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Abstract

Enabling machines to take actions and fulfill diverse human goals constitutes the most long-
standing objective of Artificial Intelligence (Al) research. This thesis addresses the problem of
developing Al agents in open-world environments characterized by unbounded states, actions, and
broad goal specifications—the ultimate objective in Al agent development.

A core challenge for developing such versatile agents in open-world tasks lies in effective goal
transfer (i.e., extrapolating to diverse unseen goals): Classic Al agents operate exclusively within
structured logic worlds, while mapping environment dynamics and goals into logic symbols in
open-world tasks is extremely challenging, if not impossible; Agents based on reinforcement learning
(RL) specify goals as reward functions and are typically only optimized to achieving a fixed goal
(e.g., playing Go or cleaning a table). Extrapolating to new goals would require specifying new
reward functions and optimization against them.

We advocate for explicitly modeling goals in natural language in Al agents. This not only creates
a friendly interface between humans and agents, but more importantly, it also allows agents to
extrapolate to new goals more easily: imagine an agent that can “water plants in the kitchen” and
“fold laundry in the bedroom”—ideally, the agent should understand and execute “water plants in
the bedroom” by composing these concepts without requiring additional training for this new goal.
Particularly, there are two core components that contribute to extrapolation with natural language

modeling: 1) Natural language modeling produces a structure for the goal space, including similarity
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measurements, compositions, efc. 2) Prior knowledge encoded in natural language can facilitate the
mapping from goal to policy.

We detail our discussions in two parts: Part I focuses on providing insights into how modeling
natural language goals helps in extrapolation. Specifically, leveraging the knowledge base (KB)
environment as a testbed, we first establish a benchmark that systematically defines extrapolating to
new goals at three levels: i.i.d., compositional, and zero-shot extrapolation, which are determined
based on the relationship between the training data and test data. Our evaluation using this benchmark
shows the critical role of pre-trained language models in goal modeling and of constrained decoding
and discrimination in mapping goals to actions. These findings are further reinforced by two
follow-up methods that enhance extrapolation within the KB environment.

However, agents in the KB environment operate with a strong assumption that the goal description
and available actions are of a similar abstraction level. This strong assumption does not always hold.
For example, in a household setting, a robot instructed to “make a pizza” probably does not come
with an atomic action called make_pizza. To handle this, we go one step further in Part II, in
which we investigate ways to leverage prior knowledge encoded in large language models (LLMs) to
boost the mapping from goal to policy, without using any training data. We discuss two works. First,
we introduce how to use natural language prior to enhance policy greedily in the KB and database
environments. Second, we shift to the more complex real-world website environment and show that
we can also use natural language prior for model-based planning, i.e., using LLMs to simulate a
world model for the Internet and conduct systematic exploration within the simulation.

With the work presented in this thesis, we demonstrate the critical role of natural language
modeling in developing extrapolative agents in open-world environments. Beyond serving as a
communication interface, natural language enables effective modeling of the goal space and provides

a prior for the mapping between goals and policies. However, this thesis is just a beginning, more
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future breakthroughs to incorporate natural language capability more seamlessly into the RL or
classic agent framework are yet to come. Finally, the more generalizable statement of this thesis
is that policies should be grounded in a concept space (i.e., concept-grounded policies), whether
derived from language learning or not." The fundamental challenge in Al research remains how to

effectively form concept spaces that mirror human cognitive structures.

!This might sound conflicting with the previous statement, but it is not. The reality is that currently we may not have a
better way to derive human concepts than directly learning from massive language corpora.
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Chapter 1: Introduction

Enabling machines to comprehend various goals provided by humans and correspondingly take

actions has been the most long-standing goal in Artificial Intelligence (Al) research (Figure 1.1).

Instructlon Action
PT—
Response Feedback
Human Agent Environment

Figure 1.1: A high-level illustration of the concept of an Al agent. The agent accomplishes goals
specified by a human by interacting with a target environment, optionally with a human in the loop.

Research on Al agents starts with rule-based methods with hand-crafted code to define agent
behavior (e.g., Xcon [105], GPS [113], and DeepBlue [20]). This reliance on manual effort makes it
difficult to handle complex real-world environments. As a result, early research has focused on highly
specialized domains, such as computer system configuration [105], and simple game environments
whose dynamics are guided by a small set of rules, such as chess [20] or puzzles [113]. More recently,
Al agent research has shifted towards reinforcement learning (RL), where the agent learns its policy
through trial and error by interacting with the environment. Compared with rule-based methods,

the RL-based approach enables agents to handle more dynamic and complex environments, such



as Atari games [109], as they can self-evolve based on accumulated experience rather than relying
solely on pre-defined rules. RL has also led to major breakthroughs, such as achieving superhuman
performance in Go (i.e., AlphaGo [152]). However, a critical gap is that much of the existing research,
whether rule-based or RL-based, centers on agents with narrowly defined objectives (e.g., game
playing). This thesis aims to narrow this gap and focus on how to better develop agents that can serve
diverse goals in open-world tasks. Presumably, Al agents capable of serving open-world tasks may
become one of humanity’s most significant technological innovations, with unprecedented autonomy

and flexibility.

1.1 Open-World Tasks

Although there may be no universal agreement on the definition of open-world tasks [187], this
thesis will try to establish a clear scope of our focus. In particular, this thesis mainly uses the term
open-world tasks to contrast with typical settings featured in classic logic-based agents or agents based
on RL with bounded states, actions, and fixed goals. In classic logic-based agents, both environmental
dynamics and goals should be modeled using logic symbols, and this modeling is usually done with
the manual effort of human experts (e.g., Xcon [105], GPS [113], and DeepBlue [20]). RL agents
may relax the constraint on modeling environment dynamics; they typically focus only on fixed
goals specified through reward functions (e.g., playing Go [152]).> Note that, there are also RL
environments support various goals, such as navigating to different locations [3] or manipulating
different objects on a table [188]. However, these tasks typically operate within a constrained
environment (e.g., a constrained table manipulation environment) and still feature highly limited
action space and homogeneous goal space (e.g., goals may only differ in the target location to reach

or the target object to manipulate). Additionally, the environment can directly signal to the agent

There is also model-based RL, however, the point here is that RL does not always require modeling the environment
dynamics like classic Al agents do.



whether the goal has been achieved, which is also a strong assumption that is difficult to satisfy in
real-world environments. As a result, these tasks are still often referred to as closed-world tasks.
We consider open-world tasks as involving diverse, rather than fixed, goals and requiring
semantic-rich actions in real-world environments. In these environments, it is difficult—if possible at
all—to formally characterize using symbols whether a goal has been achieved (unlike, for example,
mathematical proofs, which can be formalized within the Lean environment [37] that directly verifies
whether the proof is valid). Based on our definition, on the one hand, tasks like playing Go & Chess,
formal theorem proving, or table manipulation all fall out of the scope of open-world tasks as they
fail to meet one or more of our requirements. On the other hand, many things may fall into our loose
definitions, e.g., robots capable of performing a wide variety of chores in the physical world, agents
that can answer various questions over a schema-rich real-world knowledge base (KB), or agents that
seek diverse information from the Internet. In all these examples, the agent must handle a range of
goals using actions from a highly semantic-rich action space. In addition, these agents operate in
environments that may evolve over time and require them to determine when goals are achieved on
their own rather than passively receiving signals from the environment. In this thesis, we will mainly

focus on tasks within real-world digital environments, including KBs, databases, and websites.

1.2 Motivation

How should we approach the open-world tasks that we discussed above? Due to the massive goal
space in open-world tasks, successfully handling them requires the agent to effectively extrapolate to
novel goals—here we briefly define extrapolation as handling a new goal when the agent already

knows how to achieve some seed goals.’

31t does not really matter how the agent manages to learn the seed goals, be it RL, supervised learning, or even
prompting. This is orthogonal to our discussion.
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Figure 1.2: An intuitive illustration of our motivation. In a regular RL setting, different policies (e.g.,
m1, o, ...) are learned in isolation, each optimized according to its own specific reward function.
This makes extrapolating to new goals non-trivial. However, if the agent can learn to capture the
structure of the goal space and build the mapping function for some seed goal-policy pairs, the agent
may potentially extrapolate to a new goal ¢/, given the relationship among ¢’ and the seed goals in
the goal space using the same mapping function.

In regular RL settings, the goal is (implicitly) specified through a reward function r. The agent’s
objective is to learn a policy 7 € II: § — A that maximizes the expected cumulative discounted
reward defined with 7, where S and A denote the state and action space by convention. However, in
this standard setting, the policy 7 is parameterized solely over states S, implying that the learned
policy is restricted to a fixed goal and cannot generalize across different goals. To address this
limitation and develop agents for open-world tasks, goal-conditioned RL. (GCRL)—which learns a
mapping from S x G to A—has emerged as a promising solution [140, 5, 131, 159, 188, 96]. Such
goal parameterization results in a single policy that generalizes across the goal space G.

In this thesis, we advocate for explicitly modeling the goal space to achieve better extrapolation,
though not necessarily through RL. The intuition of explicit goal modeling is illustrated in Figure 1.2.
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By modeling the goal space, we aim to achieve two objectives: 1) ensuring that similar goals share
similar policies, and 2) capturing the inherent compositional properties of goals to enable systematic
extrapolation. Specifically, there are two core components for achieving this. First, we need to
decide on a concrete form of the goal space (e.g., natural language commands, images) along with
a representation learning model M : G — Z that can preserve the structure of GG in a latent space
Z. Second, we need a mapping function f: G — II that maps from the goal space G to the policy
space I1.4 >

What kind of form the goal space should take? Previous work has tried to design goal specifica-
tions with feature vectors [131], images [111], or video demos [188]. However, they are typically
restricted to highly constrained environments (e.g., table manipulation tasks with a small set of
primitives [188, 131]) due to the limited expressivity of their specifications. To better handle the com-
plexity and diversity in open-world tasks, this thesis argues for the use of natural language for goal
specifications. There are two main reasons: 1) first, natural language goal representations g € G,
naturally provide rich semantics through compositions; 2) modern language models, pre-trained on
massive corpora, excel at modeling natural language goals by preserving similarity relationships and
compositional structure and can thus serve as an ideal choice for M. By modeling goals in natural
language, the agent is expected to extrapolate to novel goals by exploiting the structural and semantic
similarities encoded in natural language. For example, the compositional nature of language allows
an agent that has learned to perform tasks like “water plants in kitchen” and “fold clothes in bedroom”
to systematically extrapolate to novel combinations such as “water plants in bedroom” without a

dedicated training process.

*G — Mequals G — (S — A), which further equals G' x S — A.

3Note that, f typically comprises M as a component (i.e., to first map from G to Z), though in some architectures
these components may not be clearly separable.



Regarding the mapping function f, within any single agent implementation, we assume the same
function for all goals in this thesis; however, we acknowledge that a mapping function that works
well for seed goals may not always extrapolate effectively to new goals. We discuss this in Chapter 7

and leave it to the future work.

1.3 Part I: Understanding Extrapolation Conditioned on Natural Language Goals

To fully understand the potential of goal extrapolation through modeling goals in natural language,
we first need a way to systematically evaluate extrapolation. Specifically, it requires to 1) first force
some seed goals to the agent, and 2) qualitatively define the relation between new goals and seed
goals. In Chapter 2, we discuss our solution to such a systematic evaluation. In particular, we choose
knowledge base question answering (KBQA) as our target scenario due to the semantic-rich action
space (i.e., relations and types) of modern KBs and the diverse goals (i.e., questions) over the KB.
We collect a new benchamark, GRAILQA, with over 60K tasks over the KB and use around 40K
of them as the training data so as to force seed goals into the agent. The clear structure of the KB
further allows us to clearly define three levels of extrapolation based on the relation between new
goals and the goals in our training data: i.i.d., compositional, and zero-shot. As a result, GRAILQA
meet both the two requirements and can serve as a valid testbed to investigate extrapolation with
natural language goals. Based on our experiments on GRAILQA, we gain key insights for effective
extrapolation. First, pre-trained language models can serve as a much better M, particularly for non-
i.i.d. settings, compared with word embeddings like GloVe [130]. Second, regarding the choice of f,
unconstrained decoding of actions underperforms constrained decoding, which in turn underperforms
discrimination (or ranking).

Built upon the two key insights, we introduce new methods that can better extrapolate agents to

new goals on GRAILQA. Specifically, in Chapter 3, we explore the use pre-trained language models



for M along with a more advanced constrained decoding scheme compared with the limited baseline
on GRAILQA. The seamless integration of pre-trained language models and constrained decoding
leads to large improvement on GRAILQA. In Chapter 4, we further propose a general framework
that can use any type of language models for discrimination, whether encoder-only, decoder-only,
or encoder-decoder language models. Also, our method represents the first work that successfully
adapts large language models (LLMs) to handle diverse goals over the KB. Even two years later, it
remains one of the best performing methods on GRAILQA today.

Our results demonstrate that with modern language models’ proficiency in processing natural
language, agents can effectively extrapolate to novel goals specified in natural language. This insight
points to a promising future: we may be able to optimize agents using a small set of simple tasks and
expect them to extrapolate compositional goals, which potentially alleviates the data scarcity issue in

training agents for complex tasks.

1.4 Part II: Facilitating Goal-Policy Mapping through Natural Language Prior

A key limitation of the KBQA task discussed in Part I is that the goal description typically
operates at a similar level of abstraction as the action space. For example, answering the question
“who painted the painting that James likes?” requires exactly two actions (i.e., relations): paints
and 1ikes. However, such assumption may not hold in many other open-world tasks. For example,
if you instruct a household robot to “make a pepperoni pizza,’ itis not very likely that the
robot has an action called make_pepperoni_pizza. Instead, it must decompose this high-level
goal into numerous primitive actions such as gathering ingredients, preparing the dough, applying
sauce, adding toppings, and baking at the appropriate temperature. As a result, there may not always
be a direct mapping between the goal space and the policy space as in KBQA. This also means

constructing f can be more challenging in open-world tasks without such a strong assumption. In



Part II, we focus on building f with relaxed assumptions, i.e., no direct mapping between goals and
actions and less (or zero) training data. Particularly, we discuss how to tackle this challenge with
the recent advances in LLMs. LLMs encode abundant procedural knowledge about diverse tasks,
which can facilitate decision making and thus the construction of f in many scenarios. For example,
given the goal “make a pepperoni pizza,” an LLM can readily decompose it into the necessary
subtasks—with natural language descriptions—as we discussed previously.

We explore how to effectively leverage such prior offered by LLMs’ language proficiency to
effectively build the mapping f from two different angles. In Chapter 5, we first discuss how to
effectively apply language-conditioned policy (i.e., CoT reasoning [184]) in the KB and database
environment. Our method achieves even better performance than the methods discussed in Part I
on a particularly challenging subset of GRAILQA when not using any training data. Additionally,
we further show that the encoded natural language prior can also be used for model-based planning.
Specifically, we present a new framework that simulates environment dynamics via natural language
description in the complex web environment (i.e., given an action and the current observation, output
the outcome of the action). The simulated environment enables the agent to effectively search for an
optimal sequence of actions within simulation. The proposed framework, WEBDREAMER, achieves
considerable improvement compared to the reactive baseline w/o search and performs comparably to

conducting search directly within a browser with better efficiency and safety.

1.5 Contributions

We briefly summarize the contributions of this thesis as follows:

1. We formulate the problem of extrapolating agents to diverse goals in open-world tasks and

highlight two core components: M and f;



2. We present a benchmark to systematically evaluate extrapolation conditioned on natural

language goals, using KBQA as the testbed;

3. We propose new methods that can better extrapolate agents to diverse goals over the KB based
on the insights gained from our benchmark, including the first method that successfully adapts

LLMs to the KB environment;

4. We show the potential of language-conditioned policy in improving f in complex real-world

environments like KB and database using LLMs;

5. We lay out the first model-based planning framework for the real-world web environment with

natural language prior encoded in LLMs, which further improves f.

A brief overview of the core design in each chapter is listed in Table 1.1.

M f
word embeddings, unconstrained & constrained decoding,

Chapter 2 e

encoder-only language models discrimination

encoder-only execution-based
Chapter 3 language models constrained decoding
Chapter 4 all types of discrimination
language models

Chapter 5 large language models language-conditioned policy
Chapter 6 large language models model-based planning

Table 1.1: A brief overview of the core design in different chapters.

In conclusion, this thesis aims to show the critical role of natural language in developing
extrapolative agents. Specifying goals in natural language essentially regularizes the agent’s behavior

by anchoring it to the concept space derived from language models, which have been pre-trained on



massive corpora. In addition, the natural language prior encoded in LLMs can be effectively used to
improve both policy and planning, which can result in a stronger mapping function f. We hope these
insights can help agent researchers with a strong footing in natural language processing and LLMs to

better understand their role and responsibility in agent research.
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Part I: Understanding Extrapolation
Conditioned on Natural Language Goals
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Chapter 2: Systematically Evaluate Extrapolation Using KBQA

In this chapter, we present a comprehensive testbed that helps us to systematically investigate
the extrapolation behavior of modern agents when dealing with diverse goals specified in natural
language. Systematic evaluation requires us to first force some seed tasks to the agent and then
qualitatively define different types of extrapolation based on the relation between new goals and seed
goals. In particular, we curate a large dataset over the knowledge base (KB) environment, leaving
out 40K data for training for force the seed goals. Then, we systematically divide extrapolation
into three types: i.i.d., compositional, and zero-shot. This fine-grained categorization allows us
to gain deeper insight into extrapolation behaviors in different scenarios. Our findings show that
pre-trained language models are particularly helpful for extrapolation under non-i.i.d. settings
compared to pre-trained word embeddings. Presumably, language models can do better at extracting
the concept space entailed in natural language. In addition, we demonstrate that discrimination serves
as the optimal choice for the mapping function f, while unconstrained decoding performs the worst,

underperforming both discrimination and constrained decoding.

2.1 Introduction

Question answering on knowledge bases (KBQA) has emerged as a promising technique to pro-

vide unified, user-friendly access to knowledge bases (KBs) and shield users from the heterogeneity

12
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Figure 2.1: On large-scale KBs, collecting sufficient training data for KBQA to ensure i.i.d. dis-
tribution at test time is very difficult, if possible at all. We argue that practical KBQA models
should have three levels of built-in generalization rather than solely relying on training data: (1) i.i.d.
generalization to questions following the training distribution, (2) compositional generalization to
novel compositions of schema items seen in training (marked blue), and (3) zero-shot generalization
to unseen schema items or even domains (marked red). Our definition of generalization is based on
the underlying logical forms (shown as S-expressions). Orthogonally, as illustrated by the examples,
KBQA models should also have strong generalization to linguistic variation. Figure best viewed in
color.

underneath [10, 78, 18, 114]. As the scale and coverage of KBs increase, KBQA is becoming even
more important due to the increasing difficulty of writing structured queries like SPARQL.°

There has been an array of datasets and models for KBQA in recent years [10, 161, 168, 114, 176,
194, 42, 1, 12]. Most existing studies are (implicitly) focused on the i.i.d. setting, that is, assuming
training distribution is representative of the true user distribution and questions at test time will be
drawn from the same distribution. While it is standard for machine learning, it could be problematic
for KBQA on large-scale KBs. First, it is very difficult to collect sufficient training data to cover all
the questions users may ask due to the broad coverage and combinatorial explosion. Second, even

if one strives to achieve that, e.g., by iteratively annotating all user questions to a deployed KBQA

®FREEBASE contains over 100 domains, 45 million entities, and 3 billion facts. GOOGLE KNOWLEDGE GRAPH has
amassed over 500 billion facts about 5 billion entities [163].
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system, it may hurt user experience because the system would keep failing on new out-of-distribution
questions not covered by existing training data in each iteration.

Therefore, we argue that practical KBQA models should be built with strong generalizability to
out-of-distribution questions at test time. More specifically, we propose three levels of generalization:
i.i.d., compositional, and zero-shot (Figure 2.1). In addition to the standard i.i.d. generalization,
KBQA models should also generalize to novel compositions of seen schema items (relations, classes,
functions). For example, if a model has been trained with questions about relations like producer,
staged_here, capacity, classes like Theater, and functions like Gk, it should be able to answer
complex questions involving all these schema items even though this specific composition is not
covered in training. Furthermore, a KBQA model may also encounter questions about schema items
or even entire domains that are not covered in training at all (e.g., TV_Program and program_created)
and needs to generalize in a zero-shot fashion [124].

High-quality datasets are important for the community to advance towards KBQA models with
stronger generalization. In addition to providing a benchmark for all three levels of generalization,
an ideal dataset should also be large-scale, diverse, and capture other practical challenges for KBQA
such as entity linking, complex questions, and language variation. However, existing KBQA datasets
are usually constrained in one or more dimensions. Most of them are primarily focused on the i.i.d.
setting [10, 195, 16, 168]. GRAPHQ [161] and QALD [114] could be used to test compositional
generalization but not zero-shot generalization. They are also relatively small in scale and have
limited coverage of the KB ontology. SIMPLEQ [16] is large but only contains single-relational
questions with limited diversity. A quantitative comparison is shown in Table 2.1.

Therefore, we construct a new large-scale, high-quality dataset for KBQA, GRAILQA (Strongly
Generalizable Question Answering), that supports evaluation of all three levels of generalization.

It contains 64,331 crowdsourced questions involving up to 4 relations and functions like counting,
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comparatives, and superlatives, making it the largest KBQA dataset with complex questions to date.
The dataset covers all the 86 domains in FREEBASE COMMONS, the part of FREEBASE considered
to be high-quality and ready for public use, and most of the classes and relations in those domains.
Furthermore, the questions in our dataset involve entities spanning the full spectrum of popularity
from United_States_of_America to, e.g., Tune_Hotels — a small hotel chain mainly operated in
Malaysia. To make the dataset even more diverse and realistic, we collect common surface forms
of entities, e.g., “Obama” and “President Obama” for Barack_Obama, via large-scale web mining
and crowdsourcing and use them in the questions. Finally, we develop multiple quality control
mechanisms for crowdsourcing to ensure dataset quality, and the final dataset is contributed by 6,685
crowd workers with highly diverse demographics.

In addition, we also study important factors towards stronger generalization and propose a novel
KBQA model based on pre-trained language models like BERT [40]. We first show that our model
performs competitively with existing models: On GRAPHQ, our model sets a new state of the art,
beating prior models by a good margin (3.5%). On GRAILQA, our model significantly outperforms
a state-of-the-art KBQA model. More importantly, the combination of our dataset and model enables
us to thoroughly examine several challenges in KBQA such as search space pruning and language-
ontology alignment. The comparison of different variants of our model clearly demonstrates the
critical role of BERT in compositional and zero-shot generalization. To the best of our knowledge,
this work is among the first to demonstrate the key role of pre-trained contextual embeddings such as
BERT at multiple levels of generalization for KBQA. Finally, we also show that our dataset could
serve as a valuable pre-training corpus for KBQA in general: pre-trained on our dataset, our model
can generalize to other datasets (WEBQ) and reach similar performance fine-tuned with only 10%
of the data, and can even generalize in a zero-shot fashion across datasets. To summarize, the key

contributions of this chapter are three-fold:
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* We present the first systematic study on three levels of generalization, i.e., i.i.d., compositional,

and zero-shot, for KBQA and discuss their importance for practical KBQA systems.

* We construct and release a large-scale, high-quality KBQA dataset containing 64K questions
with diverse characteristics to support the development and evaluation of KBQA models with

stronger generalization at all three levels.

* We propose a novel BERT-based KBQA model with competitive performance and thoroughly
examine and demonstrate the effectiveness of pre-trained contextual embeddings in general-
ization. We also present fine-grained analyses which point out promising venues for further

improvement.

2.2 Background

2.2.1 Knowledge Base

A knowledge base consists of two parts, an ontology O C C x R x C and the relational facts
KCEXxRx(CUEUL), where Cis a set of classes, £ is a set of entities, L is a set of literals and
‘R is a set of binary relations. An example is shown in Figure 2.2, where the top part is a snippet
of the FREEBASE ontology and the bottom part is some of the facts. We base our dataset on the
latest version of FREEBASE. Although FREEBASE has stopped getting updated, it is still one of the
largest publicly available KBs, and its high quality from human curation makes it a solid choice
for benchmarking KBQA. We use its COMMONS subset which contains 86 domains, 2,038 classes,

6,265 relations, and over 45 million entities.

2.2.2 Three Levels of Generalization: Definition

The definitions are based on the underlying logical form of natural language questions. We
denote S as the full set of schema items that includes R, C, and optionally a set of language-specific
constructs from the meaning representation language (e.g., SPARQL). In our case we include the set
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Figure 2.2: Our data collection pipeline with illustration of how one example question in Figure 2.1
is derived: (a) Generate canonical logical forms from the given KB up to the specified complexity.
(b) Experts annotate canonical questions for the canonical logical forms. Entities and literals are
enclosed in brackets so that they can be easily replaced. (c) Get high-quality and diverse paraphrases
via crowdsourcing. (d) Generate different logical forms from each canonical logical form with
different entity groundings. (e) Sample different combinations of logical form and paraphrase to
generate the final questions. We additionally mine common surface forms of entities from the web,
e.g., “Oprah” for oprah_winfrey, and use them in the final questions to make entity linking more
realistic.

of functions (Section 2.3). Note that entities and literals are not included. Denote Sy, as the set of
schema items in any of the training examples and S, that of a question ¢. A qualifying test set Q for

each level of generalization is defined as:

* LLD. generalization: Vq € Q,S; C Si;qin. In addition, the test questions follow the training

distribution, e.g., randomly sampled from the training data.

» Compositional generalization: Vg € Q, S, C Sirqin, however, the logical form of ¢ is not

covered in training.

* Zero-shot generalization: Vg € Q,3s5 € S;, s € S\ Sirain.

The levels of generalization represent the expectation on KBQA models: A model should

minimally be able to handle questions i.i.d. to what it has been trained with. One step further,
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it should also generalize to novel compositions of the seen constructs. Ideally, a model should
also handle novel schema items or even entire domains not covered by the limited training data,
which also includes compositions of novel constructs. By explicitly laying out the different levels of
generalization, we hope to encourage the development of models built with stronger generalization.
Orthogonal to these, practical KBQA models should also have strong generalization to language
variation, i.e., different paraphrases corresponding to the same logical form. The dataset we will

introduce next also puts special emphasis on this dimension.

2.3 Data

2.3.1 Data Collection

Questions Canonical LF Domains Relations Classes Entities Literals Generalization Assumption

WEBQ[10, 195] 4,737 794 56 661 408 2,593 47 iid.
COMPLEXWEBQ[168] 34,689 6,236 61 1,181 501 11,840 996 iid.
SIMPLEQ[16] 108,442 2,004 76 2,004 741 89,312 0 iid.
QALDI[114] 558 558 N/A 254 119 439 28 comp.
GRAPHQ[161] 5,166 500 70 596 506 376 81 comp.
GRAILQA 64,331 4,969 86 3,720 1,534 32585 3239 i.i.d.+ comp.+ zero-shot

Table 2.1: Comparison of KBQA datasets. The number of distinct canonical logical forms (LFs)
provides a view into the diversity of logical structures. For example, even though SIMPLEQ appears
to be the largest, its diversity is limited because it only contains single-relational logical forms
with no function (e.g., over 3,000 questions asking about the place_of_birth of different persons).
Datasets other than GRAILQA are also likely to have test samples including schema items not covered
in training, but that is not sufficient to support systematic evaluation of zero-shot generalization.

[182] propose the OVERNIGHT approach which collects question-logical form pairs with three
steps: (1) generate logical forms from a KB, (2) convert logical forms into canonical questions,
and (3) paraphrase canonical questions into more natural forms via crowdsourcing. [161] extend
the OVERNIGHT approach to large KBs like FREEBASE with algorithms to generate logical forms

that correspond to meaningful questions from the massive space. However, the data collection in
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Question Domain Answer # of Relations Function

Beats of Rage is a series of games made for which platform? Computer Video Game DOS 1 none
‘Which tropical cyclone has affected Palau and part of Hong Kong? Location, Typhoon Sanba 3 none
Meteorology
Marc Bulger had the most yards rushing in what season? Sports, 2008 NFL Season 3 superlative
American Football
How many titles from Netflix have the same genre as The Big Hustle? Media Common 20,104 2 count
‘What bipropellant rocket engine has less than 3 chambers? Spaceflight RD-114 1 comparative
RD-112, ...

Table 2.2: Example questions from GRAILQA.

[161] was entirely done by a handful of expert annotators, which significantly limits its scalability
and question diversity. We build on the approach in [161] and develop a crowdsourcing framework
with carefully-designed quality control mechanisms, which is much more scalable and yield more
diversified questions. As a result, we are able to construct a dataset one order of magnitude larger
with much better coverage of the FREEBASE ontology (Table 2.1). Our data collection pipeline is

illustrated in Figure 2.2.

Canonical logical form generation. We leverage the logical form generation algorithm from [161],
which randomly generates diverse logical forms. The algorithm guarantees some important properties
of the generated logical forms such as well-formedness and non-redundancy. It first traverses the KB
ontology to generate graph-shaped templates that only consist of classes, relations, and functions,
and then ground certain nodes to compatible entities to generate logical forms in their meaning
representation called graph query’. At this stage, we only ground each template with one set
of compatible entities to generate one canonical logical form and use it to drive the subsequent
steps. Following prior work, we generate logical forms containing up to 4 relations and optionally
containing one function selected from counting, superlatives (argmax, argmin), and comparatives

(>, 2, <, <). The exemplar logical form in Figure 2.2 has 3 relations and one function.

"Refer to [161] for the syntax and semantics of graph query.
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Each canonical logical form is validated by a graduate student against the criterion — could we
reasonably expect a real human user to ask this question? We only keep the valid ones, which reduces
the number of artificial questions that are common in other KBQA datasets with generated logical
forms such as COMPLEXWEBQ [168] and SIMPLEQ [16] and makes the dataset more realistic. The

overall approval rate at this step is 86.5%.

Canonical question annotation. Each validated canonical logical form is annotated with a canon-
ical question by a graduate student, which is then cross-validated by another student to ensure its
fidelity and fluency. The graduate students are trained with detailed materials about the annotation
task. To further facilitate the task, we develop a graphical interface which displays an interactive
graphical visualization of the logical form. One can click on each component to see auxiliary
information such as a short description and its domain/class. Annotators are required to enclose

entities and literals in brackets (Figure 2.2).

Crowd-powered paraphrasing. We use Amazon Mechanical Turk to crowdsource paraphrases of
the canonical questions and limit our task to native English speakers with at least 95% task approval

rate. We develop a framework with automated quality control mechanisms that contains three tasks:

1. Paraphrasing. A crowd worker is presented with a canonical question as well as auxiliary
information such as topic entity description and answer to the question, and is tasked to come
up with a plausible and natural paraphrase. Entities and literals enclosed with brackets are
retained verbatim in the paraphrase. The system keeps running until 5 valid paraphrases (Task

2) are obtained for each canonical question. We pay $0.10 per paraphrase.

2. Cross-validation. Each paraphrase is then judged by multiple independent workers (the original
author is excluded) on its fluency and fidelity (i.e., semantic equivalence) to the corresponding
canonical question. Each paraphrase gets 4 judgements on average and those with fidelity
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approval rate below 75% or fluency approval rate below 60% are discarded. Overall 17.4% of
paraphrases are discarded. A worker judges 10 paraphrases a time, one of which is a control
question. We manually craft an initial set of paraphrase-canonical question pairs known to be
good/bad as control questions and gradually expand the set with new pairs validated by crowd
workers. We ask workers to reconsider their validation decision of the whole batch when they
have failed the latent control question, and we found that by doing so spammers or low-quality
workers tend to quit the task and we end up with mostly high-quality workers. We pay $0.15

per batch.

3. Entity surface form mining. We collect a list of common surface forms ranked by frequency
for each entity from FACCI1 [47], which identifies around 10 billion mentions of FREEBASE
entities in over 1 billion web documents from ClueWeb. For example, some common surface
forms (and frequency) for Barack_obama are “obama” (21M), “barack obama” (5.3M), and
“barack hussein obama” (101K). We then ask at least three crowd workers to select true surface
forms from the mined list, and those selected by less than 60% of the workers are discarded.

We pay $0.05 per task.

Grounding and sampling. More logical forms are generated by grounding each canonical logical

form with compatible entity groundings.® We do controlled sampling to generate the final questions:

From the pool of logical forms and paraphrases associated with the same canonical logical form,

we sample one from each pool at a time to generate a question (Figure 2.2). We start with uniform

weights and each time a logical form or paraphrase is selected, its weight is divided by p; and p,,

respectively. We set p; to 2 and p,, to 10 to enforce more linguistic diversity. Finally, we randomly

8 An entity grounding, e.g., (Bob Boyett, 10000), is compatible with a canonical logical form if the re-grounded

logical form yields a non-empty denotation.
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replace entity surface forms with the ones mined in Task 3 (if there is any). This way, we are able to

generate a large-scale dataset with carefully-controlled quality and diversity.

2.3.2 Dataset Analysis

In total we have collected 4,969 canonical logical forms and 29,457 paraphrases (including the
canonical questions). The final dataset contains 64,331 question-logical form pairs after sampling,
which is by far the largest dataset on KBQA with complex questions. We note that such sampling
is a unique feature of GRAILQA because of our data collection design. A detailed comparison
with existing datasets is shown in Table 2.1 and some example questions are shown in Table 2.2.
GRAILQA has significantly broader coverage and more unique canonical logical forms than existing
dataset except COMPLEXWEBQ.? GRAILQA is also the only KBQA dataset that explicitly evaluates
zero-shot generalization (Section 2.5.1). Question distributions over different characteristics are

shown below:

# of Relations Function Answer Cardinality

1 2 3 4 none count super. comp. 1 > 1

44,340 16,610 3,254 127 53,526 3,463 4,111 3,231 44,044 20,287

Quality. As a qualitative study on data quality, we manually analyze 100 randomly sampled canoni-
cal logical forms, their canonical questions, and the associated paraphrases: 3 of the 100 canonical
questions have mismatching meaning with the canonical logical form, mostly due to misinterpreting
the directionality of some relation, and 12 of the 576 paraphrases do not match the corresponding
canonical question, leading to 3% error rate of canonical question annotation, 2.1% error rate of

paraphrasing, and 5.6% error rate overall. All the examined paraphrases are reasonably fluent.

?Logical forms in COMPLEXWEBQ are automatically extended from WEBQ with extra SPARQL statements. This
adds structural diversity but may lead to unnatural questions.
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Linguistic diversity. The dataset is contributed by 11 graduate students and 6,685 crowd workers
with diverse demographics in terms of age group, education background, and gender. A common
concern with crowd-powered paraphrasing as a means of data collection is lack of linguistic diversity
— crowd workers may be biased towards the canonical question [60]. However, that may not be the
case for GRAILQA. The average Jaccard similarity between each paraphrase and the corresponding
canonical question, when all lower-cased, is 0.569 and 0.286 for unigrams and bigrams, respectively.
The average Levenshtein edit distance is 26.1 (with average total length of 50.1 characters). The
same statistics between the paraphrases of the same canonical question are 0.527, 0.257, and 28.2.
The dissimilarity is even higher when excluding entities. We believe this is a decent level of linguistic

diversity and we attribute it to our diverse crowd workers and quality control mechanisms.

Entity linking. GRAILQA also features more realistic and challenging entity linking thanks to our
large-scale mining of entity surface forms. Common types of surface forms include acronym
(“FDA” for Food_and_Drug_Administration), commonsense (“Her Majesty the Queen” for
Elizabeth_11), and colloquial vs. formal (“Obama vs. Romney” for United_States_Presidential
_Election_2012). In general the mined surface forms are the more typical, colloquial way of re-
ferring to an entity than its formal name in the KB, which makes the questions more realistic. We
note that this is an important challenge towards practical KBQA systems but is largely neglected in
existing KBQA datasets. For example, [192] shows that, for the WEBQ dataset, simple fuzzy string

matching is sufficient for named entity recognition (NER) due to the way the dataset is constructed.

2.3.3 Logical Form in S-expression

In addition to graph query, we provide an alternative linearized version of it in S-expressions,
which is needed to apply the mainstream sequence-to-sequence (Seq2Seq) neural models [68, 42,

203]. We find that S-expression provides a good trade-off on compactness, compositionality, and
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readability, but one may choose any other formalism for linearization such as A-DCS [92] or directly
use the corresponding SPARQL queries. Every graph query can be easily converted to an equivalent S-
expression. For example, The graph query in Figure 2.2(d) can be converted into (AND Theater (AND
(GE capacity 10000) (JOIN staged_here (JOIN producer Bob_Boyett)))). Both graph queries
and S-expressions can be easily converted into SPARQL queries to get answers. We will use S-

expressions as logical form in our modeling.

2.4 Modeling

In this section, we discuss some of the challenges arising from non-i.i.d. generalization and
potential solutions. The proposed models, combined with GRAILQA, will enable us to evaluate and
compare different strategies for stronger generalization.

Compositional and zero-shot generalization pose two unique challenges compared with i.i.d.
generalization: large search space and language-ontology alignment. The first challenge is the
significantly larger search space. Under the i.i.d. assumption, a model only needs to consider the
part of the ontology observed during training. For zero-shot generalization, however, one could
not assume that to hold at test time and needs to consider the entire ontology. Models that build
their vocabulary solely from training data (e.g., [203]) would almost certainly fail at zero-shot
generalization. Question-specific search space pruning is thus more important than it is in the i.i.d.
setting. Secondly, a major challenge in KBQA is to build a precise alignment between natural
language and schema items in the ontology in order to understand what each question is asking about.
While it is already important for i.i.d. generalization, it becomes even more critical for non-i.i.d.
generalization: For zero-shot generalization, one needs to understand the unseen schema items in
order for it to possibly handle the corresponding questions. Even for compositional generalization,

where the schema items are covered in training, precise language-ontology alignment is still critical
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in order for the model to generate novel compositions other than something it has memorized in
training. Conventional methods [10, 1, 18] use web mining to build a lexicon from natural language
phrases to KB schema items, which may be biased towards popular schema items. The emergence of
pre-trained contextual embeddings such as BERT [40] provides an alternative solution to building
language-ontology alignment. Next, we propose a BERT-based KBQA model which will enable us

to examine the effectiveness of pre-trained contextual embeddings in non-i.i.d. generalization.

q: Who is the producer of Spamalot?

fq, v, 1)f(q, ¥, 2) [ M;ean ] [ Me:an

( BERT Encoding

[CLS] who is the producer of spamalot ? [SEP] e X
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( BERT Encoding ) @
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Figure 2.3: An overview of using BERT to jointly encode the input question and schema items in the
decoder vocabulary. We evenly split all items in the vocabulary into chunks and concatenate each
chunk with the question one by one. For the purpose of visualization, here we set the chunk size as 2.
The first chunk contains two schema items, theater.theater and architecture.venue.capacity.
For each item in V, we compute its embedding in W by averaging the last layer’s output of BERT
of all its word-pieces. To compute f(q, V), t), we simply take the last layer’s output of BERT in the
first chunk for the ¢-th word-piece of the question. Note that, we show whole words instead of actual
word-pieces in the figure for brevity.

2.4.1 Model Overview

Our goal is to learn a model that maps an input question ¢ = 1, ..., |4 to its corresponding
logical form a = y1, ..., y|4)- The entire model is based on Seq2Seq [165, 8], which is commonly used
in many semantic parsing tasks [42, 68, 66, 52, 204]. Seq2Seq comprises an encoder that encodes

input ¢ into vectors and a decoder that autoregressively output one token ¢’ € V conditioned on the

25



input representation, where V is the decoding vocabulary. Specifically, the conditional probability
p(alq) is decomposed as:

|al

plalg) = [ [ p(vely<t. a), 2.1)
t=1

where y«; = y1, ..., y1—1. Our encoder and decoder are two different recurrent neural networks with
long short-term memory units (LSTM) [61]. LSTM recursively processes one token at each time

step as the following function:

h, = LSTM(h,_1,g,), 2.2)

where g, is the representation of the input token at the ¢-th step, and h;_ is the hidden state from last
time step. During encoding, g, = f(q, V,t), with f being a function takes ¢, V, t as input and returns
the embedding for z;; during decoding, g, = [W],,, which denotes the the embedding corresponding
to y; in the embedding matrix W € R!VI*4. We will elaborate how we use BERT to define fand W
in the next subsection.

During decoding, the model computes the probability for each output token based on the current

hidden state h; and W:

P(Yt|ly<t,q) = [Softmaz(Why)],,. (2.3)

This means we tie the input and output embeddings using W in Seq2Seq terminology. In this
way, we can assign semantic meanings to words from pre-trained embeddings, which can facilitate

the open vocabulary learning [177].
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2.4.2 BERT Encoding

Now we discuss how we use BERT to compute W and f(q, V), t). BERT has demonstrated its
effectiveness in learning good alignment in cross-domain text-to-SQL parsing with its contextual
representation. Specifically, in text-to-SQL, Hwang et al.[66] successfully apply BERT by concate-
nating the question and all vocabulary items together to construct the input for BERT. However, the
vocabulary in KBQA is much larger. Directly doing this will exceed BERT’s maximum input length
of 512 tokens. To address this, we split items from V into chunks and then concatenate each chunk
independently with ¢, and feed them to BERT one by one. Figure 2.3 depicts an example where each
chunk has 2 items from V. Specifically, ¢ is separated with each chunk by a special token “[SEP]”,
and the items inside the same chunk are delimited by *“;”. Then f(q, V, t) can be simply defined as
the ¢-th output from BERT for the first chunk. For W, each row in it is computed by taking average
over BERT’s output for the constituting words of the corresponding item. For example, the row
corresponding to architecture.venue.capacity in W is computed by averaging the output from

BERT for word “architecture”, “venue” and “capacity” in the first chunk as shown in Figure 2.3.

Vocabulary construction. We have not talked about what constitutes ). The most trivial way is
just to include all schema items from KB ontology to deal with zero-shot generalization. However,
this will not only lead to an enormous search space during decoding that makes the prediction very
difficult, but also makes it extremely time-consuming for training as we need to create a large number
of chunks to feed to BERT for every single question. To reduce the size of V, we leverage entities
identified from g as anchors in the KB, and choose to only include KB items that are reachable by at
least one of the anchor entities within 2 hops in KB. We refer to this as vocabulary pruning (VP),
which is applied during both training and inference. This means we have a dynamic V for different

input g. Note that all the identified entities, functions, and syntax constants used in S-expressions are
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also included. We similarly get the representation for an entity based on the output from BERT that

corresponds to its surface form.

2.4.3 Entity Linking

Entity linking in most of the existing KBQA datasets is not a major challenge, and exhaustive
fuzzy string matching [192] may suffice to achieve a reasonable performance. However, the entities
in GRAILQA span the full spectrum of popularity and appear in surface forms mined from the web,
which is more realistic but also makes entity linking more challenging. We use a BERT-based NER
system!® and train it on our training set. For entity disambiguation from the identified mentions, we
simply select the most popular one(s) based on FACC1. As a comparison, we also try Aqqu [9], a
rule-based entity linker using linguistic and entity popularity features and achieves high accuracy on

WEBQ. The entity linking results on GRAILQA is shown as follows: The BERT-based entity linker

Recall Precision F1

Aqqu 77.8 9.7 17.2
BERT 77.0 68.0 72.2

is slightly worse in recall but much better in precision. We will therefore use the BERT-based entity

linker afterwards.

2.4.4 Inference

We propose two different modes of doing inference using our model, namely TRANSDUCTION
and RANKING. For TRANSDUCTION, we simply use the model in the normal way, i.e., use the
model to autoregressively predict one token from V at each time step until the model predicts the

stop token. For RANKING, instead of using Seq2Seq as a generator we use it as a ranker to score

https://github.com/kamalkraj/BERT-NER
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each candidate logical form and return the top-ranked candidate. We employ a simple yet effective
strategy to generate candidate logical forms: We enumerate all logical forms, optionally with a count
function, within 2 hops starting from each entity identified in the question.!! The recall is 80% on
GRAILQA. Questions with superlatives and comparatives often do not have a topic entity and are
therefore not covered. RANKING can prune the search space more effectively than the first one, while

TRANSDUCTION is more flexible and can handle more types of questions.

Effectiveness on existing dataset. Before getting to experiments on our GRAILQA dataset, we
conduct an experiment on the existing dataset GRAPHQ to show the competitive performance of our
model. Our RANKING model achieves an F1 of 25.0%, which significantly outperforms the prior
art SPARQA [164] by 3.5 percent. With this superior performance, we believe our new model is
reasonable to serve as a strong baseline on GRAILQA and support the subsequent investigations on

three levels of generalization.

2.5 Experiments

Overall LLD. Compositional Zero-shot
EM F1 EM F1 EM F1 EM F1
QGG [81] — 36.7 — 40.5 — 33.0 — 36.6
TRANSDUCTION 333 36.8 51.8 53.9 31.0 36.0 25.7 29.3
— VP 26.6 29.6 40.1 42.7 25.6 30.0 20.6 23.4
— BERT 17.6 18.4 50.5 51.6 16.4 18.5 3.0 3.1
— VP — BERT 15.4 16.1 483 49.1 13.5 15.3 1.0 1.3
RANKING 50.6 58.0 59.9 67.0 45.5 53.9 48.6 55.7
— BERT 39.5 45.1 62.2 67.3 40.0 47.8 28.9 33.8

Table 2.3: Overall results. “— VP” denotes without vocabulary pruning. “— BERT” denotes using
GloVe instead of BERT.

"There are prohibitively many candidates with 3 hops.
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2.5.1 Experimental Setup

Data split. We split GRAILQA to set up evaluation for all three levels of generalization. Specifically,
our training/validation/test sets contain about 70%/10%/20% of the data, which correspond to 44,337,
6,763 and 13,231 questions, respectively. For the validation and test sets, 50% of the questions
are from held-out domains not covered in training (zero-shot), 25% of the questions correspond
to canonical logical forms not covered in training (compositional), and the rest 25% are randomly
sampled from training (i.i.d.). The i.i.d. and compositional subsets have the additional constraint that
the involved schema items are all covered in training. For the zero-shot subset, 5 domains are held

out for validation and 10 for test.

Evaluation metrics. We use two standard evaluation metrics. The first one is exact match accuracy
(EM), i.e., the percentage of questions where the predicted and gold logical forms are semantically
equivalent. To determine semantic equivalence, we first convert S-expressions back to graph queries
and then determine graph isomorphism.'? Unlike string-based or set-based EM [200], our graph
isomorphism based EM is both sound and complete. In addition, we also report the F1 score based
on the predicted and gold answer sets [10]. This is better suited for models that directly predict the
final answers without any intermediate meaning representation and gives partial credits to imperfect

answers. We host a local SPARQL endpoint via Virtuoso to compute answers.

2.5.2 Models

Our primary goal of the experiments is to thoroughly examine the challenges of different levels
of generalization and explore potential solutions. Therefore, we will evaluate an array of variants
of our models with different strategies for search space pruning and language-ontology alignment.

To better situate our models in the literature and demonstrate their competitive performance, we

Phttps://networkx.github.io
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also adapt QGG [81], the state-of-the-art model on COMPLEXWEBQ and WEBQ, to GRAILQA.
We have also looked into models developed based on QALD or LC-QUAD but the adaptation cost
would be too high because most of the source codes are not available. All models use the same entity

linker (Section 2.4.3).

Our model variants. For both TRANSDUCTION and RANKING, we introduce a variant that uses
GloVe embeddings!? instead of BERT for language-ontology alignment. Specifically, we use the
average GloVe embedding for each schema item instead of the encodings from BERT. Unlike BERT,
GloVe embeddings are not contextual and are thus not jointly encoded with the current natural
language question. This variant will then allow us to examine the role of contextual embedding
in generalization. For TRANSDUCTION, we additionally introduce a variant that does not employ
entity-based vocabulary pruning (VP). This is not applicable to RANKING because RANKING always
relies on the identified entities for candidate generation. We use uncased BERT-base and fine-tune
BERT but fix GloVe (similar to previous work [52]), because we find fine-tuning GloVe makes it

slightly worse.

QGG. This model learns to generate query graphs from question-answer pairs using reinforcement
learning. BERT is also used but only to get a matching score between question and logical form via
joint encoding, which is served as one of the seven hand-crafted features used for ranking. To train
this model on GRAILQA, we use the same configuration from the original paper for WEBQ, i.e.,
considering up to 2-hop relations in the KB for candidate generation. This can cover 80% of the
training questions in GRAILQA. Increasing it to 3 hops will take a few months (estimated) to train
this model due to the large number of entities in GRAILQA. We only report F1 for QGG because it

uses a different meaning representation.

3We choose to use GloVe-6B-300d.
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2.5.3 Results

Overall Evaluation

We show the overall results in Table 2.3. RANKING achieves the best overall performance on
GRAILQA. Both of our models outperform QGG, demonstrating their competitive performance. We
also observe a significant performance drop on all the variants of our models, which suggest that
both BERT encoding and VP play an important role.

Next we drill down to different levels of generalization. The results clearly demonstrate the
key role of contextualized encoding via BERT for compositional and zero-shot generalization:
While BERT and GloVe perform similarly in i.i.d. generalization, using GloVe instead of BERT,
TRANSDUCTION’s F1 drops by 17.5% in compositional generalization and by 26.2% in zero-shot
generalization. For RANKING, it also brings a 21.9% drop in zero-shot generalization. We do a
more in-depth analysis on TRANSDUCTION and confirm that this is mainly because BERT enables
better generalization to unseen schema items. For example, for question “What home games did
the Oakland Raiders play?” about an unseen domain american_football, TRANSDUCTION can
find the correct relation american_football. footbal 1_game.home_teamn, while TRANSDUCTION
without BERT is confused by the wrong relation sports.sports_team.arena_stadium, Which is
seen during training. This is a common type of error by GloVe-based models but much less frequent
by BERT-based models, which shows how pre-trained contextual embeddings help address the
language-ontology alignment challenge. Since QGG is also a ranking model that uses BERT, it is
not surprising it also performs reasonably in compositional and zero-shot generalization.

On the other hand, RANKING outperforms TRANSDUCTION significantly in compositional and
zero-shot generalization. This is largely due to RANKING’s effectiveness in search space pruning,
i.e., RANKING prunes the search space based on the each identified entity’s neighboring facts, while

TRANSDUCTION only uses the ontology, which is less discriminating. VP helps TRANSDUCTION
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to some extent, but still not quite up to the same level of effective pruning RANKING enjoys. This
also provides a plausible explanation for the interesting observation that BERT seems to play a less
significant role in compositional generalization in ranking models than in transductive models —
because of the effective search space pruning, RANKING’s candidate set includes much less of the

logical forms seen in training that may be confusing to the model.
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Figure 2.4: Fine-grained results.

Fine-Grained Evaluation

We now present a more fine-grained analysis along several other dimensions in Figure 2.4.

Structural complexity. The performance of all models degrades rapidly as questions become more
complex. Note that, though our RANKING model only generates candidates with up to 2 relations, it
still has a chance to get partially correct on more complex questions. In fact, it even outperforms the
more flexible TRANSDUCTION model on questions with 3 relations, which again demonstrates the

importance of effective search space pruning.

Function. Ranking models (including RANKING and QGG) rely on topic entities for candidate gen-

eration which are often absent in questions with comparatives or superlatives, e.g., “which chemical
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Figure 2.5: Robustness analysis. T denotes TRANSDUCTION and R denotes RANKING. For
robustness analysis, we assume correct entities are given.

element was first discovered?” Their performance suffers as a result. QGG gets zero F1 on questions
that requires counting since it only returns entities as answer. On the other hand, TRANSDUCTION
performs significantly better than the other two models on superlatives and comparatives due to
its flexibility in generating all types of logical forms, though that comes with a penalty on simpler
questions. Better guided search for both RANKING and TRANSDUCTION may be a promising future

direction to enjoy the best of both worlds.
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Robustness Analysis

A good KBQA model should be robust to different paraphrases and entity groundings (e.g.,
should not succeed at “Where is the Trump tower?” but fail at “Where is the Tune Hotels?”).
GRAILQA provides an opportunity to directly test that. We create different groupings of questions:
grouping by paraphrase — questions that are the same except for their entity groundings fall into the
same group, and grouping by template — questions from the same canonical logical form but with
different groundings or paraphrases are grouped together. Each grouping provides upper and lower
bounds for evaluating model robustness. The upper bound is derived by treating all the questions in a
group as correct if any of them is correctly answered, while the lower bound is derived by treating
all the questions as incorrect if any of them is incorrectly answered. The true accuracy should lie
between the bounds. The closer the three are, the more robust a model is to the corresponding
mutation. To reduce the number of variables in this analysis, we assume perfect entity linking
and eliminate entity linking errors. The results are shown in Figure 2.5, which clearly show that
BERT-based models are generally more robust than Glo Ve-based models (reflected by the smaller gap
between their upper and lower bounds) and provides further explanation to its superior performance
in non-i.i.d. generalization. It is interesting to observe that the RANKING model yields a higher
upper bound with GloVe than with BERT in non-i.i.d. generalization, which shows that the major

problem with GloVe is its robustness to variations.

2.5.4 Error Analysis

We analyze 100 randomly sampled questions that our RANKING model gets wrong to discuss

venues for future improvement. We summarize the errors into the following categories.

Coverage limitation (34%): Due to the diversity of questions in GRAILQA in terms of both com-

plexity and functions, candidates generated by RANKING can only cover around 80% of the questions,
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as it can only enumerate up to 2-relational logical forms due to combinatorial explosion. Uncovered
questions constitute 34% of errors. More intelligent ways for search and candidate generation are

promising future directions.

Entity linking (33%): The large-scale mining of entity surfaces forms makes entity linking a unique
challenge in GRAILQA. For example, in “After apr. the 2nd, 2009, which song was added to RB?”,
“RB” refers to the music video game Rock Band, while our entity linker fails to identify any entity.
Also, less popular entities form another source of entity linking errors. To be specific, popularity is
a very strong signal for entity disambiguation in previous datasets, but not as strong in GRAILQA
because many questions are intentionally not just about very popular entities. For “What is the belief
of Mo?” our entity linker can identify the entity mention Mo, and the most popular entity that has
surface form Mo is the state of Missouri, while the question is asking about the Mo religion. Accurate

entity linking on large-scale KBs is still a major challenge.

Relation mis-classification (26%): Another major type of errors comes from misclassified rela-
tions. Precisely understanding a vaguely or implicitly expressed relation is challenging, espe-
cially for zero-shot generalization. For example, question “Which video game engine is the pre-
vious version of Frostbite 2?” is from an unseen domain cvg, and the correct relation for this
question should be cvg.computer_game_engine.successor_engine, while RANKING predicts
cvg.computer_game_engine.predecessor_engine, Which fails to capture the alignment between
successor_engine and “previous version”. Besides, around 20% of relation mis-classifications are
due to that the model cannot correctly determine the answer type. For question “Name the soundtrack
that Amy Winehouse features.”, which is asking about a music soundtrack, but RANKING predicts a

relation associated with the answer type music.album.
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Other (7%): The rest of the errors mainly include typing errors and function errors. For typing
errors, the question can seek for information about more specific types (e.g., looking for politician
instead of just person), while RANKING does not explicitly handle type constraint as introducing
type constraints by enumeration will result in prohibitively many candidate logical forms. A more
flexible way of handling type constraint is in need. Also, sometimes RANKING can be confused by
the function of a question. For instance, for question “Name the image which appears in the topic
gallery armenian rock.”, there shouldn’t be any aggregation function, however, RANKING mistakenly

predicts a counting function for it.

2.5.5 Transfer Learning

We also show that GRAILQA could serve as a valuable pre-training corpus for KBQA in general
by pre-training RANKING on GRAILQA and testing its transferability to WEBQ, which contains
naturally-occurring questions from Google search log. To adapt RANKING to WEBQ, we first convert
SPARQL queries in WEBQ to our S-expression logical forms. We test three settings: Full training that
fine-tunes using all training data of WEBQ, few-shot that only uses 10%, and zero-shot that directly
applies models trained on GRAILQA to WEBQ. For simplicity, we assume perfect entity linking. The
results are shown below. Pre-trianing on GRAILQA uniformly improves the performance, especially
in the low-data regime. Most remarkably, pre-trained on GRAILQA, RANKING can achieve an F1 of
43% without any in-domain training on WEBQ. These results provide further supporting evidence

for the quality and diversity of GRAILQA.

Exact Match F1

Full Trainin RANKING 0.59 0.67
g +pre-training 0.60 0.70

Few-shot RANKING 0.44 0.53
+pre-training 0.55 0.65

Zero-shot RANKING 0.00 0.00
+pre-training 0.35 0.43
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2.6 Related Work

Existing KBQA datasets. There have been an array of datasets for KBQA in recent years. WEBQ [10]
is collected from Google search logs with the answers annotated via crowdsoursing. [195] later pro-
vide logical form annotation for the questions in WEBQ. Most of the questions in WEBQ are simple
single-relational questions, and [168] generate more complex questions by automatically extending
the questions in WEBQ with additional SPARQL statements, leading to the COMPLEXWEBQ dataset.
However, such automatic extension may lead to unnatural questions. SIMPLEQ [16] is another
popular KBQA dataset created by sampling individual facts from FREEBASE and annotating them as
natural language questions. It therefore only contains single-relational questions. GRAPHQ [161]
is the most related to ours. It proposes an algorithm to automatically generate logical forms from
large-scale KBs like FREEBASE with guarantees on well-formedness and non-redundancy. We also
use their algorithm for logical form generation, and develop a crowdsourcing framework which
significantly improves the scalability and diversity. The aforementioned datasets are all based on
FREEBASE. QALD [114] and LC-QUAD [176] are popular datasets on DBPEDIA. QALD is manu-
ally created by expert annotators, while LC-QUAD first generates SPARQL queries and unnatural
canonical questions with templates and have expert annotators paraphrase the canonical questions.
Most KBQA datasets primarily operate with the i.i.d. assumption because their test set is a
randomly sampled subset of all the data [10, 195, 16, 168, 176]. GRAPHQ [161] is set up to primarily
test compositional generalization by splitting their training and test sets on logical forms, similarly
for QALD [114]. However, none of the existing datasets supports the evaluation of all three levels of
generalization. Our dataset also compares favorably to existing datasets in other dimensions such as

size, coverage, diversity (Table 2.1).
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Existing models on KBQA. KBQA models can be roughly categorized into semantic-parsing based
methods and information-retrieval methods. The former maps a natural language utterance into
a logical form that can be executed to get the final answer, while the latter directly ranks a list
of candidate entities without explicitly generating a logical form. We focus on semantic-parsing
methods due to their superior performance and better interpretability. Existing methods are mainly
focused on i.i.d. setting and are limited in generalizability. Conventional rule-based methods [10]
suffer from the coverage of their hand-crafted rules and therefore have rather limited generalizability.
More recent models either employ encoder-decoder framework [68, 42, 203] to decode the logical
form auto-regressively or first generate a set of candidate logical forms according to predefined
templates or rules, and then match each candiate with the utterance to get the best matched one[10,
194, 34, 137, 1, 101, 102, 164, 81, 41, 64]. These models already achieve impressive results on i.i.d.
dataset like WEBQ, however, on GRAPHQ that mainly tests compositional generalization, the best
model can only achieve an F1 of 21.5 [164]. This demonstrates that non-i.i.d. generalization in

KBQA has not drawn enough attention from existing methods.

Pre-training and non-i.i.d. generalization. The problem of non-i.i.d. generalization has drawn
attention under related semantic parsing settings. [162] recognize the key role of pre-trained word
embeddings [107] in cross-domain semantic parsing. Contextual embeddings like BERT are later
shown to be successful for cross-domain text-to-SQL parsing [66]. Another line of work has been
focusing on compositional generalization on a number of specifically-synthesized datasets [80, 73].
Concurrent to this work, [45] find that pre-trained contextual embeddings plays a more vital role in
compositional generalization than specialized architectures. To the best of our knowledge, our work
is among the first to demonstrate the key role of contextual embeddings like BERT at multiple levels

of generalization for KBQA.
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2.7 Conclusion

In this chapter, we explicitly lay out and study three levels of extrapolation using KBQA
as a testbed, i.e., i.i.d., compositional, and zero-shot. We construct and release GRAILQA, a
large-scale, high-quality KBQA dataset with 64,331 questions that can be used to evaluate all
three levels of generalization. We also propose a novel BERT-based model to handle the complex
KB environment. The combination of our dataset and model enables us to thoroughly examine
the problem of extrapolation under diverse goals specified in natural language. In particular, we
demonstrate the key role of pre-trained contextual embeddings like BERT serving as M in non-i.i.d.
extrapolation and the advantage of discrimination and constrained decoding over unconstrained
decoding. These findings help us to better understand the problem of extrapolating to new goals. We
will introduce two strong methods that achieve better extrapolation in next chapters, motivated by

these findings.
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Chapter 3: Integrate Pre-Trained Language Models with Constrained Decoding

In this chapter, we propose a strong method, ArcaneQA, that integrates pre-trained language
models and constrained decoding in a seamless way, built upon the findings from the previous chapter.
Specifically, there are two key components in ArcaneQA: contextualized encoding and dynamic
program induction. Dynamic program induction computes the admissible tokens for each decoding
step, while contextualized encoding jointly encode the admissible tokens with the context to provide
better representations of them. These two modules mutually boost each other and lead to strong

extrapolation on GRAILQA.

3.1 Introduction

Modern knowledge bases (KBs) contain a wealth of structured knowledge. For example, FREE-
BASE [15] contains over 45 million entities and 3 billion facts across more than 100 domains, while
GOOGLE KNOWLEDGE GRAPH has amassed over 500 billion facts about 5 billion entities [163]. Ques-
tion answering on knowledge bases (KBQA) has emerged as a user-friendly solution to access the
massive structured knowledge in KBs.

KBQA is commonly modeled as a semantic parsing problem [201, 202] with the goal of mapping
a natural language question into a logical form that can be executed against the KB [10, 19, 194].

Compared with other semantic parsing settings such as text-to-SQL parsing [209, 200], where the
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Question: Which wine in Tulum valley has the most alcohol?

Program: (ARGMAX (AND (JOIN Tulum Valley wine_sub region)
wine) percentage alcohol)

(a) Program Inducti

Step 1 [(JOIN #1 wine_sub_region)]#2 [ (JOIN #1 contains) ]
Step 2 [ (JOIN #2 color) ] [ (AND #2 wine) ]#3

!

Step 3 [ (ARGMAX #3 vintage) J [(ARGMAX #3 percentage_alcohol)]

(b) Contextualized Encoding
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Figure 3.1: KBQA is commonly modeled as semantic parsing with the goal of mapping a question
into an executable program. (a) A high-level illustration of our program induction procedure. The
target program is induced by incrementally synthesizing a sequence of subprograms (#1-3). The
execution of each subprogram can significantly reduce the search space of subsequent subprograms.
(b) Alignments between question words and schema items at different steps achieved by a BERT
encoder. A pre-trained language model like BERT can jointly encode the question and schema items
to get the contextualized representation at each step, which further guides the search process.

underlying data is moderate-sized, the massive scale and the broad-coverage schema of KBs makes
KBQA a uniquely challenging setting for semantic parsing research.
The unique difficulty stems from two intertwined challenges: large search space and ambiguities

in schema linking. On the one hand, transductive semantic parsing models that are highly effective in
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other semantic parsing settings [42, 178] struggle with the large vocabulary size and often generate
logical forms (i.e., formal queries)'* that are not faithful to the underlying KB [170, 186]. Therefore,
a candidate enumeration and ranking approach is commonly adopted for KBQA [11, 194, 1, 82,
164, 170, 193]. However, these methods have to make various compromises on the complexity of
admissible logical forms to deal with the large search space. Not only does this limit the type of
answerable questions, but it also leads to impractical runtime performance due to the time-consuming
candidate enumeration [170]. On the other hand, schema linking, '3 i.e., mapping natural language to
the corresponding schema items in the KB (e.g., in Figure 3.1, wine_sub_region is a linked schema
items), is also a core challenge of KBQA. Compared with text-to-SQL parsing [66, 204, 178], the
broad schema of KBs and the resulting ambiguity between schema items makes accurate schema
linking more important and challenging for KBQA. Recent studies show that contextualized joint
encoding of natural language questions and schema items with BERT [40] can significantly boost the
schema linking accuracy [170, 27]. However, existing methods still struggle with the large search
space and need to encode a large number of schema items, which is detrimental to both accuracy and
efficiency.

We present ArcaneQA (Dynamic Program Induction and Contextualized Encoding for Question
Answering), a generation-based KBQA model that addresses both the large search space and the
schema linking challenges in a unified framework. Compared with the predominant ranking-based
KBQA models, our generation-based model can prune the search space on the fly and thus is more
flexible to generate diverse queries without compromising the expressivity or complexity of answer-
able questions. Inspired by prior work [42, 91, 144, 27], we model KBQA using the encoder-decoder

framework. However, instead of top-down decoding with grammar-level constraints as in prior work,

“We use the terms logical form, query, and program interchangeably across the paper.

5Semantic parsing implicitly entails two sub-tasks: schema linking and composition. There is not necessarily a
dedicated step or component for schema linking. More commonly, the two sub-tasks are handled simultaneously.
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which does not guarantee the faithfulness of the generated queries to the underlying KB, ArcaneQA
performs dynamic program induction [91, 144], where we incrementally synthesize a program
by dynamically predicting a sequence of subprograms to answer a question; i.e., bottom-up pars-
ing [30, 139]. Each subprogram is grounded to the KB and its grounding (i.e., denotation or execution
results) can further guide an efficient search for faithful programs (see Figure 3.1(a)). In addition,
we unify the meaning representation (MR) for programs in KBQA using S-expressions and support
more diverse operations over the KB (e.g., numerical operations such as COUNT /ARGMIN/ARGMAX and
diverse graph traversal operations).

At the same time, we employ pre-trained language models (PLMs) like BERT to jointly encode
the question and schema items and get the contextualized representation of both, which implicitly
links words to the corresponding schema items via self-attention. One unique feature to note is
that the encoding is also dynamic: at each prediction step, only the set of admissible schema items
determined by the dynamic program induction process needs to be encoded, which allows extracting
the most relevant information from the question for each prediction step while avoiding the need to
encode a large number of schema items. Figure 3.1(b) illustrates the contextualization of different
steps via the attention heatmaps of BERT. In this example, the attention of each question word
over candidate schema items serves as a strong indicator of the gold items for both steps (i.e.,
wine_sub_region for step 1 and percentage_alcohol for step 3). The two key ingredients of our
model are mutually boosting: dynamic program induction significantly reduces the number of schema
items that need to be encoded, while dynamic contextualized encoding intelligently guides the search
process.

Our main contribution is as follows: a) We propose a novel generation-based KBQA model that
is flexible to generate diverse complex queries while also being more efficient than ranking-based

models. b) We propose a novel strategy to effectively employ PLMs to provide contextualized
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encoding for KBQA. ¢) We unify the meaning representation (MR) of different KBQA datasets and
support more diverse operations. d) With our unified MR, we evaluate our model on three popular

KBQA datasets and show highly competitive results.

3.2 Related Work

Ranking-Based KBQA. To handle the large search space in KBQA, existing studies typically
rely on hand-crafted templates with a pre-specified maximum number of relations to enumerate
candidate logical forms [194, 1, 82, 12, 13], which suffers from limited expressivity and scalability.
For example, [194] limit the candidate programs to be a core relational chain, whose length is
at most two, plus constraints. [193] additionally adopts a post-generation module to revise the
enumerated logical forms into more complicated ones, however, their method still heavily depends
on the candidate enumeration step. In addition, the time-consuming candidate enumeration results
in impractical online inference time for ranking-based models. In contrast, ArcaneQA obviates the
need for candidate enumeration by pruning the search space on the fly and thus can generate more

diverse and complicated programs within practical running time.

Generation-Based KBQA. To relax the restriction on candidate enumeration, some recent efforts
are made to reduce the search space using beam search [83, 29, 81], however, [83] and [29] can only
generate programs of path structure, while [81] follow the query graph structure proposed by [194].
A few recent studies [91, 27] formulate semantic parsing over the KB as sequence transduction using
encoder-decoder models to enable more flexible generation. [27] apply schema-level constraints to
eliminate ill-formed programs from the search space, however, they do not guarantee the faithfulness
of predicted programs. Similar to [91], our dynamic program induction uses KB contents-level
constraints to ensure the faithfulness of generated programs, but we extend it to handle more complex

and diverse questions and also use it jointly with dynamic contextualized encoding.
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Using PLMs in Semantic Parsing. PLMs have been widely applied in many semantic parsing
tasks, typically being used to jointly encode the input question and schema items[66, 204, 178, 142].
However, PLMs have been under-exploited in KBQA. One major difficulty of using PLMs in KBQA
lies in the high volume of schema items in a KB; simply concatenating all schema items with the
input question for joint encoding, as commonly done in text-to-SQL parsing, will vastly exceed
PLMs’ maximum input length. Existing KBQA models either use PLMs to provide features for
downstream classifiers[81, 164] or adopts a pipeline design to identify a smaller set of schema
items beforehand and only use PLMs to encode these identified items [170, 27], which can lead to
error propagation. By comparison, ArcaneQA can fully exploit PLMs to provide contextualized
representation for the question and schema items dynamically, where only the most relevant schema
items are encoded at each step. More recently, [193] use T5 [135] to output a new program given
a program as input, while T5’s decoder generates free-formed text and does not always produce
faithful programs. By contrast, ArcaneQA only uses PLMs for encoding and uses its customized

decoder with a faithfulness guarantee.

3.3 Background

Knowledge Base. A knowledge base K consists of a set of relational triplets I, C € x R x (EUL)
and a set of class assertions IC. C £ x C, where C is a set of classes, £ is a set of entities, £ is a set of

literals and R is a set of binary relations. Elements in C and R are also called the schema items of /.

Meaning Representation for KBQA. Prior work adopt different meaning representations to rep-
resent logical forms for KBQA. For example, Yih et al.[194] use graph query, which represents
a program as a core relation chain with (optionally) some entity constraints. Cai et al.[19] use
A-Calculus as their meaning representation. In this chapter, we follow [170] to use S-expressions

as our meaning representation due to their expressivity and simplicity. To support more diverse
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operations over the KB, we extend their definitions with two additional functions cons and Tc, which
are used to support constraints with implicit entities and temporal constraints respectively. For
implicit entities, consider the question “What was Elie Wiesel’s father’s name?”, whose target query
involves two entities: Elie_Wiesel and Male. The entity Male is an implicit constraint rather than
a named entity,'® and it is used as an argument of cons in the target logical form: (coNs (JOIN
people.person.children Elie_Wiesel) people.person.gender Male). TC works in a similar
way, with the difference being that the constraint should be a temporal expression (e.g., 2015-08-10)

rather than an implicit entity.

3.4 Approach

3.4.1 Overview

The core idea of our generation-based model is to gradually expand a subprogram (i.e., a partial
query) into the finalized target program, instead of enumerating all possible finalized programs from
the KB directly, which suffers from combinatorial explosion. There are two common strategies to
instantiate the idea of gradual subprogram expansion, depending on the type of meaning represen-
tation being used. For a graph-like meaning representation, we can directly perform graph search
over the KB to expand a subprogram [29, 81]. Also, we can linearize a program into a sequence
of tokens and perform decoding in the token space [91, 142]. Because S-expressions can be easily
converted into sequences of tokens, we choose to follow the second strategy and take advantage of
the encoder-decoder framework, which has been a de facto choice for many semantic parsing tasks.
Concretely, ArcaneQA learns to synthesize the target program by dynamically generating a sequence
of subprograms token by token until predicting (EOS), where each subsequent subprogram is

an expansion from one or more preceding subprograms (denoted as parameters in the subsequent

'SWEBQSP is the only dataset we consider that has this feature. Though there might be a more systematic way to
differentiate implicit entities from named entities, we choose an expedient way to collect implicit entities from the training
data according to whether an entity is explicitly mentioned in the question.
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Figure 3.2: (a) Overview of ArcaneQA. ArcaneQA synthesizes the target program by iteratively
predicting a sequence of subprograms. (b) At each step, it makes a prediction from a small set of
admissible tokens .4 dynamically determined based on the execution of previous subprograms (for
faithfulness to the KB) as well as the grammar (for well-formedness). (¢) ArcaneQA also leverages
BERT to provide dynamic contextualized encoding of the question and the admissible tokens at each
step, which enables implicit schema linking and guides the dynamic program induction process.

subprogram). Formally, the goal is to map an input question ¢ = 1, ..., Z|¢| to a sequence of sub-

programs o = o1, ..., 0

|101‘, ey OF O|kok| = Y1, ..., Y|o|» Where k is the number of total subprograms

k .
and |o| = > |0'|. We base ArcaneQA on Seq2Seq with attention [165, 8], in which the conditional
i=1

probability p(o|q) is decomposed as:

lo|

p(olq) = prt|y<t7 : 3.1)

where each token y; is either a token from the vocabulary V or an intermediate subprogram from the

set S storing all previously generated subprograms. ) comprises all schema items in /C, syntactic
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symbols in S-expressions (i.e., parentheses and function names), and the special token (FOS).
S initially contains the identified entities in the question (e.g., #1 in Figure 2.1). Every time a
subprogram is predicted, it is executed and added to S (e.g., 42 in Figure 2.1).

ArcaneQA builds on two key ideas: dynamic program induction and dynamic contextualized
encoding (see Figure 3.2). At each decoding step, ArcaneQA only makes a prediction from a
small set of admissible tokens instead of the entire vocabulary. This is achieved by the dynamic
program induction framework (subsection 3.4.2), which effectively prunes the search space by
orders of magnitude and guarantees that the predicted programs are faithful to the KB. In addition,
we dynamically apply BERT to provide contextualized joint encoding for both the question and
admissible tokens at each decoding step (subsection 3.4.3). In this way, we allow the contextualized

encoding to only focus on the most relevant information without introducing noise from irrelevant

tokens.
Function Arguments Returns
JOIN a set of entities v C (£ U £) and a relation r € R all entities connecting to any e € u via r
AND two set of entities ul C £ and u2 C € the intersection of two entities sets.
ARGMAX/ARGMIN a set of entities u C &€ and a numerical relation r € R a set of entities from « with the maximum/minimum value for r
LT (LE/GT/GE) a numerical value u C £ and a numerical relation r € R all entities with a value < (< / > / >)u for relation
COUNT a set of entities u C £ the number of entities in
CONS a set of entities a set of entities u C &, arelation 7 € R, and a constraint c € (EU L)  all e € u satisfying (e, r, c) € K,
TC a set of entities a set of entities u C £, a relation 7 € R, and a temporal constraint ¢ € £ all e € u satisfying (e, r, c) € K,

Table 3.1: Detailed descriptions of functions defined in our S-expressions. We extend the definitions
in [170] by introducing two new functions cons and Tc. Also, we remove the function R and instead
represent the inverse of a relation by adding a suffix “_inv" to it. Note that, for arguments in AND
function, a class ¢ € C can also indicate a set of entities which fall into c.

3.4.2 Dynamic Program Induction

Dynamic program induction capitalizes on the idea that a complicated program can be gradually
expanded from a list of subprograms. To ensure the expanded program is faithful to the KB,

we query the KB with a subprogram to expand and a function defined in Table 3.1 to get a set
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of admissible actions (tokens). For example, in Figure 3.2, given #1 and the function Jo1n, the
admissible actions are defined by predicting a relation connecting to the execution result of #1
(i.e., Tulum_valley), and there are only four relations to choose from (e.g., appellation and
wine_sub_region). Table 3.2 shows a comprehensive description of expansion rules for different
functions. With these rules, ArcaneQA can greatly reduce the search space for semantic parsing
over the KB dynamically. The reduced candidate space further allows us to perform dynamic
contextualized encoding (subsection 3.4.3).

Within our encoder-decoder framework, this idea is implemented using constrained decoding [91,
142], i.e., at each decoding step, a small set of admissible tokens from the vocabulary is determined
based on the decoding history following predefined rules. The expansion rules in Table 3.2 have
already comprised part of our rules for constrained decoding. In addition, several straightforward
grammar rules are applied to ensure that the generated programs are well-formed. For instance,
after predicting “(”, the admissible tokens for the next step can only be a function name. After
predicting a function name, the decoder can only choose a preceding subprogram to expand. After
predicting “)”, the admissible tokens for next step can only be either “(”, indicating the start of a new
subprogram, or “(EO.S)”, denoting termination. The decoding process can be viewed as a sequential
decision-making process, which decomposes the task of finding a program from the enormous search

space into making decisions from a sequence of smaller search spaces.

3.4.3 Dynamic Contextualized Encoding

In semantic parsing, PLMs have typically been used to jointly encode the input question and all
schema items via concatenation [66, 204, 178]. However, direct concatenation is not feasible for
KBQA due to a large number of schema items. Instead of obtaining a static representation for the
question and items from V before decoding [170, 27], we propose to do dynamic contextualized

encoding at each decoding step; for each step, we use BERT to jointly encode the question and only
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Current function Admissible actions

JOIN {r|h € #,(h,r,t) € K.}

AND {vjve S,vnNt#0U{cle € #,(e,c) € K.}
ARGMAX/ARGMIN {rlh € #,t € L, (h,r,t) € K, }
LT(LE/GT/GE) A{rft< (< /> />)4, (h,rt) € K.}

COUNT D}
CONS {(r,t)|h € #, (h,r,t) € K, }
TC {(r,t)|h € #,(h,r,t) € K,,t € L is a temporal expression}

Table 3.2: A set of rules to expand a preceding subprogram given a function. The execution of the
subprogram is denoted as #. These expansion rules reduce the search space significantly with a
faithfulness guarantee. counT takes no other argument, so the only admissible token is *)".

the admissible tokens from V. ArcaneQA’s dynamic program induction vastly reduces the number of
candidate tokens at each step and allows us to concatenate the question and the admissible tokens

into a compact sequence:'’

[CLS], 21, ..., z|q), [SEP], st .., st., [SEP]

where {s!} C V are admissible tokens at step ¢ and |{s'}| = m. After feeding the concate-
nated sequence to BERT, we obtain the question representation Q¢ = (x1, ..., Xq) by further feeding
the outputs from BERT to an LSTM encoder. For each admissible token, we represent it by aver-
aging BERT outputs corresponding to its wordpieces. In this way, we also obtain the embedding
matrix Wy € R™*¢, where each row corresponds to the embedding of an admissible token. The
contextualized representation Q¢ and Wy are both dynamically computed at each time step. Words

and corresponding schema items are implicitly linked to each other via BERT’s self-attention.

"We omit the wordpieces tokenization here for brevity.
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3.4.4 Decoding

We use an LSTM decoder. At decoding step ¢, given the hidden state hy_; and input cy_3, we

obtain the updated hidden state hy by:

hy = LSTMy(ht_1,c¢—1) (3.2)

where our LSTM decoder is parameterized by 6.
With hy and Wi—the embedding matrix of admissible tokens (determined by dynamic program

induction)—we obtain the probability of generating a token from the admissible tokens:

(Yt = 51ilq, y<t) = [Softmax(Wihy)]; (3.3)

The input c¢ for the next step is obtained via the concatenation of the contextualized embedding

of the current output token and the weighted representation of the question based on attention:

ay = softmax(Q¢hy) (3.4)
qt = (at)TQt 3.5
ct = [[Wy];; agl (3.6)

where ; denotes concatenation, and j denotes the index of the predicted y; in W.

3.4.5 Training and Inference

We train ArcaneQA with question-program pairs using cross entropy loss. The model learns to
maximize the probability of predicting the gold token out of a small set of admissible tokens at each
step, which is different from training a conventional Seq2Seq model using a static vocabulary.

During inference, ArcaneQA assumes an entity linker to identify a set of entities from the
question at the beginning of program induction. However, the entity linker may identify false entities.

To deal with it, ArcaneQA initiate its decoding process with different hypotheses from the set of
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entities. Basically, it tries out all possible combinations of the identified entities (i.e., the power set of
the identified entities), considering that our entity linker normally can only identify no more than two

entities from a question.

3.5 Experimental Setup

Datasets. We evaluate ArcaneQA on three KBQA datasets covering diverse KB queries.
GRAILQA [170] is a large-scale KBQA dataset that contains complex questions with various
functions, including comparatives, superlatives, and counting. It evaluates the generalizability of
KBQA at three levels: i.i.d., compositional and zero-shot.

GRAPHQ [161] also contains questions of diverse nature. It is particularly challenging because it
exclusively focuses on non-i.i.d. generalization.'®

WEBQSP[195] is a clean subset of WEBQ [10] with annotated logical forms. All questions in it are
collected from Google query logs, featuring more realistic and complicated information needs such
as questions with temporal constraints.

The total number of questions in GRAILQA, GRAPHQ, and WEBQ is 64,331, 5,166, and 4,737

respectively.

Evaluation Metrics. For GRAILQA, we use their official evaluation script with two metrics, EM,
i.e., program exact match accuracy, and F1, which is computed based on the predicted and the gold

answer set. For GRAPHQ and WEBQSP, we follow the standard practice and report F1.

Models for Comparison. We compare ArcaneQA with the previous best-performing models on

three different datasets. For GRAILQA and WEBQSP, the state-of-the-art model is RnG-KBQA [193].
8GRAPHQ originally uses FREEBASE (version 2013-07) as their KB, while GRATLQA and WEBQ use FREEBASE

(version 2015-08-09). In [170], programs in GRAPHQ are converted into the corresponding FREEBASE 2015-08-09
version, and we will use this version in our experiments.
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Though RnG-KBQA uses TS5 to decode the target program as unconstrained sequence transduction,
it still heavily depends on candidate enumeration as a prerequisite. Therefore, it is not a generation-
based model like ours. ReTraCk [27] is the state-of-the-art generation-based model on GRAILQA
which poses grammar-level constraints to the decoder to generate well-formed but unnecessarily faith-
ful programs. For GRAPHQ, the ranking-based model SPARQA [164] has achieved the best results so
far. It uses BERT as a feature extractor for downstream classifiers. In addition to the state-of-the-art
models, we also compare ArcaneQA with BERT+Transduction and BERT+Ranking [170], which
are two baseline models on GRAILQA that enhance a vanilla Seq2Seq model with BERT to perform

generation and ranking respectively.

Implementation. Our models are implemented using PyTorch and AllenNLP [49]. For BERT, we

use the bert-base-uncased version provided by HuggingFace.

3.6 Results

3.6.1 Overall Evaluation

We show the overall results in Table 3.3. ArcaneQA achieves the state-of-the-art performance
on both GRAPHQ and WEBQSP. For GRAPHQ, there are 188 questions in GRAPHQ’s test set that
cannot be converted into FREEBASE 2015-08-09 version, so we treat the F1 of all those questions as 0
following [170], while the numbers in the parentheses are the actual F1 on the test set if we exclude
those questions. ArcaneQA significantly outperforms the prior art by over 10%. The improvement
over SPARQA shows the advantage of using PLMs for contextualized joint encoding instead of
just providing features for ranking. On both WEBQSP and GRAILQA, ArcaneQA also achieves the
best performance or performs on par with the prior art in terms of F1. It outperforms ReTraCk
by 4.3% and 1.9% (using the same entity linking results) on WEBQSP and GRAILQA respectively,

suggesting that ArcaneQA can more effectively reduce the search space with dynamic program
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Overall LLD. Compositional Zero-shot

Model EM F1 EM F1 EM F1 EM F1
QGG™ [81] - 36.7 - 40.5 - 33.0 - 36.6
BERT+Transduction* [170] 333 36.8 51.8 53.9 31.0 36.0 25.7 29.3
BERT+Ranking* [170] 50.6 58.0 59.9 67.0 455 53.9 48.6 55.7
ReTraCk [27] 58.1 65.3 84.4 87.5 61.5 70.9 44.6 52.5
RnG-KBQA™* [193] 61.4 67.4 78.0 81.8 55.0 63.2 56.7 63.0
ArcaneQA* 58.8 67.2 77.8 81.6 58.0 66.1 50.4 61.8
RnG-KBQA [193] 68.8 74.4 86.2 89.0 63.8 71.2 63.0 69.2
ArcaneQA 63.8 73.7 85.6 88.9 65.8 75.3 529 66.0

w/o contextualized encoding 49.7 59.1 77.6 82.1 50.5 59.4 36.5 48.5

(a) GRAILQA

Model F1
NSM [91] 69.0
Model F1 KBQA-GST [82] 67.9
UDEPLAMBDA [137] 17.7 (T)%‘g?g 1[]12] Sg'g
PARA4QA [42] 204 ReTraCk [27] 710
SPARQA [164] 21.5 CBR [35] 72.8
BERT+Ranking [170] 25.0 (27.0) RnG-KBQA [193] 75.6 (74.5%)
ArcaneQA 31.8 (34.3) ArcaneQA 75.6 (75.6%)
w/o contextualized encoding  20.7 (22.4) w/o contextualized encoding 68.8
(b) GRAPHQ (c) WEBQSP

Table 3.3: Overall results on three datasets. ArcaneQA follows entity linking results from previous
methods (i.e., RnG-KBQA’s results on GRAILQA, QGG’s results on WEBQSP, and Gu et al. [170]’s
results on GRAPHQ) for fair comparison. Model names with * indicate using the baseline entity
linking results on GRAILQA. ¥ In addition to using WEBQSP’s official evaluation script, which
sometimes considers multiple target parses for a question, we also report the performance when only
the top-1 target parses are considered.

induction compared with ReTraCk’s grammar-based decoding. Also, our model performs on par
with the previous state-of-the-art RnG-KBQA (i.e., same numbers on WEBQSP, while 0.7% lower
on GRAILQA). However, ArcaneQA under-performs RnG-KBQA in EM on GRAILQA. The overall
EM of ArcaneQA is lower than RnG-KBQA by 5%, and the gap on zero-shot generalization is even
larger (i.e., around 10%), despite the comparable numbers in F1. This can be explained by that
ArcaneQA learns to predict a program in a more flexible way and may potentially find some novel
structures. This may further be supported by the observation that ArcaneQA performs better than

RnG-KBQA on compositional generalization, which requires KBQA models to generalize to unseen
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query structures during training. Overall, the results demonstrate ArcaneQA’s flexibility in handling

KBQA scenarios of different natures.

3.6.2 In-Depth Analyses

To gain more insights into ArcaneQA’s strong performance, we conduct in-depth analyses on the

two key designs of ArcaneQA.

Dynamic Program Induction. One vanilla implementation of ArcaneQA without dynamic program
induction is BERT+Transduction, i.e., its search space and vocabulary during decoding is independent
of previous predictions. As shown in Table 3.3a, when using the same entity linking results,
ArcaneQA outperforms BERT+Transduction by 30.4% in overall F1 and is twice as good on zero-
shot generalization. One major weakness of BERT+Transduction is that it predicts many programs
that are not faithful to the KB, executing which will lead to empty answers. Note that post-hoc
filtering by execution [179] can only help to a limited degree due to the KB’s broad schema, while
this type of mistake is rooted out in ArcaneQA by design.

Different from our search space pruning achieved with dynamic program induction, ranking-
based models such as BERT+Ranking prunes unfaithful programs from their search space by ranking
a set of faithful programs enumerated from the KB. These models typically make compromises on the
complexity and diversity of programs during candidate enumeration. We break down the performance
of ArcaneQA on GRAILQA’s validation set in terms of question complexity and function types and
show the fine-grained results in Table 3.4. The comparison with BERT-Ranking demonstrates the
scalability and flexibility of our dynamic program induction. We also compare with RnG-KBQA,
which adopts exactly the same candidate enumeration module as BERT+Ranking, but it is enhanced
with a T5-based revision module to edit the enumerated programs into more diverse ones. We

observe that RnG-KBQA performs uniformly well across different programs except for programs
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with superlative functions (i.e., ARGMAX/ARGMIN), i.e., the F1 of it is lower than ArcaneQA by over
50%. This is because in their candidate generation step, there is no superlative function enumerated.
Despite the effectiveness of their T5-based revision, their performance still heavily depends on the

diversity of candidate enumeration, which restricts the flexibility of their method.

Function None Count  Comparative Superlative
BERT+Ranking 59.1/66.0 43.0/53.2 0.0/14.5 0/6.0
RnG-KBQA 77.5/81.8 73.0/77.5 55.1/76.0 13.8/22.3
ArcaneQA 70.8/77.8  62.5/68.2 54.5/75.7 70.5/75.6
# of relations 1 2 3 4
BERT+Ranking 57.4/61.5 39.8/54.7 0.0/22.9 0.0/25.0
RnG-KBQA 75.7/79.2  65.4/74.8 28.6/44.4 100.0/100.0
ArcaneQA 74.9/80.9 59.9/71.1 27.6/37.7 100.0/100.0

Table 3.4: Fine-grained results (EM/F1) on GRAILQA’s dev set. None denotes programs with only
aND and JOIN.

Dynamic Contextualized Encoding. To show the key role of dynamic contextualized encoding, we
use GloVe [130] to provide non-contextualized embeddings for both questions and tokens in V. We
fix GloVe embeddings during training to make the model less biased to the training distribution [170]
for GRAILQA and GRAPHQ, which address non-i.i.d. generalization, while for WEBQSP, we also
update the word embeddings during training. Results in Table 3.3a show the importance of dynamic
contextualized encoding, i.e., without contextualized encoding, the overall F1 decreases by 14.6%,
11.1%, and 6.5% on three datasets respectively. We also notice that dynamic contextualized encoding
is more critical for non-i.i.d. generalization, i.e., on GRAILQA the F1 on i.i.d. generalization
only decreases by 6.8%, while it decreases by 15.9% and 17.5% on compositional and zero-shot

generalization. Without contextualized encoding, identifying the correct schema items from the KB
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in non-i.i.d. setting is particularly challenging. Schema linking powered by dynamic contextualized

encoding is the key to non-i.i.d. generalization, which is a long-term goal of KBQA.

3.6.3 Efficiency Analysis

We compare the running time of ArcaneQA and ranking-based models in the online mode (i.e.,
no offline caching) to mimic the real application scenario. To make the comparison fair, we configure
all models to interact with the KB via the same Virtuoso SPARQL endpoint. We run each model
on 1,000 randomly sampled questions and report the average running time per question on a GTX
2080 Ti card. As shown below, our model is faster than BERT+Ranking and RnG-KBQA by an
order of magnitude, because ArcaneQA dynamically prunes the search space and does not run the

time-consuming queries for enumerating two-hop candidates.

BERT+Ranking RnG-KBQA ArcaneQA
Time (s) 115.5 82.1 5.6

3.7 Conclusion

Motivated by our findings in Chapter 2, we present a novel model, ArcaneQA, that combines
pre-trained language models and constrained decoding in a unified way. ArcaneQA simultaneously
addresses the large search space and schema linking challenges in KBQA with dynamic program
induction and dynamic contextualized encoding. Experimental results on several benchmarks,
including GRAILQA, demonstrate the advantages of ArcaneQA in both effectiveness and efficiency.
However, we find that the constrained decoding method remains sub-optimal in the zero-shot
setting, despite the improvement over baseline methods. In the next chapter, we will explore how a

discrimination-based framework can further enhance performance for non-i.i.d. extrapolation.
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Chapter 4: A General Discrimination Framework for Enhanced Extrapolation

In this chapter, we further propose a general framework, Pangu, that is compatible with various
types of language models, including the recent large language models (LLMs). Our design choice
is directly guided by the insight that language models excel as M while discrimination works best
for f. Specifically, we propose using language models to perform ranking or discrimination rather
than generation, as proposed in the first solution. Our framework is compatible with any kind of
language models, be it encoder-only, decoder-only, or encoder-decoder. In addition, we present
the first solution that successfully adapts LLMs to KBQA, which involves a massive action space
that poses a challenge to the context limit of language models. Our method achieves strong results,
remaining one of the top methods on GRAILQA even two years later. Upon close investigation,
we find that the main reason for the strong performance is that generation-based methods tend to
overfit to the training set, which leads to suboptimal extrapolation, whereas discrimination models
capture a more robust relationship between natural language goals and target actions, highlighting a

generator-discriminator gap.

4.1 Introduction

Language models (LMs) such as BERT [40], GPT-3 [116], and Codex [117] have demonstrated
an extraordinary capacity in understanding and generating both natural language [108, 93] and

generic programs (e.g., Python) [89, 67, 6]. The recent release of ChatGPT is elevating this paradigm
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Figure 4.1: A schematic illustration of the proposed framework, Pangu, where a symbolic agent
interacts with the target environment to propose candidate plans, and a neural LM evaluates the
plausibility of each plan. The agent searches the environment to incrementally construct the plans,
and the LM guides the search process.

to a new level.!” Tt seems to point us towards a future where natural language serves as a universal
device, powered by LMs, for automated problem solving and interacting with the (computing) world.

However, a key missing piece in realizing this future is the connection between LMs and
real-world environments, including both digital environments (e.g., databases, knowledge bases,
Excel spreadsheets, software, websites, among others) and physical environments (e.g., instruction
following robots [149, 2]). Such environments are where many real problems lie. For example, a
biologist may need to find all the species of a certain butterfly genus and their geographic distribution
from a biology knowledge base, a local grocery store owner may want to visualize the historical
sales of different item categories in Excel to decide what and how much to restock before the holiday
season, and a physician may need to find patients with specific conditions in a large database of

electronic medical records to inform the current diagnosis. How can LMs enable solving all these

Ychat. openai.com
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problems, which involve seeking information or taking actions in a specific environment, with natural
language?

Each environment is a unique context for interpreting natural language requests from users.
Grounding, i.e., linking of (natural language) concepts to contexts [25], therefore becomes the
fundamental problem. More precisely, we need to produce a plan (also called a program when
described using a programming language) that can be executed in an environment to achieve the
desired effects of the corresponding language request. The unique challenge of such grounded
language understanding problems stems from 1) the vast heterogeneity of environments and their
planning languages (e.g., SQL, GraphQL/REST APIs, A-calculus, and robot planning languages),
and 2) the vast, oftentimes infinite, number of possible instantiations (or states) of each environment.
Some environments can also be dynamic (e.g., a database that is constantly updated or a physical
environment with moving objects).

Most existing methods for grounded language understanding follow the popular sequence-to-
sequence framework [33, 165] and generate the plans/programs in an autoregressive fashion [186,
193, 181, 155]. A core thesis of this chapter is that directly generating plans may not be the
optimal way of using LMs for grounded language understanding. 1t requires LMs to have intimate
knowledge about each specific planning language and environment, neither of which may be part of
an LM'’s pre-training, to ensure the grammaticality (i.e., conforming to the grammar of the planning
language) and faithfulness (i.e., executable in the environment) of the generated plans. The infinite
and dynamic environment states also reduce the potential effectiveness of pre-training for improving
faithfulness, even if one manages to do so. Furthermore, autoregressive generation with a neural
LM lacks fine-grained control over planning; it is cumbersome, though not impossible, to factor
preferences, business logic, and other values and constraints into the plan generation process. A focus

of recent work is to alleviate (some of) these limitations by augmenting autoregressive generation

61



with environment-specific pre-training [199, 38] or constrained decoding [142, 148, 173]. However,
the fundamental challenges still largely remain.

Mathematically, an LM is simply a joint distribution p(x1, 2, ..., ;) that factors as a product
of conditional distributions [ [}, p(z;|z1, ..., x;—1). Existing work leverages the conditional dis-
tribution formulation to generate the plan. It thereby casts the burden of ensuring grammaticality,
faithfulness, and controllability all on the LM. The main proposal of this chapter is to disentangle
LMs from these responsibilities and let LMs be what they originally are—a model that assigns a
probability to a sequence of tokens. In other words, we advocate for using the joint distribution
formulation of LMs to evaluate the plausibility of (utterance, candidate plan) pairs instead of directly
generating the plan.

To this end, we propose Pangu, a generic framework for grounded language understanding that
capitalizes on the discriminative ability of LMs instead of their generative ability (Figure 4.1).%°
Pangu consists of a symbolic agent and a neural LM working in a concerted way. The symbolic
agent explores the environment to propose candidate plans, which are guaranteed by design to be
both grammatical and faithful. For most real-world environments, due to the size of the search space
or partial observability, it is necessary for the agent to search in the environment and incrementally
extend or refine the plans. The LM plays a key role in this search process—it evaluates the candidate
(partial) plans at each search step and guides the agent towards promising search directions; it also
determines when the search ends. Finally, it is also easier to control the search process of a symbolic
agent than the generation process of a neural LM.

As a case study, we instantiate the proposed framework for complex question answering over
knowledge bases (KBQA). KBQA provides an ideal testbed for grounded language understanding

because of its massive environment—direct generation with LMs often fails dramatically [170]. We

2Pangu is a primordial being in Chinese mythology who separated heaven and earth. We name our framework after
that for its separating the realm of the neural and the symbolic.
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show that simply using BERT-base with Pangu is sufficient for setting a new record on standard
KBQA datasets, and larger LMs further bring substantial gains. Pangu also enables, for the first
time, few-shot KBQA by prompting large language models (e.g., Codex): Using only 10 labeled
examples, it outperforms all prior methods on GRAPHQ [161]. It provides unprecedented uniformity
for using LMs—one can easily plug encoder-only LMs, encoder-decoder LMs, or decoder-only LMs
into Pangu. These results highlight the remarkable effectiveness and flexibility of Pangu and validate

the proposal of using LMs for discrimination instead of generation.

4.2 Related Work

Generation for Grounded Language Understanding. The Seq2Seq framework [165, 8] has been
the de facto choice for grounded language understanding, where the LM directly generates a plan
given an input utterance. However, the lack of grounding during pre-training makes generating valid
plans from the LM challenging. Recent studies endeavor to alleviate this issue via input augmentation
or constrained decoding. For input augmentation, the environment (or some relevant portion of it) is
fed to the LM’s encoder together with the utterance [66, 178, 186]. Such methods rely on the LM to
understand the interplay between language requests and the environment and correctly factor that
into plan generation. They therefore require substantial training data to learn and also provide no
guarantee for grammaticality or faithfulness. In contrast, constrained decoding methods regulate the
decoder’s behavior to guarantee grammaticality [142, 151] or even faithfulness [91, 173]. However,
such uses still cast the burden of generating valid plans on the LM itself; controlling the generation
process of an LM can be difficult and specific to each planning language and/or environment. In our
proposal, the LM is only used to discriminate valid plans proposed by an agent through a controllable

search process. More comparison is discussed in §4.5.3.
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Few-Shot Grounded Language Understanding with LLMs. Large language models (LLMs) [116,
117] have demonstrated strong few-shot learning capabilities in various tasks, from writing programs
to query structured and unstructured data [6, 136, 32], interacting with online websites [54, 112], to
generating procedural plans and guiding embodied agents in virtual environments [154, 2, 145, 156].
Most existing work still capitalizes on the generative ability of LLMs. A common strategy to
encourage an LLLM to produce valid plans is to directly describe the environment in the LLM’s
context (i.e., input augmentation), which is difficult for complex environments like KBs. In contrast,
Pangu shields the LLM from the complexity of the environment and lets the LLM focus on evaluating
the plausibility of candidate plans proposed by an agent. One interesting related work is [2], where an
LLM is used to score atomic action (skill) proposals, which are guaranteed to conform to affordance
constraints, from an embodied agent. Pangu shares a similar spirit of using LMs for discrimination,
but we support more complex plans through a search process in the environment guided by an LM.
Bottom-Up Semantic Parsing. Our instantiation of Pangu on KBQA is closely connected to bottom-
up semantic parsing, particularly SmBoP [139], a text-to-SQL model that iteratively constructs a
complex plan from a set of subplans. Pangu similarly constructs a complex plan incrementally from
smaller subplans, but it makes the following main departures. First, SmBoP requires all ingredients
(i.e., column headers, table names, and DB values) at the beginning of parsing. This assumption does
not generally hold for more complex or partially observable environments, where ingredients need
to be discovered through search. In our method, only topic entities are needed as the initial plan,
which can be readily obtained using an entity linker [85]. Second, our scoring function is based on
a straightforward application of LMs, while SmBoP uses a more intricate architecture with extra
parameters. Also related is an array of earlier KBQA methods that adopt an enumerate-and-rank

approach [194, 170, 193]. Because they try to enumerate all candidate plans up front, the maximum
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Figure 4.2: (a) An illustration of how an agent collaborates with an LM to incrementally produce
a complex target plan over a KB using beam search (beam size = 1 in this example). At each step,
the agent enumerates a set of valid plans based on the current plans and the environment. An LM
then scores the candidate plans and returns the top-ranked ones. The search process terminates when
there is no candidate plan that scores higher than the current best plan (e.g., 4a-c are all worse than
3¢). (b) Using different LMs (left: BERT, right: Codex) to evaluate the plausibility of plan 2a. It
resembles using LMs for semantic matching between the utterance and the plan.

plan complexity is bound to be small. Our adaptive search process allows for flexible construction of

more complex plans.

4.3 Approach

An overview of the Pangu framework is presented in algorithm 1. An overarching assumption of
Pangu is that a complex plan can be incrementally constructed by an agent through its exploration
in an environment. Such an agent can be a robot doing household tasks in a physical environ-
ment [149], or a virtual agent that orchestrates API calls of different web services [4] or traverses a
database/knowledge base (KB) [200, 171]. Starting from a set of initial plans Fp (may be empty), at
each step, the agent interacts with the environment E to extend the current plans into a new set of

candidate plans (line 4). The candidate plans are guaranteed to be valid (i.e., both grammatical and
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faithful). An LM then scores the candidate plans, and the top K (the beam size) plans are retained
for further exploration in the next step (line 5). The same procedure loops until a termination check
is passed (line 6); the best plan is then returned.

Pangu mainly shines in that a symbolic agent explores the environment to propose valid plans
and shields the LM from having to handle the large search space for valid plan generation. Instead,
the LM only focuses on evaluating the plausibility of the proposed plans. An LM can be easily
fine-tuned to excel at this assignment, or, in the case of LLMs such as Codex, they come with such
ability out of the box, which enables few-shot in-context learning. Pangu is a generic framework
and can potentially accommodate many grounded language understanding tasks by instantiating the

various functions in algorithm 1 accordingly.

4.3.1 KBQA: Preliminaries

Without loss of generality, we use KBs as our target environment and the knowledge base question
answering (KBQA) task as a concrete example for ease of discussion. It is an ideal testbed because of
the massive environment provided by modern KBs (e.g., FREEBASE [15] contains 45 million entities
and 3 billion facts for over 100 domains), which makes grounding particularly challenging. Given a
KB: K C &€ xR x (EULUC), where C is a set of classes, £ a set of entities, £ a set of literals and
‘R a set of binary relations, the task of KBQA is to find a set of answer entities to an input utterance
in the KB. KBQA is typically modeled as semantic parsing [171], where the utterance is mapped to
an executable program/plan in a certain formal language (e.g., SPARQL, A-calculus, or S-expression)
whose denotation is the answer. We use S-expressions [170] for its compactness. An example is

shown in Figure 4.2.
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Algorithm 1: PANGU

1 Input: utterance g, initial plans Py, environment £
2 t+1;

3 while True do

// AGENT PROPOSES PLANS

4 C} + Candidate-Plans(P;_1, F)

// LM SCORES AND PRUNES PLANS

5 P, + Top-K(q,Cy)

6 if Check-Termination() = True then
7 | return top-scored plan
8 t—t+1

4.3.2 Candidate Plan Enumeration

To handle the large search space, the agent casts the task as a step-wise decision-making problem.
A plan for KBQA can be decomposed into a nested sequence of subplans [173] (Figure 4.2). The
length of a plan is defined as the number of atomic subplans it contains.

For KBQA, P, can be a set of entity proposals (e.g., { Java}) obtained using off-the-shelf entity
linkers [85]. At step ¢, the agent considers P;_1, the length ¢ — 1 plans, and decides how to further
extend them into Cy, the valid plans of length ¢, based on the environment. This often involves
executing the current plans in the environment. Consider the example in Figure 4.2 at t = 1, the
agent finds all the relations connected to Java and enumerates all the length-1 valid plans. The LM
scores the candidate plans and prunes all but the top-ranked plan because beam size is 1. Att = 2,
the agent executes plan 1c to get its denotation (i.e., a set of entities) in the KB, based on which
the agent further discovers the relations and classes (e.g., ComputerEmulator, ComputerSoftware,
and rReadBy) connected to those entities to form valid length-2 plans. All the plans produced in this

process are guaranteed to be valid.
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4.3.3 LM-Based Scoring

After the agent enumerates a set of candidate plans, an LM assists with its decision making by
evaluating the plausibility of each candidate plan. The interface for evaluating a plan using LMs
resembles using LMs for semantic matching: Given a pair of (u: utterance, ¢ € Cy: candidate plan),
an LM acts as a scoring function: s(u, ¢) — R, which indicates to what extent the candidate plan
matches the intent of the utterance. The plausibility of a candidate oftentimes can be indicated by
simple linguistic cues, e.g., ComputerEmulator in 2a might be a strong indicator (Figure 4.2(a)).

We follow the common practice of using LMs for semantic matching. For encoder-only LMs
like BERT, we directly get a score from the representation of the [cLs] token (Figure 4.2(b)). For
encoder-decoder LMs like TS5, we follow [211] to feed both the utterance and the candidate plan to
the encoder and use the decoding probability over an unused token during pre-training as a proxy
for matching score. For decoder-only LMs like Codex, we model the score as the probability of
generating the candidate plan conditioned on the utterance, i.e., P(c|u). Intuitively, a good scoring

function should respect the following partial order:

s(u,c1) > s(u,c2), Ver € GyandVeg € Gy,
s(u,c1) > s(u,ca), Vep € Gyand Veg € Cp\Gy,

s(u,c') > s(u,¢;), Ve #¢

where G is the set of gold (sub-)plans at step ¢ (i.e., length-t subplans of the target plan) and ¢’ is
the target plan. In other words, a gold subplan should be scored higher than 1) any negative (i.e.,
not gold) plans at the same step (e.g., 2a should be scored higher than 2c), because they contain
information irrelevant to u, and 2) any gold sub-plans of length < ¢ (e.g., 2a should be scored higher

than 1c) because they are less complete. In addition, ¢’ should be scored higher than any other plan.
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4.3.4 Termination Check

Assuming the LM can assign reasonable scores to candidate plans following the above partial
order, we can naturally define the condition for termination in algorithm 1: It terminates if the highest
score of candidate plans at step ¢ is lower than the highest score of candidate plans at step t — 1,
which, ideally, should indicate no reachable candidate plan of length > ¢ is better than the plans at

step t — 1, and thus the search process terminates.

4.3.5 Learning

We discuss the learning procedure for both fine-tuning LMs (e.g., T5) and in-context learning

with LLMs (e.g., Codex). For both settings, we use pairs of utterances and gold plans for supervision.

Fine-tuning. Given a gold plan of length 7, we first derive its gold sub-plans G of each stept < T°
(e.g., 1c for step 1 and 2a for step 2 in Figure 4.2). Fine-tuning proceeds with beam search similar to
the test-time behavior, but with bottom-up teacher forcing [185, 139], i.e., the gold plans of the current
step should always be inserted into the beam. At each step of beam search, we get the probability of
each candidate plan ¢ € C; with softmax over the scores: p(c) = softmax{s(u, ¢)}cec,ua, ;- Gi—1

is also included here to encourage LMs to explicitly learn the partial order by minimizing the loss:

T+1

23 ile)log ple)

t=1 ceC}

where Z is the total number of summed items, and p(c) equals 1 if ¢ € G; and 0 elsewise. Note that,
for the T + 1 step, we let Gr41 = Gp. This additional step aims to enforce the third condition in
the partial order. Our objective is essentially a listwise learning-to-rank objective based on the cross

entropy [23].

In-Context Learning. We directly use pairs of utterances and gold plans as in-context demonstra-

tions to the LLM, with a simple task instruction in the prompt: “Please translate the following
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questions to Lisp-like programs.” The LLM is therefore expected to capture the desired partial order

by observing the in-context examples.

4.4 Experimental Setup

4.4.1 Datasets

We experiment with three KBQA datasets of different scale and nature.

GRAILQA [170] is a large-scale dataset that evaluates three levels of generalization, namely, i.i.d.,
compositional (novel compositions of seen constructs), and zero-shot (totally novel domains). It also
features diverse questions of different complexity and aggregation functions.

GRAPHQ [161] is a moderate-scale dataset. Due to the small size of its training set and the non-i.i.d.
setting, GRAPHQ is particularly challenging. In our experiments, we use the processed version
by [173], which maps the original dataset from FREEBASE 2013-07 to FREEBASE 2015-08-09.
WEBQSP [195] is a moderate-scale dataset with questions from Google query logs. It mainly tests

i.i.d. generalization on simple questions. It is a clean subset of WEBQ [10] with program annotations.

4.4.2 Baselines

We mainly compare Pangu with state-of-the-art baselines that use LMs as a generative model,
including ArcaneQA [173], TIARA [151], DecAF [198], and RnG-KBQA [193]. Constrained
decoding (i.e., ArcaneQA and TIARA) and input augmentation (i.e., TTARA, DecAF) are used to
enhance plan generation. Also, the last three models use a combination of language models to do
different jobs (i.e., retrieval/ranking/decoding). In addition, we also compare with UnifiedSKG [186].
UnifiedSKG assumes a set of schema items are provided as input, where the gold schema items are
always included and the number of negative schema items is restricted to 20 for GRAILQA. It is thus
a less fair comparison for other methods, but we include it anyway because it is a representative way

of autoregressive plan generation using a large LM. Compared with the baselines, Pangu requires no
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Overall LLD. Compositional Zero-shot Dev Overall

Model EM F1 EM F1 EM F1 EM F1 EM F1
QGG [81] - 36.7 — 40.5 — 33.0 — 36.6 — -
BERT+Ranking [170] 50.6 58.0 59.9 67.0 45.5 53.9 48.6 55.7 — -
ReTraCk [27] 58.1 65.3 84.4 87.5 61.5 70.9 44.6 52.5 — —
RnG-KBQA [193] 68.8 74.4 86.2 89.0 63.8 71.2 63.0 69.2 71.4 76.8
ArcaneQA [173] 63.8 73.7 85.6 88.9 65.8 75.3 52.9 66.0 69.5 76.9
Uni-Parser [99] 69.5 74.6 85.5 88.5 65.1 71.1 64.0 69.8 70.8 76.5
TIARA [151] 73.0 78.5 87.8 90.6 69.2 76.5 68.0 73.9 75.3 81.9
DecAF [198] 68.4 78.7 84.8 89.9 73.4 81.8 58.6 72.3 — 81.4
UnifiedSKG w/ T5-3B [186] — - — - - — — - 70.1* -
Pangu (this work)
w/ BERT-base 73.7 79.9 82.6 87.1 74.9 81.2 69.1 76.1 75.0 82.1
w/ T5-base 73.6 79.9 84.7 88.8 73.1 80.1 68.6 75.8 76.0 82.8
w/ T5-large 74.8 81.4 82.5 87.3 75.2 82.2 71.0 78.4 75.8 83.3
w/ T5-3B 75.4 81.7 84.4 88.8 74.6 81.5 71.6 78.5 75.8 83.4
" "w/Codex (10-shot) 489 563  51.8 581 433~ 512 501 578 0 0 — =
w/ Codex (100-shot) 53.3 62.7 54.7 62.9 54.5 63.7 52.3 62.2 — -
w/ Codex (1000-shot) 56.4 65.0 67.5 73.7 58.2 64.9 50.7 61.1 — -

(a) GRAILQA

Model F1
QGG [81] 74.0
ReTraCk [27] 71.0
Model F1 CBR [36] 72.8
UDEPLAMBDA [137] 17.7¢ Program Transfer [22] 76.5*
PARA4QA [43] 20.44 RnG-KBQA [193] 75.6
SPARQA [164] 21.58 ArcaneQA [173] 75.6
BERT+Ranking [170] 27.0 Uni-Parser [99] 5.8
ArcaneQA [173] 34.3 TIARA [151] 767
DecAF [198] 78.8
e BERTbase 520 Pangu (s work
w/ BERT-base 77.9
w/ T5-base 53.3 w/ T5-base 773
w/ T5-large 55.6 w/ T5-large 78.9
__ W3 622 w/ T5-3B 79.6
w/ Codex (10-shot) 42.8 "7 "w/Codex (10-shot) 459
w/ Codex (100-shot) 43.3 w/ Codex (100-shot) 54.5
w/ Codex (1000-shot) 44.3 w/ Codex (1000-shot)  68.3
(b) GRAPHQ (c) WEBQSP

Table 4.1: Overall results. Pangu achieves a new state of the art on all three datasets and shows
great flexibility in accommodating LMs of different nature. Also, for the first time, Pangu enables
effective few-shot in-context learning for KBQA with Codex. * using oracle entity linking. ? results
on the original GRAPHQ 2013-07, otherwise it uses the version from [173], which is a slightly smaller
subset.
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extra parameter, no modification to the LM, and no need to combine multiple LMs. Pangu provides

unprecedented uniformity of using LMs of different nature.

4.4.3 Implementation Details

For the fine-tuning experiments, we experiment with BERT-base, T5-base, T5-large, and T5-3B,
and use the full training set of each dataset for fine-tuning. For the in-context learning experiments,
we experiment with Codex.?! We randomly sample 10/100/1000 training examples from each dataset
and use that as the pool for dynamic retrieval. During inference, for each test example, we retrieve
10 in-context examples from the pool using BM25-based utterance similarity. We use entity linking

results from off-the-shelf entity linkers.

4.5 Results

4.5.1 Main Results

Fine-tuning results. The main results are shown in Table 4.1. Using a BERT-base LM, Pangu
already achieves a new state of the art on GRAILQA and GRAPHQ, and only trails behind DecAF
on WEBQSP, which uses a 3B-parameter LM. On GRAPHQ, Pangu with BERT-base dramatically
improves the state-of-the-art F1 from 31.8% to 48.2%. These are strong evidence for Pangu being a
better protocol for using LMs for grounded language understanding. Pangu’s strong generalizability
with limited training data is also confirmed by its performance on the zero-shot generalization of
GRAILQA. Our method also shows great flexibility in accommodating different LMs and a reliable
return from model size—using increasingly larger LMs yields monotonically improved results across
the board, with T5-3B setting the new state of the art on all datasets. One interesting observation
is that Pangu slightly underperforms on the i.i.d. subset of GRAILQA. It turns out that, because the

discriminative task is much easier for LMs to learn than the generative task, Pangu converges very

2'We opt for Codex because it is free, but small-scale experiments also show competitive performance from GPT-3.
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fast (at most two epochs) and gets fewer training steps for overfitting the i.i.d. setting, in exchange
for better non-i.i.d. generalization. The strong performance on WEBQSP, an i.i.d. dataset, further

supports this observation.

In-context learning results. For the first time, we show the feasibility of effective few-shot KBQA
with LLMs. On GRAILQA, Pangu with Codex achieves an overall F1 of 56.3% only with 10 training
examples. Though there is still a gap to the fine-tuning results, it is still impressive, especially
considering the massive meaning space of the KB. On GRAPHQ, Pangu with Codex even outperforms
ArcaneQA with 10 training examples. This further confirms that Pangu is particularly strong in
generalizing to new environments with limited training data. On WEBQSP, Pangu trails behind
fine-tuning methods when only using 10 training examples, however, increasing the size of the pool
for retrieval can significantly boost the performance, which is expected given WEBQSP’s i.i.d. nature.

While for non-i.i.d. datasets like GRAILQA and GRAPHQ, the gain from more training examples is

marginal.

Question I “neil leslie diamond composed what tv song?"

Pangu (AND tv.tv_song (JOIN music.composition.composer m.015730))(v/)

ArcaneQA (AND music.recording (JOIN music.recording.song (JOIN mu-—
sic.composition.composer m.015_30)))()()

ArcaneQA% (JOIN music.composition.composer m.015_30) (JOIN mu-—
sic.recording.song #0) (AND music.recording #1)

Question 11 “which software falls into both continuous integration and build automation genres?"”

Pangu (AND computer.software (AND (JOIN computer.software.software_genre
m.05vvqgy) (JOIN computer.software.software_genre m.Othrf)))(v/)

ArcaneQA (AND computer.software (JOIN computer.software.software_genre
m.Ovaqy))()()

ArcaneQA2 (JOIN computer.software.software_genre m.05vvqgy) (AND com-—

puter.software #0)

Table 4.2: Two representative examples that Pangu succeeds while ArcaneQA fails, both w/ BERT-
base. 2 denotes the original order of the decoder’s output. The first incorrect token predicted by
ArcaneQA is marked in red.
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4.5.2 Sample Efficiency Analysis

Intuitively, by using LMs for discrimination instead of generation, the task becomes easier for
LMs and thus improves their sample efficiency. Our sample efficiency experiments in Figure 4.3
confirm this hypothesis. We downsample GRAILQA’s training data and randomly sample 1, 10,
100, and 1,000 training examples and report the results on 500 random dev examples. We compare
Pangu with ArcaneQA and UnifiedSKG using the same LMs. We use oracle entity linking to have
a more direct comparison with UnifiedSKG (though UnifiedSKG still has an unfair advantage as
previously mentioned). In addition, we also include Pangu with Codex and use the downsampled
training set as the pool for retrieval. First, we observe that, when both using T5-base, UnifiedSKG
significantly underperforms Pangu. The main reason is that most predicted plans by UnifiedSKG are
invalid in the low-data regime. ArcaneQA uses constrained decoding to alleviate this issue, but still
consistently underperforms Pangu when both using BERT-base. For in-context learning using Codex,
Pangu achieves an EM of over 50% with only one training instance. It consistently outperforms all
fine-tuning models under low-data settings (i.e., less than 1,000 training examples). Compared with
UnifiedSKG, Pangu shows both stronger performance and better robustness against different training

data selections.

4.5.3 Pangu vs. Constrained Decoding

To better understand Pangu’s advantage over generation-based methods, we compare Pangu
with ArcaneQA. ArcaneQA is the only open-source baseline that uses constrained decoding to
enforce the validity of predicted plans. There are two main reasons for Pangu’s superiority. First,
though constrained decoding can also help ensure plan validity, the autoregressive decoder operates
with token-level local normalization and thus lacks a global view. As a result, local failures may

break its predictions. For example, a wrong local prediction (e.g., function name) by ArcaneQA
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—& - ArcaneQA (BERT-base) —e— UnifiedSKG (T5-base) --®- UnifiedSKG (Codex)
—A-- Pangu (BERT-base) Pangu (T5-base) --A-- Pangu (Codex)

90

75

1-shot 10-shot 100-shot 1000-shot Full

Figure 4.3: Sample efficiency results. We conduct three runs with different training examples and
show the mean EM; shaded areas denote max/min.

leads to catastrophic errors (Table 4.2). By evaluating candidate plans instead of candidate fokens,
Pangu has a more global view and is less likely to make such local errors. Second, Pangu is less
susceptible to overfitting and thus achieves better performance in non-i.i.d. settings. Pangu does not
learn to generate a plan; instead, it learns to evaluate the plausibility of utterance-plan pairs. Such
knowledge is more transferable. An interesting observation is shown in Figure 4.4, where Pangu’s
output probability distributions are consistent across programs seen and unseen in training. While
for ArcaneQA, there is a drastic shift from seen to unseen. This is also consistent with the finding
that autoregressive models tend to overfit seen structures during training by [14]. It makes non-i.i.d.

generalization more difficult.

4.6 Conclusion

In this chapter, we propose to capitalize on the discriminative ability of language models (LMs)

instead of their generative ability for grounded language understanding. Building on this proposal, we
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Figure 4.4: Distribution of the probabilities assigned to predicted programs that are seen and unseen
during training. We use kernal density smoothing for better visualization, so the z-axis goes over 1.0.

design a generic framework, Pangu, which consists of a symbolic agent and a neural LM working in
a concerted fashion and creates a better separation between the realm of the neural and the symbolic.
This work opens the door for developing sample-efficient extrapolative agentic systems that fully
capitalize on the language understanding ability of LMs while avoiding their limitations. It also

sheds light on developing better neuro-symbolic systems in general.

Limitations

Despite the strong performance of Pangu, we identify several limitations that call for further
improvement. The first major limitation lies in efficiency. Because Pangu requires an LM to
iteratively score candidate plans, it is resource-consuming in terms of both time and computing.
Compared with ArcaneQA, which efficiently handles complex questions in KBQA, Pangu is about
twice slower for both training and inference and consumes about twice as much GPU memory when
using the same LM. Concretely, to predict a plan of L tokens, generation-based methods involve
using an LM to do L forward passes. For Pangu, the number of forward passes is proportional to the
number of candidate plans, which can range widely. In the future, algorithms with complexity better

than O(N), N being the number of candidate plans, are desired to find the top-K candidates.
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Second, though Pangu has shown some promising results with Codex, the true potential of
enabling few-shot grounded language understanding with Pangu has yet to be realized. We only
experiment with a straightforward scoring function and have not experimented with different prompt
designs systematically. In the future, we plan to try different prompt designs, retrievers, and scoring
functions, including using latest techniques like chain of thought [184].

Third, though orthogonal to the general framework of our proposal, in our current instantiation,
we assume gold plans for training. However, gold plans can be expensive to collect for some
environments. Exploring fine-tuning LMs with weak supervision can be an interesting direction. In
addition to proposing candidate plans to the LM, the agent may also respond to the LM with rewards
based on its decisions [91].

Finally, in this chapter, one important merit of Pangu, controllability, is under-explored, because
it is not very necessary for KBQA. While for tasks like text-to-SQL parsing, controllability is a
highly desirable property. Intruders may manipulate text-to-SQL models to launch database attacks
via SQL injection [129]. With Pangu, we can easily get rid of malicious SQL operations in candidate
enumeration. However, for generation-based methods, such controls are hard to achieve during
generation because the decoding process can be shortsighted; it is difficult to tell whether the current
prediction will lead to a malicious operation several steps later. In the future, we will explore Pangu’s

controllability on more different tasks.

77



Part IT: Facilitating Goal-Policy Mapping
through Natural Language Prior
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Chapter 5: Enhance f with Language-Conditioned Policy

In the previous chapters, we have focused mainly on the evaluation presented in Chapter 2. A key
limitation in our evaluation is that KBQA mostly focuses on direct mapping: the goal descriptions
operate as a similar abstraction level as the action space. However, this property may not hold in
many real-world scenarios. For example, you may simply instruct your robot to “make a pizza,” while
the robot has to first figure out how to decompose this goal into subgoals. In this chapter, we relax
this assumption and take it a step further by fully leveraging the autonomy of large language models
(LLMs). Specifically, LLMs are proficient with using natural language as a vehicle of thought (i.e.,
CoT reasoning [184]). Capitalized on this intuition, we focus on providing the LLM with necessary
scaffolding to interface complex environments like the KB and database, and fully leverage the
LLM’s own decision-making capacity, which shows even stronger performance in extrapolation
compared with Pangu when using no training data. This aligns with the modern paradigm of language

agents [160].
5.1 Introduction

Large language models (LLMs) have demonstrated a human-like mastery over text [118, 119, 175,
70]. However, the true ambition of Al extends well beyond the realm of text. The goal is to ultimately

empower LLMs to act as generalist language agents that can aid humans across the multitude of

complex real-world tasks [191, 141, 97], which often involve handling complex environments, be it
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Complex Environments
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Figure 5.1: (left) When an LLM engages with a complex environment, it can develop an understanding
by fitting the environment’s description (i.e., linearized tokens) into its short-term memory (i.e., the
LLM’s input window). However, this method encounters drastic scalability issues as the complexity
of the environment grows. (right) Another option is to furnish the LLM with a set of tools that assist
it in actively engaging with the environment and acquiring the necessary information.

browsing complex webpages [39], managing vast databases with millions of entries [86], or querying
huge KBs [169].

For LLMs to effectively serve as agents that ground human instructions accurately within the
environment, they must develop a robust understanding of the environment. The most direct method
to achieve it is to linearize the environment into a sequence of tokens that fit into the LLM’s short-
term memory (i.e., its input window) and have the LLM process the environment based on the
linearized description [167, 150, 97]. However, such a method faces steep challenges in scaling
to more complex environments. Also, discrete token descriptions may not reflect the most natural
perception of the environment. Recent work has explored using tools to extend the boundary of the

LLM’s capacity [87, 134, 141]. The core idea is that LLMs can actively decide a proper tool to use,
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using language as a powerful vehicle of thought [160]. Intuitively, we can also equip the LLM with
tools that enable navigating complex environments, so that the LLM can proactively invoke different
tools to explore the environment, thus circumventing limitations posed by its short-term memory
(Figure 5.1). However, this promising paradigm has been thus far underexplored. In this chapter,
we aim to delve into this paradigm and answer an intriguing question: How effectively can LLMs
handle complex environments with the aid of tools?

Answering this question requires equipping the LLM with a suite of tools designed to meet
a wide range of needs within the target environment. In this chapter, we carefully develop such
tailored tools for two exemplar complex environments, i.e., databases and knowledge bases (KBs).
Unlike readily available Web APIs [134] used in prior research, our tools have to be manually
invented from scratch. In crafting these tools, we capitalize on the intuition of human information-
gathering behaviors—such as performing keyword searches to identify a relevant database column
or investigating the connections of a KB entity—to fulfill complex tasks in these environments
(Section 5.3.1). Ideally, these tools are designed to function as a middleware layer between the LLM
and the environment, shielding the LLLM from environmental complexity. With these specialized
tools, we propose two novel schemes to enable the LLM to more accurately orchestrate its internal
reasoning and tool usage: error feedback and decoupled generation (Section 5.3.2). The combination
of the crafted tools and the tool-use schemes allows the LLM to actively explore the environment
and ground human instructions into accurate actions.

We evaluate different LLMs on benchmarks featuring complex tasks over the target environments,
including a newly curated benchmark for the KB. The results are revealing: LLMs equipped with
customized tools demonstrate a significant enhancement in their ability to engage with complex
environments, markedly surpassing the prior art. In particular, despite its simplicity, such a middle-

ware layer allows GPT-4 [118] to achieve 2.8 x the performance (i.e., 38.3% vs. 13.8%) of the best
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baseline in tasks requiring access to database content and 2.2x (i.e., 59.3% vs. 27.1%) in KB tasks.
Our findings underscore the integral role of tool augmentation in enabling LL.Ms to handle complex
environments.

Our main contributions are as follows: a) We develop a new framework with customized tools for
two complex environments, to investigate the role of tools in handling complex environments with
LLMs; b) We evaluate six different LLMs on our carefully chosen benchmarks for a comprehensive
analysis; ¢) Our analysis highlights a critical takeaway: augmenting LLMs with tools is crucial
for successfully tackling complex environments, opening new possibilities to progress LLMs as

generalist language agents for practical applications.

5.2 Related Work

Interface Complex Environments with LLMs. Existing methods that feed the environment di-
rectly into the LLM for grounding [26] would fail in complex environments due to scalability
issues. Specifically, these methods process the environment by linearizing it into discrete to-
kens [66, 150, 198, 97, 167, 156]. However, linearizing expansive environments like databases
with millions of entries [86] or lengthy webpage HTML code [39] can often exceed an LLM’s
input length constraints. Alternative studies bypass the LLM’s direct interaction with complex
environments by generating ungrounded draft plans for post-processing grounding [88, 115] or by
using the LLLM to assess grounded plans created via predefined rules [169]. Such strategies do not
fully utilize the LLMs’ innate reasoning potential in actively navigating complex environments. In
this chapter, we explore a new paradigm where we can bypass these issues by equipping LLMs with
a suite of comprehensive tools to actively gather necessary information about the environment upon

demand, leveraging the LLMs’ inherent reasoning capabilities.
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Tool Learning. Tools are essential for enhancing the capabilities of LLMs [141, 133, 106, 58].
Existing research, such as ToolLLM [134] and API-Bank [87], focuses on open-domain applications
with a wide array of readily available RESTful APIs. In contrast, this chapter specifically aims
to study the potential of tools in augmenting LLMs to effectively execute tasks within complex
environments, where we carefully craft the specialized tools for different environments by ourselves.
In addition, research focusing on RESTful APIs typically displays shallow reasoning, while practical
tasks within a complex environment typically entail a long sequence of actions (e.g., querying a KB
or browsing a webpage). To enable tool use in more intricate settings within a more specific complex
environment, StructGPT [71] employs a predefined sequence of tool invocations; Chameleon [100]
functions in an open-loop setting where the LLM directly produces a sequence for tool usage before
any execution occurs. Both of them fail to seamlessly integrate the reasoning capacity of the LLM
with the use of tools. In this chapter, we propose two novel schemes—error feedback and decoupled
generation to more seamlessly and accurately orchestrate the LLM’s internal reasoning and tool

usage.

5.3 Middleware for LLMs

We equip LLMs with a suite of tools specifically tailored to support an extensive variety of
operations and cater to the diverse needs within a complex environment £. We call these tools
middleware, as they can serve as a feature-rich middle layer between the LLLM and &, abstracting
the LLM from having to directly interact with all of its intricacies (Section 5.3.1). Furthermore,
to fully unleash the inherent reasoning capabilities of LL.Ms in invoking proper tools, we propose
two novel schemes to enhance tool use accuracy: error feedback, which provides concrete tool use
error information and expects the LLM to correct the error autonomously, and decoupled generation,

where the LLM’s reasoning steps and tool use are separated for better controllability (Section 5.3.2).
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This unified framework allows us to reliably investigate the potential of LLMs in handling complex

environments with the aid of tools.

|

What is the website that belongs to the category of Pixiv and has a web API of developers.facebook.com? ]

\

Thought 1: I will first query the KB to find relations connected to the entity 'Pixiv’.
Act 1: get_relations(Pixiv)
Obs 1: [website.owner new, website category, website owner]

Thought 2: I might use internet.website.category to find websites that belong to the category of Pixiv.
Act 2: get_neighbors(Pixiv, website_category)
Obs 2: variable #0

Thought 3: Now I need to find websites that have a web API of developers.facebook.com. To achieve this, I will
query the KB to find relations connected to it.

Act 3: get relations(developers.facebook.com)

Obs 3: [api.site, api.protocols]

-
.

a.error feedback

(a) Jointly decode thought and action

Thought 4: I might use internet.api.site to find websites that have a web API of developers.facebook.com.
Act 4: get_neighbors (#0, api.site)
Obs 4: api.site is not a relation from #0. Please retry.

Thought 5: Apologize for the mistake, I should use developers.facebook.com as the argument for get neighbors.
Act 5: get_neighbors (developers.facebook.com, api.site)
Obs 5: variable #1

b. decoupled generation

(b.1) First decode the thought only
Thought 4: I might use internet.api.site to find websites that have a web API of developers.facebook.com. ]

(b.2) Then predict the action with M/ ~N

Given the thought: I might use internet.api.site to find websites that have a web API of
developers.facebook.com.

Please make a choice from the options below. Specify your choice with an option letter.
Permissible actions:

a. get_neighbors (developers.facebook.com, api.site)

b. get_neighbors (developers.facebook.com, api.protocols)

c. Return #0 as the final answer

d. None of the actions corresponds to the thought.

Choose from a, b, c, d

My choice: a

/
N

Figure 5.2: The LLM is equipped with an array of tools to facilitate its engagement with complex
environments (e.g., a KB here). (a) The LLM may produce invalid actions (marked in pink). This
can be mitigated by prompting it with an error message that encourages a reattempt (corrected action
marked in green). (b) Alternatively, we can have the LLM first generate a thought, then predict an
action based on it in a separate context (marked in blue), and finally insert the action back to the
original context. Text marked in yellow are input from the environment.
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5.3.1 Tools for Complex Environments

To evaluate the potential of LLMs in handling complex environments when equipped with tools,
we need to first carefully craft the necessary tools for the environments. These tools should meet
two essential criteria: 1) They should offer comprehensiveness, encompassing a broad spectrum of
operations and needs. Broad coverage of tools is crucial for maximizing the potential of LLMs in
planning. 2) The tools should prioritize ease of use, enabling the LLM to invoke them mostly with

straightforward slot filling, thus shielding the LLM from the implementation details of the tools.

Databases In production scenarios, databases typically feature dozens of tables, with each ta-
ble containing thousands of rows or more. A key task in such environments is performing data
analysis through SQL queries. To bridge the gap between natural language instructions and
SQL, LLMs are employed to automate the generation of SQL queries (i.e., text-to-SQL pars-
ing [200, 86]). To support the LLM in crafting complex SQL queries, we introduce a set of
specialized tools designed for interaction with intricate databases. These tools are divided into two
main categories: navigational and functional. Navigational tools help the LLM to explore the envi-
ronment (e.g., get_distinct_values () and find_columns_containing_value ()),
while functional tools help check each SQL clause composed by the LLM. For example, where ()
verifies the legality of the WHERE clause and determines if the specified conditions can match any
entries in the database. In total, we craft 12 tools for databases. The development of these tools is

grounded in our domain expertise in SQL and databases.

KBs Modern KBs, such as FREEBASE [15], are vast repositories storing billions of facts as triples
(h,r,t). These KBs cover a wide array of domains and support complex information-seeking tasks,
including answering questions that require multi-hop reasoning. To support the LLM in engaging

the extremely massive KB environments, we also devise a toolset tailored for KBs. Similarly, tools
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for KBs also include navigational tools and functional tools. The navigational tools facilitate effi-
cient exploration of the KB by the LLM (e.g., get_relations () and get_attributes()),
while the functional tools support the LLM in executing precise operations, such as counting and
intersecting two sets (e.g., intersection () and count () ). Both are critical for completing
complex reasoning tasks on KB. A key concept in tools for KBs is a variable, representing a set
of entities and typically generated as an intermediate result through the execution of functions like
get_neighbors () or intersection (). The use of variables facilitates multi-hop reasoning
across KBs, as it enables the natural linkage of a sequence of tool executions. In total, we implement
7 tools for KBs. Our design of KB tools tightly adheres to the common needs in knowledge base

question answering (KBQA) [170, 21].

5.3.2 Reasoning with Tools

We first choose ReAct [191] to serve as the backbone of our reasoning framework, in which the
LLM can proactively decide which tool to use based on its own chain-of-thought [184]. Based on
this backbone, we propose two novel schemes to improve the accuracy of tool use, which is critical
for complex tasks where successful tool use necessitates careful tool selection and precise argument
assignment. Unlike existing methods relying on human-defined workflows that follow fixed-order
tool usage [71], our framework allows the LLM autonomy in proactively determining tool selection
using CoT.

Formally, at each step ¢, the LLM makes predictions following a policy that maps a current

context to an output: m : ¢ — a¢, where

Ct = (dlaol e 7&t—170t—1)

&t:rtGBat
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a¢ 1s the concatenation of a rationale r; (i.e., a thought in CoT) and a concrete tool use a; (e.g., in
Figure 5.2, a; is the concatenation of Thought 1 and Act 1), while o, is an observation from the
environment (i.e., the execution result of a;). In ReAct, the LLM jointly decodes a; based on ¢; for
each step. However, originally designed for simpler tools like the Wikipedia Search API, the naive
ReAct framework is more susceptible to producing an invalid a; that is unfaithful to r; when applied
to more nuanced tool usage. We propose two simple strategies to remedy this issue. The first strategy
is to simply amplify ReAct by providing detailed error feedback in case of incorrect tool usage by
the LLM, followed by a prompt to retry based on these messages (see Figure 5.2(a)).2? This relies on
the LLM’s capacity for self-correction through feedback [50, 28], which may not always be reliable
when the underpinning LLM is weak, potentially leading to the repetition of the same mistakes [51].
Additionally, we present decoupled generation, where the LLM’s policy 7 is split into two sequential
phases (i.e., m o< w1 o ), allowing for more nuanced control of its actions. Initially, the LLM only
decodes a thought r; following 71 (7¢|c¢). Subsequently, the LLM predicts an action a; in a separate
context, incorporating both the thought r; and a set of simple rules M that determines permissible
actions of this step. This is further guided by 7o, formulated as a; ~ ma(a¢|r¢, M). M encapsulates
the governing rules of the environment (e. g., the relation argument for get_neighbors () must be
derived from the output of get_relations (), which is applied to the specified entity argument

in prior steps), infusing prior knowledge into the LLM’s decision-making process (see Figure 5.2(b)).

5.4 Benchmarks

The predominant tasks for databases and KBs are text-to-SQL parsing and KBQA. However,

popular benchmarks for them may fall short for evaluating language agents out-of-box. Specifically,

ZFor databases, we directly use the error message from sqlite3. For KBs, we manually define several simple templates
for error feedback along with each tool.
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Model Req. Cont. (N) Req. Cont. (Y) Overall
EX VA EX VA EX VA

w/ Oracle Knowledge
API Docs Prompt [136]
w/ GPT-3.5-turbo 38.1 78.4 32.1 74.6 36.1 77.2
w/ GPT-4 49.5 95.5 41.7 89.9 46.9 93.7

w/o Oracle Knowledge

API Docs Prompt [136]

w/ GPT-3.5-turbo! 30.9 82.9 10.9 80.0 244  82.0

w/ GPT-4 38.2 91.6 13.8 93.1 30.4 92.1
StructGPT [71]

w/ GPT-3.5-turbo 36.2 86.5 8.7 80.8 27.3 84.7

w/ GPT-4 40.7 93.4 13.5 91.1 31.8 92.6
MIDDLEWARE (error feedback)

w/ GPT-3.5-turbo 38.8 95.7 19.8 94.7 32.7 954

w/ GPT-4 45.1 98.8 38.3 97.2 429 98.3

Table 5.1: Results on BIRD’s dev set. Performance of all baselines is obtained under a zero-shot
setting. T denotes the best method w/o oracle knowledge on BIRD’s official leaderboard. The
predictions with API Docs Prompt are directly supplied by the authors of BIRD.

the majority of questions in popular KBQA datasets like WEBQSP [10, 195] are one-hop or two-
hop questions, for which we can effectively handle with existing semantic parsing methods [171].
Additionally, the databases featured in SPIDER [200] and WIKISQL [209] have limited complexity
in terms of both schema design and the number of rows in the tables. This over-simplification enables
the direct feeding of the database schema to the LLLM, achieving strong performance without the
need to access the actual content of the database [136]. Therefore, we need different benchmarks
with complex environments and instructions that better mirror the real-world situations language

agents must handle.

Databases For databases, we leverage BIRD [86], which is a recent dataset notable for its com-

plexity, featuring intricate instructions over highly complex databases. There are originally two
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Model Counting Superlative None Overall
F1 VA F1 VA F1 VA F1 VA

Pangu® [169]
w/ GPT-3.5-turbo 10.1 100.0 9.0 100.0 23.4 100.0 18.1 100.0
w/ GPT-4 12.3 100.0 14.2 100.0 35.6 100.0 27.1 100.0
KB-Binder [88]
w/ GPT-3.5-turbo (20-shot) 0.0 337 0.2 194 6.7 370 42 328

w/ GPT-4 (20-shot) 79 483 04 282 6.0 458 52 426
StructGPT [71]

w/ GPT-3.5-turbo 45 506 39 515 114 571 8.6  54.8

w/ GPT-4 2.2 371 39 301 117 263 84 29.0
MIDDLEWARE (error feedback)

w/ GPT-3.5-turbo 33.7 70.7 220 641 239 568 253 60.8

w/ GPT-4 707 96.6 39.9 745 558 74.0 55.1 78.0
MIDDLEWARE (decoupled generation)

w/ GPT-3.5-turbo 489 97.7 295 8.0 32.1 773 343 83.0

w/ GPT-4 741 989 426 8.1 61.0 83.6 59.3 858

Table 5.2: Results on KBQA-AGENT. All models are provided with one-shot demonstration except
for KB-Binder, where we provide 20-shot demonstrations for optimal performance. <) indicates our
reimplementation of Pangu, as the original code lacks support for chat models. We assume perfect
entity linking for all methods.

different settings in BIRD: with and without oracle knowledge, where the oracle knowledge supplies
specific information about the target database needed to fulfill each task. For instance, “Exclusively
virtual refers to Virtual = ‘F’”. With such oracle knowledge, the complexity of the environments
is substantially mitigated; it offers a shortcut for the task and eliminates the necessity for deep
engagement with the database. This cheating setting is also unrealistic for practical applications.
As a result, we stick to the setting without oracle knowledge. For each of the 1534 questions in
BIRD’s dev set, we manually label whether accessing the database content is necessary to compile
the SQL queries, noting that access is unnecessary if all mentioned values in a question exactly match
database cells. This facilitates decomposing the language agent’s performance based on questions

that require deeper database engagement (496 questions) versus not (1038 questions) and enables
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fine-grained insights into the LLM’s performance. In addition to execution accuracy (EX) used in
BIRD, which determines if the execution results of the predicted SQL match those of the ground

truth SQL, we also evaluate whether the predicted SQL is a valid SQL query (VA).

KBs We curate KBQA-AGENT, a new test set sourcing from existing KBQA datasets that contain
complex questions. In particular, we selected 500 diverse questions that involve at least three
relations, or two relations coupled with an aggregation function (i.e., Counting or Superlative). For
each question, we annotate it with a ground truth sequence of actions based on the toolset defined by
us.?3 Specifically, KBQA-AGENT comprises questions from three KBQA datasets on FREEBASE:
GRAILQA [170], CoMPLEXWEBQ [168], and GRaPHQ [161], ensuring a wide range of question
types and sources. KBQA-AGENT is designed to be more representative of challenging, real-world
scenarios compared to existing benchmarks. It offers an ideal testbed for evaluating language agents
in interacting with massive KBs. We assess this through two metrics: F1 of answer entities and

Validity (VA), a binary metric evaluating the LLM’s ability to find an answer, whether correct or not.

5.5 Experiments

5.5.1 Setup

Implementation To concretely instantiate our tools for the two environments, we employ standard
query interfaces for databases and KBs, specifically SQLite for databases and Virtuoso for KBs.
We then prompt the LLM with the tool descriptions together with the input task instructions. Each
environment exhibits its own unique characteristics and challenges. In KBQA, the arguments for
each function are either a variable or an item from the KB schema (i.e., a relation or an attribute). In
contrast, in text-to-SQL parsing, the arguments can be more varied, ranging from a part of a SQL

query to a complete query. This makes listing potential actions, as needed in decoupled generation,

BWe leverage the gold S-expressions provided by [173].

90



Knowledge Bases Databases

gpt-4 55519.3 — 4 2 .9

gPt-3.5-Urb0 —n 4.6 32 7
mixtral-7x8h E—Tg 7 20 — 5.9
mistral-7b g g™18.3 — 3.2
llama2-13b 6¢ B error feedback 4.6
llama2-7b §:6 decoupled generation ——
0 20 40 60 80 O 10 20 30 40 50
F1 EX

Figure 5.3: The open-source LLMs still largely lag behind GPT-3.5-turbo and GPT-4 in both
environments.

much more complex for text-to-SQL parsing. Therefore, we implement error feedback solely for
text-to-SQL parsing.

For the underlying LLMs, we primarily compare MIDDLEWARE with baseline methods using
two of the most advanced LLMs—GPT-3.5-turbo-0613 [119] and GPT-4-0613 [118]—since our goal
is investigating the full potential of tool-enhanced LLMs operating within complex environments. In
addition, we also explore four open-source LLMs to more comprehensively evaluate our framework:
Llama2-7B-Chat, Llama2-13B-Chat [175], Mistral-7B-Instruct-v0.2 [69], and Mixtral 8 x 7B-Instruct-

v0.1 [70].

Baselines To fully understand the potential of tool augmentation for assisting LLLMs in handling
complex environments, we compare MIDDLEWARE against an array of strong baselines. For text-to-
SQL parsing, LL.Ms demonstrate a strong ability to compose SQL queries when properly prompted
with the database schema (i.e., API docs prompting [136]). This also represents the current state-
of-the-art prompting-based method when oracle knowledge is not available on BIRD’s leaderboard.

In adddition, we also compare with more baselines on BIRD’s leaderboard that originally did not
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Figure 5.4: The customized tools can serve as effective middleware between the LLM and the
environment.
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submit their results using no oracle knowledge. For all methods on text-to-SQL parsing, we adopt the
zero-shot setting. Unlike text-to-SQL parsing, directly prompting LLMs does not generate reasonable
outputs for KBQA due to the massive size of the KB schema. Instead, existing KBQA methods
based on LLMs typically follow two paradigms: either first generating an ungrounded program and
then grounding the program to the KB schema afterwards [88, 115], or gradually constructing a
complex program and grounding it step by step [169]. We compare MIDDLEWARE with the most
representative work from each paradigm, namely KB-Binder [88] and Pangu [169]. We also include
StructGPT as an additional baseline for tool use. For all KBQA methods except KB-Binder, we

provide a one-shot demo to obtain more meaningful results.

5.5.2 Main Results

As shown in Tables 5.1 and 5.2, equipping LLMs with customized tools leads to significant
improvement over previous standards, almost doubling or tripling the performance under multiple
metrics. Specifically, API docs prompting can only feed the schema information to the LLM due to
the vast amount of database content. As a result, it fails catastrophically on examples that require
database content to compose the SQL query. In contrast, MIDDLEWARE equips the agent with tools to
actively navigate the database to collect relevant information for composing a SQL query. As a result,
MIDDLEWARE significantly closes the gap between performance on questions requiring database
content and questions not requiring it when using GPT-4 (i.e., 45.1% vs. 38.3%). Additionally, we
notice that MIDDLEWARE minimizes the gap between with and without oracle knowledge from 15.5%
to 4.0% using GPT-4 and 11.7% to 3.3% using GPT-3.5-turbo. Finally, StructGPT demonstrates
a similar trend to API docs prompting because its tools do not provide any information about the
database content. For KBQA, MIDDLEWARE demonstrates uniformly superior performance across
different question types and significantly outperforms Pangu with both GPT-3.5-turbo and GPT-4. In

particular, when equipped with GPT-4, MIDDLEWARE + decoupled generation outperforms Pangu
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by 32.2% in F1. As for the other two baselines, KB-Binder and StructGPT, both fail miserably on our
challenging setting. On the one hand, KB-Binder only retrieves relations within two hops from the
entities for grounding. However, most questions in KBQA-AGENT involve more than two relations.
As a result, many of its drafted programs are unable to ground, which explains its low VA. On the
other hand, StructGPT is heavily limited by its constrained toolset and cannot handle complex
questions in KBQA-AGENT. Therefore, StructGPT frequently refuses to provide an answer (as
revealed by its low VA) due to insufficient information. The strong performance of MIDDLEWARE

underscores that tools are instrumental for language agents in complex environments.

5.5.3 Experiments with Open-Source LL.Ms

To gain a more thorough insight, we also include experiments with four open-source LLMs (
Figure 5.3). Our findings indicate that Llama2 models generally underperform compared to other
LLMs, aligning with trends observed in other LLM leaderboards, such as Chatbot Arena [208].
Specifically, we find Llama2 models struggle with even generating grammatical tool use following
our instruction. On the other hand, Mistral and Mixtral demonstrate much better performance than
Llama?2. In particular, Mixtral represents an advanced mixture-of-experts model that has demonstrated
superior performance and even surpasses GPT-3.5-turbo on Chatbot Arena [208]. However, different
from answering open-ended questions, properly engaging with the complex environment demands the
language agent to produce more precise actions that strictly conform to the task specification. There
is still a gap between Mixtral and GPT-3.5-turbo in terms of predicting valid actions over complex
environments. Compared to GPT-3.5-turbo, Mixtral tends to output invalid actions more frequently.
This also explains why decoupled generation, where the output space is strictly constrained to a list
of valid actions, helps weaker models more. With MIDDLEWARE + decoupled generation, using

Mistral can almost match the best baseline performance with GPT-3.5-turbo, and using Mixtral can
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even match the best baseline with GPT-4. While stronger models like GPT-4 can effectively recover

the mistake via error feedback, weaker models tend to benefit more from decoupled generation.

5.5.4 Tools as A Middleware Layer

To deepen our understanding of the integral roles of tools in aiding LLMs in accessing complex
environments (i.e., KB triples and database rows in our setup), we conduct further analysis by
comparing MIDDLEWARE with prompting baselines with different amounts of data items directly
sampled from the environment (Figure 5.4). For the KB, we sample 10, 50, 100, and 200 triples
from FREEBASE based on the three-hop neighborhood of each entity in a question. These triples are
the top-ranked ones using a sentence-BERT retriever [138] based on their similarity with the input
question. We prompt the LLM directly with these sampled triples and request it to generate an answer
to the given question. Given the extensive size of FREEBASE, accurately representing the environment
with a mere subset of samples proves to be exceedingly difficult. Consequently, both GPT-3.5 Turbo
and GPT-4 consistently yield an F1 score close to 0. For the database, we similarly augment API
docs prompting with 1, 5, and 10 sampled rows for each table and evaluate on 100 random questions
from BIRD that require accessing database content. Additionally, we also augment MIDDLEWARE
with the same sampled rows in the database setting. We observe that including more database rows
initially boosts baseline performance but eventually decreases it. With MIDDLEWARE, prompting
the LLM with sampled rows yields minimal gain, and the standard setting without sampled rows
already significantly outperforms all baselines. These results further confirm that the LLM, when
augmented with tools, can effectively engage with complex environments, flexibly gathering the
necessary information on demand and bypassing the limitations on the amount of data it can handle

(e.g., around 200 triples or 10 rows per table).
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5.6 Conclusion

This chapter investigates the role of language prior in forming policies for various goals in natural
language. To enable agents to better handle open-world tasks by interacting with complex real-
world environments, we first craft a set of tools acting as middleware between LLMs and complex
environments. The LLM-based agents can then determine how to chain these tools through multi-step
decision making to accomplish goals. Experimental results show that with language-conditioned
policy, the agent can largely outperform the method introduced in Chapter 4, when no training data is
used. However, calling tools in such a reactive manner may still be limited when we need to perform
search to better explore the environment. In the next chapter, we will introduce a method that further

leverages the language prior for search (i.e., model-based planning).

Limitations

In this chapter, we aim to address the compelling question we posed: how effectively can LLMs
handle complex environments with the aid of tools? We investigate this through evaluations in two
exemplary environments: KBs and databases. While we achieve notable results in these environments,
it is important to acknowledge that implementing customized tools for KBs and databases presents
fewer challenges compared to environments without a straightforward query interface, such as a
webpage or a physical environment. In future work, we plan to extend MIDDLEWARE across a
broader range of environments, aiming to fully realize the potential of language agents in complex
environments through the integration of customized middleware tools.

Furthermore, the tools developed in this study are soley grounded in our experience. Despite this,
our results already demonstrate the significant potential of augmenting LLMs with customized tools
in complex environments, aligning with the primary objective of this chapter. Nonetheless, to enhance

performance further, adopting a more principled strategy for tool design is essential. Additionally,
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investigating autonomous tool-making methods [183] in complex environments presents a promising

direction for future research.
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Chapter 6: Enhance f with Model-Based Planning Conditioned on Natural Language

Simulation

In the previous chapter, we have discussed how we can leverage LLMs’ language proficiency
to directly enhance the policy conditioned on natural language thoughts. In this chapter, we focus
on another critical aspect of constructing the mapping function f: search. Performing search in
open-world environments can be highly challenging to do the costly interaction and state-changing
actions that prohibit backtracking. To perform search without the costly (and potentially dangerous)
interactions with the environment, we need to have a computational representation of the environ-
ment, i.e., a world model. To achieve this, we investigate how we can leverage LLMs to serve
as such a world model by predicting the outcome of taking a specific action in natural language
descriptions. Specifically, we propose WEBDREAMER, the first model-based planning framework
that demonstrates promising results in the complex web environment, which features more costly
interactions and state-changing actions compared with the KB and database environments. Our
empirical results show that the LLM-simulated world models allow the agent to effectively conduct
search within simulation and achieve better efficiency and safety compared with direct search within

a browser.
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6.1 Introduction

Planning [103]—the strategic search for optimal action sequences to achieve goals from initial
states—has been fundamental to artificial intelligence since its inception, driving remarkable break-
throughs including superhuman performance in games like Go [153, 152]. Recent advances have
demonstrated that integrating large language models (LLMs) with advanced planning algorithms (e.g.,
[190, 57, 169, 180, 44, 17]) substantially enhances their performance on complex reasoning tasks
beyond chain-of-thought (CoT) [184] approaches, with OpenAl’s ol [121] serving as a prominent
example. These methods effectively scale inference-time compute and enable LLMs to explore
multiple potential solution paths, which ultimately lead to more accurate outcomes.

Alongside these developments, research into generalist web agents capable of planning and
executing a sequence of actions to complete complex tasks across diverse websites has garnered
significant interest [39, 210, 207, 76], partly due to the web’s potential as a complex yet realistic
environment for driving agent research and development. However, applying existing planning
algorithms to the online web environment presents formidable challenges. Chief among these
challenges are the inherent safety risks associated with live website interactions [94], such as
inadvertently submitting forms with sensitive information or triggering unintended transactions.
These risks become even more pronounced when employing tree search algorithms [77, 132], as
their exhaustive exploration can expose the agent to hidden vulnerabilities and unforeseen scenarios.
Additionally, many online actions, such as confirming a purchase or sending an email, are irreversible,
which further makes backtracking—a crucial component of planning algorithms—highly challenging,
if not infeasible.

One promising solution to address these challenges is model-based planning [127, 110], which
equips agents with the ability to simulate interactions using a world model—a computational repre-

sentation of environment dynamics. By simulating action sequences within this virtual environment,
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(a) reactive (b) tree search with real interactions (c) model-based planning
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Figure 6.1: Schematic illustration of different strategies for web agents formulated as a search
problem. Each node represents a webpage. (a) Reactive: The agent selects locally optimal actions
without forward planning, often leading to suboptimal outcomes. (b) Tree search with real interac-
tions: The agent explores multiple paths through active website navigation and permits backtracking
(indicated by dashed arrows). However, in real-world websites, backtracking is often infeasible due
to the prevalence of irreversible actions. (c) Model-based planning: The agent simulates potential
outcomes (illustrated by cloud-bordered nodes) to determine optimal actions prior to real-world
execution, thus minimizing actual website interactions while maintaining effectiveness. For visual
clarity, only one-step simulated outcomes are depicted. Faded nodes indicate unexplored webpages,
while green checkmarks and red crosses denote successful and unsuccessful outcomes, respectively.
In this example, the tree search method visits 7 web pages over 9 steps of interactions, including
backtracking, while model-based planning (virtually) explores 11 pages in just 3 steps, even with a
simulation horizon of just 1.

agents can explore potential outcomes safely, without directly interacting with live websites. This
approach not only reduces safety risks but also preserves the agent’s capacity to explore and plan. Yet,
the true challenge lies in creating a versatile world model that can faithfully capture the landscape
of the ever-evolving Internet. While previous research demonstrates that LLMs can function as
effective world models in simplistic settings like blocksworld [57] and gridworld [74], a bolder
question emerges: Can LLMs rise to the challenge of modeling the vast, dynamic Internet? With their
extensive pre-trained knowledge—spanning web structures, protocols, and user behaviors—LLMs

are uniquely positioned to take on this task. Building on these insights, we present WEBDREAMER,
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a pioneering framework that leverages LLMs as world models to navigate the web (Figure 6.1). At
the core of WEBDREAMER lies the concept of “dreaming": before committing to any action, the
agent uses the LLM to imagine the outcome of each possible step, expressed as natural language
descriptions of how the state would change. These simulated outcomes are then evaluated based on
their progress toward achieving the task objective. The most promising action is executed, and the
process is repeated iteratively until the LLM determines that the goal has been reached (Section 6.4).

To validate the effectiveness of WEBDREAMER, we evaluate it on two representative benchmarks
that support online interaction: VisualWebArena [76] and Mind2Web-live [126]. WEBDREAMER
achieves substantial performance gains over reactive agents on both benchmarks, underscoring its
practical value despite its conceptual simplicity. While tree search with actual interactions shows
slightly superior performance on VisualWebArena, which features a controlled environment of three
locally hosted websites, this method is rarely feasible in practical applications, given its inherent
limitations regarding safety risks and the potential for irreversible actions in real-world websites. In
contrast, our simulation-based approach offers a more flexible solution, balancing performance gains
with practical applicability in real-world web navigation tasks.

In summary, our work introduces a new direction for Al planning in complex, real-world
environments like the web using world models simulated by LLMs. With WEBDREAMER, we
tackle the dual challenges of safety and complexity in web navigation. Our results validate the
potential of LLM-based world models for planning in complex web environments and highlight new
opportunities for optimizing LLMs as world models and improving model-based planning algorithms

for language agents.
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6.2 Related Work

6.2.1 Web Agents

Driven by the goal of automating tedious and repetitive web-based tasks, web agents powered by
(multimodal) language models have made substantial progress in various aspects. Benchmarks have
evolved from MiniWoB++ [147, 95] to WebShop [189] and WebArena [210], offering increasingly
realistic website simulations. VisualWebArena [76] and Mind2Web [39] challenge models’ ability to

handle visual information and generalize across diverse tasks, websites, and domains.

Reactive Agents. Reactive agents make decisions based on immediate observations from the envi-
ronment without performing any search or simulation of future actions, typically implemented with
the ReAct framework [191]. Much progress has been made to enhance the fundamental capabilities
of reactive web agents through both prompting closed-source models [207, 59, 39] and training
models using HTML and webpage screenshots [84, 53, 46, 63, 7]. Additionally, models’ abilities to
ground web agent actions to elements have been improved through training on action-coordinate
pair data [196, 31]. Further advancements have been achieved by training on web agent trajectories,
utilizing both human-annotated trajectories [146, 63, 39, 79] and synthesized exploration trajecto-
ries [46, 157, 128]. However, reactive agents inherently suffer from short-sightedness, which can

often lead to suboptimal performance in multi-step decision making.

Agents with tree search. Pan et al.[125] introduces a reward model based on GPT-4V, designed to
provide both step-wise and trajectory-level rewards to guide inference-time search. Search Agent [77]
investigates inference-time search algorithms in interactive web environments, enabling explicit
exploration and multi-step planning. In contrast to Search Agent, which employs a variant of best-first
tree search, AgentQ [132] and WebPilot [205] utilize Monte Carlo Tree Search (MCTS) as their

primary search strategy.
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While tree search on websites has demonstrated significant improvements, it still presents
several limitations. First, the search process substantially increases inference time due to the need
for extensive exploration, which is difficult to parallelize given its inherently sequential nature.
Backtracking to previous states is essential for search-based methods but impractical on real-world
websites. Koh et al.[77] addressed this in sandbox environments by storing action sequences to
resume states after resetting the environment. However, resetting the environment or undoing
action sequences is not feasible on live websites. Finally, the extra explorations introduced by
search algorithms substantially amplify the risk of destructive actions that may irreversibly alter the

website’s state, potentially causing harmful side effects.

6.2.2 World Models

World models, a cornerstone of model-based reinforcement learning [110] since the introduction
of Dyna [166], are typically trained on observed state transitions to predict future states and rewards.
These world models enable efficient training through simulated experiences, reducing environmental
interactions and improving sample efficiency [56]. Beyond their role in training, researchers have
explored the use of world models to facilitate planning [127, 143]. Fundamentally, world models in
reinforcement learning often involve task-specific training, with a primary focus on enhancing data
efficiency in the agent learning process.

In contrast to traditional world models in reinforcement learning, LLMs employed as world
models primarily focus on facilitating decision-making in planning rather than training. This distinc-
tion leads LLM-based models to prioritize key task abstractions over the high-fidelity simulations
typically required in reinforcement learning. Recent research has demonstrated the potential of LLMs
as world models for simple environments, leveraging their encoded broad world knowledge [57, 74].
Our study aims to advance this field by investigating the capabilities of LLM-based world models in

more complex real-world environments, specifically diverse websites. A concurrent work [24] also
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Action Type a Description

click [elem] Click on elem.

hover [elem] Hover over elem.
type [elem] [text] Type text into elem.
press [key_comb]  Press a key combo.

goto [url] Go to url.

go_back Click back.
go_forward Click forward.
new_tab Open a new tab.
tab_focus [index]  Focus on the i-th tab.
tab_close Close current tab.
scroll [up/down] Scroll up or down.
stop [answer] End with an output.

Table 6.1: Action space for web navigation defined in VisualWebArena [76].

explores augmenting web agents with LLM-simulated action outcomes, however, their focus is on
data collection to train an open-weights LL.M, while ours centers on understanding the potential of

this new paradigm using advanced LLMs such as GPT-40 [120].

6.3 Preliminary

6.3.1 Task Formulation

Web agents tasked with automating activities in live websites confront vast and complex search
spaces. Formally, each task with a task instruction I can be framed as a partially observable Markov
decision process (POMDP): (S, A, O, T, R, ), where S represents the set of all possible states of
the environment, A represents all possible actions the agent can take, O represents the set of possible
observations from the environment, 7' : S x A — S represents the state transition function, R is a
binary reward denoting whether the task specified in I has been completed or not, and 2 : S — O is
a deterministic function that projects a state to an observation. The goal of the task is to execute a

sequence of actions that achieves a reward of 1.
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In practical scenarios, the environment is partially observable due to the complexity of web
environments. The true state encompasses server-side variables, dynamically loaded content, hidden
Ul elements, and is subject to network conditions and browser limitations. Consequently, the agent
can only perceive the environment through a limited viewport (i.e., an observation o € ), which
represents an incomplete projection of the true system state. The observation space typically manifests
as screenshots or text-based accessibility trees, reflecting common implementation practices. This
constrained observability naturally shapes the action space A, which comprises operations executable

on interactable elements within o, such as element clicks, text input, and URL navigation (Table 6.1).

6.3.2 Planning through Simulation

Planning an optimal action sequence through tree search using real interactions governed by T'
is costly and risks irreversible actions. Model-based planning addresses these challenges by using
a computational representation of the environment to simulate interaction outcomes. Instead of
executing actions in the real environment, the agent leverages an approximate model to predict
state transitions, enabling efficient exploration and evaluation of action sequences without real-
world interactions. While offline planning can compute entire action sequences before execution
in deterministic environments like BlocksWorld [57], web environments are too complex for such
long-term prediction. This necessitates online planning approaches that interleave planning and
execution, computing one action at a time.

One prominent approach is Model Predictive Control (MPC; Garcia et al. [48]), which iteratively
simulates future trajectories to select actions. At each state s, MPC simulates trajectories over a
finite horizon H for each possible action a € A using a simulator function sim(s, a) and evaluates

them using a scoring function score(7).2* The action leading to the most promising trajectory is

2For example, H = 1 means simulating the outcome of a. H = 2 means simulating the outcome of a, then taking
one additional step to propose a new action based on that simulated outcome, followed by simulating the outcome of this
new action as well.
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then executed: a* = argmax,c 4 score(sim(s,a)). This process repeats after observing the new
state, allowing the agent to adapt its plan based on actual outcomes while avoiding costly real-world
exploration. In reality, we cannot access the real state due to partial observability, as a result, we

instead do sim(o, a) using the observation o = €(s).

6.4 WEBDREAMER: Model-Based Planning for Web Agents

In this chapter, we propose WEBDREAMER, a pioneering approach leveraging LL.Ms as world
models to enable efficient planning in complex digital environments. Our approach is motivated
by the observation that web interfaces, despite their complexity, are designed to be predictable for
human users. When browsing websites, humans can effectively anticipate action outcomes based
on visual cues and common design patterns—clicking a “Submit" button leads to form submission,
selecting a product image navigates to its detail page. Given that LLMs are trained on vast amounts
of web-related data, we hypothesize that they have acquired sufficient knowledge to simulate the

consequences of user actions, potentially serving as effective world models for planning.

6.4.1 Core Design

WEBDREAMER follows the planning through simulation paradigm introduced in Section 6.3.2.
Figure 6.2 illustrates this process with three candidate actions, where WEBDREAMER simulates
two-step trajectories for each action, selects the trajectory with the highest score, and executes its
corresponding initial action. At its core, WEBDREAMER leverages an LLLM to implement both the
simulation function sim and the scoring function score.

Implementation for sim: Our implementation of sim consists of two modules: one predicts
state changes after action execution, approximating 7", while the other imagines a possible action
based on the predicted state. Together, these two modules generate trajectories of length H, where

H is a configurable horizon parameter (i.e., the simulation depth). Specifically, to represent the state
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Stage I: Simulation

Please navigate to the 'Data Storage' category and purchase

the least expensive disk with 512GB of storage. 0—;‘& The 'Office Products' category will cliccorfice 1 The webpage will display 'Office
display three sub-categories: ‘Office | Flectronics’ Electronics' ~ sub-category _results
“' Electronics', Office & School Supplies,  # # = = s[> with products, and the "sub-menu
* and 'Office Furniture & Lighting'. will show 'Printers&Accessories' and
o other categories.
One StonMarket K

\

“YR | The 'Electronics' category will display er | The webpage will display 'Computer
three sub-categories: 'Computers & | & Accessories’  sub-category  results,

" nn P ccessorics, "Accessories & Supplies’, including 'Data  Storage', 'Tablet

and 'Car & Vehicle Electronics'. Accessories', and others.

(D Click “Office Products’
One Stop Market @y ek “Blectronics

The webpage will display search
results, including a list of products,

. .1 The "Electronics’ category will display
“ P cach of which includes the product

three sub-cvagegories: Computers §: v=01
Accessories', 'Accessories & Supplies,

title, price, and an 'Add to Cart’ and 'Car & Vehicle Electronics'.
button.
Stage II: Execution "
Electronics

Shop By

Figure 6.2: Illustration of WEBDREAMER using the LLM to simulate the outcome of each candidate
action. The LLM simulates trajectories in natural language descriptions for three candidate actions:
(1) Click “Office Products", (2) Click “Electronics"”, and (3) Type “Disk" into textbox. Through
these simulations, each resulting trajectory is scored to identify the action most likely to succeed.
In this case, the LLM selects Click Click “Electronics" as the optimal step and executes it. Each
dotted box represents an LLM-generated state description after each simulated action. This example
demonstrates a two-step planning horizon.
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changes, we prompt the LLM to generate a concise natural language description focusing only on
the effects of the action. For example, in Figure 6.2, the LLM would output a short description as

follows when prompted to predict the effect of executing the action Click “Electronics":

— Click “Electronics"

The ‘Electronics’ category will display three sub-categories: ‘Computers & Accessories’, ‘Accessories
& Supplies’, and ‘Car & Vehicle Electronics’.

Based on this predicted state, the LLM then imagines the next action (i.e., Click “Computers &
Accessories"), which leads to another state change prediction. This process generates a trajectory of
horizon H = 2.

Implementation for score: After collecting a trajectory 7; simulated from each candidate ac-
tion a; using sim, we further use the LLM as a scoring function for each simulation. Following [77],
we prompt the LLM to evaluate each simulated trajectory with a three-scale response—complete
(1.0), on track (0.5), or incorrect (0)—indicating its progress toward task completion. The final score

is computed by averaging multiple samples of these evaluations.

Algorithm 2: WEBDREAMER

Input: Instruction [; initial observation og
Output: Sequence of actions ag, ay, ..., ar
t « 0;

while True do

A; + get_candidate(I,0¢);

A, « self_refine(A);

a; = argmax,¢ 4 score(sim(ot, a));

o141 < execute(ay);

t+—t+1;

if termination check () = True then
break;

end

e X N N AW N -

et
(=

end

—
o
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In addition to sim and score, a prerequisite to planning is candidate action generation. We
employ a two-stage approach: first sampling top-k actions following [77], then using LLM to self-
refine unnecessary actions for simulation. This self-refinement step is motivated by our observation
that at different steps, the same k can introduce varying degrees of irrelevant actions—some steps
naturally have fewer plausible actions than others. We show the pseudo code of WEBDREAMER’s
overall design in Algorithm 2. termination_check verifies if the model outputs a st op action,

reaches max steps, or repeats an action over 3 times, also following the implementation by [77].

6.4.2 Discussion

To justify our design choices in light of our goal—a pioneering study on using LLMs as world

models for web environments—we discuss three key considerations:

State change description instead of HTML. While we use natural language descriptions to cap-
ture state changes, an alternative is to prompt the LLM to predict the HTML or accessibility tree
of the resulting page. However, since most webpage elements remain unchanged after an action,
predicting the entire page structure is unnecessarily wasteful. Moreover, such concrete predictions
are more prone to hallucination—HTML requires precise details about the website, whereas state
descriptions need only capture the essential changes. For our pioneering study, we embrace this
simpler, more intuitive representation, though we make no claims about its strict superiority over

HTML or accessibility trees (see Section 6.6.1 for a detailed analysis).

Prompting instead of fine-tuning. In this work, we implement WEBDREAMER through direct
prompting of state-of-the-art LLMs (i.e., GPT-40 [120]) without fine-tuning. Our rationale is
straightforward: we aim to first establish the feasibility of using advanced LLMs as world models for

web environments and their effectiveness in planning. Demonstrating promising results with this
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approach will lay the foundation for future work on optimizing this direction through fine-tuning

OSS models on targeted datasets.

MPC-based planning instead of MCTS. We adopt a relatively straightforward MPC-based plan-
ning algorithm rather than more sophisticated approaches like MCTS that have been prominent
in recent LLM planning research [57, 44]. This choice is motivated by our empirical findings:
increasing the planning horizon of WEBDREAMER yields diminishing returns, which suggests the
current limitations of LLMs in accurately modeling multi-step trajectories (see Section 6.6.1). Given
our goal of exploring LL.Ms as world models for web environments, this simpler approach suffices to

demonstrate the key insights while acknowledging the current capabilities of LLMs.

6.5 Experiments

6.5.1 Setup

To properly test our planning framework’s real-world performance, we use benchmarks with
online evaluation, capturing the dynamic nature of web interactions. We focus on two representative
benchmarks: VisualWebArena (VWA [76]), which emphasizes a multimodal setting, and Mind2Web-
live [126], which operates with HTML by default. VWA comprises 910 tasks across three locally
hosted websites: Shopping, Classifieds, and Reddit. In contrast, Mind2Web-live includes 104 tasks
spanning 69 real-world websites. We adhere to the default settings of both benchmarks: for VWA,
we use screenshots with Set-of-Marks prompting as the observation space, while for Mind2Web-live,
we use HTML. For our LLM, we choose the most advanced multimodal LLLM available, GPT-4o, as
it best serves our aim to pioneer model-based planning with LLMs and explore the full potential of

this envisioned paradigm. In our experiments, we empirically set the planning horizon H to 1.%

BWe find H = 2 works slightly better than H = 1 in our setting, but due to the significantly higher cost, we opt for
H = 1. A comprehensive analysis of this parameter is presented in Section 6.6.1.
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To demonstrate the effectiveness of our proposal, we primarily compare our approach with two
major baselines: the reactive agent and the tree search agent with real interactions.”® While we can
readily implement our own method for both benchmarks, for the tree search baseline [77], we can
only compare with it on VWA, because of the infeasibility of doing tree search in real-world websites
in Mind2Web-live. Specifically, in VWA, Kohet al. [77] keeps track of the sequences of actions to
get to states in previous trajectories. During backtracking, they reset the sandbox and re-execute the
action sequence to restore the state. However, resetting the environment to undo effects is not always

feasible in real-world websites featured in Mind2Web-live.

6.5.2 Main Results

Effectiveness. We present the overall performance results in Table 6.2. WEBDREAMER demon-
strates substantial improvements over the reactive agent on both VWA and Mind2Web-live datasets.
Notably, on the VWA dataset, our proposed method achieves a 33.3% relative performance gain.
Meanwhile, our proposal still underperforms the tree search baseline in terms of overall success
rate. Although our approach still falls short of the tree search baseline in terms of overall success
rate, it is crucial to emphasize that tree search is not a practical option for real-world websites,
whereas WEBDREAMER provides a more flexible and adaptive alternative. On Mind2Web-live,
WEBDREAMER outperforms the reactive baseline by 2.9% (a relative gain of 13.1%), which is less
significant than the improvement on VWA. However, it is worth noting that the Mind2Web-live
dataset does not offer as much discriminative power, as evidenced by the minimal performance
differences across multiple base LL.Ms shown in Table 6.2. The strong results on both VWA and

Mind2Web-live indicate the effectiveness of our method across different observation settings.

2%We will refer tree search with real interactions simply as tree search in our experiments for brevity.
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Benchmark Observation O Method Completion Rate Success Rate

Gemini-1.5-Pro + Reactive [76] - 12.0%
GPT-4 + Reactive [76] - 16.4%
VisualWebArena Screenshot+SoM GPT-40 + Reactive [76] ~ 17.7%"
GPT-40 + Tree Search [77] - 26.4%
GPT-40 + WEBDREAMER - 23.6% (1M33.3%)
GPT-4 + Reactive [126] 48.8% 23.1%
Claude-3-Sonnet + Reactive [126] 47.9% 22.1%
Gemini-1.5-Pro + Reactive [126] 44.6% 22.3%
Mind2Web-live HTML GPT-4-turbo + Reactive [126] 44.3% 21.1%
GPT-3.5-turbo + Reactive [126] 40.2% 16.5%
GPT-40 + Reactive [126] 47.6% 22.1%
GPT-40 + WEBDREAMER 49.9% 25.0% (MM3.1%)

Table 6.2: Results on VisualWebArena and Mind2Web-live. WEBDREAMER significantly outper-
forms the reactive baseline and falls only slightly short of the tree search baseline on VWA while
requiring far fewer website interactions. For Mind2Web-live, implementing tree search algorithms
poses significant challenges due to the requirement for website backtracing, leading us to omit tree
search performance metrics. This limitation further underscores the flexibility of our model-based
planning method. We also include additional baselines (denoted by gray cells) to provide broader
context. While these comparisons may not directly assess our core hypothesis, they offer valuable
background for understanding our method’s performance in the web navigation landscape. T We
run the reactive baseline on VWA by ourselves because local hosting requirements may lead to
hardware-dependent performance variations.

We further conduct a more granular analysis comparing our proposed method to the reactive
baseline on the VWA dataset across multiple dimensions. Table 6.3 demonstrates that our model-
based planning approach consistently outperforms the reactive baseline across all websites and
task difficulty levels. On tasks of medium difficulty according to the official annotation by VWA,
model-based planning even surpasses the performance of tree search (i.e., 22.2% vs. 24.1%). Despite
its promise, model-based planning still struggles with hard tasks in VWA that necessitate multistep
simulations. The accuracy of simulations diminishes as the number of steps increases, presenting a

significant challenge for handling hard tasks.
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Websites  Reactive Tree Search WEBDREAMER ¥ Difficulty Reactive Tree Search WEBDREAMER vy

Classifieds  16.8% 26.5% 22.6% 59.8%  Easy 28.8% 423% 37.4% 63.7%

Reddit 15.3% 20.5% 18.6% 635% Medium  16.4% 222% 24.1% 132.8%

Shopping  19.4% 29.0% 26.5% 740%  Hard 10.7% 14.9% 12.7% 47.6%
(a) Websites (b) Task Difficulty

Table 6.3: Success rate breakdown based on different dimensions. v = SPwesprsaver —5 Rreacive

tree search — S Rreaclive

measures the extent to which WEBDREAMER narrows the gap between the reactive agent and the
tree search agent.

Efficiency. Another key advantage of model-based planning is its efficiency compared with tree
search using actual explorations. As shown in Table 6.4, tree search requires approximately three
times more steps than the baseline across all environments, whereas our method maintains comparable
action steps. Notably, tree search introduces about ten times more wall clock latency due to the
extra actions and backtracking, while the simulation overhead in our approach is minimal and can be

further reduced with increased parallelization.

Steps Reactive Tree Search WEBDREAMER  Seconds Reactive Tree Search WEBDREAMER
Classifieds 34 9.9 4.1 Classifieds 68.3 749.2 183.6
Reddit 5.1 13.6 5.2 Reddit 83.5 972.1 233.7
Shopping 4.5 11.4 4.5 Shopping 87.7 785.7 179.4

(a) Number of Action Steps (b) Task Completion Wall Clock Time

Table 6.4: Action steps and wall clock time on VWA.
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Figure 6.3: We demonstrate the performance on a subset of the VWA dataset, varying both the
state representation within simulations and the planning horizon. Planning with long horizon with
simulation remains challenging, regardless of the state representation employed.

6.6 Analyses

6.6.1 State Representation And Planning Horizon

Our model-based planning approach relies on two dimensions for simulation: the state repre-
sentation and the planning horizon H (i.e., the simulation depth). To gain deeper insights into its
effectiveness and limitations of exisiting LLLMs, we investigate how various configurations affect the
final performance. Given the high computational cost of these experiments, we conduct this analysis
using a subset of the VWA dataset, comprising 100 shopping tasks with officially annotated human
trajectories.

In addition to the state change description used in our primary experiments, we explore alternative
approaches where GPT-40 predicts either the HTML code or the accessibility tree of the resulting
webpage within the simulation. For each of these state representations, we evaluate planning horizons

of 1, 2, and 3 steps. As depicted in Figure 6.3, all three representations consistently outperform the
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Figure 6.4: Ablation study on the simulation stage and self-refinement stage.

reactive baseline across all horizon settings, except for state change description with I = 3. This
underscores the robustness of our proposal to use LLMs as world models for the web environment
and highlights the LLM’s general understanding of the environment regardless of the output format.
Nonetheless, when the planning horizon extends to 3 steps, the effectiveness across all settings
begins to diminish, particularly for the state change description. Upon closer examination, this is
primarily due to action proposal hallucinations within the simulation. Specifically, the action proposal
within simulation is biased toward generating seemingly relevant actions for task completion, even
when these actions are not available based on the predicted outcome. As a result, as the planning
horizon increases, the trajectories simulated from different actions become less distinguishable, as
they all appear somewhat correct. However, achieving better performance with longer horizons
is not a major goal of this work, instead, we aim to show the feasibility and potential of using
LLMs for model-based planning. Also, our findings may inform future efforts to further improve the

model-based planning framework.
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6.6.2 Ablation Study

To determine if the observed improvements come from specific parts of our model-based planning
approach, we perform ablation studies on the simulation and self-refinement stages, using the same
subset from Section 6.6.1. We pay special attention to the simulation stage, which is the core
of model-based planning. One might argue that the primary improvement stems from reranking
candidate actions, irrespective of whether this ranking relies on simulation. To test this idea, we
conduct an experiment where we remove the simulation stage completely and instead ask the reward
model to directly evaluate each candidate action. As shown in Figure 6.4, this modified reranking
approach does lead to some improvement over the ractive baseline, but the gain is small and still falls
well behind WEBDREAMER. These results confirm that the LLM-based world model simulation
plays a crucial role in the planning process. Furthermore, we observe a decrease in performance when
removing the self-refinement stage. Upon closer examination, we find that this decline is primarily
due to the self-refinement module’s ability to effectively filter out less relevant candidate actions
when the next optimal action is clear. In contrast, directly simulating all actions may introduce

additional noise that can negatively impact performance.

6.6.3 Case Study

To clarify the role of simulation in planning, we present a case study covering both positive and
negative examples. This illustrates how simulation aids the agent in exploring the environment, as
well as how inaccuracies in simulation can lead to incorrect predictions. Specifically, an error case
caused by imperfect world model simulation is shown in Figure 6.5, while a positive case where the

simulation leads to correct action prediction is shown in Figure 6.6.
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Find me a printer of the same brand as the product in this
picture. It needs to be white and have at least 11 reviews Ale
with an average rating greater than 4.

The webpage will update to display items 25-36 of 1272 for the current
category or search criteria. The product images, names, prices, and other
related details will change to reflect this next set of items. The pagination
at the bottom of the page will indicate that the user is now on the third
page of items, with Page 3 likely highlighted or noted in some way. The
products and their details from items 13-24 will be replaced by the
information for items 25-36.
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A new set of search results for 'HP printer’ will appear, displaying the next
items starting from item 13 and onwards. The pagination number and the
item count at the top of the search results may update accordingly. The
"Recently Ordered" and "Compare Products” sections, if static, may move
out of view, while new sections might come into view. The footer section
of the page may also shift into view if scrolling reaches the bottom.
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After scrolling down the footer section becomes visible, displaying links
for Privacy and Cookie Policy, Search Terms, Advanced Search, Orders
and Returns, and Contact Us, along with a subscription box for email
updates. No new products appear on the page after scrolling.

The listing for the "HP Business Inkjet 2800 Wide Format Printer
(C8174A#A2L)" will be removed from the webpage. This includes the
removal of its image, price ($37.64), rating stars, number of reviews (12),
and "Add to Cart" button positioned at the bottom right of the screen
(elements 63 through 68). The remaining products would shift
accordingly to fill the gallery space.
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Figure 6.5: An error case caused by imperfect world model simulation.
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Figure 6.6: A positive case where the simulation leads to correct action prediction.

The page will navigate to a detailed product page for the "Mens Flowers
Casual Aloha Hawaiian Shirt Summer Short Sleeve Beach T-Shirt Regular
Fit Button Down Dress Shirts." This new page will likely contain
additional information about the product including more detailed
specifications, customer reviews, larger images, sizing options, and
possibly a larger "Add to Cart" button. Other elements from the current
category view like the grid of products will be replaced with the detailed
view of this specific product.

Hovering over will likely result in the following changes:

1. A tooltip or additional information popup might appear near or over
the shirt's image or element. This popup could include more details such
as the price, size options, availability, and possibly a zoomed-in view of
the shirt.

2. The image of the shirt might change, possibly showing a different angle
or a model wearing the shirt, providing more context on how it looks
when worn.

3. The "Add to Cart" button or rating might change appearance,
potentially becoming highlighted to draw more attention.

L
Stop .‘i Parrots and palm trees will be returned as the answer.
1
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6.7 Conclusion

In this chapter, we demonstrate the strong potential of using LLMs as world models to support
planning in complex environments, which further facilitate the construction of f. Specifically, our
model-based planning approach, WEBDREAMER, shows substantial improvement over reactive
baselines and offers greater flexibility than tree search, which is often impossible in real-world
websites. As a pioneering effort in this area, our work opens new avenues for model-based planning
with LLM-simulated world models. Future work can focus on further optimizing LL.Ms as world
models for complex environments and developing more robust model-based planning algorithms for

long-horizon planning in extrapolating agents to various goals.
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Chapter 7: Conclusion and Future Prospects

Developing Al agents that can extrapolate to novel goals in open-world environments remains one
of the most challenging and fundamental pursuits in Al research. In this thesis, we have systematically
formulated the problem of extrapolating Al agents to diverse open-world tasks through explicit goal
modeling (see Figure 1.2 for a general intuition). Specifically, there are two core components for
extrapolation: a model M: G — Z that can preserve the structure of goals in a latent space and a
mapping function f: G — 1II that can map the goals to the corresponding policies. Grounded in
our definition of M and f, we have discussed numerous efforts to implement extrapolative agents,
spanning from systematic evaluation of extrapolation to advanced methods with large language
models (LLMs).

The core thesis statement is that we can leverage the natural language capacity of modern
language models to better extrapolate agents to diverse goals in open-world tasks. Specifically, we
focus on two aspects: 1) using language models to provide a solution for M and 2) using language
models to provide a prior to building the mapping f, including both direct policy and search. The
intuition behind modeling goals in natural language is that natural language inherently entails a
concept space which allows similarity measurement and composing new concepts via other concepts.
On the one hand, such a concept space is a key ingredient for agents to extrapolate to novel goals
that correspond to new concepts in the space. On the other hand, modern language models can

effectively derive a concept space through pre-training on massive corpora, and we can leverage
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language models as the backbone to ground policies corresponding to various goals in such a latent
concept space.

To systematically evaluate the problem of extrapolation instead of asking ad-hoc questions like
“if an agent knows how to water flowers in kitchen and fold clothes in bedroom, can it also water
flowers in bedroom?,” we qualitatively define three types of extrapolation based on the relationship
between new goals and seed goals using the KBQA environment (Chapter 2). Through our evaluation,
we have gained numerous key insights, including the critical role of language models in non-i.i.d.
extrapolation and the superiority of discrimination and constrained decoding serving as f. These
insights lead to two methods that achieve strong extrapolation performance on KBQA: a unified
framework for constrained decoding with pre-trained language models (Chapter 3) and a general
framework that is compatible with any type of language model for discrimination (Chapter 4).

In addition, recent advances in LLMs have demonstrated great promise in using natural language
prior as a reasoning tool, which allows the model to effectively handle diverse tasks with the broad
knowledge encoded in LLMs. This thesis also investigates how to better leverage natural language in
the planning stage to better extrapolate Al agents to new goals. Specifically, we have addressed both
the two key ingredients of planning (i.e., policy and search): We show that language-conditioned
policy can help agents to better extrapolate compared with direct action prediction (Chapter 5).
Additionally, we also investigate the use of LLMs as world models for the complex web environment
(Chapter 6). For the first time, we demonstrate that by simulating action outcomes through natural
language descriptions, we can effectively conduct search within these simulated environments,
yielding promising results.

Through these studies, this thesis provides a basis for studying extrapolative agents in open-world
tasks. However, it is just a beginning. There are at least three interesting future directions to further

pursue this fundamental goal in Al research:
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1. Advanced design choice of the mapping function. Throughout this thesis, we have focused
on using the same mapping function f for all goals within a single agent. However, this may not
be sufficient in some cases. Sepcifically, considering the example shown in Figure 7.1, when we
instruct OpenAl Operator [122], which is the state-of-the-art web agent, to “Find origami tutorials
for each of the 12 animals in Chinese Zodiac”—a compositional goal that can be decomposed into
twelve sub-goals—Operator fails miserably by only finding the tutorial for two animals. Nonetheless,
if we manually decompose the goal into sub-goals, Operator can actually achieves each sub-goal
perfectly. This indicates the deficiency of using the mapping function f for all goals in current agents.
Future work may either consider modeling the policy of compositional goals through explicit task
decomposition or leverage the decomposed policies to bootstrap f during training to better handle

novel goals.

Find origami tutorial for rat

Find origami tutorials for P
each of the 12 animals in o
Chinese Zodiac p PrOJ

Tutorial for rat

Tutorial for snake
Tutorial for dog

Tutorial for ox
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|
|
|
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|
|
|
|
|
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|
|
|
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| Find origami tutorial for ox
|
|
|
|
|
|
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|
|
|
|
|
|
|

Figure 7.1: OpenAl Operator knows how to achieve each sub-goal of “Find origami tutorials for each
of the 12 animals in Chinese Zodiac” (right side), while still fails to accompolish the compositional
goal per se (left side). This may indicate the deficiency of using the same mapping function f for all
goals.
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2. Extrapolation with minimal natural language prior. When natural language prior can be
used to facilitate the construction of f, we should make full use of it. Natural language prior is
usually more helpful in high-level planning like decomposing “make a pizza” into a list of sub-goals.
However, it can be less helpful for low-level policies. For example, the procedural and commonsense
knowledge encoded in natural language may have limited utility in scenarios such as low-level robot
control, which requires precise output of control arguments for various degrees of freedom [158].
Though a promising method is to perform hierarchical planning by decomposing the policy into plans
in high-level robotic control language [104, 156] and low-level motion planning (i.e., task-motion
planning [72]), a more ambitious possibility is to achieve the goal through end-to-end methods. In
this case, the challenge lies in constructing the mapping function f with minimal reliance on natural
language priors. Effectively extrapolating Al agents in such scenarios demands more advanced
modeling of the policy space without the language modality (e.g., through representation learning
of low-level robotic skills), as well as improved techniques for bridging the often disjointed goal
and policy spaces. Progress in this direction is crucial for overcoming the critical sample efficiency
bottleneck that currently limits the practical deployment of VLA models [75].

3. Concept space without natural language modeling. While we advocate for the critical role of
natural language in developing extrapolative agents for open-world tasks, we do not claim that the
use of natural language is necessary. In essence, what we seek is a robust model of the goal space
that captures the necessary properties for effective extrapolation, as discussed in Chapter 1, which
does not inherently depend on natural language. An intuitive example is that animals like cats or
dogs, despite not understanding natural language, also demonstrate certain extrapolative behaviors.
Ultimately, what we want is a concept space that enables agents to ground different policies, perform
abstraction, and make analogies. Such a concept space represents, arguably, the ultimate goal in

Al research [62]. The reason we currently rely on natural language for extrapolative agents is that
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Concept-Grounded Agent

Language Agent

Figure 7.2: Different levels to look at extrapolative agents. Currently, we rely on natural language
modeling to build extrapolative agents. The intuition is that learning from natural language serves as
a shortcut to derive a concept space for modeling goals. In the long term, however, we anticipate the
emergence of concept-grounded agents that may evolve independently of natural language learning.

learning from natural language serves as a shortcut to (approximately) achieve such a concept space,
and viable alternatives remain elusive. In the future, however, we envision concept-grounded agents
that may or may not form their conceptual foundations based on natural language (Figure 7.2).
Research on Al agents has long been considered the primary domain of the reinforcement
learning (RL) community. The advances in LLMs have enabled more researchers from natural
language processing (NLP) backgrounds to enter agent research. However, there remains consistent
controversy and criticism regarding the role of LLMs in agent research, particularly from the RL
community. In this thesis, we aim to justify the role of natural language in agent research. Specifically,
agents enhanced with natural language do not aim to replace RL agents; rather, they can serve as
a complementary component that boosts the extrapolation capabilities of RL-trained agents while
potentially addressing the challenges of data efficiency inherent in traditional reinforcement learning

approaches. Finally, we hope this thesis helps agent researchers with backgrounds in NLP better
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understand their role and responsibility in agent research, and inspires them to join forces with

researchers across diverse specializations to collaboratively advance the frontier of agent research.
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