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Abstract
Programming is the process of expressing and refining ideas
in a programming language. Ideally, we want our program-
ming language to flexibly fit our natural thought process.
Language innovations, such as procedural abstraction, object
and aspect orientation, have helped increase programming
agility. However, they still lack important features that a pro-
grammer could exploit to quickly experiment with design and
implementation choices.

We propose prorogued programming, a new paradigm
more closely aligned with a programmer’s thought process.
A prorogued programming language (PPL) supports three
basic principles: 1) proroguing concerns1: the ability to defer
a concern, to focus on and finish the current concern; 2) hy-
brid computation: the ability to involve the programmer as
an integral part of computation; and 3) executable refinement:
the ability to execute any intermediate program refinements.
Working in a PPL, the programmer can run and experiment
with an incomplete program, and gradually and iteratively
reify the missing parts while catching design and implementa-
tion mistakes early. We describe the prorogued programming
paradigm, our design and realization of the paradigm using
Prorogued C#, our extension to C#, and demonstrate its utility
through a few use cases.

Categories and Subject Descriptors D.2.3 [Software En-
gineering]: Coding Tools and Techniques; D.2.5 [Software
Engineering]: Testing and Debugging; D.2.6 [Software Engi-
neering]: Programming Environments; D.3.3 [Programming
Languages]: Language Constructs and Features

General Terms Design, Languages, Experimentation, Hu-
man Factors

1 A concern is any piece of interest or focus in a program [8].
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1. Introduction
Programming is one of the most challenging human endeav-
ors, as it forces a programmer to simultaneously manage
many, at times even conflicting, concerns. It is a gradual, iter-
ative process of expressing, experimenting with, and refining
ideas in a programming language. Advances in programming
language design have helped programmers focus on impor-
tant programming-related concerns rather than less critical
ones [3]. Nonetheless, opportunities for improvement remain,
especially during program construction.

For example, a programmer may need to invoke a function
that has not yet been written to test and experiment with other
parts of a system. In mainstream languages, the compiler will
not compile code that depends on a nonexistent function. To
satisfy the compiler, a programmer must either implement the
function or write a stub for it. This may break the program-
mer’s train of thought and force a distracting abstraction shift
upon her [6, 15]. Writing a stub requires typing a function
declaration, and, in safer languages like Java, convincing the
compiler that the stub returns correctly. Even when a refactor-
ing tool helps generate a stub, that stub is code that is likely
to change and whose maintenance can be distracting.

This phenomenon may explain the increasing industrial
adoption of dynamic languages2 like Python and JavaScript.
However, the status quo is little better in dynamic languages.
While dynamic languages dispense with ahead-of-time com-
pilation and can start running an incomplete program, the
interpreter halts execution when it fails to dispatch a call to
an unimplemented method. Moreover, the execution of in-
complete programs comes at the expense of compile-time
guarantees that a statically-typed language provides.

1.1 Prorogued Programming
We propose a new programming paradigm, prorogued pro-
gramming, to lift these restrictions: it allows programmers to

2 In this paper, we refer to mainstream interpreted implementations of
dynamically-typed languages as dynamic languages.



compile and run incomplete programs so they can test and
refine work-in-progress. It supports the following three basic
principles.

Proroguing Concerns Prorogued programming allows a
programmer to prorogue a concern so that she can continue
her train of thought and quickly experiment with high-level
design and implementation decisions. A prorogued concern
can be a yet-to-be-implemented function whose implementa-
tion would derail the current task, is being implemented by
another developer, or whose need is unclear pending a high-
level design decision. To achieve this, we let the programmer
designate function invocations as prorogued, explicitly mak-
ing the compiler or interpreter aware that the callee is not
yet implemented. When it encounters a prorogued call, the
compiler continues translating and statically checking the
program. During execution, the prorogue dispatcher inter-
cepts a prorogued call and supplies a placeholder instance, a
prorogued value, as its return value.

Hybrid Computation A prorogued program continues its
execution under the semantics of the host language until it
reaches a prorogued call. At that point, it brings a human
into the process: it displays the arguments of the most recent
call to a prorogued function and asks the programmer to
supply a return value. The prorogue dispatcher saves the
programmer’s response. Subsequent uses of the prorogued
value, or prorogued invocations with identical arguments, do
not need interactive resolution: normal execution continues
with the previously user-supplied value. By bringing humans
into the process, we can enable a more meaningful execution
for partial implementations than mechanically generated
stubs that do not capture programmer intent. Prorogued
programming is therefore ideal for problems for which a
general solution is hard to implement but for which it is easy
for humans to generate examples [31–33]. Section 5 discusses
a few such examples using Prorogued C#, our realization of
prorogued programming for C#.

Executable Refinement As programming is the iterative
process of expressing and evolving programs, prorogued
programming lets the programmer compile, statically analyze,
execute, and observe the behavior of program refinements, or
incomplete programs. This allows the compiler to typecheck
and catch errors throughout program construction. Prorogued
programming is about maintaining incomplete, but readily
testable programs. With little effort, these partial programs are
compilable and executable, so that a developer can seamlessly
transition to experimenting with her code at any time. To this
end, a prorogued language interacts with a user to enable the
execution of an incomplete program. Integrating human and
traditional machine computation, this hybrid model opens
up opportunities for more productive program construction,
including crowdsourcing (Section 5.1).

In short, prorogued programming helps programmers hew
to their natural workflow, evolving the program by focusing

on the top-down design and implementation, and filling in the
details as needed [34], thus avoiding housekeeping merely to
satisfy a language’s implementation. As a result, the develop-
ment team can iterate more quickly, recognize fundamental
and high-level design and implementation errors throughout
program construction. Furthermore, a program’s modules can
run independently by proroguing their dependencies.

Prorogued programming targets functionality for which
the developer has a few input-output pairs in mind. In this
case, a prorogued call enables the developer to explore
the caller’s logic. When the developer does not have a
small set of input-output pairs in mind or when execution
generates inputs outside of that set, excessive interaction
can ensue. Most often the solution is to wrap the prorogued
call in logic that suppresses unwanted interactions. Further,
we acknowledge that, most of the time the programmer
must eventually write the code that realizes a prorogued
method. The fact that we do not eliminate this work is
orthogonal to what prorogued programming does provide —
viz., new and better workflows. First, prorogued programming
gives programmers the power to defer that work until they
can, and wish to, concentrate on it. Second, prorogued
programming allows parallel development on prorogued
methods: while one developer continues to develop using
a prorogued call, another developer can examine its IO
store — the collected input/output values — and begin its
implementation. The existence of the IO store also may
facilitate the implementation of the module it approximates
by allowing the implementor to study the IO store and
gain insight. The IO store may also provide useful input to
synthesis tools that learn from examples [11, 12, 18–20, 35]
and test-based code search tools [16, 21, 22, 25].

The prorogued programming paradigm improves collabo-
rative software development by reducing interpersonal and
cross-team dependencies. One team can continue develop-
ment by proroguing method calls across components without
having to wait for a fixed interface to be supplied by the
team writing the underlying component. Also, prorogued
programming facilitates component developments by means
of proroguing stateful types in addition to simple methods.
Moreover, it reduces the risk of stalling development while se-
lecting third-party components since prorogued methods can
proxy those components, allowing development to continue
while a choice of component vendor is being made.

1.2 Main Contributions
This paper makes the following contributions:

• We introduce a new programming paradigm that allows
programmers to defer programming concerns and finish
their current task. In so doing, it makes program construc-
tion more closely conform to how humans actually think
when programming.

• We present the design and realization of the prorogued
programming paradigm in C#. In particular, we discuss



and motivate our design decisions of incorporating and
supporting prorogued programming in a real-world pro-
gramming language.

• We discuss software engineering implications of the pro-
rogued programming paradigm and show its power, ap-
plicability, and universality through a collection of case
studies.

• We discuss open issues, such as utility and usability, appli-
cability, program evolution and reification, and possible
approaches for addressing them.

The rest of this paper is organized as follows. We first
use an example to motivate prorogued programming and il-
lustrate its use (Section 2). Next, we formalize prorogued
programming for a small functional language (Section 3).
Section 4 describes our design and realization of prorogued
programming for a real-world language, C#. We then use a
few examples to highlight the utility of prorogued program-
ming (Section 5). Section 6 discusses a few open issues and
opportunities for prorogued programming. Finally, Section 7
surveys related work, and Section 8 concludes.

2. Illustrating Example
To motivate and illustrate the utility of the prorogued pro-
gramming paradigm, we describe a scenario in which a pro-
grammer, call her Lily, builds an application that reads a file
named "mail.txt" containing a simplified raw email mes-
sage. It pretty-prints the relevant parts of the message such as
its sender, subject, and body. Lily first writes the high-level
aspects of the mail parser application; she decomposes her
task into the methods ReadFile, GetHeader, and GetBody,
then prints the parsed output. Even though these methods do
not yet exist, Lily may wish to experiment with her high-level
design. Two options exist: 1) she can fully implement these
missing methods or 2) provide stubs for them.

At this point, she only wishes to experiment with the
high-level implementation decisions and ignore the low-level
details of how to implement these missing methods. Thus,
the first option would be unnecessarily disruptive. So she
takes the second option and writes stubs that merely return
the empty string for the missing methods. Unfortunately, this
option is also disruptive: 1) she needs to write the stubs;
2) the stubs, although simple, can contain errors, which she
would have to fix; and 3) the stubs must return artificial values
because Lily does not know with which inputs they may be
invoked. In summary, neither option is ideal.

While writing these functions is not particularly hard and
Lily can implement them with a couple of regular expressions,
she will probably need to look for and read about the regular
expressions API, then experiment with her regular expression
to ensure it is correct. As Jamie Zawinski famously said, she
now has two problems. At the very least, refining her regular
expressions will distract her from her current task, forcing her
to context switch and work at a different level of abstraction.

1 static void Main() {
2 string input =
3 prorogue ReadFile("mail.txt");
4 PrintEmail(input);
5 }
6 static void PrintEmail(string input) {
7 string from =
8 prorogue GetHeader(input, "From");
9 string subject =

10 prorogue GetHeader(input, "Subject");
11 string body =
12 prorogue GetBody(input);
13 Console.WriteLine("From: " + from);
14 Console.WriteLine("Subject: " + subject);
15 Console.WriteLine(body);
16 }

Figure 1: The simple mail parser in Prorogued C#.

1 static void Main() {
2 var db = prorogue
3 new UserDatabase { Server = "server1" };
4 db.ConnectionTimeout = 1000;
5 var userName = Console.ReadLine();
6 var password = Console.ReadLine();
7 if (db.Authenticate(userName, password)) {
8 string input =
9 prorogue ReadFile("mail.txt");

10 PrintEmail(input);
11 } else Console.WriteLine
12 ("Authentication failed.");
13 }

Figure 2: Mail program using a prorogued mock database.

Now, let us see how Prorogued C# can aid Lily. As above,
Lily first writes the high-level aspects of the program, but
with the power to prorogue the details. Figure 1 depicts this
initial draft of Lily’s mail parser. The Prorogued C# compiler
compiles this code, even though the methods ReadFile,
GetHeader, and GetBody do not yet exist. Here, we assume
that Lily has in mind a small set of emails she can use as
input while testing her incomplete program and from which
she can quickly extract the appropriate output. The first time
the program runs, the prorogue dispatcher initiate hybrid
computation and asks Lily for return values of each prorogued
method call, and continues execution and prints out the values
received from her at lines 8, 10, and 12. The next time the
program runs, it simply prints out those values and exits,
since the previous run saved Lily’s responses and the method
arguments were unchanged. When this happens, the prorogue
dispatcher simply returns the saved values.

Prorogued programming allows Lily to prorogue types
as well as methods. For instance, Lily can use prorogued
programming to instantiate a mock database and begin to
flesh out her authentication logic, as shown in Figure 2. We
apply the prorogue keyword to the constructor call on line
3 to create a mock object on which all method calls that are
not already implemented in UserDatabase type, such as the
call to Authenticate on line 7, are prorogued, like those



in Figure 1. The assignments on line 3 and line 4 simply
create properties within the db instance. After each change,
prorogued programming allows Lily to immediately compile,
execute, and experiment with the refined, albeit still partial,
program.

Later, Lily discovers a built-in method to read a text
file and return its contents as a string. To use it, Lily re-
places the ReadFile invocation with the framework-provided
method, removing the first prorogued call: string input

= File.ReadAllText("mail.txt");. After this change, the
program actually reads the "mail.txt" file. The program
interacts with the user to produce a result every time the file
contents is changed. Again, it persists the result of that hybrid
computation for reuse in subsequent calls.

The fact that we were able to prorogue the ReadFile

method highlights a useful property of prorogued program-
ming: the programmer can continue testing a program that
relies on an external resource or module when that re-
source or module is not readily available. The program
can execute and be debugged without having to resort to
explicit mocking techniques, simply by proroguing a call
that depends on the external resource. To make it easier
to debug the program during the construction phase, we
can prorogue the invocation to File.ReadAllText, shadow-
ing the existing method implementation: string input =

prorogue File.ReadAllText("mail.txt");. When it en-
counters prorogue applied to a call to a preexisting function,
the compiler warns the developer that it will ignore that func-
tion’s existing implementation and treat it as a prorogued
method. When it reaches the shadowing prorogued function
call, the program presents its inputs and prompts the pro-
grammer for a return value. The programmer can then choose
a return value that drives execution to a particular program
point.

We can leverage the input/output pairs captured in the in-
teractive process to generate code via reification. Reification
removes the prorogue keyword from call sites and generates
code in the form of an if-else chain that, to handle unknown
inputs, culminates in a prorogued call. For existing imple-
mentations, like the prorogued call to File.ReadAllText,
reification simply removes the prorogue keyword and issues
a warning. In an IDE with first-class support for prorogued
programming, the reification tool will be integrated in the
IDE. The resulting program is immediately runnable. Typi-
cally, the programmer fills in the final implementation details
of each, formerly prorogued, method.

It is possible to perform a global reification as well
as selectively specifying a set of methods to reify. If the
function is naturally a direct mapping between a small set
of inputs and outputs (e.g. a function returning a string
representation for enum values), the reified implementation
might be immediately useful. For functions exhibiting more
complex behavior, the programmer can use the generated
code as a skeleton and write code for the custom behavior.

Program p ::= p, fun f (x) = e | ε
Expression e ::= n | x | e1 op e2

| if e e1 e2
| let x = e1 in e2
| f (e)
| prorogue f (e)

Figure 3: The syntax of the simple prorogued language Fp,
which adds, to a standard expression language, the new
syntactic construct “prorogue f (e).”

The pairs collected by running a prorogued program can
also be used to generate unit tests automatically (Section 6).
Programmers can use these tests to ensure that the behavior of
the method’s implementation matches the expected behavior
as collected when the method was prorogued.

3. A Prorogued Programming Language
This section formalizes the syntax and semantics of a small
prorogued programming language Fp to clarify our presenta-
tion. Our actual implementation (Section 4) is an extension
to C#.

3.1 Syntax and Semantics of Fp

Fp extends a standard core expression language; Figure 3
shows its syntax and Figure 4, its semantics. An Fp program
consists of a list of functions, each of which has a single inte-
ger argument and an expression as its body. With the excep-
tion of the prorogue construct, the expression sublanguage
is standard. An integer literal is n and x is a variable, over
integers. We use op to denote a primitive operation whose
semantics is given by JopK, e.g., J+K is integer addition. As
usual, if and let denote the conditional and local binding
constructs. Function invocation is f (e) and prorogue f (e)
denotes a prorogued function invocation, whose semantics
we formalize next.

Figure 4 give the dynamic, big-step semantics of Fp.
The value domain is Value = Z∪ {⊥} = Z⊥. Evaluation
judgments have the form 〈p,σ ,κ,e〉 ⇓ 〈κ ′,v〉 where

• the program p maps a function name f to its definition:
1) p( f ) = λx.e if p contains “fun f (x) = e”, and 2)
p( f ) =⊥ otherwise;

• the state Σ 3 σ : Var → Value maps variables to values;
• the IO store κ : F×Value → Value maps a prorogued

function f and an argument i to an output o, i.e., κ( f , i) =
o (where F denotes the set of functions);

• e is the expression being evaluated;
• κ ′ is the updated IO store after evaluating e; and
• v is the result of evaluating e.

The evaluation rules are straightforward. For conditionals,
we let 0 denote false and 1 denote true. The term σ [v/x]



〈p,σ ,κ,n〉 ⇓ 〈κ,n〉 [const]

〈p,σ ,κ,x〉 ⇓ 〈κ,σ(x)〉 [var]

(a) Semantics of const and var.

〈p,σ ,κ,e1〉 ⇓ 〈κ1,v1〉
〈p,σ ,κ1,e2〉 ⇓ 〈κ2,v2〉

〈p,σ ,κ,e1 op e2〉 ⇓ 〈κ2,v1 JopK v2〉
[op]

(b) Semantics of op.

〈p,σ ,κ,e〉 ⇓ 〈κ1,0〉
〈p,σ ,κ1,e2〉 ⇓ 〈κ2,v2〉

〈p,σ ,κ, if e e1 e2〉 ⇓ 〈κ2,v2〉
[if-false]

(c) Semantics of if-false.

〈p,σ ,κ,e〉 ⇓ 〈κ1,1〉
〈p,σ ,κ1,e1〉 ⇓ 〈κ2,v1〉

〈p,σ ,κ, if e e1 e2〉 ⇓ 〈κ2,v1〉
[if-true]

(d) Semantics of if-true.

〈p,σ ,κ,e1〉 ⇓ 〈κ1,v1〉
〈p,σ [v1/x],κ1,e2〉 ⇓ 〈κ2,v2〉

〈p,σ ,κ, let x = e1 in e2〉 ⇓ 〈κ2,v2〉
[let]

(e) Semantics of let.

〈p,σ ,κ,e〉 ⇓ 〈κ1,v〉 p( f ) = λx.e1
〈p,σ [v/x],κ1,e1〉 ⇓ 〈κ2,v1〉
〈p,σ ,κ, f (e)〉 ⇓ 〈κ2,v1〉

[call]

(f) Semantics of call.

〈p,σ ,κ,e〉 ⇓ 〈κ1,v〉 κ1( f ,v) = v1

〈p,σ ,κ,prorogue f (e)〉 ⇓ 〈κ1,v1〉
[p-call-old]

(g) Semantics of p-call-old.

〈p,σ ,κ,e〉 ⇓ 〈κ1,v〉
κ1( f ,v) =⊥ Φ f (v) = v1

κ2 = κ1⊕ (( f ,v),v1)

〈p,σ ,κ,prorogue f (e)〉 ⇓ 〈κ2,v1〉
[p-call-new]

(h) Semantics of p-call-new.

Figure 4: The simple prorogued language Fp, which adds, to a standard expression language, the new syntactic construct
“prorogue f (e).” Its dynamic semantics is specified in the big-step style, where 1) JopK denotes the semantic interpretation
of op, 2) Φ f the oracle for a prorogued function f , and 3) ⊕ function overriding: κ2 = κ1⊕ (( f ,v),v1) iff κ2( f ,v) = v1 and
κ2( f ′,v′) = κ1( f ′,v′) for all ( f ′,v′) 6= ( f ,v).

denotes an updated state σ ′ where σ ′(x) = v and σ ′(y) =
σ(y) for all y 6= x.

The [p-call-old] and [p-call-new] rules are specific to pro-
rogued programming. The programmer prorogues a function
to defer its implementation. When code containing a pro-
rogued call of the function f executes, if f has been invoked
with the argument v, the previously returned value v1 stored
in the IO store κ1 is returned (as shown in the [p-call-old]
rule). Otherwise the oracle Φ f is consulted, as shown in rule
[p-call-new], and the IO store is updated to yield the new κ2
(via ⊕, the function override operator). Initially, the IO store
κ is empty; calls to the oracle Φ f populate it, so its contents
are correct. To realize the oracle, we apply our hybrid com-
putation principle, and involve the programmer. We describe
a concrete realization of this interaction in Section 4.

From the above discussion, we see that Fp naturally
supports the three principles of prorogued programming:
1) prorogue f (e) allows the programmer to prorogue the
“concern” of implementing the function f (proroguing con-
cerns); 2) humans realize the formal oracle Φ and compute
the result of prorogued function invocations (hybrid compu-
tation); and 3) an Fp program, starting from the minimal
“prorogue main()”, is executable at each refinement step, as
it evolves (executable refinement).

In this simple functional language, prorogued functions
are pure. A programmer who wishes to update state, such

as a global, must use assignment to write the return value
of a prorogued function into the desired location, as with
g := prorogue f (x).

Theorem 3.1 (Correctness of Prorogued Semantics). For any
program p, state σ , and expression e,

∀κ,v(〈p,σ ,Φ,e〉 ⇓ 〈κ,v〉 ⇒ 〈p,σ , /0,e〉 ⇓ 〈_,v〉).

3.2 Reifying Prorogued Functions
As a programmer stepwise refines a prorogued program, that
programmer will, in general, implement a prorogued func-
tion and remove the prorogue keyword from its call sites to
convert them into standard method calls. We call this process
reification. Although it only makes sense in the context of
a prorogued language, reification is orthogonal to the pro-
rogued programming paradigm, since it is, in essence, an
instance of stepwise refinement [34]. That said, reification
will be integral to a programmer’s workflow when using a
prorogued language. Beyond the manual implementation of
the prorogued function, we discuss a few rewriting strate-
gies that assist the programmer in replacing prorogued calls:
1) deploy a version of the program that still contains pro-
rogued calls; 2) convert the IO store into code; 3) leverage
test-based code search techniques [16, 21, 22, 25] to find
reusable implementations; and 4) employ synthesis by ex-
ample techniques [11, 12, 18–20, 35] using the IO store as
input.



The first strategy leaves the prorogued calls untouched.
It may be applicable for programs containing functionality
that can be approximated by a set of input/output pairs and
complex enough not to be profitable to implement. The
second strategy reifies the set of IO pairs as an if-else chain
or a switch statement. Studying the set of IO pairs in this
executable and modifiable format may help a programmer
gain insight into how to devise an algorithm that abstracts the
behavior encoded in the set. The last two strategies rest on
the observation that the IO stores that a prorogued program
produces may provide a fertile new source of applications and
problems for test-based code search and program synthesis.

Theorem 3.2 (Correctness of Reification). For any program
p, state σ , and expression e,

∀κ,v(〈p,σ , /0,e〉 ⇓ 〈κ,v〉⇒∀θκ〈θκ(p),σ , /0,θκ(e)〉 ⇓ 〈 /0,v〉)

where θκ denotes any correct reification strategy w.r.t. κ , i.e.,
θκ( f )(i) = κ( f , i) for all f and i with κ( f , i) 6=⊥.

4. Design and Realization of Prorogued C#
To experiment with prorogued programming, we extended the
Mono C# compiler [7], an open source implementation of C#,
a popular, real-world language. We chose a statically typed
language to demonstrate the universality of the prorogued
programming paradigm. This section discusses the design
choices we made and interesting implementation details.

4.1 The Language
To realize the prorogued programming paradigm in C#, we
amended the C# grammar [13] to include prorogue as a
keyword and added the production

prorogued-invocation-expression ::=
prorogue primary-expression ( argument-list )

to decorate invocation expressions. In the case of a chain of
method invocations, prorogue binds to the first invocation in
the chain: the Prorogued C# compiler parses prorogue

a().b().c() as (prorogue a()).b().c(). While a pro-
grammer might prefer prorogue to bind to the last call in the
chain than the first, this design decision is a more natural fit
to C#, since it is consistent with left-associativity of the dot
operator and other constructs. As usual, the programmer can
resort to parentheses to override this behavior.

By default, a simple prorogued call like prorogue Foo()

assumes the callee is a static method in the current type. To
prorogue a method call in another type, that type must qualify
the method name: prorogue FooNamespace.BarClass.Baz(

arg1, arg2). The above expression prorogues a call to the
static Baz method in the context of BarClass declared in the
FooNamespace namespace.

To prorogue an instance method, a programmer must
prepend the prorogue keyword to an instance method in-
vocation expression: prorogue obj.InstanceMethod(arg).

1 var msg = prorogue new Message {
2 From = "from@email.com",
3 To = "to@email.com",
4 Delivered = false
5 };
6 msg.Send(login, passwd);
7 Console.WriteLine(msg.Delivered);

Figure 5: Example of a prorogued type; the UI interaction for
the prorogued call on line 6 happens on line 7 where the value
of msg.Delivered can mutate as a result of the interaction.

Of course, an arbitrary expression yielding a value can replace
obj. In the above example, we assume that InstanceMethod
is an instance method in the context of the static type of
the receiver expression, obj. Proroguing an instance method
of the type in which a prorogued call appears is a special
case, in which the programmer uses this as the receiver:
prorogue this.InstanceMethodInCurrentType(arg).

4.2 Prorogued Types
Prorogued C# also supports proroguing types. This is
achieved by prepending an object-creation-expression with
the prorogue keyword which is supported by the

prorogued-creation-expression ::=
prorogue object-creation-expression

production in the grammar. Extending the idea of proroguing
concerns from methods to an entire type, potentially with
mutable state, enables the programmer to prorogue the design
of a module or component while writing the client code that
consumes it.

A prorogued type is instantiated using a regular type
that it extends. It acts as a proxy, dispatching implemented
methods to the underlying type while treating the rest as
prorogued calls. Supporting prorogued types complicates
lazy evaluation, discussed below in Section 4.5, and requires
the handling of mutable state, in contrast to simple prorogued
functions that are pure value-to-value transformations. In
principle, a method invocation on a prorogued type can still
be thought of as a value-to-value transformation in which the
state mutation is an element in the return tuple. The prorogue
dispatcher then dissects the return tuple and mutates the state
of the prorogued instance. Of course, the user interface is
smart enough to hide this implementation detail and lets the
user manipulate state as if the function itself, as opposed to
prorogue dispatcher, was mutating state.

Sometimes, a prorogued type relies on global state, exter-
nal input, or state that is not implemented yet. For instance,
while mocking an object that represents a network stream, we
might want to make two consecutive ReadLine() calls return
two distinct values, despite the fact that it is called with the
same set of arguments, i.e. none, both times. The canonical
pattern for preventing the prorogue dispatcher from simply
returning the cached value from the first call in response to



T0 transmute(T1 x, T2 y) {
if (x < 0)
return 0;

else
return prorogue transmute(x, y);

}

Figure 6: In prorogued languages, a developer can partially
implement a previously prorogued function to handle part of
its input domain and prorogue the rest, reusing the IO store
populated before partial implementation.

the second, when no explicit state change has occurred, is to
introduce one, i.e. change the value of a dummy property in
the user interface to implicitly capture the state of the object
during the execution of the program. Of course, this solution
will not scale to complex interactions with the mocked object,
but recall that prorogued programming’s purpose is to record
and replay a relatively small set of behaviors from the devel-
oper to allow that developer to continue her current task. In
this case, the user, upon returning from the first call, assigns
the value 1 to a property named readCount of the instance
in the UI. Since the instance does not have such a member,
it is added to the type on the fly, which causes the prorogue
dispatcher to ask for a new return value when it dispatches
the second call, since the receiver object’s state has changed.
var netStream = prorogue
new NetStream { Host = "server", Port = 80 };

string line1 = netStream.ReadLine();
Console.WriteLine("Line 1: " + line1);
string line2 = netStream.ReadLine();
Console.WriteLine("Line 2: " + line2);

4.3 The IO Store
The IO store maps input to outputs. The design question
it presents is to decide what it should accept as inputs and
outputs. Should IO store contain code (including values) or
only values? If only values, should it store instances of user-
defined types or only instances of system types?

Code vs. Values Binding code to a prorogued call would
allow a programmer the flexibility of handling some inputs
with code, while simply returning values for the rest. Un-
fortunately, binding code to a prorogued function in the IO
store would come at some cost. It would make programs
more complicated and harder to understand by scattering
executable logic across the prorogued program and the IO
store. One would have to decide whether or not to allow
nested prorogued calls and, if so, their execution semantics.
It would prevent lazy dispatch of prorogued calls. The ability
to write code in response to a query from a prorogued call
may distract a programmer into doing just that, defeating
the principle of proroguing concerns. Finally, it violates the
principle of simplicity and, in the end, is unnecessary, as we
demonstrate next.

When a programmer is ready to partially implement a
prorogued function, that programmer has two choices: 1)

reify the prorogued function’s IO into code, as described
in Section 4.7, and edit the result or 2) define the formerly
prorogued function in the host language, making prorogued
calls to the function as desired. Figure 6 depicts this latter
case. In essence, the programmer writes logic to directly
handle some cases, while proroguing the rest to the previously
populated IO store. Partial implementation allows a developer
to suppress unwanted interaction with a prorogued function.
For instance, if a programmer learns that a frequently called,
prorogued function should return 0 whenever its first input
is negative, the programmer simply defines transmute as
shown in Figure 6. This strategy of pushing down a prorogued
call into a partially implemented function is always possible.
Therefore, a prorogued language loses no expressive power
by restricting prorogued functions to values. Indeed, an IDE
for a prorogued language could provide a developer with
the illusion of an IO store that intermixes code and values
by maintaining that store as a non-prorogued function that
makes prorogued calls as appropriate. Implementation of a
function is complete when the prorogued call is detritus.

System vs. User-defined Types The next question is whether
to allow the IO store to contain instances of user-defined types
or restrict it to system-defined values, instances of values
defined by type in a prorogued languages default distribution
of libraries. The argument for the latter is mainly simplic-
ity: working with values defined over a fixed set of types
may allow optimized layout of the IO store and restrict the
complexity of queries, forcing the programmer to decon-
struct a potentially complex input into values defined over a
prorogued language’s constituent, well-known types. This re-
striction might also address the problem with objects pointed
to by reference type arguments mutating between a call site
and lazy dispatch (Section 4.5) since, in principle, we could
traverse any referenced data structure. This design choice
has two problems. First, it violates the principle of least
surprise by handling system types, the set of which is not
even clearly defined, differently than user-defined types, a
distinction that C# itself does not make. Second, it does not
give the programmer sufficient power to abstract inputs, e.g.
into intervals. For example say the programmer knows that
[0..10]→ 5. If Prorogued C# restricted its user to system
types, encoding this fact into the IO store would require 10
tedious and distracting interactions, dragging out the handling
of this concern and violating the first principle of prorogued
programming which is to alleviate distraction by allowing
programmers to defer work. Worse, what if the range were
over floating-point numbers? Of course, the developer could
resort to partially implementing a prorogued method, writing
if (x >= 0 || x <= 10)y = prorogue foo(5); but this
too would be cumbersome and run counter to prorogued
programming’s central goal of concern deferment.

Thus, we decided to restrict the IO store to map val-
ues to values, over arbitrary types. To persist across runs,
these types must be serializable. User-defined types give



int foo(int x) {
if (isPrime(x))
return prorogue primeFoo();

else
return <previous logic>;

}

Figure 7: Extending existing functions with prorogue.

the programmer the power to abstract inputs into classes
that can arbitrarily partition the space of underlying values.
The programmer can simply abstract a partition into a class
and pass instances of that class to a prorogued function.
So for instance, a developer could define incomeInterval

as new Interval { Start = (int)Math.Floor(income

/ 1000), End = (int)Math.Ceiling(income / 1000)},
then use the resulting interval in a prorogued call — var

taxRate = prorogue GetTaxRate(incomeInterval);. User-
defined types give the programmer similar power over the
output. Indeed, nothing prevents the programmer from defin-
ing a prorogued method that returns an expression tree, which
the program executes.

Extending Existing Functions A consequence of our deci-
sion to disallow placing code in a prorogued function’s data
store is that prorogued methods are restricted to leaf nodes
in the call graph. To prorogue an existing function whose
functionality you want to extend, you add a prorogued call
into its function body along the path you wish to extend. You
may even need to add that path. For instance, imagine that
you wanted a function foo that previously did not distinguish
between composites and primes to handle primes differently.
You would modify foo in the host language to add the path
that makes a leaf call to a prorogued function: Of course, we
could also implicitly resort to user-defined types here and
rewrite this example as return prorogue foo(prorogue

isPrime(x));.
The design decision to implement prorogued functions as

value-to-value transformations under the hood makes pro-
rogued programs simpler, prevents the scattering of exe-
cutable logic across the program and its IO stores, and allows
prorogued functions to be pure, which allows the caching
of results and the lazy evaluation of calls at the cost of ref-
erence and output parameters. Without giving up simplicity,
prorogue can leverage the abstraction of user-defined types
that the host language provide to reclaim any expressive
power lost by restricting IO stores to values, as opposed to
executable code.

4.4 Typechecking
To typecheck a prorogued call, we could 1) force the pro-
grammer to declare its signature, 2) infer the signature, or
3) use a generic signature. Two principles guided our design
here: proroguing concerns and coexisting naturally with the
host language’s type system. In this context, the principle
of proroguing concerns implies that our choice should not

distract the programmer with concerns other than the one
on which she is currently focused. This principle leads us
to reject the first choice, that of forcing the programmer to
declare each prorogued function’s signature, since, in general,
a programmer might prorogue a function precisely because
they wish to defer deciding its signature.

One could infer the signature of a prorogued function
from the types of the arguments at a prorogued call site.
One might be tempted to treat one of the call sites specially
and extract a signature from it. However, there is no prin-
cipled, general way to do so, short of revisiting the first
design choice and involving the programmer. Thus, we ex-
tract a signature from each call. For example, in var var1

= prorogue Foo(5); the type of Foo is int → dynamic,
while that of var var2 = prorogue Foo("hello, world");

is string → dynamic. This design choice implicitly over-
loads Foo whenever the compiler encounters a new signature,
and therefore creates a different prorogued function with
its own IO store. To avoid unintended method overloading,
the programmer would have to tediously cast each call to
the desired base class; for var2, the example is var var2 =

prorogue Foo((object)"hello, world");. Not only is this
cumbersome, forcing unnatural, explicit casts to a shared
ancestor, but it runs counter to the spirit of prorogued pro-
gramming, since it distracts the programmer with details
from a concern other than the one she is working on, thereby
defeating some of the benefits of prorogued programming.

We could bypass C#’s type system and build our own
that infers a prorogued function’s signature from all the
calls to it. For instance, we could experiment with equality-
based unification. However, this approach violates our design
principle of peaceful coexistence with the host language, so
we do not consider it further. Another approach is to infer the
signature from all the prorogued calls to a particular name. In
C#’s class-based subtype system, every type is a subtype of
object. Thus, this approach would be unable to distinguish
between type errors and intended polymorphism because all
types unify at object, if not before.

This last approach to signature inference is effectively
indistinguishable from the third choice but requires more
work, so, for simplicity, we choose the third option: in
Prorogued C#, the type of a prorogued invocation expression
is dynamic and the type of its parameters is always object.
As a consequence of the fact that its parameters all have
type object, overloading prorogued methods is possible only
if the number of parameters vary. Since its return type is
dynamic, the return value of a prorogued method call is
implicitly convertible to any type. With this assumption, the
Prorogued C# compiler typechecks a program with C#’s
existing type system. While employing dynamic types is
a simple way to implement the prorogued programming
paradigm and is consistent with our design principles, it is
important to point out that our paradigm is by no means
restricted to languages that support dynamic invocation. In



var value = prorogue foo();
if (condition)
Console.WriteLine(value);

Figure 8: Lazy evaluation of prorogued return values.

1 void PrintFinalInvoice(int price) {
2 var discount = prorogue

CalculateRebate(price);
3 if (price < 1000)
4 discount = 0;
5 price += GetSalesTax(price);
6 Console.WriteLine(price - discount);
7 }

Figure 9: Capturing the context of a call.

a language without a similar feature, a prorogued invocation
could return a special type that the compiler could convert
to any other type. The compiler could then typecheck the
program and generate code to invoke the prorogue dispatcher
when it encounters such a type conversion.

4.5 Lazy Evaluation of Prorogued Calls
An execution of a prorogued program that prompts the pro-
grammer to populate IO stores too frequently would tediously
undermine the utility of prorogued programming. To mitigate
this threat, Prorogued C# lazily evaluates prorogued calls.
When a prorogued call executes, the prorogue dispatcher im-
mediately returns an implicit future [14] to represent that call,
along with its arguments. To minimize the number of user
interactions, it is not until the first time the return value is
used in the program that a user interaction might be neces-
sary. In Figure 8, if the condition evaluates to false, user
interaction is avoided altogether.

The following constitute use of a prorogued return value.
First, there is casting the return value to another type, as
implicitly with string s = prorogue Foo(); or explic-
itly with int i = (int)prorogue Bar();. Second, one can
pass the return value as an argument to a prorogued func-
tion. For example, we first execute var input = prorogue

GetInput(); and later input is used and therefore evaluated
in sqrt = prorogue SquareRoot(input);. Finally, the return
value can be used in an expression in which it does not appear
alone: int sum = 5 + prorogue Bar();.

Since prorogued calls cannot have global side effects, the
only way for a prorogued function to affect the program state
is through its return value. Further, lazy evaluation of their
returns should not affect program behavior in most cases.
Reference types are problematic, however: we copy their
reference by value to save time and because the prorogue
dispatcher cannot traverse arbitrary data structures. Thus, the
referenced object may change between the time the prorogued
call is encountered and the time it is actually dispatched,
changing its behavior and possibly violating the program’s
semantics.

The situation is a more complicated with regard to pro-
rogued types. Method invocations on prorogued types can
mutate the internal state of the instance. Operations on pro-
rogued types are kept track of by the prorogue dispatcher and
will dispatch in order the first time the instance is being read
from or cast to a non-prorogued type.

Laziness brings up another potential issue: the order of
user interactions may not correspond to the order in which
prorogued calls were visited during execution. In Figure 9,
the call to CalculateRebate is prorogued, but the dispatcher
does not prompt the user until execution reaches line 5. If
price is less than 1000, the user is not prompted for that
call. However, the prorogued call to GetSalesTax on line 5
is always evaluated when the call returns, due to the implicit
cast to int. Consequently, the user may be prompted for the
second prorogued call before the first one. To help the user
distinguish the two calls and identify their relative execution
order, the dialog that prompts the user for an output contains
the source file name, line number, and timestamp when
the prorogued call was encountered. The coordinates and
timestamp of a call are especially helpful while debugging a
prorogued program.

In a multithreaded program, the dispatcher queues and
sequentially makes prorogued calls. Execution of the thread
making a prorogued call stalls until its user interaction
completes. Since user interaction can take an indefinite
amount of time, to the other running threads, the user interface
thread runs very slowly. This fact can adversely impact
programs that rely on timing information or use timeouts,
making prorogued calls unsuitable to specific regions of such
programs. In a race-free, multithreaded program that does
not rely on timing, prorogued program behavior matches its
non-prorogued version.

4.6 User Interaction
When a prorogued value is first used, the prorogue dispatcher
must provide a concrete value to the program and may need
to interact with the programmer. To prompt the user, the
prorogue dispatcher displays the arguments to, coordinates of,
and timestamp of a call, either graphically if the programmer
is using an integrated development environment (IDE) or
on the command line, if her workflow is terminal-based.
Figure 10 shows the Prorogued C#’s user interface.

To capture the return value from the user, we need to
provide her with a way to express it. For simple types, this
is easy: a string representation of the type will do. More
complex types require a more powerful, yet still human-
readable serialization. XML is too verbose and inconvenient
to write. A better solution is JavaScript Object Notation
(JSON) serialization, which represents hierarchical object
graphs in a concise, readable, and easy to write way. Since
JSON is a popular serialization scheme, flexible libraries
and frameworks that handle complex type serialization and
deserialization in JSON are readily available.



Figure 10: Prorogued C#’s user interface.

While persisting prorogued functions works for all argu-
ment types that support JSON serialization and is not limited
to primitive types, some types are not serializable: persis-
tence is meaningless for types like file and process handles.
In many cases, it is better to pass only a fine-grained sub-
set of the state of input to the prorogued function, rather
than passing the reference to the complex instance: calling
prorogue GetPrice(c.Make, c.Model, c.Year); instead
of GetPrice(c).

4.7 Program Refinement
Reifying a prorogued method into code is a natural phase of
the prorogued programming paradigm. When the program-
mer specifies that they want to reify a prorogued method,
the IO pairs are written out as a sequence of if statements,
usually into the receiver class specified in the call, where the
programmer can then edit them. The prorogue keyword is
then removed from the call sites of the reified method. In an
IDE, the programmer simply selects a prorogued call site,
right-clicks and selects reify. Reifying a prorogued class sim-
ply iterates over and reifies the prorogued method calls it
contains. At the command line, the programmer can issue a
command passing a list of classes or methods she wants to
reify.

Prorogued C# also allows you to prorogue methods in
interfaces and enumerations, that cannot have methods, and
types that are not defined in the current project and are ex-
ternally referenced. In the reification process, static and in-
stance methods of a class or struct, defined in the current
project, are added to the respective source files that define
those classes. Instance methods of types that do not support
the addition of methods or are declared outside the current
project, are generated as static extension methods in a sepa-

int fib(int x) {
if (x == 0) return 1; // (0, 1)
if (x == 1) return 1; // (1, 1)
if (x == 2) return 2; // (2, 2)
if (x == 3) return 3; // (3, 3)
if (x == 4) return 5; // (4, 5)
return prorogue; // fallback

}

Figure 11: Generated code for a reified method.

rate class, which is added to the current project, and the rele-
vant call sites are redirected to the newly generated method.
Prorogued C# does not infer types (Section 4.4), but it does
guess at the types based on the values in the reified function’s
IO store. In case the guessed signature does not match pro-
grammer’s intent, the suggested types should be corrected
manually. Figure 11 shows a simple reified method.

When methods are reified into a sequence of if statements,
a default branch is added that executes whenever the function
acts on arguments not encountered during its prorogued
incarnation. This default branch invokes a fallback prorogued
call that shadows the newly reified method. This prorogued
fallback makes reification an iterative process that helps a
program evolve naturally. Since program refinement is a core
aspect of the prorogued programming paradigm, we have
added a syntactic sugar for a prorogued call that represents
fallback behavior: the appearance of the prorogue keyword
by itself, not followed by an identifier name and parenthesis,
is essentially equivalent to recursively proroguing a call to
the current method using the arguments3. The only difference
between the two is that prorogue foo(x) triggers a compiler
warning about shadowing an existing implementation while
prorogue is a known and common pattern that does not
trigger the warning.

5. Applications
Prorogued programming is a practical paradigm that can im-
prove many programming scenarios, ranging from simple to
complex. In this section, we present a select few applications
that highlight the strengths of this paradigm.

5.1 Impact on Software Engineering Practice
We believe prorogued programming will have wide-ranging
impact on software engineering practice. Here, we outline
how it may transform task assignment and unit testing, permit
the deployment of incomplete programs, and open the door
to new forms of development crowdsourcing.

Task Assignment Program construction is difficult to paral-
lelize [3]. In large projects, where people of different experi-
ence and expertise work together, this problem becomes even
harder. One way to parallelize the construction of a program
is to separate the program into well-defined modules. How-
ever, existing paradigms are not as successful at separating

3 This syntax could have been used in Figure 6.



string GetLocalizedWord(Word w, string lang) {
if (lang == "en" || lang == "en-US")
switch (w) {
case Word.Hello: return "Hello";
case Word.World: return "World";
default: throw new ArgumentException("w");

}
throw new NotImplementedException();

}

Figure 12: Deploying an incomplete program in a non-
prorogued language by hardcoding values.

concerns during program construction. As a result of natural
interdependencies across modules, these paradigms gener-
ally impose a specific construction order to programmers.
Thus, these paradigms often require careful planning that
fixes a large fraction of design beforehand and necessitates
writing stringent specifications that clearly communicate that
design to the teams responsible for the different modules, all
of which reduces agility, delays coding phase, and increases
overhead, especially at the beginning of a project.

Prorogued programming separates concerns during pro-
gram construction; it separates high-level design from low-
level implementation details, without requiring a fixed specifi-
cation before coding. This method of program construction is
reminiscent of the way traditional hand-drawn animation used
to be produced: senior animators created the key frames that
represented the major movements of the characters, and after
successfully experimenting with the high-level idea of the
animation, assigned the task of drawing inbetweens, which
made the animation smooth, to junior animators.

Besides task assignment based on expertise and experi-
ence, in practice, an organization may need to assign tasks
based on trust. It may choose to have its security related code
written by a handful of trusted security experts to prevent
potential exploits and backdoors. To stop leaks of product
details before launch, a company may decide not to use a
large portion of its human resources on a critical project.
Prorogued programming shines in such scenarios because
untrusted and outsourced programmers can be tasked to im-
plement low-level aspects of the program without being aware
of the overall design goal. Another key benefit of prorogued
programming is prioritization of program construction tasks
based on their criticality to the project rather than dependency
satisfaction.

Deployment of Prorogued Programs The software indus-
try is highly competitive today. Success demands quickly
reacting to customer demands and features that competitors
introduce. Predicting the time and resources that a software
project needs, even in isolation, is not an easy problem, and
statistics show that a large percent of all software projects
fail or are delivered late [3]. Consequently, keeping software
in a runnable state at all times during construction is a valu-
able asset and reduces the risk of a software firm. In practice,

string GetLocalizedWord(Word w, string lang) {
return prorogue;

}

Figure 13: Prorogued localization.

many software systems, especially custom software systems
that are developed in-house, are incomplete and depend on
hardcoded values in code. Existing programming paradigms
have not focused on addressing this problem.

For instance, to ship a program intended to eventually
support 100 languages, but needed in English quickly, one
may have hardcoded values in different parts of code, as
shown in Figure 12. Had prorogued programming been
available, the code could have been written as in Figure 13.
In addition to demanding less code, the prorogued version is
more flexible. To support another language, one need only ask
speakers of the target language to run the program, which will
harvest and store their responses in the IO store. Prorogued
programming obviates hardcoded values, making the code
easier to maintain. Furthermore, the system can be kept ready
for deployment, “as is”, with the languages it already supports.
There is no need to interrupt normal development efforts to
hardcode values to ship an incomplete program.

Unit Testing Programmers usually consider writing unit
tests to be tedious. The existence of unit tests, however, makes
a program easier to maintain by assuring programmers that
their changes do not adversely affect existing functionality.

In addition to easing implementation via reification, the
prorogued programming paradigm promises “test cases for
free”: the input-output pairs in an IO store can be easily trans-
formed into test cases, in a similar fashion to the “program
testing assistant” proposed by David Chapman [5], who rec-
ognized the value of collecting and preserving such test cases
early on. As the program is being constructed, these collected
unit tests can serve as an evolving foundation for the integrity
of the program. Moreover, when coupled with outsourcing
low-level tasks to junior or outsourced programmers, they
serve as a correctness verification mechanism to ensure they
have done their job correctly. Further, these test cases are
likely to cover important behavior precisely because a devel-
oper took the trouble to enter them into the IO store while
testing refinements during program construction. Finally, pro-
rogued programming decreases the cost of writing test cases
by enabling testers with less knowledge of programming to
generate unit tests without having to write any code, just
by running the program over and over again with different
inputs.

Not only prorogued programming can help collecting test
cases, it can be useful in setting up the environment for testing
functions. Specifically, prorogued types can be leveraged as
an alternate approach in place of mocking frameworks.

Crowdsourcing By deferring some concerns until after run-
ning a program, prorogued programming can open the door



1 static void Main() {
2 var input = File.ReadAllText("mail.txt");
3 var from =
4 prorogue GetHeader(input, "From");
5 var subject =
6 prorogue GetHeader(input, "Subject");
7 var body = prorogue GetBody(input);
8 if (prorogue IsSpam(body)) {
9 Console.WriteLine("SPAM!\n");

10 } else {
11 Console.WriteLine("From: " + from);
12 Console.WriteLine("Subject: " + subject);
13 Console.WriteLine(body);
14 }
15 }

Figure 14: Spam filtering with prorogued programming.

to crowdsourcing. A partial program can be shipped to a
number of end users who contribute values for the prorogued
functions in the program, without having specialized program-
ming knowledge or knowing the internal details of the sys-
tem. The crowd can be end-users of the program, or gathered
rather inexpensively by posting Human Intelligence Tasks
on services such as Amazon Mechanical Turk. Contributing
translations is amenable to this type of crowdsourcing. Face-
book has successfully crowdsourced the localization of its
user interface.

5.2 Case Studies
Here we use case studies to study the power and utility of
prorogued programming.

Spam Filtering Spam filtering is an excellent example of
a problem at which humans can easily identify an instance4,
but a general implementation is tedious. We extend our
motivating example (Section 2) to handle spam filtering and
print out "SPAM!" instead of the email body if it believes the
message is a spam.

Adding spam filtering to our mail parser example required
minimal structural modification to the program and without
triggering an abstraction shift. The program is runnable
and testable given a small set of input emails. Later, an
automated spam filtering function can be written, or a spam
filtering library can be used, to complete the program. Spam
filtering is an example of a class of applications for which the
prorogued programming paradigm is particularly well-suited.
Spell checking, parsing, as of email headers or configuration
files, handling CAPTCHAs, and generally any functions
that process or tag images, are other members of this class.
This underscores the importance of the hybrid computation
principle of prorogued programming. Usually, these problems
are amenable to crowdsourcing for building the IO store.

Evolving API By proroguing dependencies, a team work-
ing on a client to an API can work and iterate independently
from the team that implements that API. Faster, untangled,

4 To paraphrase Justice Stewart, we know it when we see it.

MsgStatus Send(string recipient, string msg) {
try {
return prorogue Sms.Send(recipient, msg);

} catch {
return prorogue;

}
}

Figure 15: Evolving an existing API.

iteration helps the API client team to have a more concrete
idea about what they are going to need from the API im-
plementors, so that they can provide feedback early in the
API evolution process. Prorogued programming opens the
way to the parallel development of coupled modules, while
minimizing the need for coordination. The IO stores capture
the behavior each team expects and can be examined by the
other team. This extends the paradigm’s power to support the
execution of partial implementation and evolution of code
from the individual programmer to a team of developers. Ad-
ditionally, prorogued programming can be used to defer the
concerns about the exact characteristics of an API, like the
exceptions it may throw, to a later time. A common usage
pattern for prorogued calls is in the catch blocks, shown in
Figure 15.

Shadowing while Debugging Prorogued programming
gives a programmer the power to temporarily decouple
tightly coupled modules and interactively control (via IO
store construction) the output of the shadowed method to
drive execution as desired. This is especially useful if the call
being shadowed depends on time or location the program is
being run, or the call is costly, such as a paid web service.
Simply prepending an existing call with prorogue decouples
the caller from the callee and provides a means to inject
values into the caller. Decorating a method declaration with
the prorogue keyword is also supported and is semantically
equivalent to annotating all call sites bound to the method
with prorogue. Another use case of shadowing is bug local-
ization: if the both caller and callee are complex methods and
we wish to identify where the problem lies, we can prorogue
the call and act as an oracle in between that returns correct
values. For example, we can test the example program in
Figure 16 without actually charging a real credit card, by
proroguing the cc.Charge invocation in the if condition as
shown.

Mocking External Resources Another benefit of pro-
rogued programming is the ability to prorogue external
resources, as highlighted in the illustrating example Fig-
ure 2, we use a database to back our mail program. The
program is functional without relying on a real database at all.
The programmer is free to experiment with the data model
and code; she can also just leave the database concerns to
database experts.



void ChargeUser(Card cc, decimal amount) {
if (prorogue cc.Charge(amount)) {
var video =
(int)Session["RequestedVideo"];

var ip = Request.UserHostAddress;
var server = FindContentServer(ip, video);
var key = CreateAuthKey(server, video);
Response.Redirect(
GetVideoUrl(server, video, key));

} else Response.Redirect("/failed.html");
}

Figure 16: Debugging with prorogued invocations.

6. Open Issues
Prorogued programming is the newborn fusion of three prin-
ciples, viz. prorogued concerns, hybrid computation, and exe-
cutable refinement. To date, our focus has been on realizing
and experimenting with a prorogued language, Prorogued C#.
Much work lies before the fruition of prorogued program-
ming. We must assess its utility and usability, work to identify
application domains for which it is well-suited, and explore
the evolution of prorogued programs.

Utility New language features and paradigms are intrinsi-
cally hard to evaluate, especially at their debut when there is
no data or experience to draw upon. Object-oriented program-
ming (OOP) and aspect-oriented programming (AOP) faced
similar difficulties in measuring their impact on programming
practice when they arrived [17]. In Section 5, we followed
their lead and used case studies to illustrate the prorogued
programming paradigm.

Quantifying the impact of prorogued programming on
programmer productivity is an open issue. In general, a pro-
rogued program runs slower than a version without prorogued
calls. The magnitude of this slowdown is a function of the
number of human interactions. As a developer gradually
designs and refines a program during its construction, we
contend that this slowdown will be more than offset by the
productivity gains of catching errors because of the ease of
testing refinements and from not having to write stubs in
order to perform testing at all. Related is the question of
quantifying the productivity gains from avoiding abstraction
shifts.

Usability User interaction underlies hybrid computation:
the human must be efficiently and effectively involved both
in populating the IO store and, during reification, in under-
standing and abstracting it into code. Thus, the user interface
of any prorogued language will be critical to its success. Cur-
rently, complex objects are displayed in a hierarchical fashion
in the user interface. Pattern recognition is a human strength,
so IO tables should store and return graphical objects. For
example, a human will not be able to solve a CAPTCHA
if the interface does not display it. Perhaps we can harness
frameworks, like Microsoft’s debugger visualizer, to allow
a programmer to write renderers for objects within an IO

store. In future work, we will release a prorogued language to
users, study how they use it in order to improve its realization,
notably its user interface.

Understanding what functionality is, or is not, well-suited
for proroguing requires more investigation. Human latency
and excessive user interaction are two issues here. While it is
natural to model human computation as a very slow thread
in a concurrent application, not all concurrent applications
can tolerate the resulting latency. Regarding excessive user
interaction, the pertinent questions are “How many times can
the system query the programmer?” and “How complex can
each query be?”

A worse case for prorogued programming would be to
prorogue a function that adds one to unique numeric param-
eters, since the human (at least one who did not instantly
grasp the pattern) would be tediously involved in every call.
For many functions, however, a small set of test cases can
drive them to exhibit their critical behaviors. Even when a
function has many behaviors, prorogued programming can
help a programmer systematically explore subsets of them,
by progressively, partially implementing (Section 4.3) the
handling of subsets of inputs and requiring the prorogue call
to handle only a manageable set of test inputs.

Query complexity is a challenging problem. To begin,
we note that, in our use of a prorogued language, we have
observed simple queries. A programmer can find a query
complex either 1) because it is complex for the human
intellect, perhaps merely because of problem size, but not, in
principle, for a computer, once an algorithm has been found
and implemented or 2) because it is an intrinsically hard
problem for both man and machine. Prorogued programming
offers nothing special to tackle the latter problem; indeed,
no silver bullet may exist. The former problem presents an
opportunity: if a user feels a query is too complex, she can
give the system a hint and ask for a simpler query that is
also useful from the system’s perspective. When faced by
a complex query, a human can also consult other resources,
such as other developers or even an SMT solver. Finally,
an approach to the problem of a complex is to again avail
ourselves of our principle of hybrid computation and interact
with the user to simplify a query.

As with query quantity, a programmer could mistakenly
prorogue a function that is better suited for a computer than
a human. Clearly, a programmer will not learn very much
from testing refinements when spending most of her time
populating an IO store. However, these are programming er-
rors, akin to unintentionally writing an infinite loop. Like
an infinite loop, these errors can be quickly identified and
addressed. For instance, a programmer could partially im-
plement a prorogued call by wrapping it in logic in the host
language as described in Section 4.3. In short, the program-
mer decides whether or not and how often to prorogue some,
as yet unimplemented, functionality.



Program Evolution We conjecture that prorogued pro-
grams will typically evolve toward fewer prorogued calls
throughout construction. Here, the open question is how to
best leverage the knowledge captured in a prorogued func-
tion’s IO store. One promising direction is to use IO stores as
input to program synthesis techniques [10]. Here, if the IO
store is insufficient, perhaps we could again apply our princi-
ple of hybrid computation and solicit human help and allow
the synthesis algorithm to query the human for additional
examples that resolve ambiguities. We all make mistakes;
programmers will inevitably incorrectly answer a query and
pollute a prorogued function’s IO store. How do we allow the
user to correct or update the IO store? Can we devise algo-
rithms to detect errors in an IO store with high precision and
recall? Finally, as code evolves, the signature of a prorogued
method may change. Rather than repopulate that method’s IO
store from scratch, can we migrate the contents of an existing
IO store to the new format?

7. Related Work
We are introducing a new programming paradigm, a perilous
and ambitious endeavor since few paradigms gain traction.
Two paradigms that also sought to change how programmers
manage concerns and that succeeded are Object-Oriented
Programming (OOP) and Aspect-Oriented Programming
(AOP) [17]. OOP defined a new way to design programs
and to modularize concerns. AOP modularizes a concern that
OOP did not capture, namely cross-cutting concerns, like
logging. Prorogued programming differs from OOP and AOP
along all three of its defining principles: by involving humans,
its hybrid computation both enables proroguing concerns and
experimenting with very fine-grained refinements.

Tinker, by Lieberman and Hewitt, is, in modern terms, an
early integrated development environment (IDE) for Lisp that
uses interactive memoization to integrate implementation and
testing [23]. Lieberman and Hewitt focus on Tinker’s menu-
driven code entry and reversible debugger features, although
they speculate that Tinker may aid top-down development.
Prorogued programming also uses memoization; however,
we do so to introduce a programming paradigm that aims to
streamline development by allowing a programmer to control
the order in which they work on tasks. To realize prorogued
programming, we integrated its three features directly into the
language, not as an IDE-overlay, and we targeted a statically
typed, compiled language, to demonstrate the universality of
prorogued programming.

We next describe two projects that share with prorogued
programming a focus on enhancing programmer productivity
during program construction. DuctileJ is a detyping trans-
formation that allows the execution of type-incorrect Java
programs [1]. From the domain of dynamically typed lan-
guages, it focuses on bringing the ability to execute code at
nearly any time to a statically typed language. The motivation
is facilitate testing, during program construction while a pro-

grammer works to converge on a final, type-correct program.
One aspect of prorogued programming shares this focus, viz.
its realization of executable and testable refinements. Beyond
this, prorogued programming is quite different. Prorogued
programming is about correct, but incomplete programs; Duc-
tileJ is about incorrect programs. DuctileJ is unneeded in a
dynamic language; in contrast, prorogued programming is
universal.

Angelic programming shows how to employ Floyd’s non-
deterministic choose operator to assist program construc-
tion [2]. Given an angelic program, an angelic solver con-
trols the output of the choose operators within a program
to search for safe traces, executions that terminate without
failing an assertion. The programmer is expected to reason
about the resulting safe traces to gain insight and discover
algorithms that allow her to restructure the program toward
its deterministic, choose-free final version. As with DuctileJ,
prorogued programming is also concerned with improving
program construction and is otherwise quite different. Pro-
rogued programming relies on hybrid computation to execute
incomplete programs, not backtracking or SAT-based solvers.
The prorogue keyword decorates any function call and can
return arbitrary collections of types; the choose operator is
limited to producing boolean, integer, or address values. To
help a developer shift through and control the production of
traces, angelic programming relies on assertions. It is not
clear that writing these assertions reduces, rather than simply
shifts, the complexity of the programming task facing a devel-
oper. In contrast, prorogued programming’s execution model,
other than when it prompts the user to populate a prorogued
method’s IO store, is standard and allows a more traditional
workflow: a developer is not required to (but can) use asser-
tions to control a prorogued program execution. Although
not related to prorogued programming’s current realization,
we note that angelic programming has been adapted to de-
bugging [4].

During the evolution of a prorogued program, prorogued
functions are typically progressively reified and eliminated.
The reification of a prorogued method may be quite difficult;
a programmer may not gain very much insight from even a
large IO store. All is not lost when this happens of course,
since the programmer benefited from deferring the concern.
Nonetheless, the tantalizing problem here is to leverage
knowledge an IO store contains to ease the implementation
of the deferred task. Next we discuss work that bears on this
problem of facilitating the evolution of prorogued programs.

Mixed interpreters execute programs that mix specification
and implementation [9, 24, 26]. When it encounters a specifi-
cation, a mixed interpreter runs a solver and updates the heap
with the solution if one is found5. Writing specifications can
be quite difficult, so mixed interpreters can impose precisely
the disruptive abstraction shift that prorogue aims to obvi-

5 Samimi et al.’s Plan B “encounters” a specification when an implementa-
tion violates its contract.



ate. During the evolution of a prorogued program, however,
the programmer may decide to use formal specification to
capture a prorogued function. Can an IO store’s input/output
pairs facilitate the writing of a specification?

When program sketching, a programmer needs to write
only a skeleton, or sketch, of a desired implementation,
leaving holes that a synthesizer fills in [27–30]. Prorogued
calls can be seen as these holes. Example-guided synthesis,
as its name suggests, uses examples to guide synthesis [11,
12]. Obviously a prorogued method’s IO store may be an
excellent source of examples for this line of work, which
may, in turn, help automate the reification of prorogued
functions. Finally, a related line of work, previously discussed
in Section 3, is programming by example (aka programming
by demonstration) [18–20, 35]; this work too provides an
opportunity for synergism with prorogued programming.

8. Conclusion
In this work, we have introduced a new programming
paradigm, prorogued programming, founded on three princi-
ples — proroguing concerns, hybrid computation, and exe-
cutable refinements. These principles interlock to form a new
paradigm that lets a programmer compile and experiment
with an incomplete program that invokes unimplemented
functions. A user interface allows the programmer to control
the behavior of these functions at runtime if they are actually
invoked. This paradigm allows a programmer to prorogue the
concern that an unimplemented function embodies and focus
on and complete a task at a particular level of abstraction.
In contrast, today’s languages force the programmer, if she
wishes to compile and experiment with their code, to imme-
diately define at least a stub for an unresolved dependency,
potentially derailing her train of thought. Prorogued program-
ming also enables a programmer to interact and experiment
with their implementation very early in its development, be-
cause each successive refinement is executable and testable.
We believe that prorogued programming will facilitate pro-
gram construction and enable new programming workflows
that increase programmer productivity.
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