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1 The Real and Complex Numbers

To motivate the study of the real numbers, we can consider how calculus would be different
if we only had the rational numbers instead of all the real numbers. There is still a sensible
notion of “limit” if we work purely in the rationals. We can “approach” any given x € QQ in
many ways using only rational numbers—for example, the sequences {x+ 1, x + %, T+ %, o}
and {x — 1,2 — %, xr— %, ... } both converge to x. Thus, we can also think of “continuity” for
functions Q — Q. The function f : Q — Q defined by f(x) = 2% — 2 would be a continuous
function. Since f(0) = —2 < 0 and f(2) = 2 > 0, the Intermediate Value Theorem would
suggest that there is some 0 < x < 2 such that f(z) = 0. However, f has no rational roots,
since no rational number x satisfies the equation z? = 2. (We will prove this in Proposition
[1.15]) Therefore, if the rational numbers were the only numbers to exist, then f would have
no roots at all, contradicting our expectations. Essentially, there would be “holes” in the
range of f, despite f being continuous.

Is it possible to insert additional numbers into QQ to form a superset S O Q where every
continuous function f : S — S has no holes in its range? The answer is “yes”, and the
superset we end up with is R. In this chapter, we will define R and introduce the key
property of R that makes the Intermediate Value Theorem true.

1.1 Fields

Defining the real numbers requires specifying how the addition and multiplication operations
behave. For example, addition should be commutative (a + b = b + a) and associative
(a+ (b+c) = (a+0b)+c), and adding 0 to a number should not change that number.
Our first goal is to define a minimal set of properties that addition and multiplication must
satisfy in the real numbers.

There are many kinds of mathematical objects that can be combined with each other in
some way. Integers can be added together, matrices can be multiplied, and functions can be
composed. A set of objects with a combining operation that satisfies certain rules (which we
shall now specify) is called a group.

Definition 1.1. A group is a set G with a binary operation x : G x G — G such that:
(i) For all z,y,z € G, (xxy) x z = x % (y x 2).
(ii) There exists an identity element e € G such that xxe =2 =exx for all z € G.
(iii) For all = € G, there exists an inverse element y € G such that z xy = e =y * x.
Additionally, if x xy = y* x for all z,y € G, we call G an abelian group.

The phrasing of this definition suggests that a group G may have multiple identity ele-
ments, and that an element x € G may have multiple inverses. However, we can prove from
the definition that these scenarios are not possible.

Proposition 1.2. Let G be a group. Then G has exactly one identity element, and every
x € G has exactly one inverse.

Proof. 1f e1,e5 € G are identity elements, then e; = e; x eg = e3. Hence, G only has one
identity element. Fix x € G. If y;,yo € G are inverses of x, then

n Zyl*ezyl*(x*yz) = (?h*if)*yz:@*yz = Y2.
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Hence, x has only one inverse. O]

For brevity, we can write “(G,*,e)” to denote a group G with binary operation x and
identity element e. There are many examples of groups—Ilet’s list some of them:

e The set of integers Z is an abelian group under addition, with 0 as the identity element.
The inverse of n € Z is —n.

e The set of rational numbers excluding 0 (denoted Q \ {0} or Q%) is an abelian group
under multiplication, with 1 as the identity element. The inverse of z € Q* is % Note

that we have to exclude 0 from the group because 0 has no inverse (i.e. there is no
x € Q such that 0z = 1).

e For any n € N, let GL,(Q) be the set of invertible n x n matrices where each entry is
a rational number. Then GL,(Q) is a group under matrix multiplication, where the
identity element is the n X n matrix I, with 1’s on the diagonal and 0’s everywhere
else.

e For any set X, the set of bijective functions f : X — X is a group under function
composition. The identity element is the identity function f(z) = x.

Exercise 1.3.
(a) Let Z? be the set of ordered pairs of integers. Define addition in Z? by

(a,b) + (¢,d) = (a+ ¢, b+ d).

Prove that Z? is an abelian group with identity element (0, 0).
(b) Prove that GL,(Q) is not abelian.

While R is an abelian group under addition, this description fails to capture the fact that
R has two binary operations. We need the notion of a field for that.

Definition 1.4. A field is a set F' equipped with binary operations + : F' x ' — F and
- ' x F — F and distinct elements 0,1 € F' such that

(i) (F,+,0) is an abelian group,

(ii) (F\{0},-,1) is an abelian group, and

(iii) for all z,y,z € F,x-(y+2)=x-y+a- 2.
We call 0 the additive identity of F and 1 the multiplicative identity of F'. For any x € F, the
inverse of z in (F, +,0) is denoted —z. For any « € F'\ {0}, the inverse of z in (F'\ {0}, -, 1)
is denoted z 7!

Remark. As we usually do with algebraic variables, we write z - y as xy.

Proposition 1.5. Let F' be a field. Then:

(a) 0z =0 for all x € F.

(b) 0 does not have a multiplicative inverse.

(c) (—x)y = —xy = x(—y) for all x,y € F.

(d) If x # 0 and y # 0, then (xy)~' ezists and (zy)™' = z7'y~'. As a corollary, the
existence of (zy)~ implies that xy # 0 by part (b).
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Proof. (a) Let x € F. We have that 0z + 0x = (0 + 0)z = Ox (by the distributive law and
the fact that y + 0 = y for all y € F'). Hence,

0z =0x 40 [since 0 is the additive identity]
= 0x + (0z + (—0x)) [since anything plus its additive inverse equals 0]
= (0x + 0z) + (—0x) [by the associative law of the additive group]
=0z + (—0z) [as was shown above]

=0 [by definition of additive inverse].

(b) Suppose 07! exists. Then 0 = 0(0~!) by part (a). But 0(07') = 1 by definition of
multiplicative inverse. Hence, 0 = 1, which is a contradiction because 0 # 1 in the definition
of a field.

(c) Let x,y € F. Note that

zy + (—2)y = (v + (—2))y =0y =0

and
zy +2(—y) = 2(y + (—y)) = z(0) = 0.
Therefore, —xy = (—x)y and —zy = z(—y) since the additive inverse of zy is unique.
(d) If x # 0 and y # 0, then using commutativity and associativity gives

(zy)(@™ly™) = (za™)(yy™) = (D(1) = 1.
Thus, zy has a multiplicative inverse equal to =1y~ O

Remark. Part (d) justifies the rule for multiplying fractions: ($)(5) = 5 if b # 0 and d # 0.
Indeed, (£)(¢) = (ab™")(cd™") = (ac)(b~'d™") = (ac)(bd)~".

Exercise 1.6.
(a) Prove that Q (with its usual addition and multiplication operations) is a field.
(b) Prove that Z (with its standard addition and multiplication operations) is not a field.

1.2 Ordered Fields

In real analysis, we constantly need to determine whether a certain number is less than a
given threshold. To do this, we need to specify how to compare two real numbers. Essentially,
we need to define what “less than” means.

Definition 1.7. A total order on a set S is a relation “<” on S such that:

(i) For all z,y € S, exactly one of the statements © < y, x =y, or y < x is true.

(ii) For all x,y,2z € S, if x <y and y < z, then x < z. In other words, < is transitive.
If a total order exists on S, we say that S is totally ordered.

Definition 1.8. An ordered field is a field F' equipped with a total order “<” such that:
(i) For all z,y,2z € F,if y < z, then z +y < x + 2.
(ii) For all z,y € F, if > 0 and y > 0, then xy > 0.



We are already familiar with one ordered field, namely Q. The real numbers will also be

an ordered field.

Proposition 1.9. Let F' be an ordered field, and let x,y,z € F.
(a) If x >0 and y < z, then xy < zz.
(b) If £ <0 and y < z, then zy > xz.
(c) 2% > 0 with equality if and only if x = 0. In particular, 1 > 0.
(d) If0 <z <y, then 0 <y ' <ax L

Proof. (a) Suppose x > 0 and y < z. Then 0 = y—y < z—y. Hence, xz—zy = z(z—y) > 0,
soxy =xy+0 < xy+ (xz —xy) = zz2.

(b) Suppose z <0 and y < z. Then0= -2+ < —-2+0=—-zand0=y—y<z—y.
Therefore, zy — 2z = —x(2 —y) > 0,50 2z =22 + 0 < 2 + (xy — x2) = xy.

(c) If x > 0, then 22 = zz > 0. If x < 0, then —z > 0, so 2% = (—z)(—x) > 0. Finally, if
x =0, then 22 = 02 = 0. In particular, 1 = 12 > 0 because 1 # 0.

(d) Suppose 0 < z <y. If y=1 <0, then 1 = y~'y < 0y = 0 by part (a), contradicting
part (c). If y=* = 0, then 1 = yy~! = 0, which is a contradiction because the field axioms
specify that 1 # 0. Hence, y~! > 0. By a similar argument, 2= > 0 as well. It remains to
prove that y=* < 27!, We know that 2!y~ > 0 since 27! > 0 and y~* > 0. Therefore,

y =@y e <@y Dy =a

by part (a). O
Definition 1.10. Let F' be an ordered field. For all € F', define

x ifxz>0
|| = .
—x ifx <.

Proposition 1.11. Let F' be an ordered field, and let x,y € F'. Then:

(a) |z] > x and |z| > 0.

(b) |2 = o2,

(c) x* < y* if and only if —|y| < x < |y| if and only if |z| < |y|.

(d) 2* = y? if and only if |z| = |y|.

(e) leyl = |2 - lyl.

Proof. (a) If x > 0, then |z| =2 > 0, and if x < 0, then |z| = —z > 0 > x.

(b) Since |z| € {x, —z} and z* = (—x)?, we have that |z|* = 22

(c) Suppose 22 < y*. If x > |y| > 0, then z* > |y|*> = y?, which is a contradiction. If
r < —|y] <0, then 0 < |y| < —x, so 22 = (—x)? > |y|* = y?, which is a contradiction.
Hence, it is not the case that > |y| or that © < —|y|, so we must have that —|y| < z < |y|.
Now suppose —|y| < = < |y|. Note that —z < |y| because —|y| < x. If x > 0, then
|z] =z < |y|. If x <0, then |z| = —x < |y|. Hence, |z|] < |y| in both cases. Finally, suppose
|z| < |y|. Then z? = |z|* < |y|*> = y* because 0 < |x| < |y|.

(d) If |z| = |y|, then 22 = |z|* = |y|* = y>. On the other hand, suppose |z| # |y|.
Without loss of generality, we can assume that |z| < |y|. Since 0 < |z| < |y|, we have that
a? = |z|* < |y|* = y? so 2® # y*.

(e) Observe that |zy]* = (zy)* = 2%y* = |z|*|y|* = (|z] - |y|)?>. Hence, by part (d),
lzyl = [(lzyDl = [l=] - lyll = [=] - [yl O



Theorem 1.12 (Triangle Inequality). Let F' be an ordered field. Then |z +y| < |z|+ |y| for
all v,y € F.

Proof. Fix x,y € F'. By Proposition [1.11] we have that

|z +yl* = (z +y)?
= 2% 4 2y + o
= [z + 2zy + [y/?
< [z* + 2|zy| + |y|”
= [z 4 2[z] - [y| + |y?
= (|| + |y])?,

so |z +yl = |(lz +yD)| < x| + [yl = || + |yl N

Definition 1.13. Let S be a totally ordered set, and let £ C S. We say that E is bounded
above if there exists u € S such that x < u for all z € E. We call u an upper bound of E.
Similarly, E is bounded below if there exists ¢ € S such that ¢ < x for all x € E, and we call
¢ a lower bound of E. If E is bounded above and bounded below, we say that E is bounded.

If u is an upper bound of E such that v < t for all upper bounds ¢ of F, then u is the
least upper bound or the supremum of E, and we denote sup(E) = u. If £ is a lower bound
of E such that m < /¢ for all lower bounds m of E, then /¢ is the greatest lower bound or the
infimum of E, and we denote inf(FE) = {.

We say that S has the least-upper-bound property if every non-empty set in S that is
bounded above has a least upper bound. Similarly, S has the greatest-lower-bound property
if every non-empty set in .S that is bounded below has a greatest lower bound. If S has the
least-upper-bound property, we say that S is complete.

Proposition 1.14. If an ordered field F' has the least-upper-bound property, then F' has the
greatest-lower-bound property.

Proof. For each subset S C F, denote —S := {—xz | x € S}. Note that —(—S5) = S. Suppose
S has an upper bound v € F. If t € —S, then —t € S, so —t < u and hence —u < t. Thus,
—u is a lower bound of —S. A similar argument shows that if S has a lower bound ¢ € F,
then —/ is an upper bound of —S.

Suppose v = sup(U) exists for some U C F. Then —u is a lower bound of —U. We
claim that —u is the greatest lower bound of —U. Suppose there exists a lower bound s of
—U such that s > —u. Then —s is an upper bound of —(—U) = U, which means —s > u
since u = sup(U). However, since s > —u, we have that —s < u, contradicting the fact that
—s > wu. Therefore, inf(—U) = —u = —sup(U). In particular, inf(—U) exists.

Suppose F' has the least-upper-bound property. Let S C F' be non-empty and bounded
below by x € F. Then —S is non-empty and bounded above by —x, so sup(—2S) exists by
the least-upper-bound property of F. Hence, inf(S) = inf(—(—5)) exists. O

Proposition 1.15. There is no q € Q such that ¢* = 2.
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Proof. Suppose there exists ¢ € Q such that ¢ = 2. We can write ¢ = = where m € Z,

n € N, and at least one of m and n are odd. We have that 2 = ¢*> = C’;—j, so m? = 2n? is

even. If m is odd, then m = 2k + 1 for some k € Z, so
m? = (2k +1)* = 4k* + 4k + 1 = 2(2k* + 2k) + 1

is odd, contradicting that m? is even. Hence, m is even, so m = 2/ for some ¢ € Z. Therefore,
2n? = m? = (20)* = 4¢% so n*> = 2(? is even. The same argument used to prove that m
is even now proves that n is even. But at least one of m and n are odd, so we have a
contradiction. O

Theorem 1.16. Q is not complete.

Proof. Let S = {q € Q| ¢* < 2}. Since 12 = 1 < 2, we have that 1 € S, so S is non-
empty. If ¢ € Q and ¢ > 2, then ¢*> > 22 > 2,50 ¢ € S. Hence, S is bounded above by
2 € Q. Suppose S has a least upper bound u € Q. Note that u > 1 because 1 € S. Let
t= % € Q. Suppose u? < 2. Then u(u + 2) = u? + 2u < 2 + 2u, so u < % =t. Also,

(2u +2)* = 4u® + 8u+4 < 2u® + 8u + 8 = 2(u + 2)?, so t? = ((25;2))22 < 2. Hence, u < t and
t € S, which is impossible since u is an upper bound of S. Now suppose u? > 2. We can
use a similar argument as in the “u? < 2” case to show that u > ¢ and > > 2. Note that
t > 0 since u > 0. It follows that ¢ is an upper bound of S—if ¢ > t > 0, then ¢ & S since
¢ > t?> > 2. But we have that u > ¢, contradicting that wu is the least upper bound of S.
Therefore, u? = 2, contradicting Proposition . We conclude that S does not have a least

upper bound in Q despite being non-empty and bounded above. O

Returning to our thought experiment at the beginning of this chapter, Q not being com-
plete is ultimately what makes the Intermediate Value Theorem fail for continuous functions
Q — Q. By drawing the graph of f(z) = 22 — 2, it is apparent that if S = {g € Q| ¢* < 2}
had a supremum s € Q, then s would be a root of f. However, we proved that S has no
supremum in Q. The real numbers, which we will define shortly, will not have this issue.

How did we know to consider t = %L“—J:f in the proof? Let us briefly forget about “rigour”
and assume standard facts about the real numbers. Intuitively, the supremum of S = {q €
Q | ¢> < 2} in the real numbers should be v/2, which is irrational. In the proof, we want
to assume that u = sup(S) € Q and obtain a contradiction. We know that u # /2 since
w is rational, so either u < v/2 or u > V2. If u < /2, we want to find ¢t € Q such that
u<t<+2, and if u > v/2, we want ¢t € Q such that v/2 < t < u. Hopefully, we can find a
simple mapping f such that ¢ = f(u). We know that Q is a field, which means Q is closed
under the basic arithmetic operations. Therefore, we should consider rational functions

f(z) = Z% where the polynomials p and ¢ have integer coefficients—for such functions f, if

r € Q is in the domain of f, then f(x) € Q. For positive x, we want that x < f(z) < /2 if
0<z<+v2and x> f(x)>+/2if x > /2. At this point, we can sketch what the graph of
f should look like, and we get the following figure:
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The sketch tells us that f(v/2) = v/2, or equivalently, that p(v/2) = v/2¢(v/2). Since
V2(2 4+ V2) = 22 + 2, we can take p(x) = 2z 4+ 2 and ¢(z) = 2 + z. We thus obtain
the formula f(z) = 222, We can sketch the graph of this rational function and see that it

+2
qualitatively matches the graph shown in the figure. Therefore, we take t = R

1.3 Definition of the Real Numbers
Definition 1.17. R is the (unique) complete ordered field.

We should note that two facts are required for this definition to be valid:
1. A complete ordered field must actually exist (otherwise, R would not exist).

2. Any two complete ordered fields are actually the same up to the labelling of their
elements (otherwise, this definition does not fully characterize R).

We will prove the first claim by constructing the real numbers out of the rational numbers
in Section However, we will not prove the second claim.

We will also assume without proof that Q is a subset of R. More precisely (for readers
who know some abstract algebra), there is a unique field homomorphism Q — R, and we
identify Q with its image under this homomorphism.

We now begin our investigation of the completeness property of R. This is the prop-
erty that distinguishes R from Q; it underpins all of real analysis. We will see later how
completeness implies the Intermediate Value Theorem, answering our question from the be-
ginning of this chapter. As a first application of completeness, we will prove shortly that
every nonnegative real number has an n'" root for any n € N.

Theorem 1.18 (Archimedean Property). Let > 0 and y € R. Then there exists n € N
such that nx > y.

Proof. Let S = {nz | n € N}. Suppose nz < y for all n € N. Then S is non-empty
and bounded above by y, so t = sup(S) exists. Let no € N such that t — ngz < 3. Then
(no + 1)z € S, but (ng + 1)z = ner + x > nez + 5 > t. Hence, ¢ is not an upper bound of
S, which is a contradiction. Therefore, there exists n € N such that nz > y. ]

Proposition 1.19. Let z >y > 0. Then 2" — y" < nz" Yz — y) for alln € N.
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Proof. Recall that 2™ — y" = (x—y)d Oxky” 1=k For all integers 0 < k < n — 1, we
have that zFy" =% < gFzn=1#F = 27"l gince 0 < y < z and n — 1 + k > 0. Therefore,
=yt < (x—y)p e = nx"‘l(x—y)sincex—QZO. O

Theorem 1.20. Let © > 0 and n € N. Then there exists a unique y > 0 such that y"* = z.

Proof. Let S = {t > 0] t™ < x}. Note that 0 € S since 0" = 0 < z, so S is non-empty. If
xr >1,then 2" > x,sot <z forallt € S. If 0 <z <1, thent <1 for all t € S since
t" <z <1=1" Hence, y = sup(S) exists. Note that y > 0 since 0 € S. We want to show
that y" = x. Suppose y" < z. By the Archimedean Property, there exists k € N such that
n(y +1)"' < k(z —y™). Then

1\" 1\"" /1
(y + %> <y"+n <y + E) (E) by Proposition [1.19

<y"+nly+1)"1 (1> since 1 <1
k k
<y"+x—1y" by definition of k
= x7
so y + % € S, contradicting that y = sup(S). Now suppose y™ > x. By the Archimedean
Property, there exists N € N such that Ny > 1 by the Archimedean Property, and there

exists M € N such that ny"™' < M(y™ — z). Let k = max{M, N}. Then ky > Ny > 1, so
y>y—3>0. Also, ny" ' < M(y" —z) < k(y" — ), so "y;:l < y" — x. Therefore,

1\" 1
(y — E) >y —ny" ! (%> by Proposition [1.19

n—1

>y" — (y" —x) since ny <y -z

:x,

SO Y — % is an upper bound of S, contradicting that y — % < y = sup(S). Therefore, y™ = x.

Now we prove the uniqueness of y. Suppose yi = x where y; > 0. If y; < y, then
yi < y" =z, and if y < y;, then © = y™ < y7. Both conclusions contradict the assumption
that yi = x, so it must be the case that y; = y. O]

Notation. For x > 0 and n € N, we denote the unique nonnegative solution to the equation
y" =x as y = {/r = x'/". Conventionally, if n = 2, we write /7 instead of /.

Note that v/2 and —+/2 are irrational by Proposition m Therefore, we have proved
that irrational numbers exist.

Proposition 1.21. For all x € R, there exists a unique n € Z such that xt —1 < n < x.

Proof. Let S ={n € Z | n > x — 1}. By the Archimedean Property, S is non-empty. The
Archimedean Property also implies the existence of m € N such that m > —(z — 1). Then
—m < x—1, and it follows that S is bounded below by —m. By the Well-Ordering Principle,
S has a smallest element n. Of course, n € Z and n > x — 1 since n € S. To show that



n < z, suppose n > x. Then n —1 > x — 1, which means n — 1 € S, contradicting that n is
the smallest element of S. Therefore, n < z.

To prove uniqueness, suppose m € 7Z satisfies t — 1 < m < x. If m < n, then m <
n — 1 < x — 1, which is impossible. Similarly, if n < m, then n < m — 1 <z — 1, which is
impossible. Hence, m = n. O

Definition 1.22. For all z € R, the floor of x, denoted |z, is the unique integer such that
r—1<|z] <=z

Exercise 1.23. Prove that for all x € R, there exists a unique integer n € 7Z such that
x<n<x+ 1. Wecall nthe ceiling of x and denote it [z].

Exercise 1.24 (Rational Exponents). Fix z > 0 and ¢ € Q. Write ¢ = ™ where m € Z and
n € N. We would like to define
z? = (xl/”)m.

(a) To make sure our definition is valid, we should check that 29 can have only one value.
Prove that if 7 = % where k € Z and ¢ € N, then

(st/mym = ()

Therefore, the value of 27 is independent of how we represent ¢ as a fraction.

(b) Let ¢1,¢2 € Q. Show that
2 — 01102

and
(x(h)(m = 1192
(c) Let y > 0. Show that
(zy)? = 27y".

1.4 Density of the Rationals and Irrationals in R
Theorem 1.25. Let z,y € R such that x < y. Then there exists ¢ € Q such that x < q < y.

Proof. Choose n € N such that n(y —x) > 1. Then nx +1 < ny. Let m = |nz + 1]. Then
nr <m < nx+1<ny, sox <™ <y. Therefore, we can choose ¢ = 7 € Q to satisfy the
conclusion of the theorem. O

Theorem 1.26. Let z,y € R such that x < y. Then there exists t € R\ Q such that
T <t<y.

Proof. By Theorem , there exists ¢; € Q such that \% <q < \% Again by Theorem
, there exists ¢go € (Q such that \% <@g < q1. Since ¢ # ¢, at least one of ¢, ¢o is non-
zero. Therefore, there exists a non-zero ¢ € QQ such that \% <q< \% Then = < ¢vV2 < y.
We claim that ¢v/2 is irrational. Suppose gv/2 € Q. Then there exists m € Z and n € N
such that ¢v/2 = ™. Since q € Q, there exists a € Z and b € N such that ¢ = . Note that
a # 0 since ¢ # 0. Therefore, 2 = (2)(2) = " € Q, which is impossible. We conclude

a n

that ¢v/2 is irrational, so we can pick t = ¢v/2. O
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Exercise 1.27. Prove that every real number is the supremum of a set of rational numbers.

Exercise 1.28. Let A and B be non-empty sets of real numbers that are bounded above.
Let
A+B={a+blacAbec B}

Prove that sup(A + B) = sup(A) + sup(B).
Now assume further that A and B only contain nonnegative numbers. Let

AB ={ab|a € A, be B}.

Prove that sup(AB) = sup(A) sup(B).

1.5 Complex Numbers

Definition 1.29. The set of complex numbers, denoted C, is formed by equipping the set
R? with the addition operation

(a,b) + (¢,d) = (a+c¢,b+d)
and the multiplication operation
(a,b) - (¢,d) = (ac — bd, ad + bc),

where a, b, c,d € R. The imaginary unit is i == (0,1). Two complex numbers (a,b) and (¢, d)
are equal if a = ¢ and b = d.

By convention, we denote (a,b) € C as a + bi. Then the addition and multiplication
operations are
(a+bi)+ (c+di) = (a+c)+ (b+d)i

and
(a+ bi)(c+ di) = ac — bd + (ad + be)i.

The real numbers naturally embed themselves into C via the injective map x +— x + 0i for
x € R. Therefore, we can view R as a subset of C, and we consider x € R to be equal to
x+ 0 e C.

Proposition 1.30. C s a field with additive identity O = 0 + 0¢ and multiplicative identity
1=1+0.

Proof. We will prove the existence of multiplicative inverses for non-zero complex numbers.
The other field axioms are easy but tedious to verify, so we leave them to the reader. Suppose
z = x + yi € C is non-zero, where x,y € R. Then at least one of x and y is non-zero, so
22+ 9% #0. Let w = —%—i € C. Then

T
22 1y2 2ty

zw:(x+yi)( ’ Y z>

x2+y2_x2—i—y2
IS GRS S N LA
$2+y2 x2+y2 $2+y2 $2+y2
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=1+ 0s.

The reader can check that multiplication is commutative in C, so zw = 1 + 0i = wz.
Therefore, z~! exists and equals w. ]

Proposition 1.31. C s not an ordered field under any total order “<”.

Proof. The crucial fact is that i = —1. Indeed,
i2 = (04 14)(0 + 14) = (0)(0) — (1)(1) + [(0)(1) + (1)(0)]i = —1 + 0.

If C is an ordered field under some total order “<”, then part (c) of Proposition implies
that —1 = 4> > 0. But —1 < 0 because 1 > 0 by part (c) of Proposition . We have a
contradiction, so C cannot be an ordered field. O

Definition 1.32. Let z = z 4+ yi € C where z,y € R.
(a) The magnitude of z is |z| = /a2 + y>.

(b) The complex conjugate of z is Z := = — yi.

(¢) The real part of z is Re(z) = x.

(d) The imaginary part of z is Im(z) = y.

Notice that the notation for the magnitude of a complex number is the same as the
notation for the absolute value of a real number. Fortunately, these two concepts do not
clash—if = € R, then the magnitude of x is /22 4 02, which is equal to the absolute value
of z.

Exercise 1.33. Let z,w € C. Prove that:

1.6 The Cauchy—Schwarz Inequality

Definition 1.34. A vector space over a field F is a set V' with a vector-additon operation
+:V xV — V and a scalar-multiplication operation - : ' x V' — V such that

(i) (V, +,0) is an abelian group (where 0 € V),

(ii) 10 = v for all v € V' (where 1 is the multiplicative identity of F'),

(ii) a(V+ W) = a¥ + aw for all a € F and 0,4 € V, and

(iv) (a+b)U = av+ bU for all a,b € F and 7 € V.

11



Given any field F' and n € N, the set F" = {(v1,...,v,) :v; € Fforalll <i<n}isa
vector space over F' under the operations

(U1, .oy 0n) + (Wi, .y wy) = (V1 W, .., Uy + W)

and
c(vi,y ..., 0n) = (cvr, ... cop)

where ¢, v;,w; € F for all 1 <i <n.

Definition 1.35. Let V' be a vector space over F' € {R,C}. A semi-inner product on V is
amap (-,-) : V x V — F such that

(i) () + Uy, W) = a(ty, W) + (U, W) for all a € F' and vy, th, W € V,

(ii) (v, w) = (W, ) for all v,w € V, and

(iii) (¢/,7) > 0 for all ¥ € V. (Note that axiom (ii) already implies that (¢, 7) is a real
number for all ¥ € V' because (v, ¢) = (¥, 9).)

A semi-inner product space is a vector space equipped with a semi-inner product. If V

is a semi-inner product space, then for any ¢ € V, the seminorm of v is ||9]| := /(¥, V).

Proposition 1.36. Let V be a semi-inner product space. Then <6, ) =0 = (7, 6} for all
veV.

Proof. We have that (0,7) = (0 + 0,7) = (0,7) + (0,7), so 0 = (0,7) and (#,0) = (0,7) =
0=0. O

Proposition 1.37. Let V' be a semi-inner product space and v,w € V. If ||v]| = ||@|| = 0,
then (¥, ) = 0.

Proof. Suppose ||9]| = ||@|| = 0. Let ¢ = (U, ). Then

=
=
|
o)
—
<
S
~
o)
T~
!
S
S~
+
@)
Sl
T~
&
]
S~

= —2|c|* since ||9]| = ||w]|| = 0.
Since 0 < —2|c|? < 0, it follows that —2|c[* = 0, so ¢ = 0. O

Theorem 1.38 (Pythagorean Theorem). Let V' be a semi-inner product space and U, € V.
If (0,0) = 0, then | |7+ &|[* = [|2]|* + |[]|*.

Proof. We have

— =

17+ ]| = |[9]* + (¥, @) + (v, @) + | |]|*

for all 7, € V, so if (¢, @) = 0, then ||v' + &||* = ||7]|? + ||w]|]* indeed. O

12



Theorem 1.39 (Cauchy—Schwarz). Let V' be a semi-inner product space. Then
(0, @) < [a]] - |||
for all v,w e V.

Let us recall projections from linear algebra. In R™ with the standard inner product (i.e.
the “dot” product), the orthogonal projection of a vector ' onto a non-zero vector w is
(U, W)

projz(v) = ||u_),||2w’

The vectors projz(v), ¥ — projz;(v), and o form a right triangle, as shown in the following
diagram.

<

v-prepa(v)

S
?""&;3(7) v

Therefore, we can apply the Pythagorean Theorem and deduce that ||proj;(7)|| < ||¥]|. Mul-
tiplying both sides of this inequality by ||@|| gives the desired inequality. We can generalize
this intuition to any semi-inner product space.

Proof. 1f ||U]| = ||W]| = 0, then |[(¥, )| = 0 by Proposition |[1.37} so the inequality holds.
Now we consider the case where ||¢]| > 0 or ||@|| > 0. Since the desired inequality is
symmetric in ¥ and W, we can assume that ||@|| > 0 without loss of generality. Observe that

Gy . md) N\ /) . N\ (G (G
<||w||2“”” >/ = \ " GRS
G p— 7 T
= DU ) — S g 4
TGRS TG
@@ @ a)P
GG
= 0.
By the Pythagorean Theorem,
o - 2
||ﬁ||2=' I AL
G 1G]
[+ [~ ke
w w
@ L (@) )
R TE A




SO

[ TGRS | AL
[|a]|? |||
Therefore,
(@, @) * < (19117 |]]* = (I]2]] - [1@l])?,
SO
(@, @)| < [[7]] - [[d]|
because |(¥, w)| and ||0]| - ||@]| are nonnegative. O

Corollary 1.39.1. Let z1,...,z,,wq,...,w, € C. Then

. /2 ., 1/2
< (zw) (z rwje) |
j=1 j=1

Proof. For any 2= (21,...,2,) € C" and @ = (wy, ..., w,) € C", define

n

E :ijj

j=1

n

(@) =3 2w, (1)

i=1

Then (-,-) : C* x C* — C is a semi-inner product, and the claimed inequality is simply the
Cauchy—Schwarz Inequality applied to this semi-inner product. n

Corollary 1.39.2 (Triangle Inequality). Let V' be a semi-inner product space and v, € V.
Then, ||7+ || < ||2]] + []a]].

Proof. We will show that ||o+ @]|* < (||7]] + |]«]])?. Indeed.

18+ @|* = [|8]]* + (¥, @) + (&, 7) + ||| |*
= |91 + 2Re((7, @) + [|@]|*
< |91 + 21, w)| + ||w]|*
< ||8]* + 2|@]] - ||@]| + ||@]|* by Cauchy-Schwarz
= (1911 + [1w]1)*.
Since ||U'+ @|| > 0 and ||7]| + ||@]|| > 0, we get that ||7 + || < ||0]| + || O

Remark. You may be curious about why the term “semi-inner product” has the prefix “semi”.
An inner product is a semi-inner product with the additional condition that (7, ) = 0 if and
only if ¥ = 0. The familiar “dot product” on R", defined by

n

V-w = E vjwj

=1

for all ¥, € R", is an inner product in this sense. Equation also defines an inner
product, this time on C". However, not all semi-inner products are inner products.
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An inner product space is a vector space equipped with an inner product. It is possible to
turn any semi-inner product space into an inner product space—the trick is to use equivalence
classes and put all the zero-norm vectors into the same equivalence class. Let V' be a semi-
inner product space, and let Z C V be the subset of vectors with zero norm. Define a
relation ~ on V' such that v ~ 7 if and only if ¥ —w € Z. Then ~ is an equivalence relation
(transitivity follows from the Triangle Inequality). Let X be the set of equivalence classes
under ~, and for each ¢ € V', let [¢] be the equivalence class of ¥. Then in fact, X is a vector
space under the operations

[0] + [w] = [V + ]
and

cfo] = [ed].

We can now define ([0], [@]) = (¥, @), which is a true inner product on X since there is a
unique equivalence class containing all the zero-norm elements of V. This construction is
performed when we study square-integrable functionf] (a future topic in analysis).

Exercise 1.40. Let V be a semi-inner product space. Prove that if || — Z|| = 0 and

Exercise 1.41. Let V be an inner product space (this means if ||[t]| = 0, then ¢ = 0).
Determine which vectors v, w € V satisfy

(@, @) = [|0]] - [|«w]].

1.7 Optional: Constructing the Real Numbers

In this section, we will construct the set of real numbers R using infinite sequences of rational
numbers. We equip R with an addition operation, a multiplication operation, and a total
order, and we prove that R is a complete ordered field. If the reader is not already familiar
with sequences and “e — N” proofs, then the reader may wish to skip this section for now
and come back after studying Chapter

Definition 1.42. An infinite sequence {¢,} of rational numbers is Cauchy if for all rational
numbers t > 0, there exists N € N such that |¢, — ¢,| < t for all n,m > N.

Let C be the set of Cauchy sequences of rational numbers.

Definition 1.43. Let {q,},{r.} € C. We write {¢,} ~ {r,} if for all rational numbers
t > 0, there exists N € N such that |g, —r,| <t for all n > N.

Lemma 1.44. ~ is an equivalence relation on C.

Proof. Let {q.},{rn},{sn} € C. Fix a rational ¢t > 0. We have that |g, — ¢,| =0 < ¢ for all
n>1,50{¢.} ~ {qn}. Suppose {g,} ~ {r.}. Then there exists Ny € Nsuch that |g,—r,| <t
for all n > Ny. Note that |r, —gn| = |g, —rn| <t for alln > Ny. Hence, {r,} ~ {¢,}. Lastly,
suppose {¢,} ~ {rn} and {r,} ~ {s,}. Then there exists N1, N, € N such that |¢, —r,| < §
for all n > Ny and |r, — s,| < % for all n > N;. By the Triangle Inequality (which holds
in Q by Theorem, lgn — Snl = |0 — T+ 70— Su| < |@n — 10| + |10 — 8| < %+% =1
whenever n > max{N, No}. Hence, {g,} ~ {s.}. O

"https://en.wikipedia.org/wiki/Square-integrable_function
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Definition 1.45. R is the set of equivalence classes of C under the equivalence relation
~. We denote the equivalence class containing {¢,} as [{¢,}]. For any ¢ € Q, we denote

qr = [{Q7 q,4,. .. }]
Lemma 1.46. Let {q,} € C. Then there exists C € Q such that |q,| < C for alln € N.

Proof. Since {q,} € C, there exists N € N such that |g, — ¢,,| < 1 for all n,mm > N. In
particular, for all n > N, we have that |¢, — qn| < 1, so

lan| = (g0 — an) +an| < lan — an| + lan| = 1+ |qn|.

Now take C' = max{|q], ..., |gn-1], 14 |qn|}, which is in Q since each argument of the “max”
function is in Q. If 1 <n < N, then |¢,| < C, and if n > N, then |¢g,| <1+ |gn| < C. O

Lemma 1.47. If {¢.},{rn} € C, then {g, + 1.} € C and {g.r.} € C.

Proof. Let {q,},{r.} € C. By Lemma [1.46] there exist Cy, C,. € Q such that |g,| < C, and
|r,| < C, for all n € N. Note that C, and C, are nonnegative. Fix a rational t > 0. Let
v = min{%, m}, which is a positive rational number since 1+C,+ C, > 1. There exists
N1, Ny € N such that |g, — ¢n| < 7y for all n,m > Ny and |r, — r,,| < 7y for all n,m > Ns.
Let N = max{Ny, No}. If n,m > N, then

t t
|(Qn+rn)_(Qm+rm)|§’(JH_Qm|+‘rn_rm|<’Y‘|"7§_+_:t

2 2
and
‘Qnrn - erm’ = ‘Qnrn — qnTm + QnTm — erm‘

- |Qn(rn - Tm) + Tm(Qn - Qm)|

S |Qn| : ’rn - 'rm| + |Tm| : |Qn - Qm’

< Cgy+ Cy

<(1+C,+Cy

t

<t |sincey < ———|.

<t ey S o
Therefore, {q, +r,} € C and {¢,r,} € C. O

Lemma 1.48. Let {q,}, {rn}, {sn}, {tn} € C. Suppose {q.} ~ {sn} and {r,} ~ {t,}. Then
{gn + 10} ~ {80+ tn} and {gurn} ~ {Sntn}.

Proof. Suppose {¢,} ~ {s,} and {r,} ~ {t,}. Fix a rational v > 0. By Lemma [1.46] there
exist C, Cs € Q such that [r,| < C, and [s,| < C for all n € N. Let v = min{§, 755}
Then there exist Ny, Ny € N such that |g, — s,| <7 for all n > N; and |r,, — ¢,,| < for all

n > Ny. If n > max{Ny, N2}, then
u

u
[(qn +70) = (80 +t0)] < |Gn — Sul + 70—t <'7+'7§§+2

=1U
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and

|GnTn — Sntn| = |GnTn — SuTn + SuTn — Suty
< |rn(gn — sn)| + [Sn(rn — tn)|
= |7l - gn = Sl + |sn| - [rn — T4
< Gy + Csy
<(1+C,+ Cyy
<.

Therefore, {q, + s,} ~ {rn +t,} and {g,s,} ~ {rat,}. O
Definition 1.49. For all [{g,}],[{r.}] € R, we define

Hantl + [{rnd] = Han + 70 }]

and

Hantl - {rn}] = Hanrn}].

Definition 1.50. Let {g¢,},{r,} € C. We say that {¢,} < {r,} if there exists a rational
t >0 and N € N such that r,, — ¢, >t for all n > N.

Lemma 1.51. Let {q.},{rn}, {sn}, {t.} € C. Suppose {q,} ~ {sn}, {rn} ~ {t.}, and
{qn} < A{rn}. Then {s,} < {t.}.

Proof. Since {q,} < {r,}, there exists a rational u > 0 and N; € N such that r, — ¢, > u
for all n > Ny. Since {¢,} ~ {sn} and {r,} ~ {t.}, there exist Ny, N3 € N such that
|Gn — 54| < 5 if n > Ny and |r, —t,| < 5 if n > N3. Therefore, for all n > max{N;, Ny, N3},
we have that
u uou
bn — Sp = (tn — Tn n — Un n — °on -5 — a7 = o
$n = ( )+ (Tn — @n) + (g — Sn) > s tu—3=3
so {sn} < {tn}. O
Definition 1.52. For all [{g,}], [{rn}] € R, we say that [{g.}] < [{rn}] if {¢.} < {rn}.
Theorem 1.53. R is a field.

Proof. First, note that if [{¢,}] € R, then

{an}l + 0r = {an + 0} = {gn}] = {0 + @n}] = O + [{gn}]

and
Hand] - 1r = Han - 1} = {an}] = {1+ @} = 1r - [{an}]-
Hence, R has an additive identity Og and a multiplicative identity 1g. It is also clear that
OR # 1R-
Since the operations on R reduce to term-wise operations on rational Cauchy sequences,
most of the field axioms for R can be proved simply by passing to Q and using the fact
that Q is a field. The proof that every non-zero element of R has a multiplicative inverse
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is more interesting. Let [{g,}] € R be non-zero. We claim that there exists N € N such
that ¢, # 0 for all n > N. Indeed, suppose not. For all rational ¢ > 0, there exists N; € N
such that |¢, — gn| < t for all n,m > N;. Choose Ny > Nj such that gy, = 0. Then
lgn — O] = |gn — qn,| < t for all n > N;y. Hence, {¢,} ~ {0,0,0,...}, so [{¢.}] = Og, which
is a contradiction. Thus, our claim is proved. Now let r, = 0if 1 <n < N and r,, = ¢! if
n > N. Then q,r, = 1 for alln > N, so [{¢.,7,}] = 1g. Therefore, [{g,}] has a multiplicative
inverse [{r,}]. O

Theorem 1.54. R s totally ordered.

Proof. Let x = [{x,}] and y = [{y,}] be real numbers. Suppose it is not the case that z < y
or y < x. Fix a rational ¢ > 0. Choose N1, Ny € N such that |z, — z,,| < § for all n,m > N,
and |y, — ym| < § for all n,m > N,. Let N3 = max{Ny, N}. Since z £ y and y £ z, there
exist mg, ng > N3 such that x,,, — Ym, < % and Y, — Tp, < % Then for all n > Nj,

t t t
xn_y":(x"_xmo)+(xmo_ymo)+<ymo_yn) < §+§+§:t
and
t t t
yn—xn:(Z/n_yno)+(yn0—:rno)—i—(q;no—xn) < §+§+§:t,
o |z, — yn| < t. Therefore, {z,} ~ {y,}, so x = y. Hence, any two elements of R can be
compared.

Now we need to show that no two of the statements “x < y”, “x =y”, and “y < 2” can
be simultaneously true. Suppose x = y. Fix a rational t > 0. Then there exists N; € N such
that —t < z, —y, <t for all n > N,. Therefore, there is no N € N such that x,, —y, >t for
all n > N because for any given N € N, ny = max{N, N4} satisfies ng > N and x,,, —yn, < t.
Hence, y £ x. By a similar argument, x £ y. Lastly, suppose z < y. Then there exists a
rational t5 > 0 and N5 € N such that y, — x,, > to for all n > Nj5. For any rational ¢ > 0
and N € N, n; = max{N, N5} satisfies ny > N and z,, — y,, < —to < 0 < t. Hence, there
is no N € N such that x,, —y, >t foralln > N, soy £ .

It remains to prove that “<” in R is transitive. Let z = [{2,}] € R, and suppose that
xr <y and y < z. Then there exist rational numbers t,t5 > 0 and Ng, N; € N such that
Yn — T, >t for all n > Ny and z, — y, > to for all n > N;. Let Ng = max{Ng, N7}. Then
for all n > Ng,

Zp — Tn = (Zn_yn)_'_(yn_xn) > 19 + 1.
Therefore, x < z since t, + t; is a positive rational number. O
Theorem 1.55. R is an ordered field.

Proof. Theorems [I.53] and say that R is a field with a total order “<”. Now we need
to prove that < is compatible with the field operations. Let = = [{z,}], v = [{yn}], and
z = [{zn}] be real numbers. Suppose y < z. Then there exists a rational ¢ty > 0 and Ny € N
such that z, — y, > to for all n > Ny. It follows that (z, + z,) — (T + Yn) = 20 — Yn > to
forallm > Ny, sox+y <x+ 2.

Suppose x > Og and y > Og. Then there exist rational numbers t1,t, > 0 and Ny, Ny € N
such that x, > t; for all n > Ny and y,, > ty for all n > Ny. If n > max{N;, Ny}, then
TpYn > tite, s0 {zyn} > {0,0,0,...} since t1ty is a positive rational number. Therefore,
xy > Og. O
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Lemma 1.56. Let S C R be non-empty and bounded above. Let
T ={t € Q|tr is not an upper bound of S}

and
U={uecQ]|ug is an upper bound of S}.

Then for all real numbers x > Og, there existt € T and v € U such that (u —t)r < x.

Proof. First, we show that T and U are non-empty. Since .S is non-empty, there exists an
element a = {[a,]} € S. Choose N; € N such that |a, — an,| < 1 for all n > N;. Then
an, — 1 < a, for all n > Ny, so (ay, — 2)r < a because a,, — (ay, —2) > 1 for all n > Nj.
Hence, an, —2 € T', so T  is non-empty. We argue similarly to show that U is non-empty. Let
b= {[b,]} € R be an upper bound of S. Then there exists Ny € N such that |b, — by,| < 1
for all n > Ny. Hence, b, < by, +1 foralln > N, so b < (by, +2)r because (by, +2)—b, > 1
for all n > N. Therefore, by, + 2 € U, so U is non-empty.

Write ay, — 2 = k—T and by, + 2 = T’;—U where kp,ky € Z and mp,my € N. Fix
x = {[z,]} > Og. Then there exists a rational g > 0 and N € N such that z,, > ¢ for all
n > N. Clearly ¢qr < x, since ¢ — x,, is negative for large n. Since ¢ is positive, we can write
q= % where k,m € N. Consider the set

V:{jeZ’iEU}.
2m

Note that %ﬂkf' = |ky| > M > k—U € U, so 2mlky| € V. Hence, V is non-empty. Also,
=2l = ky| < 2l < 7’:3; € T so V is bounded below by —2ml|ks|. By the Well-
Ordering Principle, V' has a smallest element j,. Then 23—31 € U because jo € V. The
minimality of jo implies that ]g—;l € T. Finally, Qj—fn — Jg—;nl = ﬁ < % = ¢, so letting u = 2j£n
and t = jg;l, we have that (u —t)gr < qr < . O

Theorem 1.57. R is complete.

Proof. Let S C R be non-empty and bounded above, and let 7" and U be the sets of the same
names from Lemma . For all n € N, there exists t,, € T and un € U such that u, —t, < %
byLemma_ Let m, nGNsuchthatm<n Ifun zum+ , then w,, — t,, > u, — u,, >
1 > L which is a contradiction. If u,, < u,, — then Uy — t > um — Uy = o L which is a
contradlctlon Therefore, we must have that um — = < Uy < Upy + L1 =, or equwalently, that
|up — up| < L.

Let t > 0 be a rational number, and write t = % where k,¢ € N. Let Ny =/ € N. Then
for all n,m > Ny, we have that

because min{n, m} > Ny. Therefore, {u,} € C.
Let u = [{u,}] € R. Fix an arbitrary z = [{z,}] € S, and suppose x # u. Then there
exists a rational ¢t > 0 such that for all N € N, we have that |z, — u,| > t for some n > N.
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Since {z,}, {u,} € C, there exists N, Ny € N such that |2, — z,,,| < £ for all n,m > Ny and
[ty — U | < % for all n,m > Ny. Let N3 = max{Ny, N}, and choose ny > N3 such that
|Zpy — Uny| > t. Suppose up, < Tn,. Then for any n > Nj,

Ty — Uy = (Ty, — Tpy) + (Tpg — Ung) + (Ung — Up) > —§+t—§: %
It follows that (u,,)r < x, contradicting the fact that u,, € U. Therefore, z,, < u,,. Now a
similar argument shows that w, — x, > % for all n > Nj3. Therefore, x < u, so u is an upper
bound of S.

Finally, we need to show that u is the least upper bound of S. Let w = [{w,}] < u.
There exists a rational s > 0 and N4 € N such that u,, — w,, > s for all n > N,. Choose
N5, Ns € N such that |w, — wp| < 3 if n,m > N5 and |u, — up| < 5 if n,m > Ns. Let
N7 = max{Njs, Ng}. For any n, m > N7, we have that

s 2s
Up — Wy, = (Up — Wy) + (W, — W) > 8 — = = —.
(b =)+ (= 10) > 5 5 =
Write s = § where p, ¢ € N, and let Ny = max{ N7, 3q}. Note that uy, —tn, < NLS < 3—1q <3z
Hence,
s 25 s
th — Wp = (th _UN8)+<UN8 _wn) > _§+§ - g
for all n > N;. It follows that w < (tn,)r. But since ty, € T, there exists y € S such that
(tng)r < y. As a result, w < y, so w is not an upper bound of S. ]

Having performed this construction, we can now be satisfied that a complete ordered field
exists. The fact that there is only one complete ordered field up to a unique isomorphism
implies that any construction of a complete ordered field produces the same result as our
construction. Therefore, in practice, we do not appeal to a specific construction of R when
proving theorems about R; all we need to know is that R is a complete ordered field.

20



2 Metric Spaces

The idea of “approaching” a real number in a limit is one of the fundamental concepts
of calculus. However, to formally define what “approach” means, we need the concept of
“distance”. In this chapter, we will start studying metric spaces, which are sets that we can
measure distances in.

2.1 Countable and Uncountable Sets

Definition 2.1.

(a) If S is a finite set, then the cardinality of S, denoted |S|, is the number of elements
in S.

(b) Two sets S and T" (which may be infinite) have the same cardinality if there exists a
bijection f : .S — T. In this case, we write |S| = |T.

(c) If there exists an injection from S to T', we write |S| < |T'].

(d) If there exists an injection but no surjection from S to T, we write |S| < |T|.

Definition 2.2. A set S is countable if |S| = |N|. If S is infinite and not countable, then S
is uncountable. A set that is finite or countable is denumerable. A denumerable set is also
called at most countable.

An enumeration of S is a (possibly infinite) list such that each element of S appears
exactly once in the list at a finite position. For example,

{0,1,-1,2,-2,3,-3,...}
gives an enumeration of Z. However, the list
{0,1,2,3,...,—1,-2,-3,...},

where all nonnegative integers are written before the negative integers, is not an enumera-
tion of Z since —1 is not at a finite position—infinitely many integers appear before —1
in the list. Note that a bijection f : N — S corresponds to an infinite enumeration
{f(1), f(2), f(3),...}. On the other hand, an infinite enumeration S = {z,zs,z3,...}
induces a bijective map n + x, from N to S. Thus, S is countable if and only if S has an
infinite enumeration. For example, we constructed an infinite enumeration of Z above, so Z
is countable. More generally, S is denumerable if and only if S has an enumeration.

Theorem 2.3. Let S be a set. If there exists an injection f : S — N, then S is denumerable.

Proof. 1f S is finite, then S is denumerable, so suppose S is infinite. Let
T={f(z)|zeS}CN,

and note that T is infinite because f : S — T is a bijection and S is infinite. The Well-
Ordering Principle implies that 7 has an m'" smallest element for all m € N. Define
g : N — S by setting g(m) equal to the element x € S such that f(x) is the m'" smallest
element in T. If g(i) = g(j), then f(g(i)) = f(g(j)) is the i*" smallest element in T" as well
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as the ;™ smallest element in T, so i = j. Hence, ¢ is injective. For any = € S, there must
exist m € N such that f(z) is the m™ smallest element of T. Otherwise, there would be
infinitely many elements of 7" smaller than f(z), which is impossible since f(z) € N cannot
be larger than infinitely many natural numbers. Hence, g(m) = x for some m € N, so g is
surjective. Therefore, |N| = |S], so S is countable and hence denumerable. O

Theorem 2.4. Let E,, be a countable set for alln € N. Then |, .y En i countable.

neN

Proof. First, note that UneN FE,, is infinite since E is infinite and £ C UneN FE,,. It suffices
to find an enumeration of | J, .y En. For each n € N, write E, = {&n,1,Tpn2, Tp3,... ;. We

can write all the elements of | . £, in an infinite grid like so:

11 Ti2 T13
To1 T22 T23
Tr31 T32 T33

For each integer n > 2, the elements x; ; such that i +j = n form a diagonal D, of this grid.
Each diagonal has finitely many elements, and each element of (J, . £, belongs in exactly
one diagonal. Thus, we can list the elements of | J,, . £, by listing the elements in D,, then
the elements in D3, and so on, making sure to skip all duplicate elements. Every element
appears exactly once in this list because we skip duplicate elements. Also, every element
appears at a finite position in the list because every diagonal is finite. Therefore, we have
an enumeration of | J, .y £y O

Corollary 2.4.1. If S and T are countable, then S x T is countable.
Proof. Write S = {s1, 89, 83,...} and T' = {t1,ta,t3,... }. Then

E, = {<5n7tj) | JE€ N} = {<Sn7t1)7 (8n7t2)7 (Smt?))v e }

is countable for each n € N. Hence, S x T' =, _y En is countable by Theorem ]

neN

Corollary 2.4.2. Q is countable.

Proof. Every x € QQ has a unique “simplest form” x = § where p € Z, ¢ € N, and ged(p, q) =
1. Define f: Q = Z x N by f(z) = (p,q) where £ is the simplest form of z. Note that f is
injective because f(z) = (p,q) if and only if = L. Since Z and N are countable, Z x N is
countable by Corollary 2.4.1] so there exists a bijection g : Z x N — N. Then go f : Q = N
is an injection, so Q is denumerable by Theorem [2.3] Since Q is infinite, Q is countable. [

Theorem 2.5 (Cantor). For any set S, we have |S| < |P(S)|.

Proof. Define f : S — P(S) by f(zx) = {«}. If f(x) = f(y), then {z} = {y}, so x = v.
Hence, f is injective.

Suppose there exists a surjection g : S — P(S). Let B ={z € S|z & g(z)}. Since
g is surjective, g(xo) = B for some zo € S. If g € B, then zy ¢ g(x¢) = B, which is a
contradiction. If zy ¢ B = g(xg), then xy € B by definition of B, giving us a contradiction.
Both cases give a contradiction, so g does not exist. O
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Theorem 2.6 (Cantor-Schroder-Bernstein). Let S and T be sets, and suppose there exist
injective functions f S — T and g : T — S. Then there exists a bijection h : S — T. In
other words, if |S| < |T| and |T| < |S|, then |S| = |T).

Proof. In this proof, we denote (go f), = (go f)o---o(go f)and (go f)o:=Idg. Let

Vv
n times

V= Ugo n(S\ g(T)).

We define h : S — T as follows. Fix x € S. If x € V, we set h(x) = f(z). On the
other hand, suppose x ¢ V. Then x ¢ Uy = S\ g(T), so x € g(T). Hence, z = g(y) for
some y € T. Since g is injective, y is unique, so we can set h(z) = y. Written as a succinct
formula, we have

g '(z) ifzgV,

where ¢g~!(z) denotes the unique element of T such that g(g~'(x)) = .

We now check that h is injective and surjective. Let z1,xo € S, and suppose h(x;) =
h(xs). If xy,29 € V, then f(z1) = h(z1) = h(x2) = f(x2), so x1 = x9 because f is injective.
If 21,20 € S\ V, then z; = g(h(z1)) = g(h(xz2)) = z2. Finally, suppose z; € V and
xo € V. Then z9 = g(h(xq)) = g(h(x1)) = g(f(z1)). Since x; € V, there exists n > 0 and
y € S\ g(T) such that z; = (g o f),(y). Then zo = g(f(x1)) = (9o f)nt1(y) € V, which is
a contradiction. Hence, x1 and x5 must both be in V' or both be in S\ V, and we have seen
that x1 = x5 in these cases. Therefore, h is injective.

Fixy e T. If y € f(V), there exists x € V C S such that y = f(z) = h(z). Suppose
y & f(V). We claim that g(y) ¢ V. If g(y) € V, then there exists n > 0 such that g(y) €
(go f)n(S\g(T)). If n =0, then g(y) € S\ g(T), which is a contradiction since g(y) € g(7T).
Hence, n > 1. Note that (gof), = go[fo(gof)n_1], so there exists z € fo(gof),_1(S\g(T))
such that g(y) = g(z). Since g is injective, y = z € fo(go f)u—1(S\ ¢g(T)) C f(V), which
is a contradiction. Hence, ¢g(y) € V, so h(g(y)) = y by definition of h. Therefore, h is
surjective. O

h(x):{f(x) ifxeV

We now apply the Cantor—Schroder—Bernstein Theorem to show that |P(N)| = |R|.
We assume that the reader has at least an informal understanding of binary expansions and
infinite series, and we omit rigorous discussion of these topics so as to focus on the application
of Cantor-Schroder—Bernstein. The reader can supply the missing details after Chapter [3]

Lemma 2.7. |(0,1)| = |R].
Proof. Consider f: R — (0,1) defined by

fla) = { <0

1
1_2:c+2 if x > 0.

We first check that 0 < f(z) < 1forallz € R. If 2 <0, then 2 — 2z > 2,50 0 < 57— =
f( ) < 3 Supposea:>0 Then 2z + 2 > 2, soO<2+2_%. Hence, —%§—2I+2<0 SO
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We now show that f is bijective. Suppose f(x1) = f(x2). Either f(z;) < % or f(zy) > %

Assume first that f(z;) < % Then z; < 0 and z9 < 0 because we showed above that
f(z) > % if z > 0. Hence, 2—12951 = ﬁ, so 2 — 2x9 = 2 — 27, and hence z; = z5. Now

assume that f(zy) > % Then z; > 0 and x5 > 0 because f(z) < 0 if z < 0. Hence,
1— 2x11+2 =1— m, SO 229 + 2 = 221 + 2 and hence z; = 5. Since x; = x5 in both cases,
f is injective.

Fix y € (0,1). Suppose y < % Then i >2. Letz=1-— % < 0. Then

1 1 1
Nowsupposeyzé. Then0<1—y§%,soﬁ22. Letx:ﬁ—lz(). Then
1 1 1
fla)=1- =1--— =l--==1-(1-y) =y
In both cases, we can find z € R such that f(z) =y, so f is surjective. n

Theorem 2.8. |P(N)| = |R|.

Proof. 1t suffices to construct injections f : (0,1) — P(N) and g : P(N) — (0, 1). If we prove
the existence of f and g, then by the Cantor-Schroder—Bernstein Theorem, |P(N)| = [(0,1)],
and by Lemma 1(0,1)] = |R|, so the desired result follows.

First, we construct f. Each z € (0,1) has at least one binary expansion, which is a
sequence {ay, }neny where a, € {0,1} for each n and

oo
an

n’

n=1

xr =

The reader can prove this assertion later in Exercise |3.49|
Given z € (0, 1), choose a binary expansion {a, },en of x, and set

f(z)={neN|a, =1} € P(N).

In this way, we assign each z € (0,1) to a unique value f(x) € P(N).
Suppose f(z) = f(y) where x,y € (0,1). For each n € N, let

o {1 if n € f(z)

0 otherwise.

We call {a, }nen the indicator sequence of the set f(z). We have that

sz%zy,
n=1

so f is injective.



We turn to constructing g. For each S € P(N), we form the indicator sequence {b,}nen

of S defined by
) {1 ifnes

0 otherwise,

and we set
1 b
S)=— S
98) =15 2 30
(Basically, g(5) is the decimal number 0.1 4 0.b1b3bsby . . ..) Note that
1 IR 11
R IS T TR A

so g maps P(N) into (0,1). Suppose g(S) = ¢g(T') where S, T € P(N). Let {b,}nen and
{¢n }nen be the indicator sequences of S and T, respectively. Then

[e.9] o0

1 by, 1 Cn
_ _— = = T = — _—
5+ 2 1o~ 98 =9 = 15+ X g
SO
= b, — ¢,
0= )
2 "

Suppose the sequences {b,},eny and {c,}nen are not equal. Then there exists a minimal
N € N such that by # cy. Without loss of generality, suppose by = 1 and ¢y = 0. Then

1 bN — CN e Cp — bn > 1 1
= ey < _—

10V 107 2. 100 = 10"~ 9(10N)’
n=N-+1 n=N-+1

so 1< %, which is a contradiction. Hence, b, = ¢, for all n € N, so § = T. Therefore, g is
injective. [l
Corollary 2.8.1. R is uncountable.

Proof. |N| < |P(N)| = |R|. O
Exercise 2.9.

(a) Prove that the set of finite integer sequences is countable.
(b) Prove that the set of infinite integer sequences is uncountable.

Exercise 2.10. The number % has two binary expansions, namely {1,0,0,0,0,...} and
{0,1,1,1,1,...}. Use this fact to explain why the function f in our proof of Theorem is
not surjective.

Exercise 2.11. Let A and B be sets. We define A” as the set of all functions B — A.
(a) Prove that if A and B are finite, then |[AZ| = |A|l5l.
(b) Suppose |A| > 2 (note that A may be infinite). Prove that |A| < |A%].
(c) Let C be another set. Prove that |(AB)¢| = |AB*C].
Exercise 2.12 (Applications of Exercise .
(a) Prove that |P(A)| = [{0,1}#] for any set A.
(b) Prove that |R x N| = |R|. Hint: recall that |R| = |P(N)].
(c) Prove that |R®| = |P(R)].
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2.2 Introduction to Metric Spaces

Definition 2.13. Let X be a set. A metric on X is a function d : X x X — [0, 00) such
that for all z,y,z € X,

(i) d(x,y) = 0 if and only if z = v,

(ii) d(x,y) = d(y,x), and

(iil) d(z, z) < d(z,y) + d(y, z).
The pair (X, d) is called a metric space.

Remark. Condition (iii) in the above definition is called the Triangle Inequality.

For brevity, we often say “Let X be a metric space” instead of “Let (X, d) be a metric

7

space.” The metric on X is always denoted d or dy, and the subscript is only necessary if
we want to distinguish between multiple metric spaces.

Proposition 2.14 (Reverse Triangle Inequality). Let X be a metric space. Then d(x,y) >
|d(x, z) — d(y, 2)| for all x,y,z € X.

Proof. By the Triangle Inequality,

d(z,z) < d(z,y) + d(y, 2)

and

Ay, 2) < d(y,x) + d(z, 2) = d(z, y) + d(x, 2).
Hence,
and

d(ZL’, y) > d(yv Z) - d(l’, Z)a
so d(z,y) > |d(z, z) — d(y, z)| since |d(z,z) — d(y, z)| is equal to one of d(z,z) — d(y, z) or

d(y,z) — d(z, 2). O
Proposition 2.15 (The Euclidean Metric). Let k € N. Then d : RF x RF — [0, 00) defined
by

k 1/2
d(%,7) = <Z<xi —yf)

=1

is a metric, where x; and y; refer to the i'" component of & and §, respectively.

Proof. Let 7,7, 7 € R¥. Then

If ¥ # ¥, then z; # y; for some 1 < j <k, so
1/2
d(Z,y) = <Z($ - yi)2) > (z;—y;)* > 0.
i=1
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Hence, condition (i) is satisfied. Condition (ii) also holds because (z; — y;)* = (y; — x;)? for
all 1 <i < k.
Now we prove the Triangle Inequality. We compute that

i=1 i=1
K k k
<Y (wi— ) 2> (i -y — )|+ > (i — )
i=1 i=1 i=1

k k /2 , & 1/2 &
< Z(l"z - yi)2 +2 (Z(ﬂfz - yz)2> (Z(yz - Zz)2> + Z(yz - Zz')2

i=1 i=1 i=1 i=1
(by the Cauchy—Schwarz Inequality)

k 1/2 k 1/2
= (Z(Iz — yz>2> + (Z(yz — Zz'>2>

=1

2

= (d(Z,7) + d(7, 2))*.

Therefore, d(Z, 2) = |d(Z, 2)| < |d(Z,9) + d(¥, 2)| = d(Z,y) + d(¥, Z) by parts (c) and (d) of
Proposition [1.11 ]

From now on, unless otherwise specified, we will use the Euclidean metric when working
in R*. Note that the Euclidean metric on R in particular satisfies

dr(z,y) = /(v —y)? = |z —y|

for all x,y € R. A similar fact holds for C. Let z = 21 + 412 € C and w = x5 + y91 € C
where 1, y1, T2, ¥2 € R. By definition, z = (x,7;) € R? and w = (2, y2) € R?. Hence,

de(z,w) = dp2((21,91), (T2, 2)) = \/(xl — )2+ (22 —1p)? = |2z —w)|.

For the rest of this chapter, let X be a metric space with metric d unless otherwise
specified.

Proposition 2.16. Let Y C X. Then d restricted to 'Y XY is a metric on Y. Thus, any
subset of a metric space is itself a metric space.

Proof. The three conditions for d to be a metric only involve universal quantifiers on X, so
the conditions hold if X is replaced with a subset Y. If a statement holds for all x € X,
then the statement holds for all x € Y. O
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Definition 2.17. Let £ C X and =z € X.

(a) Every element in E is called a point of E.

(b) A neighbourhood of x is a set N,.(x) = {y € X | d(x,y) < r} where r > 0 is a real
number. We call r the radius of the neighbourhood.

(c) We call z an interior point of E if there exists r > 0 such that N,(x) C E.

(d) We call z a limit point of E if for all r > 0, there exists y € E such that d(z,y) < r
and y # x.

(e) We call x an isolated point of E if there exists r > 0 such that N,.(x) N E = {z}.

Proposition 2.18. Let £ C X. Then every point of E is either an isolated point or a limit
point of E, but not both.

Proof. Fix x € E. Suppose z is not an isolated point of £. Then given r > 0, we know that
N.(z) N E # {z}. Clearly, {x} C N,(z) N E, so there must exist y € N,(z) N E not equal
to z. Equivalently, there exists y € E such that d(z,y) < r and y # z. Hence, z is a limit
point of E.

On the other hand, suppose x is an isolated point of E. Then there exists r > 0 such
that N,.(z) N E' = {z}. There cannot exist y € E such that y # x and d(z,y) < r, for this
would imply that {z,y} C N,.(x) N E = {z}, which is impossible. Hence, x is not a limit
point of E. ]

Definition 2.19. Let £ C X.
(a) E is open if every point of F is an interior point of E.
(b) The set of limit points of E is denoted E'.
(c) E is closed if every limit point of F is in E (i.e. if E' C E).
(d) The complement of E is E€:= X \ E.
(e) The closure of E is E == E U E'.
(f) The interior of E is the set of interior points of £ and is denoted E°.
(g) The boundary of E is OF = E \ E°.
(h) E is dense if E = X.
(i) E is bounded if E is empty or if there exists x € E and r > 0 such that £ C N,(x).
(j) E is perfect if E is closed and every point in E is a limit point of E.

The space R? offers many examples of the kinds of sets described in Definition m
When we prove general statements about metric spaces, it is often helpful to consider the
special case R? first, then generalize to arbitrary metric spaces.

Example 2.20. For any r > 0, N.(0) = {(z,y) € R? | 2? + y* < r?} is the open disk of
radius r centred at the origin. As its name suggests, N,(0) is open. The closure of N, (0)
is N.(0) = {(z,y) € R? | 22 + y* < r?}, which is the closed disk of radius 7 centred at the
origin. Every point of N,(0) is a limit point of N,.(0). Since N,.(0) is closed, N, (0) is perfect.
The boundary of N,(0) is the circle {(z,y) € R? | 2? + y* = r?}.

Example 2.21. Let S = {(2,1) € R? | n € N}. Then S is neither open nor closed. The
interior of S is empty, and (0,0) is a limit point of S that is not in S. Every point of S is
an isolated point. The closure of S is S =S U{(0,0)}.
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Example 2.22. Let H = {(z,y) € R* | y > 0}. Then H is perfect and unbounded. The
interior of H is H° = {(x,y) € R* | y > 0}. Since H # H°, we see that H is not open.

Example 2.23. Let L = {(n,0) € R? | n € Z}. Then L is closed since L has no limit points.
Indeed, the requirement for L to be closed is that L' C L, and the empty set is a subset of
any set.

Proposition 2.24. Let E C X. Then E is open if and only if E¢ is closed.

Proof. Suppose F is open. Let x € X be a limit point of E°. Suppose x € E. Then there
exists 7 > 0 such that N,(z) C E. But since x is a limit point of E°, there exists y € E°
such that y € N,(x). Hence, N,(z) ¢ E, which is a contradiction. Therefore, x ¢ E, so
x € E°. Since E° contains all of its limit points, £ is closed.

Conversely, suppose E° is closed. Let x € E. Then z is not a limit point of E¢ so there
exists 7 > 0 such that no y € E° satisfies 0 < d(z,y) < r. Let z € N,.(x). If z = z, then
clearly z € E. If z # x, then 0 < d(z,2) < r, so z € FE because z ¢ E°. In both cases, we
have z € F, so N,(z) C E. Therefore, F is open. O

Proposition 2.25. Let r > 0 and x € X. Then N,(x) C X is open.
Proof. Let y € Ny(x) and p =r —d(x,y) > 0. Fix z € N,(y). Then
d(z,2) < d(w,y) +dly,2) < d(z,y) +p=r,

so z € N,(x). Therefore, N,(y) C N,.(z), so N,(z) is open. O
Proposition 2.26. Let O be a set of open subsets of X, and let C be a set of closed subsets
of X.

(a) Upeo £ C X is open.

(b) Ngee E is closed.

(c) If O s finite, then (\peo £ C X is open.
(d) If C is finite, then | Jpee E C X is closed.

Proof. (a) Let © € [Upep - Then there exists E, € O such that x € E,. Since £, is open,
there exists r > 0 such that N,.(z) C E, C |Jgep £. Therefore, J;., E is open.

(b) Note that ((Ngee £)° = Upgee £¢ is an arbitrary union of open sets because the
complement of a closed set is open. Hence, ((\peo £)¢ is open by part (a), so (\gee £ =
((Npec £)°)¢ is closed.

(c) Suppose O is finite. Write O = {E,..., E,} where n = |0] > 0. Fix v € (peo E.
Then for all 1 < ¢ < n, there exists r; > 0 such that N, (x) C E;. Let r = minj<;<, r; > 0.
Then N,(z) C Ny, (z) C E; for all 1 < i < n, so Ny(z) C ()i E; = (geo E- Therefore,
Npeo E is open.

(d) Suppose C is finite. Then (|Jpee ) = (\gee £¢ is a finite intersection of open sets
and is therefore open by part (c). Hence, the complement | J, . £ is closed. ]

Proposition 2.27. Let E C X.
(a) E° C X is open.
(b) E C X is closed.
(c¢) If E is open, then E° = E.
(d) If E is closed, then E = E.
(e) If EC FCX, then E' C F'. Moreover, if F is closed, then E C F.
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Proof. (a) Let x € E°. Then there exists r > 0 such that N,(z) C E. For any y € N,(z),
there exists s > 0 such that Ns(y) C N,(z) C E, so y € E°. Therefore, N,(x) C E°, so E°
is open.

(b) Let x € X be a limit point of E. We want to show that z € E. If x € E, then we
are done since £ C E. Suppose z ¢ E, and fix r > 0. We want to show that € E’, which
means we must prove that there exists y € E satisfying 0 < d(x,y) < r. Since x is a limit
point of E, there exists z € E such that 0 < d(z,2) < r. If z € E, then we can take y = 2.
Otherwise, z € E’, so there exists y € E such that 0 < d(z,y) < min{d(z, z),r — d(z, 2)}.
Then

d(z,y) > d(z,2z) —d(y,z) > d(x,z) —d(z,z) =0

and
d(z,y) < d(z,2) +d(2,y) <d(z,z) +r —d(z,2) =r,

so 0 < d(z,y) < r. In both cases, we have found y € FE such that 0 < d(z,y) < r, so
r€E CE.

(c) Suppose E is open. Let # € E°. Then there exists > 0 such that N, (z) C E. Since
x € N,.(z), we have that x € E, so E° C E. On the other hand, every point of E is an
interior point by definition of £ being open, so £ C E°.

(d) Suppose E is closed. Then E contains all of its limit points, so £’ C E. Therefore,
E=FUFE =E.

(e) Let E C F C X. Suppose z € E’. Then for any r > 0, there exists y € F C F such
that 0 < d(x,y) < r. Hence, x € F', so ' C F’. Suppose F is also closed. Then since
E C Fand E' C F', we have that E = FEUE' C FUF' = F. By part (d), F = F, so
ECF. O

Proposition 2.28. Let x,y € R such that x <y. Then (x,y) C R is open.
_ ozt _y—x
Proof. Let z = %% and r = ¥5*. Then
N.(2)=(z—=r,z471) = (2,v),

so (x,y) is open since N,(z) is open. O

Proposition 2.29. Let z,y € R such that x < y. Then (z,y) = [z,y]. Hence, [x,y] is
closed in R.

Proof. Fix € >0, and let z = min{¥5*, §}. Then x 4 z € (,y) because

y—x T+y
2 2

r<x+z<x+ <.

Also, 0 < [(z +2) — x| = 2 < § < e. Hence, z is a limit point of (z,y). By a similar

argument, y is a limit point of (z,y). Therefore, [x,y] C (z,y).

It now suffices to prove that [z, y] is closed, or equivalently, that [z, y]° = (—o0, z)U(y, 00)
is open. Let v € (—o0,z) U (y,00). Suppose v < z. Let r = #5* > 0, and fix w € N, (v).
Then w —v < lw —v| <7, 50w < r+v =2 < g, which means that w € (—o0,z).
Therefore, N,.(v) C (—o0,z) U (y,00). If v > y, then we let r = =¥ > 0 and argue similarly
to show that N,.(v) C (—o0,x) U (y,00). Hence, (—oo,x) U (y,00) is open. O
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Theorem 2.30. Suppose E C X has a limit point x € X. Then there is an infinite subset
S C E such that for all v > 0, all but finitely many elements of S are in N,(z) \ {z}.

Proof. Let v > 1 be any integer. Since z is a limit point of E, there exists y; € F such that
yi € Niji(z) and y; # x. Let S = {y, | n € N}, and fix r > 0. By the Archimedean Property,
there exists m € N such that m < %, so that % < r. Then r,, < % < r. Now for any k > m,
we have that 0 < d(z,yx) < % < % < r. Therefore, the finite set {yi,...,ym_1} contains all
points of S that are outside N, (z) \ {x}.

To prove that S is infinite, suppose S is finite. Then we can define p = min,eg d(z,y) > 0.
But then there is no y € S such that y € N,»(x), which contradicts what we proved in the
previous paragraph. 0

Corollary 2.30.1. Suppose E C X has a limit point x € X. Then EN N,(x) is infinite for
any r > 0.

Proof. Let S C E be an infinite subset such that only finitely many points of S are outside
N.(z) \ {z} for any » > 0. Then S N (N,.(z) \ {z}) must be infinite for any r > 0. Since
SN (N.(z)\{z}) C SN N,(x) C EN N,(x), the result follows. O

Proposition 2.31. Let E C X. Then E' is closed.

Proof. We will prove that (E’)¢ is open. Let € (E’)°. Then there exists r > 0 such that
N.(z) \ {z} € E°. Fixy € N.(z). If y = z, then y ¢ E’. Now suppose y # x. Let
s = min{d(x,y),r — d(z,y)} > 0. If 2 € Ny(y), then

d(ZE,Z) > d(ZL’,y) - d(Z,y) > d((lf,y) —52 d(l’,y) - d((lf,y) =0
and
d(z,z) < d(z,y) +d(y, z) < d(z,y) + s < d(z,y) + (r —d(z,y)) =,

so z € N,(z) \ {z} C E°. Therefore, Ny(y) C E¢, soy & E'. It follows that N,(z) C (E')¢,
so (E")¢ is open. O

Theorem 2.32. Let E CY C X. Then E is open relative to Y if and only if there exists
F C X that is open relative to X and FNY = E.

Proof. Forally € E andr > 0, let NY (y) :={z €Y |dx(y,2) <r} and NX(y) = {2 € X |
dx(y,z) <r}. Note that NY (y) = NX(z)NY.

Suppose £ is open relative to Y. Then for all y € FE, there exists r, > 0 such that
NY(y) C E. Let F =, NS (y), which is open relative to X. Then

FNY = (U Nfﬁ(@/)) nY = JWXwny)=J N () =E,

yeE yeE yek

where the last equality follows because N (y) C E for all y € E.
Conversely, suppose there is an open subset F' of X such that F NY = E. Let y € F.
Then y € F, so there exists r, > 0 such that N\ (y) C F. Therefore,

NY(y) =N (y)NY CFNY =E,

so F is open relative to Y. O
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Exercise 2.33 (The Discrete Metric). Let S be any set. Prove that d : S x S — [0,00)

defined by
1 ifx
d(z,y) = . 7_& Y
0 ifx=y

is a metric on S. We call d the discrete metric. Prove that every subset of (S,d) is both
open and closed.

Exercise 2.34. o
(a) Let By = {2? | z € Q} C R. Find E;. B
(b) Let By = {(2%, %) | #,y € Q} C R?. Find E».

Exercise 2.35. Let (X1,d;),...,(Xn,d,) be metric spaces. For each = = (x1,...,2,) €
Xy x - xX,andy = (y1,-.-,Yn) € X1 X -+ X X, set

d(x7y) = \/dl(xla y1)2 +oeeet dn(xna yn>2'

Prove that d is a metric on X; x --- x X,,.

Exercise 2.36. Let £ C X.
(a) Prove that (E)¢ = (£°)° and that (E°)= (E°).
(b) We say that F is nowhere dense if the interior of £ is empty. Prove that E is nowhere

dense if and only if the interior of E° is dense (i.e. (E¢)° = X).

Exercise 2.37. Let X be a metric space and E, F5 be disjoint closed subsets of X. Prove
that there exist disjoint open subsets O, Oy of X such that £y C O; and Ey C Os.

Exercise 2.38. Prove that every open subset of R can be written as a countable union of
disjoint open intervals.

Exercise 2.39. Let (X, d) be a metric space and 7(X,d) be the set of open subsets of X
under the metric d. Let T be the set consisting of R, the empty set, and all open intervals
(—x,x) where z > 0. Prove that there is no metric d on R such that 7' = 7(R, d).

Exercise 2.40. Let M,(R) be the set of n x n matrices with real entries.
(a) For any A € M,(R), prove that

||Al] := sup{[|Az[| : x € R" and ||z[| = 1}

is finite. We call || A|| the operator norm of A. Prove that ||Ax|| < ||A]|-||z|| for all z € R™.

(b) Let d(T1,T) = ||Ty — T3|| for each T1,T> € M,(R). Prove that d is a metric on
M, (R).

(c) Let GL,(R) be the set of invertible matrices in M, (R). Prove that GL,(R) is dense
in M,(R). Hint: the characteristic polynomial of A € M,(R) is ca(z) = det(A — z1,,). Note
that A — A\I,, € GL,(R) if and only if A is a root of c4.

(d) Prove that if T € GL,(R), then

1
Tz = =77
=]
for all ||z|| = 1. Use this fact to prove that GL,(R) is open in M, (R).
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2.3 Compactness

Definition 2.41. Let £ C X. A set {O,}. of open subsets of X is called an open cover of
E (relative to X) if E C |J, O,. If there is a finite subset {Oq,,..., 04, } of {Os}a that
covers E, we say that {O,,,...,0,,} is a finite subcover of {O,}.

Definition 2.42. K C X is compact (relative to X) if every open cover of K has a finite
subcover.

It is easier to work with finite sets than infinite sets. Compactness allows us to extract
a finite subset E from an infinite set K, then use E to learn about K. One of the main
challenges of working with compact sets is identifying a useful open cover to consider. If we
choose the “correct” open cover, we can draw powerful conclusions from the associated finite
subcover.

A common choice of an open cover for a compact set K is the set of neighbourhoods
{N,.(z) : © € K} for some fixed » > 0. Many proofs proceed by forming this open cover,
extracting a finite subcover {N,.(z1),..., N.(z,)}, and doing something with each x; using
the fact that there are only finitely many of them. Typically, we compute a value f(z;) for
each i and then work with min;<;<, f(x;) or maxi<;<, f(x;). More generally, if each v € K
is associated with some 7, > 0, then {N,_ (z): 2z € K} is an open cover, and we can obtain
a finite subcover {N,, (z;)}i,. It is often useful to let r = min,<;<, r,, and note that r >0
since there are only finitely many radii r,,.

Theorem 2.43. Let K C Y C X. Then K is compact relative to X if and only if K 1is
compact relative to 'Y .

Proof. Suppose K is compact relative to X. Let {OY }, be an open cover of K relative to
Y. By Theorem [2.32 for each OY, there exists an open set OX relative to X such that
OXNY =0Y. Then K C |J,0Y c U, OX, so {OX} is an open cover of K relative to X.

Since K is compact relative to X, there is a finite subcover {OF , ..., OX }. Now
n n n
X X Y
KcC (an]) ny = JoX ny)={]oy,
j=1 =1 j=1
so {O) ,...,OF } is a finite subcover of {O} },. Therefore, K is compact relative to Y.

Conversely, suppose K is compact relative to Y. Let {O,}, be an open cover of K
relative to X. For each index o, O, N'Y is open relative to Y by Theorem [2.32] Hence,
{0, NY}, is an open cover of K relative to Y because

K C (an> Ny = J(0.nY).

By compactness of K in Y, there exists a finite subcover {O,, NY, ..., O,, NY}. Therefore,
{Os,---,0a,} is a finite subcover of {Ou}a because K C Uj_(Oa, NY) C Ui, O,
Hence, K is compact relative to X. O
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Theorem says that the compactness of a set K depends only on the metric defined
on K; we do not need to say that K is compact “relative to” some secondary metric space X.
A metric space is either compact or not compact. However, we should note that a set may
be compact in one metric but not in another. For example, [0, 1] is compact when equipped
with the Euclidean metric (as a consequence of the Heine-Borel Theorem, which we will see
soon), but [0, 1] is not compact when equipped with the “discrete metric”

1 ifz#y
d(%w:{() ifr=y

Proposition 2.44. Fvery finite subset of a metric space is compact.

Proof. Let K C X be finite, and let {O,}, be an open cover of K. Write K = {z1,...,2,}
where n = |K| > 0. For every 1 < j < k, there is an open set O,; such that z; € O,,;. Then
{Oays ..., 0,, } is a finite subcover. O

Theorem 2.45. If K is compact, then K is bounded.

Proof. Suppose K C X is compact. If K is empty, then we are done, so suppose K
is non-empty. Since {Ni(2)}sex is an open cover of K, there exists a finite subcover
{Ny(z1),..., Ni(z,)} wheren > 1. Let r = 1+maxi<; j<, d(z;,2;) > 0, and fix x € X. Then
there exists 1 < m < n such that z € Ny(x,,), which means that d(z,,,z) < 1. Therefore,

d(xlvx) < d(xbxm) + d(l'm>$) < 1£na}<< d($i’xj) +1=r,
SL,)SN

so K C N,(x1). Therefore, K is bounded. O
Theorem 2.46. If K is compact, then K is closed.

Proof. Let K C X be compact. We can prove that K is closed by proving that K° is open.
Let z € K¢. For each y € K, let r, = 2d(x,y) > 0. Then {N,, (y)}yex is an open cover
of K. Since K is compact, we can extract a finite subcover {N;, (y1),..., Ny, (yn)}. Let
r =min{r,,,...,r, } > 0. Suppose z € N,(x). Then for each 1 < j <n, we have that

d(y;,z) > d(y;, @) —d(z,x) > 2r; —r > 2r; —r; =71},

so z & N, (y;). Hence, » ¢ Uj_; Ny, (y;), so 2 ¢ K since K C j_, N;;(y;). We conclude
that N,.(x) C K¢ so K¢ is open. O

Theorem 2.47. If K is compact and E C K is closed (relative to K ), then E is compact.

Proof. Let {O,}, be an open cover of E. Since E is closed, E°is open. Hence, {O,},U{E“}
is an open cover of K. Since K is compact, we can extract a finite subcover S = {S1,...,S,}.
Then S\ {E} is a finite subcover of {O,}4. Therefore, E is compact. O

Corollary 2.47.1. Let F be a family of compact subsets of X. Then (\gcz K is compact.

Proof. If F is empty, then the intersection (1, K is empty and hence compact. Suppose
F is not empty. Each K € F is closed, so [\, K is closed. Also, (g K is a subset of
any compact set in F. Hence, [)x.z K is compact by Theorem m O

34



Theorem 2.48. If K is compact and E C K is infinite, then E has a limit point in K.

Proof. We prove the contrapositive. Suppose ' C K is infinite and has no limit point in
K. For each x € K, there exists r, > 0 such that N, (z) N E C {z} because z is not a
limit point of E. Consider the open cover {N,, (z)}, of K, and suppose there exists a finite
subcover {N,, (71),..., N, (v,)}. Then

sy Ve,

E=KNEC (O erj(xj)) NE = O(erj(:rj) NE)C{xy,...,z,},

j=1 j=1

which is impossible because E is infinite. Hence, {N,_(x)}, has no finite subcover, so K is
not compact. ]

Theorem 2.49. Let F be a non-empty family of compact subsets of X with the “finite-
intersection property” (which means that any finite intersection of sets from F is non-empty).
Then (\ger K is non-empty.

Proof. Suppose, by way of contradiction, that (), K is empty. Choose a compact set
S € F. Fix x € §. There exists K, € F such that x ¢ K, because [, K is empty. Since
K, is compact, K¢ is open, so there exists r, > 0 such that N, (z) C K¢.

We now have an open cover { N, (z)},es of S. By compactness of S, there exists a finite
subcover {N,, (71),..., Ny, (7,)}. But

SNK, N---NK, C (UN%-(%‘)) N(K, N---NK,,)
j=1

(ij N (Km M- N Kwn))

-

1

J

C

-

(N, N E)

<
Il
_

contradicting the assumption that F has the finite-intersection property. O

Corollary 2.49.1. Suppose { K, }nen is a “decreasing” family of non-empty compact subsets
of X (which means that K, 11 C K,, for alln € N). Then (), .y K» s non-empty.

neN
Proof. Choose a finite number of sets K,,,, ..., K,  in {K,}nen. Let ng = max{ny,...,n,}.
Then ﬂznzl Ky, = Ky, is non-empty. Hence, {K,}nen has the finite-intersection property.
By Theorem [2.49, (,,cy Kn is non-empty. O

Exercise 2.50. Prove that {0} U {2 | n € N} C R is compact.

Exercise 2.51.

(a) Let K and K5 be compact subsets of X. Prove that K; U K3 is compact.

(b) Find a sequence Ki, Ky, K3, ... of compact subsets of R such that |J -, K, is not
compact. [Therefore, finite unions of compact sets are compact, but infinite unions may not
be compact.]

35



Exercise 2.52. The distance between two non-empty sets S, T C X is

dist(S,T) == inf d(z,y).

zeS,yeT

[Note: dist is generally not a metric because the Triangle Inequality fails.]
(a) Prove that if S is closed, T is compact, and S NT = (), then dist(S,T) > 0.
(b) Find two non-empty disjoint closed sets Ey, E; C R such that dist(E, Es) = 0.

Exercise 2.53 (Cardinality of Compact Sets). Let K be a compact set. In this exercise, we
will show that |K| < |R|.
(a) Prove that for all n € N, there exists a finite set {2, 1, ..., Ty m, } C K such that

mn

K = Ninl@ns).

i=1

(b) Fix z € K. Construct an infinite sequence of natural numbers {i1,s,13,...} such
that

{z} = () Nyju(ns,).

Note: the sequence {i,1i2,13,...} is identical to a function s : N — N where s(n) = i, for
all n. Therefore, the set of sequences of natural numbers is N¥ (see Exercise .

(c) Hence, we can define f : K — NN by f(x) = {i,42,13,... }. Note that f is injective
because ()7 N1/ (s, ) is a singleton set, so |K| < |NV|. To conclude that |K| < |R|, prove
that |[NN| < |R|.

2.4 The Heine—Borel Theorem

In general, determining whether a given set is compact is difficult. Fortunately, there is a
simple characterization of all compact subsets of R¥. This section is dedicated to proving
the Heine-Borel Theorem, which says that a subset £ C R¥ is compact if and only if E is
closed and bounded.

Definition 2.54. Let k € N. A k-cell is a subset of R¥ of the form
[ag,b1] X -+ X [ag, bg]

where q; < b; for all 1 < i < k.

Proposition 2.55. Every bounded subset of R* is a subset of a k-cell.

Proof. Let E C R*. If E is empty, then F is a subset of [0,0] x --- x [0,0] € R¥. Now
suppose E is non-empty. Then there exists ¥ € E and r > 0 such that

n 1/2
d(Z,7) = (Z(mi - m?) <r

=1



for all ¥ € E. For any given integer 1 < j <k, let S; = {z; | ¥ € E} C R. Then

N 1/2
;=] = (25 = v;)")"? < (Z(ﬂ?z - Uz’)2> <r

=1

for all z; € S;. Let a;j = v; —r and b; = v; +r, so that S; C [a;,b;]. Now fix any
7 € E. Then x; € [aj,b;] for all 1 < 5 <k, so @ € [a1,b1] X -+ X [ag, bg]. Therefore,
EC[al,bl] x---x[ak,bk]. ]

Theorem 2.56 (Nested-Interval Property). Suppose {{1, 02,3, ...} and {uy,us,us, ...} are
sequences of real numbers such that €; < ; < u; < w; for all j > i > 1. Then () [ln, tn)
18 non-empty.

Proof. Consider the set L = {f1,s,05,...}. Then L is non-empty and bounded above since
l, < wuy for all n > 1. Let x = sup(L). Fix ¢ > 1. Then = > ¢; since x is an upper bound
of S. If j > ¢, then ¢; < u; < u;, and it 1 < j < 4, then ¢; < ¢; < u,;. Therefore, u;
is an upper bound of S, so z < w;. It follows that x € [¢;,w;]. But ¢ > 1 is arbitrary, so
€ (ol [ln, un). O

Theorem 2.57. Fvery k-cell is compact.
Proof. Let k € N. For each k-cell C' = [ay,bi] X -+ X [ay, bx] C R¥, define

. 1/2
f(C) = (Z(bi - a¢)2> :

=1

For any ¥ = (x1,29,...,2,) € C and § = (y1,¥2,...,yx) € C, we have that

) 1/2 . 1/2
d(Z,9) = (Z(yz - xz)2) < (Z(bz - ai>2> = f(C)

i=1 i=1

because z;,y; € [a;, b;] for all 1 < i < k.

Suppose there is a k-cell C; C RF that is not compact. Then there is an open cover
S of C) that does not have a finite subcover. Inductively, for j > 1, let C; be a k-cell
such that no finite subset of S covers C;. Write C; = [a1,b1] X -+ X [ag, b;]. Note that
la;, b;] = [ai,%(ai + b;)| U [%(ai + b;),b;] for each 1 < ¢ < k. Hence, by splitting each
la;, b;] into two subintervals, we can write C; as a finite union of “k-subcells” of the form
[01,u1] X -+« X [lg, ux] where u; — €; = %(bz —a;). Let E = [l1,u1] X -+ X [l,ug] be any one
of these k-subcells, and notice that

k 1/2 k 9 1/2 k 1/2
() = (Zmi —m?) - (Z (50— a0) ) - (Z(bz- —a»?) - ().

If S had a finite subcover for each k-subcell, then the union of these subcovers would be a
finite subcover of C;. But by assumption, no finite subset of S covers C}, so there must be
a k-subcell Cj4; such that no finite subset of S covers Cj4.
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This recursive process produces k-cells C; = [agj ), bgj )] X+ X [a,(j ), b,(cj )] such that no finite
subset of S covers C; for any j > 1. Also, f(Cjt1) = 2 f(C;) and [a§j+1),b§j+1)] C [ag‘j),bz(-j)]
for all integers j > 1 and 1 < ¢ < k. Then by induction, f(C;) = (3)7!f(Cy) for all j > 1.
Note also that f(C;) > 0. Indeed, if f(Cy) = 0, then a!” = b{") for all 1 < i < k, which
makes C a singleton set {Z}. But since S covers C}, there is an open set O € S such that
7 € O, so {O} is a finite subset of S that covers C;. This is a contradiction, so f(Cy) > 0.

Now consider

T = ﬁ Cj — <ﬁ[agj),b§j)]) X oeee X (ﬁ[a](gj)7b](§j)]> .

j=1 j=1

By the Nested-Interval Property, there exists an element ¥ = (x1,...,25) € T C Cy. Since
S covers (1, there is an open set O € S such that £ € O. Hence, there exists r > 0 such
that N,.(¥) C O. Recall that f(C}) > 0, so we can divide by f(C}). Using the Archimedean

Property, we can show that there exists m € N such that (%)m < ﬁ Let y € C},11. Then

d(Z,9) < f(Cpy1) = (3)™F(C1) <1, s0 § € N.(Z) C O. It follows that Cy,yq C O, which is
a contradiction because no finite subset of S covers C,11. ]

Corollary 2.57.1 (The Heine-Borel Theorem). K C R¥ is compact if and only if K is
closed and bounded.

Proof. Theorems[2.45|and [2.40]say that every compact set is closed and bounded. Conversely,
suppose K is closed and bounded (relative to R¥). Since K is bounded, there is a k-cell C
that contains K by Proposition [2.55] Theorem [2.57|says that C' is compact. Note that K is
closed relative to C' because K contains all of its limit points in R¥, which C is a subset of.
Therefore, K is a closed subset of a compact set, so K is compact by Theorem [2.47] O

Theorem 2.58. Let E C R¥. Then the following are equivalent:
(i) E is compact.
(i) E is closed and bounded.
(#ii) Every infinite subset of E has a limit point in E.

Proof. The Heine—Borel Theorem says that (ii) implies (i), and Theorem says that (i)
implies (iii). To finish the proof, we just need to show that (iii) implies (ii).

Suppose (iii) holds. Let 2 € R*¥ be a limit point of £. By Theorem [2.30, there is an
infinite subset S C E such that for any » > 0, all but finitely many points of S are in
N,(z) \ {z}. Since S is infinite, S has a limit point y € E. Let D = d(z,y), and suppose
D > 0. If z € Npja(y), then d(z,2) > d(z,y) — d(z,y) > D — 2 =L s0 2 & Npp(z).
Hence, Np/a(y) C (Npya(2)). Since SN (Npja(x))© is finite, we know that S N Nps(y) is
also finite. But since y is a limit point of S, Corollary implies that S N Np/(y) is
infinite, which is a contradiction. Therefore, D = 0, so x = y € E, which means that F
contains all of its limit points and is therefore closed.

Now suppose F is not bounded. Then FE is non-empty. To obtain a contradiction, we
construct a particular infinite subset 7" C E which has no limit point. First, pick any point
t; € E. Recursively, for all integers n > 2, we pick ¢,, € E such that d(tq,t,) > d(t1,t,—1)+1;
this is possible because E is not bounded. Now let 7' = {t, | n € N} C E. Let i,5 € N
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be distinct, and without loss of generality, assume that ¢ > j. By induction, we have that
d(t1, tl) > d(tl,tj) + 1. Hence,

d(ti,t]’) Z d(tl,ti) — d(tl,t]’) > 1.

Therefore, all the t,, € T are distinct, so T is infinite. By assumption (iii), 7" has a limit
point w € E. Then by Corollary , T N Nij2(w) is infinite, so there exist two distinct
elements ¢;,t; € T N Nyjp(w). But notice that d(t;,¢;) < d(t;, w) + d(w,t;) < 1 +3 = 1,
which is impossible because we proved that d(t;,¢;) > 1. Therefore, £ must be bounded. [

Theorem 2.59. If E C R* is a non-empty perfect set, then E is uncountable.

Proof. Any non-empty perfect set must be infinite since finite sets do not have limit points
by Corollary . Suppose E is countable, and write £ = {z1, x5, 23,...}. To obtain a
contradiction, we will use the Heine-Borel Theorem and Corollary [2.49.1] to construct a limit
point z,, € E where n must be larger than any natural number. Let ng = 1, rp = 1, and
Vo = N,y (zp,). Recursively, suppose we have chosen n; and r; for some i > 0. Since xz,, is
a limit point of E, any neighbourhood of z,, contains infinitely many points of £. Hence,
there exists n;;; > n; such that =, . € V; = N, (2p,). Choose 7,41 > 0 such that

1
Tig1 < §[Tz — d(Tn,, Tn, )] (1)
and
Tig1 < 123113%2 d(@j, Tp,yy)- (2)

Condition ensures that Viiq = N, (zs,,,) C V;. Indeed, if € Vi44, then
d(xa wnz) < d(l‘, xmﬂ) + d(mni+17 $ni> < Tit1 + (ri - ri+1) =T

so x € V;. Condition ensures that if x; € Vi1, then j > ngq. Indeed, if xj € Vis1, then
d(xj, Tp, ) < 1ip1 < d(T, Tn,,,) for all 1 <k <ny, s0 j > npq because j € {1,...,n;}.
Note that r;41 < ir; by Condition (). By induction, we have that r; < (3)'rg = (3)* for
all 4 > 1. Since V; is closed and bounded in R¥, V; is compact by the Heine-Borel Theorem.
Observe that Vi,; C V; since Vi, C V;. By Corollary , Nz, Vi is non-empty. Choose
z € N2, V;. For any r > 0, there exists 4o € N such that ()" < r. Since z € V},, we have
that d(zn, ,z) < riy, < (3)° <7, 50 &n, € Np(x). Therefore, z is a limit point of E, so
r € E since F is closed. Hence, x = z,, for some n € N. But z,, =z € m, son>n+1,

which is a contradiction. O
Hence, we deduce (again) that R is uncountable because R is a non-empty perfect set.

Example 2.60 (The Cantor Set). Let Cy = [0, 1] and

gn—l1 . .
37—2 37—1
Cn - Cn—l \ U ( n n ) .
ANE 3
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for all n > 1. For example, C; = [0,3] U [2,1] and Cy = [0,5] U [2,5] U [3,Z] U [5,1].
Essentially, each C,, is a union of (one or more) closed intervals, and we form the next set

Cra1 by removing the middle third of each closed interval. The Cantor set is the set

C:= fﬁoC’n,

which we can think of as the “limit” of the decreasing sequence {Cy, Cy, Cy, ... }. This set C
has many strange properties, making it a great source for constructing counterexamples in
analysis. We will show that C' is compact, perfect, and uncountable, all while having empty
interior.

Clearly, C' is bounded in R because C' is a subset of Cy = [0, 1], which is bounded. We
now prove that C,, is closed for all n > 0 by induction. First, Cy = [0, 1] is closed. Suppose
that C),_1 is closed for some particular n > 1. To show that C), is closed, we use the following
lemma.

Lemma. Let X be a metric space. Let £ C X be closed and F' C X be open. Then
E\ F is closed in X.

Proof. Let € X be a limit point of £\ F. By Proposition [2.27, (E'\ F)' C E’ because
E\F C E. Hence, x € E' C E since E is closed. Suppose, by way of contradiction, that
x € F. Since F is open, there exists r > 0 such that N,(z) C F. Since z is a limit point of
E\ F, there exists y € E'\ F such that 0 < d(z,y) < r. But then y € N,.(z) C F,soy € F,

contradicting that y € E'\ F. Therefore, x ¢ F',sox € E'\ F. O
By Proposition [2.26] U?n_ll(?’éf, 3‘?,;1) is open since (3?;2, 3%;1) is open for each j. Our
inductive hypothesis says that C,,_; is closed. Hence, C,, = C,,_; \ U3n 1( ?;2, 3@;1) is closed

by the lemma. This completes the inductive step. By Proposmon 2.26] C' is closed since
each (), is closed. Therefore, C' is compact by the Heine-Borel Theorem.

Fix x € C. We want to show that € C’, so fix r > 0. By the Archimedean Property,
there exists n € N such that 5= < r. Let k= |3"z|. Then 3”;E —1 < k < 3", which implies
that 45 < z < B Since z— | =2 — 4 < Bl — & = L < we just need to show
that - € C. Suppose ¢ C. Then there is a minimal m > 0 such that k ¢ C,. Clearly,

= [O 1] since 3"x > 0 and x < 1, so m > 1. Hence, there exists 0 < J < 3™1 such
that k (3§m2, 3§m1) for some 0 < j < 3™~!. By way of contradiction, suppose m < n.
Then 3 < L implies that k < 3"™(3j — 1). Hence, k 4+ 1 < 3"™(3j — 1) since k and

3 m(3] — 1) are integers. It follows that

3j—2 k E+1 37-—1
<—=<uz< <
3m 3n — x 3n — 3m ’
so z ¢ C,,, which is a contradiction. Therefore, m > n. The 1nequahty <k <321

implies that 37 — 2 < 3™ "k < 357 — 1. Note that 3™ "k is an integer because m > n.
But no integer can be strictly between two consecutive integers, so we have a contradiction.
Therefore, £ 3w € C, 50 x € C'. We proved previously that C' is closed, and we just proved
that every point of C' is a limit pomt of C', so C is perfect.

Note that 0 € C since 0 < @ for all n > 1. Hence, C' is non-empty, so C' is uncountable
by Theorem [2.59]
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Finally, we prove that C' has empty interior. Suppose C has an interior point x. Then
there exists 0 > 0 Such that (:v —d,z+ ) C C. Let n € N such that 3% 4, and let
k= [3"z]. Then &1 <z < J&. Tt follows that

R P i
T — — — .
- 3" 3 3n
Hence, the intervals (%2 523) (523, 522) and (52, %57) are all in (z — §,2), which is

contained in (0, 1). It follows that
1<k—-4<k-3<k—-2<3"-2. (3)

Since k — 4, k — 3, and k — 2 are three consecutive integers, one of them must be of the
form 35 — 2 where j € Z. Moreover, 1 < j < 3"! because of the inequality . Hence,

(3?))”2, 3?,)"1) c C c C,, which is a contradiction, so z is not an interior point of C'.

Exercise 2.61. Determine whether each of the following sets is compact:
(a) The closed interval [a,b] where a < b
(b) The open interval (a,b) where a < b
(0) {(w,}) € R? [ 1< v < 2)
(d) {z € C: || <1}
(e) {z? | x € C'} where C is the Cantor set

Exercise 2.62 (Self-Similarity of the Cantor Set). For any set S C R and constants a,b € R,

denote
aS+b={arx+b|zeS}

Prove that the sets C,, in the construction of the Cantor set satisfy the “recurrence relation”

an{[lo’” if n =0

gcn_l U (%Cn—l + %) if n 2 1.

Hence, prove that C = :C'U (5C + 2).

2.5 Connectedness
Definition 2.63. Two sets A C X and B C X are separated (relative to X)if ANB = () =
ANB.

Definition 2.64. E C X is connected (relative to X) if E is not the union of two non-empty
separated subsets of X.

Theorem 2.65. Let Y C X and A,B C Y. Then A and B are separated relative to Y if
and only if A and B are separated relative to X.

Proof. For any set S C Y, let 5" denote the closure of S relative to Y, and let 5% denote
the closure of S relative to X. Note that S =S5 NY.
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Suppose A and B are separated relative to Y. Then AXNBCY since BCY. Hence,
ANB=A"nBnYy=4 NB=0.

By a similar argument, A N B = (), so A and B are separated relative to X.
Conversely, suppose A and B are separated relative to X. Then

A NB=2"NnBNY=0=AnB Ny =4nB",
so A and B are separated relative to Y. O

Corollary 2.65.1. Let E CY C X. Then E is connected relative to X if and only if E s
connected relative to Y .

Proof. If F is not connected relative to X, then £ = AU B where A, B C X are non-empty
and separated relative to X. But notice that A, B C Y since AUB = FE C Y. Hence, A and
B are separated relative to Y by Theorem [2.65 so F is not connected relative to Y. The
proof of the reverse implication is similar. O

Therefore, separatedness and connectedness are in fact intrinsic properties of a metric
space, just like compactness (cf. Theorem [2.43]).

Lemma 2.66. If S C R is non-empty and bounded above, then sup(S) € S. Similarly, if
S C R is non-empty and bounded below, then inf(S) € S.

Proof. If sup(S) € S, then sup(S) C S since S € S. Now suppose sup(S) ¢ S. Fix
€ > 0. By definition of supremum, there exists x € S such that sup(S) — e < x < sup(S).
But sup(S) ¢ S, so x < sup(S). It follows that 0 < sup(S) — z = |sup(S) — x| < ¢, so
sup(S) € 8" € S. The proof that inf(S) € S when inf(S) exists is essentially the same with
some signs and inequalities flipped. O]

Theorem 2.67. Let E C R. Then E is connected if and only if (z,y) C E for allz,y € E
such that x < y.

Proof. Suppose there exists z,y € E such that © < y and (z,y) ¢ E. Then there exists
z € (z,y) such that z ¢ E. Let A={w € F|w < z}and B={w € E | w > z}.
Then A and B are non-empty because r € A and y € B, and F = AU B. Also, since
A C (—00,2) and B C (z,00), we have that AN B C (—00,2) N (z,00) = (. For any w € A,
let r = 5% > 0. If v € No(w), then v —w < Jv —w| < r,sov < r+w == < 2
Hence, N,(w) N B = (), so w is not a limit point of B. Therefore, AN B = (), and by a
similar argument, AN B = (). Thus, we have shown that A and B are separated, so F is not
connected.

Conversely, suppose E is not connected, so that £ = C'U D where C, D are non-empty
and CND =0 =CnND. Pick an element x € C and an element y € D. Clearly, x € E
and y € F since C C E and D C E. Without loss of generality, suppose that x < y. Let
S = [z,y] N C. Then S is non-empty (since x € S) and bounded above by ¥, so sup(S)
exists. Note that S € C and S C [z, y] = [x,]. Since sup(S) € S by Lemma [2.66, we have
that = < sup(S) < y. If sup(S) =y € D, then sup(S) € C N D, contradicting that C' N D is
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empty. Hence, sup(S) < y. We now consider two cases: either sup(S) € C or sup(S) & C.
Suppose sup(S) € C. Then sup(S) € D, so since D’ is open, there exists 0 < r < y —sup(S)
such that N,(sup(S)) ¢ D° C D°. Pick z = sup(S) + 5, and note that 2 € (z,y). Then
z ¢ C because z > sup(S), and z € D° because z € N,(sup(S)). Therefore, z ¢ E. Now
suppose sup(S) € C. Then sup(S) # z, so sup(S) € (x,y). We know that sup(S) ¢ D
because C' N D is empty and sup(S) € C. Therefore, sup(S) ¢ C U D = E. In both cases,

we have shown that (z,y) N E° is non-empty, so (z,y) ¢ E. O

Exercise 2.68. Prove that X is connected if and only if the only subsets of X that are both
open and closed relative to X are the empty set and X itself.

Exercise 2.69. Prove that the only connected subsets of the Cantor set C' from Example
[2.60] are the empty set and the singleton sets {z} where x € C. Thus, we say that C' is
totally disconnected.

Exercise 2.70. Prove that every connected metric space X with at least two points is
uncountable. (Hint: choose distinct points z,y € X, and let D = d(z,y) > 0. Then show
that for all ¢ € (0, D), there exists z € X such that d(z, z) = c.)

Exercise 2.71. Show that if X is a connected metric space with at least two points, then X
has no isolated points. Show that the converse is not true (there is a simple counterexample).
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3 Sequences and Series

Having familiarized ourselves with distances in metric spaces, we are now ready to define
limits in metric spaces. We will briefly study sequences and the notion of convergence in
general metric spaces, but the main focus of this chapter is on sequences in R and C. We
will also study infinite series in R and C.

Throughout this chapter, X is a metric space with metric d.

3.1 Sequences and Subsequences

Definition 3.1. A sequence in X is a function ¢ : N — X. We let a,, == a(n) for each
n € N, and we denote the sequence by {a,},. A subsequence of {a,}, is a sequence {by}
with a strictly-increasing function ¢ : N — N such that b, = ay) for all & € N. We define
ng = ¢(k) and write {bg}x as {an, }i-

The subscript outside the brackets {} indicates the symbol that the sequence is indexed
on. Usually, the sequence’s indexing is clear, so we often omit this subscript.

Definition 3.2. Let {a,} be a sequence in X.

(a) {a,} is convergent if there exists L € X such that for all € > 0, there exists N € N
such that d(a,, L) < € for all n > N. In this case, we say that {a,} converges to L and that
L is a limit of {a,}. On the other hand, if {a,} is not convergent, then {a,} is divergent.

(b) {an} is Cauchy if for all € > 0, there exists N € N such that d(an,a,) < € for all
n,m> N.

(c) {an} is bounded if the set {a, | n € N} is a bounded subset of X.

The following proposition says that if a sequence has a limit, then this limit is unique.
As a result, we can use the familiar notation “lim,, .., a,, = L” to say that L is the limit of
a sequence {ay,}.

Proposition 3.3. Let {a,} be a sequence in X. If {a,} converges to Ly and Lsy, then
Ly = Lo.

Proof. Fix € > 0. Then there exist Ny, Ny € N such that d(a,, L1) < € for all n > N; and
d(ay, Ly) < € for all n > Ny. Let N = max{Ny, No}. Then

d(Ll,L2> S d(Ll,(lN) + d(CLN,L2> < e+e€e= 2.

Hence, d(L;, Ls) < 2¢ for all € > 0, so it must be the case that d(Ly, L) = 0. Therefore,
Ly = Ls. ]

Proposition 3.4. Let {a,} be a sequence in X. Then lim, ,oa, = L if and only if
limy, o0 dx (an, L) = 0.

Proof. Both of the statements “lim,, ,, a, = L” and “lim,,_,, dx(a,, L) = 0" are equivalent
to the statement “for all € > 0, there exists NV € N such that dx(a,, L) = |dx(a,, L) —0| <€
foralln > N.” O

Proposition 3.5. Every convergent sequence is Cauchy.
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Proof. Let {a,} be a convergent sequence in X, and let L = lim,, ,, a,. Fix € > 0. Then
there exists N € N such that d(a,, L) < € for all n > N. Therefore, if n,m > N, then

d(an, am) < d(an, L) +d(L,a,) < € + € = 2,
so {a,} is Cauchy. O

Remark. The factor of 2 appearing in the final inequality of the previous proof does not
affect the conclusion that {a,} is Cauchy. Since 2 is independent of €, we can just replace
each instance of “¢” with “5”7 if we want the right-hand side of the final inequality to be
“€”. Thus, there is no need to force the final inequality to be of the form “d(a,,a,,) < €”;
it suffices to obtain an inequality of the form “d(a,,a,,) < Ce” where C' > 0 is a constant
independent of e. A similar remark applies if we want to prove that a sequence converges to
a limit L.

Proposition 3.6. Every Cauchy sequence is bounded.

Proof. Let {a,} be Cauchy. Then there exists N € N such that d(an,a,) < 1 for all
n,m > N. Let M = 1+ maxj<;<yd(aj,an). If 1 < j < N, then d(aj,ay) < M, and
if 5 > N, then d(a;,an) < 1 < M. Therefore, d(aj,ay) < M for all j € N, so the set
{a, | n € N} is bounded. O

Proposition 3.7. Let {a,}, {b,}, and {c,} be sequences in R such that a,, < b, < ¢, for all
n large enough. Suppose {a,} and {c,} both converge to L € R. Then {b,} also converges
to L.

Proof. Let Ny € N be such that a, < b, < ¢, for all n > N;. Fix € > 0. Then there exist
Ny, N3 € N such that |a, — L| < € for all n > Ny and |¢, — L| < € for all n > Nj. Let
N = max{Ny, No, N3} and suppose n > N. Then 0 < b, — a, < ¢, — a, since n > Nj.
Hence,

Cpn — Gp = |y, — an| < e, — L+ |L — a,| = 2,

SO
|b, — L| < |b, — an| + |an — L| = (b, — an) + |an, — L| < (¢, — ap) + |an, — L| < 3e.
Therefore, {b,} converges to L. O

Proposition 3.8. For any x € X, we have lim,, ., v = .

Proof. Let x, = x for all n > 1. For any ¢ > 0, we have d(z,,z) = 0 < € for all n > 1.
Hence, {x,} converges to z. O

Proposition 3.9. Let {a,} and {b,} be convergent sequences of complexr numbers. Let
L, =lim, . a, and Ly = lim,_,, b,. Then:

(a) limy, o (an + by) = Ly + Lo.

(b) lim,, o anby, = Ly Lo.

(c) limy, o0 2 = i—; if Ly # 0 and b, # 0 for alln € N,

(e) lim, oo |an| = | L]
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Proof. Fix e > 0. Choose Ni, Ny € N such that |a,, — L1| < € for all n > Ny and |b,, — Lo| < €
for all n > Ns.
(a) Let N = max{Ny, Na}. Then for all n > N,

[(an +b,) — (L1 + Lo)| < |an — Lq| + by — Lo| < €+ € = 2e.

(b) Every convergent sequence is Cauchy and hence bounded, so let M > 0 be such that
|b,| < M for all n € N. Let N = max{Ny, No}. Then

|anb, — L1 Lo| = |anby, — by Ly + by Ly — Ly Ls|
< |anbn — buLy| + |buLy — Ly Lo|
= [bn|(lan — La[) + [L1|(|by — L2|)
< Me+ |Ly|e
< (14 M + |Ly|)e.

Hence, {a,b,} converges to L;Ls because 1 + M + |L4| is independent of e.
(¢) Choose N3 € N such that |b, — Ls| < £|Ls| for all n > N3. Then

1
bn| = [Lo — (Lo — bp)| > [La| — Ly — by| > §’L2’

for all n > N3. Let N = max{Ny, N3}. If n > N, then

1 1

b, Lo

B |L2—bn| < €
(1baD)[ L2l (5]Lal)|La|’

Ly,
| byLsy

so lim,, oo i = LLQ Now by using part (b), we see that

. Qp, BT 1 o 1 o Ll
e = e (50) =0 (5;) - 1

(d) Let x,, = x for all n > 1. Then d(z,,z) = 0 < € for all n > 1. Hence, {x,} converges
to x.
(e) By part (b), lim, . —b, = lim,, o (—1)b, = (—1)Ly = —L,. Hence,

lim (a,, — b,) = lim (a,, + (—=b,)) = L1 — Lo

n—oo n—o0
by part (a).
(f) By the Reverse Triangle Inequality (Proposition [2.14)),
llan| = |La]] = [lan = O] = [[L1 = O] < |an — L] < ¢
for all n > Ny. O

Proof. Suppose lim,, ,« |a,| = 0. Fix ¢ > 0. Then there exists N € N such that ||a,| —0] < €
for all n > N. But ||a,| — 0] = |a,| = |a, — 0]. Therefore, |a, — 0] < € for all n > N, so
lim,, o0 @y, = 0. O

46



Proposition 3.10.
(a) If =1 < ¢ < 1, then lim,,_,o, " = 0.
(b) For all k € N and ¢ > 1, lim, 0o % = 0.
(c) For all a > 0, lim,,_,, a*/™ = 1.
(d) lim,, oo n'/™ = 1.

Proof. (a) Fix € > 0. If ¢ = 0, then the result is immediate. Now suppose ¢ # 0. By
the Archimedean Property, there exists M € N such that % <e Letr =24 >1and
k=r—1>0. Then

J=0

le

for all n € N. By the Archimedean Property, there exists N € N such that Nk > M — 1.
For all n > N, we have that
r'">1+nk > M,

SO

Therefore, lim,,_,, ¢ = 0.

(b) Let k € N and ¢ > 1. Then c¢'/* > 1. By the Archimedean Property, there exists
N € N such that & < ¢!/* — 1, or equivalently, 2 < ¢V/*. Let r = 1(2)* and note that
0 <r<1. Also, iszN,thenj]i.lzl—l—% §1+N— NEL g0 L (‘i) < r. Hence, for all

n > N, we have that

n—1 (Jj+1\k n—1
nk Nk (50)7 Nk Nk N*
< _ J < _ n—N __ n
0—___N =N r=-5" =N
c" cV - c cV - c cVr
Jj=N Jj=N

Since 0 < r < 1, part (a) says that lim,, ., 7" = 0. Hence, lim,, cfvvwr” = 0 because CIJVVT
k

is a constant. By Proposition , lim,, o 2 = 0.
(c) If a = 1, the result is immediate. Suppose that a > 1. Let b, = a*/™ —1 > 0. Then

for all n € N,
- n n
= (b, + 1" = bE>1 b, = 1+ nby,
0= (by+ 1) Z(k)— +(1) .

so 0 < b, < & 1. The Archimedean Property implies that hmn_mo“T_1 = 0. Hence,
lim, oo b, = 0 by Proposition , so lim,,_,o, a¥/" = lim, yoo(bp, +1) = 0+ 1 = 1. Fi-
nally, suppose that 0 < a < 1. Then % > 1, so

1 1

. In _ _ L
nh—>noloa nh—>nolo (%)1/” hmn%oo( )1/” 1 L

(d) For each n € N, let ¢, = n'/» — 1 > 0. Then

n:(cn—i—l)":Z(Z)cﬁZl—i— (Z)cizl—l—wci.

k=0
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If n > 2, then
2 2
E<in-1)(—0) =2
n(n —1) n

so0 <¢, < \/% Fix e > 0 and choose N' € N such that N > %. Then for all n > max{N, 2},

we have that
|, —O\—cn_f \/ <\/_—e

Hence, lim,, o ¢, = 0, 80 lim,, 0o 2™ = lim,, ,o0(c, +1) =04+ 1= 1. O

Definition 3.11. Let {a,} be a sequence in X. We say that L € X is a subsequential limit
of {a,} if there exists a subsequence {a,, } that converges to L.

Theorem 3.12. Let {a,} be a sequence in X, and let E = {a,, |n € N} C X. Then L is a
subsequential limit of {a,} if and only if L occurs infinitely often in {a,} or L € E'.

Proof. Let L € X be a subsequential limit of {a,}. Suppose L does not occur infinitely
often in {a,}. Let {a,, } be a subsequence that converges to L. Fix ¢ > 0. Then there exists
N € N such that d(ay,, L) < e for all k > N. Since L does not occur infinitely often in {a,,},
there must exist £ > N such that a,, # L. It follows that 0 < d(a,,, L) <€, so L € E'.
Conversely, suppose that L occurs infinitely often in {a,} or that L € E’. If L occurs
infinitely often in {a, }, then {L, L, L, . .. } is a subsequence that converges to L. Now suppose
L € E'. Pick ay,, such that 0 < d(a,,, L) < 1. Suppose inductively that we have picked a,,
for some k € N. Then Ny/441)(L) N E is 1nﬁn1te by Corollary [2.30.1] m so we can pick an,
such that ng1 > ng and 0 < d(ay,,,, L) < k_+1 By induction, {a,, } is a subsequence such
that 0 < d(an,,L) < 1 for all k € N. Fix ¢ > 0. By the Archimedean Property, there exists
N € N such that % < €. Then for all £ > N, we have that d(a,,, L) < % < % < % < e.

Therefore, {a,, } converges to L. O
Corollary 3.12.1. There exists a real sequence whose set of subsequential limits is R.

Proof. Recall that Q is countable, so Q has an enumeration {ay, as, as, ...}, which is a real
sequence. Since Q' = R by Theorem the result follows from Theorem [3.12] O

Definition 3.13. We say that X is complete if every Cauchy sequence in X is convergent.
Lemma 3.14. Any Cauchy sequence with a convergent subsequence is itself convergent.

Proof. Let {a,} be a Cauchy sequence in a metric space X, and suppose {a,} has a con-
vergent subsequence {a,, }. Let L = limg_,o a,,,, and fix € > 0. Then there exists N; € N
such that d(a,,, L) < € for all &k > Nj. Since {a,} is Cauchy, there exists Ny € N such that
d(an, ay) < € for all n,m > Ny. Let N = max{N;, No}. Then for all n > N,

d(an, L) < d(ap, any) + d(any, L) < €+ € = 2¢,

so {a,} converges to L. O
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Theorem 3.15 (Bolzano-Weierstrass).
(a) Every sequence in a compact set K has a convergent subsequence.
(b) For each k € N, every bounded sequence in R* has a convergent subsequence.

Proof. (a) If {x,,} has infinitely many occurrences of the same value x, then {z,, z., x,,...}
is a subsequence which converges to x,. Now suppose no value of {z,} occurs infinitely
often. Then the set £ = {z,, | n € N} is an infinite subset of the compact set K, so E has
a limit point z € K by Theorem [2.48, By Theorem [3.12] z is a subsequential limit of {z,},
proving that {z,} has a convergent subsequence.

(b) Every bounded sequence in R¥ is contained in a k-cell by Proposition , which is
compact by Theorem [2.57 The result now follows from part (a). ]

Corollary 3.15.1.
(a) Every compact metric space is complete.
(b) For all k € N, R* is complete.

Proof. We can prove both parts of this corollary simultaneously. Any Cauchy sequence in a
compact metric space has a convergent subsequence by the Bolzano—Weierstrass Theorem.
In R*, every Cauchy sequence is bounded and hence has a convergent subsequence by the
Bolzano—Weierstrass Theorem. Lemma now implies the desired results. O

Exercise 3.16. For any sequence {a,} in X, prove that the set of subsequential limits of
{a,} is a closed subset of X.

Exercise 3.17. Let {a,} be a sequence in X. Prove that {a,} is convergent if and only if
every subsequence of {a,} is convergent.

Exercise 3.18.

(a) Let {a,} be a sequence in a compact metric space K. Prove that {a,} is convergent
if every convergent subsequence of {a,} has the same limit.

(b) Find a non-compact set K and a sequence {a,} in K that has a convergent subse-
quence, has the property that all convergent subsequences converge to the same limit, but
is not convergent itself.

Exercise 3.19. Give an example of a complete metric space X and a bounded sequence in
X that has no convergent subsequence.

3.2 Limit Superior and Limit Inferior

Even if a sequence is divergent, we may want to know how the sequence is bounded as n — oc.
This section introduces the limit superior (“lim sup”) and the limit inferior (“lim inf”), which
are like the limits of the supremum and the infimum of the tail end of the sequence. For
example, the sequence {(—1)"(1+4 2)}, certainly diverges, but limsup,,_,.(—1)"(1+ %) =1
and liminf,, o (—1)"(1 4 1) = —1.

Definition 3.20. A sequence {z,} in R is monotonically increasing if x; < z; for all i < j.
Similarly, {z,,} is monotonically decreasing if x; > x; for all i < j.
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Theorem 3.21 (Monotone Convergence Theorem). Let {z,} be a sequence in R that is
monotonically increasing and bounded above. Then {x,} converges to sup,cy Tn. Similarly,
if {yn} is a sequence in R that is monotonically decreasing and bounded below, then {y,}
converges to inf,en y,.

Proof. Let s = sup,,cy *n and fix € > 0. Then there exists N € N such that s —e <y <.
Since {z,} is monotonically increasing, we have that s —e¢ < zny < z, < s for all n > N.
Hence, 0 < s —x, = |s — z,| < e for all n > N, so lim, ,o z,, = s. A similar argument
applies for a monotonically-decreasing sequence {y,} which is bounded below. O]

Definition 3.22. Let S C R be non-empty. We say that sup(S) = oo if S is not bounded
above, and we say that inf(S) = —oo if S is not bounded below.

Definition 3.23. Let {a,} be a sequence in R. Then

lim sup a,, == inf (sup a,,)
n—00 neN m>n

and
liminf a,, == sup(inf a,,).
n—o00 neN m2n
Definition 3.24. Let {a,} be a sequence in R.
(a) lim,,_, a, = oo if for all x € R, there exists N € N such that a,, > x for all n > N.
(b) lim,, o0 a,, = —o0 if for all z € R, there exists N € N such that a,, < x for alln > N.

Proposition 3.25. Let {a,} be a real sequence.
(a) limsup,,_,. a, = oo if and only if {a,} is not bounded above.
(b) limsup,, ., a, = —o0 if and only if lim,_, a, = —00.
Similar statements apply for liminf.

Proof. (a) Suppose limsup,,_, . a, = co. Then sup,,~,, a, = oo for all n € N. In particular,
SUD,,>1 (m = 00, S0 {a,} is not bounded above. Conversely, suppose {a,} is not bounded
above. By way of contradiction, suppose that lim SUD,, o0 @n < 00. Then there exists x € R
such that limsup,,_, . a, = inf,en(sup,,>, @¢m) < z. By definition of infimum, there exists
N € N such that sup,,~ y am < 2. Let M = max{ay,...,ay,z}, and note that a, < M for
all n € N. Therefore, {an} is bounded above, contradicting our initial assumption. Hence,
lim sup,, ., @, = 00.

(b) Suppose limsup,,,, a, = —oo. Fix x € R. Then there exists N € N such that
sup,,,sn @m < x. It follows that a,, < x for all n > N. Hence, lim,,_,o, a, = —00. Conversely,
suppc;se lim, _,o a, = —oo. For all x € R, there exists M € N such that a,, < x for all
m > M. Hence, limsup,,_, a, = inf,en(sup,,>, @») <  for all € R, so it must be the
case that limsup,,_, . a, = —o0. - O

Proposition 3.26. Let {a,} be a real sequence. Then limsup,, ,., @, = limy o0 (SUP,,>,, Gm)
and liminf,, . a,, = lim,, oo (inf,,>p am).
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Proof. Suppose limsup,, ,. a, is finite. For each n € N, let b, = sup,,~,, @m, so that
limsup,, .., @, = infuey b,. Note that {a, | m > n+ 1} C {a, | m > n} for each n € N, so
any upper bound of the latter set must also be an upper bound of the former set. Hence,
b1 < b, for all n € N. Since inf,cn b, is finite by assumption, {b,} is a monotonically-
decreasing sequence that is bounded below, so the Monotone Convergence Theorem says
that

lim (sup a,,) = lim b, = 1nf b, = lim sup a,,.

n—00 1>n n—00 n—s00

Suppose limsup,,_,. a, = oo. Then {a,} is unbounded, so for any =z € R, we have
that sup,,~, @, > x for all n > 1. Hence, lim, . (Sup,,>, ¢m) = oo. Finally, suppose
limsupn%o; a, = —oo. Then lim,_,, a, = —oo, so for aﬂy r € R, there exists N € N
such that a, < z for all n > N. Hence, sup,,~, ¢, < = for all n > N. Therefore,
limy, o0 (SUP,,5p, Gm) = —00. We conclude that limsup,, . @, = lim, 0 (SUp,,s, @) in all
cases. - -

The proof that liminf, . a,, = lim, o (inf,;,>, a,,) is similar. O

Proposition 3.27. For any real sequence {a, }, we have that liminf,_, a, < limsup,,_, . a,.

Proof. Suppose there is a real sequence {a,} such that liminf, . a, > limsup,,_, . a,. Pick
x € R such that liminf, ;. a, > x > limsup,,_,., a,. Then there exists Ny, No € N such
that inf,.>n, @ > © > sup,,>n, @m. Let N = max{N;, No}. Then ay > inf,,>n, ap >z >
SUP,> N, Gm = Gn, Which is a contradiction. O

Theorem 3.28. A real sequence {a,} is convergent if and only if
—00 < ligr_l)irolf Ap = liinﬁs;jp a, < 00,
i which case lim,,_,o a, = liminf,,_, . a,.
Proof. Suppose —oo < liminf,, ;. a, = limsup,,_, . a, < co. Let L = liminf,,_, a,, and fix

€ > 0. Then there exist N, Ny € N such that L—e < inf,,;>n, ap < Land L < sup,,sn, tm <
L+ e Let N =max{N;, No}. If n > N, then

L—e< inf a, <a, < sup a,, < L +¢,
m2Ny m>Na
so |a, — L| < €. Hence, lim,,_,o, a,, = L = liminf,,_,, a,.
Conversely, suppose {a,} converges to some L € R. Fix € > 0, and choose N € N such

that L —e < a, < L+ e for all n > N. Then

L—e< mf a,, < sup(inf a,,) = liminf a,

neN m>n n—o00

and

lim sup a,, = inf (sup a,,) < sup a,, < L + €.

n—00 nEN m>n m>N
Since € > 0 can be arbitrarily small, it follows that L < liminf, .. a, and limsup,,_, . a, <
L. By Proposition [3.27, we have that

L <liminfa, <limsupa, < L,

n—oo n—oo

so —oo < L = liminf, ,« a, = limsup,,_, ., a, < co. O
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Theorem 3.29. Let {a,} be a positive sequence in R. Then

a a
lim inf ! < liminf /a, < limsup {/a, < limsup nl

n—oo Uy n—00 n—00 n—oo  Qn

Proof. First, note that each of these four limits must be nonnegative because {a,} is a
positive sequence. Proposition implies that liminf, . /@, < limsup, . /a,. We
now prove that liminf, . “Z“ < liminf, .o /a,. If liminf, % = 0, then we are
done since {/a, > 0 for all n € N. Suppose liminf,_, az“ > 0 (this includes the case
where liminf,,_, az“ = 00). Let 0 < z < liminf, “Z“. Then there exists N € N
such that inf,,>y ’"“ > x. That is, a;,41 > xa,, for all m > N. By induction, it follows

that a,, > ™~ NaN and hence /a,, > v ¥x Nay for all m > N +1. Fix e > 0. Part
(c) of Proposition says that lim,, .. Y2 Nay = 1, so there exists M € N such that
11— ¥z Nay| < £ forallm > M. Let K = max{M, N +1}. Then g/a,, >z(1-%)=z—¢
for all m > K, so

lim inf a,, = sup( mf ) > mf Yy > X — €.

Since € can be arbitrarily small, we see that liminf, .., /a, > x. But x is any arbitrary
number in the interval (0, liminf, ., **), so liminf, ,o {/a, > liminf, o “2*.

If limsup,,_, a;zl is finite, a similar argument as the one in the previous paragraph
proves that limsup,,_, . /a, < limsup,,_, azzl. If limsup,,_, “221 = 00, then we trivially

have that limsup,, ., /@, < oo = limsup,, , ., “*. O

an

We must note that the limit laws of Proposition[3.9do not necessarily hold for lim sup and
liminf. We leave the details to the reader in Exercise [3.33 However, under some additional
assumptions, we can obtain a “sum law” and a “product law” for lim sup and lim inf.

Proposition 3.30. Suppose {a,} and {b,} are real sequences such that limsup,,_, .. a, s
finite and lim,,_,~ b, exists. Then

lim sup(a,, + b,) = limsup a,, + lim sup b,.

n—oo n—o0 n—o0

If moreover lim,, .o, b, > 0, then

lim sup a,b,, = (hm sup an) (lim sup bn> .
n—oo n—0o0 n—oo

Proof. Let Ly = limsup,,_,., a, = inf,,ensup,,,, @, and Ly = lim,,_,» b,. Fix € > 0. Then
there exists N; € N such that |b, — Ls| < € for alln > N;. Fixm € N. Since SUD,, >y, An > L1,
there exists ng > max{m, Ny} such that a,, > L; — €. Then since b,, > Lo — ¢, we have
that a,, + by, > L1 + Ly — €. Therefore, sup,,~,,(a, + b,) > L + Ly — 2¢. Since m is
arbitrary, we have that inf,,cnsup,,s,, (@, + by) > L, + Ly — 2¢. On the other hand, there
exists No € N such that sup,,> y, a, < L1 +e Let N = max{ Ny, No}. Then for all n > N,
we have a,, + b, < (L +€) + (Lo +€) = Ly + Ly + 2¢, so sup,,~n(a, + b,) < Ly + Ly + 2e.
Therefore, -

Ly + Ly — 2¢ < inf sup(a, + b,) < Ly + Ly + 2e.

meN p>m

52



Since € > 0 is arbitrary, we have

limsup(a, + b,) = inf sup(a, + b,) = L1 + Lo.

n—00 meN p>m

Now suppose Ly > 0, and fix 0 < € < Ly. As before, there exists N; € N such that
|b, — La| < € for all n > Ny, and for any fixed m € N, there exists ng > max{m, N1} such
that a,, > L; — €. Then a,,b,, > (L1 — €)b,, since b,, > Ly —e > 0. If L; — e > 0, then
(Ly — €)bp, > (L1 —€)(La —€). If L1 —e < 0, then (Ly — €)b,, > (L1 — €)(Lg + €) since
by, < Lo + €. Therefore,

SUp anby, > anybp, > min{(Ly — €)(La —€), (L1 —€)(La +€)}.

n>m
Since m is arbitrary,

inf sup a,b, > min{(L; —€)(Ly —¢€), (L1 —€)(La+€)}

meN p>m

for any 0 < € < Ly. Both (Ly —€)(Lg —€) and (L; — €)(La + €) get arbitrarily close to L; Lo
when € is arbitrarily small, so inf,,ensup,,~,, @nbn, > L1Ls. Since inf,,cnsup,,~,, an = L1,
there exists Ny € N with sup,,>y, a, < Ly +e€ For N = max{ Ny, No} and n > N, we have
anb, < (L1 + €)b, since b, > Ly —e > 0. If Ly + € > 0, then (L + €)b, < (L1 +€)(Lo + €),
and if Ly + € < 0, then (L; + €)b, < (L1 + €)(Lg — €). Therefore,

apb, < max{(Ly +¢€)(Ly+€),(L1+€)(La—¢€)}
for all n > N. Hence,

inf sup a,b, < sup a,b, < max{(L; +€)(Ls +€), (L1 +€)(La —¢€)}.

meN n>m n>N

If € is arbitrarily small, both (L; 4 €)(Lo + €) and (L; + €)(Ly — €) get arbitrarily close to
Ly Ly, so infensup,,>,, anb, < LiLy. Therefore,

lim sup a,b, = inf sup a,b, = LiLs.
n—00 meN n>m

]

Proposition [3.30|also holds if we replace lim sup with lim inf, and the proof is substantially
the same.

Exercise 3.31. Define a sequence {z,} by

:131:0,

/1 .
T, = % for n > 2.

Does lim,,_, x,, exist? If so, find the limit.
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Exercise 3.32. Let {a,} be a bounded sequence in R, and let S be the set of subsequential
limits of {a,}. Prove that limsup,,_,. a, = sup(S) and liminf, ., a, = inf(5).

Exercise 3.33.
(a) Find real sequences {a,}, {b,} such that

lim sup(a,, + b,) # limsup a,, + lim sup b,.

n—oo n—o0 n—0o0

(b) Find real sequences {a,}, {b,} such that

lim sup a,,b,, # (lim sup an) (lim sup bn> )

n—o0 n—o0 n—o0

3.3 Introduction to Series Convergence

Definition 3.34. Let {a,} be a sequence of complex numbers. For each N € N, the N
partial sum of {a,} is s, = Ziv:l a,. We say that >~ | a, is convergent if lim,,_,, s, exists.
If > | a, is not convergent, then it is divergent.

If Y°°° | |a,| is convergent, then Y | a, is said to be absolutely convergent. If Y > ay,
is convergent but Y |a,| is not, then > 7 @, is conditionally convergent.

It follows that if > ° | a, converges, then for all € > 0, there exists N € N such that

00 (%S) m
E Ap| = E Ay — E a,| <€
n=m-+1 n=1 n=1

whenever m > N.

Proposition 3.35 (Cauchy Criterion). Y > | a,, converges if and only if for all € > 0, there
exists N € N such that |y _,_  ai| < € whenever n >m > N.

Proof. C and R? are identical as metric spaces, so C is complete by Corollary [3.15.1] Let
Sn = > g a for all n € N, and let sy = 0. Then ) °, a, converges if and only if the
sequence {s,} converges. Since C is complete, {s,} converges if and only if {s,} is Cauchy.
Finally, {s,} is Cauchy if and only if for all € > 0, there exists N € N such that

n m—1 n
Doak =D | =Y
k=1 k=1 k=m

foralln >m > N. O

|Sn_3m—1‘ = <€

Proposition 3.36. Any absolutely convergent series is convergent.

Proof. Suppose Yy 7 |a,| converges. Fix ¢ > 0. By the Cauchy Criterion, there exists
N € N such that | > 7 |ag|| < efor all n > m > N. Hence, | > 7_ ar] < >0 ag| <e
for all n >m > N, so > 7 a, converges by the Cauchy Criterion. n
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Proposition 3.37 (Triangle Inequality for Series). Let >~ a, be absolutely convergent.
Then | 32071 an] < 320 lanl.

Proof. Let Y > a, = Aand ) | |a,] = B. By way of contradiction, suppose |A| > B.
Since |A| — B > 0, there exists N € N such that |A — 22;1 a,| < |A| — B. Then

Al =B =[A] =) ||
n=1

N
< |A| - Z la,| since |a,| > 0 for all n
n=1
N
< |A| - a,| by the Triangle Inequality
n=1
N
< |A- Z a,| by the Triangle Inequality
n=1
which is a contradiction. Therefore, |A| < B, which is the desired result. ]

3.4 Convergence Tests

Theorem 3.38 (Divergence Test). If > > | a, converges, then lim,_, a, = 0.

Proof. Suppose Y 7 a, converges. Fix e > 0. Then by the Cauchy Criterion, there exists
N € N such that

n

>

k=n

la, — 0] = <€

for all n > N. Hence, lim,, .o a, = 0. O

Proposition 3.39. Let z € C. Then ) >, 2" converges if and only if |z| < 1, in which case

we have that Y " 2" = 7%

Proof. Suppose |z| > 1. Then |z"| = |z|* > 1 for all n € N, so {2"} does not converge to 0
as n — oo. Hence, " °, 2" diverges by the Divergence Test. Conversely, suppose |z| < 1.
We claim that

i 7T SN+1
— 11—z
for all N € N. If N =1, then 7 | 2" = » = =20 = 2=2"" 55 the claim holds for N = 1.

Now let M € N be arbitrary, and suppose the claim holds for N = M. Then

M+1 M
. M . Ma1 2= SM+1 SM+L M2 ML 5 M2
E 2=z + E 2=z + = + = ,
1—=2 1—=2 1—=2 1—=z
n=1 n=1
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so the claim holds for N = M + 1. Therefore, the claim holds for all N € N by induction.
Using the limit laws from Proposition [3.9] we see that

oo N N+1

noo n_ .. RTZ z Ny _ 7 BT Ny_ _*
2= Jim Dt = i o = e i () = e Jim ) =
where the last equality follows from part (a) of Proposition because |z| < 1. O

Remark. If you have never seen the formula 1+ 2z + 22 + -+ + 2 = % (where z # 1),
here is a short derivation. Let S =1+ z+ 22 +--- + 2. Then

2S=z+22 4+ 2N 2N
=(l4z+2+-+2")+ -1

=S54 -1
N+1_ _,N+1
Hence, (2 —1)S = 2V — 1,50 § = =—1 = =2
z—1 1-2

Theorem 3.40 (Comparison Test). Let {a,},{b,} be real sequences such that 0 < a,, < b,
for all n large enough. If > | b, converges, then Y | a, converges.

Proof. Let N € N be such that 0 < a,, < b, for all n > N. Suppose Y~ b, converges. Let
B=%"> b, 3= Zi\’:—ll b, and a = ZnN 11 an. For all m > N, let s, = > | a,, and note
that {s,,}m>n is @ monotonically increasing sequence since Sp,11 — Spm = me1 > 0 for all
m > N. Also,

:zm:an:a+§:an§a+§:bn§a+§:bn:a+3_@
n=1 n=N n=N n=N

for all m > N, so {Sy}m>n is bounded above. By the Monotone Convergence Theorem
(Theorem [3.21)), lim,;, o S, exists, so > -, a, converges. O

Theorem 3.41 (Cauchy Condensation Test). Let {a,} be a nonnegative decreasing sequence.
Then Y " | a, converges if and only if >~ 2"asn converges.

Proof. Suppose > 7 | a, converges to A. Then for all N € N,

on—1_1
22 Qgn = 22 Z Qgn
n=1 m=0
N 2711
<2 Z Z (on-1,,, since 2"l 4 m < 2" whenever 0 < m < 2"t —1
n=1 m=0
2N 1
2 Z an,
n=1

<24,
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S0 y > 2"agn converges by the Monotone Convergence Theorem. On the other hand, sup-
pose > o2 2"agn converges to B. Then for all N € N,

N 2N 1
d a, <) a, since N<2V -1
n=1 n=1
N 2n~1-1
= Z Aon—1_4m
n=1 m=0
N 2n—1-1
< Z agn—1 since 271 <2 L forall0 <m <2l —1

so Y > a, converges by the Monotone Convergence Theorem. O

Corollary 3.41.1. For allq e Q, > >, ni converges if and only if ¢ > 1.

q

Proof. Let ¢ € Q. By the Cauchy Condensation Test, >, niq converges if and only if

n=1 n=1 n=1

converges, which happens if and only if [2'79] = 2179 < 1. Finally, 2'79 < 1 if and only if
q> 1 0

Theorem 3.42 (Alternating Series Test). Let {a,} be a nonnegative and monotonically
decreasing sequence. Then
Z(—l)kak < an

k=m

whenever n > m > 1. Consequently, if lim,,_,oc a, =0, then >~ (—1)a" converges and

Z(—l)kak < an,

k=m

for all m € N.

Proof. Suppose n > m > 1. If m is even and n is odd, then

n

Z(—l)k@k = (am — mg1) + -+ (A1 —an) >0

k=m
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and
n

Z<_1)kak = Qm — (am+1 - am+2) - (an—2 - an—l) — Qp < Q.

k=m
If m is even and n is even, then

n

Z(—l)kak = (am — @my1) + -+ (ap—2 —ap_1) +a, >0

k=m

and
n

Z<_1>kak = Qm — (@erl - am+2) - (anfl - an) < .

k=m
Therefore, | > p_ (—1)*ax| < a,, if m is even. Now suppose m is odd. Let b; = a; and
brr1 = ay for all k > 1. Then {b;} is a nonnegative and monotonically decreasing sequence.
Now

n n n n+1
D DFap| = D (=D ap| = D (=D | = | Y (=D | < bgr = am
k=m k=m k=m k=m+1

since m + 1 is even. Thus, we have shown that | > ,_ (—1)*ax| < a,, for all integers
n>m>1.
Suppose lim,, ., a, = 0. Fix ¢ > 0, and choose N € N such that ay < e¢. Then

n

> (=DFay

k=m

<a, <ay <e€

for all n > m > N, so > a, converges by the Cauchy Criterion. Now fix m € N, and
define the sequence {c,} where ¢, = |>°_ (—1)*a;| for all n > m. Then

> (=Dfay

k=m

= lim ¢, = limsupc, < a,,
n—o0 n—00

because ¢,, < a,, for all n > m. O
Corollary 3.42.1. > (=1)"L is conditionally convergent.

Proof. Since {%} is a nonnegative decreasing sequence and lim, o + = 0, > 02 (—1)"<

n—

converges. On the other hand, 07 [(=1)"%| = 3> L diverges by Corollary [3.41.1 [

Lemma 3.43. Let {a,} be a complex sequence, and suppose there exists M > 0 such that
)27]:[:1 n
Then )ij:l anby,

< M forall N € N. Let {b,} be a monotonically decreasing nonnegative sequence.

< Mb, for all N € N.
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To motivate the proof, observe that
a1b1 + a2b2 = &1(b1 — bQ) + (&1 + ag)bg

and
a1b1 —+ a2b2 + a3b3 = al(bl — bg) -+ (CLl + ag)(bg — b3) + (CLl + (05} + a3)b3.

The proof generalizes the above pattern to the sum a1b; + - - - +anby, then uses the Triangle
Inequality to obtain the desired result.

Proof. Fix N € N. Define sy = by and s, = b, — b,y1 forall 1 < n < N — 1. Then
b, = Zi\f:n spforall1<n < N. Let S={(n,k) e N?| 1 <n < k< N}, and observe that

N N N k
E E Ap Sk = E Ap Sk — E E Ap Sk

n=1 k=n (n,k)esS k=1 n=1
Hence,
N N N N N N k& N k
E anb, = 5 an, E Sp = E 5 An Sk = E E An Sk = E Sk g ap,.
n=1 n=1 k=n n=1 k=n k=1 n=1 k=1 n=1

Note that s, > 0 for all 1 < n < N because {b,} is a monotonically decreasing sequence
and by > 0. By the Triangle Inequality,

k N
IS VAEDY
k=1

k=1 n=1

n k

=D
k=1

k
Sk ap
=1

< iSkM - MiSk = Mb1
k=1 k=1

Qn
=1

n

[]

Theorem 3.44 (Dirichlet’s Test). Suppose {a,} is a complex sequence and {b,} is a mono-
tonically decreasing sequence such that

(i) the sequence {S°N_ a,}n is bounded, and

(ii) Tim, o0 by = 0.
Then Yy > | anby, converges.

Proof. Since {3, a,}n is bounded, there exists M > 0 such that | 32 | a,| < M for all
N € N. Hence, for any 1 <17 < 7,

J i—1
D an= D an
n=1 n=1

By the Monotone Convergence Theorem, 0 = lim,,_,, b, = inf,enb,, which means b, > 0
for all n € N. Fix € > 0, and pick N € N such that by = [by — 0] < e. For any j > N, we
have | Y7 _ v an| < 2M as established above. Therefore, by Lemma

J
E anby,
n=N

11—

D a

n=1

J

D

n=1

J

D an

n=i

= < + < 2M.

<2Mby <2Me
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for all j > N. Hence, if n > m > N + 1, then

n n m—1 n m—1
Z apbi| = Z apby, — Z apbr| < Z apbr| + Z apbr| < 2Me+ 2Me = 4Me,
k=m k=N k=N k=N k=N
S0 Y 0 anby, converges by the Cauchy Criterion. m

Theorem 3.45 (Ratio Test). Let {a,} be a complex sequence whose terms are all non-zero.

An+1

(a) If limsup,,_, ‘ ot ‘ <1, then Y | a, converges absolutely.

(b) If liminf,

An41
an

> 1, then Y~ | a, diverges.

An41

Proof. (a) Let € R such that 0 < limsup,, ., < x < 1. Then there exists N € N

An 41
an

such that sup,,> v < x, which means |a,+1| < z|a,| for all n > N. By induction, we

can show that |a,| < 2" |ay/| for all n > N. Since 0 < z < 1, the geometric series

[e.e] oo
Zx”_N\aN\ =2 Vay]| Zx”
n=1 n=1

converges, so » ., |a,| converges by the Comparison Test. Hence, Y >, a, is absolutely
convergent.
(b) Suppose liminf,, ’“Z“ ‘ > 1. Then there exists N € N such that 1 < inf,>x ‘a

n+1
an ’

which means |a,| < |a,4+1| for all n > N. It follows by induction that |a,| > |ax| for all n >
N, so liminf, , |a,| > |ax|. But ay # 0 by hypothesis, so liminf, . |a,| > 0. Hence, it is
impossible that lim,, ,, a, = 0, for this would imply that liminf,,_, |a,| = lim, s |a,| = 0.
Therefore, Y °° | a, diverges by the Divergence Test. O]

n=1

Theorem 3.46 (Root Test). Let {a,} be a complex sequence.
(a) If limsup,, ., /|a,| <1, then > " a, converges absolutely.
(b) If limsup,,_,o ¥/|an| > 1, then Y7, a, diverges.

Proof. (a) Let L = limsup,,_,, ¥/|a,| > 0, and suppose L < 1. Let = £, and notice that
0 < L <z < 1. Then there exists N € N such that sup,,~y ¥/|a,| < . Hence, |a,| < ™ for
all m > N. Since |z| < 1, the geometric series S °° | 2™ converges. By the Comparison Test,
> | |a,| also converges, so > 7 | a, is absolutely convergent.

(b) Suppose limsup,, . {/|a,| > 1. Then for all N € N there exists n > N such
that {/|a,| > 1, which means |a,| > 1. Therefore, there is a subsequence {a,, } such that
|an, | > 1 for all k. Since {a,, } cannot converge to 0, neither can {a,}, so >~ a, diverges
by the Divergence Test. O]

Remark. If limsup,,_, . ¥/|a,| = 1, then the Root Test is inconclusive. In this case, the Ratio
Test is also inconclusive by Theorem [3.29

Corollary 3.46.1. The series Y -, % converges if and only if |z| <1 and z # 1.
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Proof. Observe that

" || 2|

= lim = |z
n—00 nl/n hmn—>oo nl/n | |’

lim {
n—oo

n

so by the Root Test, the series converges absolutely if |z| < 1 and diverges if |z|] > 1. By
Corollary [3.41.1] the series diverges if z = 1. Suppose |z| = 1 and z # 1. Then

ZN:" (1—2) . — AN 14y 2
= = =
— 1-— 11— z| |1 — z|

for all N € N. That is, the sequence {3, 2"}y is bounded. Since {£}, is a monotonically
decreasing sequence and lim,, ., % = 0, Dirichlet’s Test says that Y-, z”% converges. [l

Theorem 3.47. Let Y a, be absolutely convergent and . b, be convergent. Then
> o 0D peo Qkbn_i converges and

e (£)(5)

n=0 k=0
If 700 o by is absolutely convergent, then so is Y~ o> ¢ o arbn_k.

Proof. We first claim that
N

ZZakbn k—Zak b

n=0 k=0
for all N > 0. Fix N > 0, and let

=
=

]
o
S

S1={(k,n—k)|0<k<n<N where k,n € Z}

and
So={(k,n) | 0<k<Nand 0<n<N —k where k,n € Z}.
Then
N n
>N b Y ab
n=0 k=0 (i,)€S1
and
N  N—k N N—k
S Y b Y ah- ¥ b,

0
so it suffices to prove that S; = Sy. Suppose (i,5) = (4, (i +j) —i) € S;. Then 0 < i <
i+j < N impliesthat 0 <i < Nand 0 < j<i+j <N —1, 80 (i,7) € Sy. Conversely,
suppose (i,7) € Sy. Then 0 < i < Nand 0 < j < N —i. Hence, 0 <i<i+j<N,so
(i,7) = (i, (i + j) — i) € S1. This proves the claim.

Let A=3%"" jan, B=Y " by,,and C =" |a,|. Fixe > 0. Then there exists Ny > 0
such that Zflo:mﬂ lan| < € for all m > Nj. Notice that if m > Ny, then [A — 3" ja,| =
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| D i Gl < D01 lan] < €. We can also choose Ny > 0 such that |[B — 7" b,| < €
for all m > Ny. Now suppose N > Ny + Ny. Then

N n N N—k
Zzakbn_k—AB = Zakan—AB
n=0 k=0 k=0 n=0

k=0 n=0 k=N—Ny+1 n=0
N—N» N—k N N—k
S Qe bn — AB + Z Qe Z bn
k=0 n=0 k=N-—Ns+1 n=0

N-N; N—k N-N; N—k N—N, N—N,
Zakan—ABS Zak bn— akB—i— Z(lkB—AB
k=0  n=0 k=0  n=0 k=0 k=0
N-Ny  N-k N—N;
S DR SRR FAET D SR
k=0 n=0
N—N» N—k N— Nz
< D agl - |D bu—B|+ Bl | > ax—
k=0 n=0 k=0
(by the Triangle Inequality)
N—Ns N—N2

< Z |ag|e + |B| - Z ap — A
k=0 k=0

(since N — k > Ny whenever 0 < k < N — N,)
N-N;
< Y lagle+|Ble (since N — Ny > Ny)

< Ce+ |Ble.

For the other magnitude, first define M = sup,,>q| > o bn|, which exists because every
convergent sequence is bounded. Then

N

< Z || -

k=N—-N>+1
N

> lalM

k=N—-N>+1

<MY

k=N—Na+1
< Me (since N — Ny > Np).

(by the Triangle Inequality)

IN
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Therefore,

< Ce+ |Ble+ Me= (C+|B|+ M)e

N n
S5t an
n=0 k=0
for all N > Ny + Ny, 80 D02 (S0 agbn— = AB since C' + |B| + M is independent of e.

Suppose Y >, b, is absolutely convergent. Then >~ '|a,| is absolutely convergent and
Yoo o bl is convergent, so the result we have just proved says that > - > ¢ |axb,_x| =
YooY peo lak|-|ba_k| is convergent. Hence, > 7 /> 7_, arbn_i is absolutely convergent. [

Exercise 3.48 (Arithmetico-Geometric Series). For a fixed z € C\ {1}, obtain a closed-form
expression for the sum

Z k2",

k=1

Determine the set of z € C for which Y ;7 kz* converges, and find a closed-form formula
for the infinite series.
Hint: remember how we obtain the geometric series formula

1 — Zn—i—l

I+ z+22 442" =
11—z

Exercise 3.49. Fix z € [0, 1], and let b > 2 be an integer. Construct a sequence {c, } where
¢, €4{0,1,...,b—1} for each n € N and

00
Z Cn
n=1

Hint: be greedy!
We call {c,} a base-b expansion of x. If b = 2, then {c,} is a binary expansion, and if
b =10, then {c,} is a decimal expansion.

Exercise 3.50 (Limit Comparison Test). Let {a,} and {b,} be positive sequences such that
lim,, o ‘;—: is a nonnegative real number. Show that if 270;1 b, converges, then Zflozl a,, also
converges.

Exercise 3.51 (2010 Putnam Problem B1). Is there an infinite sequence of real numbers
ai,as, as, ... such that
al +ay +a3' +---=m

for every positive integer m?

Exercise 3.52. Let ¢, be the set of sequences {z,} in C such that Y~ |x,| converges. For
all z,y € 01, let d(z,y) =D 07 |20 — Ynl-

(a) Show that d is a metric on /;.

(b) Show that ¢, is a complete metric space.

(c) Find a subset of ¢; that is closed and bounded but not compact.
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Exercise 3.53 (Baire Category Theorem).

(a) Let X be a complete metric space and Oy, Oz, Os,... be open dense subsets of X.
Prove that (2, O, is dense in X. This result is called the Baire Category Theorem (BCT).

(b) Write R \ Q as a countable intersection of open dense subsets of R.

(c) Hence, prove that Q is not a countable intersection of open dense subsets of R. (Note:
the word “dense” is actually redundant here—since Q is dense, any open set containing Q
must be dense.)

(d) Let C1,C5,Cs, ... be closed subsets of a complete metric space X such that each C,
has empty interior. Prove that | J~ ; C,, has empty interior. Hint: this result is equivalent to
the BCT as stated in part (a). Use Exercise to see the connection.

(e) Prove that if X is a complete metric space and F C X is a non-empty perfect set,
then E is uncountable. This is a stronger version of Theorem [2.59]

Exercise 3.54. Euclid showed that there are infinitely many primes. For each n € N, let
pn be the n'™ prime number (e.g. p; = 2, p» = 3, and p3 = 5). In this exercise, we will show

that .
1
nEZI p_n = Q.

(a) Recall that each integer n > 2 has a unique prime factorization. Show that

N N

1 1 1 1
> — <] 1+—+—+---+—>
n:ln n:l( P p% pﬁ[

for all N > 1. Hint: if we expand the product on the right-hand side, we get a sum where
each term is % for some m € N.
It follows that

for all N > 1.
(b) Show that (1 — )™ > 1 for all integers n > 2. Hint: if n > 3, write

(1- %) -3 () CO ol ; (1) Sy

k=0

. . . n n (_1)k
using the Binomial Theorem, then argue that ) _, ( ) — > 0.

k) n
(c) Hence, show that
AR
H - < 425:1 o
n=1 1- E

for all N > 1, and conclude that > 7, p—ln = 0.
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3.5 Series Rearrangements

Definition 3.55. A rearrangement of a sequence {a, } is a sequence {ay(,)} where ¢ : N — N
is a bijection.

Theorem 3.56. Let ), a, be absolutely convergent. Then Y .~ | agm) = > oy Gn for any
rearrangement {agsm)} of {an}.
Proof. Fix € > 0, and choose N € N such that 3> ., |a,| < €. Let
M =max{¢ "(a1),...,¢ *(an)} €N,
and observe that {ay,...,an} C{é(a1),...,d(an)}. Therefore, for all m > M,
m ) N
=2 | = D= D = ) s
n=1 n=1 n=1 1<n<m
P(n)>N
e N
<D an =Y an | D asw
n=1 n=1 1<n<m
o(n)>N
<D an|t Y lagwl
n=N+1 1<n<m
P(n)>N
< D laalt 3 ol
n=N+1 n=N+1
= 2e.
Hence, >~ 1 o) = iMoo D on g Gpn) = D ey On- O

Theorem 3.57 (Riemann Rearrangement Theorem). Let {a,} be a real sequence such that
Yo an is conditionally convergent. Let —oo < x <y < oco. Then there is a rearrangement

{agm)} of {an} such that liminfy_,o SV Ay = & and limsupy_, SV Ag(n) = Y-

The idea of the proof is simple. Since > 7| a, is conditionally convergent, the nonneg-
ative terms must sum to oo whereas the negative terms must sum to —oo. If x and y are
finite, then we can construct the desired rearrangement of {a,} by picking enough nonnega-
tive terms until the running sum is greater than x, then picking enough negative terms until
the running sum is less than y, and repeating this process. If x or y are infinite, then we
need to slightly tweak the algorithm to make the running sum eventually diverge to oo or
—00.

Proof. For all m > 1, let P, be the m*™ nonnegative term in the sequence {a,}, and let N,,
be the m™ negative term in the sequence {a,}. If both >.>°_, P, and > 7 | N,, were finite,
then ) >° a, would converge absolutely, and if exactly one of > *°_ | P, and Y~ N,
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were finite, then Y °  a, would diverge. These scenarios are impossible, so we must have
>  Pp=o00and ) N, = —oco. Notice also that lim,_,,, a, = 0 by the Divergence
Test, so lim,, yo0 Py = 0 = lim,,, o0 Np,.

Suppose first that x and y are finite. Let pg = 0 and ng = 0. Suppose we have constructed
pi—1 and m,;_; for some integer ¢ > 1. We let p; be the smallest integer such that p; > p;_1

and

iPm+me>x. (1)
m=1 m=1

Di n;
> Put Y Nu<uy. (2)
m=1 m=1

We know that p; and n; exist because >~ P, = oo and y_~_ N, = —o0.
Now that we have the infinite increasing sequences {p;} and {n;}, we form a rearrange-
ment of {a,} by:

e picking the first p; terms from {FP,,},

e then picking the first n; terms from {N,,},

then picking the next p, — p; terms from {P,,} (so that we have picked ps terms in
total from {P,}),

then picking the next ny — ny terms from {N,,} (so that we have picked ny terms in
total from {N,,}),

e and so on.

Call the rearrangement {b,}. Since the inequalities (1) and (2)) hold infinitely often, we know
that liminfy_, 25:1 b, <y and limsupy_,. >, by > .

Now fix € > 0. Since lim,, ,o P, = 0, there exists M > py such that P,, < € for all
m > M. Fix i such that p; > M. By construction, P11 b, <z, s0 SPE" b, <z 4e
because P,, < €. Then, for all k£ such that p;+n,_1 < k < p;+n;, by is negative, so Zi:l b, <
x + €. Next, for all k£ such that p; + n;, < k < p;y1 + n;, we have Zflzl b, < x < x+e€by
construction. Therefore, Zﬁzl b, < x+eforall p;+n,_ 1 <k <p;1+n,. Since i is arbitrary,
it follows that EZZl b, < =+ € for all k large enough, so limsupy,_, ., ZnN:1 b, <z +e
Therefore, lim supy_, Zgil b, = x since € > 0 is arbitrary. A similar argument shows that
lim inf y_ 00 Zivzl b, = v.

If x = 0o, we need to modify to instead say

iPm—i- iNm > 1
m=1 m=1
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Then Y2 F"1p, > i for all 4, so limsupy_,o S0, b, = co. If = —oo, then we modify

and to

Pi ni—1
> Putd Np>—i+2
m=1 m=1
and b o
Y Pyt Y Ny<—i-2
m=1 m=1

respectively. In this case, the rearranged sum diverges to —co. We can handle the cases
y = F00 in a similar way. [

Theorem 3.58. Let {a.m} be a double complex sequence (i.e. a function N x N — C) such
that 32071 > 0y [anm| < 00. Then 307 320y Gnn = 3201 Dty Gnm-

Proof. By assumption, Y " > > | a,n, is absolutely convergent and hence convergent. Fix
€ > 0. Choose Ny > 1 such that Y~ | > | |aym| < € for any N > N,. For each integer
n such that 1 <n < Ny, > °_| |an,m| converges by assumption, so we can choose T, > 1 such
that >0~ /1 [@nm| < 27"€ for any M > T,,. Let My = max{Ti,...,Ty,} > 1. Suppose
M > M; and N > N,. Notice that

oo oo oo o0
Z Z || < Z Z |G|

n=1m=M+1 n=1 Mj+1
No 00 00 00
=2 > lanmlt D D lanal
n=1 m=M;+1 n=No+1 m=M;+1

N 00 00
< z(): 27" + Z Z |@m |
n=1

n=Np+1m=1

< eiQ_”+e
n=1

:€<1i/12/2>jLE

= 2¢.
Hence,
oo M N co 00 N M
D2 nm = DD | = (DD tnm = DD Guim
n=1 m=1 m=1n=1 n=1 m=1 n=1 m=1

IA
hE
NE
£
3
|
[M]¢
M=
£
5
+

n=1 m=1 n=1 m=1 n=1 m=1 n=1 m=1
[e] 00 0o M

=122 X |+ 2 Dt
n=1 m=M+1 n=N+1m=1




oo oo 00 M
SZ Z |an,m|+ Z Z|an,m|

n=1 m=M+1 n=N+1m=1

< 2¢ + Z Z|an,m|

n=N+1m=1
< 2¢+¢€¢ since N > N
= 3e.

Given any m > 1, >~ | |a, a| converges by the Comparison Test since >, (3°0°_ |anml)

m=1

converges and 0 < |a, ar| < > v |anm| for all n > 1. Hence, for all 1 < m < M, there exists
U,, > 1 such that ZZO:NIH |an.m| < 27™€ for all Ny > U,,. Let Ny = max{Uy, ..., U, No},

so that
Z Z |anm|<22me<622_m:
m=1n=N1+1
Then
oo 00 M oo M N M N
DD INIVED 3) S 1) 5 IANED 35 SYTIRE) 95 SIS B SIS
n=1 m=1 m=1 n=1 n=1 m=1 m=1 n=1 m=1 n=1 m=1 n=1
M
< 3e+ Z i Qnm| since Ny > Ny
m=1n=N1+1

M 00
§3e+z Z | m|

m=1 ’I’L:N1+1
< 3e+¢€
= 4e.

Since M > M is arbitrary, Y °_ | > > | @y cOnVErges to > oo >y . O

Exercise 3.59. Let

for all integers n > 2. Find the value of

3.6 Euler’s Number

Since
) 1
= lim =0<1,

e/

the series Y 7 % converges by the Ratio Test.

n—oo
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Definition 3.60. Euler’s number is e ==y " .

Theorem 3.61. e is irrational.

Proof. For any N > 0, we have that

O<e—z i Zn'

n=N-+1
1 > 1
TN+ £

(1 M)

N +2
N+1' N +1

2N + 2
N+1‘ N+1
(N+1)
Hence,
N
N! 2
0< Nle — —_— < — 3
‘ ;%n!_]\f—l—l )
for all N > 0.

Suppose e is rational. Then there exists p € Z and ¢ € N such that e = §. For all N > 0,

equation (3) says that
N
P N! 2
O< N!|=] — R —
(q) Z n!l = N+1

n=0
Hence,

N
N! 2q
lp —
0 < Nlp qg n!< :

In particular, setting N = 2q gives

> -
nl T 2¢g+1

Now (2¢)!'p—q Z I~ is an integer since @)t ) is an integer for all 0 < n < 2¢. But there is
no integer strictly between 0 and 1, so we have a contradiction. Therefore, e is irrational. [

Theorem 3.62. ¢ = lim, (1 + )™
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Proof. By the Binomial Theorem,

(H) ()

a1 <"n1>-~(”+“)1
S G ED)

for all m € N. Set Ay, = (1 —1)--- (1 —£1) for all 1 < k < n, and notice that

Z nn—1)---(n—k+1)
-2

0< A, <Apip< - <A,=1

Fix € > 0. Then there exists N; € N such that ‘ZZOZRH %‘ < € whenever n > N;. Since
lim,, o An, » = 1, there exists Ny > N; such that 1 — Ay, ,, < € for all n > N,. Suppose
n > N,. Then

1\" 1 1
(+3) - - Z X
=0 k=1
=1
S ZHAk,n Zk" + Z E
k=1 k=n+1
"1
< Zk'(Akn— 1)| +€ sincen > Ny > N;
k=1
1
<Zk_< — Apn) +€ since Ay, <1
k_
Ny n 1
Z — At Y (1= Arg) +e
k=1 k=N1+1

since Ay, p < Ay forall1 <k <N

<ZE€+ Z E+€ since n > Ny and 1 — A4, <1

k= N1+1

<e;H+ Z H+e

k=N1+1
< ee+ e+ € by definition of N;
= (e + 2)e.

Since e + 2 is independent of ¢, the desired result follows. O
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Exercise 3.63. Let b, € {0,1} for all n € N. Prove that Y >, % is irrational if and only
if there are infinitely many integers n > 1 such that b, = 1.

Exercise 3.64. Fix z € C. Adapt the proof of Theorem to show that

0 k
. Z\ " zZ
Jim (1 + 5) = ZM W

Exercise 3.65. Let S be the set of real numbers ¢ > 0 such that

) n"
> oo
n=1

converges. Find inf(S), and compute the famous limit

n

lim .
n—oo ~/nl

Exercise 3.66. Let {a,} be a complex sequence such that lim,,_,,, na, = 0. Prove that

1= lim (1+4a,)".

n—oo

3.7 Characterizations of Compactness

In this section, we look at a generalization of the Heine-Borel Theorem. In general, a closed
and bounded subset of a metric space is not necessarily compact—Exercise gives an
example. In this section, we will give some necessary and sufficient conditions for a metric
space to be compact.

Fix a metric space (K, d).

Definition 3.67. K is limit-point compact if every infinite subset of K has a limit point.

Definition 3.68. K is sequentially compact if every sequence in K has a convergent subse-
quence.

Definition 3.69. K is totally bounded if for all r > 0, there exists x1,...,x, € K such that
{N,.(z1),...,N.(z,)} covers K.

IfKcX,r>0,and z1,...,2, € K, then K C U?Zle((xj) if and only if K C
Ui, N (x;) since NF(z;) = NX(z;) N K. Therefore, total boundedness is an intrinsic
property of a metric space; we do not need to specify that K is totally bounded “relative
to” an ambient metric space X.

Theorem 3.70. The following are equivalent:
(i) K is compact.
(ii) K is limit-point compact.
(iii) K is sequentially compact.
(iv) K is complete and totally bounded.
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Proof. (i) = (ii): this is Theorem [2.4§

(i) == (iii): let K be limit-point compact, and let {z,,} be a sequence in K. Let
E = {z, | n € N}. If F is finite, then {z,,} has infinitely occurrences of some term L € K,
which means {z,} has a convergent subsequence {L, L, L,...}. If E is infinite, then E’ is
non-empty since K is limit-point compact, so {z, } has a convergent subsequence by Theorem
BI12

(iii) = (iv): if {s,} is a Cauchy sequence, then {s,} has a convergent subsequence
since K is sequentially compact, so {s,} converges by Lemma m Hence, K is complete.
Suppose, by way of contradiction, that K is not totally bounded. Pick r» > 0 such that
no finite collection of neighbourhoods {N,(z1),..., N,.(x,)} (where xq,..., 2, € K) covers
K. Then K is non-empty (since an empty collection of neighbourhoods would cover the
empty set), so pick ¢, € K. After picking t; € K for some ¢ > 1, pick #;;1 € K such that
tiv1 & U;Zl N,(t;); this is always possible since {N,(t1),...,N;(t;)} does not cover K by
assumption. This recursive process produces a sequence {t,} in K such that d(¢;,t;) > r
whenever ¢ > j. Observe that no subsequence of {t,} is Cauchy, so {t,,} has no convergent
subsequence, contradicting the assumption that K is sequentially compact. Therefore, K
must be totally bounded.

(iv) = (i): this proof will be conceptually similar to the proof of the Heine-Borel
Theorem. Suppose, by way of contradiction, that K is complete and totally bounded but
not compact. In this argument, all neighbourhoods are relative to K. Let {O,}, be a cover
of K that has no finite subcover. We claim that there exists a sequence {y,} in K such that
for all n € N,

b d(yn-i-layn) < 271% and

e no finite subcover of {O,}a covers Ny/on)(yn)-

Since K is totally bounded, there exist 9351), ...,z € K such that {Nl/g(l';l)) L, covers
K. Here, the subscript “(1)” is just a second index. Suppose, by way of contradiction,
that for every 1 < j < m, some finite S; C {O,}, covers Nl/z(x§1)) N K. Then U;”zl S;
covers U;.n:l[Nl/g(xg-l)) N K] = K. But Jj_, S; is a finite subcover of {O,}4, so we have
a contradiction. Therefore, there must be a neighbourhood N; /2(.%;-})) such that no finite
subcover of {O,}, covers Ny /Q(xﬁ)) NK. Let y; = xﬁ) € K. Then no finite subcover of
{Oa}a covers Ny o(yn).

Suppose that for some n € N, we have chosen y, € K such that no finite subcover of
{Oa}a covers Nyjony)(y,). Since K is totally bounded, there exist x§”+1), . ,xénﬂ) e K
such that {/V; /(2n+1)(x§n+l))}§:1 covers K. By the same argument as the above paragraph,
there must be a neighbourhood N; /(2n+1)<m§:_—:—11) ) such that no finite subset of {O,}, cov-
ers Nl/(2n+1)(:v(»n+l)) N N1y (yn), since no finite subset of {O4}a covers Ny any(yn). Let

In+1
Ynp1 = xg-:jll) € K. Then no finite subset of {O,}, can cover Ny on+1y(ynt1). Note that
Ny @41y (Ynt1) N N1jn)(yn) must be non-empty since the empty set is trivially covered by

an empty subcover. Pick ¢ € Ny @nt1)(Yns1) N Nij@2n)(Yn). Then

1 3

1
d(yn—f—h yn) S d(yn—i-la t) + d<t7 yn) < 2n+1 + 2_n = 2n+1 .
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By induction, the sequence {y,} exists, as claimed. Now we want to show that {y,} is
Cauchy. For any integers m > n > 1, we have that

3
3

3 = 3
d(yn’ym> < d<yj7yj+1) < F Z 2— =
J j=n

n n

<.
Il

Fix € > 0. Then there exists N € N such that QNL_Q < € since lim,,_, 2,1% = 0. Suppose
m>n>N. Thenn— N >0, soﬁgl. Hence,

p 3 1 3 < 3
(ynaym) = 9n—2 - on—N \ 9N-2 — 9N-2 <6

so {yn} is Cauchy. Since K is complete, lim,, o, ¥, exists. Let y = lim, ,oo ¥, € K. Then

y € an for some index ay, so there exists r > 0 such that N (y) C Oq,. Pick m € N such

that 5z < % and d(ym,y) < §; this is possible since limy, oo o 5w = 0 and lim,, o0 9 = 3. Let
t e Nl/(2m)(ym) Then

1 ror T
d < e T
(t.y) <d(t,ym) +d(ym.y) < 5 +5 <5 +5 =7

Hence, N1j@m)(ym) C Ny (y) C Oq,. This is a contradiction since Ny /@m)(ym) is not covered
by any finite subcover of {O, },. O

Exercise 3.71. Let Ryjscrete be the set R equipped with the discrete metric

d(x,y>={1 T

0 otherwise.

(a) Prove that every subset of Rgiscrete 18 closed, bounded, and complete.
(b) Prove that no infinite subset of Rgjscrete 1S compact.

Exercise 3.72. Prove that the set
S={qeQ|q>0andq¢ <2}

is closed and totally bounded in Q but is not compact.
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4 Continuity

Fix metric spaces (X, dx), (Y,dy), and (Z,dz).

4.1 Limits of Functions Between Metric Spaces

Definition 4.1. Let E C X, f: E — Y and p € E'. We write “lim,_,, f(z) = ¢” (where
q € Y)ifforall € > 0, there exists § > 0 such that dy (f(z),q) < € whenever 0 < dx(z,p) <.

We say that lim,_,, f(z) exists if there exists ¢ € Y such that lim,_,, f(z) = ¢. If there
is no such ¢, then lim,_,, f(z) does not exist.

Theorem 4.2. Let EC X, f: E—Y,pe E', andq €Y. Thenlim,,, f(x) = q if and
only if lim,, o f(x,) = q for every sequence {x,} in E such that lim,,_, =, = p.

Proof. Suppose lim,_,, f(z) = ¢. Fix € > 0, and choose § > 0 such that dy(f(z),q) < €
whenever 0 < dx(z,p) < 0. Let {x,} be a sequence in E such that lim, ., z, = p. Since
d > 0, there exists N € N such that dx(z,,p) < ¢ for all n > N. Hence, dy(f(z,),q) < €
for all n > N, so lim,, . f(x,) = q.

Conversely, suppose lim,,_, f(z,) = ¢ for every sequence {z,} in E that converges to p.
Suppose by way of contradiction that lim,_,, f(x) # ¢. Then there exists ¢ > 0 such that
for all 0 > 0, there exists € F such that 0 < dx(z,p) < 0 and dy(f(z),q) > €. Therefore,
for all n € N, there exists x,, € E such that 0 < dx(z,,p) < 1 and dy(f(z,),q) > €. Note
that lim,, o x,, = p since lim,, % =0, but lim,, o, f(x,) # ¢ since dy (f(z,),q) > € for all
n € N. This is a contradiction, so lim,_,, f(z) = ¢. O

Because of this connection between limits of functions and limits of sequences, many
results from Chapter[3|about limits of sequences have analogous results in terms of functions.
For example, the analogue of Proposition is the following:

Proposition 4.3. Let EC X; f: E—=Y;pe E';and q1,q €Y. Iflim,,, f(z) = ¢1 and
limg_,, f(2) = g2, then q1 = go.

The “Squeeze Theorem” is the analogue of Proposition [3.7}

Proposition 4.4 (Squeeze Theorem). Let E C R; f,g,h : E — R; p € E’; and L € R.
Suppose there exists v > 0 such that f(x) < g(x) < h(z) for all z € EN N,(p), and suppose
lim,_,, f(x) = L = lim,_,, h(z). Then lim,_,,g(x) = L.

We also have the familiar “limit laws” from calculus (the analogue of Proposition [3.9):
Proposition 4.5. Let ECC; f,g: E - C;p € E'; and Ly, Ly € C. Suppose lim,_,, f(z) =

Ly and lim,_,, g(x) = Ly. Then:
(a) limgp[f(x) + g(2)] = L1 + L.
(b) limg ., [f () — g(x)] = L1 — Lo.

(¢) iy, f(2)g(2 ) L Lz
(d) lim,_,, g(x) = —2 if Ly # 0.

Each of these results can be proved by using Theorem and appealing to the analogous
result for sequences.
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4.2 Continuity, Limits, and Open Sets

Definition 4.6. Let f: X — Y and 2o € X. We say that f is continuous at xq if for all
e > 0, there exists § > 0 such that dy(f(z), f(z0)) < € whenever dx(x,x¢) < 0. If f is
continuous at every point in X, then f is continuous (on X).

Theorem 4.7. Let f : X — Y and xo € X. Then f is continuous at xq if and only if either
xo s an isolated point or lim, ., f(x) = f(zo).

Proof. Suppose f is continuous at xg, and suppose xg is not an isolated point. Then zy € X".
Fix € > 0, and choose ¢ > 0 such that dy(f(z), f(zo)) < € whenever dx(x,z) < J. It is
clear that if 0 < dx(z,z9) < 0, then dx(z,x¢) < d, so dy(f(x), f(xg)) < e. Therefore,
hmz—ma f(ZE) = f(l’())

Conversely, suppose x is either an isolated point or lim,_,,, f(x) = f(x¢). We consider
the two cases separately. Suppose x( is an isolated point. Then there exists o > 0 such
that the only # € X satisfying dx(z,z9) < § is * = xy. Hence, for any fixed ¢ > 0, if
dx(x,x0) < 0, then dy (f(x), f(xo)) = dy(f(zo), f(x0)) = 0 < €. Therefore, f is continuous
at o . Now suppose lim, ., f(z) = f(zo). For any fixed ¢ > 0, there exists § > 0 such
that dy (f(x), f(x0)) < € whenever 0 < dx(z, ) < 0. Now clearly dy (f(zo), f(z0)) =0 <,
so we have that dy (f(z), f(z9)) < € whenever dx(z,z,) < d. Therefore, f is continuous at
To. ]

Theorem 4.8 (The Topological Definition of Continuity). A function f: X — Y is contin-

uwous on X if and only if the pre-image of every open subset of Y under f is an open subset
of X.

Proof. Suppose f : X — Y is continuous on X. Let £ C Y be open. Let zy € f~!(F),
so that f(xg) € E. Since E is open, there exists ¢ > 0 such that NY (f(z¢)) C E. Choose
§ > 0 such that dy (f(x), f(z0)) < € for all dx(z,x) < d. It follows that if z € N;*(z¢), then
f(z) € NY(f(z0)) C E, sox € f7Y(E). Therefore, N;*(zo) C f~(E), so f~}(E) is open in
X.

Conversely, suppose f~}(E) C X is open for every openset E C Y. Fixzg € X and € > 0.
Then NY (f(xo)) CY is open, so f~H(NY(z¢)) C X is open. Note that f(zo) € NY (f(x0)),
so xg € fTHNY(f(z0))). Hence, there exists § > 0 such that N3¥(zo) C f~1(NY (f(x0))).
Now let # € X such that dx(z,79) < 6. Then x € Ni¥(zo) C f~H(NY(f(x))), so f(x) €
NY(f(xo)), which means dy (f(x), f(zo)) < €. Therefore, f is continuous at xq. Since zy € X
is arbitrary, f is continuous on X. O

Corollary 4.8.1. A function f: X — Y s continuous on X if and only if the pre-image of
every closed subset of Y under f is a closed subset of X.

Proof. Let f : X — Y. We will use the fact that f~'(E°) = (f~Y(E))° for all E C Y.
Suppose f is continuous on X. Let £ C Y be closed. Then E¢ C Y is open, so f~}(E¢) =
(f~Y(F))¢ C X is open. Hence, f~1(E) = ((f(F))°)¢ C X is closed. Conversely, suppose
f~YFE) C X is closed for every closed E C Y. Let S CY be open. Then S¢ C Y is closed,
so [71(S¢) = (f71(9))¢ C X is closed. Therefore, f~1(S) = ((f71(5))¢)¢ C X is open, so f
is continuous because the pre-image of every open set in Y under f is open in X. O]
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Theorem 4.9. Let f : X — Y. Suppose {x,} is a sequence in X converging to r, € X,
and suppose f is continuous at x.. Then lim, . f(x,) = f(z.).

Proof. Fix e > 0. Since f is continuous at x., there exists & > 0 such that dy (f(z), f(z.)) < €
whenever dx (z,x,) < d. Since lim,,_,, x,, = x, there exists N € N such that dx(x,,z,) < §
for all n > N. If n > N, then dx(x,,x.) < 6, so dy(f(z,), f(z.)) < €. Therefore,

Theorem 4.10. Let E C X, g: E — Y, and f : Y — Z. Suppose f is continuous at
yo € Y, and suppose xo € E' satisfies lim, ., g(z) = yo. Then lim,_,,, f(g(x)) = f(yo)-

Proof. Let {x,} be any sequence in E converging to xy. Then {g(z,)} converges to yo by
Theorem since lim, ., g(x) = yo. Since f is continuous at yy, Theorem implies that
lim, 00 f(g(xn)) = f(yo). Since {z,} is an arbitrary sequence satisfying lim,, . =, = o,
Theorem [4.2| says that lim, ., f(g(x)) = f(yo)- O

Theorem 4.11. If g : X — Y and f : Y — Z are continuous, then fog : X — Z 1is
continuous.

Proof. Fix zqg € X. If xg is an isolated point of X, then f o ¢ is continuous at zy by
Theorem . Suppose zg is not an isolated point of X. Then lim, ., g(z) = g(x¢) by
Theorem since ¢ is continuous at zo. Since f is continuous at g(xy), we have that
lim, ., f(g9(z)) = f(g(xo)) by Theorem[4.10] Therefore, fog is continuous at g by Theorem
[4.7] Since xy € X is arbitrary, f o ¢ is continuous on X. O]

A simpler proof. Let E C Z be open. Then f~'(E) C Y is open, so g~ '(f7'(F)) C X is
open. Now note that ¢g7'(f~1(E)) = (f o g) ' (E) because x € ¢g~'(f~1(E)) if and only if
f(g(x)) € E if and only if x € (f o g) ' (F). Therefore, (f o g) ' (F) C X is open for every
open ' C Z, so f o g is continuous. 0

Exercise 4.12. Let f : X — Y be continuous. Let p € X such that for all § > 0, there
exists © € X such that dx(z,p) < 0 and f(x) # f(p). Prove that f(p) is a limit point of

f(X).

Exercise 4.13. Prove that f : X — Y is continuous if and only if f(E) C f(E) for all
ECX.

Exercise 4.14. Suppose f : R¥ — R is a continuous function such that lim,,_,., f(x,) = oo
for all sequences {z,} in R* such that lim, . ||z,|| = co. Prove that there exists z* € RF
such that f(z*) < f(z) for all x € R*. Hint: first construct a sequence {x,} such that

lim, o0 f(x,) = inf, f(z).

Exercise 4.15. Suppose f : [—1,1] — R is continuous everywhere except possibly at 0.
Suppose there exists a sequence {z,} of non-zero numbers such that lim, ..z, = 0 and
lim, o0 f(x,) = f(0). Must f be continuous at 07

Exercise 4.16. Let C be the set of continuous functions R — R. In this exercise, we will
show that |C| = |R].
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(a) Suppose f, g € C satisfy f(q) = g(q) for all ¢ € Q. Prove that f = g, and hence infer
that |C| < [R?| (recall the notation R? from Exercise [2.11)).

(b) Prove that |RY| = |R|. Hint: recall that |R| = |P(N)| = |[{0, 1}}Y| (Theorem [2.8| and
Exercise [2.12f(a)).

(c) Parts (a) and (b) imply that |C| < |R|. Show that |R| < |C|, and conclude that
|C| = |R| by the Cantor—Schréder—Bernstein Theorem.

(d) Let D be the set of functions R — R with at least one discontinuity. Use Exercise
2.12|(c) to prove that |C| < |D|.

Exercise 4.17. Let ¢ : Q@ — R be continuous. Does there necessarily exist a continuous

f R — R such that f(q) = ¢(q) for all ¢ € Q?

Exercise 4.18. Recall the definitions in Exercise [2.40, Fix n € N. Prove that the map
T+ T7! on GL,(R) is continuous.
Hint: one way to proceed is by fixing A € GL,(R) and noting that

A7 =B = [[A7(B - A)B7H[ < [JATH] - |IB7| - [|1B - Al

for any B € GL,(R). We would hope that if ||B — A|| is sufficiently small, then ||[B~!|| can
be bounded above by some expression that only depends on A. You may find the identity

1
inf ||[Tz]| =
|Wﬂ”|’|W*H

useful (but you would have to prove this yourself).

Exercise 4.19 (Thomae’s Function). Any rational number z can be written uniquely in

simplest form § where p € Z, g € N, and ged(p, ¢) = 1. Define f : R — R by

0 ifrgQ.

Prove that f is continuous at every irrational number and discontinuous at every rational
number.

2 if x € Q with simplest form 2
-] q

Exercise 4.20. In this exercise, we will show that there is no function f : R — R that is
continuous on the rationals and discontinuous on the irrationals. First, we need some new
definitions. Let f : R — R be a function.

e The continuity set of f is
C(f) ={z € R| f is continuous at z}.

For example, the continuity set of Thomae’s function from the previous exercise is

R\ Q.

e The oscillation of f on a non-empty subset £ C R is

we(E) =sup f(x) — ;ggf(x)

zelR
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e The oscillation of f at a fixed xg € R is

w(zg) = (isggwf((aro — 0,29+ 0)).

You will also want to review Exercise B.53

(a) Prove that wg(xo) = 0 if and only if f is continuous at .

(b) Fix € > 0. Prove that C(f,€) = {r € R | ws(z) < €} is an open subset of R.

(c) Find a sequence {01, 02, O, ...} of open subsets of R such that C(f) =, O,.
Conclude that C(f) cannot be equal to Q.

4.3 Continuity and Compactness

Theorem 4.21. If f : X — Y is continuous and E C X is compact, then f(E) CY is
compact.

Proof. Let {O,}s be an open cover of f(E). For each o, f~1(O,) C X is open since f is
continuous. If x € E, then since f(z) € E, we have that f(z) € O,, for some «ap, and
it follows that z € f71(Q,,). Therefore, {f1(O,)}s is an open cover of E. Since E is
compact, there exists a finite subcover {f™1(O,,),..., [ (O, )} of E. Fix y € f(E). Then
y = f(t) for some t € E. Now t € f7(O,,) for some 1 < k < n because {f~(O,,)}"

j=1
covers I. Therefore, y € O,, C Uj_; Oa;. We conclude that {Oy,,...,0,,} is a finite
subcover of f(E), so f(F) is compact. O

Corollary 4.21.1 (The Extreme Value Theorem). Let f : [a,b] — R be continuous where
a < b. Then there exist cy,c_ € [a,b] such that sup,c,y f(x) = f(cy) and infrep f(7) =
fleo).

Proof. The Heine—Borel Theorem says that [a, b] is compact, so the image f([a,b]) is com-
pact. Hence, f([a,b]) is closed and bounded. Clearly, f([a,b]) is also non-empty since
f(a) € f([a,b]). By Lemma , SUP,efay (%) = sup f([a,b]) € f([a,b]) and, similarly,
infeap f(2) € f(la,b]). The desired result follows. O

Theorem 4.22. Let X be compact, and let f : X — Y be a continuous bijection. Then the
inverse f~1:Y — X is continuous.

The standard proof. Denote ¢ = f~'. We want to prove that if £ C X is open, then
g ' (E) = f(E) C Y is open. Let E C X be open. Then E° C X is closed and hence
compact by Theorem since X is compact. Since f is continuous, f(E°) = f(F)° C Y is
compact by Theorem and hence closed. Therefore, f(E) = (f(E))° C Y isopen. [

Alternative proof. Let yy € Y, and suppose by way of contradiction that f~! is not con-
tinuous at yo. Then there exists ¢ > 0 such that for all § > 0, there exists y € Y such
that dy (y,y0) < 6 and dx(f'(y), f*(y0)) > €. For all n € N, choose y, € Y such that
dy (Yn,yo) < = and dx(f " (yn), f*(y0)) > €. Then {f~'(y,)} is a sequence in the com-
pact set X, so by the Bolzano—Weierstrass Theorem, there is a convergent subsequence
{f " (yn,)}. Using the continuity of f and Theorem , we see that

yo = lim = lim f(f7 (yn,)) = F(Hm 7 (yn,))-
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Hence, limy o0 £ (yn,) = f~*(30), which contradicts that dx(f ' (yn,), f " (v0)) > € for all
k € N. Therefore, f~! must be continuous at yy. Since yy € Y is arbitrary, f~! is continuous
onY. O

Definition 4.23. We say that f : X — Y is uniformly continuous on X if for all € > 0,
there exists d > 0 such that for all z,y € X, dy (f(z), f(y)) < € whenever dx(z,y) < 6.

The definition of uniform continuity is quite similar to the definition of continuity at a
given point x € X. The main difference is that the ¢ for uniform continuity cannot depend
on x, whereas the ¢ for continuity can depend on x.

Proposition 4.24. If f : X — Y s uniformly continuous, then f is continuous.

Proof. Let f : X — Y be uniformly continuous. Fix ¢ > 0. By uniform continuity, there
exists d > 0 such that dy (f(x), f(y)) < € for all z,y € X such that dx(z,y) < J. Now for
any arbitrary xo € X, if © € X satisfies dx(z,z9) < 0, then dy (f(x), f(xo)) < €. Hence, f is
continuous at every xg € X, so f is continuous on X. ]

Theorem 4.25. If X s compact and f : X — Y is continuous, then f is uniformly contin-
Uous.

Proof. Fix € > 0. For each = € X, there exists d, > 0 such that if y € X and dx(y, ) < d,,
then dy(f(y), f(z)) < e. Notice that {N;, 2()}sex is an open cover of X. Since X is
compact, we can extract a finite subcover {N5I1/2<x1), ..., N5, s2(xn)}. Choose

0o
0 = min — > 0.

Let x,y € X such that dx(z,y) < J. We know that x € Nglk/g(xk) for some 1 < k < n since
{Ns,, j2(25)}j—y covers X. Hence dx (zx,2) < 517’“ < gy 80 dy (f(zy), f(x)) < e. Now

Oy Oy Oy
dX(xkay) S dX(l'k,$)+dX($,y) < 7k+(5< 7k‘|‘7k :53%7

so dy (f(xy), f(y)) < € also. Therefore,

dy (f(x), f(y)) < dy(f(x), f(or)) + dy (f(zr), f(y)) < 2e,

proving that f is uniformly continuous. O]

Exercise 4.26. Prove the Extreme Value Theorem directly from the Bolzano—Weierstrass
Theorem and the definition of continuity.

Exercise 4.27. Let S C X be non-empty. The diameter of S is diam(S) := sup, ,cq d(7,y).
(a) Prove that if S is bounded, then diam(S) < co.
(b) Prove that if S is compact, then there exist xg, yo € S such that d(xg,yo) = diam(.S).
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Exercise 4.28. Throughout this exercise, S and T" are non-empty subsets of the same metric
space. Under these conditions, we define dist(S,7) = inf,cgyer d(x,y) (review Exercise
2.52)).

(a) Prove that if S and T are compact, then there exist z € S and y € T such that
d(z,y) = dist(S,T).

(b) Construct an example of a compact set S and a closed set T where there is no z € S,
y € T such that d(x,y) = dist(S,T"). Hence, the result of part (a) requires both sets to be
compact. (Hint: the solution I am thinking of uses the metric space ¢; from Exercise m
Do not try to use R™ as your metric space; it does not work.)

(c) Prove that if S C R" is compact and 7' C R" is closed, then there exists € S and
y € T such that d(x,y) = dist(S,T).

Exercise 4.29. Let K be a non-empty compact set, and let f : K — K such that
d(f(x), f(y)) < d(x,y) for all distinct x,y € K. Prove that there exists a unique x € K such
that f(z) = . Hint: think about inf,cx d(z, f(z)).

Exercise 4.30. Let K be a compact set and f : K — K such that d(f(z), f(y)) > d(z,y)
for all z,y € K.
(a) For all n € N, let f,, be f composed with itself n times (i.e. f, = fo---0o f). Fix
n times
x € K, and consider the sequence {f,(z)},. Prove that there exists a subsequence { f,,, (z) }«
that converges to x.

(b) Show that for any z,y € K, there exists an increasing sequence of indices {ny }, such
that {f,, (z)}r converges to x and {f,, (y)}r converges to y. (Note: as far as I know, this
part requires a slight strengthening of part (a). Look at how you construct {ny}, in part
(a)—the construction should be the same no matter which fixed x € K we use.)

(c) Hence, prove that d(z,y) > d(f(z), f(y)), which implies that d(f(z), f(y)) = d(z,y).

(d) Prove that f is bijective.

Exercise 4.31. A metric space (X, dy) is called locally compact if for every x € X, there
exists r > 0 and a compact K C X such that N,(x) C K. Suppose X and Y are locally
compact, and suppose f : X — Y is a continuous bijection such that the pre-image of any
compact set is compact. Prove that the inverse f~! : Y — X is continuous.

Exercise 4.32. Give an example of a continuous and bounded function f : R — R that is
not uniformly continuous.

Exercise 4.33 (Continuous Extension Theorem). Let X,Y be metric spaces where Y is
complete. Let £ C X, and suppose f : E — Y is uniformly continuous. Prove that there
exists a unique continuous g : £ — Y such that g(z) = f(x) for all z € E. We call g a
continuous extension of f.

Exercise 4.34 (Real Exponents). Fix b > 0, and let f : Q — R be the map f(q) = b? (recall

Exercise [1.24)).

(a) For all n € N, show that f is uniformly continuous on Q,, := Q N [—n,n].

(b) Using the Continuous Extension Theorem (Exercise [£.33)), prove that there exists a
unique continuous function g : R — R such that g(z) = f(z) for all x € Q. We now define
b* = g(x) for all x € R.
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(c) Prove that v*t¥ = b*bY for all 2,y € R. Hint: this identity holds for =,y € Q; how
can we extend it to x,y € R?

(d) Fix b, ¢ > 0. Prove that (bc)” = b*c” for all z € R.

(e) Show that b* > 0 for all z € R.

Exercise 4.35. Suppose f : R — R is continuous and satisfies f(z + y) = f(z)f(y) for all
xz,y € R. Let b = f(1). Prove that f(z) =" for all x € R.

4.4 Continuity and Connectedness

Theorem 4.36. If f : X — Y is continuous and E C X is connected, then f(E) C Y is
connected.

Proof. Suppose f : X — Y is continuous and E C X is connected. By Corollary it
suffices to show that f(FE) is a connected metric space. To do this, we use Exercise m
Suppose, by way of contradiction, that f(F) is not connected. Then there exists a non-
empty proper subset S of f(E) that is both open and closed. Since f is continuous on X,
f is also continuous on FE, so f~1(S) C E is both open and closed. We know that f~'(9)
is non-empty since S is non-empty and S C f(E). Also, f~1(S) # E, for if f7}(S) = E,
then f(F) = f(f~*(S)) C S, contradicting that S # f(FE). Therefore, E is not connected
because f~!(S) is a non-empty proper subset of E that is both open and closed. This is a
contradiction, so f(E) must be connected. O

Corollary 4.36.1 (The Intermediate Value Theorem). Let f : [a,b] — R be continuous
where a < b. If y € R is between f(a) and f(b) inclusive, then there exists x € [a,b] such

that f(x) =vy.

Proof. Without loss of generality, suppose f(a) < f(b). If x,y € [a,b] and = < y, then
a <z <z<y<bforany z € (z,y), so (x,y) C [a,b]. Hence, [a,b] is connected by
Theorem [2.67] Since f is continuous and [a, b] is connected, f([a,b]) must be connected by
Theorem [4.36] Let f(a) <y < f(b). If y = f(a) or y = f(b), then clearly y € f([a,b]). If

f(a) <y < f(b), then (f(a), (b)) C f([a,b]) by Theorem[2.67, so y € (f(a), f(b)) C f([a,b]).
Therefore, y € f([a,b]) in all cases, so there exists x € [a, b] such that f(x) =y. O

Exercise 4.37. Prove the Intermediate Value Theorem directly from the supremum property
of R and the definition of continuity.

Exercise 4.38. Let X be a metric space, and let Y be the set {0,1} equipped with the

discrete metric
1 ifx#y
d(z,y) = .
0 ifex=y.

Prove that X is connected if and only if every continuous function f: X — Y is constant.

Exercise 4.39. A metric space X is path-connected if for all x,y € X, there exists a
continuous function f : [0,1] — X such that f(0) = = and f(1) = y. Prove that every
path-connected set is connected.
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Exercise 4.40. Let f : R — R be continuous. The graph of f is Gy = {(z, f(z)) | x € R},
which is a subset of R%. Prove that G is path-connected.

Exercise 4.41. Prove that if f : X — Y is continuous and X is path-connected, then f(X)
is path-connected.

4.5 One-Sided Limits and Monotonic Functions

Fix real numbers a < b.

Definition 4.42 (One-Sided Limits). Let f : (a,b) — R; ¢; € [a,b); ¢o € (a,b]; and
L., L_ e R. We say that

lim f(z) =Ly

x%cf
if for all € > 0, there exists § > 0 such that |f(z) — L;| < € whenever 0 < x —¢; < 4.
Similarly, we say that

lim f(x)=L_

$—)62

if for all € > 0, there exists 0 > 0 such that |f(z) — L_| < € whenever 0 < ¢y —z < .

For any ¢; € [a,b), we can view [c1,b) as its own metric space. Then the one-sided
limit lim,_, + f(z) as we have defined it above is the same as the limit lim, ., f(z) taken
in the metric space [c1,b). Similarly, if ¢; € (a,b], then lim e f(z) is equivalent to the
limit lim,_,., f(x) taken in the metric space (a, cs]. As a result, the limit laws that hold for
sequences of real numbers also hold analogously for one-sided limits by Theorem [4.2]

Note that the condition “0 < |x—c¢| < 6” is equivalent to “0 < z—c < Jor0 < c—x < ¢”".
This observation immediately implies the following result:

Proposition 4.43. Let f : (a,b) — R and ¢ € (a,b). Then lim,_,. f(x) exists if and only if
lim, . f(x) and lim,_,.+ f(z) both exist and are equal. In that case, we have

lim f(z) = lim f(z) = lim f(z).

T—C T—c™ z—ct
Definition 4.44. We call f : (a,b) — R monotonically increasing if f(xz) < f(y) for all
x,y € (a,b) such that x < y. Similarly, f is monotonically decreasing if f(z) > f(y) for all
x,y € (a,b) such that x <y. We say that f is monotone if f is monotonically increasing or
monotonically decreasing.

Remark. Note that the zero function x +— 0 on R is both monotonically increasing and
monotonically decreasing.

Theorem 4.45. Let f : (a,b) — R be monotonically increasing. Let u,v,c € (a,b) such that
u<c<wv. Then

F(u) < sup f(x) = lim f(z) < f(e) < lim f(x) = inf f(x) < f(v).

z<e T—Cc™ Tz—ct T>c
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Proof. Let

A={f(@) | € (a,0)}
and

B={f(x)[ze(cb)}

Then A and B are non-empty since f(u) € A and f(v) € B. Since f is monotonically
increasing, A is bounded above by f(c¢), and B is bounded below by f(c). Therefore,
sup,.. f(x) = sup(A) exists and inf,~. f(x) = inf(B) exists. Moreover, it is clear that

f(u) <sup f(x) < f(e) < inf f(z) < f(v).

r<c z>c

Now we just need to show that lim, ,.- f(x) = sup,-. f(z) and lim,_,.+ f(x) = inf, .. f(x).
Let s = sup, ., f(z) = sup(A). Fix € > 0. Then there exists yy € A such that s —e < yp < s.
Since yo € A, there exists zg € (a,c) such that f(zg) = yo. Now let 6 = ¢ — 9 > 0,
and suppose 0 < ¢ —x < ¢ where x € (a,b). Then zp = ¢ — 3 < z, so f(xg) < f(z)
since f is monotonically increasing. Hence, s — e < f(zg) < f(z) < s, 80 |s — f(z)] < e.
Therefore, lim, ,. f(z) = s = sup,.. f(z). The proof that lim, ,.+ f(z) = inf,.. f(z)
proceeds similarly. O

Theorem 4.46. If f : (a,b) — R is monotonically increasing, then the set of discontinuities
of f is denumerable.

Proof. Let S = {c € (a,b) | f is discontinuous at c¢}. We will associate every ¢ € S with a
unique rational number; this defines an injective map ¢ : S — Q. Since Q is countable, the
result follows.

Suppose f is discontinuous at ¢ € (a,b). Theorem implies that lim, .. f(z) <
lim, .+ f(z). By way of contradiction, suppose that lim, ,.- f(z) = lim, .+ f(z). Then
Theorem implies that lim, .- f(z) = f(¢) = lim, .+ f(z). Hence, Proposition [1.43]
says that lim, . f(z) = f(c), which means f is continuous at ¢ by Theorem This is a
contradiction, so it must be that lim, .. f(x) < lim,_,.+ f(x). Let L_ = lim,_,.~ f(z) and
Ly =lim, .+ f(2).

If L_ < f(c), then there exists ¢ € Q such that L_ < ¢ < f(c), and we put ¢(c) = q.

On the other hand, if L_ = f(c), then f(c¢) = L_ < L., so there exists r € Q such that
f(c) <r < Ly. Put ¢(c) = r in this case.

Notice that L_ < ¢(c) < Ly in all cases. Thus, we have defined a map ¢ : S — Q
such that lim, ,.- f(z) < ¢(c) < lim, .+ f(z) for all ¢ € S. We just need to show that ¢
is injective. Suppose ¢,d € S are distinct. Without loss of generality, we may assume that
¢ < d. Pick t € (a,b) such that ¢ < ¢ < d. Then by Theorem [£.45]

b(c) < lim f(2) < (1) < lim f(x) < 6(d)

z—ct
Therefore, ¢ is injective. O]

Theorems [4.45] and have analogues for monotonically decreasing functions, too—the
reader should be able to guess what they are.
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5 Differentiation

Fix real numbers a < b.

5.1 Definition of the Derivative
Definition 5.1. Let f: (a,b) — R and ¢ € (a,b). Then f is differentiable at c if the limit

o @) = ()

r—C Tr — C

exists. The value of this limit is denoted f’(c) and is called the derivative of f at c.

If f is differentiable at every ¢ € (a,b), then we say that f is differentiable (on (a,b)).
In this case, the derivative of f is the function f’ : (a,b) — R defined by f'(zq) =
lim gy L2250 for all 2 € (a, b).

T—x

Derivatives help us approximate functions locally. Indeed, f : (a,b) — R is differentiable
at ¢ if and only if there exists D € R and r : (a,b) — R such that

f(x) = f(e)+ D(x = ¢) +r(x)

and lim,_,,. ;(fg = 0. If D and r exist, then f’(c) = D. Hence, if f is differentiable at ¢, then
we have the linear approzimation f(x) = f(c)+ f'(c)(z — ¢) when z is close to c.
If f’ itself is differentiable, then the derivative of f’ is denoted f” and is called the second

derivative of f. In general, we can define repeated derivatives of f recursively as follows:

Definition 5.2. Let f : (a,b) — R. Define f® = f. For any integer n > 0, if f™ : (a,b) —
R is differentiable, then we define f™+1) = (f™). We say that f is n-times differentiable if
™) exists. If £ exists for all n > 0, then f is infinitely differentiable.

Proposition 5.3. If f: (a,b) — R is differentiable at ¢ € (a,b), then f is continuous at c.
Proof. Observe that

lim[f(z) — f(c)] = lim(z — ¢) (f(a:) - f(c))

T—cC T—cC T —c
= lim(z — ¢) lim fla) = fle)
r—>C T—rC €T —cC
= 0f'(c)
Hence,
lim f(z) = lim(f(c) + f(2) = /() = lim f(c) + lm(f(2) = £(c)) = f(c) +0 = f(e),
so f is continuous at ¢ by Theorem [£.7] -

Note, however, that differentiability at a point does not imply continuity in a neighbour-
hood around that point.
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Example 5.4. Consider f : R — R defined by

_J2* freQ
J(@) = {—:ﬁ itz ¢ Q.

We will show that f is differentiable at 0 and discontinuous at every non-zero point. First,
note that
f(z)

X

2

0< ‘gx—z\wr
xr

for all  # 0. Since lim, 00 = lim,_,¢ |z| = 0, the Squeeze Theorem yields that

lim
z—0

Using Proposition [3.4 and Theorem [4.2] we can show that
i £ = FO) _ ) @)

=0.
xz—0 x—0 z—0 X

Hence, f is differentiable at 0.

Suppose ¢ # 0 is rational. Then by Theorem [1.26], ¢ is a limit point of the set of irrational
numbers. Hence, there is a sequence {z,} of irrational numbers such that lim,,_,. z, = c.
Now note that

lim f(z,) = lim —22 = — lim 2, hm T, = —c* # f(c) =
n— oo n—oo n—oo n—
since ¢ is non-zero. Therefore, f is not continuous at ¢ by Theorems [£.2] and [4.7]
If ¢ # 0 is irrational, then by Theorem [1.25] ¢ is a limit point of the set of rational
numbers. We can then proceed in the same way as the previous paragraph to show that f
is discontinuous at c.

Proposition 5.5. Suppose f : (a,b) — R and g : (a,b) — R are differentiable at ¢ € (a,b).
Then:

(a) (f +9)(c) = f'(c) + d'(c).

() (f —g)(c) = f'(c) —g'(c).

(c) (af)(c) = af'(c) for any a € R.

(d) (fg)'(c) = f'(c)g(c) + fc)g'(c).

(¢) (£)(c) = g (f(©)g(c) = f(e)g' () if g(e) # 0

Proof. These are all direct computations.

(a)
f(@) +9(x) — (f(e) + 9(c))

(f +9)/(c) = lim

N CLET L)
= [0+
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(f - 9)(e) = tim L&) =9 = (J(9) — 9(c))

;kﬂﬁ_ﬁgCﬂﬁ_?n

= f(e) =4 (o).
()

(af)(¢) = lim

T—C xr —cC T—C

af@) —afte) . (M) — af'(c).

r—c
(d) Since f is differentiable at ¢, f is continuous at ¢, so lim,_,. f(z) = f(c). Hence,

(f9)'(c) = lim f(x)g(x) — fe)g(c)

@) — S(@)gle) + F@lae) — £(gle)
= lim f(z) lim 9(x) — g(c) + g(c) lim f(z) = f(c)

= f(e)g'(c) + 9(c)f'(c).
9

(e) Note that lim, . g(z) = g(c) since ¢ is differentiable and hence continuous at c. If

g(c) # 0, then

T—C g(x)g(c) T—C Tr—=cC
_ 1, f@)ele) = fle)gle) + fe)gle) — fle)g()
g(c)Q T—C r —C
Lo (oI @ = 1) 9(@) = g(c)
st (o020 gt 2o
1

]

Theorem 5.6 (The Chain Rule). Let g : (a,b) — R be differentiable at ¢ € (a,b). Let E C R
be an open interval containing the image of g, and suppose f : E — R is differentiable at
g(c). Then fog: (a,b) = R is differentiable at ¢, and

(f 0 9)'(c) = f'(g(c))g ().
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Proof. Since g is differentiable at ¢, there exists r; : (a,b) — R such that lim,_,. 2—&? =0
and

9(z) = g(c) + g () — ] +11(2)
for all z € (a, b) Similarly, since f is differentiable at g(c), there exists 7o : £ — R such

that lim,_, 4 - é(i) =0 and

) = f(g(c)) + f'(9(c)ly — g(c)] + r2(y)
for all y € E. Putting y = g(z) for x € (a,b) gives

fg(x )) F(g(e)) + f(g(e)lg(x) = g(c)] + ra(g())
flg(e)) + f(g(e)d'(O)x — ] + f'(g(c))r1(x) + ra(g()).

fly

It suffices to show that

f'(g(c))ri(x) + ra(g(x))

lim = 0.
T—c T —c
Clearly
’
hm f (g(C>)7’1 (Z’) — f/(g(c>> hm Tl(x) — 07
T—C r —C r—=c X — C

so now we are left with proving that lim,_,. % = 0. Since lim,_,. g(x;:g(c) = ¢'(c), there
exists d; > 0 such that
g(z) — g(c)

—d(o) <1
P g'(c)

whenever 0 < |z — ¢| < ;. Hence,
[1—g()l(z—c) <g(z) —glc) <1+ g (O))(x—c)
whenever 0 < |z — ¢| < 0;. Letting M = 1+ max{|1 — ¢'(¢)|, |1 + ¢'(c)|} > 0, we see that

l9(x) = g(c)] < Mz —¢|

whenever 0 < |z — ¢| < 6;. Fix € > 0. Since lim,_, yrf;@(’l) = 0, there exists 63 > 0 such
that
ra2(y) €
y—gle)| M

whenever 0 < |y —g(c)| < 3. Therefore, |r2(y)| < 17|y —g(c)| whenever |y —g(c)| < d;. Since
g is continuous at ¢, there exists d3 > 0 such that |g(z) — g(c¢)| < d2 whenever |z — ¢| < ds.
Let § = min{d;,d3} > 0, and suppose 0 < |z —¢| < 6. Then |g(z) — g(c)| < J2 since
|z —c| < d3. Hence, |ra(g(2))| < 57|9(x) —g(c)|. Finally, since 0 < |z —c| < d;, we have that
Ira(g(x))| < 57M|x — c| = €|z — ¢|. Since |z — c[ > 0, we can divide by |z — c| on both sides
of the inequality to obtain that

r2(g(x))

Tr —cC

r2(g9())

Tr —cC

< €.

_0‘:

r2(g(x)) 0. ]

Therefore, lim, . == =
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Now let’s compute some actual derivatives, so that we have some concrete differentiable
functions that we can apply the rules of differentiation to. We will look at the power functions
f(z) = 2™ where n € Z. Calculus students will recognize the following results as special
cases of the “power rule”.

Proposition 5.7. If f : R — R is a constant function, then f'(x) =0 for all z € R.

Proof. Suppose there exists ¢ € R such that f(z) = ¢ for all € R. Fix zy € R. Then

'(wo) = lim F@) = flwo) _ o e=c -

T—rx0 T — 2o x—=x0 T — T r—x0
]

In order for the next proposition to make sense, we need to clarify what 0° means. (In
:r

general, if x # 0, then 2° = 2171 = £ = 1, but this reasoning does not apply if z = 0.) By
convention, we define 0° = 1. There are a few reasons why this definition would make sense:

e For any x € R and n € N, we define 2™ as the “repeated multiplication” z" = [[,_, z.
If n = 0, this product becomes the “empty product” which is equal to 1 by convention.
This reasoning should apply even if z = 0.

e As a result of the previous bullet point, all exponent laws that hold for non-zero bases
hold even if the base is zero (as long as no “division by zero” is involved).

e We already know that 2° = 1 for all real numbers = other than 0. It would be the
most convenient choice to define 0° to equal 1 also, so that we can always write 2° = 1
without any exceptions.

e Defining 0° = 1 makes the function f(z) = z° continuous on all of R.

Proposition 5.8. Fizn € N, and let f(z) = 2™ for allx € R. Then f'(x) = na™! for all
reR.

Proof. Fix xy € R. For all x € R, we have that

ZC—LI?()EIEknlk Exk+1n1k Exknk
_ZZ' _x0+§:xk+ln1k Exknk

(because y” = 1 for all real numbers y, including y = 0)

1-(j-1
= " —x0+§:x31+1” (-1 Zxkznk
—x—xo—i-gx]nj—l—gxk"k
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=Tr — .Z‘O .
Therefore,

Fog) — i L) =)

T—rT(Q Tr — xo
n—1
= lim E gFgn=t=k
T—T0
k=0
n—1
_ T N ST
= lim " since the sum is finite
A T—T0

n—1
= Z xfxn~ % by Proposition [£.5c) and induction
k=0

o n—1
= Nx,

]

Proposition 5.9. Fizn € N, and let f(z) = 27" for allz € R\{0}. Then f'(z) = —nz—""!
for all x € R\ {0}.

Proof. Let g(x) = 1 and h(x) = 2" for all x € R. Then f(z) = % and h(x) # 0 for all
x € R\ {0}. Hence,
oy (9N oy g @h(@) —g@)l(z) 02" —1Ina"t
f(z) = <h> (z) = ()] = an = —nx = —nx
for all x € R\ {0}. O

Exercise 5.10 (Philosophy of Definitions). Let f : R — R such that f(z) = z. If we had
defined 0° to be equal to 0 instead of 1, would the value of f'(0) change? If not, what would
change?

Exercise 5.11. Prove that f(z) = /x is differentiable for all > 0.

Exercise 5.12 (2011 Putnam Problem B3). Let f and g be real-valued functions defined
on an open interval containing 0, with g nonzero and continuous at 0. If fg and % are
differentiable at 0, must f be differentiable at 07

Exercise 5.13. Construct a function g : R — R that is differentiable at exactly two points
and discontinuous everywhere else.

5.2 The Mean Value Theorem

The Mean Value Theorem is probably the most important theorem concerning differentiation.
It formalizes the relationship between “derivative” and “rate of change”. For example, we
can informally deduce that a function whose derivative is zero everywhere must be a constant
function, since such a function must have “zero rate of change” at every point. The Mean
Value Theorem allows us to formally prove this fact.

89



Definition 5.14. We say that f : (a,b) — R has a local minimum (respectively local
mazximum) at ¢ € (a, b) if there exists r > 0 such that f(z) > f(c) (respectively f(z) < f(c))
whenever |z — ¢| < r. A local extremum is a local minimum or a local maximum.

Theorem 5.15 (Fermat’s Theorem). If f : (a,b) — R has a local extremum at ¢ € (a,b)
and is differentiable at c, then f'(c) = 0.

Proof. Suppose c is a local minimum. Pick r > 0 such that f(z) > f(c) whenever |z —c| < 7.
Then f(x) (C) >0 forall ¢ <z < c+rand L& f() <0 for all ¢ —r < = < c. Therefore,

f/(C) — hm f(x) B f(c) 2 0
z—ct T —cC
and
o= i F@ 1O
T—cT r—cC
so f'(¢) = 0. A similar argument works if ¢ is instead a local maximum. O

Theorem 5.16 (Rolle’s Theorem). Let f : [a,b] — R be continuous on [a,b] and differen-
tiable on (a,b). Suppose f(a) = f(b). Then there exists ¢ € (a,b) such that f'(c) = 0.

Proof. Since f is continuous on [a,b], the Extreme Value Theorem says that there exists
c_,cq € la,b] such that f(c ) < f(z) < f(ey) for all © € [a,b]. If ¢ € (a,b), then f has a
local minimum at c_, so f’(c-) = 0 by Fermat’s Theorem. Similarly, if ¢, € (a,b), then f has
a local maximum at ¢y, so f’(c;) = 0 by Fermat’s Theorem. The only remaining possibility
is that c¢_,c; € {a,b}. Since f(a) = f(b), we must have that f(a) = f(b) = f(c-) = f(cy).
Therefore, f(c_) < f(x) < f(ey) = f(co) for all z € [a,b], so f is constant on [a,b].
Therefore, f'(%“t2) =0 since =2 € (a,b). O

Theorem 5.17 (Cauchy’s Mean Value Theorem). Let f,g : [a,b] — R be continuous on
la,b] and differentiable on (a,b). Then there exists ¢ € (a,b) such that

f(0)lg) — g(a)] = g'(c)[f(b) — f(a)].
Proof. Define h(z) = f(z)[g(b) — g(a)] — g(x)[f(b) — f(a)] for all € [a,b]. Then
ha) = f(a)lg(b) — g(a)] — g(a)[f(b) — f(a)] = f(a)g(b) — g(a)f(b)
and
h(b) = f(b)[g(b) — g(a)] — g(b)[f(b) — f(a)] = —f(b)g(a) + g(b) f(a) = h(a).

Since f and g are continuous on [a,b] and differentiable on (a,b), so is h. Therefore, by
Rolle’s Theorem, there exists ¢ € (a, b) such that h'(c) = 0. Now

W(x) = f'(2)lg(b) = g(a)] — ¢'(2)[f(b) — f(a)]

for all z € (a,b), so 0 = h'(c) = f'(c)[g(b) — g(a)] — ¢'(c)[f(b) — f(a)]. The desired result
follows. N
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Corollary 5.17.1 (The Mean Value Theorem). Let f : [a,b] — R be continuous on [a, b
and differentiable on (a,b). Then there exists c € (a,b) such that

f(b) — f(a)
b—a

Proof. Define g : [a,b] — R by g(x) = 2. Then g is continuous on [a,b] and ¢'(c) = 1 for all
¢ € (a,b). By Cauchy’s Mean Value Theorem, there exists ¢ € (a,b) such that

f'(e)(b—a) = f'(0)lg(b) — g(a)] = g'()[f(b) — f(a)] = f(b) — f(a).

Hence, f'(c) = W ]

f'(e) =

Definition 5.18. We call f : (a,b) — R strictly increasing (resp. strictly decreasing) if
f(z) < f(y) (vesp. f(x) > f(y)) for all z,y € (a,b) such that x < y.

Proposition 5.19. Suppose f : (a,b) — R is differentiable.
(a) If f'(x) =0 for all x € (a,b), then f is constant.
(b) If f'(z) > 0 for all x € (a,b), then f is strictly increasing.
(c) If f'(x) <O for all x € (a,b), then f is strictly decreasing.
(d) If f'(x) > 0 for all x € (a,b), then f is monotonically increasing.
(e) If f'(x) <0 for all x € (a,b), then f is monotonically decreasing.

Proof. Let x,y € (a,b) be distinct. Without loss of generality, suppose x < y. By the Mean
Value Theorem, there exists ¢ € (x,y) such that

fly) — f(z)

gl

(]
That is, f(y) — f(x) = (y — x)f'(c). Hence, f(y) — f(x) has the same sign as f’(c) since
y —x > 0, so all parts of the proposition simultaneously follow. n

Exercise 5.20. Let f : (a,b) — R be twice differentiable, and suppose there exists ¢ € (a, b)
such that f'(¢) = 0 and f”(c) > 0. Prove that f has a local minimum at c.

Exercise 5.21. Let f : (a,b) — R be continuous on (a,b) and differentiable on (a, c)U (¢, b).
Suppose lim, . f'(x) exists. Prove that f is differentiable at ¢ and that lim,_,. f'(z) = f'(c).

Exercise 5.22. Let f : [0,00) — [0,00) be continuous. Suppose f(0) = 0, and suppose f
is differentiable on (0,00) with |f'(x)| < f(x) for all x > 0. Prove that f(z) = 0 for all
x > 0. (Hint: take s = SUD,e(, 1] f(z), and prove that s = 0. Then f is identically zero on

the interval [0, 3]. Now repeat this argument for the intervals [1, 1], [1, 2], and so on.)

5.3 Lipschitz Continuity
Definition 5.23. Let (X, dx) and (Y, dy) be metric spaces, and let f : X — Y. Define

S={c>0|dy(f(x), f(y) <cdx(z,y) for all z,y € X} C R.

We say that f: X — Y is Lipschitz continuous (on X) if S is non-empty. If f is Lipschitz
continuous, its Lipschitz constant is inf(S).
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Proposition 5.24. If f : X — Y 14s Lipschitz continuous, then f is uniformly continuous.

Proof. Suppose f : X — Y is Lipschitz continuous. Then there exists ¢ > 0 such that
dy(f(x), f(y)) < cdx(z,y) for all z,y € X. Let ¢ > 0, and choose § = == > 0. If

c+1
dx(x,y) < 0, then
c
dy (f(x), f(y) < cdx(z,y) < cd = .

Hence, f is uniformly continuous. O]

Proposition 5.25. For any xg € X, the function f : X — R defined by f(x) = dx(x,zo) is
Lipschitz continuous.

Proof. Fix xqg € X. Then

|f(z) = f(W)] = ldx (2, 20) — dx(y, 70)| < dx(z,y)

for all z,y € X by the Reverse Triangle Inequality (Proposition [2.14]). Hence, f is Lipschitz
continuous. O

€ <eEe€.

Theorem 5.26. Suppose f : (a,b) — R is differentiable. Then f is Lipschitz contin-
uous if and only if sup,ep [f(7)] < in which case the Lipschitz constant of f is
Supxe(a,b |f< >|

Proof. Suppose sup,e(,p) |['(%)] < 0o. Let s = sup,ep |f'(2)], and fix 2,y € (a,b). We
claim that |f(z) — f(y)| < sl —y|. If z = y, then clearly |f(x) — f(y)] = 0 < s|z — y|.
Now suppose x # y Then by the Mean Value Theorem, there exists z between x and y such
that f'(z) = L2200 Since L2210 = | #7(2)| < s, it follows that | f(z) — f(y)| < s|lz — y|.
Therefore, f is L1psch1tz Contlnuous

Conversely, suppose f is Lipschitz continuous. Then the set

S={c=0:f(z) = [yl < clz —y| for all z,y € (a,b)}
is non-empty. Pick ¢ € S. Then
<c

f(@) = f(y)
r—1Yy
for all z,y € (a,b) such that x # y. As a consequence of Proposition [3.9(e) and Theorem
4.2 we have that

T—T0 r — Xy T—=To Tr — Xy
On the other hand,
i 10— S| _
T—T0 T — X9
since \f(x—| < cfor all x # xo. Therefore, |f'(z0)| < ¢, 80 sUpP,cap [f' ()] < ¢ < 0.

Since c is an arbitrary element of S, we know that

sup |f'(x)] < inf(S).

z€(a,b)

On the other hand, in the first paragraph, we proved that sup,¢(, [f'(z)| € S. Therefore,
SUD,e(ap) |/ (%) = Inf(S), s0 sup,e(qp) [ f'(7)] is the Lipschitz constant of f. O
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Theorem 5.27. Let [ : [a,b] — R be continuous. Suppose f is differentiable everywhere
on (a,b) except at finitely many points r1 < 9 < -+ < x,. Let xg = a and x,.1 = b, and
SUPPOSe 8; = SUDye(z, o) |f ()] 4 finite for all 1 < i < n+ 1. Put M = maxi<i<ni1 Si-
Then |f(z) — f(y)| < M|x —y| for all x,y € [a,b].

Proof. Without loss of generality, suppose x < y. If there exists 1 < i < n + 1 such that x
and y are both in [z;_1, 2;], then by Theorem If(z) — f(y)] < si(z —y) < M(xz—vy).
Otherwise, there exists 0 < j <k <n+1such that z < z; < 241 <--- <z <y. Then

f(x) = F)| < |f(@) — fla)] + Z |f(:) = F@iea)| + | fx) — F()
i=7+1
k

< sj(x; — ) + Z si(x;i — xi—1) + Sp+1(y — @) by Theorem [5.26]

i*j—f—l

<M ZM —xi1) + M(y — xy)

i=j7+1

= M(y — ).
O

Exercise 5.28. If f : X — Y is Lipschitz continuous and ¢ : Y — Z is Lipschitz continuous,
is go f : X — Z Lipschitz continuous?

5.4 The Intermediate Value Theorem for Derivatives

The following theorem shows that the derivative of a function always satisfies the conclusion
of the Intermediate Value Theorem, without assuming that the derivative itself is continuous.

Theorem 5.29 (Darboux). Let f : (a,b) — R be differentiable, and let c,d € (a,b) such
that ¢ < d. Then for any yo € R between f'(c) and f'(d) inclusive, there exists xy € [c,d]
such that yo = f'(xq).

Proof. Let g(x) = f(x) —yox for all x € (a,b). Then ¢'(x) = f'(x) —yo for all z € (a,b). We
just need to show that there exists o € [c, d] such that ¢'(x¢) = 0.

Without loss of generality, suppose f'(¢) < f’(d). Observe that ¢'(c) = f'(¢) —yo < 0
and ¢'(d) = f'(d) —yo > 0. If ¢’(¢) = 0 or ¢’(d) = 0, then we are done since we can pick
Ty = c or g = d as appropriate. Suppose, then, that ¢’(¢) < 0 < ¢’(d). By the Extreme
Value Theorem, there exists zo € [¢,d] such that g(z¢) < g(z) for all x € [¢,d]. Since
g'(c) = lim, .+ % < 0, there must exist z; € (¢,d) such that (I)_C(C) < 0. Then
g(xo) < g(x1) < g(c), so xg ;é c. A similar argument shows that xo # d. Hence, x¢ € (¢, d),
so g has a local minimum at xy, which means ¢'(x¢) = 0. [

Darboux’s Theorem does not imply that derivatives are continuous. In fact, the converse
of the Intermediate Value Theorem does not always hold. The following example shows a
derivative with a discontinuity.
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Example 5.30. Define f : R — R by

B xzsin(%) ifx#£0
f(x)_{o if & = 0.

For this example, let us recall the derivative of the sine function from introductory calculus.
If z # 0, then by the product and chain rules,

s (2) [ron ()] (-2) o (2) - ().

Since 0 < |zsin (1) | < || for all z # 0, we have that lim,_, |z sin (1) | = 0 by the Squeeze
Theorem. Hence, lim,_,q z sin (%) =0, so

1
70 = i =50 =ty T~ (1) =

Let z,, = ﬁ for each n € N. Then lim,,_,o, x,, = 0, but

lim f'(z,) = lim isin(2n7r) — cos(2n7r)] = lim —1=—1# f'(0).

n—00 n—oo | N n—00

Therefore, f’ is not continuous at 0.

5.5 The One-Dimensional Inverse Function Theorem

Theorem 5.31. Let f : (a,b) = R and ¢ € (a,b). Suppose there exists r > 0 such that f
is differentiable on N,(c), and suppose f'(x) # 0 for all x € N,(c). Then f is injective on
N,.(c). Let g : f(N.(c)) = N,(c) be the inverse of f on N.(c). Then g is differentiable and

for all x € N, (c).

Proof. By Darboux’s Theorem, f’(x) must have the same sign for all x € N,(¢). Without
loss of generality, suppose f'(x) > 0 for all z € N,(¢). Then f is strictly increasing and
hence injective on N,(c). Let g : f(N.(c)) — N,(c) be the inverse of f on N,(c). [To be
precise, let h : N,.(c) = f(N,(c)) be the restriction of f to N,.(c). Then h is invertible, and
we let g =h': f(N,(c)) = N,(c)]

Fix xy € N,(c) and € > 0. We want to show that

i 9@ —9(f(zo)) 1
y=i() Yy — f(zo) f'(wo)

It suffices to show that
I y—f (xo)
im —m~

v i) g(y) — 2o f'(@o)
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since this fact (along with the assumption that f’(x¢) # 0) would imply that

i 9W) —9(f(o)) o 9(y) — w0 1 ,1 .

y=fzo) Y — f(xo) y=Fa0) y = f(20)  Timy, say) y(yJ)‘ (o) ~ (o)
Since lim,_,,, %ﬁmo) = f'(xo), there exists d; > 0 such that 0 < |z — x| < 0, implies
|fx—wo) — f(x0)| < €. Choose s > 0 small enough such that s < §; and Ng(z9) C N,(c).

Now choose x_,x, € Ny(zo) such that x_ < xy < xy. Then (x_,z4) C Ny(z9) C N,(c).
Since f is strictly increasing and continuous on N,(c), the Intermediate Value Theorem
implies that f((z_,z4)) = (f(z-), f(z4)). Since f(x_) < f(zo) < f(xy), there exists do > 0
such that Ny, (f(z0)) C (f(xz), f(z4)). Fix y € f(N,.(c)) such that 0 < |y — f(zo)| < 0.
Then f(z_) <y < f(zy), so z_ < g(y) < x4 since f is strictly increasing on N, (c). Also,
g(y) # xg since y # f(xg), s0 0 < |g(y) — o] < 61 since g(y) € (v_,z;) C Ns(x0) and s < ;.

Therefore,
M) = 1120y oSt
g(y) — 70 f (ZL'()) g(y) — 0 f (l’o) <,
50 limy_, f(z) % f'(xo) as required. O

Proposition 5.32. Fizn € N and let f(z) = z'/™ for allz > 0. Then f'(z) = L2(/m=1 for
all x > 0.

Proof. Let g : [0,00) — [0,00) be defined by g(z) = z". Then ¢'(z) = nz"! > 0 for
all z > 0. Also, f : [0,00) — [0,00) defined by f(x ) z'/" is the inverse of g since
flg(z)) =z = g(f(z)) for all x € [0,00). Fix xy € (0,00), and let yo = g(zo) € (0, 00).
Then "
1 1 1 X " 1 1/n)—1
f(xo) = f'(9(w)) = =—= =20 = gl
(20) = 100 = G5 = e = i = s =

]

From here, we can derive the power rule for rational exponents. Fix ¢ € Q, and write
g =" where m € Z and n € N. Let f(z) = 2% = (z'/")™ for all z > 0 (see Exercise [L.24)).
Then by the Chain Rule,
m m

1
fl(iC) — [m(l’l/n)mil][gﬂf(l/n)il] — E(xl/n)mmfl — E$(m/n)fl — ql,qfl

for all x > 0. We will use this result to prove the full power rule for real exponents in
Exercise [7.25]

5.6 Taylor’s Theorem

Taylor’s Theorem generalizes the Mean Value Theorem.

Theorem 5.33 (Taylor’s Theorem). Let n > 0 be an integer, and let f : (a,b) — R be
(n + 1)-times differentiable. Let ¢ € (a,b), and define

nrk) (e
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(remember that 0° = 1 by convention). Then for any x € (a,b), there exists £ between x and

¢ such that )
Jzn n 1()6!) Cali

Proof. First, observe that f*)(c) = TT(Lk)(c) for all 0 < k < n and that Ténﬂ)(y) = 0 for all
y e R.
If x = ¢, then we can just pick £ = ¢ since

f(x) = To(x) =

0 f(nH)(c) n+1
fle) = Th(c) =0 = m(c—c) :
Suppose x # c. Define ¢ : (a,b) — R by
o(0) = )~ Toly) — sy — o)™
" (n+1)!
e @) - Ti(x)
x) — Th(x
A=2"2 1.
(x — )1 (n+1)
Then g*)(c) = 0 for all 0 < k < n. Now note that g(x) = 0 = g(c), so by Rolle’s Theorem,
there exists x; between x and ¢ such that ¢’(x;) = 0. By induction, suppose that for

some integer 1 < k < n, we have found z;, between x and ¢ such that ¢*)(x;) = 0. Then
¥ (1) = g™ (c). Since f is (n+1)-times diifferentiable, so is g. Hence, ¢'*) is differentiable,
so by Rolle’s Theorem, there exists 25,1 between x and ¢ (hence between x and ¢) such that
g* ) (2411) = 0. By induction, there exists 2, between x and ¢ such that ¢+ (z,,41) = 0.
Let £ = z,41. Then

0= g0 = /() — 4 = (e - LU= B oy
" P
) = Tote) = £ = o,

]

Exercise 5.34.
(a) Let p: R — R be a polynomial of degree n. Show that for any ¢ € R, there exist
constants ay, ..., a, € R (dependent on ¢) such that

n

p(z) = Z ap(x — c)f

k=0

for all z € R.
(b) Let n € N and ¢ € R. Show that for any polynomial p : R — R, there exist a
polynomial ¢ : R — R and constants by, ..., b, such that

p(a:) — oz o by
(:C—c)"_Q()+;(:C—c)k'

96



Exercise 5.35 (from a final examﬂ at UBC). Approximate /e to an error of less than 1073
using a finite sum of rational numbers. That is, your sum S should satisfy the inequality
|S — y/e| < 1073. Tt should be possible to compute your sum with a calculator.

5.7 L’Hoépital’s Rule
Theorem 5.36. Let f,g: (a,b) — R be differentiable. Suppose

L = lim fl(m)
z—at @ (IE)
exists.
(a) If lim, .+ f(x) =0 = lim, ,.+ g(x), then
lim M =L
z—at g(l’)
(b) If lim, .+ |g(z)| = oo, then
tim £ g
z—at g(l‘)

Proof. Fix € > 0. There exists d; > 0 such that if x € (a,a+ ), then |’;:§;”)) — L| < min{e, 1}.

For any x,y € (a,a + §;) such that g(x) # g(y), there exists ¢ between x and y such that
) - @) o)
9(y) —g(x)  ¢'(c)
by Cauchy’s Mean Value Theorem. Note that ¢ € (a,a + 6;), so
fly) = f(z)

W) =@ L| < min{e, 1}. (1)
(a) If lim,_,,+ f(y) = 0 = lim,_,,+ g(y), we see that
M lim —f(y) — @) €[L—¢L+¢€.

g(z) et gly) — g(x)

Therefore, |% — L| < e for any x € (a,a + d1) in the domain of 5, so lim, -+ % =1L.

(b) Choose z = “t € (a,a + &;). Since lim, .+ |g(y)| = oo, we have

limmz limM:(}

y—at g(y) y—a't g(y)

Hence, there exists 0 < §, < & such that [Z2| < ¢ and |42| < min{e, 1} whenever
9(y) 9(y)

yHE (a(,ia + 09) and g(y) # 0. Then g(y) # g(z) since |%| < 1, so division by g(y) — g(x) is
allowed. Hence,

_@‘ ‘ _fly) — f@) ‘f(y)—f B

’L aw | =1 s —9@ | o) =g 9(y)

"https://secure.math.ubc.ca/Ugrad/pastExams/Files/320_2015WT1.pdf

(r)  fly) = f(=)

N ‘f(y) — flz)  fy)
9(y) 9(y)
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fly) —fx)  fly) = f(=) ‘—f(l’)
=) gl o A T
fly) = flx)  fly) — [(z)
<2 ) — g 9(y)
Focusing on the remaining absolute-value term, we have
fly) = flx)  fly) — fl=) ‘f( y) — f(x) _‘g(x)
9(y) — g(x) 9(y) (y) —g(=) | |9(y)
fly) — flx) _L‘ L) ‘M
<' 9(y) — g(x) +i 9(y)
< (1+[L))e by (@D
Therefore,
_fw)
‘L o(0) < (3+|L)e
for all y € (a,a+ d2) in the domain of f We conclude that lim,,_,,+ g W) — I, since 3+ |L| is
independent of e. O
Remark. The proof can easily be extended to cover the case where a = —oo. By symmetry,

L’Hopital’s Rule also applies to the limit lim,_,;- G gx)) (including when b = 00).

Exercise 5.37. Do Exercise |5.21| using L’Hopital’s Rule.

Exercise 5.38. Extend L’Hopital’s Rule to the case where L = £o0.
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6 The Riemann—Stieltjes Integral

In this chapter, we fix a < b, f : [a,b] — R bounded, and « : [a,b] — R monotonically
increasing.

6.1 Definition of the Integral

Definition 6.1. A partition P of an interval [a,b] C R is a list of real numbers xy < 1 <

- < x,, where ry = a and z,, = b. Note that the points z; need not be distinct. A refinement
of P is another partition P’ such that P C P’. The common refinement of two partitions
P and Py is P, U Bs.

Definition 6.2 (The Riemann—Stieltjes Integral). Let P = {xy,...,x,} be a partition of
la, b]. Denote

M;,= sup f(x),

T€[wi_1,%;]

m; = inf f(x)v

TE[Ti—1,%;]

and
Aa; = o) — a(zi-1)

for all 1 < < n. Note that M; and m,; are finite since f is bounded by assumption. Then
UP, f, o Z M; Ao

and

L(P, f,«a) Z:mzAOzZ

are the upper and lower sums (respectively) of f with respect to P and «. The upper integral
of f with respect to « is

Y
/ fda = irlgf U(P, f,«),

and the lower integral of f with respect to « is
b
[ tda=suwpL(P.f.0)
a P

where the infimum and supremum are taken over all partitions P of [a,b]. If the upper and
lower integrals are equal, then f is Riemann—Stieltjes integrable with respect to « on [a, b],
and we define the Riemann—Stieltjes integral of f with respect to a to be

/abfda = ffda _/ibfda.

If f is integrable with respect to a, we write f € R,[a, b].

99



Note that removing duplicate points from a partition P does not affect U(P, f,a) or
L(P, f,«) since Aq; =0 if 2,1 = x;.

If a(x) = x, the Riemann-Stieltjes integral f; f da: becomes the Riemann integral fab fdx.
The notations R, |[a,b], U(P, f,«), and L(P, f,«) become R[a,b], U(P, f), and L(P, f), re-
spectively. If f € R[a,b], we say that f is Riemann integrable on [a,b].

6.2 Which Functions are Integrable?

It is now natural to ask which functions are in R,[a,b]. We will not fully characterize all
functions in R,[a, b], but we will see that R,[a,b] is a fairly general class of functions. For
example, every continuous function on [a,b] is in R,[a,b]. The theory of integration will
therefore be applicable to a wide variety of functions.

Theorem 6.3. Let P be a partition of [a,b]. If P’ is a refinement of P, then
L(P, f,o) < L(P', f,a) <U(P', f,0) SU(P, f,a).

Proof. Write P’ = {xo, ..., z,}. Since infrefs, , o) f(T) < SUDepy, 0 f(2), We immediately
have that L(P', f,a) < U(P', f,a). We now show that L(P, f,«) < L(P’, f,«); the proof
that U(P', f,a) < U(P, f,«) is similar. Since P’ is a refinement of P, we have that P =
{Tmgs -+ s T, } Wwhere 0 =my <my <--- < my =n. Now

Up )= (nt ) o) — alri)

=1 T[T 1,

— zk: f: (m[mf f(x)) [o(@;) — 1))

Ti_1,T;
j=1 i=m;_1+1 i=1,i]

> Z Zj ( inf ]f(iﬂ)) [a(z;) — a(zi1)]

TE|T
j=1 i=m;_1+1 (@1

since [2i_1, 2] C [Tm,_,, Ty, ] for my_1 +1 < <my

- Z (xe[xnjnf ;] f(m)> atm) = atm-)

= L(P, f,«).

Theorem 6.4. For any partition P of [a, b,

L(P,f.a) < /bfda < /bfda < U(P. f.0).

Proof. By Theorem [6.3| L(P, f,a) < L(P', f,a) < U(P', f,a) < U(P, f, ) for all refine-
ments P’ O P. Hence,

L(P, f,a) < sup L(P', f,a) < /fda

P'OP
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and o
b
> i ! > .
UP. o) > o UPf.0) = [ fdo
It remains to prove that f:f da < f_abf da. Let @ be a partition of [a,b], and let P, = PUQ
be the common refinement. By Theorem
L(P,f,Oé) S L(P*,f,()é) S U<P*7f7a) S U(Q7f7a)

since P, is a refinement of both P and (). Since () is arbitrary,

L(P, f,a) < ing(Q,f, a) = /abfdoz.

This inequality holds for any partition P, so

b b
/ fda=sup L(P, f,a) < / f da.
Ja_ P a

]

Theorem 6.5. f € R,[a,b] if and only if for all € > 0, there exists a partition P of |a, b
such that U(P, f,a) — L(P, f,a) < €.

Proof. Suppose [ € Rq[a,b]. Then supp L(P, f,«) = infp U(P, f,«). Fix € > 0. Then there
exist partitions P;, P, of [a,b] such that
€

L(Pl,f,Oé> >SupL(P,f,Oé>——
P 2

and

U(Py, f,a) < inf U(P, f,0) + g
Let P = P, U P, be the common refinement. Then
L(thaa) S L(P,f,C() S U(P,f,@) S U(Pg,f,Oé),

SO
U(P, f,a) — L(P, f,a) < U(Py, f,a) — L(Py, f,a) < g + % —

using that supp L(P, f,«a) = infp U(P, f, ).
Conversely, suppose that for all € > 0, there exists a partition P of [a,b] such that
U(P, f,a) — L(P, f,a) < e. Fix € > 0, and choose such a partition P. Then

i b
/fda—/fdaSU(P,f,a)—L(P,f,a)<6

by Theorem Since € > 0 is arbitrary,

ffd&—/abfdag(].

Hence, f_;f do < f;f do. But by Theorem, f_abf do > f;f dov, so in fact, f_;f do = fabf do,
which means f € Ra[a,b]. o O
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Theorem 6.6. Suppose f is continuous. Then f € R,[a,b].

Proof. Since f is continuous and [a, b] is a compact set, f is uniformly continuous on [a, b].
Hence, for any fixed ¢ > 0, we can choose 6 > 0 such that if z,y € [a,b] and |z — y| < J,
then | f(z) — f(y)| < e. Let n € N be such that 1 < 4, and choose P = {xy, ..., z,} where
xi:a+b_7“ifora110§i§n. We have that a = 29 < 21 < --- <1z, = b, so P is indeed a
partition of [a, b]. Note that z; —x;_1 = = < 6, so for any z,y € [z;_1, ;], we have [z —y| < §
and consequently |f(z) — f(y)| < e. It follows that M; —m; < e for all 1 <i <n (using the
notation of Definition [6.2). Therefore,

n

U(P, f,a) = L(P, f,a) = Y _(M; = mi)Aa; < €Y Aaq; = ea(b) — afa)].

i=1 =1

The last equality follows since Y | Aa; = Y o [a(x;) — a(w;_1)] telescopes. By Theorem
6.5, f € Rala,b] since e[a(b) — a(a)] becomes arbitrarily small with a suitable choice of e. [

Theorem 6.7. Suppose « is continuous and f is monotonically increasing. Then f €
Rala, b].

Proof. The proof is essentially the same as the proof of Theorem [6.6], except that the roles of
f and « are switched. For a fixed € > 0, pick 6 > 0 such that if z,y € [a,b] and |z —y| < 6,
then |a(x) — a(y)| < € this is possible due to uniform continuity of o on the compact set
[a,b]. Let n € N be such that 1 < 4, and choose P = {xy,...,z,} where z; = a + =% for
each 0 < i < n. Since |z; — x;_1| = % < 0, we have that a(z;) — a(z;_1) < €. Also, since f
is monotonically increasing, we have that M; = f(x;) and m; = f(z;_1) for all 1 < i < n.
Therefore,

n

U(P, f.a) = L(P, f,a) = Y [f(z;) — f(zim)][al(2:) — (i)

i=1
<e) [fla) = flai)]
i=1
= €e[f(b) = f(a)];
so f € Rala,b] by Theorem [6.5] since €[f(b) — f(a)] can be made arbitrarily small. O

Theorem 6.8. Suppose f is discontinuous at only finitely many points and that o is con-
tinuous wherever f is not. Then f € R,|a,b.

Proof. Let ty < --- < t; be the points of [a,b] at which f is discontinuous. The idea is to
create partitions P where each ¢; is surrounded by a pair of points in P. We will ensure that
the space enclosed by each pair of points is very small. As a result, the contribution of the
t; to U(P, f,a) — L(P, f,«) will be very small. The proof of Theorem tells us how to
handle the portions of [a,b] on which f is continuous. We now give the technical details.
Fix € > 0. Let §; = minj<;<x{t; — t;—1} > 0. Since « is continuous at each ¢;, and there
are only finitely many of them, there exists 0 < dy < d; such that for all 0 < i < k, if
x € |a,b] and |x —t;] < g, then |a(x) —a(t;)| < e. We construct a partition of [a, b] with the
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following steps. We start off with an empty list P. First, add a and b to P. Next, for each
0<i<k,ifx; = ti—%ég € [a,b], add z; to P, and do the same with y; = ti+%52 if y; € [a,b].
Note that z; and y; are not equal to any of the ¢; since d5 # 0 and |t; — ¢;| > 01 > %52 for
any j # i. For the next step, consider the set

E=la,b N (U(ﬂﬁz,yz)) ;

1=0

which is closed and bounded in R, hence compact. Note that f is continuous (and hence
uniformly continuous) on FE since none of the z; and y; are points of discontinuity of f.
Choose 03 > 0 such that if x,y € E and |z — y| < J3, then |f(z) — f(y)| < e. Choose n € N
such that % < 03, and for each 0 < i < n, if p; =a+ b_T“z € F, add p; to P. Finally, ensure
that all elements in P are distinct by removing any duplicate elements from P.

Write the resulting list P as {so,...,s,}. We now observe that if [s;_1,s;] contains ¢,
for some 0 < j < k?, then [Si—lasi] C [.I‘j,yj]. Hence, |5i—1 — t]’ < 52 and |Si — tj| < (52, SO
Aa; = afs;) —a(si—1) = [a(s;) —a(t;)]+[a(t;) —a(si—1)] < 2e. Note that there are at most &
intervals [s;_1, s;] that contain one of the ¢;. On the other hand, if [s,_1, s;] does not contain
any of the ¢;, then [s;_1,s;] C E, so s; — s;-1 < % < ¢, which implies that M; — m; < e.
Denote M = sup,c(, 4 |f(7)], and note that M; —m; < 2M for all 1 <i < n. Therefore,

U(P, f,a) — L(P, f,a)) = Z (M; — m;)Acq; + Z (M; — m;)Aq;

tj€[si—1,54] tié[si—1,54]

< 2¢ Z 2M + € Z Aq;

tje[si,l,si] tj€[sz‘7178i]
< 4AMke + e|a(b) — a(a)]
= [AME + a(b) — a(a)le.

Since 4Mk + a(b) — a(a) is independent of €, f € Ry[a,b] by Theorem [6.5] O

Theorem 6.9. Suppose [ € Ryla,b]. Let m,M € R such that m < f(z) < M for all
x € [a,b]. Suppose g : [m, M] — R is continuous. Then go f € R,|a,b].

Proof. Fix € > 0. Since [m, M] is compact, g is uniformly continuous, so there exists § > 0
such that if 7,y € [m, M] and |z —y| < §, then [g(x) —g(y)| < €. Let K = sup (. 9(f(2))].
For each partition P = {x;}!' , of [a,b], let

Sp={1<i<n:M;—m; >d}

and

Np = Z Aay,

i€Sp

where M; = sup,cy, 2,1 f(2), mi = infoepe,_, 0 f(2), and Acy; = a(x;) — a(z;—1). We can
think of Np as measuring the portion of the interval [a, b] on which M; —m; is uncontrolled.
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The key ingredient of this proof is the following observation: there must exist a partition
Q of [a,b] such that Ng < €. If not, then every partition P of [a,b] would satisfy Np > e
and consequently

U(P, f,) = L(P, f,a) > Y _(M; — m;)Aa; > 6Np > be.

1€Sp

But this means U(P, f,a) — L(P, f,«) cannot get arbitrarily small, contradicting the as-
sumption that f € Ra[a,b].

Therefore, we can take a partition @ = {xo,...,z,} such that Ny < e. Denote U; =
SUD (e 10 9(f (7)) and Ly = infoer,_, 2, 9(f()). Note that if i ¢ Sg and z,y € [z, 2],
then |f(z) — f(y)| < M; —m; < 0, so |g(f(z)) — g(f(y))| < e. Hence, if i &€ Sy, then
U; — L; <e. Also, for any 1 <i <n, we have U; — L; < 2K. Therefore,

n

U(Q,g0 f,a) = L(Q,go f,a) = > (U; — L) Aa

=1

i€Sq 1€Sg
< ela(b) — a(a)] + 2K Ng
< ela(b) — a(a)] 4+ 2Ke
= [a(b) — a(a) + 2K]e.
By Theorem [6.5, g o f € Ra[a,b] since a(b) — a(a) + 2K is independent of e. O

Exercise 6.10 (Right Riemann Sum). Suppose f € R[0,1]. Prove that

JEEOZ ()= [ e

6.3 Properties of the Integral

Theorem 6.11 (Linearity Properties). Suppose f, g : [a,b] — R are bounded, o, 5 : |a,b] —
R are monotonically increasing, and ¢ € R.

(a) If f € Rala,b], then c¢f € Ryla,b] and

/abcfda:c/abfda.

(b) If f,g9 € Rala,b], then f+ g € Ryla,b] and

/ab(f+g)da: abfdoz—i—/abgda.

(c) If f € Raula,b] and ¢ > 0, then f € Renla,b] and

/fdca —c/ f da.
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(d) If f € Rala,b] and f € Rgala,b], then f € Roysla,b] and

/abfd(a+ﬁ)—/abfda+/abfdﬁ.

Proof. Parts (a) and (b) follow from properties of suprema and infima, and parts (c¢) and
(d) follow from linearity of sums. The proof for part (b) is worth elaborating on. It is not
hard to show that

/abfda—l—/abgdag/ab(f+g)da§/ab(f+g)da§ffdoz+/abgda

for any bounded f,g : [a,b] — R. If f,g € Ryla,b], then fabfda = f;fda = f;fda and

fabg da = fjg do = ff gda. This causes the inequalities above to become equalities, and
part (b) follows. O

Corollary 6.11.1. Suppose f,g € Ryla,b]. Then fg € Ra[a,b].

Proof. The map x + x? is continuous on R, so 2, ¢% (f + g)? € Rala,b] by Theorems
and [6.11] Consequently, fg = 1[(f + 9)? — f* — ¢*] € Ra[a, b] by Theorem (6.11] O

Remark. Theorem and its corollary show that R,[a,b] is an “R-algebra” (i.e. R,[a,d]
is a vector space over R together with a multiplication operation that interacts nicely with
the vector-space operations).

Theorem 6.12. Let ¢ € [a,b]. Then f € R,a,b] if and only if f € Rala,c] and f € R,lc,b],

in which case we have that
b c b
/ fd&:/ fdoz—i—/ fda.

Proof. Fix € > 0. Suppose f € Ry[a,b]. By Theorem [6.5] there exists a partition P =
{zo,...,x,} of [a,b] such that U(P, f,a) — L(P, f,a) < e. Construct a refinement P, =
{Y0,- -, Yn+1} of P by inserting ¢ into P. Since P, is a refinement, we have that

U(P., f,a) = L(Py, f,a) <U(P, f,a) = L(P, f,a) <€
by Theorem[6.3] Let Py = {yo,...,c} and P» = {c,...,yns+1}. Then
U(Py, foa) = L(Py, f,a) SU(Py, fya) — L(Py, foa) < €

and
U(Py, foa) — L(Py, fya) < U(Py, fya) = L(P, f,a) <e.

Since Py and P, are parititons of [a,c| and [c,b], respectively, Theorem implies that
f € Rala,c] and f € R,[c,b]. Notice that

UP, f,a) +U(P,, f,a) =U(P,, f,«a)
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and

L(Plafaa)+L(P27fva) :L<P*,f,04)-
Using Theorem [6.4] we see that

</acfdoz+/cbfda> _/abfdaﬁU(Pl,f7o¢)+U(P2,f7a)_L(P*,fja)

=U(P,, f,a) — L(P,, f,«)
<€

and

b c b
/fda—(/ fda+/fda)gU(P*,f,a)—L(Pl,f,a)—L(PQ,f,a)

:U(P*,f,a)—L(P*,f,a)
< €,

so taking € — 07 yields the formula [* fda = [© fda + [ f da.

Conversely, suppose [ € Ry[a,c] and f € Rq[c,b]. Let P, = {zo,...,x,} be a partition
of [a,c] and Py = {yo,...,ym} be a partition [c,b] such that U(P, f,a) — L(Py, f,a) <
and U(P,, f,a) — L(P, f,a) < 5. Note that x, = ¢ = yo. Consider the partition P
{zo,. .., Zn, Yo, -, Ym} of [a,b]. Since x, = yy, it follows that

£
2

UP.f.0) = L(P.f.0) = U(P, f.0) + U(Py f.0) = LR\, f.0) = L(Po, f0) < S + 5 = €.

Hence, f € Rq[a,b]. O

As a corollary of Theorem [6.12] we note that if [c,d] C [a,b] and f € R,[a,b], then
f € Rale,d]. Indeed, if f € R,la,b], then f € R,[c,b] since ¢ € [a,b], and hence f € R,]c,d]
since d € [¢,b]. We now use this fact to prove a theorem about the continuity of Riemann-
integrable functions.

Lemma 6.13. Let a < b. If f € Rla,b], then f is continuous at some point in [a,b].

Proof. Suppose f € Rla,b]. For any partition P = {zo,...,2,} and any integer 1 < i <
n — 1, denote M;p = Sup,cpy, , 4,1 f(x) and m;p = infocpp, o f(7). There must exist a
partition P, = {xo1,..., 2,1} of distinct points of [a, b] such that M;, p, — m;, p, < 1 for
some 1 < 4; < ny. Otherwise, U(P, f) — L(P, f) > 1(b — a) for all partitions P of [a,b],
contradicting that f € R[a, b]. Without loss of generality, we can assume that 2 < i; <n;—1
because if needed, we can split [xg, 21| or [z,,-1,2,,] into three equispaced subintervals
and take the endpoints of the middle subinterval to be x;,_y and z;,. We know that f €
Rlzi —1, ;] since [x;,_1,x;,] C [a,b]. By similar reasoning as before, there must exist a

partition Py = {Zoy2, ..., Zn,2} of distinct points of [x;,_1,2;,] such that M;, p, — my, p, < 3
for some 2 < iy < ny—1. Continuing inductively, we see that for all j > 2, there must exist a
partition P; = {xq, ..., ¥y, ;} of distinct points of [x;, , 1, z;;_,] such that M;, p,—m;, p, < %

for some 2 <i; < n; — 1. Denote K; = [x;,_1, 7] for each j € N. Then Kj is compact and
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Kjiin C Kjforall j €N, so K = ﬂ;’il K is non-empty. Pick x € K, and fix € > 0. Pick
J € N such that % <e Thenx € Kj1 = [v4,,,-1,%4,,,] C (z5;-1,7;;) by construction since
2 <ijy1 < njp1 — 1. There exists § > 0 such that Ns(z) C (24,-1,74,) since (w41, ;) is

open. Note that

. 1
sup  f(z) — inf  f(x) = M, p, —mi; p, < ; <é

‘%E[ﬁ?ij—lywij] :Ee[ri]‘_l7m’ij]
soif [y — x| < 4, then |f(y) — f(v)| < esince y € (w4,_1, 7). Thus, f is continuous at . [

Theorem 6.14. Suppose f € Rla,b] where a < b. Let S C [a,b] be the set of points at which
f is continuous. Then S is dense in [a,b].

Proof. Suppose z € [a,b]. Fix r > 0, and define s = max{a,z — 5} and ¢t = min{b, v+ 5}. A
case-by-case analysis shows that s < t. We have that [s, t] C [a,b] and [s,t] C N,(x). Hence,
f € R[s,t]. By Lemma [6.13] there exists g € [s,?] C N,(z) such that zy € S. Therefore, z
is a limit point of S. It follows that S = [a, b]. O

Now we resume our discussion of some basic properties of the integral.

Theorem 6.15 (Basic Inequalities).
(a) Suppose f,g € Rala,b] and f(x) < g(x) for all x € |a,b]. Then

b b
/fdag/gda.

(b) Suppose f € Ryla,b]. Then
b b
[ 7da) < [Ci11de

(c) Suppose f € Rala,b], and suppose |f(x)| < M for all x € [a,b]. Then

/abfda

Proof. (a) Observe that U(P, f, ) < U(P, g,«) for any partition P. Thus, fabf da < fabg dao.
Conclude by using that f,g € R,[a,b].

(b) Since x — |z| is continuous on R, Theorem implies that |f| € Ra[a,b]. For any
partition P = {xo,...,x,}, we have that

< M[a(b) — a(a)].

sup f(x)

TE€[T5—1,%;)

< sup |f(z)|

x€[wi_1,2;]

for all 1 < i < n (if not, a contradiction is casily ¢ obtained)._ The Triangle Inequality now
implies that |U(P, f,«)| < U(P,|f|,«). Hence, f;f da| < fab\f\ da, and the desired result
follows since f,|f| € Rala,b].

(c) Apply part (b) and then part (a) with g(z) = M. A full proof would show that
f; M da = M|a(b) — a(a)], but this is an easy exercise. O
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Theorem 6.16 (Mean Value Theorem for Integrals). Let f be continuous on [a,b]. Then
there ezists ¢ € [a,b] such that

()~ a(@ls(e) = [ fda.

Proof. By the Extreme Value Theorem, there exists z,,z_ € [a,b] such that f(z,) is a
global maximum and f(z_) is a global minimum. Let g(z) = [a(b) — a(a)]f(x) for = € [a, b].
Then g(x_) < f fda < g(m+) By the Intermediate Value Theorem, there exists ¢ between
r4 and x_ SuCh that g(c) = fa fda. Since x, and x_ are in [a, b], so is c. [

Theorem 6.17. Suppose « is differentiable with o € R[a,b]. Then f € R,la,b] if and only
if fo/ € Rla,b]. If these conditions are satisfied, then

/abfda:/abfo/dx.

ffda:ffo/dm
/abfda:/abfo/dx

for any bounded f : [a,b] — R. The theorem will immediately follow from these equations.
Therefore, fix € > 0. Since o/ € R][a, b], there is a partition P = {xy,...,z,} such that

Proof. We claim that

and

U(P, o) — L(P,d) < e

For each 1 < i < n, the Mean Value Theorem implies that there exists t; € (x;_1,x;) such
that o/(t;)Az; = Ac,. For any choice of s; € [z;_1,x;], we have that

Z (s t)|Az; <U(P,o) — L(P,a') < ¢

Letting M = sup,¢(, 4 |/ ()], we see that

Zfsz sleZ<Zf AxZ+Me—ZfslA@Z+Me<U(Pf, @) + Me.

=1
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Since the s; € [x;_1, z;] are arbitrary, the inequality holds even when we take the supremum
of Y1, f(si)a/(s;)Ax; over all choices of the s;. Hence,

n

U(P, fo) = Z sup  f(s;)d/(si)Ax; <U(P, f,a) + Me.

i=1 Sie[xiflywi}

Thus, we have proved that if P, is any partition such that U(P., o) — L(P,,a') < €, then
U(P., fo') < U(P., f,a) + Me. Hence, for any refinement P, of P, we have that

U(P., fo') <U(P,, f,a) + Me.
Taking infima on both sides yields

. / <
inf U(P,, fa') < PlngU(P*,f, a) + Me.

P.DP

But in fact,

Y
inf U(P,, fa') = igf UQ, fo') = /a fo! dx

P.DP

because every partition @ of [a, b] has a common refinement with P. Similarly,

b
PingU(P*,f, a) = igf U@, f,«a) :/a fda.

We conclude that

b b
/fa’dwﬁ/fdoz+]\/[e.

A similar argument shows that

/abfo/de/abfda—Me,
Zfo/dx:ffda.
/abfa’dx:/abfda

is similar. O

so taking € — 07 yields that

The argument for showing that

Theorem 6.18. Suppose ¢ : [A, B] — [a,b] is a strictly increasing bijection. Let g = fo¢:
[A,B] > R and B =ao¢:[A B] - R. Then g € Rs[A, B] if and only if f € Rala,b], and

i this case,
B b
/ gdp :/ f da.
A a
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Proof. First note that [ is monotonically increasing since a and ¢ are monotonically increas-
ing, so we can integrate with respect to 8. Let P = {xy,...,x,} be a partition of [A, B]. Let
y; = ¢(x;) for each 0 < i <n. Then Q = {yo,...,yn} is a partition of [a, b] since ¢(xg) = a,
¢(x,) = b, and ¢ is strictly increasing. For each 1 < i < n, ¢ : [x;_1,2;] — [yi_1,u:] is a
bijection, so

sup  f(o(x)) = sup  f(y).

r€[Ti—1,25] YE[Yi—1,Yi]
Therefore,

i=1 z€[Ti—1,24]

= sup f((b(@)) [a(é(7;)) — ald(zi-1))]

i—1 \Z€[zi—1,%]

- sup f(y)) [a(yi) — a(yi—1)]

i=1 YEYi—1,Y4)

= U(P, f,q).

This equation holds for any partition P, so taking infima over all partitions yields that

/abgdﬁ :dea.

A similar argument shows that L(P, g, ) = L(P, f,a) for all partitions P and hence that
b b
/ gdp = / fda.

Corollary 6.18.1 (Substitution Rule). Suppose ¢ : [A, B] — R is differentiable and strictly
increasing with ¢ € R[A, B], and suppose (f o )¢ € R[A, B]. Then f € R[p(A), p(B)]

gives
B #(B)
| Geogar= [ ran
A ®

(4)

]

Proof. Theorem says that fo¢ € Ry[A, B] and

AB<fo¢>¢'dx—ABfo¢d¢.

Now Theorem [6.18| with a(z) = z says that f € R[¢(A), ¢(B)] and
»(B)

B
l/ fopdp= fdx.
A ¢

(4)
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Exercise 6.19 (Holder’s Inequality). Let f, g € Ru[a,b] and p,q > 1 such that % + é =1
Our goal is to show Holder’s Inequality, which says that

/ '\ folda < (/ i o) " (/ b ol da "

(a) First, show that if =,y > 0, then

ry < — + —.
p q

Hint: this is a differential calculus problem. You can assume that the power rule holds for
all real exponents.

(b) Suppose fab |[fIPda=1= f: lg|? da. Use part (a) to prove that fab |fglda < 1.

(¢) Prove Holder’s Inequality assuming that fab |f|P doe > 0 and ff lg|9da > 0. Hint: use
part (b) with a carefully-crafted choice of f and g.

(d) Argue that if f; |f|P da =0 or ff lg|?da = 0, then f: |fg| da = 0. Hint: this basically
comes down to showing that if fab |f|P dov = 0, then f: |fl|do = 0. You can start by imitating
the “key ingredient” of the proof of Theorem [6.9) That is, argue that |f|” must be “small”
throughout [a, b] except possibly on some intervals whose lengths (with respect to ) sum to
be less than e. You can then bound |f| by a small number almost everywhere on [a, b].

Exercise 6.20 (Minkowski’s Inequality). This exercise gives a very important application
of Holder’s Inequality (Exercise [6.19)). Let f,g € Ra[a,b] and p > 1.
(a) Prove that

b b 1/p b
/|f|-|f+g|p‘1da§</ |f|”da) (/ |f+g|pda)
b b 1/p b 1-1/p
/|g|~|f+g\“da§</ Iglpda) (/ |f+gypda)

(b) Hence, prove that

(/ab|f+g|ﬂ°da)l/p < (/:|f|ﬁda)1/p+ (/ab|g|”da)l/p.

This is Minkowski’s Inequality; it is a triangle inequality for integrals.

1-1/p

and similarly

6.4 Step Functions
Definition 6.21. The unit step function is I : R — {0,1} defined by

I(x):{o if 2 <0

1 ifz>0.
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Theorem 6.22. Let a(z) = I(x — s) for some s € (a,b). If f is continuous at s, then
f € Rala,b] and

/abfdozzf(S)-

Proof. Suppose f is continuous at s. Fix € > 0, and choose § > 0 such that Ns(s) C
la,b] and |f(s) — f(t)] < € whenever ¢t € [a,b] and |s — t| < J. Consider the partition
P =a,s— g,s + g,b} = {x, 21,22, x3}. Note that Aa; = Aag = 0 and Aay = 1. If
t € [mr,2e) =[s—2,s+ 2], then | f(t) — f(s)| <, or equivalently, f(s) —e < f(t) < f(s)+e.
Hence,

UP, f,a) = My < f(s)+¢€

and

L(P,f,a)zmng(s)—e,

SO . —
f(s)—egL(P,f,a)g/fd(xg/fdagU(P,f,a)Sf(s)+e.

It follows that

<e

Zf da — f(s)

and

<e.

/ibfda—f(S)

But € > 0 is arbitrary, so

/abfda — f(s) = /abfda-

Theorem 6.23. Let {c,} be a sequence of nonnegative real numbers such that > cp
converges. Let {s,} be a sequence of real numbers in (a,b). Let a(x) = >~ l(x — sp).
If f is continuous on [a,b], then

]

o0

/abfda = caf(sn).

n=0

Proof. For any x € [a,b], > 7 c.d(x — s,) converges absolutely by the Comparison Test
since Y |cn| = D07, ¢n converges and |[I(z — s,)| < 1 for all n > 0. Thus, « is well-
defined. Similarly, Y >° ¢, f(s,) converges by the Comparison Test since f is continuous on
la,b] and hence bounded. Let

A, ={n>0]s, <z}

for each x € [a,b]. Tt is clear that if x; < xo, then A, C A,,. Hence, o is monotonically
increasing, so it makes sense to integrate with respect to .. Since f is continuous on [a, b],

Theorem says that f € Ra[a,b].
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Fix e > 0. Since Y~ ¢, converges, there exists N € N such that ZZO:N-H ¢n < €. Define

ap(z) = Z cnl(x — sy)

and
o

as(z) = Z cnl (T — sp).

n=N+1
Then a; and as are both monotonically increasing, and o = oy + ap. Since f is continuous,
we have that f € Rq,[a,b] and f € Ra,[a,b]. Notice that as(a) = 0 and ay(b) = > 0" v ¢n
since a < s,, < b for all n. Hence,

b o0 b b oo
[ tda=> ot = | [ sdas+ [ fdaz =3 ensisn
a n=0 a a n=0
b 00
—|[ fda= 3 et

by Theorem [6.17]

by Theorem [6.22]

n=N-+1
< Mlas(b) — as(a)] + D ¢l f(sn)] where M = sup |f(x)|
n=N11 z€[a,b]
MY Y
n=N+1 n=N+1
= 2Me.
The result follows by taking e arbitrarily small. m

Exercise 6.24. Let p > 1; z1,...,2, € R;and y1,...,y, € R.
(a) Use Minkowski’s Inequality (Exercise [6.20]) to prove that

(Z |z +in”) N < (Z Ixi|”) " + (Z |yi|p> l/p.

=1 =1 =1

(b) Now prove the same inequality assuming that the z; and y; are complex numbers.

6.5 The Fundamental Theorem of Calculus
Definition 6.25. If x > y and f € R,[y, z], we denote

/:fdoz::—/zfda.

Theorem 6.26 (Fundamental Theorem of Calculus, Part 1). Let f € Rla,b]. Define F :
[a,b] — R by

F(z) = / ")t

Then F is Lipschitz continuous. Moreover, if f is continuous at some xq € [a,b], then F is
differentiable at xo and F'(x¢) = f(xo).
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Proof. Let M = sup,¢(,5 |f(z)|. Then

|[F(z) — F(y)| = < M|z —y|

/xyfdas

for all z,y € [a,b]. Hence, F is Lipschitz continuous on [a, b].
Suppose [ is continuous at g € [a, b]. Fix € > 0, and choose § > 0 such that if x € [a, 0]
and |z — xo| < d, then |f(z) — f(zo)| <e. If0 < |h| <0 and 2o+ h € [a, b], then

F(zo+h) — F(z 1 [roth 1 [roth
=P gy <[5 [ s0de— g [ s
h h )y, hJe,

1 $0+h

3 [0 - sty

zo

1

< m’(%‘g + h) — xzole since |t — x| < h implies [t — xo| < 0

=e.

Therefore, F'(z) = f(x¢) by the limit definition of the derivative. O

Theorem 6.27 (Fundamental Theorem of Calculus, Part 2). Let f € Rla,b] and F' : [a,b] —
R such that F' = f. Then

b
/ f(z)dx = F(b) — F(a).

Proof. Fix € > 0, and let P = {zq,...,z,} be a partition of [a,b] such that U(P, f) —
L(P, f) < e. By the Mean Value Theorem, for each 1 < i < n, there exists t; € (x;_1, ;)
such that F(x;) — F(x;_1) = f(t;)Az;. Notice that

n

F(b) = F(a) =) [F(w:) = F(z;1)] = Z fti)Ax;.

i=1

Hence,

L(P, f) < F(b) = F(a) <U(P, f),

b
‘F(b) — F(a) —/ fdx| <U(P,f)— L(P, f) < e

Since € > 0 is arbitrary, it must be that |F(b) — F(a) — fjfdx| =0, so F(b) — F(a) =
fab fdx. O

Corollary 6.27.1 (Integration by Parts). Let f,g € Rla,b], and let F,G : [a,b] — R such
that F' = f and G’ = g. Then

/ F2)g(x) dz = FB)G(b) — F(a)Gla) — / F@)G () da.
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Proof. Let H(x) = F(x)G(x). Then H'(z) = f(z)G(x) + F(x)g(z) by the product rule. By
Theorems [6.11] and [6.27]

/abf(l‘)G(l’) dr + /abF(a:)g(:c) dr = /ab H'(z) dx

Subtracting f; f(z)G(z) dz from both sides yields the result. O

6.6 Integrating Vector-Valued Functions

Definition 6.28. Let f : [a,b] — R", and write f = (f1,..., f,) where f; : [a,b] — R. Let
« : [a,b] — R be monotonically increasing. We say that f € R,[a,b] if each f; is in R,[a, b].

If f € Rala,bl], then
b b b
/fda:: (/ flda,...,/ fnda)ER”.

In particular, for complex-valued functions f : [a,b] — C, we say that f € R,|a,b] if
Re(f) € Rala,b] and Im(f) € Rq|a, b].

Since integration of vector-valued functions is just component-wise integration of real-
valued functions, many of the theorems we have seen in this chapter concerning integration
of real-valued functions extend naturally to vector-valued functions. For example, we can
formulate the following analogue of the Fundamental Theorem of Calculus for vector-valued
functions.

Theorem 6.29.

(a) Let f : [a,b] — R™ be Riemann integrable. Define F' : [a,b] — R™ by F(x) =
[ f(t)dt. Then F is Lipschitz continuous. If f is continuous at xy € [a,b], then F is
differentiable at xo with F'(x¢) = f(xo).

(b) If g : [a,b] — R™ is Riemann integrable and G : [a,b] — R"™ satisfies G' = g, then
12 g(z) dx = G(b) — G(a).

The proof consists of applying the Fundamental Theorem of Calculus for real-valued
functions to each component of the vector-valued integral.

The vector-valued analogue of part (b) of Theorem is interesting because its proof
is not merely a reduction to the real-valued case.

Theorem 6.30. Let f : [a,b] — R™ be in Ry|a,b]. Then |fabfdoz| < fab |f] de.

Proof. Write f = (f1,..., fn). We should first check that |f| € Ru[a,b]. By assumption,
fi € Rafa,b] for all 1 < j < n. By Theoremsand fl=Vf++ f?€Rala,b

because the maps x +— z? (for € R) and x — /7 (for z > 0) are continuous.
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Note that fab]f|da > 0 since |f(x)| > 0 for all z € [a,b]. Hence, if \fabfda] =0,

then the desired inequality holds. Now suppose | f: fdal > 0. We will want to exploit the
Cauchy—Schwarz Inequality. For any ¢y, ..., ¢, € R, we have that

b b
/(clf1+---+cnfn)da§/ levfi + -+ enfol da byTheoremM(a)

b
§/ \/c%—l—‘”—l—c%\/ff—i----%—fﬁda by Cauchy—Schwarz

b
:\/c%—i—---—i-c%/ | f] dev.

Our goal is to select good values of ¢y, ..., c,. We observe that
2

[ ([ ran) e ([ )’

so this motivates us to let ¢; = f; fjdo for each 1 < j <n. It follows that

frof ([ se) oo ([ )

b b
:clfflda—i—---—l—cn/ fndOé
b

:/(clf1+--~+cnfn)d04

a

b
<\@+ra [ Iflda
b b ‘
/fda/mda.

Since | fab fdal > 0 by assumption, we can divide both sides of the above inequality by
| f: f dal. This gives the desired inequality. O

2
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7 Uniform Convergence

Define f:[0,1] — R by

=1
:;nQ—l—x

Is f continuous? Consider the following proof: f is continuous because for every ¢ € [0, 1],
we have

lim f(z —;gr;an”—ZHnux:Zn“c (©) (1)

n=1

using the fact that limits distribute across sums (Proposition [4.5(a)). Unfortunately, this
proof is flawed because Proposition (a) only applies to finite sums, and infinite sums
(which are not really sums, but rather limits) are fundamentally different from finite sums.

Even though the “proof” in the previous paragraph is invalid, we do often want to pass
limits through operators such as infinite sums, derivatives, and integrals. This is espe-
cially true when studying functions defined using power series (e.g. the exponential function

exp(z) = > 0o 5 ). In this chapter, we study uniform convergence of sequences of functions,

which is the main condition that allows us to move limits around. In fact, the chain of equa-

tions in turns out to be correct because the sequence of functions f N( ) = 27]:[ 1 ﬁ

for N =1,2,3,... and « € [0,1]) converges uniformly to f(z) = > >, ——. This chapter
( 2,3, : g y A p
will give us the tools to rigorously justify ([I).

7.1 Examples of Limit Interchange Failures

Example 7.1. For each n € N, let

1+nx if—%<x§0
fal@)=q1—-nz if0<z<i

0 otherwise.

Then f, is continuous for each n, but

f(z) = lim fo(z) = {1 He=0

0 otherwise

is discontinuous at x = 0. Symbolically,

lim hmfn( )=1%#0=1lim lim f,(z).

n—o00 x—0 r—0 n—o0

Example 7.2. For each n € N, define f,, : [0,2] — R by

x" fo<zx<l1
fa() = noo-
2—2—a) ifl<a<2.
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Then each f,, is differentiable at = 1 (by Exercise [5.21]), but the limiting function

0 ifo<z<1
flz)=lim f,(z) =<1 ifz=1
n—oo
2 ifl<ax<?2

is not.

Example 7.3. For each n € N, define f,, : [0,1] — R by

1 ifa:zgforsomeintegerslgpgqgn

n\T) =
Jal@) {O otherwise.

Each f,, has only finitely many discontinuities, so by Theorem each f, is in R0, 1]. But

{1 if 2 €QN0,1]

@)=l @) =10 e 0.1\ @

is discontinuous everywhere on [0, 1] and is therefore not in R[0,1] by Lemma [6.13]
Example 7.4. For each n € N, define f,, : [0,1] — R by

f(x):{n ifo<z<t

0 otherwise.

Then [ fu(x)dr = 1 for all n, but [ lim, e fo(2) do = 0 since lim, o fo(z) = 0 for all
x € [0,1]. Hence, lim,, o, fol fo(z) dx # fol lim,, o0 fr(z) dz.

7.2 Introduction to Uniform Convergence

Definition 7.5. Let E be a set. For each n € N, let f,, : E — C. We say that the sequence
of functions { f,} converges uniformly to f : E — C on E if for all € > 0, there exists N € N
such that if n > N, then |f,(z) — f(x)] < € for all z € E. In particular, note that N is
independent of any x € F.

We say that {f,} converges pointwise to f on E if for all x € E and € > 0, there exists
N € N (possibly dependent on x) such that |f,(xz) — f(z)| < € for all n > N. In other words,
fn — [ pointwise if f(z) = lim, o fn(z) for all z € E.

The reader should quickly verify that uniform convergence implies pointwise convergence.
On occasion, we will encounter sequences of real-valued functions f,, : £ — R. Note that
Definition [7.5] still makes sense for such sequences because we can view R as a subset of C.

The definition of uniform convergence may be difficult to parse or remember, so the
following proposition gives an equivalent definition.

Proposition 7.6. A sequence of functions f, : E — C converges uniformly to f : E — C
on E (in the sense of Deﬁm'tion if and only if

lim sup| £, (x) — f(z)| = 0.

n—o0 zeE
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Proof. Suppose f, — f uniformly on E in the sense of Definition [7.5] Fix € > 0, and choose
N € Nsuch that |f,(z) — f(z)| < eforalln > N and z € E. Then sup,.p |fn(z) — f(z)| <€
for all n > N. By definition of limit, lim,,_,o sup,cg |fo(z) — f(x)] = 0.

Conversely, suppose lim,, oo SUp,cp | fn(z) — f(2)] = 0. Then for all € > 0, there exists
N € N such that sup,cp|fn(z) — f(z)] < € for all n > N. If n > N, then by definition of
supremum, |f,(z) — f(z)| < € for all x € E. Thus, f, — f uniformly on E in the sense of
Definition [7.5] O

Proposition 7.7. Let f, : E — C be bounded functions that converge uniformly to f on E.
Then f is bounded.

Proof. Since f, — f uniformly, there exists N € N such that |fy(z) — f(z)] < 1 for
all z € E. By assumption, |fy(z)| is bounded above by some M > 0 for all x. Then
|f(@)] < |fn(z)|+|f(z) — fn(z)] < M +1 for all x, so f is bounded. O

Theorem 7.8 (Cauchy Criterion for Uniform Convergence). A sequence of functions f,, :
E — C converges uniformly to some f : E — C if and only if for all ¢ > 0, there exists
N € N such that | f,(z) — fm(x)| < € whenever n,m > N and x € E.

Proof. Suppose f, — f uniformly on E. Then for all ¢ > 0, there exists N € N such that
|fu(z) — f(z)] < §foralln > N and v € E. If n,m > N, then

€

2

Fa(@) = Fn@)] < ful2) = F@)]+ |f(@) = fu(@)] < 5+ 5 =
for all x € E.

Conversely, suppose that for all € > 0, there exists N € N such that |f,(z) — fi(z)] <€
whenever n,m > N and x € E. It follows that for any fixed z € E, {f.(z)} is a Cauchy
sequence in C, so lim,,_, fn(x) exists since C is complete. Define f : E — C by f(z) =
limy, o fn(z). Fix € > 0, and pick N; € N such that |f,(2) — f.(z)| < § for all n,m > N,
and r € E. Let n > Ny and = € E. Since f(x) = lim,, . fin(z), there exists Ny > N; such
that |f(z) — fn,(z)| < 5. Hence,

€

() = F(@)] < [fal2) = fro (@) + [, (2) = f(2)] < §+ 5

:6,

so f, — f uniformly on E since N; is independent of x. O]

Theorem 7.9. Suppose f, : E — C and g, : E — C converge uniformly to f and g on F,
respectively. Let ¢ € C. Then:

(a) fu+ gn — f+ g uniformly on E.

(b) cfn — cf uniformly on E.

(¢) If fn and g, are bounded for each n, then f,g, — fg uniformly on E.

Proof. (a) Fix € > 0. Let Ny, N, € N such that if n > Ny and m > Ny, then |f,(z) — f(x)] <
5 and |gm(z) — g(z)| < § for all x € E. Then for all n > max{Ny, Ny} and = € E,
€

2

= €.

[(fa+ 9)(@) = (F + 9)@)] < [fala) = F(@)] +lgn(2) — gl2)] < 5 +
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Hence, f, + g, — f + g uniformly on F.

(b) If ¢ = 0, then cf, = ¢f = 0 for all n, which immediately implies that c¢f, — cf
uniformly. Suppose ¢ # 0. Fix € > 0, and choose N € N such that if n > N, then
|[ful@) = f(2)| < g forallz € E. If n > N, then

[(efa)(@) = (ef)(@)] = le| - | fulz) = f(2)] < |e] (|c|> —f

for all x € E. Hence, cf,, — c¢f uniformly on E.

(¢) Choose Ni, Ny € N such that if n > N; and m > N, then |f,(z) — f(z)] < 1 and
lgm(z) — g(x)| < 1 for all x € E. By assumption, fy, and gy, are bounded, so there exists
My, M, € R such that |fy, (z)] < M; and |gn,(x)] < M, for all z € E. Hence,

[f(@)| < |fw ()] + 1 (2) = frx (@) < My +1

and
l9(x)] < lgn, (2)] + |9(2) — gy (2)] < Mz 41
forall x € E. If n > Ny, then

[fu(@)| < [f(0)] 4+ [fulz) = f(2)| < (My+1) +1 = M +2

for all x € E. Fix € > 0, and choose N¢, N, € N such that if n > Ny and m > Ny, then
|fu(x) — f(2)] < € and |gm(x) — g(z)| < € for all x € E. Suppose n > max{Ny, N¢, N,}.
Then for all x € E,

|(fagn)(x) = (f9) ()| = | ful2)gn(2) = fu(2)g(x) + fulx)g(x) — f(2)g(2)]
< [ fu(@)gn (@) = ful2)g(2)] + [ fu(2)g(2) = f(2)9(2)|
= fa(@)] - |gn(x) = g(@)[ + [9(2)[ - | fu(z) — f(2)]
< (M +2)e+ (My+ 1)e
= (M; + My + 3)e.
Hence, f,g, — fg uniformly on E since M; + M; + 3 is independent of . m

Theorem 7.10 (Dini). Suppose K is compact and that f, : K — R is continuous for each
n € N. Suppose that fn(x) < foy1(z) for alln € N and x € K, and suppose f, — f
pointwise on K where f: K — R s continuous. Then f, — f uniformly on K.

Proof. Since f,, < fn,.1 for all n € N, we have that f,, < f for all n € N. Fix € > 0. For each
n €N, let g, : K — R be defined by g,(z) = f(z) — fu(x), and let K,, = g, ([¢,00)) C K.
We want to show that K, is empty for n large enough.

We claim that {K,}, is a decreasing family of compact sets. Fix n € N. First, note
that g, is continuous since f and f, is continuous. Next, K, is closed because [e, 00) is
closed in R and the pre-image of a closed set under a continuous function is closed. A
closed subset of a compact set is compact, so K, C K is compact. If x € K, 1, then
€ < f(x) = far1(z) < f(x) = fu(x) since f,(x) < foi1(x), so z € K,,. Therefore, K, 11 C K,
for all n € N, proving our claim.

120



Suppose, by way of contradiction, that K, is non-empty for all n. Then (1, I, is

non-empty by Corollary 2.49.1] Choose ¢ € (e Kn. Then gn(z0) = f(z0) — ful(20) > €
for all n € N. But lim, o fn(z0) = f(x¢) by assumption, so there exists N € N such that
f(zo) — fn(xo) < €. We have obtained a contradiction, so there must exist Ny € N such that
K, is empty.

Let n > Ny and z € K. Then

[f(2) = fu(@)] = [(2) = fal2) = gn(z) <€
because g, !([e,0)) = K, C Ky, is empty. Therefore, f,, — f uniformly. O

Definition 7.11. Let f, : E — C be a sequence of functions such that f(z) => 7 fu(x)
exists for each x € E. We say that the series Y °, f,(z) converges uniformly to f on E if
the sequence of partial sums sy = 25:1 fn converges uniformly to f on E in the sense of

Definition [7.5]

Theorem 7.12 (Weierstrass M-test). Let f, : E — C for each n € N. Suppose there ezists
a sequence of monnegative real numbers {M,} such that |f,(x)] < M, for alln € N and
re E.If Y2 M, converges, then ", fn(z) converges uniformly on E.

Proof. Let sy(z) = ZnN:1 fn(z) for all N € N. Fix ¢ > 0. Since ) >, M,, converges, there
exists T' € N such that >’ M, < eforall j >i>T (see Proposition . Then

S L@ < S @< > My<e

n=1+1 n=1+1 n=1+1

|5;(2) = si(2)] =

forall j > ¢ > T and x € E. Therefore, sy converges uniformly by the Cauchy Criterion. [J

Exercise 7.13. Give an example of a sequence of bounded functions f, : R — R that
converges pointwise on R to an unbounded function f. (Compare with Proposition )

Exercise 7.14. Suppose the sequence of functions f, : £ — C converges uniformly on
E. Let g : C — C be uniformly continuous. Prove that the sequence {g o f,,} converges
uniformly on F.

7.3 Limit Interchange Under Uniform Convergence
The following limit interchange theorem justifies our efforts in studying uniform convergence.

Theorem 7.15. Let X be a metric space and E C X. Suppose a sequence of functions
fn : E — C converges uniformly to f on E. Let x € E’', and suppose A, = limy_,, f,(t)
exists for each n. Then A = lim,_,o A, ezists and lim;_,, f(t) = A.

More concisely, if lim;_,, f,(t) exists for each n (or at least for all n large enough), then
the equation
lim lim f,,(¢) = lim lim f,(¢)

n—oo t—x t—x n—o0

is valid as long as {f,,} uniformly converges.
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Proof. Fix e > 0. By the Cauchy Criterion, there exists N; € N such that |f,(t) — f.(t)] < €
for all n,m > N and t € E. Also, for each n, there exists d,, > 0 such that |f,(t) — A,| < €
whenever d(t,x) < 6,. Since z € E’, we can choose t,, € E for each n to satisfy d(t,,x) < 0.
For all n,m > Ny,

|An - Am| < ’An - fn(tn)| + |fn(tn) - fm(tm)l + ‘fm(tm) - Am|
<€eE+e+e€
= 3e.

Hence, {A,} is a Cauchy sequence, so A = lim,,_,, A, exists.

Let Ny € N be such that |[A — A,| < € for all n > Ny. Since the f, converge uniformly
to f, there exists N3 € N such that |f(t) — f.(t)] < e for all n > N3 and t € E. Let
n = max{ Ny, N3} and § = 9,,. Then for all t € F such that d(¢,x) < 6,

[f(t) = Al < [f(E) = fal®)| + [fu(t) — An| + |An — A
<e+e+te
= Je,

so limy_,, f(t) = A. O
As a result, uniform convergence preserves continuity.

Theorem 7.16. If f, : X — C are continuous functions that converge uniformly to f :
X — C on X, then f is continuous.

Proof. Let x € X. First, suppose x € X'. Since each f, is continuous at x, we have that
limy_,, fn(t) = fu(2) for each n by Theorem [4.7 By Theorem [7.15] lim, ,, f(t) exists and

lim f(t) = lim lim f,(¢) = li_)rn () = f(2).

t—x n—oo t—zx

Therefore, f is continuous at x.
If z ¢ X', then x is an isolated point of f, so f is automatically continuous at x. n

We can prove Theorem using Theorem [7.15| Let {a,,} be a double sequence of
complex numbers such that ", > . |a, | converges. We recognize that

0o 0 N M M N
Apm = lim lim E g Gpm = lim lim g E G-
Z Z i N—o00 M—00 o N—o00 M—00 om
n=1 m=1 n=1 m=1 m=1 n=1

Y

If we could swap the “limy_.~ and the “limy;_”, we would obtain the desired result.
However, Theorem only allows for the interchanging of a “continuous” limit (of the
form “lim,_,,”) with a “sequential” limit (of the form “lim,_,,”). The limits we want to
interchange are both sequential limits, so we cannot apply the theorem directly. We work
around this by defining £ = {+ | n € N} C R and a sequence of functions fy : E — C such
that

1/z N N 1/z
fN(x) - Z_lzlan,m - Zl Z_lan,m-
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Note that 0 € £ and that lim, o fy(z) = 25:1 > | nm exists for each N. Since

o0 o0

a = [i i
2 2 tnm = fim ity f(z)
n=1 m=1

and

Z Zan,m = ig%]\}l_{%ofN(x%

m=1 n=1

we can use Theorem [7.15]if the fy converge uniformly on E. Let

oo
Un - Z Ian,m|
m=1

for all n > 1. Notice that U, > |Z7ln/i1 anm| for all x € E. Since Y7 U, converges by
assumption, the fy converge uniformly on E by the Weierstrass M-test. Hence,

22D anm = Jim lim fiv(z) = i m f(@)= 30> anm

n=1 m=1 m=1n=1

by Theorem [7.15]

Definition 7.17. Let X be a metric space, and let F' be R or C. We define
C(X;F)={f:X — F| f is continuous and bounded}.

Proposition 7.18. Let E be a set, and let B be the set of bounded functions f : E — C.
For f € B, define
[ f oo := sup | f(x)],
zeE

which is finite since f is bounded. Then d(f,q) = ||f — 9||s is a metric on B.

Proof. For all f € B, wehaved(f, f) = ||f—f|loo = 0since f— f is the zero function. If f, g €
B are distinct, then there exists x € E such that f(z) # g(z), so d(f,g) > |f(z) —g(z)| > 0.

Let f,g € B. Then [f(z) — g(x)| = [g(z) — f(x)] for all z € E, so d(f,g9) = d(g, f).
Finally, if h € B, then

[f () = g(@)] < |f(z) = h(@)| + |h(z) = g(x)| < d(f,h) + d(h, g)
for all z € E, so d(f,g) < d(f,h)+d(h,g) since z is arbitrary. ]
Definition 7.19. The metric from Proposition [7.1§is called the supremum metric.

By Proposition [7.6] a sequence of bounded functions f, : E — C converges uniformly
to f if and only if the f,, converge to f with respect to the supremum metric. Hence, the
supremum metric is also known as the uniform metric.

When we apply the Cauchy Criterion for uniform convergence to a set of continuous
functions, we get the following theorem.
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Theorem 7.20. C(X; F) with the supremum metric is a complete metric space.

Proof. Let {f.} be a Cauchy sequence in C(X; F). Then for all € > 0, there exists N € N
such that ||f, — finl|l < € whenever n,m > N. Hence, |f,(z) — fm(x)| < € for all n,m > N
and z € FE, so the f, converge uniformly to some function f by the Cauchy Criterion.
Moreover, f is continuous by Theorem Since the f,, are bounded, f is bounded by
Proposition [7.7] Hence, f € C(X; F). O

Exercise 7.21. Let {c,,,} be a double complex sequence. Create your own theorem that
gives sufficient conditions for making the limit interchange

lim lim ¢,,, = lim lim ¢, ,,.
n—oo m—oo m—oo n—oo

(You will probably obtain the Moore-Osgood Theorem.)

Exercise 7.22. Does uniform convergence preserve uniform continuity?

7.4 Differentiation and Integration
Uniform convergence also interacts nicely with differentiation and integration.

Theorem 7.23. Suppose f, : (a,b) — R are differentiable, f! — g uniformly on (a,b), and
limy, o0 fn (o) exists for some xg € (a,b). Then f, converges uniformly to some function f

on (a,b), and f is differentiable with f" = g.

The main idea of the proof is to exploit Lipschitz continuity of ¢, (x) = fu(z) — fi(x)
when n, m are large enough.

Proof. For each n,m € N, let ¢, m(v) = fu(x) — fi(z). Fix € > 0. Since f] converges
uniformly, there exists N; € N such that |f/ (z) — f},(z)| < e for all n,m > Ny and = € (a,b).
Since lim,,_, fn(xo) exists, there exists Ny € N such that |f,(zo) — fi(zo)| < € for all
n,m > Ny. Suppose n,m > max{Nj, No}. Then

|G (O] = [ () = [ ()] < e
for all t € (a,b). Hence, for all = € (a,b),
(@) = [ (@)| = |Pnm(2)]

< |¢n,m(x) - ¢n,m(I0)| + |¢n,m<x0)|
< é€|lr — x| + |Pnm(xo)] by the Mean Value Theorem

= €|z — zo| + [ fu(z0) — fin(wo)]
< €lx — x| + € since n,m > Ny
<elb—a)+e

=(14+b—a)e.

By the Cauchy Criterion, f, converges uniformly on (a,b) to some function f : (a,b) — R.
Fix x € (a,b), and let h # 0 such that x + h € (a,b). If n,m > Ny, then

[f(x+h) = f(2) = [fmlz 4+ h) = fin(2)]]
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< |falz +h) = fulz) = [fm(z + h) = fu(@)]| + [f(x+ 1) = [(z) = [fulz + 1) = [au(2)]]
= [nm(@ + ) = Gpm(z)| + [f(x + 1) = f(z) = [fulz + 1) = [u(2)]]

< elh|+|f(x+h)— f(z) = [fu(zx+ h) — fu(x)]] by the Mean Value Theorem
<elh|+|f(z+h) = falz+R)| + [f(2) = fulx)].

Since f, — f uniformly, we can choose n > N; large enough such that |f(t) — f.(¢)| < €|h]
for all t € (a,b). As a result,

[f(@+h) = f(z) = [fm(z + h) = fm(@)]] < €|h] + €lh] + €|h| = 3e|h].

Therefore,
Mot o) ’f(w 1)~ 1)~ i 1)~ fulo)
R A | RV AT RES]
< ey [InEEDZInE) ) ) — gl

Recall that m > N is arbitrary. Since f/ — ¢ uniformly, there exists M > N; such that
|f1;(x) — g(x)| < e. Choose § > 0 such that

Ju(x+h) — fu(x)

) ~ Fiala)| < e

if 0 < |h| <9 and x + h € (a,b). Then

B) —
‘f(x+ })L /() —g(z)| <3e+e+e=Dbe
if 0 < |h] < 0 and x 4+ h € (a,b). Therefore, limy,_,o w = g(x), so f'(z) exists and
equals g(z). O

Theorem 7.24. Let « : [a,b] — R be monotonically increasing. Suppose f, € Rala,b] for
each n, and suppose f, — f uniformly on [a,b]. Then f € R4la,b] and

b b

a a

Proof. Fix e > 0 and choose N € N such that |f,(z) — f(x)| < € for all x € [a,b] and n > N.
Let P ={zo,...,x,} be a partition of [a, b] such that

U<P’fN’a>—L<Pﬁvaa>=Z< swp fule) = _int ]fNu)) Aoy <
i=1 \ZETi—1,Ti TE|Ti—1,T;

Since fy(z) —e < f(z) < fn(z) + € for all z € [a, b], it follows that

inf  fy(z)—e< inf f(z)< sup f(z) < sup  fa(x)+e

me[wiflvxi] xe[mi*hxi] ze[xi,hxi] xe[zi,l,zi}
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for all 1 <7 < m. Therefore,

sup  f(z)— inf f(z) < sup fy(x)— inf }fN(x) + 2

r€[Ti—1,25] TE€[Ti—1,24] r€[Ti—1,25] 2€[Ti-1,%4
for all 1 <7 <m, so

U(P, f,a) — L(P, f,a) < U(P, fn,a) — L(P, fn, ) + 2¢[a(b) — a(a)]
< [1+2a(b) — 2a(a)]e.

Hence, f € Ra[a,b] since 1 + 2a(b) — 2a(a) is independent of e. Finally,

/abfda—/abfnda

for all n > N, so lim, o fab fnda = ff f da since a(b) — a(a) is independent of e. O

Exercise 7.25 (The Power Rule). Fix ¢ € R. Let f(z) = z¢ for all z > 0 (recall that
we defined what z¢ means in Exercise . We proved in Section that if ¢ € Q, then
f'(x) = cx¢~!. Now we will drop the assumption that ¢ € Q and (finally!) prove the full
power rule: f'(z) = cz¢ ! for all z > 0.

(a) Fix zp > 0. Let {g,} be an increasing sequence of rational numbers that converges
to ¢, and for each n, let f,(x) = 29. Let g(z) = cz*! and 0 < a < ¢ < b. Prove that the
derivatives f/(z) = g,z ! converge uniformly to g on (a,b).

(b) Conclude that the f,, converge uniformly to f on (a,b) and that f’ = ¢ on this

interval. Therefore, f'(z¢) = cx§ '

< [ laa< [ cta=att) - atol

a

Exercise 7.26 (Consequences of the Power Rule).

(a) For all z > 0, let log(x) = [;" § dt. Prove that log(z¥) = ylog(z) for all z > 0 and
y € R. (Do not assume any facts about the logarithm without first giving a proof from the
integral definition.)

(b) Prove that (b)Y = b for all b > 0 and z,y € R.
Exercise 7.27 (The Exponential Function). Let

)=~

n=0
for all x € R.
(a) Use Theorem and Exercise to prove that f(z) = e".
(b) Prove that f is differentiable and that f’'(z) = e*. That is, f' = f.
(c) Suppose g : R — R satisfies ¢ = ¢g. Prove that there exists a constant C' € R such
that g = C'f.

Exercise 7.28 (The Exponential and the Logarithm).

(a) Prove that €°¢(®) = g for all z > 0. Hint: differentiate €' twice.

(b) Prove that log(e®) = x for all x € R. (Note: log(e*) is defined because e* > 0 by
Exercise [1.34](e).)

(c¢) Let b > 0 and f(x) =" for z € R. Prove that f'(x) = 0" log(b). Hence, prove that f
is strictly increasing if b > 1, constant if b = 1, and strictly decreasing if b < 1.
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Exercise 7.29. Let f, : (0,00) = Rsuch that f,(t) = ;7. Foreacht € (0,00), 3" fa(t)

converges by comparison with Y 0>, =5 Let f(t) = > 07, f.(t).

(a) For any fixed € > 0, show that >~ f/(t) converges uniformly on (e,00). Hence,
conclude that f is differentiable on (0,00) with f'(t) =>"7, fi(t).

(b) For z € (0,1], let F(x f f(t)dt. Is F bounded?

Exercise 7.30 (Differentiation Under the Integral Sign). Let f(x,t) be a continuous multi-
variable function from [0, 1] x R to R. Suppose that for each (z,t) € [0,1] x R, the limit

g—{(x,t) gy Tt D) — S )

h—0 h

exists. (The notation may seem intimidating, but %(m, t) is just the derivative of f with

respect to ¢t when x is a fixed constant.) Assume also that % (viewed as a function from
[0,1] x R to R) is continuous.
(a) Prove that for all t € R and € > 0, there exists § > 0 such that if || < J, then

flz,t+h)— f(x,t) Of
h _E(r?t)

<€

for all € [0,1]. (Hints: (1) Mean Value Theorem, (2) continuity implies uniform continuity
on a compact set.)
(b) Use part (a) to prove that for all t € R,

f:ct+h flat) (Y flzt+h) — f(z,t)
h—>0/ d:v—/o lim b dx

h—0

Conclude that

d I
E/o flz,t)dx = i aj:(x t)dz.

7.5 A Continuous but Nowhere-Differentiable Function

Using the fact that uniform convergence preserves continuity, we can prove the following
surprising theorem.

Theorem 7.31. There exists a continuous f : R — R that is nowhere differentiable.

Proof. Let ¢ : R — R be such that ¢(z) = |z| for —1 < x < 1 and ¢(x + 2) = ¢(x) for all
x € R. Let n be an odd integer. Then ¢ is continuous on (n,n + 2). Since n — 1 and n + 1
are even, and ¢ has a period of 2, we have that

lim ¢(x) = lim ¢(x + (n—1)) = lim ¢(z) =

T—n— r—1— r—1—

and
lim ¢(x) = lim ¢(z+(n+1))= lim ¢(z) =

z—nt z——171 r——11

Hence, lim,_,, ¢(z) = 1 = ¢(n), so ¢ is continuous at n. Therefore, ¢ is continuous on R
because the union of the intervals [n,n + 2) over all odd n is R.
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Define . .
1= (3) oo )

n=1
Note that [(3)"¢(4"z)| < (3)" for all n € N and = € R. Since Y~ (3)™ converges, the series
converges uniformly on R by the Weierstrass M-test. By Theorem , f is continuous
on R.
Fix z € R. We will show that f’(z) does not exist by constructing a sequence {y,}

Jm)=J@) | — o Note that if z € R and |z — 3] # 2],

converging to x such that lim,, . —

then

1 1
1z] < Lz—%ﬂ = Lz—ﬁJ +1< 2] +1,
so |z] = |2+ %]. Hence, for all m € N, we can let

1
2(4m)

Ym =2 £

where the sign (plus or minus) is chosen such that [4™y,,| = |4™z]. It is immediate that
lim,, oo Y = x. If n > m, then 4"y, = 4"z + 2(4"™1) so ¢(4"y,,) = ¢(4"x) because
4n=m=1 is an integer and ¢ has a period of 2. On the other hand, if 1 < n < m, then
4"y | = [4"2], s0 |$(4"ypm) — ¢(4"2)| = |[4"y,, — 4"x|. Hence,

) = £ = 3 (3) 10047 — o)

AV
S~ N 7 N 3

=] w
N——
3

N
N

3

<
3

|
=
N

3
&

|
g
L
VR
=~ w
N——
3

SN
N

3
3

|
2
N

3
=

n=1
m m—1 n
3 m " 3 . .
m—1
= 3"y — 2| = Y 3"y — 7
n=1
m—1
n=1
3+ 3’ _ 2|
= 5 m ,
SO
Flom) = S@)| o 37 +3
Ym — X 2 '
Since lim o 55 = 00, we have that lim, oo | L2210 — o0, -
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7.6 The Arzela—Ascoli Theorem

This section is dedicated to proving the Arzela—Ascoli Theorem, which gives sufficient con-
ditions for a sequence of functions to have a uniformly-convergent subsequence. The Arzela—
Ascoli Theorem is much like the Bolzano—Weierstrass Theorem (which says that any sequence
in a compact set has a convergent subsequence).

Definition 7.32. Let X be a metric space. A set of functions F from X to C is equicon-
tinuous (on X) if for all € > 0, there exists § > 0 such that for all f € F and z,y € X, if

d(z,y) <4, then [f(z) — f(y)| <e.

Remark. Equicontinuity is like uniform continuity for sets of functions. Every function in an
equicontinuous set is uniformly continuous, and there is a > 0 that satisfies the definition
of uniform continuity for every function in the set.

Definition 7.33. Let E be a set and F be a set of functions from E to C.

(a) F is pointwise bounded if for all x € E, there exists M, > 0 such that |f(x)| < M,
for all f € F.

(b) F is uniformly bounded if there exists M > 0 such that |f(z)| < M for all f € F and
r €l

Theorem 7.34. If {f,} is a uniformly-convergent sequence of continuous functions K — C
where K is compact, then {f,} is equicontinuous.

Proof. Fix € > 0. Since {f,} converges uniformly, there exists N € N such that if n,m > N
and x € K, then |f,(x) — fi(z)| < §. Since fi,..., fy are continuous on the compact set
K, these functions are uniformly continuous. For each 1 < j < N, we can choose §; > 0
such that if d(z,y) < §;, then | f;(x) — f;j(y)| < §. Choose 6 = min{dy,...,dx} > 0. Suppose
n € Nand d(z,y) <. If 1 <n < N, then |f.(z) — fu(y)] < § < € since d(z,y) < 6,. If
n > N, then

|fo(@) = fa()] < [ ful(x
<ty

In@)| + fn(@) = In@)l + v y) = fo(y)]

) —
% + since n > N and d(z,y) < dy

Wl m

Therefore, | f,(z) — fu(y)| < e for all n € N and d(z,y) < 6, so {f.} is equicontinuous. [

Lemma 7.35. Let K be compact. Then K has a dense subset & C K that is at most
countable. (We say that K is “separable”.)

Proof. For each n € N, the open cover {Ny/,(x)},cx of K has a finite subcover

{Nl/n(xl,n)a cee 7N1/?’L($7”n,n)}

where r,, € N. Consider the set
o0
E = U {xl,na cee 7‘rrn,n}7
n=1
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which is a countable union of finite sets and is therefore at most countable. Let y € K \ F
and 0 > 0. Choose n € N such that % < 0. Then there exists 1 < j < r, such that
Y € Nim(x)y) since {Ny/p(255)}inq covers K. Hence, z;, € Ni/n(y) C Ns(y), so y is a limit
point of E. Therefore, £ = K. O]

Lemma 7.36. Let {f,} be a pointwise-bounded sequence of functions E — C where E is at
most countable. Then there exists a subsequence { fy,} that converges pointwise on E.

Proof. Suppose E is infinite. Write E = {x1,x9,x3,...}. Since {f,(z1)}, is a bounded
sequence in C, there exists a subsequence Sy = {f,, ;} such that {f,, .(z1)}; converges (in
C). Recursively, suppose we have a subsequence S; = { fy,, ; },; such that { f,, ,(7;)}; converges.
Then {fn,,(zit1)}; is a bounded sequence in C, so there is a subsequence Siy1 = { fu,,,,};
of S; such that { f,,,, (zi+1)}; converges. This recursive procedure constructs subsequences
Si = {fn,; }; such that for each i, S;; is a subsequence of S; and { f,,, ;(7;)}; converges. Now
form the subsequence S = {f, , }x. Then for each i, we have that f,, , € S; for all k > i. In
other words, S is eventually a subsequence of S; for all i. Hence, { f,, , (%)}« converges for
each i, so the subsequence S converges pointwise on E.

If E is finite, the recursive procedure for constructing the subsequences S; terminates after
a finite number of steps. The final subsequence S| is a subsequence of all of Si, ..., 5g -1,
so S|g| is pointwise-convergent on E. O

Theorem 7.37 (Arzela—Ascoli). Let K be compact, and suppose {f,} is an equicontinuous
and pointwise-bounded sequence in C(K;C). Then:

(a) {fn} is uniformly bounded.

(b) There exists a subsequence { fy,} that converges uniformly on K.

Proof. (a) The pointwise-bounded assumption means that for all x € K, there exists M, > 0
such that |f,(z)| < M, for all n € N. Since {f,,} is equicontinuous, there exists 6 > 0 such
that |f,(z) — fu(y)] < 1 for all n € N and z,y € K such that d(z,y) < J. Note that
{Ns(x)}rex is an open cover of K. By compactness of K, there exists a finite subcover
{Ns(z1),...,Ns(z,)}. Let M = max{M,,,..., M, }. Now fixn € Nand z € K. Then there
exists 1 < 7 <r such that x € Ny(x;) since {Ns(z1),..., Ns(x,)} covers K. Hence,

< | fa(@) = fal@y) + [ falz)]
<1+ M,, sinced(r,z;) <4
<1+ M.

Therefore, {f,} is uniformly bounded.

(b) Fix € > 0. By equicontinuity, there exists § > 0 such that |f,(z) — f.(y)| < 5 for
all n € N and z,y € K such that d(z,y) < 6. By Lemma , K has a dense subset F
that is at most countable. The density of F ensures that for all x € K, there exists y €
such that © € N;(y). Hence, {Ns(z)}.er is an open cover of K, and by compactness of
K, there exists a finite subcover {Ns(x1),..., Ns(x,)}. Lemma says that there is a
subsequence {f,, } of {f,} that converges pointwise on E. For all integers 1 < j < r, since
r; € E, there exists N; € N such that |f,, (7;) — fu,(z;)] < § whenever k,£ > N;. Put
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N =max{Ny,...,N,} € N. Fixz € K and k,¢/ > N. Then there exists 1 < j < r such that
x € Njs(z;) since {Ns(x1), ..., Ns(z,)} covers K. Hence,

|fnk(x) - fnz(xﬂ < |fnk(x) - f?"Lk(:EJ)| + |fnk(x]) - fnz($])| + |fw($j) - fne<$)|
< §—|—§+§ since d(x,z;) < and k,£ > N > N;

= 6’
0 {fn, } converges uniformly by the Cauchy Criterion. O

Exercise 7.38. Let K be compact. Prove that a subset E of C(K;C) (equipped with
the supremum metric) is compact if and only if F is closed, bounded, and equicontinuous.
(Recall Theorem [3.70, which says that compactness is equivalent to sequential compactness.)

7.7 The Stone—Weierstrass Theorem

Approximating functions using simpler functions is a common theme in analysis. Taylor
series use polynomials to approximate infinitely-differentiable functions. Fourier series use
periodic functions (e™*) to approximate square-integrable functions. The big theorem that
this section builds up to is called the Stone—Weierstrass Theorem and looks like this:

Let K be a compact set and A be a set of continuous functions K — R that satisfy
certain hypotheses. Then for any continuous function f : K — R, there exists a sequence of
functions ¢, € A that converge uniformly to f on K.

We start with a special case: the Weierstrass Approximation Theorem.

Theorem 7.39 (Weierstrass Approximation Theorem). Let f : [a,b] — R be continuous.
Then there ezists a sequence of real polynomials p,, that converges uniformly to f on |a,b].

The proof we present is motivated by probability theory. After giving the proof, we will
explain the key steps from a probabilistic perspective.

Proof. 1t suffices to prove the theorem for @ = 0 and b = 1 because any function on |[a, b]
can be linearly transformed into a function on [0,1] and vice versa. We claim that the

polynomials )
mi =31 (1) (1) - ®)

converge to f uniformly on [0, 1]. We first note that
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and ; 2 <Z) 21— )" = nln — 1)z + nx (6)

for all n > 0 and x € R; the proofs mainly rely on the Binomial Theorem. These three
equations together imply that

n

3 (k- na)? (Z) 2 (1 — 2)" % = na(1 — z). (7)

k=0

The key ingredient of the proof is the observation that for allm > 1, 0 < x < 1, and m > 0,

n

IR T
2. (k — nx)® (Z) (1 —z)

|k—nz|>mA/nz(l—1x)

> S mia(l ) (") 25 (1 — )k

|k—nz|>m+/nz(l—1z)

AV

o

=m’nz(l — ) Z " (1 —2)" 7,
|k—nz|>m/nz(l—x)

VR
oyl

which implies that
> (Z) o)t < (s)
|k—ng|>m/ne(1—z)
It is clear that also holds when x = 0 or x = 1, since the left-hand side equals 0 in these
cases. Note that the inequality |k —nx| > my/nz(1 — ) is equivalent to |E—z] >m @
Therefore, by applying (8) with m = n'/?, we obtain that

n e 1
> (k)a:k(l —2)" < 9)
|%—x|2n‘1/6 z(1—x)

Fix € > 0. Let M = sup,co; |f(¢)], which is finite since f is continuous and [0, 1] is
compact. Note that f is uniformly continuous on [0, 1] since [0, 1] is compact. Hence, there
exists 0 > 0 such that if s,¢ € [0,1] and |s — ¢| < d, then |f(s) — f(¢)| < e. Pick N € N such

that — < e and 547 < 6 for all n > N. For a fixed 2 € [0,1] and n > N,

e = 101 =31 () (1) 20 -0t 0
bl

k=0

by
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- (-
el <n /04 /a(1-2)

Cr ()
& —z|>n=1/6/(1—2)

Now note that y/t(1 —¢) < 3 for all ¢ € [0,1]. Hence, n™"/¢\/z(1 —z) < In75 <4, so if
& — 2] <n7V0\/z(1 — z), then | f(£) — f(z)| < e. We therefore obtain the bound

S )l (e s B (e

We also have that

k
Z ‘f (ﬁ) — f(z)
PR
<oM 3 ”) 21 — )k
%—a}|2n*1/6 z(1—z)
< 2Me
by @ Therefore,
Ipn(x) — f(x)] < e+2Me=(1+2M)e
for all z € [0,1] and n > N, so p, — f uniformly on [0, 1]. O

We now give the probabilistic motivation behind the proof. Suppose we have a coin
which, when flipped, lands on heads with a fixed probability € [0,1]. For any n € N,
define the discrete random variable X,, to be the number of times the coin lands on heads
when flipped n times in succession. Then for any integer 0 < k < n, we have that

Pr(X, = k) = (Z) 21— )"k,

Equation (4) encodes the fact that the sum of these probabilities for 0 < k& < n should be 1.
The expectation of a discrete random variable Y is

E(X,) =Y yPr(Y =y),

yeSs
where S is the (at most countable) set of possible values that Y can take. The variance of
Y is
Var(Y) = E([Y —E(Y)]?) = E(Y?) - E(Y)%
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Equations () and (7)) encode the facts that E(X,,) = nz and Var(X,,) = nxz(1 —x). The key
inequality is an instance of Chebyshev’s inequality: for any random variable Y, if m > 0,
then

1
Pr(lY — i 2 mo) < —,

where p = E(Y') and 0 = y/Var(Y'). Applying Chebyshev’s inequality with Y = X, gives
(8-

The polynomials defined in may be more easily remembered as

Pu(z) = E(f(Va))

where V,, = ==. These polynomials are called Bernstein polynomials, named after the
mathematician who found the probabilistic proof of the Weierstrass Approximation Theorem.
Note that V,, represents the proportion of times that the coin lands on heads. By linearity
of expectation, E(V,,) = z and Var(V,,) = @, so when n is large, the value of V,, should
be close to x most of the time since the variance tends to 0. Since f is continuous, f(V},)
should be close to f(x) most of the time. Thus, E(f(V},)) should be close to f(z) when n is
large, and the uniform convergence results from the uniform continuity of f.

Definition 7.40. Let E be a set, and let F'be R or C. Let A be a set of functions f : E — F.
We say that A is an F-algebra if for all f,g € A and c € F,

(i) f+g €A,

(ii) fg € A, and

(iii) cf € A
The uniform closure of A, denoted A, is the set of functions ¢ : E — F for which there
exists a sequence of functions ¢, € A that converge uniformly to ¢. It is clear that A C A
since constant sequences of functions converge uniformly. We say that A is uniformly closed

if A= A.

Theorem 7.41. If A is an F-algebra of bounded functions f : E — F, then A is a uniformly-
closed F-algebra.

Proof. Theorem implies that A is an F-algebra since A is an F-algebra of bounded
functions. (It may seem that Theorem only applies if A is a C-algebra, but since we can
view R as a subset of C, Theorem also applies if A is an R-algebra.) We just need to prove
that A is uniformly closed. Suppose a sequence of functions f,, € A converges uniformly on
E to some function f : E — F. Fix € > 0. For each n, since f, € A, there exists g, € A
such that |f,(x) — gn(z)| < € for all x € E. Choose N € N such that |f,(z) — f(x)| < € for
alln>Nandz € E. If n > N, then

(9n(2) = [(2)] < gn(@) = ful(@)] + [ful2) = f(2)] <€+ e=2e

for all € E. Therefore, g, — f uniformly on E, so f € A, which means A is uniformly
closed. O

Definition 7.42. Let A be an F-algebra of functions f : £ — F. We say that A separates
points of E if for all distinct 1,z € E, there exists f € A such that f(z1) # f(z2). We say
that A vanishes at no point of E if for all « € E, there exists f € A such that f(z) # 0.
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Lemma 7.43. Let A be an R-algebra of bounded functions f: E — R. If f,g € A, then
(@Ifled
(b) max{f,g} € A, and
(¢) min{f, g} € A.

Proof. Let M € R such that |f(z)] < M for all x € E. Fix ¢ > 0. Since the map
x + |z is continuous on [—M, M|, Theorem says that there exists a polynomial p(z) =
co + 1T 4 -+ + ¢,z such that |p(z) — |z|| < § for all € [~M, M]. Notice that |cy| =
1p(0)| = |p(0) — 0]] < §. Let q(z) = p(x) — co = 12 + - - - + cuz™. Then

€ €
la(z) = fo]| < lp(x) =zl +] -l < 5+ 5 =¢

for all z € [-M, M]. Hence, if x € E, then

lq(f(x)) = [f(@)|] < e

because f(z) € [-M, M]. Now notice that go f = ¢ f + -+ + c,f" € A. Therefore, |f] can
be uniformly approximated by functions in A, so |f| € A. This proves part (a).
Parts (b) and (c¢) now follow from the identities

max{f,g} = %(f +9) + %If — 9|

and . )
min{f, g} = 5(f +9) = 5lf — g,
together with the fact that A is an R-algebra (Theorem [7.41]). ]

Lemma 7.44. Let A be an F-algebra of functions f : E — F that separates points and
vanishes at no point. For any x1,ro € E and c¢1,co € F with x1 # x4, there exists f € A
such that f(x1) = ¢; and f(x9) = co.

Proof. Since A separates points of E, there exists g € A such that g(z1) # g(z2). Since A
vanishes at no point, there exist hy, hy € A such that hi(x;) # 0 and hy(z3) # 0. Define

lg(z) — g(@2)la(z) 1
[9(z1) — g(@2)hi (1)  [g(21) — g(z2)]ha (1)

¢1(7) = lg(z)hn(x) = g(x2) ()]

and

lg(x) = g(z1)]ho(x) 1
[9(w2) = g(z1)]ha(w2) ~ [9(w2) — g(w1)]ha(2)
(

Then ¢1,¢2 € A AISO qbl ZEl) = ]_ ¢1((L’2) = 0, ¢2(ZL’1) = 0, and ¢2<I2) = 1. Let f =
c101 + cao € A. Then f(xl) c and f(z2) = co. O

Po(z) = [9(z)ha(z) — g(x1)hao()].

We are now ready to state and prove the Stone—Weierstrass Theorem. The proof is an
excellent demonstration of the power of compactness.
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Theorem 7.45 (Real Stone-Weierstrass Theorem). Let K be compact and A C C(K;R) be
an R-algebra that separates points and vanishes at no point. Then A = C(K;R).

Proof. Theorem implies that A C C(K;R). All functions in C(K;R) and hence in A
are bounded. Therefore, A is uniformly closed by Theorem .

Fix ¢ € C(K;R) and € > 0. We claim that for all # € K, there exists f, € A such
that f.(x) = ¢(z) and f.(y) < é(y) + ¢ for all y € K. For all t € K \ {z}, Lemma
says that there exists a function g,; € A such that g,,(z) = ¢(z) and g,+(t) = ¢(t). Let
Set =1{y € K | g24(y) < ¢(y) + €}, and notice that

Sz,t - (gcc,t - 925)_1((_007 6))

Hence, S, is an open set because g, ;— ¢ is continuous and (—oo, €) is an open set. Moreover,
t € Syt because g,+(t) = ¢(t) < ¢(t) + €. The collection {S,:}iex is therefore an open
cover of K. Since K is compact, there exists a finite subcover {S,,,..., S, } Put f, =
min;<;<p gz, Repeated application of Lemma yields that f, € A. We immediately
have that f.(x) = ¢(z) since g, (z) = ¢(x) for all i. Fix y € K, and let 1 < j < n such
that y € S;¢;. Then
Jo(y) < Goy, (y) < o(y) + e,

proving our claim.

Now we construct f € A such that |f(y) — ¢(y)| < € for all y € K. For each x € K, let
T, ={y € K| fo(y) > ¢(y) — €}. Then

T = (fa — ¢)"'((—€,00))

is an open set, and z € T, since f,(x) = ¢(x) > ¢(x) — e. Hence, {1, }.cx is an open cover
of K, so there exists a finite subcover {T,,,...,T,, }. Put f=maxi<i<m fr,, and note that
f € A by Lemma . Fix y € K, and let 1 < j < n such that y € T,,. Then

fy) > fo,(y) > o(y) — e

On the other hand, f,,(y) < ¢(y) + € for all ¢ by construction of the functions f,, so

f(y) < @(y) + €. Altogether, we have that ¢(y) —e < f(y) < é(y) + ¢, s0 [f(y) — d(y)| <e
Since € > 0 is arbitrary, we can obtain a sequence {¢, },en of functions in 4 such that

|on(y) — d(y)] < £ for all n € N and y € K. The ¢, uniformly converge to ¢ since
lim,, 00 % = 0. Therefore, ¢ € A since A is uniformly closed. n

Definition 7.46. A C-algebra A of functions f : £ — C is self-adjoint if f € A implies
that f € A, where f(z) = f(x).

Theorem 7.47 (Complex Stone-Weierstrass Theorem). Let K be compact and A C C(K;C)
be a self-adjoint C-algebra that separates points and vanishes at no point. Then A = C(K;C).

Proof. Just as in the proof of Theorem [7.45] it is immediate that A C C(K;C) and that A
is uniformly closed. Fix ¢ € C(K;C). We can easily verify that [¢(x) — ¢(y)| = |¢(z) — ¢(y)|
for all z,y € K. Therefore, ¢ is continuous (write out the e — ¢ definition of continuity on

136



¢ and realize that it also applies to ¢). Also, ¢ is bounded because |¢(z)| = |¢(z)| for all
x € K. Consequently, _
Re(g) = @ € C(K:R) (10)

and

Im(¢p) = ¢21¢ € C(K;R).

Let B = {Re(f) | f € A}. Then B C C(K;R). Also, since A is self-adjoint, equation
implies that B C A. It now suffices to show that B is an R-algebra that separates
points and vanishes at no point. Indeed, if B satisfies the hypotheses of Theorem [7.45] then
Re(¢) € B C A and Im(¢) € B C A. Since A is uniformly closed, we would conclude that
¢ = Re(¢) +ilm(¢) € A.

Let o, 8 € B and ¢ € R. Then there exist f, g € A such that a = Re(f) and 5 = Re(g).
Note that

ca = Re(ef) € B,
a+p=Re(f+yg) €B,

and

of = (f+f) (g+§) _f9+fa+fa+ 1y :Re(fg+f§) cB
2 2 4 2
Therefore, B is an R-algebra.

Let z,y € K such that  # y. Since A vanishes at no point, there exists f € A such that
f(z) #0. Let g = Re(ﬁf} € B. Then g(z) =1 # 0, so B vanishes at no point. Also, by
Lemma there exists h € A such that h(x) = 1 and h(y) = 2. Letting ¢ = Re(h) € B,
we have that ¢(x) =1 # 2 = {(y), so B separates points of K. O

Exercise 7.48 (Fourier series). This exercise assumes familiarity with the complex expo-

nential e = cosf + isin 6.
b 1/2
It = ([ 152ar)

For all f € Rla,b], let

(a) Assume f € R|a, b] is real-valued, and fix € > 0. Prove that there exists a continuous
function ¢ : [a,b] — R such that g(a) = f(a), g(b) = f(b), and ||f — g||» < e. Hint: pick
a suitable partition P = {xq,...,x,} of [a,b], then construct g by stitching together line
segments from (z;_1, f(x;_1)) to (z;, f(z;)) for all 7.

(b) Assume f € Rla,b| is complex-valued (recall that this means Re(f) and Im(f) are
in R[a,b]). Fix ¢ > 0, and prove that there exists a continuous ¢ : [a,b] — C such that
9(a) = £(a), g(b) = F(b), and ||f — gl < e

(c) Let T = {2z € C: |z| = 1}. Prove that if g : R — C is 27-periodic (meaning that
g(=7) = g(m)), then there exists a continuous ¢ : T — C such that g(f) = ¢(e?) for all
0 €R.

(d) Let

N
A= {gb :T — C | 3N >0 and ¢, € C such that ¢(e”?) = Z cneme} )
n=—N
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Prove that A is a C-algebra that separates points, vanishes at no point, and is self-adjoint.
(e) Let g : R — C be continuous and 27-periodic. Prove that for all € > 0, there exists
¢ € A such that ||g — ¥||s < € where ¥(0) = ¢(e*?).
(f) Prove that if f : R — C is Riemann-integrable (on [—7,7]) and 27-periodic, then
there exists a function of the form ¥ (0) = S ¢,e™ (where ¢, € C,N > 0) such that

1f = dll2 <e.
Exercise 7.49 (Parseval’s Theorem). Let

™

]f\de<oo}.

—Tr

LP[—m, 7] = {f D [=m,7m] = C ‘ f € R[—m, 7] and /
Then L2[—m, 7] is a vector space over C. For f,g € L?[—7, 7], let
1 [7 —
(o= 5 [ fa)ata) de

This defines a semi-inner product on £?[—7, 7] and induces the seminorm

1 s
1] = v/ ) = %/ 2 dr.

(You do not need to prove these facts.)
Throughout, let f € £2[—m, 7. For all n € Z, we define the n' Fourier coefficient of f
as

fn = (f,e"™) = %/_ f(z)e ™ dax.

The goal of this exercise is to prove that

N
1£112 = tim > [fal
n=—N

which is known as Parseval’s Theorem.
(a) Let n,m € Z. Prove that

. , 1 ifn=m
<elnx’ezmx> — )
0 ifn#m.

(b) For all N > 0, let

Vv = {¢:[—7r,7r] —C

N
Je,, € C such that (z) = Z cneim} :

(Note that Vi is a linear subspace of £L2[—m, |. Part (a) proves that the set of functions
BN _ {ein:c 7]-:[:—N _ {e—iNJ:7 o ’e—ix, 1’ eia:7 o ’eiNx}
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forms an orthonormal basis of Vy.)
Let sy(x) == Ziv: ~ Jn€™. Prove that for all ¢ € Vi, (f—sn,¢) = 0. (In the language of

linear algebra, sy is the orthogonal projection of f onto Viy.) Hence, prove the “Pythagorean
Theorem”: if b € Vi, then

Lf = l? = 11f = sl + [[sw — ¥l
Conclude that
A = [lsnlPP 4+ 1f = swl?

and that [|f — sn|| < [|f — |-
(c) Using the result of Exercise [7.48(f), show that for all € > 0, there exists N > 0 and
1 € Vi such that ||f — 1|| < e. Hence, prove that

Jim [[f = snf[ = 0.

(Warning: this does not necessarily mean that limy_,o sy () exists for each z.)
(d) Prove that if i(z) = SN ¢,e™ then

N
IOlP = > el
n=—N
Conclude that N
. £2 2
dm 3 VP =11

(e) Use Parseval’s Theorem with f(z) = x to prove that

=1 T

- .
n
n=1 6

Exercise 7.50. Suppose f: R — R is 2m-periodic and continuously differentiable (mea}ning
f" is continuous on R). Prove that > >° _ |f,| converges. Then prove that > >- _ f,e™*
converges uniformly to f on all of R.

Exercise 7.51. Let f:[0,1] — R be Riemann integrable. Suppose that

/1 f(z)z"dx =0
0

for all integers n > 0. Prove that if f is continuous at some point xy € [0, 1], then f(xq) = 0.
Hint: using the Weierstrass Approximation Theorem and the result of Exercise [7.48(a),
show that fol(f(x))Q dxr = 0. Now what happens if f(z) # 07
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