

8.3. Object description

Location, EVSE, Connector and Parking have the following relation:

61

OCPI12.3.0

Locations class diagram

@ Location

Figure 24. Location class diagram

8.3.1. Location Object

The Location object describes the location and its properties where a group of EVSEs that belong together are
installed. Typically, the Location object is the exact location of the group of EVSEs, but it can also be the entrance of a
parking garage which contains these EVSEs. The exact way to reach each EVSE can be further specified by its own
properties.

Locations may be shown in apps or on websites etc. when the flag: publish is set to true. Locations that have this flag
set to false SHALL not be shown in an app or on a website etc. unless it is to the owner of a Token in the
publish_allowed_to list. Even parties like NSP or eMSP that do not 'own' this Token MAY show this location on an app
or website, but only to the owner of that Token. If the user of their app/website has provided information about
his/her Token, And that information matches all the fields of one of the PublishToken tokens in the list, then they are
allowed to show this location to their user. It is not allowed in OCPI to use a Token that is not 'owned' by the eMSP
itself to start a charging session.

Property Type Card Description

country_code CiString(2) 1 ISO-3166 alpha-2 country code of the CPO that 'owns'
this Location.

party_id CiString(3) 1 ID of the CPO that 'owns' this Location (following the
1SO-15118 standard).

id CiString(36) 1 Uniquely identifies the location within the CPOs
platform (and suboperator platforms). This field can
never be changed, modified or renamed.

62

Property

publish

publish_allowed_to

name
address
city

postal_code

state

country
coordinates

related_locations

parking_type
evses

parking_places

directions

operator

suboperator

owner

Type

boolean

PublishTokenType

string(255)
string(45)
string(45)

string(10)

string(20)

string(3)
GeoLocation

AdditionalGeoLocation

ParkingType
EVSE

Parking

DisplayText

BusinessDetails

BusinessDetails

BusinessDetails

OCPI12.3.0

Card Description

Defines if a Location may be published on an website or
app etc.

When this is set to false, only tokens identified in the
field: publish_allowed_to are allowed to be shown this
Location.

When the same location has EVSEs that may be
published and may not be published, two 'Locations’
should be created.

This field may only be used when the publish field is set
to false.

Only owners of Tokens that match all the set fields of
one PublishToken in the list are allowed to be shown
this location.

Display name of the location.
Street/block name and house number if available.
City or town.

Postal code of the location, may only be omitted when
the location has no postal code: in some countries
charging locations at highways don’t have postal codes.

State or province of the location, only to be used when

relevant.
ISO 3166-1 alpha-3 code for the country of this location.
Coordinates of the location.

Geographical location of related points relevant to the

user.
The general type of parking at the charge point location.
List of EVSEs that belong to this Location.

List of parking places that can be used by vehicles
charging at this Location.

Human-readable directions on how to reach the
location.

Information of the operator. When not specified, the
information retrieved from the Credentials module,
selected by the country_code and party_id of this
Location, should be used instead.

Information of the suboperator if available.

Information of the owner if available.

63

OCPI12.3.0

Property Type Card Description

facilities Facility * Optional list of facilities this charging location directly
belongs to.

time_zone string(255) 1 One of IANA tzdata’s TZ-values representing the time

zone of the location. Examples: "Europe/Oslo”,
"Europe/Zurich". (http://www.iana.org/time-zones)

opening_times Hours ? The times when the EVSEs at the location can be
accessed for charging.

charging when_closed boolean ? Indicates if the EVSEs are still charging outside the
opening hours of the location. E.g. when the parking
garage closes its barriers over night, is it allowed to
charge till the next morning? Default: true

images Image * Links to images related to the location such as photos or
logos.

energy_mix EnergyMix ? Details on the energy supplied at this location.

help_phone CiString(25) ? A telephone number that a Driver using the Location

may call for assistance. Calling this number will
typically connect the caller to the CPO’s customer
service department.

last_updated DateTime 1 Timestamp when this Location or one of its EVSEs or
Connectors were last updated (or created).

Private Charge Points, home or business that do not need to be published on apps, and do not require remote
control via OCPI, SHOULD not be PUT via the OCPI Locations module.

8.3.1.1. Example public charging location

This is an example of a public charging location. Can be used by any EV Driver as long as his eMSP has a roaming
agreement with the CPO. Or the Charge Point has an ad-hoc payment possibility

* publish =true
 parking_type = ON_STREET but could also be another value.

» EVSE.parking_restrictions not used.

"country_code": "BE",

"party_id": "BEC",

"id": "Loc1",

"publish": true,

"name": "Gent Zuid",

"address": "F.Rooseveltlaan 3A",

"city": "Gent",

"postal_code": "9000",

"country": "BEL",

"coordinates": {
"latitude": "51.047599",
"longitude": "3.729944"

B

64

http://www.iana.org/time-zones

OCPI12.3.0

"parking_type": "PARKING_GARAGE",
"evses": [{
"uid": "3256",
"evse_id": "BE*BEC*E041503001",
"status": "AVAILABLE",
"capabilities": [

"RESERVABLE"

15

"connectors": [{
"id": "1,
"standard": "IEC_62196_T2",
"format": "CABLE",
"power_type": "AC_3_PHASE",
"max_voltage": 220,
"max_amperage": 16,
"tariff_ids": ["11"],
"last_updated": "2015-03-16T10:10:02Z"

By €

"id": "2",
"standard": "IEC_62196_T2",
"format": "SOCKET",
"power_type": "AC_3_PHASE",
"max_voltage": 220,
"max_amperage": 16,
"tariff_ids": ["13"],
"last_updated": "2015-03-18T08:12:01Z"
H,
"parking": ["1", "2"],
"physical_reference": "1",

"floor_level": "-1",

"last_updated": "2015-06-28708:12:012"
oA

"uid": "3257",

"evse_id": "BE*BEC*E041503002",
"status": "RESERVED",
"capabilities": [
"RESERVABLE"
15
"connectors": [{
"id": "1,
"standard": "IEC_62196_T2",
"format": "SOCKET",
"power_type": "AC_3_PHASE",
"max_voltage": 220,
"max_amperage": 16,
"tariff_ids": ["12"],
"last_updated": "2015-06-29T720:39:09Z"
H,
"parking": ["2", "3"],
"physical_reference": "2",

"floor_level": "-2",
"last_updated": "2015-06-29720:39:092"
.
"parking_places": [{
"id": "1,

"physical_reference": "B1",
"vehicle_types": ["PERSONAL_VEHICLE"],
"reservation_required": false,
"restricted_to_type": true

bo
"id": "2",
"physical_reference": "B2",
"vehicle_types": ["PERSONAL_VEHICLE"],
"reservation_required": false,
"restricted_to_type": true

ll_idll: ll3ll’
"physical_reference": "B3",
"vehicle_types": ["PERSONAL_VEHICLE"],

65

OCPI12.3.0

"reservation_required": false,
"restricted_to_type": true
}

I

"operator": {

"name": "BeCharged"

To

"time_zone": "Europe/Brussels",

"last_updated": "2015-06-29T720:39:09Z"

8.3.1.2. Example destination charging location

This is an example of a destination charging location. This is a Location where only guests, employees or customers
can charge. For an EV driver, it can be useful to know if he/she can charge at his destination.

For example at a restaurant, only customers of the restaurant can charge their EV. Or at an office building where
employees and guest of the office can charge their EV.

Locations you can think of where this is useful: restaurants, bars, clubs, theme parks, stores, supermarkets,
company building, office buildings, etc.

* publish = true
* parking_type = PARKING_LOT (but could also be PARKING_GARAGE, ON_DRIVEWAY or UNDERGROUND_GARAGE)

o EVSE.parking_restrictions = CUSTOMERS

"country_code": "NL",
"party_id": "ALF",
"id": "3e7b39c2-10d0-4138-a8b3-8509a259920",
"publish": true,
"name": "ihomer",
"address": "Tamboerijn 7",
"city": "Etten-Leur",
"postal_code": "4876 BS",
"country": "NLD",
"coordinates": {
"latitude": "51.562787",
"longitude": "4.638975"
3
"parking_type": "PARKING_LOT",
"evses": [{
"uid": "fd855359-bc81-47bb-bb89-849ae3dac89e”,
"evse_id": "NL*ALF*E000000001",
"status": "AVAILABLE",
"connectors": [{
"id": "1,
"standard": "IEC_62196_T2",
"format": "SOCKET",
"power_type": "AC_3_PHASE",
"max_voltage": 220,
"max_amperage": 16,
"last_updated": "2019-07-01712:12:11Z"
5,
"parking_restrictions": ["CUSTOMERS"],
"last_updated": "2019-07-01T12:12:11Z"
3
"time_zone": "Europe/Amsterdam",
"last_updated": "2019-07-01T12:12:11Z2"
}

66

OCPI12.3.0

8.3.1.3. Example destination charging location not published, but paid guest usage possible

This is an example of a destination charging location. But the owner of the location has requested not to publish the
location in Apps or on websites.

Charging is still possible: EV drivers of an eMSP with a roaming agreement can still charge their EV. The eMSP
helpdesk can use the information from the Location module to help the driver, maybe even start a session for a
driver. Starting a session from an App is not possible, because the driver will not be able to select the Charge Point
on a map.

In case the EV driver is not billed for charging, there is, in such a case, no reason to publish the location via OCPIL.

publish = false
* publish_allowed_to not used
 parking_type = not used"

» EVSE.parking_restrictions = CUSTOMERS may still be useful so a support desk can also tell this to a customer.

"country_code": "NL",
"party_id": "ALF",
"id": "3e7b39c2-10d0-4138-a8b3-8509a259920",
"publish": false,
"name": "ihomer",
"address": "Tamboerijn 7",
"city": "Etten-Leur",
"postal_code": "4876 BS",
"country": "NLD",
"coordinates": {
"latitude": "51.562787",
"longitude": "4.638975"
B
"evses": [{
"uid": "fd855359-bc81-47bb-bb89-849ae3dac89e”,
"evse_id": "NL*ALF*E000000001",
"status": "AVAILABLE",
"connectors": [{
"id": "1",
"standard": "IEC_62196_T2",
"format": "SOCKET",
"power_type": "AC_3_PHASE",
"max_voltage": 220,
"max_amperage": 16,
"last_updated": "2019-07-01T12:12:112"
H,
"parking_restrictions": ["CUSTOMERS" 1],
"last_updated": "2019-07-01712:12:112"
H,
"time_zone": "Europe/Amsterdam",
"last_updated": "2019-07-01712:12:112"
}

8.3.1.4. Example charging location with limited visibility

This is an example of a charging location that only a limited group can see (and use) via an App or website.
Typical examples where this is useful:

* Charge Points in the parking garage of an apartment building. Only owners can see/control the Charge Points.

67

OCPI12.3.0

* Charge Points at an office, for employees only. Only employees can see/control the Charge Points.

» Charge Points at vehicle depot. Any employee can see/control an charge point, even transaction they did not
start. Use group_id for this.

The locations SHALL NOT be published to the general public. Only selected Tokens can see (and control) the Charge
Points via eMSP app.

* publish = false
 publish_allowed_to contains list with information of Tokens that are allowed to be shown the Location.

* parking_type = UNDERGROUND_GARAGE (but could also be PARKING_GARAGE, ON_DRIVEWAY or PARKING_LOT)

"country_code": "NL",
"party_id": "ALL",
"id": "f76c2e0c-abef-4f67-bf23-6a187e5caled",
"publish": false,
"publish_allowed_to": [{
"visual_number": "12345-67",
"issuer": "NewMotion"
oA
"visual_number": "0055375624",
"issuer": "ANWB"

oA
"uid": "12345678905880",
"type": "RFID"

H,

"name": "Water State",
"address": "Taco van der Veenplein 12",
"city": "Leeuwarden",
"postal_code": "8923 EM",
"country": "NLD",
"coordinates": {
"latitude": "53.213763",
"longitude": "5.804638"
B
"parking_type": "UNDERGROUND_GARAGE",
"evses": [{
"uid": "8c1b3487-671ac-40a7-a367-21eee99dbd90",
"evse_id": "NL*ALL*EG00000013",
"status": "AVAILABLE",
"connectors": [{
"id": "1,
"standard": "IEC_62196_T2",
"format": "SOCKET",
"power_type": "AC_3_PHASE",
"max_voltage": 230,
"max_amperage": 16,
"last_updated": "2019-09-27T00:19:452"
H
"last_updated": "2019-09-27T00:19:452"
.
"time_zone": "Europe/Amsterdam",
"last_updated": "2019-09-27T00:19:452"
}

8.3.1.5. Example private charge point with eMSP app control

This is an example of a private/home charge point that needs to be controlled via an eMSP App.

The locations SHALL NOT be published to the general public. Only the owner, identified by his/her Token can see
(and control) the Charge Points via an eMSP app.

68

OCPI12.3.0

* publish = false
 publish_allowed_to contains the information of the Tokens of the owner.

* parking_type = not used, not relevant, owner knows where his Charge Point is.

"country_code": "DE",

"party_id": "ALL",

"id": "a5295927-09b9-4a71-b4b9-a5fffdfadb77",

"publish": false,

"publish_allowed_to": [{
"visual_number": "0123456-99",
"issuer": "MoveMove"

B

"address": "KrautwigstraBe 283A",

"city": "Koln",

"postal_code": "50931",

"country": "DEU",

"coordinates": {

"latitude": "50.931826",
"longitude": "6.964043"
Fro
"parking_type": "ON_DRIVEWAY",
"evses": [{
"uid": "4534ad5f-45be-428b-bfd0-fa489dda932d",
"evse_id": "DE*ALL*EG00000001",
"status": "AVAILABLE",
"connectors": [{
"id": "1,
"standard": "IEC_62196_T2",
"format": "SOCKET",
"power_type": "AC_T_PHASE",
"max_voltage": 230,
"max_amperage": 8,
"last_updated": "2019-04-05T17:17:56Z2"
H,
"last_updated": "2019-04-05T17:17:562"
B
"time_zone": "Europe/Berlin",
"last_updated": "2019-04-05T17:17:56Z"
}

8.3.1.6. Example charge point in a parking garage with opening hours

This is an example of a charge point, located in a parking garage with limited opening hours: 7:00 - 18:00.
If the EV is left in the parking garage overnight, the car will still be charged.

* publish = true

* parking_type = PARKING_GARAGE but could also be another value.
» EVSE.parking_restrictions not used.

 opening_times is used.

* charging_when_closed = true

"country_code": "SE",

"party_id": "EVC",

"yd": "cbb@df21-d17d-40ba-adaa-dc588c8f98ch",
"publish": true,

"name": "P-Huset Leonard",

69

OCPI12.3.0

"address": "Claesgatan 6",
"city": "Malmg",
"postal_code": "214 26",
"country": "SWE",
"coordinates": {
"latitude": "55.590325",
"longitude": "13.008307"

}I
"parking_type": "PARKING_GARAGE",
"evses": [{

"uid": "eccb8dd9-4189-433e-b100-cc0945dd17dc",
"evse_id": "SE*EVC*EQ00000123",
"status": "AVAILABLE",
"connectors": [{
"id": "1",
"standard": "IEC_62196_T2",
"format": "SOCKET",
"power_type": "AC_3_PHASE",
"max_voltage": 230,
"max_amperage": 32,
"last_updated": "2017-03-07702:21:227"
5o
"parking": ["000e3877-87bf-473e-8e71-70d3aabdb4ea"],
"last_updated": "2017-03-07T02:21:227"
P
"parking_places": [{
"id": "000e3877-87bf-473e-8e71-70d3aabd64ea",
"physical_reference": "AQ",
"vehicle_types": ["PERSONAL_VEHICLE"],
"reservation_required": false,
"restricted_to_type": true
H,
"time_zone": "Europe/Stockholm",
"opening_times": {
"twentyfourseven": false,
"regular_hours": [{
"weekday": 1,
"period_begin": "07:00",
"period_end": "18:00"
Fo A
"weekday": 2,
"period_begin": "07:00",
"period_end": "18:00"
ol
"weekday": 3,
"period_begin": "07:00",
"period_end": "18:00"
A
"weekday": 4,
"period_begin": "07:00",
"period_end": "18:00"
bl
"weekday": 5,
"period_begin": "07:00",
"period_end": "18:00"
ol
"weekday": 6,
"period_begin": "07:00",
"period_end": "18:00"
A
"weekday": 7,
"period_begin": "07:00",
"period_end": "18:00"
H
B
"charging_when_closed": true,
"last_updated": "2017-03-07T02:21:227"
}

70

8.3.2. EVSE Object

OCPI12.3.0

The EVSE object describes the part that controls the power supply to a single EV in a single session. It always belongs

to a Location object. The object only contains directions to get from the location itself to the EVSE (i.e. floor,

physical_reference or directions).

When the directional properties of an EVSE are insufficient to reach the EVSE from the Location point, then it

typically indicates that the EVSE should be put in a different Location object (sometimes with the same address but

with different coordinates/directions).

An EVSE object has a list of Connectors which can not be used simultaneously: only one connector per EVSE can be

used at the time.

Property

uid

evse_id

status
status_schedule
capabilities
connectors

floor _level

coordinates

physical_reference

Type

CiString(36)

CiString(48)

Status
StatusSchedule
Capability
Connector

string(4)

GeoLocation

string(16)

Card Description

1

Uniquely identifies the EVSE within the CPOs platform (and
suboperator platforms). This field can never be changed,
modified or renamed. This is the 'technical’ identification of the
EVSE, not to be used as '"human readable' identification, use the
field evse_1id for that.

This field is named uid instead of id, because id could be
confused with evse_id which is a field in a specific format
defined by eMI3 and IDACS.

Note that in order to fulfill both the requirement that an EVSE’s
uid be unique within a CPO’s platform and the requirement
that EVSEs are never deleted, a CPO will typically want to avoid
using identifiers of the physical hardware for this uid property.
If they do use such a physical identifier, they will find
themselves breaking the uniqueness requirement for uid when
the same physical EVSE is redeployed at another Location.

Compliant with the following specification for EVSE ID: "E-
mobility ID-codes: the purpose of IDs, ID usage and ID format"
(https://evroaming.org/contract-evse-ids/). Optional because: if
an evse_idis to be re-used in the real world, the evse id can be
removed from an EVSE object if the status is set to REMOVED.

Indicates the current status of the EVSE.
Indicates a planned status update of the EVSE.
List of functionalities that the EVSE is capable of.
List of available connectors on the EVSE.

Level on which the Charge Point is located (in garage buildings)
in the locally displayed numbering scheme.

Coordinates of the EVSE.

A number/string printed on the outside of the EVSE for visual
identification.

71

https://evroaming.org/contract-evse-ids/

Property

directions

parking_restrictions

parking

images

accepted_service_provi

ders

last_updated

Type

DisplayText

ParkingRestricti
on

EVSEParking

Image

String[50]

DateTime

OCPI12.3.0

Card Description

Multi-language human-readable directions when more detailed
information on how to reach the EVSE from the Location is
required.

All applicable restrictions on who can charge at the EVSE, apart
from those related to the vehicle type.

References to the parking space or spaces that can be used by
vehicles charging at this EVSE.

Links to images related to the EVSE such as photos or logos.

Alist of the names of the eMSPs offering contract-based
payment options that are accepted at this EVSE.

Note that this field is added specifically to allow European CPOs
to comply with a regulatory requirement to provide this data to
National Access Points (NAPs). When this requirement does not
apply, this field can be left out.

Timestamp when this EVSE or one of its Connectors was last
updated (or created).

OCPP 1.x does not have good support for Charge Points that have multiple connectors per EVSE. To
make StartSession over OCPI work, the CPO SHOULD present the different connectors of an EVSE
as separate EVSE, as is also written by the OCA in the application note: "Multiple Connectors per

NOTE

EVSE in a OCPP 1.x implementation”.

8.3.3. Connector Object

A Connector is the socket or cable and plug available for the EV to use. A single EVSE may provide multiple

Connectors but only one of them can be in use at the same time. A Connector always belongs to an EVSE object.

Property

id

standard

format

power_type

max_voltage

max_amperage

Type

CiString(36)

ConnectorType

ConnectorForm
at

PowerType

int

int

Card Description

Identifier of the Connector within the EVSE. Two Connectors
may have the same id as long as they do not belong to the same
EVSE object.

The standard of the installed connector.

The format (socket/cable) of the installed connector.

Maximum voltage of the connector (line to neutral for
AC_3_PHASE), in volt [V]. For example: DC Chargers might vary
the voltage during charging when battery almost full.

Maximum amperage of the connector, in ampere [A].

72

OCPI12.3.0

Property Type Card Description

max_electric_power int ? Maximum electric power that can be delivered by this
connector, in Watts (W). When the maximum electric power is
lower than the calculated value from voltage and amperage, this
value should be set.
For example: A DC Charge Point which can delivers up to 920V
and up to 400A can be limited to a maximum of 150kW
(max_electric_power = 150000). Depending on the car, it may
supply max voltage or current, but not both at the same time.
For AC Charge Points, the amount of phases used can also have
influence on the maximum power.

tariff_ids CiString(36) * Identifiers of the currently valid charging tariffs. Multiple
tariffs are possible, but only one of each Tariff.type can be
active at the same time. Tariffs with the same type are only
allowed if they are not active at the same time: start_date_time
and end_date_time period not overlapping.
When preference-based smart charging is supported, one tariff
for every possible ProfileType should be provided. These tell
the user about the options they have at this Connector, and
what the tariff is for every option.
For a "free of charge" tariff, this field should be set and point to
a defined "free of charge" tariff.

terms_and_conditions = URL ? URL to the operator’s terms and conditions.
capabilities ConnectorCapab | * Alist of functionalities that the connector is capable of.
ility
last_updated DateTime 1 Timestamp when this Connector was last updated (or created).

8.3.4. Parking object
Describes a parking space that a vehicle can be parked in while charging.

For EVSEs around which no identifiable delineated parking spaces are available, a Parking object may describe the
limitations that apply for parking near the EVSE without describing a specific space. This occurs a lot with streetside
parking, for example.

Parking objects were newly added in OCPI 2.3.0 relative to OCPI 2.2.1. The purpose of Parking
objects is to allow CPOs in the EU to comply with requirements in the EU’s Alternative Fuel
NOTE Infrasturcture Regulation (AFIR) which requires CPOs to report the number of parking spots and
certain properties of those parking spots to NAPs. When CPOs are not talking to NAPs, or not under
EU jurisdiction, they are free to not send Parking objects in their Locations. All Locations receivers

who are not NAPs are free to ignore Parking objects in the Location data that they receive.

73

Property

id

physical_reference

vehicle_types

max_vehicle_weigh
t

max_vehicle_height

max_vehicle_length

max_vehicle width

parking_space_leng
th

parking_space_widt
h

dangerous_goods_al
lowed

direction

drive_through

restricted_to_type

Type

CiString[36]

String[12]

VehicleType

number

number

number

number

number

number

boolean

ParkingDire
ction

boolean

boolean

OCPI12.3.0

Card Description

The identifier for this parking space. The value of this field MUST be
unique among all Parking objects in the same Location object.

A string identifier for the parking place that is physically visible on-site
to drivers using the parking space. This could be a short identifier
painted on the surface of a parking place in a parking garage for
example.

The vehicle types that the parking is designed to accommodate.

The maximum vehicle weight that can park at the EVSE, in kilograms.
A value for this field should be provided unless the value of the
vehicle_types field contains no values other than PERSONAL_VEHICLE or
MOTORCYCLE.

The maximum vehicle height that can park at the EVSE, in centimeters.
A value for this field should be provided unless the value of the
vehicle_types field contains no values other than PERSONAL_VEHICLE or
MOTORCYCLE.

The maximum vehicle length that can park at the EVSE, in centimeters.
A value for this field should be provided unless the value of the
vehicle_types field contains no values other than PERSONAL_VEHICLE or
MOTORCYCLE.

The maximum vehicle width that can park at the EVSE, in centimeters.
A value for this field should be provided unless the value of the
vehicle_types field contains no values other than PERSONAL_VEHICLE or
MOTORCYCLE.

The length of the parking space, in centimeters. A value for this field
should be provided unless the value of the vehicle_types field contains
no values other than PERSONAL VEHICLE or MOTORCYCLE.

The width of the parking space, in centimeters. A value for this field
should be provided unless the value of the vehicle_types field contains
no values other than PERSONAL VEHICLE or MOTORCYCLE.

Whether vehicles loaded with dangerous substances are allowed to
park at the EVSE. A value for this field should be provided unless the
value of the vehicle_types field contains no values other than
PERSONAL _VEHICLE or MOTORCYCLE.

The direction in which the vehicle is to be parked next to the EVSE.

Whether a vehicle can stop, charge, and proceed without reversing
into or out of a parking space. This should only be set to true if driving
through is possible for all vehicle types listed in the vehicle_types field.

Whether it is forbidden for vehicles of a type not listed in
vehicle_types to park at the EVSE, even if they can physically park
there safely.

74

OCPI12.3.0

Property Type Card Description

reservation_require boolean 1 Whether a reservation is required for parking at the EVSE.

d

time_limit number ? A time limit. If this field is present, vehicles may not park in this

parking longer than this number of minutes.

roofed boolean ? Whether the vehicle will be parked under a roof while charging.

images Image * Photos of the parking space at the EVSE. At least one photograph
should be provided if the value of vehicle_types includes the DISABLED
vehicle type.

lighting boolean ? Whether the parking space for the EVSE is lit by artificial lighting.

refrigeration_outlet boolean ? Whether a power outlet is available to power a transport truck’s load

refrigeration while the vehicle is parked.

standards CiString[36] * A list of standards that the parking space conforms to, e.g. PAS 1899 for
parking for people with disabilities.

apds_reference CiString ? Reference to an Alliance for Parking Data Standards (APDS) element
describing this parking. The referenced element may be a Place, Space
or other hierarchy element defined by APDS.

8.4. Data types

8.4.1. AdditionalGeoLocation class

This class defines an additional geo location that is relevant for the Charge Point. The geodetic system to be used is
WGS 84.

Property Type Card Description

latitude string(10) 1 Latitude of the point in decimal degree. Example: 50.770774. Decimal
separator: "." Regex: -7[0-9]{1,2}\.[0-9]{5,7}

longitude string(11) 1 Longitude of the point in decimal degree. Example: -126.104965.
Decimal separator: "." Regex: -?[0-91{1,3}\.[0-9]{5,7}

name DisplayText | ? Name of the point in local language or as written at the location. For
example the street name of a parking lot entrance or it’s number.

8.4.2. BusinessDetalils class

Property Type Card Description
name string(100) 1 Name of the operator.
website URL ? Link to the operator’s website.

75

OCPI 2.3.0
Property Type Card Description

logo Image ? Image link to the operator’s logo.

8.4.3. Capability OpenEnum

The capabilities of an EVSE.

Value Description

CHARGING_PROFILE_CAPABLE The EVSE supports charging profiles.
CHARGING_PREFERENCES_CAPABLE The EVSE supports charging preferences.
CHIP_CARD_SUPPORT EVSE has a payment terminal that supports chip cards.
CONTACTLESS_CARD_SUPPORT EVSE has a payment terminal that supports contactless cards.
CREDIT_CARD_PAYABLE EVSE has a payment terminal that makes it possible to pay for

charging using a credit card.

DEBIT_CARD_PAYABLE EVSE has a payment terminal that makes it possible to pay for
charging using a debit card.

PED_TERMINAL EVSE has a payment terminal with a pin-code entry device.
REMOTE_START_STOP_CAPABLE The EVSE can remotely be started/stopped.

RESERVABLE The EVSE can be reserved.

RFID_READER Charging at this EVSE can be authorized with an RFID token.

START_SESSION_CONNECTOR_REQUIRED When a StartSession is sent to this EVSE, the MSP is required to add
the optional connector_id field in the StartSession object.

TOKEN_GROUP_CAPABLE This EVSE supports token groups, two or more tokens work as one, so
that a session can be started with one token and stopped with another
(handy when a card and key-fob are given to the EV-driver).

UNLOCK_CAPABLE Connectors have mechanical lock that can be requested by the eMSP
to be unlocked.

When a Charge Point supports ad-hoc payments with a payment terminal, please use a combination of the following
values to explain the possibilities of the terminal: CHIP_CARD_SUPPORT, CONTACTLESS_CARD_SUPPORT,
CREDIT_CARD_PAYABLE, DEBIT_CARD_PAYABLE, PED_TERMINAL.

There are Charge Points in the field that do not yet support OCPP 2.x. If these Charge Points have multiple
connectors per EVSE, the CPO needs to know which connector to start when receiving a StartSession for the given
EVSE. If this is the case, the CPO should set the START_SESSION_CONNECTOR_REQUIRED capability on the given EVSE.

8.4.4. ConnectorCapability OpenEnum

Functionalities that a Connector may or may not support.

NOTE that these capabilities are meant to signal to eMSPs and their Drivers that a Driver can indeed use

76

OCPI12.3.0

these functionalities at a Connector. Mere support for a standard by the charging hardware is not
enough to warrant the presence of these capabilities.

Value Description

ISO_15118 2_PLUG_AND The Connector supports authentication of the Driver using a contract certificate stored
_CHARGE in the vehicle according to ISO 15118-2.

ISO_15118 20_PLUG_AN The Connector supports authentication of the Driver using a contract certificate stored
D_CHARGE in the vehicle according to ISO 15118-20.

8.4.5. ConnectorFormat enum

The format of the connector, whether it is a socket or a plug.

Value Description
SOCKET The connector is a socket; the EV user needs to bring a fitting plug.
CABLE The connector is an attached cable; the EV users car needs to have a fitting inlet.

8.4.6. ConnectorType OpenEnum

The socket or plug standard of the charging point.

Value Description
CHADEMO The connector type is CHAdeMO, DC
CHAO]I The ChaoJi connector. The new generation charging connector, harmonized between

CHAdeMO and GB/T. DC.

DOMESTIC_A Standard/Domestic household, type "A", NEMA 1-15, 2 pins
DOMESTIC_B Standard/Domestic household, type "B", NEMA 5-15, 3 pins
DOMESTIC_C Standard/Domestic household, type "C", CEE 7/17, 2 pins
DOMESTIC_D Standard/Domestic household, type "D", 3 pin

DOMESTIC_E Standard/Domestic household, type "E", CEE 7/5 3 pins
DOMESTIC_F Standard/Domestic household, type "F", CEE 7/4, Schuko, 3 pins
DOMESTIC_G Standard/Domestic household, type "G", BS 1363, Commonwealth, 3 pins
DOMESTIC_H Standard/Domestic household, type "H", SI-32, 3 pins
DOMESTIC_I Standard/Domestic household, type "I", AS 3112, 3 pins
DOMESTIC_J Standard/Domestic household, type "]", SEV 1011, 3 pins
DOMESTIC_K Standard/Domestic household, type "K", DS 60884-2-D1, 3 pins
DOMESTIC_L Standard/Domestic household, type "L", CEI 23-16-VII, 3 pins
DOMESTIC_M Standard/Domestic household, type "M", BS 546, 3 pins

77

Value

DOMESTIC_N
DOMESTIC_O

GBT_AC

GBT_DC
IEC_60309_2_single_16
IEC_60309_2_three_16
IEC_60309_2_three_32
IEC_60309_2_three_64
IEC_62196_T1
IEC_62196_T1_COMBO
IEC_62196_T2
IEC_62196_T2_COMBO
IEC_62196_T3A
IEC_62196_T3C

MCS

NEMA_5_20
NEMA_6_30
NEMA_6_50
NEMA_10_30
NEMA_10_50
NEMA_14_30
NEMA_14_50

PANTOGRAPH_BOTTOM
_UP

PANTOGRAPH_TOP_DO
WN

OCPI12.3.0

Description

Standard/Domestic household, type "N", NBR 14136, 3 pins
Standard/Domestic household, type "O", TIS 166-2549, 3 pins

Guobiao GB/T 20234.2 AC socket/connector

Guobiao GB/T 20234.3 DC connector

IEC 60309-2 Industrial Connector single phase 16 amperes (usually blue)
IEC 60309-2 Industrial Connector three phases 16 amperes (usually red)
IEC 60309-2 Industrial Connector three phases 32 amperes (usually red)
IEC 60309-2 Industrial Connector three phases 64 amperes (usually red)
IEC 62196 Type 1 "SAE J1772"

Combo Type 1 based, DC

IEC 62196 Type 2 "Mennekes"

Combo Type 2 based, DC

IEC 62196 Type 3A

IEC 62196 Type 3C "Scame”

The MegaWatt Charging System (MCS) connector as developed by CharIN
NEMA 5-20, 3 pins

NEMA 6-30, 3 pins

NEMA 6-50, 3 pins

NEMA 10-30, 3 pins

NEMA 10-50, 3 pins

NEMA 14-30, 3 pins, rating of 30 A

NEMA 14-50, 3 pins, rating of 50 A

On-board Bottom-up-Pantograph typically for bus charging

Off-board Top-down-Pantograph typically for bus charging

SAE_]3400 SAE]J3400, also known as North American Charging Standard (NACS), developed by
Tesla, Inc in 2021.

TESLA_R Tesla Connector "Roadster"-type (round, 4 pin)

TESLA_S Tesla Connector "Model-S"-type (oval, 5 pin). Mechanically compatible with SAE]J3400

but uses CAN bus for communication instead of power line communication.

78

OCPI12.3.0

8.4.7. EnergyMix class

This type is used to specify the energy mix and environmental impact of the supplied energy at a location or in a
tariff.

Property Type Card Description

is_green_energy boolean 1 True if 100% from regenerative sources. (CO2 and nuclear
waste is zero)

energy_sources EnergySource * Key-value pairs (enum + percentage) of energy sources of this
location’s tariff.

environ_impact Environmentallmp | * Key-value pairs (enum + percentage) of nuclear waste and CO2
act exhaust of this location’s tariff.
supplier_name string(64) ? Name of the energy supplier, delivering the energy for this

location or tariff.*

energy_product_na string(64) ? Name of the energy suppliers product/tariff plan used at this
me location.*

* These fields can be used to look up energy qualification or to show it directly to the customer (for well-known brands
like Greenpeace Energy, etc.)

8.4.7.1. Examples

Simple:

"energy_mix": {
"is_green_energy": true

}

Tariff energy provider name:

"energy_mix": {
"is_green_energy": true,
"supplier_name": "Greenpeace Energy eG",
"energy_product_name": "eco-power"

}

Complete:

"energy_mix": {
"is_green_energy": false,
"energy_sources": [
{ "source": "GENERAL_GREEN", "percentage": 35.9 },

{ "source": "GAS", "percentage": 6.3 1},
{ "source": "COAL", "percentage": 33.2 },
{ "source": "GENERAL_FOSSIL", "percentage": 2.9 1},
{ "source": "NUCLEAR", "percentage": 21.7 }
1

"environ_impact": [
{ "category": "NUCLEAR_WASTE", "amount": 0.0006 1},
{ "category": "CARBON_DIOXIDE", "amount": 372 }

79

OCPI12.3.0

1o
"supplier_name": "E.ON Energy Deutschland",
"energy_product_name": "E.ON DirektStrom eco"

}

8.4.8. EnergySource class

Key-value pairs (enum + percentage) of energy sources. All given values of all categories should add up to 100

percent.
Property Type Card Description
source EnergySourceCategory 1 The type of energy source.
percentage number 1 Percentage of this source (0-100) in the mix.

8.4.9. EnergySourceCategory enum

Categories of energy sources.

Value Description

NUCLEAR Nuclear power sources.
GENERAL_FOSSIL All kinds of fossil power sources.

COAL Fossil power from coal.

GAS Fossil power from gas.

GENERAL_GREEN All kinds of regenerative power sources.
SOLAR Regenerative power from PV.

WIND Regenerative power from wind turbines.
WATER Regenerative power from water turbines.

8.4.10. Environmentallmpact class

Amount of waste produced/emitted per kWh.

Property Type Card Description
category EnvironmentallmpactCategory 1 The environmental impact category of this value.
amount number 1 Amount of this portion in g/kWh.

8.4.11. EnvironmentalImpactCategory OpenEnum

Categories of environmental impact values.

80

OCPI12.3.0

Value Description
NUCLEAR_WASTE Produced nuclear waste in grams per kilowatthour.
CARBON_DIOXIDE Exhausted carbon dioxide in grams per kilowatthour.

8.4.12. EVSEParking class

A link between an EVSE and a Parking object. The presence of an EVSEParking object in an EVSE indicates that a
certain parking space can be used when charging at that EVSE.

Property Type Card. Description

parking_id CiString[36] 1 The ID of the Parking. The string in this field refers to a
Parking object from the containing Location’s
parking places field by its id field.

evse_position EVSEPosition ? The position of the EVSE relative to the parking space.

8.4.13. EVSEPosition enum

The position of an EVSE relative to the EVSE’s parking space.

Value Description

LEFT The EVSE is to the left of the vehicle. For streetside parking, the CPO can assume the
vehicle is facing the same way as traffic on the side of the road that the EVSE is on. This
means that LEFT is used for all streetside parking in locales with left-hand traffic. For
parking spaces leading sideways from a roadway, the CPO can assume the vehicle is
parking with the nose away from the roadway (that is, entering the parking space
driving forward).

RIGHT The EVSE is to the right of the vehicle when parked. For streetside parking, the CPO can
assume the vehicle is facing the same way as traffic on the side of the road that the
EVSE is on. This means that RIGHT is used for all streetside parking in locales with
right-hand traffic. For parking spaces leading sideways from a roadway, the CPO can
assume the vehicle is parking with the nose away from the roadway (that is, entering
the parking space driving forward).

CENTER The EVSE is at the center of the impassable narrow end of a parking space.

8.4.14. ExceptionalPeriod class

Specifies one exceptional period for opening or access hours.

Property Type Card Description

period_begin DateTime 1 Begin of the exception. In UTC, time_zone field can be used to convert to
local time.

period_end DateTime 1 End of the exception. In UTC, time_zone field can be used to convert to
local time.

81

OCPI12.3.0

8.4.15. Facility OpenEnum

Value Description

HOTEL Ahotel.

RESTAURANT A restaurant.

CAFE A cafe.

MALL A mall or shopping center.
SUPERMARKET A supermarket.

SPORT Sport facilities: gym, field etc.
RECREATION_AREA A recreation area.

NATURE Located in, or close to, a park, nature reserve etc.
MUSEUM A museum.

BIKE_SHARING A bike/e-bike/e-scooter sharing location.
BUS_STOP A bus stop.

TAXI_STAND A taxi stand.

TRAM_STOP A tram stop/station.

METRO_STATION A metro station.

TRAIN_STATION A train station.

AIRPORT An airport.

PARKING_LOT A parking lot.

CARPOOL_PARKING A carpool parking.

FUEL_STATION A Fuel station.

WIFI Wifi or other type of internet available.

8.4.16. GeoLocation class

This class defines the geo location of the Charge Point. The geodetic system to be used is WGS 84.

Property

latitude

longitude

NOTE

Type Card Description

string(10) 1 Latitude of the point in decimal degree. Example: 50.770774. Decimal
separator: "." Regex: -7[0-9]{1,2}\.[0-9]{5,7}

string(11) 1 Longitude of the point in decimal degree. Example: -126.104965.
Decimal separator: "." Regex: -?[0-9]{1,3}\.[0-9]{5,7}

Five decimal places is seen as a minimum for GPS coordinates of the Charge Point as this gives
approximately 1 meter precision. More is always better. Seven decimal places gives approximately

82

lcm precision.

8.4.17. Hours class

Opening and access hours of the location.

Property Type Card
twentyfourseven boolean 1
regular_hours RegularHours *

exceptional_openin
gs

ExceptionalPeriod | *

exceptional_closing ExceptionalPeriod *

S

OCPI12.3.0

Description

True to represent 24 hours a day and 7 days a week, except the

given exceptions.

Regular hours, weekday-based. Only to be used if
twentyfourseven=false, then this field needs to contain at least
one RegularHours object.

Exceptions for specified calendar dates, time-range based.
Periods the station is operating/accessible. Additional to
reqular_hours. May overlap regular rules.

Exceptions for specified calendar dates, time-range based.
Periods the station is not operating/accessible. Overwriting
regular_hours and exceptional_openings. Should not overlap

exceptional_openings.

8.4.17.1. Example: 24/7 open with exceptional closing.

Open 24 hours per day, 7 days a week, except for 25th of December 2018 between 03:00 and 05:00.

{
"twentyfourseven": true,
"exceptional_closings": [{
"period_begin": "2018-12-25T03:00:00Z",
"period_end": "2018-12-25T05:00:007"
H
}

twentyfourseven /

<Open

exceptional_closing /

< Closed)
result opening hours /
fo
< Open > { open
0 1 2 3 4 5 6

Figure 25. Diagram showing a representation of the example 24/7 open with exception closing.

83

OCPI12.3.0

8.4.17.2. Example: Opening Hours with exceptional closing.

Regular opening hours between 01:00 and 06:00. With exceptional closing on 25th of December 2018 between 03:00
and 05:00.

"twentyfourseven": false,

"regular_hours": [{
"weekday": 1,
"period_begin": "01:00",
"period_end": "06:00"

Bo 1
"weekday": 2,

"period_begin": "01:00",
"period_end": "06:00"

H,

"exceptional_closings": [{
"period_begin": "2018-12-25T03:00:007",
"period_end": "2018-12-25T05:00:002"

H

regular_hours /

% Open F

exceptional_closing /

< Closed)

result opening hours /

(0] 1 2 3 4 5 6

Figure 26. Diagram showing a representation of the example Opening Hours with exceptional closing

8.4.17.3. Example: Opening Hours with exceptional opening.

Regular opening hours between 00:00 and 04:00. With exceptional opening on 25th of December 2018 between 05:00
and 07:00.

{

"twentyfourseven": false,

"regular_hours": [{
"weekday": 1,
"period_begin": "00:00",
"period_end": "04:00"

Bo
"weekday": 2,

"period_begin": "00:00",
"period_end": "04:00"

H,

"exceptional_openings": [{
"period_begin": "2018-12-25T05:00:007",
"period_end": "2018-12-25T06:00:00Z"

]

}

84

OCPI12.3.0

regular_hours /

< Open

exceptional_openings /

N

result opening hours /
< Open

0] 1 2 3 4 5 6

Figure 27. Diagram showing a representation of the example Opening Hours with exceptional opening.

8.4.18. Image class

This class references an image related to an EVSE in terms of a file name or url. According to the roaming
connection between one EVSE Operator and one or more Navigation Service Providers, the hosting or file exchange
of image payload data has to be defined. The exchange of this content data is out of scope of OCPI. However, the
recommended setup is a public available web server hosted and updated by the EVSE Operator. Per charge point an
unlimited number of images of each type is allowed. Recommended are at least two images where one is a network
or provider logo and the second is a station photo. If two images of the same type are defined, not only one should
be selected but both should be displayed together.

Photo Dimensions: The recommended dimensions for all photos is a minimum width of 800 pixels and a minimum
height of 600 pixels. Thumbnail should always have the same orientation as the original photo with a size of 200 by

200 pixels.

Logo Dimensions: The recommended dimensions for logos are exactly 512 pixels in width height. Thumbnail
representations of logos should be exactly 128 pixels in width and height. If not squared, thumbnails should have

the same orientation as the original.

Property Type Card Description

url URL 1 URL from where the image data can be fetched through a web
browser.

thumbnail URL ? URL from where a thumbnail of the image can be fetched

through a webbrowser.

category ImageCategory 1 Describes what the image is used for.
type CiString(4) 1 Image type like: gif, jpeg, png, svg.
width int(5) ? Width of the full scale image.

height int(5) ? Height of the full scale image.

8.4.19. ImageCategory OpenEnum

The category of an image to obtain the correct usage in a user presentation. The category has to be set accordingly to
the image content in order to guarantee the right usage.

85

OCPI12.3.0

Value Description

CHARGER Photo of the physical device that contains one or more EVSEs.

ENTRANCE Location entrance photo. Should show the car entrance to the location from street side.
LOCATION Location overview photo.

NETWORK Logo of an associated roaming network to be displayed with the EVSE for example in

lists, maps and detailed information views.

OPERATOR Logo of the charge point operator, for example a municipality, to be displayed in the
EVSEs detailed information view or in lists and maps, if no network logo is present.

OTHER Other

OWNER Logo of the charge point owner, for example a local store, to be displayed in the EVSEs
detailed information view.

8.4.20. ParkingDirection enum

Indicates the direction in which parking occurs relative to the roadway on which vehicles approach the EVSE.

Value Description

PARALLEL Parking happens parallel to the roadway on which vehicles approach the EVSE.
PERPENDICULAR Parking happens perpendicular to the roadway on which vehicles approach the EVSE.
ANGLE Parking happens at an angle to the roadway on which vehicles approach the EVSE (i.e.

echelon parking).

8.4.21. ParkingRestriction OpenEnum

This value, if provided, represents the restriction to the parking spot for different purposes.

Value Description

CUSTOMERS Parking spot for customers or guests only, for example in case of a hotel or shop.

DISABLED Reserved parking spot for disabled people with valid ID.

EMPLOYEES Parking only for people who work at a site, building, or complex that the Location
belongs to.

EV_ONLY Reserved parking spot for electric vehicles.

MOTORCYCLES Parking spot only suitable for (electric) motorcycles or scooters.

PLUGGED Parking is only allowed while plugged in (charging).

TAXIS Parking only for taxi vehicles.

TENANTS Parking only for people who live in a complex that the Location belongs to.

86

OCPI12.3.0

8.4.22. ParkingType OpenEnum

Reflects the general type of the charge point’s location. May be used for user information.

Value

ALONG_MOTORWAY

PARKING_GARAGE

PARKING_LOT

ON_DRIVEWAY

ON_STREET

UNDERGROUND_GARAGE

Description

Location on a parking facility/rest area along a motorway, freeway, interstate,
highway etc.

Multistorey car park.

A cleared area that is intended for parking vehicles, i.e. at super markets, bars,
etc.

Location is on the driveway of a house/building.
Parking in public space along a street.

Multistorey car park, mainly underground.

8.4.23. PowerType enum

Value

AC_1_PHASE
AC_2_PHASE
AC_2_PHASE_SPLIT
AC_3_PHASE

DC

Description

AC single phase.

AC two phases, only two of the three available phases connected.

AC two phases using split phase system.

AC three phases.

Direct Current.

8.4.24. PublishTokenType class

Defines the set of values that identify a token to which a Location might be published.

At least one of the following fields SHALL be set: uid, visual_number, or group_id.

When vid is set, type SHALL also be set.

When visual _number is set, issuer SHALL also be set.

Property

uid
type

visual_number

issuer

Type

CiString(36)
TokenType

string(64)

string(64)

Card Description

? Unique ID by which this Token can be identified.

? Type of the token.

? Visual readable number/identification as printed on the Token (RFID
card).

? Issuing company, most of the times the name of the company printed

on the token (RFID card), not necessarily the eMSP.

87

OCPI 2.3.0
Property Type Card Description

group_id CiString(36) ? This ID groups a couple of tokens. This can be used to make two or
more tokens work as one.

8.4.25. RegularHours class

Regular recurring operation or access hours.

Property Type Card Description

[uny

weekday int(1) Number of day in the week, from Monday (1) till Sunday (7)

period_begin string(5) 1 Begin of the regular period, in local time, given in hours and minutes.
Must be in 24h format with leading zeros. Example: "18:15".
Hour/Minute separator: ":" Regex: ([0-1][0-9]|2[0-3]1):[0-5]1[0-9].

[y

period_end string(5) End of the regular period, in local time, syntax as for period_begin.

Must be later than period_begin.

8.4.25.1. Example

Operating on weekdays from 8am till 8pm with one exceptional opening on 22/6/2014 and one exceptional closing
the Monday after:

"opening_times": {
"regular_hours": [

{
"weekday": 1,
"period_begin": "08:00",
"period_end": "20:00"

I

{
"weekday": 2,
"period_begin": "08:00",
"period_end": "20:00"

By

{
"weekday": 3,
"period_begin": "08:00",
"period_end": "20:00"

H

{
"weekday": 4,
"period_begin": "08:00",
"period_end": "20:00"

I

{
"weekday": 5,
"period_begin": "08:00",
"period_end": "20:00"

}

1,

"twentyfourseven": false,
"exceptional_openings": [
{
"period_begin": "2014-06-21T09:00:00Z",
"period_end": "2014-06-21712:00:002"

88

3
]

{

OCPI12.3.0

"exceptional_closings": [

"period_begin": "2014-06-24T00:00:00Z",
"period_end": "2014-06-25T700:00:002"

3
]
¥

This represents the following schedule, where streked-out days are without operation hours, bold days are where

exceptions apply and regular displayed days are where the regular schedule applies.
P pply g play Y g pp

Week Mo Tu
day

Date 16 17

Open 08 08
from

Open 20 20
till

We Th Fr Sa Su Mo Tu We Th Fr Sa Su

18 19 20 21 22 23 24 25 26 27 28 25

08 08 08 09 - 08 - 08 08 08 B -

20 20 20 12 - 20 - 20 20 20 - -

8.4.26. Status enum

The status of an EVSE.

Value

AVAILABLE

BLOCKED

CHARGING

INOPERATIVE

OUTOFORDER

PLANNED

REMOVED

RESERVED

UNKNOWN

Description

The EVSE/Connector is able to start a new charging session.

The EVSE/Connector is not accessible because of a physical barrier, i.e. a car.
The EVSE/Connector is in use.

The EVSE/Connector is not yet active, or temporarily not available for use, but not
broken or defect.

The EVSE/Connector is currently out of order, some part/components may be
broken/defect.

The EVSE/Connector is planned, will be operating soon.
The EVSE/Connector was discontinued/removed.

The EVSE/Connector is reserved for a particular EV driver and is unavailable for other
drivers.

No status information available (also used when offline).

8.4.27. StatusSchedule class

This type is used to schedule status periods in the future. The eMSP can provide this information to the EV user for

trip planning purposes. A period MAY have no end. Example: "This station will be running as of tomorrow. Today it

is still planned and under construction.”

89

OCPI12.3.0

Property Type Card Description

period_begin DateTime 1 Begin of the scheduled period.
period_end DateTime ? End of the scheduled period, if known.
status Status 1 Status value during the scheduled period.

The scheduled status is purely informational. When the status actually changes, the CPO must push
an update to the EVSEs status field itself.

NOTE

8.4.28. VehicleType OpenEnum

A categorization of vehicles to indicate which type of vehicles can use a certain EVSE. Approximate UNECE codes
corresponding to our categories are given in the third column in the table.

Value Description UNECE Code
MOTORCYCLE A motorcycle L
PERSONAL_VEHICL A personal vehicle, a passenger car M1

E

PERSONAL_VEHICL A personal vehicle with a trailer attached M1+ 0

E_WITH_TRAILER

VAN A light-duty van with a height smaller than 275 cm N1

SEMI_TRACTOR A heavy-duty tractor unit without a trailer T

RIGID A heavy-duty truck without an articulation point N2 (under 12
tonnes) / N3 (over
12 tonnes)

TRUCK_WITH_TRAI A heavy-duty truck (tractor or rigid) with a trailer attached N2/N3 +0

LER

BUS A bus or a motor coach. M2 (under 5
tonnes) / M3 (over 5
tonnes)

DISABLED A vehicle with a permit for parking spaces for people with disabilities = M1 (assuming that
these are typically
based on personal
vehicles)

It may seem surprising that OCPI uses a custom vehicle categorization scheme rather than one
defined in another specification. During OCPI 3.0 development it appeared however that existing
NOTE classifications, like the UNECE Classification and Definition of Vehicles, are overly detailed and

technical and offer little help in making clear which vehicles can use a certain EVSE. For OCPI 3.0
we opted for a deliberately common sense based categorization that we believe will be easier to
use for Drivers and CPOs.

90

OCPI12.3.0

9. Sessions module

Module Identifier: sessions
Data owner: CP0
Type: Functional Module

The Session object describes one charging session. The Session object is owned by the CPO back-end system, and can
be GET from the CPO system, or pushed by the CPO to another system.

9.1. Flow and Lifecycle

9.1.1. Push model

When the CPO creates a Session object they push it to the corresponding eMSP by calling PUT on the eMSP’s Sessions
endpoint with the newly created Session object.

Any changes to a Session in the CPO system are sent to the eMSP system by calling PATCH on the eMSP’s Sessions
endpoint with the updated Session object.

Sessions cannot be deleted, final status of a session is: COMPLETED.

When the CPO is not sure about the state or existence of a Session object in the eMSP’s system, the CPO can call GET
on the eMSP’s Sessions endpoint to validate the Session object in the eMSP’s system.

9.1.2. Pull model

eMSPs who do not support the Push model need to call GET on the CPO’s Sessions endpoint to receive a list of
Sessions.

This GET method can also be used in combination with the Push model to retrieve Sessions after the system (re-
Jconnects to a CPO, to get a list Sessions missed during a downtime of the eMSP’s system.

9.1.3. Set: Charging Preferences

For a lot of smart charging use cases, input from the driver is needed. The smart charging algorithms need to be able
to give certain session priority over others. In other words they need to know how much energy an EV needs before
what time. Via a PUT request on the Sender Interface, during an ongoing session, the eMSP can send Charging
Preferences on behalf of the driver.

The eMSP can determine if an EVSE supports Charging Preferences by checking if the EVSE capabilities contains:
CHARGING_PREFERENCES_CAPABLE.

Via Tariffs the CPO can give different Charging Preferences different prices. A Connector can have multiple Tariffs,
one for each ProfileType.

9.1.4. Reservation

When a EV driver makes a Reservation for a Charge Point/EVSE, the Sender SHALL create a new Session object with
status = RESERVED When the Push model is used, the CPO SHALL push the new Session object to the Receiver.

91

OCPI12.3.0

When a reservation results in a charging session for the same Token, the Session object status to: ACTIVE
When a reservation does not result in a charging session, the Session object status SHALL be set to: COMPLETED.

A CDR might be created even if no energy was transferred to the EV, just for the costs of the reservation.

9.2. Interfaces and Endpoints

9.2.1. Sender Interface

Typically implemented by market roles like: CPO.

Method Description

GET Fetch Session objects of charging sessions last updated between the {date_from} and {date_to}
(paginated).

POST n/a

PUT Setting Charging Preferences of an ongoing session.

PATCH n/a

DELETE n/a

9.2.1.1. GET Method

Fetch Sessions from a CPO system.

Endpoint structure definition:
{sessions_endpoint_ur1}?[date_from={date_from}]&[date_to={date_to}]&[offset={offset}]&[limit={Tlimit}]
Examples:
https://www.server.com/ocpi/cpo/2.2.1/sessions/?date_from=2019-01-28T712:00:00&date_t0=2019-01-29T12:00:00
https://ocpi.server.com/2.2.1/sessions/?offset=50
https://www.server.com/ocpi/2.2.1/sessions/?date_from=2019-01-29712:00:00&1imit=100

https://www.server.com/ocpi/cpo/2.2.1/sessions/?0ffset=5061imit=100

Request Parameters

Only Sessions with last_update between the given {date_from} (including) and {date_to} (excluding) will be
returned.

This request is paginated, it supports the pagination related URL parameters.

Parameter Datatype Requ Description
ired
date_from DateTime yes Only return Sessions that have last_updated after or equal to this

Date/Time (inclusive).

92

OCPI12.3.0

Parameter Datatype Requ Description
ired
date_to DateTime no Only return Sessions that have last_updated up to this Date/Time, but

not including (exclusive).
offset int no The offset of the first object returned. Default is 0.

limit int no Maximum number of objects to GET.

Response Data

The response contains a list of Session objects that match the given parameters in the request, the header will
contain the pagination related headers.

Any older information that is not specified in the response is considered no longer valid. Each object must contain
all required fields. Fields that are not specified may be considered as null values.

Datatype Card. Description

Session * List of Session objects that match the
request parameters.

9.2.1.2. PUT Method

Set/update the driver’s Charging Preferences for this charging session.
Endpoint structure definition:
{sessions_endpoint_url}/{session_id}/charging_preferences
Examples:

https://www.server.com/ocpi/cpo/2.2.1/sessions/1234/charging_preferences

NOTE The /charging_preferences URL suffix is required when setting Charging Preferences.

Request Parameters

The following parameter has to be provided as URL segments.

Parameter Datatype Requ Description
ired
session_id CiString(36) ' yes Session.id of the Session for which the Charging Preferences are to be
set.
Request Body

In the body, a ChargingPreferences object has to be provided.

93

OCPI12.3.0

Type Card Description

ChargingPreferences 1 Updated Charging Preferences of the driver for this Session.

Response Data

The response contains a ChargingPreferencesResponse value.

Type Card Description
ChargingPreferencesResp 1 Response to the Charging Preferences PUT request.
onse

9.2.2. Receiver Interface
Typically implemented by market roles like: eMSP and SCSP.

Sessions are Client Owned Objects, so the endpoints need to contain the required extra fields: {party_id} and

{country_code}.

Endpoint structure definition:
{sessions_endpoint_url}/{country_code}/{party_id}/{session_id}
Example:

https://www.server.com/ocpi/emsp/2.2.1/sessions/BE/BEC/1234

Method Description

GET Retrieve a Session object from the eMSP’s system with Session.id equal to {session_id}.
POST n/a

PUT Send a new/updated Session object to the eMSP.

PATCH Update the Session object with Session.id equal to {session_id}.

DELETE n/a

9.2.2.1. GET Method

The CPO system might request the current version of a Session object from the eMSP’s system to, for example,
validate the state, or because the CPO has received an error during a PATCH operation.

Request Parameters

The following parameters shall be provided as URL segments.

Parameter Datatype Requ Description
ired
country_code CiString(2) | yes Country code of the CPO performing the GET on the eMSP’s system.

94

OCPI12.3.0

Parameter Datatype Requ Description
ired
party_id CiString(3) yes Party ID (Provider ID) of the CPO performing the GET on the eMSP’s
system.
session_id CiString(36) | yes id of the Session object to get from the eMSP’s system.

Response Data

The response contains the requested Session object.

Datatype Card. Description

Session 1 Requested Session object.

9.2.2.2. PUT Method

Inform the eMSP’s system about a new/updated Session object in the CPO’s system.

When a PUT request is received for an existing Session object (the object is PUT to the same URL), The newly
received Session object SHALL replace the existing object.

Any charging_periods from the existing object SHALL be replaced by the charging_periods from the newly received
Session object. If the new Session object does not contain charging_periods (field is omitted or contains any empty
list), the charging_periods of the existing object SHALL be removed (replaced by the new empty list).

Request Body

The request contains the new or updated Session object.

Type Card Description

Session 1 New or updated Session object.

Request Parameters

The following parameters shall be provided as URL segments.

Parameter Datatype Requ Description
ired

country_code CiString(2) | yes Country code of the CPO performing this PUT on the eMSP’s system.
This SHALL be the same value as the country_code in the Session object
being pushed.

party_id CiString(3) | yes Party ID (Provider ID) of the CPO performing this PUT on the eMSP’s
system. This SHALL be the same value as the party_id in the Session
object being pushed.

session_id CiString(36) | yes id of the new or updated Session object.

95

OCPI12.3.0

9.2.2.3. PATCH Method

Same as the PUT method, but only the fields/objects that need to be updated have to be present. Fields/objects which
are not specified are considered unchanged.

Any request to the PATCH method SHALL contain the last_updated field.

The PATCH method of the Session Receiver interface works on the entire Session object only. It is not allowed to use
extra URL segments to try to PATCH fields of inner objects of the Session object directly.

When a PATCH request contains the charging_periods field (inside a Session object), this SHALL be processed as a
request to add all the ChargingPeriod objects to the existing Session object. If the request charging_periods list is
omitted (or contains an empty list), no changes SHALL be made to the existing list of charging_periods.

If existing ChargingPeriod objects in a Session need to be replaced or removed, the Sender SHALL use the PUT
method to replace the entire Session object (including all the charging_periods).

Example: update the total cost

Patching the total_cost needs to be done on the Session Object.

PATCH https://www.server.com/ocpi/cpo/2.2.1/sessions/NL/TNM/101

{

"total_cost": {
"before_taxes": 0.60,
"taxes": [{

"name": "VAT",
"amount": 0.06
H
B
"last_updated": "2019-06-23708:11:002"
}

Example: adding a new ChargingPeriod

PATCH used to add a new ChargingPeriod to the Session and updating all related fields.

PATCH https://www.server.com/ocpi/cpo/2.2.1/sessions/NL/TNM/101

{

"kwh": 15.00,

"charging_periods": [{
"start_date_time": "2019-06-23T08:16:027",
"dimensions": [{

"type": "ENERGY",
"volume": 2200
]

Bl

"total_cost": {
"before_taxes": 0.80,
"taxes": [{

"name": "VAT",
"amount": 0.08
]
B
"last_updated": "2019-06-23708:16:022"

96

OCPI12.3.0

9.3. Object description

9.3.1. Session Object

The Session object describes one charging session. That doesn’t mean it is required that energy has been transferred
between EV and the Charge Point. It is possible that the EV never took energy from the Charge Point because it was
instructed not to take energy by the driver. But as the EV was connected to the Charge Point, some form of start

tariff, park tariff or reservation cost might be relevant.
NOTE Although OCPI supports such pricing mechanisms, local laws might not allow this.

It is recommended to add enough ChargingPeriods to a Session so that the eMSP is able to provide feedback to the EV
driver about the progress of the charging session. The ideal amount of transmitted Charging Periods depends on the
charging speed. The Charging Periods should be sufficient for useful feedback but they should not generate too
much unneeded traffic either. How many Charging Periods are transmitted is left to the CPO to decide. The following
are just some points to consider:

* Adding a new Charging Period every minute for an AC charging session can be too much as it will yield 180
Charging Periods for an (assumed to be) average 3h session.
* A new Charging Period every 30 minutes for a DC fast charging session is not enough as it will yield only one

Charging Period for an (assumed to be) average 30min session.

It is also recommended to add Charging Periods for all moments that are relevant for the Tariff changes, see CDR

object description for more information.

For more information about how step_size impacts the calculation of the cost of charging also see the CDR object

description.

Property Type Card Description

country_code CiString(2) 1 ISO-3166 alpha-2 country code of the CPO that 'owns' this
Session.

party_id CiString(3) 1 ID of the CPO that 'owns' this Session (following the ISO-
15118 standard).

id CiString(36) 1 The unique id that identifies the charging session in the
CPO platform.

start_date_time DateTime 1 The timestamp when the session became ACTIVE in the
Charge Point.
When the session is still PENDING, this field SHALL be set
to the time the Session was created at the Charge Point.
When a Session goes from PENDING to ACTIVE, this field
SHALL be updated to the moment the Session went to
ACTIVE in the Charge Point.

end_date_time DateTime ? The timestamp when the session was completed/finished,

charging might have finished before the session ends, for
example: EV is full, but parking cost also has to be paid.

97

Property

kwh

cdr_token

auth_method

authorization_reference

location_id

evse_uid

connector_id

meter_id
currency

charging periods

total_cost

status

last_updated

Type

number

CdrToken

AuthMethod

CiString(36)

CiString(36)

CiString(36)

CiString(36)

string(255)
string(3)

ChargingPeriod

Price

SessionStatus

DateTime

OCPI12.3.0

Card Description

How many kWh were charged.

Token used to start this charging session, including all the
relevant information to identify the unique token.

Method used for authentication. This might change during
a session, for example when the session was started with a
reservation: ReserveNow: COMMAND. When the driver arrives
and starts charging using a Token that is whitelisted:
WHITELIST.

Reference to the authorization given by the eMSP. When the
eMSP provided an authorization_reference in either: real-
time authorization, StartSession or ReserveNow this field
SHALL contain the same value. When different
authorization_reference values have been given by the
eMSP that are relevant to this Session, the last given value
SHALL be used here.

Location.id of the Location object of this CPO, on which the
charging session is/was happening.

EVSE.uid of the EVSE of this Location on which the charging
session is/was happening. Allowed to be set to: #NA when
this session is created for a reservation, but no EVSE yet
assigned to the driver.

Connector.id of the Connector of this Location where the
charging session is/was happening. Allowed to be set to: #NA
when this session is created for a reservation, but no
connector yet assigned to the driver.

Optional identification of the kWh meter.
ISO 4217 code of the currency used for this session.

An optional list of Charging Periods that can be used to
calculate and verify the total cost.

The total cost of the session in the specified currency. This is
the price that the eMSP will have to pay to the CPO. A
total_cost of 0.00 means free of charge. When omitted, i.e.
no price information is given in the Session object, it does
not imply the session is/was free of charge.

The status of the session.

Timestamp when this Session was last updated (or created).

Different authorization_reference values might happen when for example a ReserveNow had a

NOTE

different authorization_reference then the value returned by a real-time authorization.

98

OCPI12.3.0

9.3.1.1. Examples

Simple Session example of just starting a session

"country_code": "NL",
"party_id": "STK",
"id": "101",
"start_date_time": "2020-03-09T710:17:09Z",
"kwh": 0.0,
"cdr_token": {
"country_code": "NL",
"party_id": "TST",
"uid": "123abc",
"type": "RFID",
"contract_id": "NL-TST-C12345678-S"
Do
"auth_method": "WHITELIST",
"location_id": "LOCT",
"evse_uid": "3256",
"connector_id": "1",
"currency": "EUR",
"total_cost": {
"before_taxes": 2.5
Bo
"status": "PENDING",
"last_updated": "2020-03-09T710:17:092"

Simple Session example of a short finished session

"country_code": "BE",
"party_id": "BEC",
"id": "101",
"start_date_time": "2015-06-29T722:39:09Z",
"end_date_time": "2015-06-29T23:50:16Z",
"kwh": 41.12,
"cdr_token": {
"country_code": "NL",
"party_id": "TST",
"uid": "123abc",
"type": "RFID",
"contract_id": "NL-TST-C12345678-S"
Yo
"auth_method": "WHITELIST",
"location_id": "LOCT",
"evse_uid": "3256",
"connector_id": "1",
"currency": "EUR",
"charging_periods": [{
"start_date_time": "2015-06-29T22:39:09Z",
"dimensions": [{
"type": "ENERGY",

"volume": 120
by
"type": "MAX_CURRENT",
"volume": 30
]
Bo 4

"start_date_time": "2015-06-29T22:40:547",
"dimensions": [{

"type": "ENERGY",

"volume": 41000
by

"type": "MIN_CURRENT",

99

OCPI12.3.0

"volume": 34
]
oA
"start_date_time": "2015-06-29723:07:097",
"dimensions": [{
"type": "PARKING_TIME",
"volume": 0.718
1,
"tariff_id": "12"
Fls
"total_cost": {
"before_taxes": 8.50,

"taxes": [{
"name": "VAT",
"amount": 0.85

]

}I
"status": "COMPLETED",
"last_updated": "2015-06-29723:50:172"

9.3.2. ChargingPreferences Object

Contains the charging preferences of an EV driver.

Property Type Card Description

[uny

profile_type ProfileType Type of Smart Charging Profile selected by the driver. The ProfileType
has to be supported at the Connector and for every supported
ProfileType, a Tariff MUST be provided. This gives the EV driver the

option between different pricing options.

departure_time DateTime ? Expected departure. The driver has given this Date/Time as expected
departure moment. It is only an estimation and not necessarily the
Date/Time of the actual departure.

energy_need number ? Requested amount of energy in kWh. The EV driver wants to have this
amount of energy charged.

discharge_allowed boolean ? The driver allows their EV to be discharged when needed, as long as
the other preferences are met: EV is charged with the preferred energy
(energy_need) until the preferred departure moment (departure_time).
Default if omitted: false

9.4. Data types

9.4.1. ChargingPreferencesResponse enum
An enum with possible responses to a PUT Charging Preferences request.

If a PUT with ChargingPreferences is received for an EVSE that does not have the capability
CHARGING_PREFERENCES_CAPABLE, the receiver should respond with an HTTP status of 404 and an OCPI status code of
2001 in the OCPI response object.

100

Value

ACCEPTED

DEPARTURE_REQUIRED

ENERGY_NEED_REQUIRED

NOT_POSSIBLE

OCPI12.3.0

Description

Charging Preferences accepted, EVSE will try to accomplish them,
although this is no guarantee that they will be fulfilled.

CPO requires departure_time to be able to perform Charging
Preference based Smart Charging.

CPO requires energy_need to be able to perform Charging Preference
based Smart Charging.

Charging Preferences contain a demand that the EVSE knows it
cannot fulfill.

PROFILE_TYPE_NOT_SUPPORTED profile_type contains a value that is not supported by the EVSE.

9.4.2. ProfileType enum

Different smart charging pr

Value
CHEAP

FAST

GREEN

REGULAR

ofile types.

Description
Driver wants to use the cheapest charging profile possible.

Driver wants his EV charged as quickly as possible and is willing to pay a premium for
this, if needed.

Driver wants his EV charged with as much regenerative (green) energy as possible.

Driver does not have special preferences.

9.4.3. SessionStatus enum

Defines the state of a session.

Value

ACTIVE

COMPLETED

INVALID

PENDING

RESERVATION

Description

The session has been accepted and is active. All pre-conditions were met:
Communication between EV and EVSE (for example: cable plugged in correctly), EV or
driver is authorized. EV is being charged, or can be charged. Energy is, or is not, being
transfered.

The session has been finished successfully. No more modifications will be made to the
Session object using this state.

The Session object using this state is declared invalid and will not be billed.

The session is pending, it has not yet started. Not all pre-conditions are met. This is the
initial state. The session might never become an active session.

The session is started due to a reservation, charging has not yet started. The session
might never become an active session.

101

OCPI12.3.0

10. CDRs module

Module Identifier: cdrs
Data owner: CP0
Type: Functional Module

A Charge Detail Record is the description of a concluded charging session. The CDR is the only billing-relevant
object. CDRs are sent from the CPO to the eMSP after the charging session has ended. Although there is no
requirement to send CDRs in (semi-) realtime, it is seen as good practice to send them as soon as possible. But if
there is an agreement between parties to send them, for example, once a month, that is also allowed by OCPI.

10.1. Flow and Lifecycle

CDRs are created by the CPO. They most likely will be sent only to the eMSP that needs to pay the bill of the
underlying charging session. Because a CDR is for billing purposes, it cannot be changed or replaced once sent to the
eMSP. Changes are simply not allowed. Instead, a Credit CDR can be sent.

CDRs may be sent for charging locations that have not been published via the Location module. This is typically for
home chargers.

10.1.1. Credit CDRs

As CDRs are used for billing and can be seen as a kind of invoice, they cannot be deleted. Instead, they have to be
credited.

When a CPO wants to make changes to a CDR that was already sent to the eMSP, the CPO has to send a Credit CDR for
the first CDR. This credit CDR SHALL have a different CDR.id which can be a completely different number, or it can
be the id of the original CDR with something appended like for example: -C to make it unique again. To indicate that
a CDR is a Credit CDR, the credit field has to be set to true. The Credit CDR references the old CDR via the
credit_reference_id field, which SHALL contain the id of the original CDR. The Credit CDR will contain all the data of
the original CDR. Only the values in the total_cost field SHALL contain the negative amounts of the original CDR.

After having sent the Credit CDR, the CPO can send a new CDR with a new unique ID and the fields: credit and
credit_reference_id omitted.

NOTE How far back in time a CPO can send a Credit CDR is not defined by OCPI. It is up the business
contracts between the different parties involved, as there might be local laws involved etc.

10.1.2. Push model

When the CPO creates CDR(s) they push them to the relevant eMSP by calling POST on the eMSPs CDRs endpoint
with the newly created CDR(s). A CPO is not required to send all CDRs to all eMSPs, it is allowed to only send CDRs to
the eMSP that a CDR is relevant to.

CDRs should contain enough information (dimensions) to allow the eMSP to validate the total cost. It is advised to
send enough information to the eMSP so that they can calculate their own costs for billing their customers. An eMSP
might have a very different contract/pricing model with their EV drivers than the tariff structure of the CPO.

102

OCPI12.3.0

If the CPO, for any reason, wants to view a CDR it has posted to an eMSP’s system, the CPO can retrieve the CDR by
performing a GET request on the eMSP’s CDRs endpoint at the URL returned in the response to the POST.

10.1.3. Pull model

eMSPs who do not support the Push model need to call GET on the CPO’s CDRs endpoint to receive a list of CDRs.

This GET can also be used in combination with the Push model to retrieve CDRs after the system (re-)connects to a
CPO, to get a list of CDRs missed during a downtime of the eMSP’s system.

A CPO is not required to return all known CDRs, the CPO is allowed to return only the CDRs that are relevant for the
requesting eMSP.

10.2. Interfaces and Endpoints

There are both, a Sender and a Receiver interface for CDRs. Depending on business requirements, parties can decide
to use the Sender Interface (Pull model), or the Receiver Interface (Push model), or both. Push is the preferred model
to use, because the Receiver will receive CDRs in semi-realtime when they are created by the CPO.

10.2.1. Sender Interface

Typically implemented by market roles like: CPO.

The CDRs endpoint can be used to retrieve CDRs.

Endpoint structure definition:
{cdr_endpoint_url}?[date_from={date_from}]&[date_to={date_to}]&[offset={offset}]&[limit={1limit}]
Examples:
https://www.server.com/ocpi/cpo/2.2.1/cdrs/?date_from=2019-01-28T12:00:00&date_t0=2019-01-29T12:00:00
https://ocpi.server.com/2.2.1/cdrs/?offset=50
https://www.server.com/ocpi/2.2.1/cdrs/?date_from=2019-01-29712:00:00&11mit=100

https://www.server.com/ocpi/cpo/2.2.1/cdrs/?offset=50&1imit=100

Method Description

GET Fetch CDRs last updated (which in the current version of OCPI can only be the creation Date/Time)
between the {date_from} and {date_to} (paginated).

POST n/a
PUT n/a
PATCH n/a
DELETE n/a

10.2.1.1. GET Method

Fetch CDRs from the CPO’s system.

103

OCPI12.3.0

Request Parameters

If additional parameters: {date_from} and/or {date_to} are provided, only CDRs with last_updated between the given
{date_from} (including) and {date_to} (excluding) will be returned.

This request is paginated, it supports the pagination related URL parameters.

Parameter Datatype Requ Description
ired
date_from DateTime no Only return CDRs that have last_updated after or equal to this

Date/Time (inclusive).

date_to DateTime no Only return CDRs that have last_updated up to this Date/Time, but not

including (exclusive).
offset int no The offset of the first object returned. Default is 0.

limit int no Maximum number of objects to GET.

Response Data

The endpoint returns a list of CDRs matching the given parameters in the GET request, the header will contain the
pagination related headers.

Any older information that is not specified in the response is considered no longer valid. Each object must contain
all required fields. Fields that are not specified may be considered as null values.

Datatype Card. Description

CDR * List of CDRs.

10.2.2. Receiver Interface
Typically implemented by market roles like: eMSP.

The CDRs endpoint can be used to create and retrieve CDRs.

Method Description

GET Retrieve an existing CDR.
POST Send a new CDR.

PUT n/a (CDRs cannot be replaced)
PATCH n/a (CDRs cannot be updated)
DELETE n/a (CDRs cannot be removed)

10.2.2.1. GET Method

Fetch CDRs from the receivers system.

Endpoint structure definition:

104

OCPI12.3.0

No structure defined. This is open to the eMSP to define, the URL is provided to the CPO by the eMSP in the result of
the POST request. Therefore, OCPI does not define variables.

Example:

https://www.server.com/ocpi/2.2.1/cdrs/1234

Response URL

To retrieve an existing URL from the eMSP’s system, the URL, returned in the response to a POST of a new CDR, has
to be used.

Response Data

The endpoint returns the requested CDR, if it exists.

Datatype Card. Description

CDR 1 Requested CDR object.

10.2.2.2. POST Method

Creates a new CDR.
The POST method should contain the full and final CDR object.

Endpoint structure definition:
{cdr_endpoint_url}
Example:

https://www.server.com/ocpi/2.2.1/cdrs/

Request Body

In the POST request the new CDR object is sent.

Type Card Description

CDR 1 New CDR object.

Response Headers

The response should contain the URL to the just created CDR object in the eMSP’s system.

HTTP Header Datatype Requ Description
ired
Location URL yes URL to the newly created CDR in the eMSP’s system, can be used by the

CPO system to perform a GET on the same CDR.

The eMSP returns the URL where the newly created CDR can be found. OCPI does not define a specific structure for

105

OCPI12.3.0

this URL.

Example:

https://www.server.com/ocpi/emsp/2.2.1/cdrs/123456

10.3. Object description

10.3.1. CDR Object
The CDR object describes the charging session and its costs, how these costs are composed, etc.

The CDR object is different from the Session object. The Session object is dynamic as it reflects the current state of
the charging session. The information is meant to be viewed by the driver while the charging session is ongoing.

The CDR on the other hand can be thought of as sealed, preserving the information valid at the moment in time the
underlying session was started. This is a requirement of the main use case for CDRs, namely invoicing. If e.g. a street
is renamed the day after a session took place, the driver should be presented with the name valid at the time the
session was started. This guarantees that the CDR will be recognized as correct by the driver and is not going to be
contested.

The CDR object shall always contain information like Location, EVSE, Tariffs and Token as they were at the start of
the charging session.

ChargingPeriod: A CPO SHALL at least start (and add) a ChargingPeriod every moment/event that has relevance for
the total costs of a CDR. During a charging session, different parameters change all the time, like the amount of
energy used, or the time of day. These changes can result in another Price Component of the Tariff becoming active.
When another Price Component becomes active, the CPO SHALL add a new Charging Period with at least all the
relevant information for the change to the other Price Component. The CPO is allowed to add more in-between
Charging Periods to a CDR though.

Examples of additional Charging Periods that are required to be added because another Price Component is
becoming active:

* When an energy changes in price after 17:00. The CPO has to start a new Charging Period at 17:00. The CPO also
has to list the energy in kWh consumed until 17:00 in the Charging Period that ends at 17:00.

* When the price of a energy is higher when the EV is charging faster than 32A, a new Charging Period has to be
added the moment the charging power goes over 32A. This may be a moment that is calculated by the CPO, as
the Charge Point might not send the information to the CPO, but it can be interpolated by the CPO using the
metering information before and after that moment.

step_size: When calculating the cost of a charging session, step_size SHALL only be taken into account once per
session for the TariffDimensionType ENERGY and once for PARKING_TIME and TIME combined.

step_size is not taken into account when switching time based paying for charging to paying for parking (charging
has stopped but EV still connected).

Example: step_size for both charging (TIME) and parking is 5 minutes. After 21 minutes of charging, the EV is full but
remains connected for 7 more minutes. The cost of charging will be calculated based on 21 minutes (not 25). The
cost of parking will be calculated based on 10 minutes (step_size is 5).

step_size is not taken into account when switching from (for example) one ENERGY based tariff element to another.
This is also true when switch from one (TIME) based tariff element to another (TIME) based tariff element, and one

106

OCPI12.3.0

PARKING TIME tariff element to another PARKING TIME based tariff element.

Example: when charging is more expensive after 17:00. The step_size of the tariff before 17:00 will not be used
when charging starts before 17:00 and ends after 17:00. Only the step_size of the tariff (PriceComponent) after 17:00
is taken into account, for the total of the same amount for the session.

The step_size for the PriceComponent that is used to calculate the cost of such a 'last' ChargingPeriod SHALL be
used. If the step_size differs for the different TariffElements, the step_size of the last relevant PriceComponent is
used.

The step_size is not taken into account when switching between two Tariffs
Example: A driver selects a different Charging Preference profile_type during an ongoing charging session, the
different profile might have a different tariff.

The step_size uses the total amount of a certain unit used during a session, not only the last ChargingPeriod. In
other words, when the price of energy per kWh or the price of time per hour differs during a session,only the total
amount of energy or time is used in calculations with step_size.

Example: Energy costs € 0.20 perkWh before 17:00 and € 0.27 per kWh after 17:00. Both Price Components have a
step_size of 500 Wh. If a driver charges 4.3 kWh before 17:00 and 1.1 kWh after 17:00, a total of 5.4 kWh is charged.
The step_size rounds this up to 5.5 kWh total. It does NOT round the energy used after 17:00 to 1.5 kWh.

Example: Time costs € 5 per hour before 17:00 and € 7 per hour after 17:00. Both Price Components have a step_size
of 10 minutes. If a driver charges 6 minutes before 17:00 and 22 minutes after 17:00, this makes a total of 28 minutes
charging. The step_size rounds this up to 30 minutes total, so 24 minutes after 17:00 will be billed. It does NOT
round the minutes after 17:00 to 30 minutes, which would have made a total of 36 minutes.

In the cases that TIME and PARKING_TIME Tariff Elements are both used, step_size is only taken into account for the
total parking duration”

Example: Time spent charging costs € 1.00 per hour and time spent parking (not charging) costs € 2.00 per hour.
Both Price Components have a step_size of 10 minutes. If a driver charges 21 minutes, and keeps his EV connected
while it is full for another 16 minutes, then the step_size rounds the parking duration up to 20 minutes, making it a
total of 41 minutes. Note that the charging duration is not rounded up, as it is followed by another time based

period.

Property Type Card Description

country_code CiString(2) 1 IS0O-3166 alpha-2 country code of the CPO that 'owns' this
CDR.

party_id CiString(3) 1 ID of the CPO that 'owns' this CDR (following the ISO-15118
standard).

id CiString(39) 1 Uniquely identifies the CDR, the ID SHALL be unique per
country_code/party_id combination. This field is longer than
the usual 36 characters to allow for credit CDRs to have
something appended to the original ID. Normal (non-credit)
CDRs SHALL only have an ID with a maximum length of 36.

start_date_time DateTime 1 Start timestamp of the charging session, or in-case of a

reservation (before the start of a session) the start of the
reservation.

107

Property

end_date_time

session_id

cdr_token

auth_method

authorization_reference

cdr_location

meter_id
currency

tariffs

charging periods

signed_data

total_cost

total_fixed_cost

total_energy

Type

DateTime

CiString(36)

CdrToken

AuthMethod

CiString(36)

CdrLocation

string(255)
string(3)

Tariff

ChargingPeriod
SignedData

Price

Price

number

OCPI12.3.0

Card Description

The timestamp when the session was completed/finished,
charging might have finished before the session ends, for
example: EV is full, but parking cost also has to be paid.

Unique ID of the Session for which this CDR is sent. Is only
allowed to be omitted when the CPO has not implemented
the Sessions module or this CDR is the result of a
reservation that never became a charging session, thus no
OCPI Session.

Token used to start this charging session, including all the
relevant information to identify the unique token.

Method used for authentication. Multiple
<mod_cdrs_authmethod_enum,AuthMethods>> are possible
during a charging sessions, for example when the session
was started with a reservation: ReserveNow: COMMAND. When
the driver arrives and starts charging using a Token that is
whitelisted: WHITELIST. The last method SHALL be used in
the CDR.

Reference to the authorization given by the eMSP. When the
eMSP provided an authorization_reference in either: real-
time authorization, StartSession or ReserveNow, this field
SHALL contain the same value. When different
authorization_reference values have been given by the
eMSP that are relevant to this Session, the last given value
SHALL be used here.

Location where the charging session took place, including
only the relevant EVSE and Connector.

Identification of the Meter inside the Charge Point.
Currency of the CDR in ISO 4217 Code.

List of relevant Tariffs, see: Tariff. When relevant, a Free of
Charge tariff should also be in this list, and point to a
defined Free of Charge Tariff.

List of Charging Periods that make up this charging session.
Signed data that belongs to this charging Session.

Total sum of all the costs of this transaction in the specified
currency.

Total sum of all the fixed costs in the specified currency,
except fixed price components of parking and reservation.
The cost not depending on amount of time/energy used etc.
Can contain costs like a start tariff.

Total energy charged, in kWh.

108

Property

total_energy_cost

total_time

total_time_cost

total_parking_time

total_parking_cost

total_reservation_cost

remark

invoice_reference_id

credit

credit_reference_id

home_charging compens
ation

last_updated

Type

Price

number

Price

number

Price

Price

string(255)

CiString(39)

boolean

CiString(39)

boolean

DateTime

OCPI12.3.0

Card Description

Total sum of all the cost of all the energy used, in the
specified currency.

Total duration of the charging session (including the
duration of charging and not charging), in hours.

Total sum of all the cost related to duration of charging
during this transaction, in the specified currency.

Total duration of the charging session where the EV was not
charging (no energy was transferred between EVSE and
EV), in hours.

Total sum of all the cost related to parking of this
transaction, including fixed price components, in the
specified currency.

Total sum of all the cost related to a reservation of a Charge
Point, including fixed price components, in the specified
currency.

Optional remark, can be used to provide additional human
readable information to the CDR, for example: reason why
a transaction was stopped.

This field can be used to reference an invoice, that will later
be send for this CDR. Making it easier to link a CDR to a
given invoice. Maybe even group CDRs that will be on the
same invoice.

When set to true, this is a Credit CDR, and the field
credit_reference_id needs to be set as well.

Is required to be set for a Credit CDR. This SHALL contain
the id of the CDR for which this is a Credit CDR.

When set to true, this CDR is for a charging session using
the home charger of the EV Driver for which the energy
cost needs to be financial compensated to the EV Driver.

Timestamp when this CDR was last updated (or created).

The actual charging duration (energy being transferred between EVSE and EV) of a charging

NOTE
session can be calculated: total_charging_time = total_time - total_parking_time.
Having both a credit and a credit_reference_id might seem redundant. But it is seen as an
NOTE advantage as a boolean flag used in queries is much faster than simple string comparison of
references.
NOTE Different authorization_reference values might happen when for example a ReserveNow had a

different authorization_reference then the value returned by a real-time authorization.

109

OCPI12.3.0

When no start_date_time and/or end_date_time is known to the CPO, normally the CPO cannot send
the CDR. If the MSP and CPO both agree that they accept CDRs that miss either or both the

NOTE start_date_time and end_date_time, and local legislation allows billing of sessions where
start_date_time and/or end_date_time are missing. Then, and only then, the CPO could send a CDR
where the start_date_time and/or end_date_time are set to: "1970-1-1T00:00:00Z.

10.3.1.1. Example of a CDR

"country_code": "BE",
"party_id": "BEC",
"jd": "12345",
"start_date_time": "2024-12-05T17:39:09Z",
"end_date_time": "2024-12-05T19:37:327",
"cdr_token": {
"country_code": "DE",
"party_id": "TNM",
"uid": "012345678",
"type": "RFID",
"contract_id": "DESACC12E46L89"
o
"auth_method": "WHITELIST",
"edr_location": {
"id": "LOoC1",
"name": "Gent Zuid",
"address": "F.Rooseveltlaan 3A",
"city": "Gent",
"postal_code": "9000",
"country": "BEL",
"coordinates": {
"latitude": "3.729944",
"longitude": "51.047599"
o
"evse_uid": "3256",
"evse_id": "BE*BEC*E041503003",
"connector_id": "1",
"connector_standard": "IEC_62196_T2",
"connector_format": "SOCKET",
"connector_power_type": "AC_1_PHASE"
Fo
"currency": "EUR",
"tariffs": [{
"country_code": "BE",
"party_id": "BEC",
"id": "12",
"currency": "EUR",
"elements": [{
"price_components": [{
"type": "TIME",
"price": 2.00,
"vat": 10.0,
"step_size": 300
1
.
"last_updated": "2024-05-02T14:15:01Z"
H,
"charging_periods": [{
"start_date_time": "2024-12-05T17:39:09Z",
"dimensions": [{

"type": "TINE",
"volume": 1.973

H,

"tariff_id": "12"

.
"total_cost": {
"before_taxes": 4.00,

110

OCPI12.3.0

"taxes": [{
"name": "VAT",
"amount": 0.40

]

%
"total_energy": 15.342,
"total_time": 1.973,
"total_time_cost": {
"before_taxes": 4.00,

"taxes": [{
"name": "VAT",
"amount": 0.40

]

h
"last_updated": "2024-12-05720:02:13Z"

10.4. Data types

10.4.1. AuthMethod enum

Value Description
AUTH_REQUEST Authentication request has been sent to the eMSP.
COMMAND Command like StartSession or ReserveNow used to start the Session, the Token

provided in the Command was used as authorization.

WHITELIST Whitelist used for authentication, no request to the eMSP has been performed.

10.4.2. CdrDimension class

Property Type Card Description
type CdrDimensi 1 Type of CDR dimension.
onType
volume number 1 Volume of the dimension consumed, measured according to the

dimension type.

10.4.3. CdrDimensionType enum

This enumeration contains allowed values for CdrDimensions, which are used to define dimensions of
ChargingPeriods in both CDRs and Sessions. Some of these values are not useful for CDRs, and SHALL therefor only be
used in Sessions, these are marked in the column: Session Only

Value Session Description
Only
CURRENT Y Average charging current during this ChargingPeriod: defined in A (Ampere).

When negative, the current is flowing from the EV to the grid.

111

OCPI12.3.0

Value Session Description
Only

ENERGY Total amount of energy (dis-)charged during this ChargingPeriod: defined in
kWh. When negative, more energy was feed into the grid then charged into the
EV. Default step_size is 1.

ENERGY_EXPORT Y Total amount of energy feed back into the grid: defined in kWh.
ENERGY_IMPORT Y Total amount of energy charged, defined in kWh.
MAX_CURRENT Sum of the maximum current over all phases, reached during this

ChargingPeriod: defined in A (Ampere).

MIN_CURRENT Sum of the minimum current over all phases, reached during this
ChargingPeriod, when negative, current has flowed from the EV to the grid.
Defined in A (Ampere).

MAX_POWER Maximum power reached during this ChargingPeriod: defined in kW (Kilowatt).

MIN_POWER Minimum power reached during this ChargingPeriod: defined in kW (Kilowatt),

when negative, the power has flowed from the EV to the grid.

PARKING_TIME Time during this ChargingPeriod not charging: defined in hours, default
step_size multiplier is 1 second.

POWER Y Average power during this ChargingPeriod: defined in kW (Kilowatt). When
negative, the power is flowing from the EV to the grid.

RESERVATION_TIME Time during this ChargingPeriod Charge Point has been reserved and not yet
been in use for this customer: defined in hours, default step_size multiplier is 1
second.

STATE_OF_CHARGE Y Current state of charge of the EV, in percentage, values allowed: 0 to 100. See
note below.

TIME Time charging during this ChargingPeriod: defined in hours, default step_size

multiplier is 1 second.

OCPI makes it possible to provide SoC in the Session object. This information can be useful to show
the current State of Charge to an EV driver during charging. Implementers should be aware that
SoC is only available at some DC Chargers. Which is currently a small amount of the total amount
NOTE of Charge Points. Of these DC Chargers, only a small percentage currently provides SoC via OCPP to
the CPO. Then there is also the question if SoC is allowed to be provided to third-parties as it can be
seen as privacy-sensitive information. So if an implementer wants to show SoC in, for example an
App, care should be taken, to make the App work without SoC, as this will probably not always be

available.

10.4.4. CdrLocation class

The CdrLocation class contains only the relevant information from the Location object that is needed in a CDR.

112

Property Type

id CiString(36)
name string(255)
address string(45)
city string(45)
postal_code string(10)
state string(20)
country string(3)
coordinates GeoLocation
evse_uid CiString(36)
evse_id CiString(48)
connector_id CiString(36)

connector_standard = ConnectorTy
pe

connector_format ConnectorFo
rmat

connector_power_t PowerType
ype

10.4.5. CdrToken class

OCPI12.3.0

Card Description

Uniquely identifies the location within the CPO’s platform (and
suboperator platforms). This field can never be changed, modified or
renamed.

Display name of the location.
Street/block name and house number if available.
City or town.

Postal code of the location, may only be omitted when the location has
no postal code: in some countries charging locations at highways don’t
have postal codes.

State only to be used when relevant.
ISO 3166-1 alpha-3 code for the country of this location.
Coordinates of the location.

Uniquely identifies the EVSE within the CPO’s platform (and
suboperator platforms). For example a database unique ID or the
actual EVSE ID. This field can never be changed, modified or renamed.
This is the technical identification of the EVSE, not to be used as human
readable identification, use the field: evse id for that. Allowed to be set
to: #NA when this CDR is created for a reservation that never resulted in
a charging session.

Compliant with the following specification for EVSE ID: "E-mobility ID-
codes: the purpose of IDs, ID usage and ID format"
(https://evroaming.org/contract-evse-ids/). Allowed to be set to: #NA
when this CDR is created for a reservation that never resulted in a
charging session.

Identifier of the connector within the EVSE. Allowed to be set to: #NA
when this CDR is created for a reservation that never resulted in a

charging session.

The standard of the installed connector. When this CDR is created for a
reservation that never resulted in a charging session, this field can be
set to any value and should be ignored by the Receiver.

The format (socket/cable) of the installed connector. When this CDR is
created for a reservation that never resulted in a charging session, this
field can be set to any value and should be ignored by the Receiver.

When this CDR is created for a reservation that never resulted in a
charging session, this field can be set to any value and should be
ignored by the Receiver.

113

https://evroaming.org/contract-evse-ids/

Property Type Card
country_code CiString(2) 1
party_id CiString(3) 1
uid CiString(36) 1
type TokenType 1
contract_id CiString(36) 1

10.4.6. ChargingPeriod class

OCPI12.3.0

Description

1SO-3166 alpha-2 country code of the MSP that 'owns' this Token.

ID of the eMSP that 'owns' this Token (following the ISO-15118
standard).

Unique ID by which this Token can be identified.

This is the field used by the CPO’s system (RFID reader on the Charge
Point) to identify this token.

Currently, in most cases: type=RFID, this is the RFID hidden ID as read
by the RFID reader, but that is not a requirement.

If this is a type=APP_USER Token, it will be a unique, by the eMSP,
generated ID.

Type of the token

Uniquely identifies the EV driver contract token within the eMSP’s
platform (and suboperator platforms). Recommended to follow the
specification for eMA ID from "E-mobility ID-codes: the purpose of IDs,
ID usage and ID format" (https://evroaming.org/contract-evse-ids/).

A Charging Period consists of a start timestamp and a list of possible values that influence this period, for example:

amount of energy charged this period, maximum current during this period etc.

Property Type Card

start_date_time DateTime 1

dimensions CdrDimensi |+
on
tariff id CiString(36) ?

10.4.7. SignedData class

Description

Start timestamp of the charging period. A period ends when the next
period starts. The last period ends when the session ends.

List of relevant values for this charging period.

Unique identifier of the Tariff that is relevant for this Charging Period.
If not provided, no Tariff is relevant during this period.

This class contains all the information of the signed data. Which encoding method is used, if needed, the public key

and a list of signed values.

Property Type

encoding_method CiString(36)

encoding_method_version int

Card Description

1 The name of the encoding used in the SignedData field. This is
the name given to the encoding by a company or group of
companies. See note below.

? Version of the EncodingMethod (when applicable)

114

https://evroaming.org/contract-evse-ids/

OCPI12.3.0

Property Type Card Description

public_key string(512) ? Public key used to sign the data, base64 encoded.
signed_values SignedValue + One or more signed values.

url string(512) ? URL that can be shown to an EV driver. This URL gives the EV

driver the possibility to check the signed data from a charging
session.

For the German Eichrecht, different solutions are used, all have (somewhat) different encodings.

NOTE Below the table with known implementations and the contact information for more information.
Name Description Contact
OCMF Proposed by SAFE https://has-to-be.com
Alfen Eichrecht Alfen Eichrecht encoding / implementation. https://alfen.com/de/
downloads
EDL40 E-Mobility Extension eBee smart technologies implementation https://www.ebee.berlin
EDL40 Mennekes Mennekes implementation

10.4.8. SignedValue class

This class contains the signed and the plain/unsigned data. By decoding the data, the receiver can check if the
content has not been altered.

Property Type Card Description

nature CiString(32) 1 Nature of the value, in other words, the event this value belongs to.
Possible values at moment of writing:
- Start (value at the start of the Session)
- End (signed value at the end of the Session)
- Intermediate (signed values take during the Session, after Start,
before End)
Others might be added later.

plain_data string(512) 1 The un-encoded string of data. The format of the content depends on
the EncodingMethod field.

signed_data string(5000) 1 Blob of signed data, base64 encoded. The format of the content
depends on the EncodingMethod field.

115

https://has-to-be.com
https://alfen.com/de/downloads
https://alfen.com/de/downloads
https://www.ebee.berlin

OCPI12.3.0

11. Tariffs module

Module Identifier: tariffs
Data owner: CP0
Type: Functional Module

The Tariffs module gives eMSPs information about the tariffs used by the CPO.

11.1. Flow and Lifecycle

11.1.1. Push model

When the CPO creates a new Tariff they push them to the eMSPs by calling the PUT method on the eMSPs Tariffs
endpoint with the newly created Tariff object.

Any changes to the Tariff(s) in the CPO’s system can be sent to the eMSPs systems by calling the PUT method on the
eMSPs Tariffs endpoint with the updated Tariff object.

When the CPO deletes a Tariff, they will update the eMSPs systems by calling DELETE on the eMSPs Tariffs endpoint
with the ID of the Tariff that was deleted.

When the CPO is not sure about the state or existence of a Tariff object in the system of an eMSP, the CPO can use a
GET request to validate the Tariff object in the eMSP’s system.

11.1.2. Pull model

eMSPs who do not support the Push model need to call GET on the CPO’s Tariff endpoint to receive all Tariffs,
replacing the current list of known Tariffs with the newly received list.

11.2. Interfaces and Endpoints

There is both a Sender and a Receiver interface for Tariffs. Advised is to use the push direction from Sender to
Receiver during normal operation. The Sender interface is meant to be used when the connection between two
parties is established to retrieve the current list of Tariffs objects, and when the Receiver is not 100% sure the Tariff
cache is still up-to-date.

11.2.1. Sender Interface
Typically implemented by market roles like: CPO.

The Sender’s Tariffs interface gives the Receiver the ability to request Tariffs information.

Method Description

GET Returns Tariff objects from the CPO, last updated between the {date_from} and {date_to}
(paginated)

POST n/a

116

OCPI12.3.0

Method Description
PUT n/a
PATCH n/a
DELETE n/a

11.2.1.1. GET Method

Fetch information about all Tariffs.

Endpoint structure definition:
{tariffs_endpoint_url}?[date_from={date_from}]&[date_to={date_to}]&[offset={offset}]&[limit={limit}]
Examples:
https://www.server.com/ocpi/cpo/2.2.1/tariffs/?date_from=2019-01-28712:00:00&date_t0=2019-01-29712:00:00
https://ocpi.server.com/2.2.1/tariffs/?offset=50
https://www.server.com/ocpi/2.2.1/tariffs/?date_from=2019-01-29712:00:00&1imit=100

https://www.server.com/ocpi/cpo/2.2.1/tariffs/?offset=50G1imit=100

Request Parameters

If additional parameters: {date_from} and/or {date_to} are provided, only Tariffs with last_updated between the
given {date_from} (including) and {date_to} (excluding) will be returned.

This request is paginated, it supports the pagination related URL parameters.

Parameter Datatype Requ Description
ired
date_from DateTime no Only return Tariffs that have last_updated after or equal to this

Date/Time (inclusive).

date_to DateTime no Only return Tariffs that have last_updated up to this Date/Time, but not
including (exclusive).

offset int no The offset of the first object returned. Default is 0.

limit int no Maximum number of objects to GET.

Response Data

The endpoint returns an object with a list of valid Tariffs, the header will contain the pagination related headers.

Any older information that is not specified in the response is considered no longer valid. Each object must contain
all required fields. Fields that are not specified may be considered as null values.

117

OCPI12.3.0

Type Card Description

Tariff * List of all tariffs.

11.2.2. Receiver Interface

Typically implemented by market roles like: eMSP and NSP.

Tariffs are Client Owned Objects, so the endpoints need to contain the required extra fields: {party_id} and

{country_code}.

Endpoint structure definition:
{tariffs_endpoint_url}/{country_code}/{party_id}/{tariff_id}
Example:

https://www.server.com/ocpi/cpo/2.2.1/tariffs/BE/BEC/12

Method Description

GET Retrieve a Tariff as it is stored in the eMSP’s system.

POST n/a

PUT Push new/updated Tariff object to the eMSP.

PATCH n/a

DELETE Remove a Tariff object which is no longer in use and will not be used in future either.

11.2.2.1. GET Method

If the CPO wants to check the status of a Tariff in the eMSP’s system, it might GET the object from the eMSP’s system
for validation purposes. After all, the CPO is the owner of the object, so it would be illogical if the eMSP’s system had
a different status or was missing the object entirely.

Request Parameters

The following parameters SHALL be provided as URL segments.

Parameter Datatype Requ Description
ired
country_code CiString(2) | yes Country code of the CPO performing the GET request on the eMSP’s
system.
party_id CiString(3) | yes Party ID (Provider ID) of the CPO performing the GET request on the
eMSP’s system.
tariff id CiString(36) ' yes Tariff.id of the Tariff object to retrieve.

118

OCPI12.3.0

Response Data

The response contains the requested object.

Type Card Description
Tariff 1 The requested Tariff object.
11.2.2.2. PUT Method

New or updated Tariff objects are pushed from the CPO to the eMSP.

Request Body

In the PUT request, the new or updated Tariff object is sent in the body.

Type Card Description

Tariff 1 New or updated Tariff object.

Request Parameters

The following parameters SHALL be provided as URL segments.

Parameter Datatype Requ Description
ired

country_code

CiString(2) | yes

party_id CiString(3)

tariff id CiString(36)

Country code of the CPO performing the PUT request on the eMSP’s
system. This SHALL be the same value as the country_code in the Tariff
object being pushed.

Party ID (Provider ID) of the CPO performing the PUT request on the
eMSP’s system. This SHALL be the same value as the party_id in the
Tariff object being pushed.

Tariff.id of the Tariff object to create or replace.

Example: New Tariff € 2 per hour charging time (not parking).

PUT To URL: https://www.server.com/ocpi/emsp/2.2.1/tariffs/NL/TNM/12

{
"country_code": "DE",
"party_id": "ALL",
g "2",
"currency": "EUR",
"elements": [{

"price_components": [{

"type": "TIME",
"price": 2.00,
"vat": 10.0,
"step_size": 300
H
H,
"tax_included": "NO"

119

OCPI12.3.0

11.2.2.3. DELETE Method

Delete a Tariff object which is not used any more and will not be used in the future.

Before deleting a Tariff object, it is RECOMMENDED to ensure that the Tariff object is not
referenced by any Connector object within the tariff_ids.

NOTE

Request Parameters

The following parameters SHALL be provided as URL segments.

Parameter Datatype Requ Description
ired
country_code CiString(2) | yes Country code of the CPO performing the PUT request on the eMSP’s
system.
party_id CiString(3) yes Party ID (Provider ID) of the CPO performing the PUT request on the

eMSP’s system.

tariff id CiString(36) yes Tariff.id of the Tariff object to delete.

11.3. Object description

11.3.1. Tariff Object

A Tariff object consists of a list of one or more Tariff Elements, which in turn consist of Price Components.

A Tariff Element is a group of Price Components that apply under the same conditions. The rules for the conditions
under which a Tariff Element applies are known as its "restrictions".

A Price Component describes how the usage of a particular dimension (time, energy, etcetera) is mapped to an
amount of money owed.

This system of Tariffs, Tariff Elements and Price Components can be used to create complex Tariff structures.

When the list of Tariff Elements contains more than one Element that has a Price Component for a certain
dimension, then the first Tariff Element with a Price Component for that dimension in the list with matching Tariff
Restrictions will be used. Only one Price Component per dimension can be active at any point in time, but multiple
Price Components for different dimensions can be active at once. That is you can have an ENERGY component and a
TIME component active at the same time, but only those ones that are in the first Tariff Element that has a Price
Component for that dimension and that has restrictions that match at that time.

When no Tariff Element with a specific Dimension is found for which the Restrictions match, and there is no Tariff
Element in the list with the given Dimension without Restrictions, there will be no costs for that Tariff Dimension.

It is advised to always add a "default” Price Component per dimension.

This can be achieved by adding a Tariff Element without restrictions after all other occurrences of the same
dimension in the list of Tariff Elements.

120

OCPI12.3.0

Such a Tariff Element will act as fallback when there is no other Tariff Element that has matching restrictions and
that contains a Price Component for that dimension.

To define a "Free of Charge" tariff in OCPI, a Tariff containing one Tariff Element with no restrictions containing one
Price Component with type = FLAT and price = 0.00 has to be provided.

See: Free of Charge Tariff example

There are no parameters related to price rounding in the Tariff object or any of it constituent
objects. Nor does the specification text of this module give any requirements about how to do price

NOTE rounding. The reason for this that price rounding has to be done according to rules and restrictions
set by applicable laws, contracts between the parties using OCPI and the currency used. The OCPI
specification stays out of these matters.

Property

country_code

Type Card Description

CiString(2)

IS0O-3166 alpha-2 country code of the CPO that owns this Tariff.

party_id CiString(3) ID of the CPO that 'owns' this Tariff (following the ISO-15118 standard).

id CiString(36) Uniquely identifies the tariff within the CPO’s platform (and
suboperator platforms).

currency string(3) 1S0-4217 code of the currency of this tariff.

type TariffType Defines the type of the tariff. This allows for distinction in case of given
Charging Preferences. When omitted, this tariff is valid for all sessions.

tariff_alt_text DisplayText List of multi-language alternative tariff info texts.

tariff_alt_url URL URL to a web page that contains an explanation of the tariff
information in human readable form.

min_price PriceLimit When this field is set, a Charging Session with this tariff will at least
cost this amount.

max_price PriceLimit When this field is set, a Charging Session with this tariff will at most
cost this amount.

preauthorize_amou number The amount that a Payment Terminal Provider should preauthorize

nt when handling card payment for a Session with this Tariff.

elements TariffEleme List of Tariff Elements.

nt
tax_included TaxIncluded Whether taxes are included in the amounts in this Tariff.
start_date_time DateTime The time when this tariff becomes active, in UTC, time_zone field of the

Location can be used to convert to local time. Typically used for a new
tariff that is already given with the location, before it becomes active.
(See note below)

121

OCPI12.3.0

Property Type Card Description

end_date_time DateTime ? The time after which this tariff is no longer valid, in UTC, time_zone
field if the Location can be used to convert to local time. Typically used
when this tariff is going to be replaced with a different tariff in the
near future. (See note below)

energy_mix EnergyMix ? Details on the energy supplied with this tariff.

last_updated DateTime 1 Timestamp when this Tariff was last updated (or created).

min_price: As the taxes on a Charging Session might be different for different parts of the Session,
there might be situations where the minimum cost after taxes is reached earlier or later than the
minimum price before taxes. So as a rule, they both apply:

NOTE » The total cost of a Charging Session before taxes can never be lower than the value of the
min_price’s before_taxes field.

» The total cost of a Charging Session after taxes can never be lower than the value of the

min_price’s after_taxes field.

max_price: As the taxes on a Charging Session might be different for different parts of the Session,
there might be situations where the maximum cost after taxes is reached earlier or later than the
maximum price before taxes. So as a rule, they both apply:

NOTE » The total cost of a Charging Session before taxes can never be higher than the value of the

max_price’s before_taxes field.

» The total cost of a Charging Session after taxes can never be higher than the value of the

max_price’s after_taxes field.

start_date_time and end_date_time: When the Tariff of a Charge Point (Location) is changed during
an ongoing charging session, it is common to not switch the Tariff until the ongoing session is
finished. But this is NOT a requirement of OCP], it is even possible with OCPI. Changing tariffs

NOTE during an ongoing session is in many countries not allowed by consumer legislation. When
charging at a Charge Point, a driver accepts the tariff which is valid when they start their charging
session. If the Tariff of the Charge Point would change during the charging session, the driver
might get billed something they didn’t agree to when starting the session.

The fields: tariff_alt_text and tariff_alt_url may be used separately, or in combination with
each other or even combined with the structured list of Tariff Elements. When a Tariff contains
both the tariff_alt_text and elements fields, the tariff_alt_text SHALL only contain additional
tariff information in human-readable text, not the price information that is also available via the

NOTE

elements field. The reason for this is that the eMSP might have additional fees they want to include

in communication with their customer.

11.3.1.1. Examples

In the following section, a few different pricing strategies will be explained with some Tariff examples. For
simplicity, we will use the euro as the currency in all of the examples if not mentioned otherwise.

122

OCPI12.3.0

Simple Tariff example € 0.25 per kWh

* Energy
* €0.25 per kWh (excl. VAT)
* 10% VAT

* Billed per 1 Wh

This tariff will result in costs of € 5.00 (excl. VAT) or € 5.50 (incl. VAT) when 20 kWh are charged.

"country_code": "DE",
"party_id": "ALL",
"id": "16",
"currency": "EUR",
"elements": [{
"price_components": [{
"type": "ENERGY",
"price": 0.25,
"vat": 10.0,
"step_size": 1
1]
P
"tax_included": "NO",
"last_updated": "2018-12-17T11:16:55Z"

Tariff example € 0.25 per kWh + start fee

* Start or transaction fee
* €0.50 (excl. VAT)
* 20% VAT
* Energy
* €0.25 per kWh (excl. VAT)
* 10% VAT

* Billed per 1 Wh

This tariff will result in total cost of € 5.50 (excl. VAT) or € 6.10 (incl. VAT) when 20 kWh are charged.

"country_code": "DE",

"party_id": "ALL",

"id": "17",

"currency": "EUR",

"elements": [{
"price_components": [{

"type": "FLAT",
"price": 0.50,
"vat": 20.0,
"step_size": 1

bo
"type": "ENERGY",
"price": 0.25,
"vat": 10.0,
"step_size": 1

H

H,

123

OCPI12.3.0

"tax_included": "NO",
"last_updated": "2018-12-17T11:36:012"
}

Tariff example € 0.25 per kWh + minimum price

* Minimum price

> €0.50 (excl. VAT)

> €0.55 (incl. VAT, which is 10%)
* Energy

* €0.25 per kWh (excl. VAT)

* 10% VAT

* Billed per 1 Wh

This tariff will result in costs of € 5.00 (excl. VAT) or € 5.50 (incl. VAT) when 20 kWh are charged. But if less than 2
kWh is charged, € 0.50 (excl. VAT) or € 0.55 (incl. VAT) will be billed.

This is different from a start fee as can be seen when compared to the example above.

"country_code": "DE",
"party_id": "ALL",
"id": "20",
"currency": "EUR",
"min_price": {
"before_taxes": 0.50,
"after_taxes": 0.55
B
"elements": [{
"price_components": [{
"type": "ENERGY",
"price": 0.25,
"vat": 10.0,
"step_size": 1
H
H,
"tax_included": "NO",
"last_updated": "2018-12-17T16:45:217"

Tariff example € 0.25 per kWh + parking fee + start fee

« Start or transaction fee
* €0.50 (excl. VAT)
* 20% VAT
* Energy
* €0.25 per kWh (excl. VAT)
* 10% VAT
* Billed per 1 Wh

» Parking

124

OCPI12.3.0

* €2.00 per hour (excl. VAT)
» 20% VAT

* Billed per 15 min (900 seconds)

For a charging session where 20 kWh are charged and the vehicle is parked for 40 minutes after the session ended,
this tariff will result in costs of € 7.00 (excl. VAT) or € 7.90 (incl. VAT). Because the parking time is billed per 15
minutes, the driver has to pay for 45 minutes of parking even though they left 40 minutes after their vehicle stopped
charging.

"country_code": "DE",

"party_id": "ALL",

"id": "18",

"currency": "EUR",

"elements": [{
"price_components": [{

"type": "FLAT",
"price": 0.50,
"vat": 20.0,
"step_size": 1
Ao
"type": "ENERGY",
"price": 0.25,
"vat": 10.0,
"step_size": 1
Bo
"type": "PARKING_TIME",
"price": 2.00,
"vat": 20.0,
"step_size": 900
1

515

"tax_included": "NO",

"last_updated": "2018-12-17T11:44:10Z"
}

Tariff example € 0.25 per kWh + start fee + max price + tariff end date

* Maximum price
* €10 (excl. VAT)
* €11 (incl. VAT, which is 10%)
* Start or transaction fee
* €0.50 (excl. VAT)
* 20% VAT
* Energy
* €0.25 per kWh (excl. VAT)
* 10% VAT
* Billed per 1 Wh
This tariff has an end date: 30 June 2019, which is typically used when a tariff is going to be replaced by a new tariff.
A Connector of a Location can have multiple Tariffs (IDs) assigned. By assigning both, the old and the new tariff ID,

they will automatically be replaced. It is not required to update all Locations at the same time, the old tariff can also
be removed later.

125

OCPI12.3.0

For a charging session where 50 kWh are charged, this tariff will result in costs of € 10.00 (excl. VAT) or € 11.00 (incl.
VAT) due to the price limit. If only 30 kWh were charged, the costs would be € 8.00 (excl. VAT) and € 8.85 (incl. VAT),
as the start fee combined with the energy costs would be lower than the defined max price.

"country_code": "DE",
"party_id": "ALL",
"id": "16",
"currency": "EUR",
"max_price": {
"before_taxes": 10.00,
"after_taxes": 11.00
%
"elements": [{
"price_components": [{
"type": "FLAT",
"price": 0.50,
"vat": 20.0,
"step_size": 1
oA
"type": "ENERGY",
"price": 0.25,
"vat": 10.0,
"step_size": 1
]
H,
"tax_included": "NO",
"end_date_time": "2019-06-30723:59:59Z",
"last_updated": "2018-12-17T17:15:01Z"

Simple Tariff example € 2 per hour
An example of a tariff where the driver does not pay per kWh, but for the time of using the Charge Point.
* Charging Time
* €2.00 per hour (excl. VAT)

* 10% VAT

* Billed per 1 min (60 seconds)

As this is tariff only has a TIME price_component, the driver will not be billed for time they are not charging:
PARKING_TIME

For a charging session of 2.5 hours, this tariff will result in costs of € 5.00 (excl. VAT) or € 5.50 (incl. VAT).

{
"country_code": "DE",
"party_id": "ALL",
"id": "12",
"currency": "EUR",
"elements": [{
"price_components": [{
"type": "TIME",
"price": 2.00,
"vat": 10.0,
"step_size": 60
1
H,

"tax_included": "NO",
"last_updated": "2015-06-29720:39:097"

126

OCPI12.3.0

Simple Tariff with North American taxes

This is an example of how to represent Tariffs in Canada or the United States. In these countries, tax rates are not
typically known beforehand to the CPO, so the vat field in the PriceComponent objects is not filled. The top level
tax_included field in the Tariff object is used to say whether taxes are part of the prices in the Tariff, or if they will
be added on top of those prices afterward.

This example Tariff is similar to the previous one in that it charges two currency units per hour of charging, but
handles taxes in the North American way.

* Charging Time
* C$2.00 per hour
* Taxes not included
* Billed per 1 min (60 seconds)

For a charging session of 2.5 hours, this tariff will result in costs of C$ 5.00, plus taxes according to locally applicable
legislation.

"country_code": "CA",

"party_id": "FLO",

"id": "12",

"currency": "CAD",

"elements": [{
"price_components": [{

"type": "TIME",
"price": 2.00,
"step_size": 1
]
H,

"tax_included": "NO",
"last_updated": "2024-12-05T718:30:142"

Simple Tariff with North American taxes, price inclusive of tax

Sometimes, under North American style tax systems, Parties want to give prices including tax in their Tariffs. This
example shows how to accomplish this.
* Charging Time
* C$2.10 per hour
» Taxes included
* Billed per 1 min (60 seconds)

For a charging session of 2.5 hours, this tariff will result in costs of C$ 5.25. All taxes that are due are included in that
C$5.25 amount.

{

"country_code": "CA",
"party_id": "FLO",
g "2",

127

OCPI12.3.0

"currency": "CAD",
"elements": [{
"price_components": [{

"type": "TIME",
"price": 2.10,
"step_size": 1
H
H,

"tax_included": "YES",
"last_updated": "2024-12-05T718:30:142"

Simple Tariff example € 3 per hour, € 5 per hour parking

Example of a tariff where the driver pays for the time of using the Charge Point, but pays more when the car is no
longer charging, to discourage the EV driver of leaving his EV connected when it is already full.

* Charging Time

* €3.00 per hour (excl. VAT)

* 10% VAT

* Billed per 1 min (60 seconds)
» Parking

* €5.00 per hour (excl. VAT)

* 20% VAT

* Billed per 5 min (300 seconds)

A charging session of 2.5 hours (charging), where the vehicle is parked for 42 more minutes after charging ended,
results in a total session time of 150 minutes (charging) + 42 minutes (parking). This session with this tariff will
result in total cost of € 11.25 (excl. VAT) or € 12.75 (incl. VAT). Because the parking time is billed per 5 minutes, the
driver has to pay for 45 minutes of parking even though they left 42 minutes after their vehicle stopped charging.

"country_code": "DE",
"party_id": "ALL",
"id": 21",
"currency": "EUR",
"elements": [{
"price_components": [{
"type": "TIME",
"price": 3.00,
"vat": 10.0,
"step_size": 60
bo
"type": "PARKING_TIME",
"price": 5.00,
"vat": 20.0,
"step_size": 300
H
H,
"tax_included": "NO",
"last_updated": "2018-12-17T17:00:4372"
}

128

OCPI12.3.0

Ad-Hoc simple Tariff example with multiple languages

For ad-hoc charging (paying for charging without a contract), the Tariff Elements are not as important. The eMSP is
not involved when a driver uses ad-hoc payment at the Charge Point, so no CDR is sent to an eMSP. Having a good
human readable text is much more useful.

* Charging Time
* €1.90 per hour (excl. VAT)
* 5.2% VAT

* Billed per 5 minutes (300 seconds)

For a charging session of 2.5 hours, this tariff will result in costs of € 4.75 (excl. VAT) or € 5.00 (incl. VAT).

"country_code": "DE",
"party_id": "ALL",
"id": "12",
"currency": "EUR",
"type": "AD_HOC_PAYMENT",
"tariff_alt_text": [{
"language": "en",
"text": "2.00 euro p/hour including VAT."
Bo 1
"language": "nl",
"text": "2.00 euro p/uur inclusief BTW."
H,
"elements": [{
"price_components": [{
"type": "TIME",
"price": 1.90,
"vat": 5.2,
"step_size": 300
1]
H,
"tax_included": "NO",
"last_updated": "2015-06-29T720:39:09Z"

Ad-Hoc Tariff example not possible with OCPI

For this example, the credit card start tariff is € 0.50, but when using a debit card it is only € 0.25.

Such a tariff cannot be modeled with OCPI.
But by modeling it as € 0.50 start tariff where debit card users are given a discount in the final CDR of € 0.25, nobody
is likely to complain. The tariff_alt_text explains this clearly.

"country_code": "DE",
"party_id": "ALL",
"id": "19",
"currency": "EUR",
"type": "AD_HOC_PAYMENT",
"tariff_alt_text": [{

"language": "en",

"text": "2.00 euro p/hour, start tariff debit card: 0.25 euro, credit card: 0.50 euro including VAT."
oA

"language": "nl",

"text": "2.00 euro p/uur, starttarief bankpas: 0,25 euro, creditkaart: 0,50 euro inclusief BTW."

H,

129

OCPI12.3.0

"elements": [{
"price_components": [{

"type": "FLAT",
"price": 0.40,
"vat": 25.0,
"step_size": 1
Bo
"type": "TIME",
"price": 1.90,
"vat": 5.2,
"step_size": 300
}H

Fls

"tax_included": "NO",

"last_updated": "2018-12-29T15:55:587"
}

Simple Tariff example with alternative URL

This examples shows the use of tariff_alt_url.

This examples shows a PROFILE_CHEAP tariff, which is a smart charging tariff. Drivers are able to select this tariff by
setting the profile_type in their Charging Preferences to CHEAP. In such case, the price might not be fixed, but depend
on the real-time energy prices. To explain this to the driver, a short text inside tariff_alt_text might not be the best
solution. Showing a graph could be better. Therefore it is also possible to provide an URL in tariff_alt_url to a site
that explains the tariff better and in more detail.
* Start or transaction fee
* €0.50 (excl. VAT)
* 20% VAT
* Energy
* €0.25 per kWh (excl. VAT)
* 10% VAT

¢ Billed per 0.1 kWh (100 Wh)
For a charging session where 20.45 kWh are charged: this tariff will result in:

» Start fee: € 0.50 (excl. VAT), € 0.60 (incl. VAT)
* Energy costs: € 5.13 (excl. VAT), € 5.64 (incl. VAT)
» Total: € 5.63 (excl. VAT), € 6.24 (incl. VAT)

if the announced prices were billed. Because the energy is billed per 0.1 kWh, the driver has to pay for 20.5 kWh
even though they only charged 20.45 kWh.

The twist here is that this tariff makes use of tariff_alt_url which links to a page with real-time energy prices of the
operator, where is shown that the actual price per kWh is different. With an assumed current energy price of € 0.22
per kWh (excl. VAT), which is shown or explained on the page linked by tariff_alt_url, the resulting costs:

» Start fee: € 0.50 (excl. VAT), € 0.60 (incl. VAT)

* Energy costs: € 4.51 (excl. VAT), € 4.96 (incl. VAT)

» Total: € 5.01 (excl. VAT), € 5.56 (incl. VAT)

130

OCPI12.3.0

A breakdown for computing the price as the elements field of the Tariff says, with an energy price of € 0.25 / kWh, is

as follows:
Dimension Quantity Price ex VAT Cost ex VAT Cost inc
VAT VAT
Flat 1 0.50 0.50 20% 0.60
Energy 20.45 KWh 0.25 per kWh 5.11 10% 5.62
Total 5.61 6.22
{

"country_code": "DE",
"party_id": "ALL",
"qd": "13",
"currency": "EUR",
"type": "PROFILE_CHEAP",
"tariff_alt_url": "https://company.com/tariffs/13",
"elements": [{
"price_components": [{

"type": "FLAT",
"price": 0.50,
"vat": 20.0,
"step_size": 1
bo 4
"type": "ENERGY",
"price": 0.25,
"vat": 10.0,
"step_size": 100
1

H,
"tax_included": "NO",
"last_updated": "2015-06-29720:39:092"

}

Complex Tariff example

* Start or transaction fee
* €2.50 (excl. VAT)
* 15% VAT
* Charging Time
* When charging with less than 32A
* €1.00 per hour (excl. VAT)
* 20% VAT
* Billed per 15 min (900 seconds)
* When charging with more than 32A on weekdays
* €2.00 per hour (excl. VAT)
* 20% VAT
* Billed per 10 min (600 seconds)
* When charging with more than 32A on weekends

* €1.25 per hour (excl. VAT)

131

* 20% VAT

* Billed per 10 min (600 seconds)

» Parking

* On weekdays between 09:00 and 18:00

» €5 per hour (excl. VAT)

* 10% VAT

* Billed per 5 min (300 seconds)

* On Saturday between 10:00 and 17:00

* €6 per hour (excl. VAT)

* 10% VAT

* Billed per 5 min (300 seconds)

OCPI12.3.0

For a charging session on a Monday morning starting at 09:30 which takes 2:45 hours (165 minutes), where the

driver uses a maximum of 16A of current and is parking for an additional 42 minutes afterwards, this tariff will
result in costs of € 9.00 (excl. VAT) or € 10.30 (incl. VAT) for a total session time of 165 minutes (charging) + 42

minutes (parking).

A breakdown is as follows:

Dimension

Flat

Charging time

Parking time

Total

Quantity

1

165 minutes

45 minutes

Price ex VAT

2.50
1.00 per hour

5.00 per hour

Cost ex
VAT

2.50

2.75

3.75

9.00

VAT

15%

20%

10%

Costinc
VAT

2.875

3.30

4.125

10.30

The step_size of the last time-based period is 5 so the parking time duration of 42 minutes is rounded up to 45. As

such the driver has to pay for 45 minutes of parking while they were actually only parking for 42 minutes.

The charging time is not affected by step_size because it is followed by another time-based period.

For a charging session on a Saturday afternoon starting at 13:30 which takes 1:54 hours (114 minutes), where the

driver uses a minimum of 43A of current (all the time, which is only theoretically possible) and is parking for an
additional 71 minutes afterwards, this tariff will result in a total cost of € 12.28 (excl. VAT) or € 13.861 (incl. VAT). A

breakdown is as follows:

Dimension

Flat

Charging time

Parking time

Total

Quantity

1
114 minutes

75 minutes

Price ex VAT

2.50
1.25 per hour

6.00 per hour

132

Cost ex
VAT

2.50

2.28

7.50

12.28

VAT

15%

20%

10%

Costinc
VAT

2.875

2.736

8.25

13.861

OCPI12.3.0

The cost for parking time is 7.50, reflecting 75 minutes of parking, because the step_size of the last time-based period
is applied to the 71 actual minutes of parking.

The charging time is again not affected by step_size because it is followed by parking time.

"country_code": "DE",

"party_id": "ALL",

"id": "14",

"currency": "EUR",

"type": "REGULAR",

"tariff_alt_url": "https://company.com/tariffs/14",
"elements": [{

"price_components": [{
"type": "FLAT",
"price": 2.50,

"vat": 15.0,
"step_size": 1
]
o o

"price_components": [{
"type": "TIME",
"price": 1.00,

"vat": 20.0,
"step_size": 900

3o

"restrictions": {
"max_current": 32.00

}

oA

"price_components": [{
"type": "TIME",
"price": 2.00,

"vat": 20.0,
"step_size": 600

H,

"restrictions": {
"min_current": 32.00,
"day_of_week": ["MONDAY", "TUESDAY", "WEDNESDAY", "THURSDAY", "FRIDAY"]

}

o o

"price_components": [{
"type": "TIME",
"price": 1.25,

"vat": 20.0,
"step_size": 600

3o

"restrictions": {
"min_current": 32.00,
"day_of_week": ["SATURDAY", "SUNDAY"]

}

}oA

"price_components": [{
"type": "PARKING_TIME",
"price": 5.00,

"vat": 10.0,
"step_size": 300

H,

"restrictions": {
"start_time": "09:00",
"end_time": "18:00",
"day_of_week": ["MONDAY", "TUESDAY", "WEDNESDAY", "THURSDAY", "FRIDAY"]

}

}oA

"price_components": [{
"type": "PARKING_TIME",
"price": 6.00,

"vat": 10.0,

133

OCPI12.3.0

"step_size": 300

.

"restrictions": {
"start_time": "10:00",
"end_time": "17:00",
"day_of_week": ["SATURDAY"]

}

.
"tax_included": "NO",

"last_updated": "2015-06-29720:39:092"
}

Free of Charge Tariff example

In this example no VAT is given because it is not necessary (as the price is 0.00). This might not always be the case
though and it is of course permitted to add a VAT, even if the price is set to zero.

"country_code": "DE",
"party_id": "ALL",
"id": "15",
"currency": "EUR",
"elements": [{
"price_components": [{
"type": "FLAT",
"price": 0.00,
"step_size": 0
H
H,
"tax_included": "NO",
"last_updated": "2015-06-29720:39:092"

Tariff example with reservation price

» Reservation
* €5.00 per hour (excl. VAT)
* 20% VAT
* Billed per 1 min (60 seconds)
* Start or transaction fee
* €0.50 (excl. VAT)
* 20% VAT
* Energy
* €0.25 per kWh (excl. VAT)
* 10% VAT
* Billed per 1 Wh

For a charging session that was started 15 minutes after the reservation time, where the driver charges 20 kWh, this
tariff will result in costs of € 6.75 (excl. VAT) or € 7.60 (incl. VAT).

A breakdown is as follows:

134

Dimension Quantity
Flat 1
Energy 20 kWh
Reservation 15 minutes
Total

{

"country_code": "DE",
"party_id": "ALL",
"id": "20",
"currency": "EUR",
"elements": [{
"price_components": [{
"type": "TIME",
"price": 5.00,
"vat": 20.0,
"step_size": 60
H
"restrictions": {
"reservation": "RESERVATION"
}
o o
"price_components": [{
"type": "FLAT",
"price": 0.50,
"vat": 20.0,
"step_size": 1
Bo
"type": "ENERGY",
"price": 0.25,
"vat": 10.0,
"step_size": 1
H
Fls
"tax_included": "NO",

"last_updated": "2019-02-03T17:00:11Z"

}

Tariff example with reservation price and fee

* Reservation

* € 2.00 reservation fee (excl. VAT)

* €5.00 per hour (excl. VAT)

* 20% VAT

* Billed per 5 min (300 seconds)

* Start or transaction fee
» €0.50 (excl. VAT)
* 20% VAT

* Energy

* €0.25 per kWh (excl. VAT)

OCPI12.3.0

Price ex VAT

0.50
0.25 per kWh

5.00 per hour

135

Cost ex
VAT

0.50

5.00

1.25

6.75

VAT

20%

10%

20%

Costinc
VAT

0.60

5.50

1.50

7.60

* 10% VAT

* Billed per 1 Wh

OCPI12.3.0

For a charging session that was started 13 minutes after the reservation time, where the driver charges 20 kWh, this

tariff will result in costs of € 8.75 (excl. VAT) or € 10.00 (incl. VAT). Because the reservation fee is billed per 5 minutes,

the driver has to pay for 15 minutes of reservation even though they started the charging session 13 minutes after

the reservation time.

A breakdown is as follows:

Dimension

Flat

Parking time
Flat

Energy

Total

"country_code": "DE",
"party_id": "ALL",
"id": "20",
"currency": "EUR",
"elements": [{
"price_components": [{
"type": "FLAT",
"price": 2.00,
"vat": 20.0,
"step_size": 1
oA
"type": "TIME",
"price": 5.00,
"vat": 20.0,
"step_size": 300
Flo
"restrictions": {
"reservation": "RESE
}
oA
"price_components": [{
"type": "FLAT",
"price": 0.50,
"vat": 20.0,
"step_size": 1
oA
"type": "ENERGY",
"price": 0.25,
"vat": 10.0,
"step_size": 1
]
.
"tax_included": "NO",

"last_updated": "2019-02-03717:00:112"

}

Quantity

15 minutes

20 kWh

RVATION"

Price ex VAT

2.00
5.00 per hour
0.50

0.25 per kWh

136

Cost ex
VAT

2.00

1.25

0.50

5.00

8.75

VAT

20%

20%

20%

10%

Costinc
VAT

2.40

1.50

0.60

5.50

10.00

OCPI12.3.0

Tariff example with reservation price and expire fee

* Reservation

* € 4.00 reservation expiration fee (excl. VAT) (billed when a reservation expires and is not followed by a
charging session)

* €2.00 per hour (excl. VAT)

* 20% VAT

* Billed per 10 min (600 seconds)
* Start or transaction fee

* €0.50 (excl. VAT)

* 20% VAT
* Energy

* €0.25 per kWh (excl. VAT)

* 10% VAT

* Billed per 1 Wh

This example is very similar to Tariff example with reservation price with the difference that expired reservations
cost something and that reservation time is billed per 10 minutes. Also, the price for reservation is different.

For a charging session that was started 22 minutes after the reservation time, where the driver charges 20 kWh, this
tariff will result in costs of € 6.50 (excl. VAT) or € 7.30 (incl. VAT). Because the reservation fee is billed per 10 minutes,
the driver has to pay for 30 minutes of reservation even though they started the charging session 22 minutes after

the reservation time.

A breakdown of this scenario is as follows:

Dimension Quantity Price ex VAT Cost ex VAT Cost inc
VAT VAT
Time 30 minutes 2.00 per hour 1.00 20% 1.20
Flat 1 0.50 0.50 20% 0.60
Energy 20 kWh 0.25 per kWh 5.00 10% 5.50
Total 6.50 7.30

If the driver did not start a charging session and the reservation expired after the reserved time of 1 hour, the tariff
would have resulted in costs of € 6.00 (excl. VAT) or € 7.20 (incl. VAT). In case a reservation is not used, the driver has
to pay the full amount of reserved time as well as an additional expiration fee as compensation for not charging at
all.

A breakdown of this scenario is as follows:

Dimension Quantity Price ex VAT Cost ex VAT Cost inc
VAT VAT
Flat 1 4.00 4.00 20% 4.80

137

OCPI12.3.0

Dimension Quantity Price ex VAT
Time 60 minutes 2.00 per hour
Total

{

"country_code": "DE",
"party_id": "ALL",
"id": "20",
"currency": "EUR",
"elements": [{
"price_components": [{
"type": "FLAT",
"price": 4.00,
"vat": 20.0,
"step_size": 1
I
"restrictions": {
"reservation": "RESERVATION_EXPIRES"
}
Fo d
"price_components": [{
"type": "TIME",
"price": 2.00,
"vat": 20.0,
"step_size": 600
.
"restrictions": {
"reservation": "RESERVATION"
}
oA
"price_components": [{
"type": "FLAT",
"price": 0.50,
"vat": 20.0,
"step_size": 1
oA
"type": "ENERGY",
"price": 0.25,
"vat": 10.0,
"step_size": 1
]
H
"tax_included": "NO",
"last_updated": "2019-02-03717:00:112"
}

Tariff example with reservation time and expire time

* Reservation

* €3.00 per hour (excl. VAT)

Cost ex VAT
VAT

2.00 20%

6.00

Costinc
VAT

2.40

7.20

* €6.00 per hour (excl. VAT) (billed when a reservation expires and is not followed by a charging session)

e 20% VAT
* Billed per 10 min (600 seconds)
» Start or transaction fee

* €0.50 (excl. VAT)

138

OCPI12.3.0

* 20% VAT
* Energy
* €0.25 per kWh (excl. VAT)
* 10% VAT
* Billed per 1 Wh

This example is very similar to Tariff example with reservation price with the difference that expired reservations
cost something and that reservation time is billed per 10 minutes. Also, the price for reservation is different.

For a charging session that was started 22 minutes after the reservation time, where the driver charges 20 kWh, this
tariff will result in costs of € 7.00 (excl. VAT) or € 7.90 (incl. VAT). Because the reservation fee is billed per 10 minutes,
the driver has to pay for 30 minutes of reservation even though they started the charging session 22 minutes after

the reservation time.

A breakdown of this scenario is as follows:

Dimension Quantity Price ex VAT Cost ex VAT Cost inc
VAT VAT
Time 30 minutes 3.00 per hour 1.50 20% 1.80
Flat 1 0.50 0.50 20% 0.60
Energy 20 kWh 0.25 per kWh 5.00 10% 5.50
Total 7.00 7.90

If the driver did not start a charging session and the reservation expired after the reserved time of 1.5 hours, the
tariff would have resulted in costs of € 9.00 (excl. VAT) or € 10.80 (incl. VAT). In case a reservation is not used, the
driver has to pay the expiration fee as compensation for not charging at all.

A breakdown of this scenario is as follows:

Dimension Quantity Price ex VAT Cost ex VAT Costinc
VAT VAT
Time 90 minutes 6.00 per hour 9.00 20% 10.80
Total 9.00 10.80
{

"country_code": "DE",
"party_id": "ALL",
"id": "20",
"currency": "EUR",
"elements": [{
"price_components": [{
"type": "TIME",
"price": 6.00,
"vat": 20.0,
"step_size": 600
H
"restrictions": {
"reservation": "RESERVATION_EXPIRES"
}
o o

139

OCPI12.3.0

"price_components": [{
"type": "TIME",
"price": 3.00,
"vat": 20.0,
"step_size": 600

H,

"restrictions": {
"reservation": "RESERVATION"

}

Bo

"price_components": [{
"type": "FLAT",
"price": 0.50,
"vat": 20.0,
"step_size": 1

by
"type": "ENERGY",
"price": 0.25,
"vat": 10.0,
"step_size": 1

]

H,

"tax_included": "NO",

"last_updated": "2019-02-03T17:00:11Z2"
}

11.4. Data types

11.4.1. DayOfWeek enum
Value Description
MONDAY Monday
TUESDAY Tuesday
WEDNESDAY Wednesday
THURSDAY Thursday
FRIDAY Friday
SATURDAY Saturday
SUNDAY Sunday

11.4.2. PriceComponent class

A Price Component describes how a certain amount of a certain dimension being consumed translates into an

amount of money owed.

Property Type Car Description
d.
type TariffDimensionType 1 The dimension that is being priced
price number 1 Price per unit for this dimension. This is including or

excluding taxes according to the tax_included field of the Tariff

that this PriceComponent is contained in.

140

OCPI12.3.0

Property Type Car Description
d.
vat number ? Applicable VAT percentage for this tariff dimension. If omitted,

no VAT is applicable.

step_size int 1 Minimum amount to be billed. That is, the dimension will be
billed in this step_size blocks. Consumed amounts are
rounded up to the smallest multiple of step_size that is greater
than the consumed amount. For example: if type is TIME and
step_size has a value of 300, then time will be billed in blocks
of 5 minutes. If 6 minutes were consumed, 10 minutes (2
blocks of step_size) will be billed.

The step_size field is no longer present in OCPI 3.0. In OCPI 3.0, Parties are advised to measure
quantities as precise as required by calibration law and use the full precision of such

NOTE measurements in cost computation. Users of OCPI 2.2.1 looking to be ready for a transition to OCPI
3.0 or to maximize interoperability with OCPI 3.0 are advised to effectively avoid using step_size
by setting step_size to 1 always.

step_size: depends on the type and every type (except FLAT) defines a step_size multiplier, which is
the size of every step for that type in the given unit.

For example: PARKING_TIME has the step_size multiplier: 1 second, which means that the step_size
of a Price Component is multiplied by 1 second. Thus a step_size = 300 means 300 seconds (5
minutes). This means that when someone parked for 8 minutes they will be billed for 10 minutes.
The parking time will be simply rounded up to the next larger chunk of step_size (i.e. blocks of 300
seconds in this example).

NOTE
Another example: ENERGY has the step_size multiplied: 7 Wh, which means that the step_size of a
Price Component is multiplied by I Wh. Thus a step_size = 1 with a price = 0.25 will resultin a
cost calculation that uses the charged Wh as precision.
If someone charges their EV with 115.2 Wh, then they are billed for 116 Wh, resulting in total cost
of € 0.029.
When step_size = 25, then the same amount would be billed for 101 to 125 Wh: € 0.031.
When step_size = 500, then the same amount will be billed for 1 to 500 Wh: € 0.125.

NOTE For more information about how step_size impacts the calculation of the cost of charging see: CDR
object description

Take into account that using step_size can be confusing for Drivers and other people. There may
be local or national regulations that regulate step_size. For example in The Netherlands telecom

NOTE companies are required to at least offer one subscription which is paid per second. To prevent
confusion by the customer, we recommend to keep the step_size as small as possible and mention
them clearly in your offering.

11.4.2.1. Example Tariff

Example Tariff to explain the step_size when switching from one Tariff Element to another:

141

OCPI12.3.0

* Charging fee of € 1.20 per hour (excl. VAT) before 17:00 with a step_size of 30 minutes (1800 seconds)
» Charging fee of € 2.40 per hour (excl. VAT) after 17:00 with a step_size of 15 minutes (900 seconds)

* Parking fee of € 1.00 per hour (excl. VAT) before 20:00 with a step_size of 15 minutes (900 seconds)

{
"country_code": "DE",
"party_id": "ALL",
"qd": "22",
"currency": "EUR",
"elements": [
{
"price_components": [
{
"type": "TIME",
"price": 1.20,
"step_size": 1800

B

{
"type": "PARKING_TIME",
"price": 1.00,
"step_size": 900

}

1;

"restrictions" : {
"start_time" : "00:00",
"end_time" : "17:00"

}

Bo
{
"price_components": [
{
"type": "TIME",
"price": 2.40,
"step_size": 900

B

{
"type": "PARKING_TIME",
"price": 1.00,
"step_size": 900

}

1;

"restrictions" : {
"start_time" : "17:00",
"end_time" : "20:00"

}

Bo
{

"price_components": [
{

"type": "TIME",

"price": 2.40,

"step_size": 900
}

1

"restrictions" : {

"start_time" : "20:00",
"end_time" : "00:00"
}
}

1

"tax_included": "NO",

"last_updated": "2018-12-18T17:07:11Z"
}

142

OCPI12.3.0

Example: switching to different Tariff Element #1

An EV driver plugs in at 16:55 and charges for 10 minutes (TIME). They then stop charging but stay plugged in for 2
more minutes (PARKING_TIME). The total session time is therefore 12 minutes. The parking time of 2 minutes is
rounded to 15 minutes according to the step size of the last parking time period.

As a result,t he session costs € 0.55 ex VAT.

A breakdown is as follows:

Dimension Quantity Price ex VAT Cost ex VAT
Charging time 5 minutes 1.20 per hour 0.10
Charging time 5 minutes 2.40 per hour 0.20
Time 15 minutes 1.00 per hour 0.25
Total 0.55

Example: switching to different Tariff Element #2

An EV driver plugs in at 16:35 and charges for 35 minutes (TIME). After that they immediately unplug and leave
without parking time.

As the charging time Price Component of the last Tariff Element being used has a step_size of 15 minutes, the total
charging time is rounded up from 35 to 45 minutes. When considering the already billed 25 minutes of charging
time before 17:00, we are left with 20 minutes to bill after 17:00.

That leads to a session fee of € 1.30. A breakdown is as follows:

Dimension Quantity Price ex VAT Cost ex VAT
Charging time 25 minutes 1.20 per hour 0.50
Charging time 20 minutes 2.40 per hour 0.80
Total 1.30

Example: switching to Free-of-Charge Tariff Element

When parking becomes free after 20:00, there will not be an active PARKING_TIME Price Component nor a TIME Price
Component. So the last parking period that needs to be paid, which is before 20:00, will be billed according to the
step_size of the PARKING_TIME PriceComponent before 20:00.

An EV driver plugs in at 19:40 and charges for 12 minutes (TIME). They then stop charging but stay plugged in for 20
more minutes (PARKING_TIME). The total session time is therefore 32 minutes.

The total of billable parking time for the session is 8 minutes. This is rounded up to 15 minutes according to the
step_size of the last time based Price Component that was active during the session. The extra 7 minutes are then
added to the last period with a Price Component with a time-based dimension, that is the one from 19:52 to 20:00. So
the user is billed € 0.60 for 15 minutes of parking and that makes a total session fee of € 0.80.

A breakdown is as follows:

143

OCPI12.3.0

Dimension Quantity Price ex VAT Cost ex VAT
Charging time 12 minutes 1.20 per hour 0.20
Time 15 minutes 2.40 per hour 0.60
Total 0.80

11.4.3. PriceLimit class

Property Type Card Description
before_taxes number 1 Maximum or minimum cost excluding taxes.
after_taxes number ? Maximum or minimum cost including taxes.

11.4.4. ReservationRestrictionType enum

Value Description
RESERVATION Used in Tariff Elements to describe costs for a reservation.

RESERVATION_EXPIRES Used in Tariff Elements to describe costs for a reservation that expires (i.e. driver does
not start a charging session before expiry_date of the reservation).

When a Tariff has both RESERVATION and RESERVATION_EXPIRES Tariff Elements, where both Tariff
NOTE Elements have a TIME Price Component, then the time based cost of an expired reservation will be
calculated based on the RESERVATION _EXPIRES Tariff Element.

11.4.5. TariffElement class

A Tariff Element is a group of Price Components that share a set of restrictions under which they apply.

That the Price Components share the same restrictions does not mean that at any time, they either all apply or all do
not apply. The reason is that applicable Price Components are looked up separately for each dimension, as described
under the Tariff object. Therefore it is possible that a Price Component for one dimension is found in a Tariff
Element that occurs earlier in the list of Tariff Elements than for another dimension.

Property Type Car Description
d.
price_component PriceComponent + List of Price Components that each describe how a certain
S dimension is priced.
restrictions TariffRestrictions ? Restrictions that describe under which circumstances the Price

Components of this Tariff Element apply.

11.4.6. TariffDimensionType enum

144

OCPI12.3.0

Value Description

ENERGY Defined in kWh, step_size multiplier: 1 Wh

FLAT Flat fee without unit for step_size

PARKING_TIME Time not charging: defined in hours, step_size multiplier: 1 second
TIME Time charging: defined in hours, step_size multiplier: 1 second

Can also be used in combination with a RESERVATION restriction to describe the price
of the reservation time.

11.4.7. TariffRestrictions class

A ‘TariffRestrictions' object describes if and when a Tariff Element becomes active or inactive during a Charging
Session.

These restrictions are not to be interpreted as making the Tariff Element applicable or not applicable for the entire
Charging Session.

When more than one restriction is set, they are to be treated as a logical AND. So a Tariff Element is active if and
only if all of the properties in its TariffRestrictions match.

Property Type Card Description

start_time string(5) ? Start time of day in local time, the time zone is defined in the time_zone
field of the Location, for example 13:30, valid from this time of the day.
Must be in 24h format with leading zeros. Hour/Minute separator: ":"
Regex: ([0-1][0-9]|2[0-3]):[0-5][0-9]

end_time string(5) ? End time of day in local time, the time zone is defined in the time_zone
field of the Location, for example 19:45, valid until this time of the day.
Same syntax as start_time. If end_time < start_time then the period
wraps around to the next day. To stop at end of the day use: 00:00.

start_date string(10) ? Start date in local time, the time zone is defined in the time_zone field
of the Location, for example: 2015-12-24, valid from this day

(inclusive). Regex: ([12][0-91{3})-(0[1-9]|1[0-2])-(0[1-9]|[12][0-
9113[011)

end_date string(10) ? End date in local time, the time zone is defined in the time_zone field of
the Location, for example: 2015-12-27, valid until this day (exclusive).
Same syntax as start_date.

min_kwh number ? Minimum consumed energy in kWh, for example 20, valid from this
amount of energy (inclusive) being used.

max_kwh number ? Maximum consumed energy in KkWh, for example 50, valid until this
amount of energy (exclusive) being used.

145

Property Type
min_current number
max_current number
min_power number
max_power number
min_duration int
max_duration int
day_of_week DayOfWeek

OCPI12.3.0

Card Description

Sum of the minimum current (in Amperes) over all phases, for
example 5. When the EV is charging with more than, or equal to, the
defined amount of current, this TariffElement is/becomes active. If the
charging current is or becomes lower, this TariffElement is not or no
longer valid and becomes inactive. This describes NOT the minimum
current over the entire Charging Session. This restriction can make a
TariffElement become active when the charging current is above the
defined value, but the TariffElement MUST no longer be active when
the charging current drops below the defined value.

Sum of the maximum current (in Amperes) over all phases, for
example 20. When the EV is charging with less than the defined
amount of current, this TariffElement becomes/is active. If the
charging current is or becomes higher, this TariffElement is not or no
longer valid and becomes inactive. This describes NOT the maximum
current over the entire Charging Session. This restriction can make a
TariffElement become active when the charging current is below this
value, but the TariffElement MUST no longer be active when the
charging current raises above the defined value.

Minimum power in kW, for example 5. When the EV is charging with
more than, or equal to, the defined amount of power, this
TariffElement is/becomes active. If the charging power is or becomes
lower, this TariffElement is not or no longer valid and becomes
inactive. This describes NOT the minimum power over the entire
Charging Session. This restriction can make a TariffElement become
active when the charging power is above this value, but the
TariffElement MUST no longer be active when the charging power
drops below the defined value.

Maximum power in kW, for example 20. When the EV is charging with
less than the defined amount of power, this TariffElement becomes/is
active. If the charging power is or becomes higher, this TariffElement
is not or no longer valid and becomes inactive. This describes NOT the
maximum power over the entire Charging Session. This restriction can
make a TariffElement become active when the charging power is
below this value, but the TariffElement MUST no longer be active when
the charging power raises above the defined value.

Minimum duration in seconds the Charging Session MUST last
(inclusive). When the duration of a Charging Session is longer than the
defined value, this TariffElement is or becomes active. Before that
moment, this TariffElement is not yet active.

Maximum duration in seconds the Charging Session MUST last
(exclusive). When the duration of a Charging Session is shorter than
the defined value, this TariffElement is or becomes active. After that
moment, this TariffElement is no longer active.

Which day(s) of the week this TariffElement is active.

146

OCPI12.3.0

Property Type Card Description

reservation Reservation | ? When this field is present, the TariffElement describes reservation
RestrictionT costs. A reservation starts when the reservation is made, and ends
ype when the driver starts charging on the reserved EVSE/Location, or

when the reservation expires. A reservation can only have: FLAT and
TIME TariffDimensions, where TIME is for the duration of the
reservation.

11.4.7.1. Example: Tariff with max_power Tariff Restrictions

Example Tariff to explain the max_power Tariff Restriction:

» Charging fee of € 0.20 per kWh (excl. VAT) when charging with a power of less than 16 kW.

* Charging fee of € 0.35 per kWh (excl. VAT) when charging with a power between 16 and 32 kW.

* Charging fee of € 0.50 per kWh (excl. VAT) when charging with a power above 32 kW (implemented as fallback

tariff without Restriction).

For a charging session where the EV charges the first kWh with a power of 6 kW, increases the power to 48 kW for

the next 40 kWh and reduces it again to 4 kW after that for another 0.5 kWh (probably due to physical limitations,
i.e. temperature of the battery), this tariff will result in costs of € 20.30 (excl. VAT). The costs are composed of the

following components:

* 1 kWh at 6 kW: €0.20
* 40 kWh at 48 kW: € 20.00

* 0.5 kWh at 4 kW: € 0.10

{
"country_code": "DE",
"party_id": "ALL",
"id": "1",
"currency": "EUR",
"type": "REGULAR",
"elements": [{
"price_components": [{
"type": "ENERGY",
"price": 0.20,
"vat": 20.0,
"step_size": 1
Flo
"restrictions": {
"max_power": 16.00
}
oA
"price_components": [{
"type": "ENERGY",
"price": 0.35,
"vat": 20.0,
"step_size": 1
.
"restrictions": {
"max_power": 32.00
}
oA
"price_components": [{
"type": "ENERGY",

147

OCPI12.3.0

"price": 0.50,
"vat": 20.0,
"step_size": 1
]
.
"tax_included": "NO",
"last_updated": "2018-12-05T12:01:092"

11.4.7.2. Example: Tariff with max_duration Tariff Restrictions

A supermarket wants to allow their customer to charge for free. As most customers will be out of the store in 20
minutes, they allow free charging for 30 minutes. If a customer charges longer than that, they will charge them the
normal price per kWh. But as they want to discourage long usage of their Charge Points, charging becomes much
more expensive after 1 hour:

¢ First 30 minutes of charging is free.
* Charging fee of € 0.25 per kWh (excl. VAT) after 30 minutes.

» Charging fee of € 0.40 per kWh (excl. VAT) after 60 minutes.

For a charging session with a duration of 40 minutes where 5 kWh are charged during the first 30 minutes and
another 1.2 kWh in the remaining 10 minutes of the session, this tariff will result in costs of € 0.30 (excl. VAT). The
costs are composed of the following components:

* 5 kWh for free: € 0.00

* 1.2 kWh at 0.25/kWh: € 0.30

"country_code": "DE",
"party_id": "ALL",
"qd": "2",
"currency": "EUR",
"type": "REGULAR",
"elements": [{
"price_components": [{
"type": "ENERGY",
"price": 0.00,
"vat": 20.0,
"step_size": 1
H,
"restrictions": {
"max_duration": 1800
}
oA
"price_components": [{
"type": "ENERGY",
"price": 0.25,
"vat": 20.0,
"step_size": 1
I
"restrictions": {
"max_duration": 3600
}
Fo d
"price_components": [{
"type": "ENERGY",
"price": 0.49,
"vat": 20.0,
"step_size": 1

3

148

Fls
"tax_included": "NO",

OCPI12.3.0

"last_updated": "2018-12-05T13:12:447"

}

11.4.8. TariffType enum

Value

AD_HOC_PAYMENT

PROFILE_CHEAP

PROFILE_FAST

PROFILE_GREEN

REGULAR

Description

Used to describe that a Tariff is valid when ad-hoc payment is used at the Charge Point
(for example: Debit or Credit card payment terminal).

Used to describe that a Tariff is valid when Charging Preference: CHEAP is set for the
session.

Used to describe that a Tariff is valid when Charging Preference: FAST is set for the
session.

Used to describe that a Tariff is valid when Charging Preference: GREEN is set for the
session.

Used to describe that a Tariff is valid when using an RFID, without any Charging
Preference, or when Charging Preference: REGULAR is set for the session.

11.4.9. TaxIncluded enum

Describes if tax may have to be added to the amounts in a Tariff.

Value
YES
NO

N/A

Description
Taxes are included in the prices in this Tariff.
Taxes are not included, and will be added on top of the prices in this Tariff.

No taxes are applicable to this Tariff.

149

OCPI12.3.0

12. Tokens module

Module Identifier: tokens
Data owner: MSP
Type: Functional Module

The tokens module gives CPOs knowledge of the token information of an eMSP. eMSPs can push Token information
to CPOs, CPOs can build a cache of known Tokens. When a request to authorize comes from a Charge Point, the CPO
can check against this cache. With this cached information they know to which eMSP they can later send a CDR.

12.1. Flow and Lifecycle

12.1.1. Push model

When the eMSP creates a new Token object they push it to the CPO by calling PUT on the CPO’s Tokens endpoint
with the newly created Token object.

Any changes to Token in the eMSP system are sent to the CPO system by calling either the PUT or the PATCH on the
CPO’s Tokens endpoint with the updated Token(s).

When the eMSP invalidates a Token (deleting is not possible), the eMSP will send the updated Token (with the field:
valid set to false, by calling, either the PUT or the PATCH on the CPO’s Tokens endpoint with the updated Token.

When the eMSP is not sure about the state or existence of a Token object in the CPO system, the eMSP can call the
GET to validate the Token object in the CPO system.

12.1.2. Pull model

When a CPO is not sure about the state of the list of known Tokens, or wants to request the full list as a start-up of
their system, the CPO can call the GET on the eMSP’s Token endpoint to receive all Tokens, updating already known
Tokens and adding new received Tokens to it own list of Tokens. This is not intended for real-time operation,
requesting the full list of tokens for every authorization will put to much strain on systems. It is intended for getting
in-sync with the server, or to get a list of all tokens (from a server without Push mode) every X hours.

12.1.3. Real-time authorization

An eMSP might want their Tokens to be authorized 'real-time’, not white-listed. For this the eMSP has to implement
the POST Authorize request and set the Token.whitelist field to NEVER for Tokens they want to have authorized 'real-
time'.

If an eMSP doesn’t want real-time authorization, the POST Authorize request doesn’t have to be implemented as
long as all their Tokens have Token.whitelist set to ALWAYS.

When an eMSP does not want to Push the full list of tokens to CPOs, the CPOs will need to call the POST Authorize
request to check if a Token is known by the eMSP, and if it is valid.

Doing real-time authorization of RFID will mean a longer delay of the authorization process, which

NOTE might result in bad user experience at the Charge Point. So care should be taken to keep delays in

150

OCPI12.3.0

processing the request to an absolute minimum.

Real-time authorization might be asked for a charging location that is not published via the

NOTE

Location module, typically a private charger. In most cases this is expected to result in: ALLOWED.

If real-time authorization is asked for a location, the eMSP SHALL NOT validate that charging is
NOTE possible based on information like opening hours or EVSE status etc. as this information might not

be up to date.

12.2. Interfaces and endpoints

There is both a Sender and a Receiver interface for Tokens. It is advised to use the Push direction from Sender to
Receiver during normal operation. The Sender interface is meant to be used when the Receiver is not 100% sure the
Token cache is still correct.

12.2.1. Receiver Interface
Typically implemented by market roles like: CPO.

With this interface the Sender can push the Token information to the Receiver. Tokens is a Client Owned Object, so
the end-points need to contain the required extra fields: {party_id} and {country_code}.

Endpoint structure definition:
{token_endpoint_url}/{country_code}/{party_id}/{token_uid}[?type={type}]
Example:

https://www.server.com/ocpi/cpo/2.2.1/tokens/NL/TNM/@12345678

Method Description

GET Retrieve a Token as it is stored in the CPO system.
POST n/a

PUT Push new/updated Token object to the CPO.
PATCH Notify the CPO of partial updates to a Token.
DELETE n/a, (Use PUT, Tokens cannot be removed).

12.2.1.1. GET Method

If the eMSP wants to check the status of a Token in the CPO system it might GET the object from the CPO system for
validation purposes. The eMSP is the owner of the objects, so it would be illogical if the CPO system had a different

status or was missing an object.

Request Parameters

The following parameters: country_code, party_id, token_uid have to be provided as URL segments.

The parameter: type may be provided as an URL parameter

151

OCPI12.3.0

Parameter Datatype Requ Description
ired
country_code CiString(2) yes Country code of the eMSP requesting this GET from the CPO system.
party_id CiString(3) | yes Party ID (Provider ID) of the eMSP requesting this GET from the CPO
system.
token_uid CiString(36) ' yes Token.uid of the Token object to retrieve.
type TokenType | no Token.type of the Token to retrieve. Default if omitted: RFID

Response Data

The response contains the requested object.

Type Card Description

Token 1 The requested Token object.

12.2.1.2. PUT Method

New or updated Token objects are pushed from the eMSP to the CPO.

Request Body

In the put request a new or updated Token object is sent.

Type Card Description

Token 1 New or updated Token object.

Request Parameters

The following parameters: country_code, party_id, token_uid have to be provided as URL segments.

The parameter: type may be provided as an URL parameter

Parameter Datatype Requ Description
ired

country_code CiString(2) yes Country code of the eMSP sending this PUT request to the CPO system.
This SHALL be the same value as the country_code in the Token object
being pushed.

party_id CiString(3) yes Party ID (Provider ID) of the eMSP sending this PUT request to the CPO
system. This SHALL be the same value as the party_id in the Token
object being pushed.

token_uid CiString(36) yes Token.uid of the (new) Token object (to replace).

type TokenType no Token.type of the Token of the (new) Token object (to replace). Default

if omitted: RFID

152

OCPI12.3.0

Example: put a new Token

PUT To URL: https://www.server.com/ocpi/cpo/2.2.1/tokens/NL/TNM/012345678

{
"country_code": "NL",
"party_id": "TNM",
"uid": "012345678",
"type": "RFID",
"contract_id": "NL8ACC12E46L89",
"visual_number": "DF000-2001-8999-1",
"issuer": "TheNewMotion",
"group_id": "DF000-2001-8999",
"valid": true,
"whitelist": "ALWAYS",
"last_updated": "2015-06-29T722:39:09Z"

12.2.1.3. PATCH Method

Same as the PUT method, but only the fields/objects that have to be updated have to be present, other fields/objects
that are not specified are considered unchanged.

Any request to the PATCH method SHALL contain the last_updated field.

Example: invalidate a Token

PATCH To URL: https://www.server.com/ocpi/cpo/2.2.1/tokens/NL/TNM/012345678

{
"valid": false,
"last_updated": "2019-06-19T02:11:11Z"

}

12.2.2. Sender Interface
Typically implemented by market roles like: eMSP.

This interface enables the Receiver to request the current list of Tokens, when needed. Via the POST method it is
possible to authorize a single token.

Method Description

GET Get the list of known Tokens, last updated between the {date_from} and {date_to} (paginated)
POST Real-time authorization request

PUT n/a

PATCH n/a

DELETE n/a

12.2.2.1. GET Method

Fetch information about Tokens known in the eMSP systems.

153

OCPI12.3.0

Endpoint structure definition:
{tokens_endpoint_url}?[date_from={date_from}]&[date_to={date_to}]&[offset={offset}]&[limit={1limit}]
Examples:
https://www.server.com/ocpi/emsp/2.2.1/tokens/?date_from=2019-01-28712:00:00&date_t0=2019-01-29712:00:00
https://ocpi.server.com/2.2.1/tokens/?0ffset=50
https://www.server.com/ocpi/2.2.1/tokens/?date_from=2019-01-29T712:00:00&1imit=100

https://www.server.com/ocpi/emsp/2.2.1/tokens/?0ffset=50&1imit=100

Request Parameters

If additional parameters: {date_from} and/or {date_to} are provided, only Tokens with (last_updated) between the
given {date_from} (including) and {date_to} (excluding) will be returned.

This request is paginated, it supports the pagination related URL parameters. This request is paginated, it supports
the pagination related URL parameters.

Parameter Datatype Requ Description
ired
date_from DateTime no Only return Tokens that have last_updated after or equal to this

Date/Time (inclusive).

date_to DateTime no Only return Tokens that have last_updated up to this Date/Time, but
not including (exclusive).

offset int no The offset of the first object returned. Default is 0.

limit int no Maximum number of objects to GET.

Response Data

The endpoint response with list of valid Token objects, the header will contain the pagination related headers.

Any older information that is not specified in the response is considered as no longer valid. Each object must
contain all required fields. Fields that are not specified may be considered as null values.

Type Card Description
Token * List of all tokens.
12.2.2.2. POST Method

Do a 'real-time' authorization request to the eMSP system, validating if a Token might be used (at the optionally
given Location).

Endpoint structure definition:

{tokens_endpoint_ur1}{token_uid}/authorize[?type={type}]

154

OCPI12.3.0

The /authorize is required for the real-time authorize request.

Examples:

https://www.server.com/ocpi/emsp/2.2.1/tokens/012345678/authorize

https://ocpi.server.com/2.2.1/tokens/012345678/authorize?type=RFID
When the eMSP does not know the Token, the eMSP SHALL respond with an HTTP status code: 404 (Not Found).

When the eMSP receives a 'real-time' authorization request from a CPO that contains too little information (no
LocationReferences provided) to determine if the Token might be used, the eMSP SHALL respond with the OCPI
status: 2002

Request Parameters

The parameter: token_uid has to be provided as URL segments.

The parameter: type may be provided as an URL parameter

Parameter Datatype Requ Description

ired
token_uid CiString(36) | yes Token.uid of the Token for which authorization is requested.
type TokenType | no Token.type of the Token for which this authorization is. Default if

omitted: RFID

Request Body

In the body an optional LocationReferences object can be given. The eMSP SHALL then validate if the Token is
allowed to be used at this Location, and if applicable: which of the Locations EVSEs. The object with valid Location
and EVSEs will be returned in the response.

Type Card Description

LocationReferences ? Location and EVSEs for which the Token is requested to be authorized.

Response Data

When the token is known by the Sender, the response SHALL contain a AuthorizationInfo object.

If the token is not known, the response SHALL contain the status code: 2004: Unknown Token, and no data field.

Type Card Description

AuthorizationInfo 1 Contains information about the authorization, if the Token is allowed to charge
and optionally which EVSEs are allowed to be used.

155

OCPI12.3.0

12.3. Object description

12.3.1. AuthorizationInfo Object

Property

allowed

token

location

authorization_reference

info

Type

AllowedTyp

e

Token

LocationRef

erences

CiString(36)

DisplayText

12.3.2. Token Object

Property

country_code

party_id

uid

type

contract_id

visual_number

Type

CiString(2)

CiString(3)

CiString(36)

TokenType

CiString(36)

string(64)

Card

1

1

1

1

1

?

Card Description

[uny

Status of the Token, and whether charging is allowed at the
optionally given location.

1 The complete Token object for which this authorization was
requested.

? Optional reference to the location if it was included in the
request, and if the EV driver is allowed to charge at that
location. Only the EVSEs the EV driver is allowed to charge at

are returned.

-~

Reference to the authorization given by the eMSP, when given,
this reference will be provided in the relevant Session and/or
CDR.

? Optional display text, additional information to the EV driver.

Description

1S0O-3166 alpha-2 country code of the MSP that 'owns' this Token.

ID of the eMSP that 'owns' this Token (following the ISO-15118
standard).

Unique ID by which this Token, combined with the Token type, can be
identified.

This is the field used by CPO system (RFID reader on the Charge Point)
to identify this token.

Currently, in most cases: type=RFID, this is the RFID hidden ID as read
by the RFID reader, but that is not a requirement.

If this is a APP_USER or AD_HOC_USER Token, it will be a uniquely, by the
eMSP, generated ID.

This field is named uid instead of id to prevent confusion with:
contract_id.

Type of the token

Uniquely identifies the EV Driver contract token within the eMSP’s
platform (and suboperator platforms). Recommended to follow the
specification for eMA ID from"E-mobility ID-codes: the purpose of IDs,
ID usage and ID format" (https://evroaming.org/contract-evse-ids/).

Visual readable number/identification as printed on the Token (RFID
card), might be equal to the contract_id.

156

https://evroaming.org/contract-evse-ids/

Property Type

issuer string(64)

group_id CiString(36)

valid boolean

whitelist WhitelistTyp
e

language string(2)

default_profile_type ProfileType

energy_contract EnergyContr
act
last_updated DateTime

OCPI12.3.0

Card Description

[y

Issuing company, most of the times the name of the company printed
on the token (RFID card), not necessarily the eMSP.

This ID groups a couple of tokens. This can be used to make two or
more tokens work as one, so that a session can be started with one
token and stopped with another, handy when a card and key-fob are
given to the EV-driver.

Beware that OCPP 1.5/1.6 only support group_ids (it is called parentId
in OCPP 1.5/1.6) with a maximum length of 20.

Is this Token valid

Indicates what type of white-listing is allowed.

Language Code ISO 639-1. This optional field indicates the Token
owner’s preferred interface language. If the language is not provided
or not supported then the CPO is free to choose its own language.

The default Charging Preference. When this is provided, and a
charging session is started on an Charge Point that support Preference
base Smart Charging and support this ProfileType, the Charge Point
can start using this ProfileType, without this having to be set via: Set
Charging Preferences.

When the Charge Point supports using your own energy
supplier/contract at a Charge Point, information about the energy
supplier/contract is needed so the CPO knows which energy supplier to
use.

NOTE: In a lot of countries it is currently not allowed/possible to use a
drivers own energy supplier/contract at a Charge Point.

Timestamp when this Token was last updated (or created).

The combination of uid and type should be unique for every token within the eMSP’s system.

OCPP supports group_id (or ParentID as it is called in OCPP 1.5/1.6) OCPP 1.5/1.6 only support group

NOTE ID’s with maximum length of string(20), case insensitive. As long as EV-driver can be expected to

charge at an OCPP 1.5/1.6 Charge Point, it is adviced to not used a group_id longer then 20.

12.3.2.1. Examples

Simple APP_USER example

"country_code": "DE",
"party_id": "TNM",

"uid": "bdf21bce-fc97-11e8-8eb2-f2801f1b9fd1",

"type": "APP_USER",
"contract_id": "DESBACC12E46L89",
"issuer": "TheNewMotion",
"valid": true,

157

OCPI12.3.0

"whitelist": "ALLOWED",
"last_updated": "2018-12-10T17:16:15Z"
}

Full RFID example

"country_code": "DE",
"party_id": "TNM",
"uid": "12345678905880",
"type": "RFID",
"contract_id": "DESBACC12E46L89",
"visual_number": "DF000-2001-8999-1",
"issuer": "TheNewMotion",
"group_id": "DF@00-2001-8999",
"valid": true,
"whitelist": "ALLOWED",
"language": "it",
"default_profile_type": "GREEN",
"energy_contract": {
"supplier_name": "Greenpeace Energy eG",
"contract_id": "0123456789"
Fro
"last_updated": "2018-12-10T17:25:102"

12.4. Data types

12.4.1. AllowedType enum
Value Description
ALLOWED This Token is allowed to charge (at this location).
BLOCKED This Token is blocked.
EXPIRED This Token has expired.
NO_CREDIT This Token belongs to an account that has not enough credits to charge (at the given
location).
NOT_ALLOWED Token is valid, but is not allowed to charge at the given location.

12.4.2. EnergyContract class

Information about a energy contract that belongs to a Token so a driver could use his/her own energy contract when
charging at a Charge Point.

Property Type Card Description

supplier_name string(64) 1 Name of the energy supplier for this token.

contract_id string(64) ? Contract ID at the energy supplier, that belongs to the owner of this
token.

158

OCPI12.3.0

12.4.3. LocationReferences class

References to location details.

Property Type Card Description
location_id CiString(36) 1 Unique identifier for the location.
evse_uids CiString(36) * Unique identifiers for EVSEs within the CPO’s platform for the EVSE

within the given location.

12.4.4. TokenType OpenEnum

Value Description

AD_HOC_USER One time use Token ID generated by a server (or App.) The eMSP uses this to bind a
Session to a customer, probably an app user.

APP_USER Token ID generated by a server (or App.) to identify a user of an App. The same user
uses the same Token for every Session.

EMAID An EMAID. EMAIDs are used as Tokens when the Charging Station and the vehicle are
using ISO 15118 for communication.

OTHER Other type of token

RFID RFID Token

The eMSP is RECOMMENDED to push Tokens with type: AD_HOC_USER or APP_USER with whitelist set
NOTE to NEVER. Whitelists are very useful for RFID type Tokens, but the AD_HOC_USER/APP_USER Tokens are
used to start Sessions from an App etc. so whitelisting them has no advantages.

The eMSP is RECOMMENDED to not push Tokens with type EMAID at all. Exchanging Token objects
NOTE for EMAID Tokens is not necessary because the CPO already learns which Party issued the Token
from the Charging Station. The CPO can then contact this Party for real-time authorization using

real-time authorization.

The management of the contract certificates that are used with ISO 15118 to authenticate the
NOTE vehicle is left outside of OCPI 2.3.0. There are other existing standards for exchanging and
validating certificates that Parties can use to authenticate contract certificates.

12.4.5. WhitelistType enum
Defines when authorization of a Token by the CPO is allowed.

The validity of a Token has no influence on this. If a Token is: valid = false, when the whitelist field requires real-
time authorization, the CPO SHALL do a real-time authorization, the state of the Token might have changed.

159

Value

ALWAYS

ALLOWED

ALLOWED_OFFLINE

NEVER

OCPI12.3.0

Description

Token always has to be whitelisted, realtime authorization is not possible/allowed. CPO
shall always allow any use of this Token.

It is allowed to whitelist the token, realtime authorization is also allowed. The CPO may
choose which version of authorization to use.

In normal situations realtime authorization shall be used. But when the CPO cannot get
a response from the eMSP (communication between CPO and eMSP is offline), the CPO
shall allow this Token to be used.

Whitelisting is forbidden, only realtime authorization is allowed. CPO shall always send
a realtime authorization for any use of this Token to the eMSP.

160

OCPI12.3.0

13. Commands module

Module Identifier: commands
Type: Functional Module

The Commands module enables remote commands to be sent to a Location/EVSE. The following commands are
supported:

» CANCEL_RESERVATION

RESERVE_NOW

START_SESSION

STOP_SESSION

UNLOCK_CONNECTOR

See CommandType for a description of the different commands. Use the UNLOCK_CONNECTOR command with care, please
read the note at CommandType.

Module dependency: Locations module, Sessions module

13.1. Flow

With the Commands module, commands can be sent from the eMSP, via the CPO to a Charge Point. Most Charge
Points are hooked up to the internet via a relative slow wireless connection. To prevent long blocking calls, the
commands module is designed to work asynchronously.

The Sender (typically eMSP) send a request to a Receiver (typically CPO), via the Receivers Commands interface. The
Receiver checks if it can send the request to a Charge Point and will respond to the request with a status, indicating
if the request can be sent to a Charge Point.

The Receiver (typically CPO) sends the requested command (via another protocol, for example: OCPP) to a Charge
Point. The Charge Point will respond if it understands the command and will try to execute the command. This
response doesn’t always mean that the command was executed successfully. The Receiver (typically CPO) will
forward the result in a new POST request to the Senders Commands interface.

The following examples try to give insight into the message flow and the asynchronous nature of the OCPI

Commands.

Example of a START_SESSION that is accepted, but no new Session is started because EV not plugged in before end of
time-out. This is an example for Charge Point that allows a remote start when the cable is not yet plugged in. Some
Charge Points even require this, there might, for example, be a latch in front of the socket to prevent vandalism.

161

OCPI12.3.0

CPO Charge Point

!
1 Command(START_SESSION, location_id=1234, token=200) !

3
>

_ status_code = 1000, data: {CommandResponse { result = ACCEPTED }}

RemoteStartTransaction.req(Token=200)
Ed

I
:
| i _ RemoteStartTransaction.conf(Accepted)
I
I
I

CommandResult(result = ACCEPTED)

! &

Figure 28. START _SESSION failed

Example of a START_SESSION that is accepted, but no new Session is started because the EV is not plugged in, and this
Charge Point does not allow a remote start without a cable already being plugged in.

eMSP CPO Charge Point

1

1 1

! EV NOT Plugged in)
|

1

Command(START_SESSION, location_id=1234, token=200)

Ny,
>

LL status_code = 1000, data: {CommandResponse { result = ACCEPTED }}

RemoteStartTransaction.req(Token=200)

| __ RemoteStartTransaction.conf(Rejected)
S

1
1
1
1
:
| __ CommandResult(result = FAILED)
[~
L—l -- > o
1

Figure 29. START _SESSION failed

Example of a START_SESSION that is accepted and results in a new Session.

CPO Charge Point

Command(START_SESSION, location_id=1234,
token.uid=200, token.type=AD_HOC_USER,
token.authorization_reference=567890)

N,
>

LL status_code = 1000, data: {CommandResponse { result = ACCEPTED }}

RemoteStartTransaction.req(Token=200)
>

_ RemoteStartTransaction.conf(Accepted)

<

_ CommandResult(result = ACCEPTED)

n
opt/

. _ Authorize.req(Token=200)

| |Authorize.conf(Accepted)

|

1

L)
: <
! _ StartTransaction.req(Token=200)

<
<

StartTransaction.conf(Transactionld=15)
>

Session(id=15, token=200, location_id=1234
authorization_reference=567890)

Figure 30. START_SESSION successful

Example of a START_SESSION with a Token that is Whitelist: NEVER.

162

OCPI12.3.0

The CPO should not check the Token in the START SESSION, before sending it to the Charge Point. The CPO should
assume that the eMSP only sends valid Tokens in the START_SESSION object.

If needed, the Charge Point does an OCPP Authorize request to validate the Token (proved via OCPP). In such case
the CPO only does an realtime authorization when the OCPP Authorize request is for an RFID Token and the
START_SESSION for this Token was received more then 15 minutes ago.

CPO Charge Point

1 1

| | | EV Plugged in

1 1 [RREEEREEEEY

i i [S

1 1 1

: Command(START_SESSION, location_id=1234, token.uid=123, : :

| token.type=APP_USER, token.whitelist=NEVER, i i

! token.authorization_reference=567890) - X
- 1

I_L..S.F‘f%t}‘.?:.‘%??’.?..:...1.9.99:.95”}??‘.2.{99.'??.’3?5’%!‘.93?599(‘.?9.{.F.‘?.S.H'.t...:..’.*.Q.QE.F.’.T..E.F?..}.}... |

1 1

! RemoteStartTransaction.req(Token=123) _ '

1 1

! ! < RemoteStartTransaction.conf(Accepted)

1

' CommandResult(result = ACCEPTED)

- it tti } E i} —.., >

X opt /

| | __ Authorize.req(Token=123)

1 T~

| | |Authorize.conf(Accepted) -

1 | >

1 1

X ' _ StartTransaction.req(Token=123)

| T~

X StartTransaction.conf(Transactionld=15)

1 1

' Session(id=15, token=123, location_id=1234, '

" authorization_reference=567890) 1

X al :

! ! !

Figure 31. START _SESSION whitelist NEVER
Example of a UNLOCK_CONNECTOR that fails because the Location is not known by the CPO.
eMSP CPO

|
t Command(UNLOCK_CONNECTOR, location_id=1234, evse_uid=1234, connector=1) !

Ve
L< status_code = 2003, data: {CommandResponse { result = REJECTED }}

2003 = Unknown Location lﬁ

Figure 32. UNLOCK_CONNECTOR Unknown Location

Example of a RESERVE_NOW that is rejected by the Charge Point.

163

OCPI12.3.0

CPO Charge Point

1 1
1 Command(RESERVE_NOW, location_id=1234, token=200, reservationld=ABC123) !

ReserveNow.req(idTag=200, reservationld=456)
Cd

1 ReserveNow.conf(Rejected)

<

1

1

> |

1

LL status_code = 1000, data: {CommandResponse { result = ACCEPTED }} |

__ .

1 1

1 1
1
|
1
1
|
1

CommandResult(result = REJECTED)
T~
.. >

Figure 33. RESERVE_NOW rejected by Charge Point

Example of a successful RESERVE_NOW.

CPO Charge Point

1 1
1 1
1 Command(RESERVE_NOW, location_id=1234, token=200, 1
X reservationld=ABC123, X
! response_url=https://server.com/reservation/ABC123) !

LL status_code = 1000, data: {CommandResponse { result = ACCEPTED }}

ReserveNow.req(idTag=200, reservationld=456)
”

1 ReserveNow.conf(Accepted)

<

POST: https://server.com/reservation/ABC123
CommandResult(result = ACCEPTED)

S — a

Figure 34. Successful RESERVE_NOW

Reservation canceled by the CPO.

OCPI makes it possible for a CPO to cancel a reservation. This is not to be taken lightly. When a driver makes a
reservation of a Charge Point/EVSE, he/she wants to be sure to have a charging location. So if the CPO cancel the
reservation, the driver will for sure not like it. But there are some circumstances where the CPO is forced to cancel a
reservation. For example: Charge Point has become defect, or the CPO is notified of ongoing roadworks which
makes the Charge Point unreachable etc.

To Cancel a reservation the CPO call the Senders interface with the same URL as was given by the Sender (eMSP)
when the RESERVE_NOW command was send.

The sequence diagram below continues after the sequence diagram above.

eMSP CPO

POST: https://server.com/reservation/ABC123
CommandResult(result = CANCELED_RESERVATION)

Figure 35. Reservation canceled by the CPO

These examples use OCPP 1.6 based commands between CPO and Charge Point, but that is not a requirement for
OCPL.

If the Sender (typically eMSP) wants to have a reference between the calls sent to the Receivers interface and the

164

OCPI12.3.0

asynchronous result received from the Charge Point via the CPO, the Sender can make some unique identifier part
of the ‘response_url" that is part of every method in the Receiver interface. The Receiver will call this URL when the
result is received from the Charge Point. The Sender can then match the unique identifier from the URL called with
the request.

13.2. Interfaces and endpoints

The commands module consists of two interfaces: a Receiver interface that enables a Sender (typically eMSP) (and
its clients) to send commands to a Location/EVSE and an Sender interface to receive the response from the
Location/EVSE asynchronously.

13.2.1. Receiver Interface

Typically implemented by market roles like: CPO.
Endpoint structure definition:
{commands_endpoint_ur1}{command}

Examples:

https://www.server.com/ocpi/cpo/2.2.1/commands/START _SESSION
https://ocpi.server.com/commands/STOP_SESSION

https://server.com/ocpi/cpo/2.2.1/commands/RESERVE_NOW

Method Description
GET n/a
POST Send a command to the CPO, requesting the CPO to send the command to the Charge Point
PUT n/a
PATCH n/a
DELETE n/a
13.2.1.1. POST Method

Request Parameters

The following parameter shall be provided as URL segments.

Parameter Datatype Requ Description
ired
command CommandTy yes Type of command that is requested.
pe
13.2.1.2. Request Body

Depending on the command parameter the body SHALL contain the applicable object for that command.

165

OCPI12.3.0

Type Card Description

Choice: one of five

> CancelReservation 1 CancelReservation object, for the CANCEL_RESERVATION command, with
information needed to cancel an existing reservation.

> ReserveNow 1 ReserveNow object, for the RESERVE_NOW command, with information needed to
reserve a (specific) connector of a Charge Point for a given Token.

> StartSession 1 StartSession object, for the START_SESSION command, with information needed to
start a sessions.

> StopSession 1 StopSession object, for the STOP_SESSION command, with information needed to
stop a sessions.

> UnlockConnector 1 UnlockConnector object, for the UNLOCK_CONNECTOR command, with information
needed to unlock a connector of a Charge Point.

Response Data

The response contains the direct response from the Receiver, not the response from the Charge Point itself, that will
be sent via an asynchronous POST on the Sender interface if this response is ACCEPTED.

Datatype Card Description

CommandResponse 1 Result of the command request, by the CPO (not the Charge Point). So this
indicates if the CPO understood the command request and was able to send it to
the Charge Point. This is not the response by the Charge Point

13.2.2. Sender Interface

Typically implemented by market roles like: eMSP.

The Sender interface receives the asynchronous responses.
Endpoint structure definition:

No structure defined. This is open to the Sender to define, the URL is provided to the Receiver by the Sender in the
POST to the Receiver interface. Therefor OCPI does not define variables.

Example:
https://www.server.com/ocpi/emsp/2.2.1/commands/{command}

https://ocpi.server.com/commands/{command}/{uid}

Method Description

GET n/a

POST Receive the asynchronous response from the Charge Point.
PUT n/a

166

OCPI12.3.0

Method Description

PATCH n/a

DELETE n/a
13.2.2.1. POST Method

Endpoint structure definition:

It is up to the implementation of the eMSP to determine what parameters are put in the URL. The eMSP sends a URL
in the POST method body to the CPO. The CPO is required to use this URL for the asynchronous response by the
Charge Point. It is advised to make this URL unique for every request to differentiate simultaneous commands, for
example by adding a unique id as a URL segment.

Examples:
https://www.server.com/ocpi/emsp/2.2.1/commands/RESERVE_NOW/1234

https://www.server.com/ocpi/emsp/2.2.1/commands/UNLOCK_CONNECTOR/2

13.2.2.2. Request Body
Datatype Card Description
CommandResult 1 Result of the command request, from the Charge Point.

13.3. Object description

13.3.1. CancelReservation Object

With CancelReservation the Sender can request the Cancel of an existing Reservation. The CancelReservation needs
to contain the reservation_id that was given by the Sender to the ReserveNow.

As there might be cost involved for a Reservation, canceling a reservation might still result in a CDR being send for

the reservation.

Property Type Card Description

response_url URL 1 URL that the CommandResult POST should be sent to. This URL might
contain a unique ID to be able to distinguish between
CancelReservation requests.

reservation_id CiString(36) 1 Reservation id, unique for this reservation. If the Charge Point already
has a reservation that matches this reservationld the Charge Point will
replace the reservation.

13.3.2. CommandResponse Object

The CommandResponse object is send in the HTTP response body.

167

OCPI12.3.0

Because OCPI does not allow/require retries, it could happen that the asynchronous result url given by the eMSP is
never successfully called. The eMSP might have had a glitch, HTTP 500 returned, was offline for a moment etc. For
the eMSP to be able to give a quick as possible response to another system or driver app. It is important for the eMSP
to know the timeout on a certain command.

Property Type Card Description
result CommandResponseType 1 Response from the CPO on the command request.
timeout int 1 Timeout for this command in seconds. When the Result is not

received within this timeout, the eMSP can assume that the

message might never be send.

message DisplayText * Human-readable description of the result (if one can be provided),
multiple languages can be provided.

13.3.3. CommandResult Object

Property Type Card Description

result CommandResultType 1 Result of the command request as sent by the Charge Point to the
CPO.

message DisplayText * Human-readable description of the reason (if one can be

provided), multiple languages can be provided.

13.3.4. ReserveNow Object

The evse_uid is optional. If no EVSE is specified, the Charge Point should keep one EVSE available for the EV Driver
identified by the given Token. (This might not be supported by all Charge Points). A reservation can be
replaced/updated by sending a RESERVE_NOW request with the same Location (Charge Point) and the same

reservation_id.
A successful reservation will result in a new Session object being created by the CPO.
An unused Reservation of a Charge Point/EVSE MAY result in cost being made, thus also a CDR.

The eMSP provides a Token that has to be used by the Charge Point. The Token provided by the eMSP for the
ReserveNow SHALL be authorized by the eMSP before sending it to the CPO. Therefor the CPO SHALL NOT check the
validity of the Token provided before sending the request to the Charge Point.

If this is an OCPP Charge Point, the Charge Point decides if it needs to validate the given Token, in such case:

* If this Token is of type AD_HOC_USER or APP_USER the CPO SHALL NOT do a realtime authorization at the eMSP for
this.
o If this Token is of type RFID, the CPO SHALL NOT do a realtime authorization at the eMSP for this Token at the

given EVSE/Charge Point within 15 minutes after having received this ReserveNow.

The eMSP MAY use Tokens that have not been pushed via the Token module. This is especially likely with tokens fof
types AD_HOC_USER or APP_USER. Such Tokens are only used in commands sent by an eMSP and never presented locally

168

OCPI12.3.0

at the Charge Point by a Driver like RFID Tokens.

Unknown Tokens received by the CPO in the ReserveNow Object don’t need to be stored in the Token module. In other
words, when a Token has been received via ReserveNow, the same Token does not have to be returned in a Token GET
request from the eMSP.

An eMSP sending a ReserveNow SHALL only use Tokens that are owned by this eMSP. Using Tokens of other eMSPs is
not allowed.

The reservation_id sent by the Sender (eMSP) to the Receiver (CPO) SHALL NOT be sent directly to a Charge Point.
The CPO SHALL make sure the Reservation ID sent to the Charge Point is unique and is not used by another Sender
(eMSP). We don’t want a Sender (eMSP) to replace or cancel a reservation of another Sender (eMSP).

Property Type Card Description

response_url URL 1 URL that the CommandResult POST should be sent to. This URL
might contain a unique ID to be able to distinguish between
ReserveNow requests.

token Token 1 Token object for how to reserve this Charge Point (and specific
EVSE).

expiry_date DateTime 1 The Date/Time when this reservation ends, in UTC.

reservation_id CiString(36) 1 Reservation id, unique for this reservation. If the Receiver

(typically CPO) Point already has a reservation that matches
this reservationId for that Location it will replace the
reservation.

location_id CiString(36) 1 Location.id of the Location (belonging to the CPO this request is
sent to) for which to reserve an EVSE.

evse_uid CiString(36) ? Optional EVSE.uid of the EVSE of this Location if a specific EVSE
has to be reserved.

authorization_reference CiString(36) ? Reference to the authorization given by the eMSP, when given,
this reference will be provided in the relevant Session and/or
CDR.

13.3.5. StartSession Object

The evse_uid is optional. If no EVSE is specified, the Charge Point can itself decide on which EVSE to start a new
session. (this might not be supported by all Charge Points).

The eMSP provides a Token that has to be used by the Charge Point. The Token provided by the eMSP for the
StartSession SHALL be authorized by the eMSP before sending it to the CPO. Therefor the CPO SHALL NOT check the
validity of the Token provided before sending the request to the Charge Point.

If this is an OCPP Charge Point, the Charge Point decides if it needs to validate the given Token, in such case:

* If this Token is of type: AD_HOC_USER or APP_USER the CPO SHALL NOT do a realtime authorization at the eMSP for
this .

o If this Token is of type: RFID, the CPO SHALL NOT do a realtime authorization at the eMSP for this Token at the

169

OCPI12.3.0

given EVSE/Charge Point within 15 minutes after having received this StartSession. (This means that if the
driver decided to use his RFID within 15 minutes at the same Charge Point, because the app is not working
somehow, the RFID is already authorized)

The eMSP MAY use Tokens that have not been pushed via the Token module, especially AD_HOC_USER or APP_USER
Tokens are only used by commands send by an eMSP. As these are never used locally at the Charge Point like RFID.

Unknown Tokens received by the CPO in the StartSession Object don’t need to be stored in the Token module. In
other words, when a Token has been received via StartSession, the same Token does not have to be returned in a
Token GET request from the eMSP. However, the information of the Token SHALL be put in the Session and CDR.

An eMSP sending a StartSession SHALL only use Token that are owned by this eMSP in StartSession, using Tokens
of other eMSPs is not allowed.

Property Type Card Description

response_url URL 1 URL that the CommandResult POST should be sent to. This URL
might contain a unique ID to be able to distinguish between
StartSession requests.

token Token 1 Token object the Charge Point has to use to start a new session.
The Token provided in this request is authorized by the eMSP.

location_id CiString(36) 1 Location.id of the Location (belonging to the CPO this request is
sent to) on which a session is to be started.

evse_uid CiString(36) ? Optional EVSE.uid of the EVSE of this Location on which a
session is to be started. Required when connector_id is set.

connector_id CiString(36) ? Optional Connector.id of the Connector of the EVSE on which a
session is to be started. This field is required when the
capability: START _SESSION_CONNECTOR_REQUIRED is set on
the EVSE.

authorization_reference CiString(36) ? Reference to the authorization given by the eMSP, when given,
this reference will be provided in the relevant Session and/or
CDR.

In case of an OCPP 1.x Charge Point, the EVSE ID should be mapped to the connector ID of a Charge
Point. OCPP 1.x does not have good support for Charge Points that have multiple connectors per

NOTE EVSE. To make StartSession over OCPI work, the CPO SHOULD present the different connectors of
an EVSE as separate EVSE, as is also written by the OCA in the application note: "Multiple
Connectors per EVSE in a OCPP 1.x implementation".

13.3.6. StopSession Object

Property Type Card Description

response_url URL 1 URL that the CommandResult POST should be sent to. This URL might
contain a unique ID to be able to distinguish between StopSession
requests.

170

OCPI12.3.0

Property Type Card Description

session_id CiString(36) 1 Session.id of the Session that is requested to be stopped.

13.3.7. UnlockConnector Object

Property Type Card Description

response_url URL

1 URL that the CommandResult POST should be sent to. This URL might
contain a unique ID to be able to distinguish between UnlockConnector

requests.

location_id CiString(36) 1 Location.id of the Location (belonging to the CPO this request is sent
to) of which it is requested to unlock the connector.

evse_uid CiString(36) 1 EVSE.uid of the EVSE of this Location of which it is requested to unlock
the connector.

connector_id CiString(36) 1 Connector.id of the Connector of this Location of which it is requested

to unlock.

13.4. Data types

13.4.1. CommandResponseType enum

Response to the command request from the eMSP to the CPO.

Value
NOT_SUPPORTED

REJECTED

ACCEPTED

UNKNOWN_SESSION

Description
The requested command is not supported by this CPO, Charge Point, EVSE etc.

Command request rejected by the CPO. (Session might not be from a customer of the
eMSP that send this request)

Command request accepted by the CPO.

The Session in the requested command is not known by this CPO.

13.4.2. CommandResultType enum

Result of the command that was sent to the Charge Point.

Value
ACCEPTED
CANCELED_RESERVATION

EVSE_OCCUPIED

EVSE_INOPERATIVE

Description
Command request accepted by the Charge Point.
The Reservation has been canceled by the CPO.

EVSE is currently occupied, another session is ongoing. Cannot start a new
session

EVSE is currently inoperative or faulted.

171

OCPI12.3.0

Value Description

FAILED Execution of the command failed at the Charge Point.

NOT_SUPPORTED The requested command is not supported by this Charge Point, EVSE etc.
REJECTED Command request rejected by the Charge Point.

TIMEOUT Command request timeout, no response received from the Charge Pointin a

reasonable time.

UNKNOWN_RESERVATION The Reservation in the requested command is not known by this Charge Point.

13.4.3. CommandType OpenEnum

The command requested.

Value Description
CANCEL_RESERVATION Request the Charge Point to cancel a specific reservation.

RESERVE_NOW Request the Charge Point to reserve a (specific) EVSE for a Token for a certain time,
starting now.

START_SESSION Request the Charge Point to start a transaction on the given EVSE/Connector.
STOP_SESSION Request the Charge Point to stop an ongoing session.

UNLOCK_CONNECTOR Request the Charge Point to unlock the connector (if applicable). This functionality is
for help desk operators only!

The command UNLOCK_CONNECTOR may only be used by an operator or the eMSP. This command SHALL never be
allowed to be sent directly by the EV-Driver. The UNLOCK_CONNECTOR is intended to be used in the rare situation
that the connector is not unlocked successfully after a transaction is stopped. The mechanical unlock of the
lock mechanism might get stuck, for example: fail when there is tension on the charging cable when the
Charge Point tries to unlock the connector. In such a situation the EV-Driver can call either the CPO or the
eMSP to retry the unlocking.

172

OCPI12.3.0

14. ChargingProfiles module

Module Identifier: chargingprofiles
Type: Functional Module

With the ChargingProfiles module, parties (SCSP but also MSPs) can send (Smart) Charging Profiles to a
Location/EVSE. It is also possible to request the 'ActiveChargingProfile' from a Location/EVSE.

The ActiveChargingProfile is the charging profile as calculated by the EVSE. It is the result of the calculation of all
smart charging inputs present in the EVSE, also Local Limits might be taken into account.

The ChargingProfile is similar to the concept of Charging Profiles in OCPP, but exposes this functionality to third
parties. These objects and the accompanying interfaces make certain abstractions that make them more suitable for
energy parties to signal their intent. The data structures are base on OCPP 1.6 and 2.0 to make conversion of
messages between OCPI and OCPP easy.

Charging Profiles set via this module are no guarantee that the EV will charge with the exact given
limit, it is a maximum limit, not a target. A lot of factors influence the charging speed. The EV
NOTE might not take the amount of energy that the EVSE is willing to provide to it, the battery might be
too warm or almost full. A single phase cable might be used on a three phase Charge Point. There
can be local energy limits (load balancing between EVSEs on a relative small energy connection to

a group of EVSEs) that might limit the energy offered by the EVSE to the EV even further.

ChargingProfile can be created by the owner of a Token on Sessions that belong to that token. If another party sends
a ChargingProfile and the CPO has no contract that allows that party to set profiles on sessions, the CPO is allowed to
reject such profiles.

This module can be used by the eMSP, but can also be used by another party that provide "Smart Charging Services"
(Smart Charging Service Provider (SCSP) / Aggregator / Energy Service Broker etc.) These SCSPs then depend on the
CPO sending session information to them. They need to know which session is ongoing to be able to influence it. If a
SCSP uses this module, read eMSP as SCSP.

NOTE OCPI provides the means for SCSPs to do this. Parties doing this have to adhere to local privacy
laws, have to have setup contracts etc. Local laws might oblige explicit consent from the driver etc.

Module dependency: Sessions module

14.1. Smart Charging Topologies

There are different Smart Charging Topologies possible. Which topology can be used depends on the contracts
between different parties.

Care has to be taken to prevent mixing the different topologies. When multiple parties start
NOTE sending Charging Profiles, the resulting charging speed might be unpredictable. In case of OCPP
Charge Points, the result will be the minimum of all the Charging Profiles, resulting in a slower

than needed charging speed.

173

OCPI12.3.0

14.1.1. The eMSP generates ChargingProfiles.

The most straight forward topology, the eMSP generates ChargingProfiles for its own customers, no SCSP is involved.
The eMSP 'owns' the customer, so if the eMSP knows that its customer agrees with the eMSP manipulating the
charging speed, the eMSP is free to do this.

eMSP OcPl CPO Charge Point

Figure 36. Smart Charging Topology: The eMSP generates ChargingProfiles.

Interfac Role
e

Sender @ eMSP

Receiver CPO

14.1.2. The eMSP delegated Smart Charging to SCSP.

In the topology, the eMSP has delegated the generation of ChargingProfiles to a SCSP. For this, the eMSP and SCSP
have agreed to use OCPI as the interface.

The eMSP 'owns' the customer, so if the eMSP knows that its customer agrees with the eMSP manipulating the
charging speed, the eMSP is free to do this. The eMSP can forward OCPI Session Objects to the SCSP. the SCSP can act
on the received/updated Session Objects, by sending Charging Profile commands via the eMSP to the CPO.

The eMSP and SCSP have to take into account that they have to oblige to local privacy laws when exchanging
information about eMSPs customers.

From the CPO point of view, this topology is similar to the one above, the CPO will not know the difference.

SCSP OcPI eMSP OCH! CPO Charge Point

Figure 37. Smart Charging Topology: The eMSP generates ChargingProfiles.

Connection Interface Role
SCSP - eMSP Sender SCSP
SCSP - eMSP Receiver eMSP
eMSP - CPO Sender eMSP
eMSP - CPO Receiver CPO

14.1.3. The CPO delegated Smart Charging to SCSP.

In this topology, the CPO has delegated the generation of ChargingProfiles to a SCSP. For this, the CPO and SCSP have
agreed to use OCPI as the interface.

The CPO 'owns' the EVSE on which charging happens. As the CPO does not 'own' the customers, the CPO needs to

174

OCPI12.3.0

make sure the EV driver knows that the charging speed might not be the maximum the driver has expected, this
could be something as simple as a sticker on the Charge Point, or might even be part of the tariff text.

The CPO might generate ChargingProfiles themselves, but as OCPI is then not used this is not part of this document.

The CPO can forward OCPI Session Objects to the SCSP. the SCSP can act on the received/updated Session Objects, by
sending Charging Profile commands to the CPO.

The CPO and SCSP have to take into account that they have to oblige to local privacy laws when exchanging
information about eMSPs customers.

In this topology, the eMSP is not aware that the CPO is using OCPI to receive Charging Profiles from the SCSP.

eMSP

y
SCSP

Figure 38. Smart Charging Topology: The eMSP generates ChargingProfiles.

CPO Charge Point

Interfac Role
e

Sender SCSP

Receiver CPO

14.2. Use Cases

This module is designed to support the following use cases, for all the above mentioned topologies.

» The eMSP/SCSP sends/updates a ChargingProfile to manipulate an ongoing charging session.
* The eMSP/SCSP request to remove the set ChargingProfile from an ongoing charging session.
* The eMSP/SCSP request the ActiveChargingProfile for an ongoing charging session.

» The CPO updates the eMSP/SCSP of changes to an ActiveChargingProfile.

14.3. Flow

The ChargingProfile creation is a request to activate a charging profile on a running charging session.

Most Charge Points are hooked up to the internet via a relative slow wireless connection. To prevent long blocking
calls, the ChargingProfile module is designed to work asynchronously. (similar to the Commands module.

The Sender (Typically SCSP) sends a request to a Receiver (Typically CPO), via the Receiver interface. The Receiver
checks if it can send the request to a Charge Point and will respond to the request with a status, indicating if the
request can be sent to a Charge Point.

The Receiver sends the requested command (via another protocol, for example: OCPP) to a Charge Point. The Charge
Point will respond if it understands the command and will try to execute the command. This response doesn’t

175

OCPI12.3.0

always mean that the ChargingProfile will be executed. The CPO will forward the result in a new POST request to the
Sender (Typically SCSP) ChargingProfile interface.

The Sender (Typically SCSP) can send the Charging Profile to the EVSE via the CPO by using the CPO PUT method for
an ongoing session. The Sender can request the current profile the EVSE has calculated, based on different inputs,
and is planned to be used for the ongoing session by calling the CPO GET method. The Sender has the ability to
remove the Charging Profile for the session by calling the CPO DELETE method

When the Sender has (at least once) successfully sent a Charging Profile for an ongoing charging session, the
Receiver (Typically CPO) SHALL keep the Sender updated with changes to the ActiveChargingProfile of that Session.
If the Receiver is aware of any changes, he notifies the Sender by calling the MSP PUT method. The changes might be
triggered by the CPO sending additional Charging Profiles, or the some local limit being applied to the Charge Point,
and the Charge Point notifies the CPO of the Changes.

The Receiver can cancel/remove an existing ChargingProfile, it can let the eMSP know by calling the MSP PUT
method

For calculating optimum ChargingProfiles it might be useful for the eMSP or SCSP to know the ChargingProfile that
the Charge Point has planned for the Session: ActiveChargingProfile. The ActiveChargingProfile might differ from
ChargingProfile requested via OCPIL There might be other limiting factors being taken into account by the CPO and
or Charge Point, that limit the ChargingProfile. The ActiveChargingProfile profile can be requested by the Sender by
calling the CPO GET method on the Charging Profile Receiver interface. The CPO will then ask the Charge Point for
the planned ActiveChargingProfile. When that is received it is forwarded to the URL given by the eMSP or SCSP.

The CPO can limit the amount of request that can be done on the Charging Profiles interface, this too prevent
creating a too high load or data usages. To do this the CPO can reject a request on the Charging Profile Receiver
interface be responding with: TOO_OFTEN.

If the Sender (typically eMSP or SCSP) wants to have a reference between the calls sent to the Receivers interface
and the asynchronous result received from the Charge Point via the CPO, the Sender can make some unique
identifier part of the ‘response_url" that is part of every method in the Receiver interface. The Receiver will call this
URL when the result is received from the Charge Point. The Sender can then match the unique identifier from the
URL called with the request.

14.3.1. Example of setting/updating a ChargingProfile by the Sender
(typically the SCSP or eMSP)

When a new Session is started, or when an update to an existing Session is available, the CPO sends the Session
object to the eMSP or SCSP. The eMSP or SCSP calculates a Charging Profile and sends it to the CPO by calling the
Charging Profiles PUT method on the Receiver interface.

The CPO responds to the eMSP or SCSP, the response body will contain the response to the request, acknowledging
the request was understood and can be forwarded to the Charge Point.

The CPO sends the requests to the Charge Point. When the CPO receives a response from the Charge Point, that
result is sent to the eMSP or SCSP by call the POST method, on the URL provided by the eMSP of SCSP in the PUT
request, this call will contain a ChargingProfileResult Object.

176

OCPI12.3.0

Sender CPO
eMSP or SCSP Receiver Charge Point

1 1
1 1
1 1 StartTransaction.req(Token=200)
1 Y
: StartTransaction.conf(Transactionld=15)
1 T
| __ Session(id=15) |
[~ 1
..) - 1
1 1
_Calculate ChargingProfile : :
< : :
PUT https://server.com/ocpi/2.2/chargingprofiles/15 . .
SetChargingProfile(response_url=https://client.com/12345) ! 1
” 1
status_code = 1000, data: {ChargingProfileResponse { result = ACCEPTED }} :
.. .
1
1

SetChargingProfile.req

T >
1 . .
< SetChargingProfile.conf | |

POST https://client.com/12345
ChargingProfileResult(result = ACCEPTED)

P, >

Figure 39. Example of a SetChargingProfile.

14.3.2. Example of a setting/updating a ChargingProfile by the SCSP via the
eMSP

When a new Session is started, the CPO sends the Session object to the eMSP, the eMSP forwards the Session object to
the SCSP.

When a new Session is started, or when an update to an existing Session is available, the CPO sends the Session
object to the eMSP. The eMSP forwards the Session Object to the SCSP. The SCSP calculates a Charging Profile and
sends it to the eMSP by calling the Charging Profiles PUT method on the Sender interface implemented by the eMSP.
The eMSP forwards it to the CPO by calling the Charging Profiles PUT method on the Receiver interface.

The CPO responds to the eMSP, the response body will contain the response to the request, acknowledging the
request was understood and can be forwarded to the Charge Point. The eMSP forwards this response to the SCSP.

The CPO sends the requests to the Charge Point. When the CPO receives a response from the Charge Point, that
result is sent to the eMSP by the POST method, on the URL provided by the eMSP in the PUT request from the eMSP.
The eMSP forwards this result to the the URL provided by the SCSP in the PUT request of the SCSP, this call will
contain a ChargingProfileResult Object.

177

SCSP
Sender

Session(id=15)

OCPI12.3.0

eMSP
Sender
&
Receiver

Session(id=15)

CPO
Receiver Charge Point
i

!
1 StartTransaction.req(Token=200) —‘

StartTransaction.conf(Transactionld=15)

_Calculate ChargingProfile

leeennit
PUT https://emsp.com/ocpi/2.2/chargingprofiles/15

SetChargingProfile(response_url=https://client.com/12345)

status_code = 1000,
data: {ChargingProfileResponse { result = ACCEPTED }}

PUT https://cpo.com/ocpi/2.2/chargingprofiles/15

status_code = 1000,
data: {ChargingProfileResponse { result = ACCEPTED }}

SetChargingProfile(response_url=https://emsp.com/4567)_
>

POST https://client.com/12345
_ ChargingProfileResult(result = ACCEPTED)

POST https://emsp.com/4567
ChargingProfileResult(result = ACCEPTED)

SetChargingProfile.req

T
| _ SetChargingProfile.conf l I

Figure 40. Example of a SetChargingProfile via the MSP.

14.3.3. Example of a removing/clearing ChargingProfile sent by the Sender
(typically the eMSP or SCSP)

The Sender might want to remove the charging profile, for example the EV driver has selected to switch to charging

with the highest speed possible. The Sender can ask the CPO to remove the set charging profile. This can be done by

calling the DELETE method on the Receiver interface.

The CPO responds to the eMSP or SCSP, the response body will contain the response to the request, acknowledging

the request was understood and can be forwarded to the Charge Point.

The CPO sends the clear requests to the Charge Point. When the CPO receives a response from the Charge Point, that
result is sent to the eMSP by call the POST method, on the URL provided by the eMSP in the DELETE request of the
eMSP, this call will contain a ClearProfileResult Object.

Sender
eMSP or SCSP

I
|

CPO
Receiver Charge Point

Ongoing Session with id=15

' —

DELETE https://server.com/ocpi/2.2/chargingprofiles/15?response_url=https://client.com/12345_ 1
>

POST https://client.com/12345

_ ClearProfileResult(result = ACCEPTED)

status_code = 1000, data: {ChargingProfileResponse { result = ACCEPTED }}

ClearChargingProfile.req

| ClearChargingProfile.conf
T~

Figure 41. Example of a ClearChargingProfile.

14.3.4. Example of a removing/clearing ChargingProfile send by the SCSP

via the eMSP

The SCSP might want to remove the charging profile, for example the EV driver has selected to switch to charging

178

OCPI12.3.0

with the highest speed possible. The SCSP can ask the eMSP to ask the CPO to remove the set charging profile. This
can be done by calling the DELETE method on the eMSPs Charging Profile Receiver interface. The eMSP forwards
this to the CPO by calling the DELETE method on the CPOs Charging Profile Receiver interface.

The CPO responds to the eMSP, the response body will contain the response to the request, acknowledging the
request was understood and can be forwarded to the Charge Point. The eMSP forwards this response to the SCSP.

The CPO send the clear requests to the Charge Point. When the CPO receives a response from the Charge Point, that
result is sent to the eMSP by call the POST method, on the URL provided by the eMSP in the DELETE request of the
eMSP. The eMSP forwards this result to the the URL provided by the SCSP in the DELETE request of the SCSP, this call
will contain a ClearProfileResult Object.

eMSP
Sender
& CPO
Receiver Receiver
]]]]
L L L L
l Ongoing Session with id=15 B]
T

T
| DELETE https://server.com/ocpi/2.2/chargingprofiles/15 1 |
! ?response_url=https://scsp.com/12345 ! X
|
|
I
|

>

DELETE https://server.com/ocpi/2.2/chargingprofiles/15

?response_url=https://emsp.com/789AB
>

status_code = 1000, data:
{ChargingProfileResponse { result = ACCEPTED }}

status_code = 1000, data:
{ChargingProfileResponse { result = ACCEPTED }}

T
1
1
|
1
1
|
1
1
|
1
1
1
I
|
1
|
1
1
|

ClearChargingProfile.req
>

CIearChargingProfiIe.conf[l

POST https://emsp.com/789AB
ClearProfileResult(result = ACCEPTED)

1

POST https://scsp.com/12345 .

_ ClearProfileResult(result = ACCEPTED) 1
!

!

I

[»

Figure 42. Example of a ClearChargingProfile via the MSP.

14.3.5. Example of a GET ActiveChargingProfile send by the Sender
(typically the eMSP or SCSP)

When the Sender wants to know the current planned charging profile for a session, the Sender can ask the CPO for
the ActiveChargingProfile by calling the GET method on the Receiver interface.

The CPO responds to the eMSP or SCSP, the response body will contain the response to the request, acknowledging
the request was accepted and can be forwarded to the Charge Point.

The CPO sends a message to the Charge Point to retrieve the current active charging profile. When the CPO receives
a response from the Charge Point, that ActiveChargingProfile is sent to the eMSP by call the POST method, on the
URL provided by the eMSP in the GET request of the eMSP, this call will contain a ActiveChargingProfileResult
Object.

179

OCPI12.3.0

Sender CPO
eMSP or SCSP Receiver Charge Point

I I I
[1 1

Ongoing Session with id=15 Iﬁ
GET https://server.com/ocpi/2.2/chargingprofiles/15?response_url=https://client.com/12345_ : :
Vg 1
< status_code = 1000, data: {ChargingProfileResponse { result = ACCEPTED }} |
.. ,
| GetCompositeSchedule.req |
1 T
| | _ GetCompositeSchedule.conf
1 T~ 1
i POST https:/iclient.com/12345 .
' _ ActiveProfileResult(result = ACCEPTED, ActiveChargingProfile) .
T~
-eatCttiérhr .. -.ipt--iiln- i’ > :
1

Figure 43. Example of a GET ActiveChargingProfile.

14.3.6. Example of a GET ActiveChargingProfile send by the SCSP via eMSP

When the SCSP wants to known the current planned charging profile for a session, the SCSP can ask the the eMSP to
ask the CPO for the ActiveChargingProfile by calling the GET method on the eMSPs Charging Profile Receiver
interface. The eMSP forwards this to the CPO by calling the GET method on the CPOs Charging Profile Receiver
interface.

The CPO responds to the eMSP, the response body will contain the response to the request, acknowledging the
request was accepted and can be forwarded to the Charge Point. The eMSP forwards this response to the SCSP.

The CPO sends a message to the Charge Point to retrieve the current active charging profile. When the CPO receives
a response from the Charge Point, that ActiveChargingProfile is sent to the eMSP by call the POST method, on the
URL provided by the eMSP in the GET request of the eMSP, this call will contain a ActiveChargingProfileResult
Object. The eMSP forwards this result to the the URL provided by the SCSP in the GET request of the SCSP, this call
will contain the same ActiveChargingProfileResult Object.

eMSP
Sender
SCSP & CPO
Sender Receiver Receiver
o)))
Ongoing Session with id=15 %

T
GET https://server.com/ocpi/2.2/chargingprofiles/15 ;
?response_url=https://scsp.com/12345 !

GET https://server.com/ocpi/2.2/chargingprofiles/15
?response_url=https://emsp.com/789AB

status_code = 1000, data:
{ChargingProfileResponse { result = ACCEPTED }}

status_code = 1000, data:
{ChargingProfileResponse { result = ACCEPTED }}

GetCompositeSchedule.req

!
!
| 1 GetCompositeSchedule.conf|
i
!
!
!

POST https://emsp.com/789AB
ActiveProfileResult(result = ACCEPTED, ActiveChargingProfile)

T
POST https://scsp.com/12345 .
ActiveProfileResult(result = ACCEPTED, ActiveChargingProfile) !
!
!

I

Figure 44. Example of a GET ActiveChargingProfile via the MSP.

14.3.7. Example of the Receiver (typically the CPO) sending an updated
ActiveChargingProfile

When the CPO knows the ActiveChargingProfile of a Charge Point has changed, the Receiver (typically the CPO)
sends this update ActiveChargingProfile to the Sender (typically the eMSP or SCSP), by calling the PUT method on the

180

OCPI12.3.0

Sender interface.

CPO Sender
Charge Point Receiver eMSP or SCSP

| | |
[| | |

Ongoing Session with id=15 lﬁ

update ChargingProfile > I

PUT https://www.server.com/ocpi/2.2/chargingprofiles/15
ActiveChargingProfile()

Figure 45. Example of an ActiveChargingProfile being send by the CPO
14.3.8. Example of the Receiver (typically the CPO) sending an updated
ActiveChargingProfile to the SCSP via the eMSP

When the CPO knows the ActiveChargingProfile of a Charge Point has changed, the Receiver (typically the CPO)
sends this update ActiveChargingProfile to the Sender (SCSP), by calling the PUT method on the eMSPs Sender

interface.

The eMSP forwards this ActiveChargingProfile to the SCSP, by calling the PUT method on the SCSPs Sender interface.

CPO Sender SCSP
Charge Point Receiver eMSP Sender
o . . .
‘ Ongoing Session with id=15 Iﬁ

T

Jupdate ChargingProfile > :

L
1
1
1
1
i
1
1
1
|
|
|
|
|

PUT https://www.server.com/ocpi/2.2/chargingprofiles/15
ActiveChargingProfile()

T
|
1
1
1
1
1

>
>

T

I

I

I

I

I

I

I

|

PUT https://www.server.com/ocpi/2.2/chargingprofiles/15 :
ActiveChargingProfile() !

Figure 46. Example of an ActiveChargingProfile being sent by the CPO via the eMSP

14.4. Interfaces and endpoints

The ChargingProfiles module consists of two interfaces: a Receiver interface that enables a Sender (and its clients) to
send ChargingProfiles to a Location/EVSE, and an Sender interface to receive the response from the Location/EVSE
asynchronously.

14.4.1. Receiver Interface

Typically implemented by market roles like: CPO.

Example endpoint structures:

Method Description
GET Gets the ActiveChargingProfile for a specific charging session.
POST n/a

181

OCPI12.3.0

Method Description

PUT Creates/updates a ChargingProfile for a specific charging session.
PATCH n/a

DELETE Cancels an existing ChargingProfile for a specific charging session.

14.4.1.1. GET Method

Retrieves the ActiveChargingProfile as it is currently planned for the the given session.
Endpoint structure definition:
{chargingprofiles_endpoint_url}{session_id}?duration={duration}&response_url={url}
Example:

https://www.cpo.com/ocpi/2.2.1/chargingprofiles/1234?duration=900&response_url=https://www.msp.com/ocpi/2.2.1/
chargingprofile/response?request_id=5678

NOTE As it is not common to add a body to a GET request, all parameters are added to the URL.

Request Parameters

The following parameters shall be provided as URL segments.

Parameter Datatype Requ Description
ired
session_id CiString(36) yes The unique id that identifies the session in the Receiver platform.
duration int yes Length of the requested ActiveChargingProfile in seconds Duration in
seconds. *
response_url URL yes URL that the ActiveChargingProfileResult POST should be sent to. This

URL might contain a unique ID to be able to distinguish between GET
ActiveChargingProfile requests.

duration: Balance the duration between maximizing the information gained and the data usage
NOTE and computation to execute on the request. Warning: asking for longer duration than necessary
might result in additional data costs, while its added value diminishes with every change in the

schedule.

Response Data

The response contains the direct response from the Receiver, not the response from the EVSE itself. That
information will be sent via an asynchronous POST on the Sender interface if this response is ACCEPTED.

182

OCPI12.3.0

Datatype Card Description

ChargingProfileResponse 1 Result of the ActiveChargingProfile request, by the Receiver (Typically CPO), not

the location/EVSE. So this indicates if the Receiver understood the
ChargingProfile request and was able to send it to the EVSE. This is not the
response by the Charge Point.

14.4.1.2. PUT Method

Creates a new ChargingProfile on a session, or replaces an existing ChargingProfile on the EVSE.

Endpoint structure definition:

{chargingprofiles_endpoint_url}{session_id}

Example:

https://www.cpo.com/ocpi/2.2.1/chargingprofiles/1234

Request Parameters

The following parameter shall be provided as URL segments.

Parameter Datatype Requ Description
ired
session_id CiString(36) yes The unique id that identifies the session in the Receiver platform.
14.4.1.3. Request Body

The body contains a SetChargingProfile object, that contains the new ChargingProfile and a response URL.

Type Card Description

SetChargingProfile 1 SetChargingProfile object with information needed to set/update the Charging
Profile for a session.

Response Data

The response contains the direct response from the Receiver (Typically CPO), not the response from the EVSE itself,
that will be sent via an asynchronous POST on the Sender interface if this response is ACCEPTED.

Datatype Card Description

ChargingProfileResponse 1 Result of the ChargingProfile PUT request, by the CPO (not the location/EVSE). So
this indicates if the CPO understood the ChargingProfile PUT request and was
able to send it to the EVSE. This is not the response by the Charge Point.

183

OCPI12.3.0

14.4.1.4. DELETE Method

Clears the ChargingProfile set by the eMSP on the given session.
Endpoint structure definition:
{chargingprofiles_endpoint_url}{session_id}?response_url={url}
Example:

https://www.cpo.com/ocpi/2.2.1/chargingprofiles/12347response_url=https://www.server.com/example

NOTE As it is not common to add a body to a DELETE request, all parameters are added to the URL.

Request Parameters

The following parameters shall be provided as URL segments.

Parameter Datatype Requ Description

ired
session_id CiString(36) ' yes The unique id that identifies the session in the Receiver platform.
response_url URL yes URL that the ClearProfileResult POST should be sent to. This URL might

contain a unique ID to be able to distinguish between DELETE
ChargingProfile requests.

Response Data

The response contains the direct response from the Receiver (typically CPO), not the response from the EVSE itself,
that will be sent via an asynchronous POST on the Sender interface if this response is ACCEPTED.

Datatype Card Description

ChargingProfileResponse 1 Result of the ChargingProfile DELETE request, by the CPO (not the
location/EVSE). So this indicates if the CPO understood the ChargingProfile
DELETE request and was able to send it to the EVSE. This is not the response by
the Charge Point.
14.4.2. Sender Interface

Typically implemented by market roles like: SCSP.

The Sender interface receives the asynchronous responses.

Method Description
GET n/a
POST Receive the asynchronous response from the Charge Point.

184

OCPI12.3.0

Method Description

PUT Receiver (typically CPO) can send an updated ActiveChargingProfile when other inputs have made
changes to existing profile. When the Receiver (typically CPO) sends a update profile to the EVSE,
for an other reason then the Sender (Typically SCSP) asking, the Sender SHALL post an update to
this interface. When a local input influence the ActiveChargingProfile in the EVSE AND the
Receiver (typically CPO) is made aware of this, the Receiver SHALL post an update to this

interface.
PUT n/a
PATCH n/a
DELETE n/a
14.4.2.1. POST Method

Request Parameters

There are no URL segment parameters required by OCPI.

As the Sender interface is called by the Receiver (typically CPO) on the URL given response_url in the Sender request
to the Receiver interface. It is up to the implementation of the Sender (typically SCSP) to determine what parameters
are put in the URL. The Sender sends a URL in the POST method body to the Receiver. The Receiver is required to
use this URL for the asynchronous response by the Charge Point. It is advised to make this URL unique for every
request to differentiate simultaneous commands, for example by adding a unique id as a URL segment.

Endpoint structure definition:

No structure defined. This is open to the eMSP to define, the URL is provided to the Receiver by the Sender. Therefor
OCPI does not define variables.

Examples:
https://www.server.com/ocpi/2.2.1/chargingprofiles/chargingprofile/12345678
https://www.server.com/activechargingprofile/12345678
https://www.server.com/clearprofile?request_id=12345678

https://www.server.com/ocpi/2.2.1/12345678

The content of the request body depends on the original request by the eMSP to which this POST is send as a result.

14.4.2.2. Request Body

Datatype Card Description

Choice: one of three

ActiveChargingProfileRes 1 Result of the GET ActiveChargingProfile request, from the Charge Point.
ult
ChargingProfileResult 1 Result of the PUT ChargingProfile request, from the Charge Point.

185

OCPI12.3.0

Datatype Card Description

ClearProfileResult 1 Result of the DELETE ChargingProfile request, from the Charge Point.

14.4.2.3. Response Body

The response to the POST on the Sender interface SHALL contain the Response Format with the data field omitted.

14.4.2.4. PUT Method

Updates the Sender (typically SCSP) when the Receiver (typically CPO) knows the ActiveChargingProfile has
changed.

The Receiver SHALL call this interface every time it knows changes have been made that influence the
ActiveChargingProfile for an ongoing session AND the Sender has at least once successfully called the charging
profile Receiver PUT interface for this session (SetChargingProfile). If the Receiver doesn’t know the
ActiveChargingProfile has changed (EVSE does not notify the Receiver (typically CPO) of the change) it is not
required to call this interface.

The Receiver SHALL NOT call this interface for any session where the Sender has never, successfully called the
charging profile Receiver PUT interface for this session (SetChargingProfile).

The Receiver SHALL send a useful relevant duration of ActiveChargingProfile to send to the Sender. As a guide:
between 5 and 60 minutes. If the Sender wants a longer ActiveChargingProfile the Sender can always do a GET with

a longer duration.

Endpoint structure definition:
{chargingprofiles_endpoint_url}{session_id}
Example:

https://www.server.com/ocpi/2.2.1/chargingprofiles/1234

Request Parameters

The following parameter shall be provided as URL segments.

Parameter Datatype Requ Description
ired
session_id CiString(36) yes The unique id that identifies the session in the Receiver platform.
14.4.2.5. Request Body

The body contains the update ActiveChargingProfile, The ActiveChargingProfile is the charging profile as calculated
by the EVSE.

186

OCPI 2.3.0
Type Card Description

ActiveChargingProfile 1 The new ActiveChargingProfile. If there is no longer any charging profile active,
the ActiveChargingProfile SHALL reflect this by showing the maximum charging
capacity of the EVSE.

14.4.2.6. Response Body

The response to the PUT on the eMSP interface SHALL contain the Response Format with the data field omitted.

14.5. Object description

14.5.1. ChargingProfileResponse Object

The ChargingProfileResponse object is send in the HTTP response body.

Because OCPI does not allow/require retries, it could happen that the asynchronous result url given by the eMSP is
never successfully called. The eMSP might have had a glitch, HTTP 500 returned, was offline for a moment etc. For
the eMSP to be able to reject to timeouts, it is important for the eMSP to know the timeout on a certain command.

Property Type Card Description
result ChargingProfileResponseType 1 Response from the CPO on the ChargingProfile request.
timeout int 1 Timeout for this ChargingProfile request in seconds. When

the Result is not received within this timeout, the eMSP can
assume that the message might never be sent.

14.5.2. ActiveChargingProfileResult Object

The ActiveChargingProfileResult object is send by the CPO to the given response_url in a POST request. It contains
the result of the GET (ActiveChargingProfile) request send by the eMSP.

Property Type Card Description
result ChargingProfileResultTyp 1 The EVSE will indicate if it was able to process the request for the
e ActiveChargingProfile
profile ActiveChargingProfile ? The requested ActiveChargingProfile, if the result field is set to:
ACCEPTED

14.5.3. ChargingProfileResult Object

The ChargingProfileResult object is send by the CPO to the given response_url in a POST request. It contains the
result of the PUT (SetChargingProfile) request send by the eMSP.

187

OCPI12.3.0

Property Type Card Description
result ChargingProfileResultTyp 1 The EVSE will indicate if it was able to process the new/updated
e charging profile.

14.5.4. ClearProfileResult Object

The ClearProfileResult object is send by the CPO to the given response_url in a POST request. It contains the result of
the DELETE (ClearProfile) request send by the eMSP.

Property Type Card Description
result ChargingProfileResultTyp 1 The EVSE will indicate if it was able to process the removal of the
e charging profile (ClearChargingProfile).

14.5.5. SetChargingProfile Object

Object set to a CPO to set a Charging Profile.

Property Type Card Description

charging_profile ChargingProfile 1 Contains limits for the available power or current over
time.

response_url URL 1 URL that the ChargingProfileResult POST should be sent to.

This URL might contain a unique ID to be able to
distinguish between GET ActiveChargingProfile requests.

14.6. Data types

14.6.1. ActiveChargingProfile class

Property Type Card Description

start_date_time DateTime 1 Date and time at which the Charge Point has calculated this
ActiveChargingProfile. All time measurements within the
profile are relative to this timestamp.

charging profile ChargingProfile 1 Charging profile structure defines a list of charging periods.

14.6.2. ChargingRateUnit enum

Unit in which a charging profile is defined.

188

Value

OCPI12.3.0

Description

Watts (power)
This is the total allowed charging power. It is usually more convenient to use this for DC
charging.

Amperes (current)
The amount of Ampere per phase, not the sum of all phases. It is usually more
convenient to use this for AC charging.

14.6.3. ChargingProfile class

Charging profile class defines a list of charging periods.

Property

start_date_time

duration

charging_rate_unit

min_charging rate

Type Card Description

DateTime ? Starting point of an absolute profile. If absent the
profile will be relative to start of charging.

int ? Duration of the charging profile in seconds. If the
duration is left empty, the last period will
continue indefinitely or until end of the
transaction in case start_date_time is absent.

ChargingRateUnit 1 The unit of measure.

number ? Minimum charging rate supported by the EV. The
unit of measure is defined by the
chargingRateUnit. This parameter is intended to
be used by a local smart charging algorithm to
optimize the power allocation for in the case a
charging process is inefficient at lower charging
rates. Accepts at most one digit fraction (e.g. 8.1)

charging profile_period ChargingProfilePeriod * List of ChargingProfilePeriod elements defining

maximum power or current usage over time.

14.6.4. ChargingProfilePeriod class

Charging profile period structure defines a time period in a charging profile, as used in: ChargingProfile

Property

start_period

limit

Type Card Description

int 1 Start of the period, in seconds from the start of profile. The value of
StartPeriod also defines the stop time of the previous period.

number 1 Charging rate limit during the profile period, in the applicable
chargingRateUnit, for example in Amperes (A) or Watts (W). Accepts at
most one digit fraction (e.g. 8.1).

189

OCPI12.3.0

14.6.5. ChargingProfileResponseType enum

Response to the ChargingProfile request from the eMSP to the CPO.

Value Description

ACCEPTED ChargingProfile request accepted by the CPO, request will be forwarded to the EVSE.
NOT_SUPPORTED The ChargingProfiles not supported by this CPO, Charge Point, EVSE etc.

REJECTED ChargingProfile request rejected by the CPO. (Session might not be from a customer of

the eMSP that send this request)

TOO_OFTEN ChargingProfile request rejected by the CPO, requests are send more often then
allowed.

UNKNOWN_SESSION The Session in the requested command is not known by this CPO.

14.6.6. ChargingProfileResultType enum

Result of a ChargingProfile request that the EVSE sends via the CPO to the eMSP.

Value Description

ACCEPTED ChargingProfile request accepted by the EVSE.

REJECTED ChargingProfile request rejected by the EVSE.

UNKNOWN No Charging Profile(s) were found by the EVSE matching the request.

190

OCPI12.3.0

15. HubClientInfo module

Module Identifier: hubclientinfo
Data owner: Hub
Type: Configuration Module

This module provides parties connected to a hub with the connection status of other parties that are connected to a
hub that they can communicate with. So, CPOs know which eMSP and other parties are online and vice versa.

Unlike the usual OCPI modules, this module is between eMSP/CPO and Hub instead of between eMSP and CPO.

15.1. Scenarios

This section will describe what the expected behavior is when a party receives information of a ConnectionState
change.

15.1.1. Another Party becomes CONNECTED

Party is (back) online. Request can be sent again. Every party receiving Client Owned Objects from this party should
be prepared to receive Client Owned Objects with URLs that contain the party_id and country_code of this party.

15.1.2. Another Party goes OFFLINE

Connection to party is not available: No requests can be sent. Do not queue Push messages. When the other party
comes back online, it is their responsibility to do a GET to get back in sync.

15.1.3. Another Party becomes PLANNED

No requests can be sent to this new party yet. It can be a good idea to sent some notification to an operator to get
into contact with the new party so contracts can be setup. This state may also be used when a Hub has some
configuration indicating which parties have contracts which each other. When a company does not have a
connection configured, this state may also be sent to parties.

15.1.4. Another Party becomes SUSPENDED

Like with OFFLINE, no requests should be sent to this party, they cannot be delivered.

When, for example, CDRs still have to be delivered (there is some unfinished business) parties are advised to get into
contact with the other party in some other way: call them, or send an e-mail.

15.2. Flow and Life-cycle

15.2.1. Push model

When the Hub creates a new ClientInfo object they push it to the connected parties by calling PUT on the connected
party ClientInfo endpoint with the newly created ClientInfo object.

191

OCPI12.3.0

Any changes to ClientInfo in the Hub system are sent to the connected party system by calling the PUT method on
the connected party ClientInfo endpoint with the updated ClientInfo.

When the Hub invalidates a ClientInfo object (deleting is not possible), the Hub will send the updated ClientInfo
object (with the field: status set to SUSPENDED, by calling the PUT method on the connected party ClientInfo
endpoint with the updated ClientInfo object.

When the connected party is not sure about the state or existence of a ClientInfo object in the Hub system, the
connected party can call the GET to request to ClientInfo object from the Hub system.

15.2.2. Pull model

When a connected party is not sure about the state of the list of known connected parties of a Hub, or wants to
request the full list at the start-up of their system, the connected party can call the GET on the Hubs ClientInfo
endpoint to receive all ClientInfo objects. This method is not for operational flow.

15.2.3. Still alive check.
The hubs needs to determine if a connection is still "alive".

To do this, the Hub should keep track of the time that has passed since the last message was received from a
connected party. When this is longer then X minutes (When unsure, start with 5 minutes) the Hub should send a:
GET to the Version information endpoint. As the Version information endpoint is always required in OCPI, and this
endpoint is provided by all parties, and a GET to the versions endpoint does not have any side effects, this is seen as
the best way to do an "still-alive"check.

15.3. Interfaces

There is both a Sender (Typically Hub) as a Receiver interface for ClientInfo. It is advised to use the Push direction
from Sender to connected clients during normal operation. The Hub interface is meant to be used when the
connected client is not 100% sure the ClientInfo cache is still correct.

15.3.1. Receiver Interface
Typically implemented by all parties connecting to a Hub.

With this interface the Hub can push the ClientInfo information to a connected client (eMSP/CPO etc) Example
endpoint structure: /ocpi/cpo/2.0/clientinfo/{country_code}/{party_id}

Method Description

GET Retrieve a ClientInfo object as it is stored in the connected clients system.
POST n/a

PUT Push new/updated ClientInfo object to the connect client.

PATCH n/a

DELETE n/a, Use PUT, ClientInfo objects cannot be removed).

192

OCPI12.3.0

15.3.1.1. GET Method

If the Hub wants to check the status of a ClientInfo object in the connected clients system it might GET the object
from the connected clients system for validation purposes. The Hub is the owner of the objects, so it would be
illogical if the connected client system had a different status or was missing an object.

Request Parameters

The following parameters shall be provided as URL segments.

Parameter Datatype Requ Description

ired
country_code CiString(2) | yes Country code of the requested ClientInfo object.
party_id CiString(3) yes Party ID (Provider ID) of the requested ClientInfo object.

Response Data

The response contains the requested object.

Type Card. Description
ClientInfo 1 The requested ClientInfo object.
15.3.1.2. PUT Method

New or updated ClientInfo objects are pushed from the Hub to a connected client.

Request Body

In the put request a the new or updated ClientInfo object is send.

Type Card. Description

ClientInfo 1 New or updated ClientInfo object.

Request Parameters

The following parameters shall be provided as URL segments.

Parameter Datatype Required Description

country_code CiString(2) yes Country code of the eMSP
sending this PUT request to
the CPO system.

party_id CiString(3) yes Party ID (Provider ID) of

the eMSP sending this PUT
request to the CPO system.

Example: put a new ClientInfo object

193

OCPI12.3.0

PUT To URL: https://www.server.com/ocpi/cpo/2.0/clientinfo/NL/ALL
{

"country_code": "NL",

"party_id": "ALL",

"role": "CPO",
"status": "PLANNED",

15.3.2. Sender Interface
Typically implemented by the Hub.

This interface enables Receivers to request the current list of ClientInfo objects from the Sender, when needed.

Method Description
GET Get the list of known ClientInfo objects, last updated between the {date_from} and {date_to}
paginated)

POST n/a

PUT n/a

PATCH n/a

DELETE n/a

15.3.2.1. GET Method

Fetch information about clients connected to a Hub.

Endpoint structure definition:
{locations_endpoint_url}?[date_from={date_from}]&[date_to={date_to}]&[offset={offset}]&[limit={1limit}]
Examples:
https://www.server.com/ocpi/cpo/2.2.1/hubclientinfo/?date_from=2019-01-28T712:00:00&date_t0=2019-01-29T712:00:00
https://ocpi.server.com/2.2.1/hubclientinfo/?o0ffset=50
https://www.server.com/ocpi/2.2.1/hubclientinfo/?date_from=2019-01-29712:00:00&11mit=100

https://www.server.com/ocpi/cpo/2.2.1/hubclientinfo/?0ffset=50611mit=100

15.3.2.2. Request Parameters

If additional parameters: {date_from} and/or {date_to} are provided, only ClientInfo objects with (last_updated)
between the given {date_from} (including) and {date_to} (excluding) will be returned.

This request is paginated, it supports the pagination related URL parameters.

194

OCPI12.3.0

Parameter Datatype Requ Description
ired
date_from DateTime no Only return ClientInfo that have last_updated after or equal to this

Date/Time (inclusive).

date_to DateTime no Only return ClientInfo that have last_updated up to this Date/Time, but
not including (exclusive).

offset int no The offset of the first object returned. Default is 0.

limit int no Maximum number of objects to GET.

15.3.2.3. Response Data

The endpoint response with list of valid ClientInfo objects, the header will contain the pagination related headers.

Any older information that is not specified in the response is considered as no longer valid. Each object must
contain all required fields. Fields that are not specified may be considered as null values.

Type Card. Description
ClientInfo * List of all (or matching) ClientInfo
objects.

15.4. Object description

15.4.1. ClientInfo Object

Property Type Card Description

party_id CiString(3) 1 CPO or eMSP ID of this party (following the 15118 ISO
standard), as used in the credentials exchange.

country_code CiString(2) 1 Country code of the country this party is operating in, as used
in the credentials exchange.

role Role 1 The role of the connected party.
status ConnectionStatus 1 Status of the connection to the party.
last_updated DateTime 1 Timestamp when this ClientInfo object was last updated.

15.5. Data types

15.5.1. ConnectionStatus enum

Value Description
CONNECTED Party is connected.
OFFLINE Party is currently not connected.

195

OCPI12.3.0

Value Description
PLANNED Connection to this party is planned, but has never been connected.
SUSPENDED Party is now longer active, will never connect anymore.

196

OCPI12.3.0

16. Payments module

Module Identifier: payments
Data owner: PTP
Type: Functional Module

This module should support the Payment Terminal use case for direct payment in the roaming world.

Payment

Roaming solution Service Charging station
Provider integrated

solution

CPO CSMS “

proprietary

Payment
Service
Provider

Payment
Terminal
Provider

CPO CSMS ﬁ

Charging
Station

Payment
Terminal

Charging
Station

Payment
Terminal

There is a proposed
solution and it will become
part of OCPP 2.1

This should show the difference between roaming and an integrated charging station solution for direct payment
support.

The module consists mainly of two objects: Terminal and Financial Advice Confirmation. A terminal can handle
multiple locations and/or EVSEs. It should be able for a CPO to assign them to a terminal object. At the end of a
charging session there should be a CDR sent. There should be also send a financial-advice-confirmation from the
PTP. This should contain the actual cost and EFT data. This object is only needed if the CPO creates the invoice.

16.1. Usage Flows

16.2. Terminal Assignment

This flow shows the exchange and the assignment of the terminal object. This object will be owned and created by
the PTP. After the object was pushed to/pulled by the CPO there will be the possibility to assign specific locations to
this terminal. This assignment then will be pushed by the CPO to the PTP.

197

OCPI12.3.0

PTP system CPO system CSMS

pull / push of terminal object
r >

pull / push of terminal object

>
>

create or update terminal in CSMS
assignment to customer

assign terminal on station / or station on terminal

<
<

customer sees only terminals
assigned to its instance

terminals updates send / fetched

[
1
|
1
1
1
1
1
|
1
|
1
1
1
1
|
1
|
1
1
1
! <
| T~
1

|

i

[
1 1 1
| | |
1 1 1
1 1 1
1 1 1
r 1 1
1 1 1
1 1 1
| | |
1 1 1
| | |
1 1 1
1 1 1
1 L)
1 1 1
| | |
1 1 1
| | |
1 1 1
1 1 1
1 1 1
1 | 1
i | |
1 1 1
| | |
| 1 1

__ update terminal object
<

PTP system CPO system CSMS

16.3. Terminal Activation

This flow shows a possible former activation of a payment terminal. Usually, this will be needed for payment
terminals integrated into a station. Here the CPO orders a station from the OEM with an integrated payment
terminal. The OEM will provide a reference to the CPO which can then be used for the terminal activation at the PTP.
After the activation, the PTP will create a terminal object on the CPO side. This activation is needed as the PTP has to
do several configuration steps in beforehand, like acquiring a unique ID for the given installation address.

PTP system CPO system OEM system

| orders charging station with integrated payment Terminal _ |

[0EM installs charging station with integrated payment Terminal(invoives former PR

| sends terminal activation request with known reference to the payment terminal(e.g. given by the OEW) |

R) |

al creati e | |
PTP system CPO system OEM system

16.4. Transaction

This flow shows a single transaction in total. After choosing a specific connector on the terminal the PTP has to pull
the current connector information to receive the applicable tariff _id. With this id the tariff should be pulled so that
it can be shown on the terminal. Also the tariff is needed to reserve the needed preauth limit (stated in the
preauthorize_amount field of the tariff) at the PSP. When the user accepts the tariff the PTP will reserve the preauth
amount at the PTP and a StartSession command will be sent to the CPO. The PTP will pass an
authorization_reference with this request which will be used as the mapping for the invoice (e.g. as postfix of the
invoice URL). During the session there will be session updates pushed by the CPO if existing. For stopping the session
there are 3 ways:

1. can be stopped by the car or by the station

2. a StopSession can be sent by the PTP when the preauth limit is reached

3. can also be stopped by the CPO backend if the preauth limit is reached
Now the PTP will receive a CDR with an filled invoice_reference_id. If this id is set then the invoice was created by
the CPO, if not then the invoice will be created by the PTP. If the CPO creates the invoice, the PTP has to push a

financial-advice-confirmation object after he has done the capture at the PSP. When the CPO has received this object
the previously created invoice has to be enriched with the required EFT data.

198

OCPI12.3.0

| PSP system | | Payment Terminal | PTP system CPO system
! !
I I

.
Until that point the user has chosen a connector Iﬁ
T I

' '
1 terminal fetches data for chosen connector _ 1

\
| pull location(connector)

| pull Tariff information
h

i
1 price for charging is shown

I
| pre-authorization is made
h T

| pre-authorization response
h T

| request remote start for connector
h

] I
| StartSession with authorization_reference + location+EVSE+connector _ |
]

I
} StartSession response

.« New Session

! _ Session update - optional

Case stop by CPO J

T
;‘ When max_price is reached a StopSession will be initiated Iﬁ

Case remote stop by terminal or preauth limit stop _/J
7

| driver initiates stop
i

i
1 StopSession response

|
Case stop by Station/Card __/

T
:‘ User stops session on station or car unplugs ﬁ

i i
1_ doing financial advice

!)
1 financial Ire) response

1+ sending financial-advice-confirmation

1‘ enrich invoice with required payment data Iﬁ
I

I I
| | |
| PSP system | | Payment Terminal | PTP system CPO system

16.5. Interfaces and Endpoints

16.5.1. Sender Interface

Typically implemented by market roles like: PTP.

16.5.1.1. Terminals Interface

Method Description

GET Fetch Terminal objects last updated between the {date_from} and {date_to}(paginated).
GET Fetch a Terminal object by its ID.

POST Activate a Terminal.

POST Deactivate a Terminal.

PUT Updating a Terminal object.

PATCH Updating a Terminal object(Location assignment)

16.5.1.2. Financial Advice Confirmation Interface

Method Description

GET Fetch Financial Advice Confirmation objects last updated between the {date_from} and {date_to}
(paginated).

GET Fetch a Financial Advice Confirmation object by its ID.

199

OCPI12.3.0

16.5.1.3. GET Terminals Method

Fetch Terminals from a PTP system.

Endpoint structure definition:

{payments_terminals_endpoint_url}?[date_from={date_from}]&[date_to={date_to}]&[offset={offset}]&[limit={1limit}
]

Examples:

https://www.server.com/ocpi/ptp/2.2.1/payments/terminals/?date_from=2019-01-281712:00:00&date_t0=2019-01-
29712:00:00

https://ocpi.server.com/2.2.1/payments/terminals/?offset=50
https://www.server.com/ocpi/2.2.1/payments/terminals/?date_from=2019-01-29712:00:00&1imit=100

https://www.server.com/ocpi/ptp/2.2.1/payments/terminals/?offset=50&1imit=100

Request Parameters

If the optional parameters date from and/or date to are provided, only Terminals with last_update between the
given {date_from} (including) and {date_to} (excluding) will be returned.

This request is paginated, it supports the pagination related URL parameters.

Parameter Datatype Requ Description
ired
date_from DateTime no Only return Sessions that have last_updated after or equal to this

Date/Time (inclusive).

date_to DateTime no Only return Sessions that have last_updated up to this Date/Time, but
not including (exclusive).

offset int no The offset of the first object returned. Default is 0.

limit int no Maximum number of objects to GET.

Response Data

The response contains a list of Terminals objects that match the given parameters in the request, the header will
contain the pagination related headers.

Any older information that is not specified in the response is considered no longer valid. Each object must contain
all required fields. Fields that are not specified may be considered as null values.

Datatype Card. Description

Terminal * List of Terminal objects that match
the request parameters.

16.5.1.4. GET Terminal Method

If the CPO wants to check the status of a Terminal object in the PTP system, it might GET the object from the PTP

200

OCPI12.3.0

system for validation purposes.

Request Parameters

The following parameters can be provided as URL segments.

Parameter Datatype Requ Description
ired
terminal_id CiString(36) ' yes Terminal.terminal id of the Terminal object to retrieve.

Response Data

The response contains the requested object.

Type Card Description

> Terminal 1 Requested Terminal.

16.5.1.5. PATCH Terminal Method

This PATCH should be used by the CPO to assign location ids and/or evse_uids to a terminal. When sending both
location_ids and evse_uids then both have to be considered and the sum of evses will be enabled for this payment

terminal.

Request Parameters

This is an information Push message, the objects pushed will not be owned by the CPO.

Parameter Datatype Requ Description
ired
terminal_id CiString(36) yes Terminal.terminal id of the Terminal object to update.

Example: Assign Location IDs to Terminal

This is the expected type of update message. It is used to assign Location ids to a terminal.

PATCH To URL: https://www.server.com/ocpi/ptp/2.2.1/payments/terminals/55719888-
ed09-4cca-82cc-803bdb77bf26

{

"location_ids": [
"df37373d-1669-4127-abac-d86750095119",
"306dc823-3e5a-40c8-89cf-1b5b9e941412",
"55719888-ed09-4cca-82cc-803bdb77bf26"

]

}

16.5.1.6. PUT Terminal Method

This PUT should be used by the CPO to update location data of a terminal.

201

OCPI12.3.0

Request Parameters

This is an information Push message, the objects pushed will not be owned by the CPO.

Parameter Datatype Requ Description
ired
terminal_id CiString(36) yes Terminal.terminal id of the Terminal object to update.
Request Body

The request body contains the updated object.

Type Card Description

> Terminal 1 Terminal object to update.

Example: Setting customer_reference and invoice_base_url

PUT To URL: https://www.server.com/ocpi/ptp/2.2.1/payments/terminals/55719888-
ed09-4cca-82cc-803bdb77bf26

{
"customer_reference": "OMV",
"invoice_base_url": "someNewURL",
"last_updated": "2021-01-01T00:00:002"
}

16.5.1.7. POST Activate Terminal Method

This POST request should be used by the CPO to activate a terminal with needed information on the PTP side.

Activation of a terminal may be needed for payment terminals integrated into a station. Here the CPO has to give the

PTP needed information to link the payment terminal to the location/evse. This can be done for example via the

serial number or other mappings sent via the reference. After receiving an activation request the PTP should start

the Terminal creation process by creating a Terminal object on the CPO side with calling the corresponding POST

endpoint.

Endpoint structure definition:
{payments_terminals_endpoint_url}/activate
Examples:

+https://www.server.com/ocpi/ptp/2.2.1/payments/terminals/activate

Request Body

The request body contains an Terminal to activate.

The terminal_id is optional in the activation request as it will be set by the PTP. The cardinality for

NOTE . .
the remaining fields stays the same.

202

OCPI12.3.0

Type Card Description

> Terminal 1 Terminal object to update.

Example: Activating a Terminal with basic data

POST To URL: https://www.server.com/ocpi/ptp/2.2.1/payments/terminals/activate

{
"terminal_id": "a06dc823-3e5a-40c8-89cf-1b5b9e941412",
"location_ids": [
"df37373d-1669-4127-abac-d86750095119"
1

"reference": "Term-SerialNumber",
"last_updated": "2019-12-10T17:16:15Z"

16.5.1.8. POST Deactivate Terminal Method

This POST request should be used by the CPO to deactivate a given terminal. This may be necessary when the
terminal is broken or there is an address change for the given terminal.

Endpoint structure definition:
{payments_terminals_endpoint_url}/{terminal_id}/deactivate
Examples:

+https://www.server.com/ocpi/ptp/2.2.1/payments/terminals/55719888- ed09-4cca-82cc-803bdb77bf26/deactivate

16.5.1.9. GET Financial Advice Confirmations Method

Fetch Financial Advice Confirmations from a PTP system.

Endpoint structure definition:

{payments_financial_advice_confirmation_endpoint_url}?[date_from={date_from}]&[date_to={date_to}]&[offset={off
set}]&[Limit={1limit}]

Examples:

https://www.server.com/ocpi/ptp/2.2.1/payments/financial-advice-confirmations/?date_from=2019-01-
28712:00:00&date_t0=2019-01-29T12:00:00

https://ocpi.server.com/2.2.1/payments/financial-advice-confirmations/?offset=50

https://www.server.com/ocpi/2.2.1/payments/financial-advice-confirmations/?date_from=2019-01-
29712:00:0061imit=100

https://www.server.com/ocpi/ptp/2.2.1/payments/financial-advice-confirmations/?offset=50&1imit=100

Request Parameters

If the optional parameters date from and/or date to are provided, only Financial Advice Confirmations with
last_update between the given {date_from} (including) and {date_to} (excluding) will be returned.

203

OCPI12.3.0

This request is paginated, it supports the pagination related URL parameters.

Parameter Datatype Requ Description
ired
date_from DateTime no Only return Sessions that have last_updated after or equal to this

Date/Time (inclusive).

date_to DateTime no Only return Sessions that have last_updated up to this Date/Time, but
not including (exclusive).

offset int no The offset of the first object returned. Default is 0.

limit int no Maximum number of objects to GET.

Response Data

The response contains a list of Financial Advice Confirmation objects that match the given parameters in the
request, the header will contain the pagination related headers.

Any older information that is not specified in the response is considered no longer valid. Each object must contain
all required fields. Fields that are not specified may be considered as null values.

Datatype Card. Description

FinancialAdviceConfirmation * List of Financial Advice
Confirmation objects that match the
request parameters.

16.5.1.10. GET Financial Advice Confirmation Method

If the CPO wants to check the status of a Financial Advice Confirmations object in the PTP system, it might GET the
object from the PTP system for validation purposes.

Request Parameters

The following parameters can be provided as URL segments.

Parameter Datatype Requ Description
ired

financial_advice_co CiString(36) | yes Financial Advice confirmation.id of the financial advice confirmation
nfirmation_id object to retrieve.
Response Data

The response contains the requested object.

Type Card Description
> Financial Advice 1 Requested Financial Advice Confirmation.
Confirmation

204

OCPI12.3.0

16.5.2. Receiver Interface

Typically implemented by market roles like: CPO.

16.5.2.1. Terminals Interface

Method Description
GET Retrieve a Terminal object from the CPO’s system with Terminal.id equal to {terminal_id}.
POST Creating a Terminal object in the CPO’s system.

16.5.2.2. Financial Advice Confirmation Interface

Method Description

GET Retrieve a Financial Advice Confirmation object from the CPO’s system with
FinancialAdviceConfirmation.id equal to {financial_advice_confirmation_id}.

POST Creating a Financial Advice Confirmation object in the CPO’s system.

16.5.2.3. GET Terminal Method

The PTP system might request the current version of a Terminal object from the CPO’s system to, for example,
validate the state.

Request Parameters

The following parameters shall be provided as URL segments.

Parameter Datatype Requ Description
ired
terminal_id CiString(36) yes id of the Terminal object to get from the CPO’s system.

Response Data

The response contains the requested Terminal object.

Datatype Card. Description

Terminal 1 Requested Terminal object.

16.5.2.4. POST Terminal Method

The POST should be used by the PTP to create a newly shipped terminal on the CPO’s system. Here, if no activation
was sent before no location ids should be included as the assignment will be done by the CPO. The object sent here
can be just the terminal id or an object with additional data if known through the terminal order and/or activation
process.

Request Body

The request contains the new Terminal object.

205

OCPI 2.3.0
Type Card Description

Terminal 1 New Terminal object.
Example: Create a minimal Terminal

POST To URL: https://www.server.com/ocpi/cpo/2.2.1/payments/terminals/

{
"terminal_id": "452cf8a1-79aa-4ale-9aee-dc788586053c"

}

Example: Create a Terminal

POST To URL: https://www.server.com/ocpi/cpo/2.2.1/payments/terminals/

{
"terminal_id": "452cf8a1-79aa-4ale-9aee-dc788586053c",
"address": "Street 1",

"city": "Vienna",
"country": "AUT",
"coordinates": {
"latitude": "51.047599",
"longitude": "3.729944"
}

ustomer_reference": "ChargePoint",
"invoice_base_url": "https://somecompany.com/invoices",
"invoice_creator": "CP0O",

"location_ids": [],

"last_updated": "2018-12-10T17:16:152"

16.5.2.5. GET Financial Advice Confirmation Method

The PTP system might request the current version of a Financial Advice Confirmation object from the CPO’s system
to, for example, validate the state.

Request Parameters

The following parameters shall be provided as URL segments.

Parameter Datatype Requ Description
ired

financial_advice_co CiString(36) yes id of the Financial Advice Confirmation object to get from the CPO’s

nfirmation_id system.

Response Data

The response contains the requested Financial Advice Confirmation object.

206

OCPI12.3.0

Datatype Card. Description

FinancialAdviceConfirmation 1 Requested Financial Advice
Confirmation object.

16.5.2.6. POST Financial Advice Confirmation Method

The POST should be used by the PTP to create a Financial Advice confirmation on the CPO’s system. This will be used
to get the status of the capture and also the required eft data to put on the invoice. The PTP has to make sure to use
the same authorization reference as provided in the Commands.StartSession so that the CPO can properly map the

financial advice to the session.

Request Body

The request contains the new Financial Advice Confirmation object.

Type Card Description
FinancialAdviceConfirma | 1 New Financial Advice Confirmation object.
tion

Example: Create a Financial Advice Confirmation

POST To URL: https://www.server.com/ocpi/cpo/2.2.1/payments/financial-advice-confirmations/

{
"id": "452cf8a1-79aa-4a0e-9aee-dc788586053¢c",

"authorization_reference": "pp-100100-1948213567",
"total_costs": {

"excl_vat": 4.00,

"incl_vat": 4.40
To
"currency": "EUR",
"eft_data": [

"Mastercard",

"AID: 1234",

"Crypto: 3456",

"Nr: kkkk khkkk kkkk 1234"’

"SEQ: 00",

"Amount: EUR 4.40"
I
"capture_status_code": "SUCCESS",
"capture_status_message": "Capture successfull at PSP",
"last_updated": "2018-12-10T17:16:152"

16.6. Object description

16.6.1. Terminal Object

The Terminal object describes one physical payment terminal. It is designed primarily to establish a mapping
between charge points (locations and/or EVSEs) and payment terminals. The object facilitates the configuration of
necessary payment-related data, such as customer reference identifiers and invoice URLs

207

OCPI12.3.0

Property Type Card Description

terminal_id CiString(36) 1 Unique ID that identifies a terminal.

customer_reference CiString(36) ? This reference will be used to link the terminal to a CSMS.
The reference might also be provided via the order process.

party_id CiString(3) ? This is an alternative to the customer reference which can
be used.

country_code CiString(2) This is an alternative to the customer reference which can
be used.

address CiString(45) Street/block name and house number if available.

city CiString(45) City or town.

postal_code CiString(10) Postal code of the terminal, may only be omitted when the
terminal has no postal code.

state CiString(20) State or province of the location, only to be used when
relevant.

country CiString(3) ISO 3166-1 alpha-3 code for the country of this location.

coordinates GeoLocation Coordinates of the terminal.

invoice_base_url URL BaseURL to the downloadable invoice

invoice_creator InvoiceCreator Describes which party creates the invoice for the eDriver.

reference CiString(36) Mapping value as issued by the PTP(e.g serial number).

location_ids CiString(36) List of all locations assigned to that terminal.

evse_uids CiString(36) List of all EVSEs assigned to that terminal.

last_updated DateTime Timestamp when this Terminal was last updated (or

created).

16.6.1.1. Examples

Simple Terminal example which is newly created

{
"terminal_id": "452cf8a1-79aa-4ale-9aee-dc788586053c",
"customer_reference": "Chargepoint",
"address": "Street 1",
"city": "Vienna",
"country": "AUT",
"coordinates": {
"latitude": "51.047599",
"longitude": "3.729944"
B
"invoice_base_url": "https://somecompany.com/invoices",
"invoice_creator": "CPQ",
"location_ids": [],
"last_updated": "2018-12-10T17:16:152"
}

208

OCPI12.3.0

Terminal example with assigned locations

"terminal_id": "9e94f62c-661b-4afa-bbda-019b58fab9ac"”,

"address": "Street 1",

"city": "Vienna",

"country": "AUT",

"coordinates": {

"latitude": "51.047599",
"longitude": "3.729944"

B

"customer_reference": "BP",

"invoice_base_url": "https://somecompany.com/invoices",

"invoice_creator": "PTP",

"location_ids": [
"df37373d-1669-4127-abac-d86750095119",
"a06dc823-3e5a-40c8-89cf-1b5b9e941412",
"55719888-ed0@9-4cca-82cc-803bdb77bf26"

15

"last_updated": "2018-12-10T17:16:152"

Terminal example with assigned locations and EVSEs

"terminal_id": "9e94f62c-661b-4afa-bbda-019b58fab9ac",

"address": "Street 1",

"city": "Vienna",

"country": "AUT",

"coordinates": {

"latitude": "51.047599",
"longitude": "3.729944"

B

"customer_reference": "BP",

"invoice_base_url": "https://somecompany.com/invoices",

"invoice_creator": "PTP",

"location_ids": [
"df37373d-1669-4127-abac-d86750095119",
"306dc823-3e5a-40c8-89cf-1b5b9e941412",
"55719888-ed0@9-4cca-82cc-803bdb77bf26"

IE

"evse_uids": [

"17d5f8ea-8832-454f-aff5-257bc6a25353"

IE

"last_updated": "2018-12-10T17:16:15Z"

16.6.2. Financial Advice Confirmation Object

The Financial Advice Confirmation object is utilized to encapsulate the financial details of transactions processed at
payment terminals. It correlates payment transactions with charging sessions by using the authorization_reference
obtained from the Commands.StartSession, Session, and CDR. This reference ensures that each financial transaction
can be accurately mapped to its corresponding charging session. Additionally, the object includes eft data
(Electronic Funds Transfer data), which are mandatory for inclusion on invoices to meet legal and regulatory

requirements.
Property Type Card Description
id CiString(36) 1 Unique ID that identifies a financial advice confirmation.

209

Property

authorization_reference

total_costs

currency
eft_data

capture_status_code

capture_status_message

last_updated

16.6.2.1. Examples

Type

CiString(36)

Price

CiString(3)
CiString[1..255]

CaptureStatusCod
e

CiString[1..255]

DateTime

Example of a successful capture at the PSP

"9d": "452cf8a1-79aa-4a0e-9aee-dc788586053c",
"authorization_reference": "pp-100100-1948213567",

"total_costs": {
"excl_vat": 4.00,
"incl_vat": 4.40

B

"currency": "EUR",

"eft_data": [
"Mastercard",
"AID: 1234",
"Crypto: 3456",

"Nr: *kkk khkkk kkkk 1234"’

"SEQ: 00",
"Amount: EUR 4.40"
1

"capture_status_code": "SUCCESS",
"capture_status_message": "Capture successfull at PSP",
"last_updated": "2018-12-10T17:16:152"

OCPI12.3.0

Card Description

1 Reference to the authorization given by the PTP in the
Commands.StartSession.

1 Real amount that was captured at the PSP. This is a
consumer price with VAT.

1 1S0-4217 code of the currency of this tariff.

+ Invoice relevant data from the direct payment.

1 Code that identifies the financial advice status.

? Message about any error at the financial advice.

1 Timestamp when this financial advice confirmation was

last updated (or created).

Example of an unsuccessful capture at the PSP

"9d": "452cf8a1-79aa-4a0e-9aee-dc788586053¢c",
"authorization_reference": "pp-100100-1948213567",

"total_costs": {
"excl_vat": 0.00,
"incl_vat": 0.00

}

urrency": "EUR",

"capture_status_code": "FAILED",
"capture_status_message": "Capture unsuccessful at PSP",
"last_updated": "2018-12-10T17:16:152"

210

OCPI12.3.0

16.7. Data types

16.7.1. InvoiceCreator enum

Value Description

CPO The CPO issues the invoice and provides it via the invoice_base_url +
authorization_reference.

PTP The PTP issues the invoice and directly shows/provides it the eDriver
via the payment terminal.

16.7.2. CaptureStatusCode enum

This enumeration describes the status of the payment capture process following a transaction at an EV charging
station. It helps determine the outcome of the transaction and facilitates accurate financial reporting and customer
billing.

Value Description

SUCCESS Indicates that the payment capture was completed successfully
without any issues. Funds were secured and will be settled according
to the payment processor’s timeline. This status confirms that all
checks (e.g., fraud, card validation) passed and the transaction was
approved..

PARTIAL_SUCCESS Used when only part of the transaction amount was approved or
when certain conditions of the payment were altered during
processing. This might occur in scenarios where the available balance
was insufficient for the full requested amount, or specific transaction
limits were enforced by the card issuer.

FAILED Indicates that the payment capture attempt was unsuccessful. This
failure can be due to various reasons such as insufficient funds, card
expiration, network issues, or refusal by the card issuer.

211

OCPI12.3.0

17. Types

17.1. class

When a data type is defined as a "class" in the OCPI specification, we mean a type whose possible values are sets of
zero or more pairs of a string and another value. The string is known as a "key", "field name", or "property", and the
value associated with the key is known as a field value. For each class type, the specification lists which strings are
required and allowed to occur as field names in values of that type, and what the types of the field values of these
fields should be.

In the serialized JSON form of OCPI messages, class values are serialized as JSON objects.

17.2. enum

When a data type is defined as an "enum" in the OCPI specification, we mean a type whose possible values are a

finite number of strings.

This type is used for class fields where it is clear that there is only a finite set of possible values that is completely
known at the time of writing of the specification. An example of a place where this is used is a class field whose
possible values are the days of the week.

In the serialized JSON form of OCPI messages, enum values are serialized as JSON strings.

17.3. OpenEnum type

The OpenEnum type is meant for class fields for which the set of all possible values is not known at the time of
writing of the specification, but where there are a finite number of known possible values. In this case we want to
specify how OCPI implementers can use the known possible values, but also leave room for them to use other

values.

This is used for example for connector types, where all implementers should use the same value to identify a widely
used connector type like the Type 2 "Mennekes" plug, but where there should also be room for implementers to
name new or custom plug types that were not taken into account by OCPI’s authors.

In the serialized JSON form of OCPI messages, OpenEnum values are serialized as JSON strings.

When naming new OpenEnum values, OCPI implementers SHOULD follow the "Recommendations for Creators of
New Parameters” found in IETF RFC 6648, and SHOULD consult EV Roaming Foundation’s guidance on extending
OCPI at https://evroaming.org/extending-ocpi/.

17.4. CiString type

Case Insensitive String. Only printable ASCII allowed. (Non-printable characters like: Carriage returns, Tabs, Line
breaks, etc are not allowed)

17.5. DateTime type

All timestamps are formatted as string(25) following RFC 3339, with some additional limitations.

212

https://datatracker.ietf.org/doc/html/rfc6648
https://evroaming.org/extending-ocpi/

OCPI12.3.0

All timestamps SHALL be in UTC. The absence of the timezone designator implies a UTC timestamp. Fractional
seconds MAY be used.

Example of how timestamps shall be formatted in OCPI, other formats/patterns are not allowed:

2015-06-29T720:39:097
2015-06-29T720:39:09
2016-12-29T17:45:09.2Z
2016-12-29717:45:09.2
2018-01-01701:08:01.123Z
2018-01-01701:08:01.123

NOTE +00:00 is not the same as UTC.

17.6. DisplayText class

Property Type Card Description
language string(2) 1 Language Code ISO 639-1.
text string(512) 1 Text to be displayed to a end user. No markup, html etc. allowed.
Example:
{

"language": "en",
"text": "Standard Tariff"
}

17.7. number type

Numbers in OCPI are formatted as JSON numbers. Unless mentioned otherwise, numbers use 4 decimals and a
sufficiently large amount of digits.

17.8. Price class

Property Type Card Description
before_taxes number 1 Price/Cost excluding taxes.
taxes TaxAmount * All taxes that are applicable to this price and relevant to the receiver of

the Session or CDR.

17.9. TaxAmount class

213

OCPI 2.3.0
Property Type Card Description

name string 1 A description of the tax. In countries where a tax name is required like
Canada this can be something like "QST". In countries where this is not
required, this can be something more generic like "VAT" or "General
Sales Tax".

account_number string ? Tax Account Number of the business entity remitting these taxes.
Optional as this is not required in all countries.

percentage number ? Tax percentage. Optional as this is not required in all countries.

amount number 1 The amount of money of this tax that is due.

17.10. Role enum

Value Description

CPO Charge Point Operator Role.

EMSP eMobility Service Provider Role.

NAP National Access Point Role (national Database with all Location information of a
country).

NSP Navigation Service Provider Role, role like an eMSP (probably only interested in

Location information).
OTHER Other role.

SCSP Smart Charging Service Provider Role.

17.11. string type

Case Sensitive String. Only printable UTF-8 allowed. (Non-printable characters like: Carriage returns, Tabs, Line
breaks, etc are not allowed)

All strings in messages and enumerations are case sensitive, unless explicitly stated otherwise.

17.12. URL type

An URL a string(255) type following the w3.org spec.

214

http://www.w3.org/Addressing/URL/uri-spec.html

OCPI12.3.0

18. Changelog

18.1. Changes between 2.2.1-d2 and 2.3.0

Make OCPI Extensible: possible to add modules, fields, enum values for certain enums

Add a Parking object linked to EVSEs, indicating vehicle type among other properties

Add a field to the EVSE object to indicate which eMSPs' contracts are accepted

Add a field to the Location object for a support telephone number

Information for people with disabilities

Support for North American taxes

Take straightforward enum values from the OCPI 3.0 draft, including those that signal 15118 compatibility

Add new field in Credentials to give hub party ID and make hub clients be reported as normal credentials roles

Add new Payments module

18.2. Changes between 2.2.1 and 2.2.1-d2

Removed note that advised against sharing Locations on which home charging reimbursement happens
Lots of editing and rewriting of Tariffs and step_size documentation
Updated examples and diagrams to use convention of not using trailing slashes on URLs

Updated example of a short finished session so that the total energy matches the energies of the charging
periods

Removed stipulation that all charging periods have a different Tariff from CDRs module, which contradicts
other statements in the CDRs module description

Add a note clarifying Base64 usage in the Authorization header and use more precise wording to specify the
Base64 encoding

Replaced 2.2 by 2.2.1 in example URLs and a few other places where 2.2 was used to mean the current version.
Added missing forward slash in Tokens Receiver interface endpoint URL structure definition

Changed "Tariff Elements" to "Tariffs" in description of tariffs field in CDR object definition

Added country_code and party_id to CdrToken examples

Changed country_id to country_code in credentials explanation

Replaced copy-pasted text about charging profiles in ChargingPreferencesResponse description

Replaced "cpo"” by "emsp" in example URL of receiver-side session module

Allowed eMSP to replace CPO-issued session IDs when exchanging charging profiles with an SCSP

Changed text to give more actionable advice on how to set the Interface role in the Endpoint object for the
credentials module

Added an explanation of why the Tariffs module doesn’t say anything about price rounding
Added a note that CPOs should avoid using physical hardware ids for EVSE.uid

Removed example about a free hour of parking that conflicts with spec

215

OCPI12.3.0

* Changed "GET" to "PUT" in sequence diagram showing routing header usage with Broadcast Push

18.3. Changes between OCPI 2.2 and 2.2.1

Lots of typos fixed and textual improvements.

The following changes to messages/objects etc.

Context (Module / Object)

Status codes

CDRs/
CdrToken Class

CDRs/
CDR Object

CDRs/
CdrLocation Class

CDRs/
SignedData Class

CDRs/
SignedValue Class

Commands /
StartSession Object

Locations /
Capability Enum

Locations /
ConnectorType Enum

Locations /
PowerType Enum

Expecte
d
Impact:
eMSP /
CPO

Minor /
Minor

Minor /
Minor

Minor /
Minor

Minor /
Minor

Major /
Major

Major /
Major

Minor /
Minor

Minor /
Minor

Minor /
Minor

Minor /
Minor

Expecte

d Effort:

eMSP /
CPO

Minimal
/

Minimal

Minor /
Major

Minimal
/

Minimal

Minimal
/

Minimal

Minimal
/

Minimal

Minimal
/

Minimal

Medium

/

Minimal

Medium

/

Minimal

Minimal
/

Minimal

Minimal
/

Minimal

Description

Added 4000 Hub generic error

Added mandatory country_code and party_id fields to make
sure that a CdrToken uniquely identifies a charge token

Added home_charging_compensation optional field.

- Changed postal_code to optional, inline with the Location
module. - Added state as optional field, inline with the
Location module.

Changed public_key to string, was CiString

- Increased signed_data length from 512 to 5000.
- Changed plain_data to string, was CiString

- Changed signed_data to string, was CiString

- Changed url to string, was CiString

Added optional field: connector_id to support OCPP 1.x
Charge Points with multiple connectors per EVSE.

Added START_SESSION_CONNECTOR_REQUIRED to support OCPP 1.x
Charge Points with multiple connectors per EVSE.

Added NEMA, GB/T, Chao]i and Domestic M, N and O
connector types.

Added AC_2_PHASE an AC_2_PHASE_SPLIT to the enum to support
two phase chargers.

216

OCPI12.3.0

18.4. Changes between OCPI 2.1.1 and 2.2

Lots of typos fixed and textual improvements.

Improved/fixed all descriptions and examples with relation to the Tariff step_size.

The following changes to messages/objects etc.

Context (Module / Object)

CDRs/
CDR Object

Commands /
AuthMethod enum

Expecte
d
Impact:
eMSP /
CPO

Medium

/
Major

Minor /
Minor

Expecte
d Effort:
eMSP /
CPO

Average

/
Large

Minimal
/

Minimal

Description

- Added county_code and party_id fields, making it easier to
determine the owner of a CDR.

- Added session_id field, making it easier to match a CDR to a
Session.

- Renamed stop_date_time field to end_date_time, to bring the
naming inline with the rest of OCPI.

- Changed total_cost field from type: number to Price, this
provides the eMSP with the total cost including VAT.

- Replaced auth_id field with CdrToken. auth_id alone could not
be used to uniquely identify a Token. By copying the
information for the dynamic Token object, the CDR will
always reflect the 'true' status of Token at the start of the
charging session.

- Replaced location field with cdr_location, this also changed
type, from Location to CdrLocation. Reusing the Location
object always caused a lot of confusing, things were not clear.
By creating a dedicated object CdrLocation with only the
relevant fields, things should be much clearer.

- Added credit and credit_reference_id fields, to allow for
Credit CDRs to be send.

- Added total_fixed_cost, total_energy_cost, total_time_cost,
total_parking_cost and total_reservation_cost fields, to
allow more cost details in the CDRs.

- Added authorization_reference field for binding an
authorization to the resulting session.

- Added signed_data field, enabling OCPI to be used to
transport signed meter data from the Charge Point to the
eMSP and EV driver, can be used for Eichrecht.

- Added invoice_reference_id field (optional), to allow a CDRs
to reference an invoice.

- Field id changed in length from 36 to 39, to allow for
something to be appended after the original id in case of a
Credit CDR.

Added COMMAND value, to enable reporting authorization via
Command like: StartSession or ReserveNow.

217

Context (Module / Object)

CDRs/
CdrDimensionType enum

CDRs/
CdrDimensionType enum

CDRs/
ChargingPeriod class

ChargingProfiles

Commands /
CancelReservation Object

Commands /
CommandType Enum

Commands /
CommandResponse Object

Commands /
ReserveNow Object

Commands /
StartSession Object

Expecte
d
Impact:
eMSP /
CPO

Medium

/

Medium

Medium

/

Medium

Medium

/

Medium

Major /
Major

Minor /
Minor

Minor /
Minor

Minor /
Minor

Minor /
Medium

Minor /
Medium

Expecte

d Effort:

eMSP /
CPO

Minimal
/

Minimal

Minimal
/

Minimal

Minimal
/

Minimal

Large /
Large

Minimal
/

Minimal

Minimal
/

Minimal

Minimal
/

Minimal

Minimal
/

Average

Minimal
/

Average

OCPI12.3.0

Description

Added RESERVATION_TIME value, to enable reporting of cost for
areservation in a Session or CDR.

Removed FLAT value, that is of no use on a CDR, only causes
confusion, should have been removed when
CdrDimensionType was created from DimensionType of OCPI
2.0.

Added tariff_id field to ChargingPeriod, when the session
switches from one tariff to another, this needs to be known,
can be relevant with Preference based Smart Charging.

Added new ChargingProfiles module.

Added CancelReservation object for the cancel reservation
command.

Added CANCEL_RESERVATION value, adding the cancel
reservation command.

- Added message field, enables the CPO to send a message to
the user when something goes wrong.

- Added timeout field, enables the eMSP to cleanup not
responded outstanding commands.

- Changed location_id and evse_uids from string to CiString,
making them case-insensitive, which had always been the
idea. Lengths changed from 39 to 36, matching changes in the
object definitions.

- Changed reservation_id from int to CiString(36), making it
possible to use UUIDs.

- Added authorization_reference field for binding an
authorization to the resulting session.

- Changed/added requirements in description of ReserveNow
Object.

- Changed location_id and evse_uids from string to CiString,
making them case-insensitive, which had always been the
idea. Lengths changed from 39 to 36, matching changes in the
object definitions.

- Added authorization_reference field for binding an
authorization to the resulting session.

- Changed/added requirements in description of StartSession
Object.

218

OCPI12.3.0

Context (Module / Object) Expecte Expecte Description

d d Effort:

Impact: eMSP/

eMSP/ CPO

CPO
Commands / Minor/ Minimal Changed session_id from string to CiString, making it case-
StopSession Object Minor / insensitive, which had always been the idea.

Minimal

Commands / Minor/ Minimal - Changed location_id, evse_uids and connector_ids from
UnlockConnector Object Minor / string to CiString, making them case-insensitive, which had

Minimal always been the idea.
- Length of location_id and evse_uids changed from 39 to 36,
matching changes in the object definitions.

Commands / Minor/ Minimal removed TIMEOUT as possible value. This is moved to the new
CommandResponseType Minor / CommandResult object.

Enum Minimal

Commands / Minor/ Minimal added CANCELED_RESERVATION value. Make it possible for a CPO
CommandResultType Enum Minor / to cancel an existing reservation in case of issues with the

Minimal Charge Point.

Commands / Medium Medium Changed result message from CPO to eMSP from
CommandResult Object / / CommandResponse to CommandResult to make it more clear.
Medium Medium

Credentials / Minor/ Minimal Changed country_code and party_id from string to CiString,
Credentials Object Minor / making them case-insensitive, which had always been the
Minimal idea.
Replaced the business_details, party_id and country_code
field with a roles list. Making it possible to implement
different parties and roles in the same OCPI instance. The
fields are now moved into a new " CredentialsRole class.

HubClientInfo Medium Medium Added new HubClientInfo module.

/ /

Medium Medium
Locations / Minor/ Minimal - Changed location_id, evse_uids and connector_ids from
Sender GET Object method Minor / string to CiString, making them case-insensitive, which had

Minimal always been the idea.
- Length of location_id and evse_uids changed from 39 to 36,
matching changes in the object definitions.

Locations / Minor/ Minimal - Changed country_code, party_id, location_id, evse_uids and
Receiver GET & PUT methods Minor / connector_ids from string to CiString, making them case-
Minimal insensitive, which had always been the idea.
- Length of location_id and evse_uids changed from 39 to 36,
matching changes in the object definitions.

219

Context (Module / Object)

Locations /
Receiver PATCH method

Locations /

Connector Object

Locations /
EVSE Object

Expecte
d
Impact:
eMSP /
CPO

Minor /
Minor

Minor /
Minor

Minor /
Minor

Expecte

d Effort:

eMSP /
CPO

Minimal
/

Minimal

Minimal
/

Minimal

Minimal
/

Minimal

OCPI12.3.0

Description

- Changed country_code, party_id, location_id, evse_uids and
connector_ids from string to CiString, making them case-
insensitive, which had always been the idea.

- Length of location_id and evse_uids changed from 39 to 36,
matching changes in the object definitions.

- Added description on how to handle last_updated, and made
it required for all PATCH requests.

- Field id is changed from string to CiString, making it now
case-insensitive, which had always been the idea.

- Added max_electric_power field, some DC Fast Charger have
a lower max power then can be calculated form voltage and
amperage.

- Changed tariff_id field to tariff_ids, and changed
cardinality from ? to *. Making it possible to make provided
tariffs for different Smart Charging Preferences and also for
ad hoc payment. Changed type from string to CiString,
matching the change to Tariff.id. - Changed amperage field to
max_amperage and voltage field to max_voltage, to better reflect
the real meaning of both fields.

- Fields uid and evse_id is changed from string to CiString,
making them case-insensitive, which had always been the
idea.

- length of uid changed from 39 to 36, as 36 is enough to store
UUID and GUIDs.

220

Context (Module / Object)

Locations /
Location Object

Locations /
AdditionalGeoLocation class

Locations /
Capability enum

Locations /
ConnectorType enum

Locations /
Environmentallmpact class

Locations /
Facility enum

Locations /
GeoLocation class

Expecte
d
Impact:
eMSP /
CPO

Minor /
Minor

Minor /
Minor

Minor /
Minor

Minor /
Minor

Minor /
Minor

Minor /
Minor

Minor /
Minor

Expecte

d Effort:

eMSP /
CPO

Minimal
/

Minimal

Minimal
/

Minimal

Minimal
/

Minimal

Minimal
/

Minimal

Minimal
/

Minimal

Minimal
/

Minimal

Minimal
/

Minimal

OCPI12.3.0

Description

- Added county_code and party_id fields, making it easier to
determine the owner of a Location.

- Field id is changed from string to CiString, making it now
case-insensitive, which had always been the idea.

- length changed from 39 to 36, as 36 is enough to store UUID
and GUIDs.

- Added state field, optional, to allow as much different
address schemes from around the world as possible..

- Changed postal_code field from required to optional, with
the remark that omitting is only allowed when location has
no postal_code.

- Changed time_zone field from optional to required, as the
opening hours and tariff start/end depend on this, they are
more and more important.

- Renamed type field to parking_type and made it optional. It
better reflects what this field really describes.

- Added publish field, required, to control which locations
may or may not be publish in apps etc. - Added
publish_allowed_to field, optional, to give access to locations
to only a limited set of users.

Changed regex for fields: latitude and longitude from fixed 6
decimal places, to more flexible 5 to 7 decimal places.

added new values for: CHARGING_PREFERENCES_CAPABLE,
DEBIT_CARD_PAYABLE and TOKEN_GROUP_CAPABLE.

added new values for: PANTOGRAPH_TOP_DOWN and
PANTOGRAPH_BOTTOM_UP.

Changed field name from source to category, this was a
copy/past error in an older version of OCPI, as this is not used
(much) yet, it is better for understandability of OCPI for
correct the field name.

added new values for: BIKE_SHARING, PARKING _LOT, TRAM_STOP
and METRO_STATION.

Changed regex for fields: latitude and longitude from fixed 6
decimal places, to more flexible 5 to 7 decimal places.

221

Context (Module / Object)

Locations /
Hours class

Locations /
Image class

Locations /
RegularHours class

Locations /
LocationType enum

Sessions /
Sender PUT method

Sessions /
Receiver GET and PUT
methods

Sessions /
Receiver PATCH method

Expecte
d
Impact:
eMSP /
CPO

Minor /
Minor

Minor /
Minor

Minor /
Minor

Minor /
Minor

Medium

/

Medium

Minor /
Minor

Minor /
Minor

Expecte

d Effort:

eMSP /
CPO

Minimal
/

Minimal

Minimal
/

Minimal

Minimal
/

Minimal

Minimal
/

Minimal

Large /
Large

Minimal
/

Minimal

Minimal
/

Minimal

OCPI12.3.0

Description

removed to option for either: twentyfourseven or
regular_hours, now twentyfourseven is always required and
regular_hours is required when twentyfourseven=false, this
is much less confusing.

Changed field type from string to CiString, is for machine to
machine communication, so UTF-8 is not needed.

Improved the regex for time format.

Renamed to: ParkingType

Added the values: ON_DRIVEWAY and ALONG_MOTORWAY

Removed the values: 0THER and UNKNOWN, no longer needed as
this is now optional.

Added setting Charging Preferences on a session. Proving the
CPO with preferences from the driver, needed for Smart
Charging. For this the following data types are added:
ChargingPreferences, ChargingPreferencesResponse,
ProfileType,

Changed country_code, party_id and session_id from string to
CiString, making them case-insensitive, which had always
been the idea.

Changed country_code, party_id and session_id from string to
CiString, making them case-insensitive, which had always
been the idea.

Added description and requirements how to add
charging_periods and made last_updated required for all
PATCH requests.

222

Context (Module / Object)

Sessions /
Session Object

Tariffs /
Receiver PATCH method

Tariffs /
Tariff Object

Tariffs /
PriceComponent class

Tariffs /
ReservationRestrictionType
enum

Expecte
d
Impact:
eMSP /
CPO

Minor /
Medium

Minor /
Minor

Minor /
Minor

Minor /
Minor

Minor /
Minor

Expecte
d Effort:
eMSP /
CPO

Minimal
/

Average

Minimal
/

Minimal

Minimal
/

Minimal

Minimal
/

Minimal

Minimal
/

Minimal

OCPI12.3.0

Description

- Added county_code and party_id fields, making it easier to
determine the owner of a Session.

- Field id is changed from string to CiString, making it now
case-insensitive, which had always been the idea.

- Changed total_cost field from type: number to Price, this
provides the eMSP with the total cost including VAT.

- Added start_date_time and end_date_time fields.

- Replaced auth_id with CdrToken class. auth_id alone could
not be used to uniquely identify a Token.

- Replaced location object with location_id, evse_uid and
connector_id. Having the Location Object in the Session was
overkill, only reference is more inline with the rest.

- Added authorization_reference field for binding an
authorization to the resulting session.

PATCH is removed from Tariffs as this was seen is not useful,
use PUT instead.

- Added county_code and party_id fields, making it easier to
determine the owner of a Tariff.

- Field id is changed from string to CiString, making it now
case-insensitive, which had always been the idea.
-Renamed start_datetime field to start_date_time, to bring
the naming inline with the rest of OCPI.

- Renamed end_datetime field to end_date_time, to bring the
naming inline with the rest of OCPI.

- Added optional min_price field, making it possible to set a
minimum price on a Charging Session.

- Added optional max_price field, making it possible to set a
maximum price on a Charging Session.

- Added type field to make it possible to make different tariffs
for different Smart Charging Preferences and also for ad hoc
payment.

- Added vat field to send the applicable VAT with every tariff

component.

Added new enum for Reservation restrictions.

223

Context (Module / Object)

Tariffs /
TariffRestrictions class

Tokens /
Sender GET & POST methods

Tokens /
Receiver GET & PUT methods

Tokens /
Receiver PATCH method

Tokens /
Token Object

Tokens /
AuthorizationInfo Object

Expecte
d
Impact:
eMSP /
CPO

Minor /
Minor

Minor /
Minor

Minor /
Minor

Minor /
Minor

Minor /
Minor

Minor /
Medium

Expecte

d Effort:

eMSP /
CPO

Minimal
/

Minimal

Minimal
/

Minimal

Minimal
/

Minimal

Minimal
/

Minimal

Minimal
/

Minimal

Minimal
/

Average

OCPI12.3.0

Description

Added optional reservation field, making it possible to define
the tariff of a reservation (and an expired reservation).
Added optional min_current and max_current field, making it
possible to have a tariff that depends on the current being
charged, instead of the power.

Improved the regex for time format.

Changed country_code, party_id and token_uid from string to
CiString, making them case-insensitive, which had always
been the idea.

Changed country_code, party_id and tariff_id from string to
CiString, making them case-insensitive, which had always
been the idea.

Added token_type field, making it possible to make a
distinction between different Token types with the same uid.

Changed country_code, party_id and tariff_id from string to
CiString, making them case-insensitive, which had always
been the idea.

Added token_type field, making it possible to make a
distinction between different Token types with the same uid.
Made last_updated required for all PATCH requests.

- Added county_code and party_id fields, making it easier to
determine the owner of a Token.

- Fields uid changed from string to CiString, making it now
case-insensitive, which had always been the idea.

- Fields auth_id_ renamed to contract_id, a much more logical
and less confusing name. Also changed from string to
CiString, making it now case-insensitive, which had always
been the idea.

- Added group_id field to enable support for OCPP
Groupld/ParentId.

- Added default_profile_type field to enable a default
Preference base Smart Charging ProfileType to be provided
for a user.

- Added energy_contract field to make it possible, if allowed,
to use a drivers energy supplier/contract at a Charge Point.

Added token field to enable real-time authorization of
unknown Tokens.

Added authorization_reference field for binding an
authorization to the resulting session.

224

Context (Module / Object)

Tokens /
LocationReferences class

Tokens /
TokenType enum

Versions /

Endpoint class

Transport & Format

Transport & Format

Types /
DateTime

Types /
string

Expecte
d
Impact:
eMSP /
CPO

Minor /
Minor

Minor /
Minor

Medium

/

Medium

Medium

/

Medium

Minor /
Minor

Minor /
Minor

Minor /
Minor

Expecte

d Effort:

eMSP /
CPO

Minimal
/

Minimal

Minimal
/

Minimal

Minimal
/

Minimal

Medium

/

Medium

Minimal
/

Minimal

Minimu
m/
Minimu
m

Minimu
m/
Minimu
m

OCPI12.3.0

Description

- Changed location_id and evse_uids from string to CiString,
making them case-insensitive, which had always been the
idea.

- Length of location_id and evse_uids changed from 39 to 36,
matching changes in the object definitions.

- Removed connector_ids, this was not usable as they are not
unique within the Location, there is also no use case.

Added value AD_HOC USER and APP_USER . As more and more
eMSPs are launching Apps, this becomes more common, so a
special categories are useful.

Field role added, making it possible to have one OCPI version
end-point for both eMSP and CPO role, so one OCPI
connection when both CPO and eMSP implemented by the
same party.

To enable routing of messages through a Hub, new 'OCPI-to-'
and 'OCPI-from-' headers are introduced.

Unique message ID and Correlation message ID headers are
now required in every request/response.

Changed to: RFC 3339 (was ISO 8601) this does not change the
OCPI format, RFC 3339 is more limited, and therefor more
inline with OCPI then ISO 8601 was.

Fractional seconds are now allowed.

Type string changed from ASCII to UTF-8. String is used for
human-readable information and thus needed to support for
a lot more character sets then only ASCII.

225

	OCPI 2.3.0: Open Charge Point Interface
	Table of Contents
	1. OCPI
	1.1. OCPI 2.3.0
	1.2. OCPI 2.2.1
	1.3. OCPI 2.2
	1.3.1. Changes/New functionality:

	1.4. Introduction and background

	2. Terminology and Definitions
	2.1. Requirement Keywords
	2.2. Abbreviations
	2.3. EV Charging Market Roles
	2.3.1. Typical OCPI implementations per Role

	2.4. Terminology
	2.5. Provider and Operator abbreviation
	2.6. Charging topology
	2.7. Variable names
	2.8. Cardinality
	2.9. Data Retention
	2.9.1. Between OCPI version

	3. Supported Topologies
	3.1. Peer-to-peer
	3.2. Multiple peer-to-peer connections
	3.3. Peer-to-peer multiple the same roles
	3.4. Peer-to-peer dual roles
	3.5. Peer-to-peer mixed roles
	3.6. Multiple peer-to-peer
	3.7. Platforms via Hub
	3.8. Platforms via Hub and direct

	4. Transport and format
	4.1. JSON / HTTP implementation guide
	4.1.1. Security and authentication
	4.1.2. Authorization header
	4.1.3. Pull and Push
	4.1.4. Request format
	4.1.4.1. GET
	4.1.4.2. PUT
	4.1.4.3. PATCH

	4.1.5. Client Owned Object Push
	4.1.5.1. Errors

	4.1.6. Client Owned Object Pull
	4.1.7. Response format
	4.1.7.1. Example: Version information response (list of objects)
	4.1.7.2. Example: Version details response (one object)
	4.1.7.3. Example: Tokens GET Response with one Token object. (CPO end-point) (one object)
	4.1.7.4. Example: Tokens GET Response with list of Token objects. (eMSP end-point) (list of objects)
	4.1.7.5. Example: Response with an error (contains no data field)

	4.1.8. Non-specified JSON fields
	4.1.9. Message Routing
	4.1.9.1. Platforms
	4.1.9.2. Message Routing Headers
	4.1.9.3. Broadcast Push
	4.1.9.4. Open Routing Request
	4.1.9.5. GET All via Hubs
	4.1.9.6. Overview of required/optional routing headers for different scenarios
	4.1.9.7. GET All via Hubs
	4.1.9.8. Timestamps and Objects send via Hubs

	4.1.10. No data available

	4.2. Unique message IDs
	4.3. Interface endpoints
	4.4. Offline behaviour

	5. Status codes
	5.1. 1xxx: Success
	5.2. 2xxx: Client errors
	5.3. 3xxx: Server errors
	5.4. 4xxx: Hub errors

	6. Versions module
	6.1. Version information endpoint
	6.1.1. Data
	6.1.2. Version class
	6.1.3. GET
	6.1.3.1. Example

	6.2. Version details endpoint
	6.2.1. Data
	6.2.2. Endpoint class
	6.2.3. InterfaceRole enum
	6.2.4. ModuleID OpenEnum
	6.2.5. VersionNumber OpenEnum
	6.2.5.1. Custom Modules

	6.2.6. GET
	6.2.6.1. Examples

	7. Credentials module
	7.1. Use cases
	7.1.1. Registration
	7.1.2. Updating to a newer version
	7.1.3. Changing endpoints for the current version
	7.1.4. Updating the credentials and resetting the credentials token
	7.1.5. Errors during registration
	7.1.6. Required endpoints not available

	7.2. Interfaces and endpoints
	7.2.1. GET Method
	7.2.2. POST Method
	7.2.3. PUT Method
	7.2.4. DELETE Method

	7.3. Object description
	7.3.1. Credentials object
	7.3.2. Examples

	7.4. Data types
	7.4.1. CredentialsRole class

	8. Locations module
	8.1. Flow and Lifecycle
	8.1.1. No public charging or roaming
	8.1.2. Group of Charge Points
	8.1.3. OCPP 1.x Charge Points with multiple connectors per EVSE

	8.2. Interfaces and endpoints
	8.2.1. Sender Interface
	8.2.1.1. GET Method

	8.2.2. Receiver Interface
	8.2.2.1. GET Method
	8.2.2.2. PUT Method
	8.2.2.3. PATCH Method

	8.3. Object description
	8.3.1. Location Object
	8.3.1.1. Example public charging location
	8.3.1.2. Example destination charging location
	8.3.1.3. Example destination charging location not published, but paid guest usage possible
	8.3.1.4. Example charging location with limited visibility
	8.3.1.5. Example private charge point with eMSP app control
	8.3.1.6. Example charge point in a parking garage with opening hours

	8.3.2. EVSE Object
	8.3.3. Connector Object
	8.3.4. Parking object

	8.4. Data types
	8.4.1. AdditionalGeoLocation class
	8.4.2. BusinessDetails class
	8.4.3. Capability OpenEnum
	8.4.4. ConnectorCapability OpenEnum
	8.4.5. ConnectorFormat enum
	8.4.6. ConnectorType OpenEnum
	8.4.7. EnergyMix class
	8.4.7.1. Examples

	8.4.8. EnergySource class
	8.4.9. EnergySourceCategory enum
	8.4.10. EnvironmentalImpact class
	8.4.11. EnvironmentalImpactCategory OpenEnum
	8.4.12. EVSEParking class
	8.4.13. EVSEPosition enum
	8.4.14. ExceptionalPeriod class
	8.4.15. Facility OpenEnum
	8.4.16. GeoLocation class
	8.4.17. Hours class
	8.4.17.1. Example: 24/7 open with exceptional closing.
	8.4.17.2. Example: Opening Hours with exceptional closing.
	8.4.17.3. Example: Opening Hours with exceptional opening.

	8.4.18. Image class
	8.4.19. ImageCategory OpenEnum
	8.4.20. ParkingDirection enum
	8.4.21. ParkingRestriction OpenEnum
	8.4.22. ParkingType OpenEnum
	8.4.23. PowerType enum
	8.4.24. PublishTokenType class
	8.4.25. RegularHours class
	8.4.25.1. Example

	8.4.26. Status enum
	8.4.27. StatusSchedule class
	8.4.28. VehicleType OpenEnum

	9. Sessions module
	9.1. Flow and Lifecycle
	9.1.1. Push model
	9.1.2. Pull model
	9.1.3. Set: Charging Preferences
	9.1.4. Reservation

	9.2. Interfaces and Endpoints
	9.2.1. Sender Interface
	9.2.1.1. GET Method
	9.2.1.2. PUT Method

	9.2.2. Receiver Interface
	9.2.2.1. GET Method
	9.2.2.2. PUT Method
	9.2.2.3. PATCH Method

	9.3. Object description
	9.3.1. Session Object
	9.3.1.1. Examples

	9.3.2. ChargingPreferences Object

	9.4. Data types
	9.4.1. ChargingPreferencesResponse enum
	9.4.2. ProfileType enum
	9.4.3. SessionStatus enum

	10. CDRs module
	10.1. Flow and Lifecycle
	10.1.1. Credit CDRs
	10.1.2. Push model
	10.1.3. Pull model

	10.2. Interfaces and Endpoints
	10.2.1. Sender Interface
	10.2.1.1. GET Method

	10.2.2. Receiver Interface
	10.2.2.1. GET Method
	10.2.2.2. POST Method

	10.3. Object description
	10.3.1. CDR Object
	10.3.1.1. Example of a CDR

	10.4. Data types
	10.4.1. AuthMethod enum
	10.4.2. CdrDimension class
	10.4.3. CdrDimensionType enum
	10.4.4. CdrLocation class
	10.4.5. CdrToken class
	10.4.6. ChargingPeriod class
	10.4.7. SignedData class
	10.4.8. SignedValue class

	11. Tariffs module
	11.1. Flow and Lifecycle
	11.1.1. Push model
	11.1.2. Pull model

	11.2. Interfaces and Endpoints
	11.2.1. Sender Interface
	11.2.1.1. GET Method

	11.2.2. Receiver Interface
	11.2.2.1. GET Method
	11.2.2.2. PUT Method
	11.2.2.3. DELETE Method

	11.3. Object description
	11.3.1. Tariff Object
	11.3.1.1. Examples

	11.4. Data types
	11.4.1. DayOfWeek enum
	11.4.2. PriceComponent class
	11.4.2.1. Example Tariff

	11.4.3. PriceLimit class
	11.4.4. ReservationRestrictionType enum
	11.4.5. TariffElement class
	11.4.6. TariffDimensionType enum
	11.4.7. TariffRestrictions class
	11.4.7.1. Example: Tariff with max_power Tariff Restrictions
	11.4.7.2. Example: Tariff with max_duration Tariff Restrictions

	11.4.8. TariffType enum
	11.4.9. TaxIncluded enum

	12. Tokens module
	12.1. Flow and Lifecycle
	12.1.1. Push model
	12.1.2. Pull model
	12.1.3. Real-time authorization

	12.2. Interfaces and endpoints
	12.2.1. Receiver Interface
	12.2.1.1. GET Method
	12.2.1.2. PUT Method
	12.2.1.3. PATCH Method

	12.2.2. Sender Interface
	12.2.2.1. GET Method
	12.2.2.2. POST Method

	12.3. Object description
	12.3.1. AuthorizationInfo Object
	12.3.2. Token Object
	12.3.2.1. Examples

	12.4. Data types
	12.4.1. AllowedType enum
	12.4.2. EnergyContract class
	12.4.3. LocationReferences class
	12.4.4. TokenType OpenEnum
	12.4.5. WhitelistType enum

	13. Commands module
	13.1. Flow
	13.2. Interfaces and endpoints
	13.2.1. Receiver Interface
	13.2.1.1. POST Method
	13.2.1.2. Request Body

	13.2.2. Sender Interface
	13.2.2.1. POST Method
	13.2.2.2. Request Body

	13.3. Object description
	13.3.1. CancelReservation Object
	13.3.2. CommandResponse Object
	13.3.3. CommandResult Object
	13.3.4. ReserveNow Object
	13.3.5. StartSession Object
	13.3.6. StopSession Object
	13.3.7. UnlockConnector Object

	13.4. Data types
	13.4.1. CommandResponseType enum
	13.4.2. CommandResultType enum
	13.4.3. CommandType OpenEnum

	14. ChargingProfiles module
	14.1. Smart Charging Topologies
	14.1.1. The eMSP generates ChargingProfiles.
	14.1.2. The eMSP delegated Smart Charging to SCSP.
	14.1.3. The CPO delegated Smart Charging to SCSP.

	14.2. Use Cases
	14.3. Flow
	14.3.1. Example of setting/updating a ChargingProfile by the Sender (typically the SCSP or eMSP)
	14.3.2. Example of a setting/updating a ChargingProfile by the SCSP via the eMSP
	14.3.3. Example of a removing/clearing ChargingProfile sent by the Sender (typically the eMSP or SCSP)
	14.3.4. Example of a removing/clearing ChargingProfile send by the SCSP via the eMSP
	14.3.5. Example of a GET ActiveChargingProfile send by the Sender (typically the eMSP or SCSP)
	14.3.6. Example of a GET ActiveChargingProfile send by the SCSP via eMSP
	14.3.7. Example of the Receiver (typically the CPO) sending an updated ActiveChargingProfile
	14.3.8. Example of the Receiver (typically the CPO) sending an updated ActiveChargingProfile to the SCSP via the eMSP

	14.4. Interfaces and endpoints
	14.4.1. Receiver Interface
	14.4.1.1. GET Method
	14.4.1.2. PUT Method
	14.4.1.3. Request Body
	14.4.1.4. DELETE Method

	14.4.2. Sender Interface
	14.4.2.1. POST Method
	14.4.2.2. Request Body
	14.4.2.3. Response Body
	14.4.2.4. PUT Method
	14.4.2.5. Request Body
	14.4.2.6. Response Body

	14.5. Object description
	14.5.1. ChargingProfileResponse Object
	14.5.2. ActiveChargingProfileResult Object
	14.5.3. ChargingProfileResult Object
	14.5.4. ClearProfileResult Object
	14.5.5. SetChargingProfile Object

	14.6. Data types
	14.6.1. ActiveChargingProfile class
	14.6.2. ChargingRateUnit enum
	14.6.3. ChargingProfile class
	14.6.4. ChargingProfilePeriod class
	14.6.5. ChargingProfileResponseType enum
	14.6.6. ChargingProfileResultType enum

	15. HubClientInfo module
	15.1. Scenarios
	15.1.1. Another Party becomes CONNECTED
	15.1.2. Another Party goes OFFLINE
	15.1.3. Another Party becomes PLANNED
	15.1.4. Another Party becomes SUSPENDED

	15.2. Flow and Life-cycle
	15.2.1. Push model
	15.2.2. Pull model
	15.2.3. Still alive check.

	15.3. Interfaces
	15.3.1. Receiver Interface
	15.3.1.1. GET Method
	15.3.1.2. PUT Method

	15.3.2. Sender Interface
	15.3.2.1. GET Method
	15.3.2.2. Request Parameters
	15.3.2.3. Response Data

	15.4. Object description
	15.4.1. ClientInfo Object

	15.5. Data types
	15.5.1. ConnectionStatus enum

	16. Payments module
	16.1. Usage Flows
	16.2. Terminal Assignment
	16.3. Terminal Activation
	16.4. Transaction
	16.5. Interfaces and Endpoints
	16.5.1. Sender Interface
	16.5.1.1. Terminals Interface
	16.5.1.2. Financial Advice Confirmation Interface
	16.5.1.3. GET Terminals Method
	16.5.1.4. GET Terminal Method
	16.5.1.5. PATCH Terminal Method
	16.5.1.6. PUT Terminal Method
	16.5.1.7. POST Activate Terminal Method
	16.5.1.8. POST Deactivate Terminal Method
	16.5.1.9. GET Financial Advice Confirmations Method
	16.5.1.10. GET Financial Advice Confirmation Method

	16.5.2. Receiver Interface
	16.5.2.1. Terminals Interface
	16.5.2.2. Financial Advice Confirmation Interface
	16.5.2.3. GET Terminal Method
	16.5.2.4. POST Terminal Method
	16.5.2.5. GET Financial Advice Confirmation Method
	16.5.2.6. POST Financial Advice Confirmation Method

	16.6. Object description
	16.6.1. Terminal Object
	16.6.1.1. Examples

	16.6.2. Financial Advice Confirmation Object
	16.6.2.1. Examples

	16.7. Data types
	16.7.1. InvoiceCreator enum
	16.7.2. CaptureStatusCode enum

	17. Types
	17.1. class
	17.2. enum
	17.3. OpenEnum type
	17.4. CiString type
	17.5. DateTime type
	17.6. DisplayText class
	17.7. number type
	17.8. Price class
	17.9. TaxAmount class
	17.10. Role enum
	17.11. string type
	17.12. URL type

	18. Changelog
	18.1. Changes between 2.2.1-d2 and 2.3.0
	18.2. Changes between 2.2.1 and 2.2.1-d2
	18.3. Changes between OCPI 2.2 and 2.2.1
	18.4. Changes between OCPI 2.1.1 and 2.2

