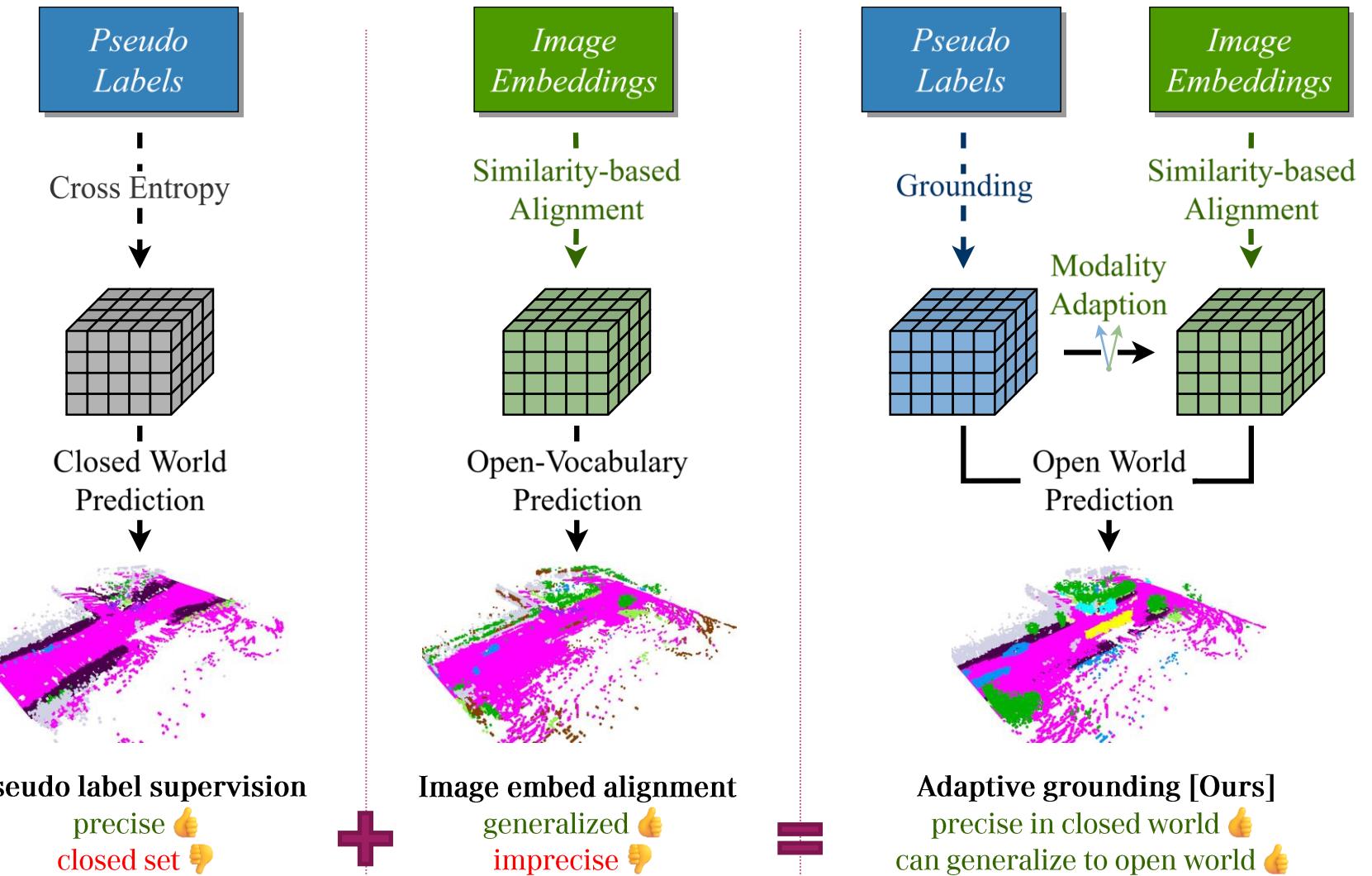
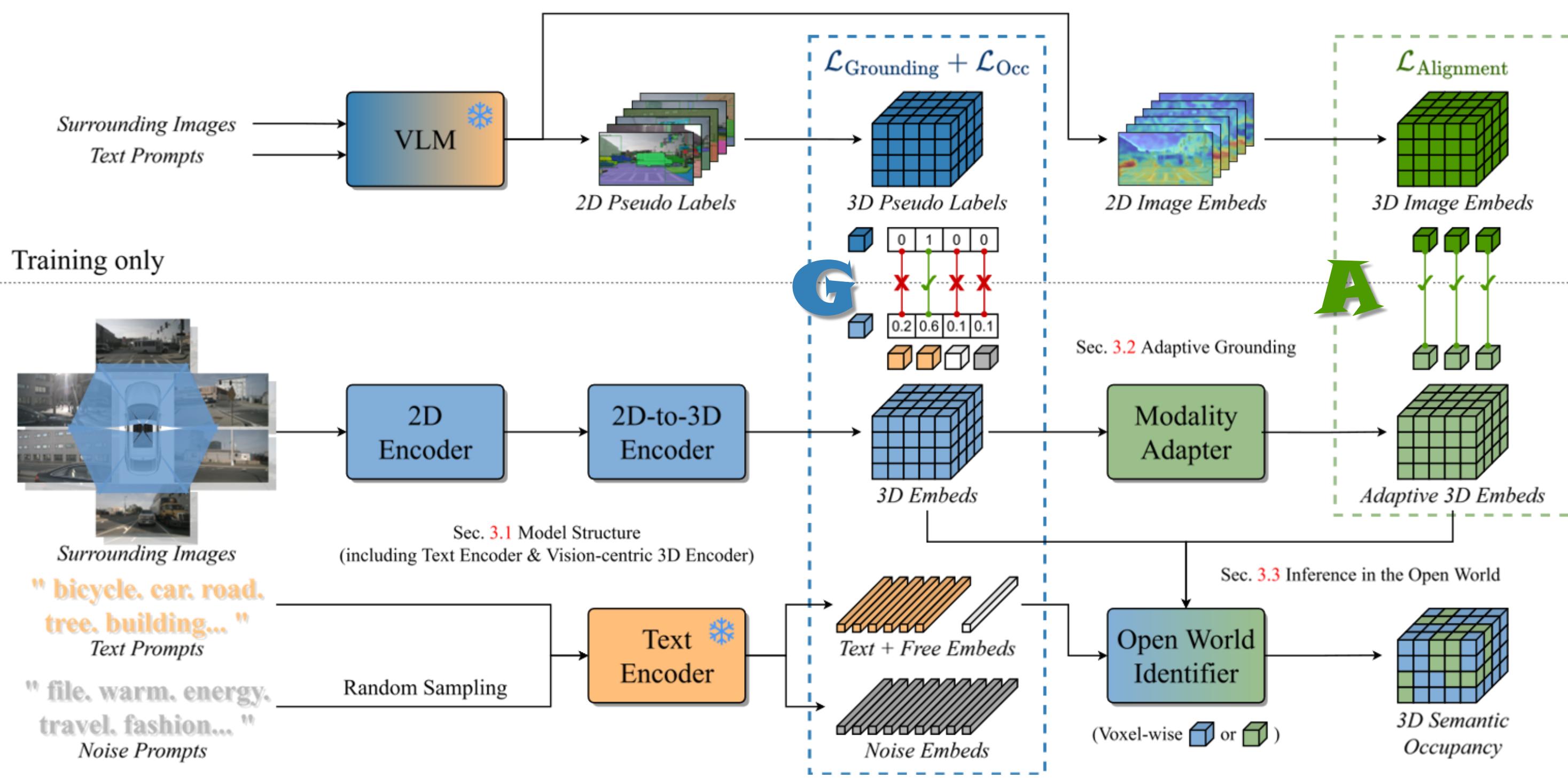

Motivation

3D semantic occupancy prediction is central to scene understanding for autonomous driving, yet it:

- ▶ heavily relies on extensive manual 3D annotations
- ▶ is constrained by predefined closed semantic spaces


Existing VLM-based methods:

- ▶ rely on fixed-class pseudo-labels → struggles to predict novel classes
- ▶ base on image-text alignment → suffers from severe mismatches due to issues like modality gaps


Goal: Enable open-world 3D semantic occupancy prediction with flexible adaptation to unknowns.

Insights

- ▶ AGO combines the advantages of existing methods based on pseudo-label supervision (Grounding instead of traditional CE to achieve open-vocabulary capability) or feature alignment.
- ▶ Modal adapters prevent feature space conflicts while promoting convergence.
- ▶ Entropy-based criteria enable adaptive selection of suitable features outputs.

Method

Benchmark Results

Closed World		mIoU																		
Method	Image Backbone	oth.	bar.	bic.	bus	car	c. v.	mot.	ped.	t. c.	tra.	tru.	d. s.	o. f.	sid.	ter.	man.	veg.	mIoU*	
SimpleOcc [14]	ResNet-101	0.00	0.67	1.18	3.21	7.63	1.02	0.26	1.80	0.26	1.07	2.81	40.44	0.00	18.30	17.01	13.42	10.84	7.99	7.05
POP-3D [†] [45]	ResNet-101	0.06	0.02	0.46	1.83	4.87	0.00	0.00	1.29	0.00	0.65	2.62	55.90	1.60	9.99	25.17	15.75	21.11	9.42	8.31
SelfOcc [19]	ResNet-50	0.00	0.15	0.66	5.46	12.54	0.00	0.80	2.10	0.00	0.00	8.25	55.49	0.00	26.30	26.54	14.22	5.60	10.54	9.30
OcNeRF [51]	ResNet-101	0.00	0.83	0.82	5.13	12.49	3.50	0.23	3.10	1.84	0.52	3.90	52.62	0.00	20.81	24.75	18.45	13.19	10.81	9.53
GaussianOcc [15]	Swin	0.00	1.79	5.82	14.58	13.55	1.30	2.82	7.95	0.56	9.61	44.59	0.00	20.10	17.58	8.61	10.29	11.26	9.94	
GaussTR [†] [20]	VFMs	0.00	2.09	5.22	14.07	20.34	5.70	7.08	5.12	3.93	0.92	13.36	39.44	0.00	15.68	22.89	21.17	21.87	13.26	11.70
LangOcc [3]	ResNet-50	0.00	3.10	9.00	6.30	14.20	0.40	10.80	6.20	6.20	3.80	10.70	43.70	2.23	9.50	26.40	19.60	26.40	13.27	11.84
VEON [57]	VIT-L	0.90	10.40	6.20	17.70	8.50	7.60	6.50	5.50	8.20	11.80	54.50	0.40	25.50	30.20	25.40	25.40	17.07	15.14	
AGO (ours)	ResNet-101	1.53	6.75	6.43	14.00	22.82	5.57	16.66	13.20	6.80	10.53	15.89	71.48	4.48	34.48	41.37	29.33	25.66	21.39	19.23

▶ In closed-world scenarios, AGO demonstrates substantial improvements across both static and dynamic categories.

Open World		mIoU																		mIoU	
Training Stages	Method	ped.	d. s.	sid.	veh.	cyc.	k. mIoU	car	bus	c. v.	tra.	tru.	bic.	mot.	bar.	t. c.	ter.	man.	veg.	mIoU	
Pretraining	POP-3D [†] [45]	0.00	58.77	13.80	-	-	24.19	6.72	0.00	0.59	4.34	1.17	1.20	0.00	0.00	3.95	0.13	0.60	0.94	8.66	
Pretraining	SelfOcc [†] [19]	0.98	60.29	14.68	-	-	25.23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	8.31	
Pretraining	GaussTR [†] [20]	6.11	60.06	18.02	6.77	2.25	18.64	-	-	-	-	-	0.00	0.00	4.95	0.07	8.05	2.61	10.63		
Pretraining	AGO (ours)	7.82	63.09	25.53	-	-	32.13	7.67	0.00	0.00	1.33	6.50	4.50	0.00	0.00	7.04	0.03	10.88	3.59	12.86	
Zero-shot Evaluation	POP-3D [†] [45]	0.00	58.77	13.80	-	-	24.19	6.72	0.00	0.59	4.34	1.17	1.20	0.00	0.00	3.95	0.13	0.60	1.56	6.08	
Zero-shot Evaluation	SelfOcc [†] [19]	0.98	60.29	14.68	-	-	25.23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.06	
Zero-shot Evaluation	GaussTR [†] [20]	6.11	60.06	18.02	-	-	28.06	5.07	1.65	0.00	0.04	1.84	2.58	0.27	0.00	0.00	4.95	0.07	8.05	2.04	
Zero-shot Evaluation	AGO (ours)	7.82	63.09	25.53	-	-	32.15	7.67	0.00	0.00	1.33	6.50	4.50	0.00	0.00	7.04	0.03	10.88	3.16	8.96	
Few-shot Finetuning	POP-3D [†] [45]	0.00	44.90	12.79	-	-	19.23	5.59	0.03	0.00	0.29	2.05	1.26	1.03	0.00	0.00	5.72	0.21	6.75	1.91	5.37
Few-shot Finetuning	SelfOcc [†] [19]	7.85	65.65	25.29	-	-	32.93	1.41	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	3.63	6.04	10.96	1.84	8.06
Few-shot Finetuning	GaussTR [†] [20]	7.84	66.36	25.55	-	-	33.25	10.85	1.58	0.00	0.00	1.32	1.42	0.00	0.00	0.00	12.74	9.12	8.16	3.77	9.66
Few-shot Finetuning	AGO (ours)	13.00	71.54	29.91	-	-	38.15	18.73	5.49	0.00	0.41	2.16	3.72	2.22	0.43	0.00	29.63	21.43	17.73	8.50	14.43

▶ In open-world scenes, AGO exhibits superior zero-shot performance while rapidly adapting to novel categories with only a few shots.

Experiments & Analysis

Training Paradigm		mIoU		
Training Paradigm	Self.	O.W. Pre.	O.W. Z.S.	O.W