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The Netspeak Word Search Engine
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The Netspeak Word Search Engine
Introduction

❑ Writing is not so much about what to write, but how to write.

❑ Finding the right words is essential to ease understanding.

❑ Searching for words is not well supported.
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❑ Writing is not so much about what to write, but how to write.

❑ Finding the right words is essential to ease understanding.

❑ Searching for words is not well supported.

We got for . . .

❑ spelling problems

❑ grammar mistakes

❑ translation questions

❑ word choice ambiguities

❑ writing style analysis

→ spell checkers

→ grammar checkers

→ dictionaries, machine translation tools

→ thesauri

→ reading and writing measures
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❑ Writing is not so much about what to write, but how to write.

❑ Finding the right words is essential to ease understanding.

❑ Searching for words is not well supported.

We got for . . .

❑ spelling problems

❑ grammar mistakes

❑ translation questions

❑ word choice ambiguities

❑ writing style analysis

→ spell checkers

→ grammar checkers

→ dictionaries, machine translation tools

→ thesauri

→ reading and writing measures

With Netspeak we address:

❑ finding the most common word (correctness vs. commonness)

❑ finding appropriate words in context
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[www.netspeak.org]
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The Netspeak Word Search Engine
Corpus Statistics

❑ Netspeak is based on the Google n-gram corpus ”Web 1T 5-gram Version 1” from 2006:

Subset n-gram number Space after postprocessing
1-gram 13 588 391 177.0 MB 3.75 %
2-gram 314 843 401 5.0 GB 43.26 %
3-gram 977 069 902 19.0 GB 48.65 %
4-gram 1 313 818 354 30.5 GB 49.54 %
5-gram 1 176 470 663 32.1 GB 47.16 %
Σ 3 354 253 200 77.9 GB 54.20 %

❑ Postprocessing includes:
– all n-grams: conversion to lower case
– 1-grams: deletion of words with frequency below 3 000

deletion of words with certain special characters (blacklist)
→ about 1.5 million 1-grams remain

– 2/3/4/5-grams: filtering with respect to the 1.5 million 1-grams

❑ See Netspeak load statistics online.
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The Netspeak Word Search Engine
Related Research

Wildcard search [Cafarella and Etzioni, WWW 2005]

[Resnik and Elkiss, ACL 2005]

[Rafiei and Li, CIKM 2009]

[Tsang and Chawla, CIKM 2011]

[Vaele, ACL 2011]

n-Gram indexing [Lin et al., LREC 2010]

[Hawker et al., ALT 2007]

[Carlson, Carnegie Mellon 2008]

[Brants, EMNLP/CONLL 2007]

[Guthrie and Hepple, EMNLP 2010]

Error correction [Leacock et al., Morgan & Claypool 2010]

[Brockett et al., ACL 2006]

Digital humanities [Michel et al., Science 2010]
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The Netspeak Word Search Engine
Problem Statement

Given: A set D of n-grams, n ≤ 5, with frequencies f : D → N.
A query q as a sequence of words and wildcards.

query = { word | wildcard }51
wildcard = ” ? ” | ” * ” | synonyms | multiset | optionset
synonyms = ” # ” word
multiset = ” { ” word { word } ” } ”
optionset = ” [ ” word { word } ” ] ”

Task: Retrieve all n-grams in D that match q.
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The Netspeak Word Search Engine
Problem Statement

Given: A set D of n-grams, n ≤ 5, with frequencies f : D → N.
A query q as a sequence of words and wildcards.

query = { word | wildcard }51
wildcard = ” ? ” | ” * ” | synonyms | multiset | optionset
synonyms = ” # ” word
multiset = ” { ” word { word } ” } ”
optionset = ” [ ” word { word } ” ] ”

Task: Retrieve all n-grams in D that match q.

Straightforward solution:

1. Construct an inverted index µ : V → P(D), where V is D’s vocabulary.

2. Retrieve the n-grams R =
⋂

w∈q µ(w) that contain all of q’s words w ∈ V .

3. Compile a pattern matcher from q and filter R.
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The Netspeak Word Search Engine
Index Construction

Considerations and implications:

❑ Exploit closed retrieval setting (D is constant): perfect hashing

❑ Exploit small n-gram lengths: compile filtering effort into index

– multiple indexes for fixed query lengths

– uniform query representation by enfolding

– positional subqueries as index keys

❑ Exploit task characteristics: trade retrieval recall for retrieval time

q = hello kitty ? → µ(hello)
→ µ(kitty)

→ hello 33 000 000
hello all 800 000
hello to all 140 000
say hello 1 000 000
posted by hello 339 000
say hello to 374 000

← µ3(hello)

←
←

←

1-gram index
2-gram index
3-gram index
4-gram index
5-gram index
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The Netspeak Word Search Engine
Index Construction

Considerations and implications:

❑ Exploit closed retrieval setting (D is constant): perfect hashing

❑ Exploit small n-gram lengths: compile filtering effort into index

– multiple indexes for fixed query lengths

– uniform query representation by enfolding

– positional subqueries as index keys

❑ Exploit task characteristics: trade retrieval recall for retrieval time

q = hello * kitty * → hello kitty

hello ? kitty

hello kitty ?

hello ? ? kitty

hello ? kitty ?

hello kitty ? ?

hello ? ? ? kitty

hello ? ? kitty ?

hello ? kitty ? ?

hello kitty ? ? ?

→ ? ? kitty

→ ? kitty ?

→ µ3P (kitty, 3, 2)
→ µ3P (kitty, 3, 1)
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The Netspeak Word Search Engine
Index Construction

Considerations and implications:

❑ Exploit closed retrieval setting (D is constant): perfect hashing

❑ Exploit small n-gram lengths: compile filtering effort into index

– multiple indexes for fixed query lengths

– uniform query representation by enfolding
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q = hello kitty ? → µ3P (hello, 3, 0)
→ µ3P (kitty, 3, 1))

→ hello, my 500 000
hello and welcome 261 000
hello world! 175 000
hello ... . . .
hello my friend 13 000
hello kitty princess 8 400
hello is there 4 600
hello and how 2 600
hello is any 320
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The Netspeak Word Search Engine
Index Construction

Examples:

n-gram Frequency Identifier Postlist entry Index Key

hello 33 000 000 1 (1, 33 000 000) symbol table hello

world 432 000 000 3 (3, 432 000 000) symbol table world

hello world 712 963 4 (4, 712 963) symbol table hello world

2-gram (hello, 2, 0)
2-gram (world, 2, 1)

Part of the symbol table is used as 1-gram index at the same time.

Netspeak index statistics:

❑ 2 013 781 863 keys in n-gram symbol table

❑ 19 346 361 keys in 2/3/4/5-gram indexes

❑ 7 782 365 325 postlist entries

❑ 134 GB index size, 1.7 GB memory footprint
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The Netspeak Word Search Engine
Index Construction

Netspeak



n-gram
symbol
table

Bijective mapping between all n-grams and their postlist entries.
I.e., frequency information is symbol table payload.
Example: hello world 7→ (4, 712 963) // n-gram 7→ (id, frequency)

(4, 712 963) 7→ hello world // (id, frequency) 7→ n-gram

Rationale: Follow design of inverted indexes.
Lookup table for non-wild-card queries.
Database with underestimations for skip heuristics.

n-gram
inverted

index

Inverted index where n-grams are in the role of documents.
A key encodes also n-gram length and word position.
A postlist is a sorted list of (id, frequency)-tuples.
Example: (hello, 2, 0) 7→ ((5, 1 469 134), (4, 712 963))

(world, 2, 1) 7→ ((4, 712 963))

postlist
skiplist
index

Meta index that specifies postlist entry points according
to the n-gram frequency distribution.
Rationale: Efficient search for set operations on sorted postlists.

Implementation of frequency range queries.
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The Netspeak Word Search Engine
Construction Pipeline

Distribution Map Shuffle Sort /
secondary sort

Reduce Index serialization
(details not shown)

Google
n-gram
corpus

n-gram
symbol
table

postlist
skiplist
index

n-gram
inverted

index

(line number, line)

(1, hello world 712963 4)

(2, hello kitty 1468134 5)

Input records

((word, len, pos), (freq, id))

((hello, 2, 0), (712963, 4))

((world, 2, 1), (712963, 4))

((hello, 2, 0), (1468134, 5))

((kitty, 2, 1), (1468134, 5))

Intermediate records

((word, len, pos), ((freq, id) ... (freq, id)))

((hello, 2, 0), ((1468134, 5),(712963, 4)))

((world, 2, 1), ((712963, 4)))

((kitty, 2, 1), ((1468134, 5)))

Sorted records

records
0 ... 4

records
5 ... 9

Output records

(reduced sorted records)

Cluster-wide data copy

Local data copy

record 0

record 3
record 2
record 1

record 4

record 5

record 8
record 7
record 6

record 9

slot 0
slot 1

split

reduce

map

split map

split map

slot 0
slot 1

slot 0
slot 1

slot 0
slot 0
slot 0

slot 1
slot 1
slot 1

reduce
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The Netspeak Word Search Engine
Selected Index Performance Issues

❑ n-gram symbol table (external)
– n-gram 7→ (id, frequency)

minimal perfect hash functions via BDZ algorithm [Belazzougui/Botelho/Dietzfelbinger 2009]

– (id, frequency) 7→ n-gram
four external arrays encoding the 2/3/4/5-grams via their 1-gram ids

❑ n-gram inverted index (external)
– tailored indexing of 2/3/4/5-grams that enable positional subquery lookup
– header tables that map positional subqueries to postlists on the harddisk

❑ postlist skiplist index (external)
– applies to postlists that fit not into memory (> 105 entries)
– skip density models frequency distribution and enables task-specific pruning strategies

➜ heuristic retrieval that considers the number of matches or postlist entries
➜ heuristic retrieval that considers the word class. Pruning strategy for phrase ranking:

immediate response non-stopword postlist 0.80 quantile
stopword postlist 0.30 quantile

near 1-recall response non-stopword postlist 0.95 quantile
stopword postlist 0.50 quantile

❑ result caching
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The Netspeak Word Search Engine
Retrieval Performance—Data Perspective: Completeness→ Recall
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The Netspeak Word Search Engine
Retrieval Performance—Technology Perspective: Effort→ Recall

Recall
0 0.2 0.4 0.6 0.8 1
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Index-based retrieval
            +
Tailored indexing
            +
Postlist pruning

x 25

❑ reduction of retrieval effort by factor 25 due to indexing technology
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The Netspeak Word Search Engine
Netspeak in a Nutshell

Given: A set D of n-grams, n ≤ 5, with frequencies f : D → N.
A query q as a sequence of words and wildcards.

Task: Retrieve all n-grams in D that match q.

Solution:

❑ Construct an inverted index µ : V × {1, . . . , 5}︸ ︷︷ ︸
n-gram length

× {1, . . . , 5}︸ ︷︷ ︸
word position

→ P(D)

❑ Sort µ(w, i, j) in descending order of f , where w ∈ V and i, j ∈ {1, . . . , 5}.

❑ Let Rq denote the true retrieval result for q.

❑ Enfold q into {q1, . . . , qm} such that
⋃m

i=1Rqi = Rq, and each qi matches only n-grams with a
fixed length. Process sub-queries in parallel.

❑ Retrieve all n-grams Rqi =
⋂

w∈qi µ(w, |qi|, qi|w), with qi|w denoting w’s position in qi.

❑ Process µ(w, i, j) starting at rightmost entry k, where f(µ(w, i, j)k) ≤ mind∈{q1,...,qm}(f(d)).

❑ Stop processing µ(w, i, j) at entry
|µ(w, i, j)| if the postlist is smaller than a page, or

l1 if a pre-specified amount of results have been retrieved, or
l2 if

∑l2
i′=0 f(µ(w, i, j)i′) covers κ% of the frequency distribution.

43 [∧] Stein@WAC’12 April 17th 2012



The Netspeak Word Search Engine
Netspeak Summary

Netspeak’s targeted users want to improve their writing:

❑ scientists, authors, scholars, journalists, bloggers

I.e., at the beginning we were thinking of following use cases:

❑ scientists who speak English as a second language

❑ scientists who ask what is commonly written in their research field

❑ a Netspeak that is tailored to the genre of scientific writing

❑ support for corpus-linguistic research
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The Netspeak Word Search Engine
Netspeak Summary

Netspeak’s targeted users want to improve their writing:

❑ scientists, authors, scholars, journalists, bloggers

I.e., at the beginning we were thinking of following use cases:

❑ scientists who speak English as a second language

❑ scientists who ask what is commonly written in their research field

❑ a Netspeak that is tailored to the genre of scientific writing

❑ support for corpus-linguistic research

Meanwhile we are also thinking of the following (and more):

❑ query segmentation and query cover

❑ paraphrase generation and evaluation

❑ POS search, morphological search, partial word search

Research on subquery compilation: key space size versus filtering effort
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The Netspeak Word Search Engine
What Our Users Say ;–)
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Query Segmentation
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Query Segmentation
What is the User Searching?

new york times square dance
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Query Segmentation
What is the User Searching?

new york times square dance

All search engines face the same problem.
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Query Segmentation
What is the User Searching?

new york times square dance

Image source: [http://www.theepochtimes.com/n2/images/stories/large/2009/08/06/Bollywood1.jpg]
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Query Segmentation
What is the User Searching?

new york times square dance

Image source: [http://blog.caseytempleton.com/wp-content/uploads/2009/05/090517_nytfrontpage1.jpg]

Image source: [http://upload.wikimedia.org/wikipedia/commons/0/03/Square_Dance_Group.jpg]
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Query Segmentation
Segment Your Queries!

The benefits:

❑ improved precision

❑ potential disambiguation

❑ reformulation at segment level

The syntax:

❑ Quotes around segments: "new york" "times square" dance
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Query Segmentation
Segment Your Queries!

The benefits:

❑ improved precision

❑ potential disambiguation

❑ reformulation at segment level

The syntax:

❑ Quotes around segments: "new york" "times square" dance

The reality:

❑ Most web searchers are not even aware of the quotes option.
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Query Segmentation
Segment Your Queries!

The benefits:

❑ improved precision

❑ potential disambiguation

❑ reformulation at segment level

The syntax:

❑ Quotes around segments: "new york" "times square" dance

The reality:

❑ Most web searchers are not even aware of the quotes option.

The solution:

❑ Automatic pre-retrieval query segmentation. (response time is indispensable)
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Query Segmentation
Segment Your Queries!

Given: A keyword query.

Task: Find the “best” segmentation.

Boundary conditions:

❑ we assume correct spelling

❑ we do not change keywords

❑ we do not change word order

Examples:

Query new york times square dance

Valid candidates "new york" "times square" dance

"new york times" "square dance"

No candidate "new york" "dance times square"
(a Latin dance studio in NYC)

(three segments)}
(two segments each)
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Query Segmentation
Related Research

Mutual information [Risvik et al., WWW 2003]

[Jones et al., WWW 2006]

[Huang et al., WWW 2010]

Supervised learning [Bergsma and Wang, EMNLP-CoNLL 2007]

[Bendersky et al., SIGIR 2009]

Unsupervised learning [Tan and Peng, WWW 2008]

[Zhang et al., ACL-IJCNLP 2009]

Retrieval feedback [Brenes et al., CERI 2010]

[Bendersky et al., CIKM 2010]

[Bendersky et al., ACL 2011]

Query log [Mishra et al., WWW 2011]

[Li et al., SIGIR 2011]
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Query Segmentation

Our first approach [Hagen et al., SIGIR 2010]

. . . follows a well-known principle.

KISS—keep it simple and stupid—and use the Web as a corpus.

Image source: [http://1.bp.blogspot.com/_UDZXrzYpS4k/THRrh8KPvVI/AAAAAAAAAoc/Be1HjlnRy1c/s400/lipstick-mirror.jpg]
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Query Segmentation
Exploiting Web Phrase Frequencies [Google n-grams, Brants and Franz, LDC 2006]

Rationale:

(a) web phrases = reasonable segments

(b) more frequent = better segments
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Query Segmentation
Exploiting Web Phrase Frequencies [Google n-grams, Brants and Franz, LDC 2006]

Rationale:

(a) web phrases = reasonable segments

(b) more frequent = better segments

Summing up raw frequencies won’t yield a sensible ranking:

"new york" times = 165.4 million
"new york times" = 17.5 million

(short segments always win)
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Query Segmentation
Exploiting Web Phrase Frequencies [Google n-grams, Brants and Franz, LDC 2006]

Rationale:

(a) web phrases = reasonable segments

(b) more frequent = better segments

Summing up raw frequencies won’t yield a sensible ranking:

"new york" times = 165.4 million
"new york times" = 17.5 million

(short segments always win)

From the data we derived the following segment frequency normalization:

|s||s| · freq(s) (s denotes a segment)
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Query Segmentation
Exploiting Web Phrase Frequencies

Examples:

segment s freq(s)

new york 165.4 million
new york times 17.5 million
new york times square 20 476
new york times square dance 0

york times 17.6 million
york times square 20 561
york times square dance 0

times square 1.3 million
times square dance 104

square dance 210 440
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Query Segmentation
Exploiting Web Phrase Frequencies

Examples:

segment s freq(s)

new york 165.4 million
new york times 17.5 million
new york times square 20 476
new york times square dance 0

york times 17.6 million
york times square 20 561
york times square dance 0

times square 1.3 million
times square dance 104

square dance 210 440

|s||s| · freq(s)

661.6 million
472.5 million

5.2 million
0

70.4 million
0.5 million

0

5.2 million
2 808

0.8 million
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Query Segmentation
Exploiting Web Phrase Frequencies

The normalized segment frequencies sum up to the score of a query S:

score(S) =


∑

s∈S, |s|≥2

|s||s| · freq(s)

−1 if |s| ≥ 2 ∧ freq(s) = 0 for some s ∈ S

Ranking:

rank segmentation S score(S)

1 "new york" "times square" dance 666.8 million
2 "new york" times "square dance" 662.4 million
... ... ...
5 "new york times" "square dance" 473.3 million
... ... ...

13 new york "times square dance" 2 808
14 new york times square dance 0
15 "new york times square dance" -1
16 new "york times square dance" -1
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Query Segmentation

Our second approach [Hagen et al., WWW 2011]

. . . introduces a semantic-based frequency normalization.

Titles of articles are highly expressive—and can be found on the Web.
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Query Segmentation
Exploiting Web Phrase Frequencies + Wikipedia Titles

Wikipedia article on “Time Square”:
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Query Segmentation
Exploiting Web Phrase Frequencies + Wikipedia Titles

Wikipedia article on “Toilet paper orientation”:

Pure regression-based approaches will fail in cases like this.
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Query Segmentation
Exploiting Web Phrase Frequencies + Wikipedia Titles

Examples:

segment s freq(s)

new york 165.4 million
new york times 17.5 million
new york times square 20 476
new york times square dance 0

york times 17.6 million
york times square 20 561
york times square dance 0

times square 1.3 million
times square dance 104

square dance 210 440
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Query Segmentation
Exploiting Web Phrase Frequencies + Wikipedia Titles

Examples:

segment s freq(s)

new york 165.4 million
new york times 17.5 million
new york times square 20 476
new york times square dance 0

york times 17.6 million
york times square 20 561
york times square dance 0

times square 1.3 million
times square dance 104

square dance 210 440

wikiTitle(s)

✓

✓

-
-

-
-
-

✓

-

✓
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Query Segmentation
Exploiting Web Phrase Frequencies + Wikipedia Titles

Examples:

segment s freq(s)

new york 165.4 million
new york times 17.5 million
new york times square 20 476
new york times square dance 0

york times 17.6 million
york times square 20 561
york times square dance 0

times square 1.3 million
times square dance 104

square dance 210 440

wikiTitle(s)

✓

✓

-
-

-
-
-

✓

-

✓

wikiFreq(s)

165.4 million
165.4 million

20 476
0

17.6 million
20 561

0

1.3 million
104

210 440
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Query Segmentation
Exploiting Web Phrase Frequencies + Wikipedia Titles

Examples:

segment s freq(s)

new york 165.4 million
new york times 17.5 million
new york times square 20 476
new york times square dance 0

york times 17.6 million
york times square 20 561
york times square dance 0

times square 1.3 million
times square dance 104

square dance 210 440

wikiTitle(s)

✓

✓

-
-

-
-
-

✓

-

✓

wikiFreq(s)

165.4 million
165.4 million

20 476
0

17.6 million
20 561

0

1.3 million
104

210 440

|s| · wikiFreq(s)

330.8 million
496.2 million

81 904
0

35.2 million
61 683

0

2.6 million
312

420 880

wikiFreq(s) = freq(s′) ↔ s′ < s ∧ wikiTitle(s)
with < as subsequence operator
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Query Segmentation
Exploiting Web Phrase Frequencies + Wikipedia Titles

The normalized segment frequencies sum up to the score of a query S:

score(S) =


∑

s∈S, |s|≥2

|s| · wikiFreq(s)

−1 if |s| ≥ 2 ∧ freq(s) = 0 for some s ∈ S

Ranking:

rank trend segmentation S score(S)

1 ↑↑ "new york times" "square dance" 496.6 million
2 ↑↑ "new york times" square dance 496.2 million
3 ↓ "new york" "times square" dance 333.4 million
... ... ... ...

13 - new york "times square dance" 312
14 - new york times square dance 0
15 - "new york times square dance" -1
16 - new "york times square dance" -1
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Query Segmentation

∨ ∨ . . .

How do our approaches perform?

72 [∧] Stein@WAC’12 April 17th 2012



Query Segmentation
About Effectiveness

The standard corpus: [Bergsma and Wang, EMNLP-CoNLL 2007]

❑ 500 queries from the AOL log

❑ each segmented by three human annotators

❑ often used for evaluation
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Query Segmentation
About Effectiveness

The standard corpus: [Bergsma and Wang, EMNLP-CoNLL 2007]

❑ 500 queries from the AOL log

❑ each segmented by three human annotators

❑ often used for evaluation

How effectiveness is measured:

Reference: "new york" "times square" dance (three segments)
Computed: "new york" times square dance (four segments)

→ Query: 0 (computed ̸= reference)

→ Precision: 1
2 (2 out of 4 computed segments correct)

→ Recall: 2
3 (2 out of 3 reference segments found)

→ Break: 3
4 (3 out of 4 between-words decisions correct)
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Query Segmentation
About Effectiveness

The standard corpus: [Bergsma and Wang, EMNLP-CoNLL 2007]

❑ 500 queries from the AOL log

❑ each segmented by three human annotators

❑ often used for evaluation

How effectiveness is measured:

Reference: "new york" "times square" dance (three segments)
Computed: "new york" times square dance (four segments)

→ Query: 0 (computed ̸= reference)

→ Precision: 1
2 (2 out of 4 computed segments correct)

→ Recall: 2
3 (2 out of 3 reference segments found)

→ Break: 3
4 (3 out of 4 between-words decisions correct)
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Query Segmentation
About Effectiveness

The standard corpus: [Bergsma and Wang, EMNLP-CoNLL 2007]

❑ 500 queries from the AOL log

❑ each segmented by three human annotators

❑ often used for evaluation

How effectiveness is measured:

Reference: "new york" "times square" dance (three segments)
Computed: "new york" times square dance (four segments)

→ Query: 0 (computed ̸= reference)

→ Precision: 1
2 (2 out of 4 computed segments correct)

→ Recall: 2
3 (2 out of 3 reference segments found)

→ Break: 3
4 (3 out of 4 between-words decisions correct)
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Query Segmentation
About Effectiveness

The standard corpus: [Bergsma and Wang, EMNLP-CoNLL 2007]

❑ 500 queries from the AOL log

❑ each segmented by three human annotators

❑ often used for evaluation

How effectiveness is measured:

Reference: "new york" "times square" dance (three segments)
Computed: "new york" times square dance (four segments)

→ Query: 0 (computed ̸= reference)

→ Precision: 1
2 (2 out of 4 computed segments correct)

→ Recall: 2
3 (2 out of 3 reference segments found)

→ Break: 3
4 (3 out of 4 between-words decisions correct)
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Query Segmentation
About Effectiveness

The standard corpus: [Bergsma and Wang, EMNLP-CoNLL 2007]

❑ 500 queries from the AOL log

❑ each segmented by three human annotators

❑ often used for evaluation

How effectiveness is measured:

Reference: "new york" "times square" dance (three segments)
Computed: "new|york"| times square |dance (four segments)

→ Query: 0 (computed ̸= reference)

→ Precision: 1
2 (2 out of 4 computed segments correct)

→ Recall: 2
3 (2 out of 3 reference segments found)

→ Break: 3
4 (3 out of 4 between-words decisions correct)
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Query Segmentation
About Effectiveness

The standard corpus: [Bergsma and Wang, EMNLP-CoNLL 2007]

❑ 500 queries from the AOL log

❑ each segmented by three human annotators

❑ often used for evaluation

How effective we are:

Mutual information Bergsma/Wang |s||s| · freq(s) |s| · wikiFreq(s)

Query 0.583 0.702 0.700 0.726
Precision 0.693 0.812 0.800 0.820
Recall 0.697 0.831 0.796 0.807
Break 0.849 0.899 0.889 0.900
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Query Segmentation
About Effectiveness

The standard corpus: [Bergsma and Wang, EMNLP-CoNLL 2007]

❑ 500 queries from the AOL log

❑ each segmented by three human annotators

❑ often used for evaluation

How effective we are:

Mutual information Bergsma/Wang |s||s| · freq(s) |s| · wikiFreq(s)

Query 0.583 0.702 0.700 0.726
Precision 0.693 0.812 0.800 0.820
Recall 0.697 0.831 0.796 0.807
Break 0.849 0.899 0.889 0.900

Shortcomings of the Bergsma/Wang-corpus:

❑ not representative (small, just noun-phrases)
❑ only three annotators (40% without majority)
❑ duplicates, typos, encoding errors
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Query Segmentation
About Effectiveness

A new evaluation corpus: [Hagen et al., WWW 2011]

❑ 50 000 queries (3-10 keywords) from “filtered” AOL log

❑ sampling considers frequency and length distribution

❑ semi-automatic spell checking (14% corrected)

❑ 10 annotators per query via Amazon Mechanical Turk

How effective we are:

Mutual information |s||s| · freq(s) |s| · wikiFreq(s)

Query 0.598 0.599 0.616
Precision 0.727 0.736 0.744
Recall 0.738 0.733 0.739
Break 0.844 0.842 0.850

81 [∧] Stein@WAC’12 April 17th 2012



Query Segmentation
About Efficiency

System and implementation details:

❑ standard quad-core PC running Ubuntu 10.04

❑ hash table (MPHF) for about 2 billion normalized frequencies

❑ 12 GB memory footprint

Throughput:

❑ > 3 000 queries per second

❑ Remark: 1 billion queries per day means 12 000 queries per second
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Query Segmentation
Query Segmentation Summary

What we have done:

❑ exploitation of the Google n-gram corpus

❑ regression-based |s||s|-normalization strategy

❑ Wikipedia-based normalization strategy

❑ as effective as state of the art, but more robust and faster

❑ new evaluation corpus (about two orders of magnitude larger than previous STA)

What we plan to do:

❑ ranking-aware effectiveness

❑ retrieval-aware effectiveness
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Candidate Retrieval at PAN’12
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Candidate Retrieval at PAN’12
How Humans Plagiarize

Search I‘m Feeling Lucky

Thesis

Search Copy & Paste Modify
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Candidate Retrieval at PAN’12
How Humans Spot Plagiarism
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Candidate Retrieval at PAN’12
How Humans Spot Plagiarism
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Candidate Retrieval at PAN’12
Algorithmic Plagiarism Detection

Keyword extraction
from the document

Step 1

Candidate retrieval
in the WWW

Step 2

Detailed
comparison

Step 3

Knowledge-based
post-processing

Step 4
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Candidate Retrieval at PAN’12
Algorithmic Plagiarism Detection

Keyword extraction
from the document

Step 1

Candidate retrieval
in the WWW

Step 2

Detailed
comparison

Step 3

Knowledge-based
post-processing

Step 4

Where are the crucial keywords?

❑ check for noun phrases

❑ find orthographic mistakes

❑ consider word frequency classes

❑ but—don’t look in titles, captions, or headings
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Candidate Retrieval at PAN’12
Algorithmic Plagiarism Detection

Keyword extraction
from the document

Step 1

Candidate retrieval
in the WWW

Step 2

Detailed
comparison

Step 3

Knowledge-based
post-processing

Step 4

Keywords: “information retrieval”, “query formulation”, “search session”, “user support”
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Candidate Retrieval at PAN’12
Algorithmic Plagiarism Detection

Keyword extraction
from the document

Step 1

Candidate retrieval
in the WWW

Step 2

Detailed
comparison

Step 3

Knowledge-based
post-processing

Step 4

→ . . . →
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Candidate Retrieval at PAN’12
Algorithmic Plagiarism Detection

Keyword extraction
from the document

Step 1

Candidate retrieval
in the WWW

Step 2

Detailed
comparison

Step 3

Knowledge-based
post-processing

Step 4

Check for problematic decisions:

❑ citation analysis
(difficult: consider “excuse citations” in footnotes along with a completely reused text)

❑ comparison of authors and co-authors

❑ visualization
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Candidate Retrieval at PAN’12
Algorithmic Plagiarism Detection

Document
collection

Detailed
comparison

Suspicious
passages

Candidate
documents

Knowledge-based
post-processing

Suspicious
document

Thesis

Candidate
retrieval
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Candidate Retrieval at PAN’12
PAN Campaign [pan.webis.de]

Document
collection
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Uncovering plagiarism, authorship, and social software misuse:

❑ initiated in 2007

❑ competitions since 2009 (detection of authorship, vandalism, plagiarism, etc.)

❑ hosted at SIGIR, ECAI, SEPLN, and CLEF (since 2010)

❑ regularly >10 groups who participate in the plagiarism detection task
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Observations, problems:

1. PAN-PC-10 corpus based on 27 073 documents, contains 68 558 plagiarism cases,
addresses a broad range (by varying length, paraphrasing, topic alignment, etc.).

2. But—the corpus is too small to enforce a true candidate retrieval situation:
most participants did a complete detailed comparison on all O(n2) document pairs.

3. Corpora quality issues: plagiarized passages consider not the surrounding document,
paraphrasing mostly done by machines, the Web is not used as source.
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1. PAN-PC-10 corpus based on 27 073 documents, contains 68 558 plagiarism cases,
addresses a broad range (by varying length, paraphrasing, topic alignment, etc.).

2. But—the corpus is too small to enforce a true candidate retrieval situation:
most participants did a complete detailed comparison on all O(n2) document pairs.
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Observations, problems:

1. PAN-PC-10 corpus based on 27 073 documents, contains 68 558 plagiarism cases,
addresses a broad range (by varying length, paraphrasing, topic alignment, etc.).

2. But—the corpus is too small to enforce a true candidate retrieval situation:
most participants did a complete detailed comparison on all O(n2) document pairs.

3. Corpora quality issues: plagiarized passages consider not the surrounding document,
paraphrasing mostly done by machines, the Web is not used as source.
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Considerations:

1. PAN’12 will use the English part of the ClueWeb09 corpus (used in TREC 2009-2011 for
several tracks) as a static Web snapshot. Size: 500 million web pages, 12.5TB

2. Participants get efficient corpus access via the API of the ChatNoir search engine.
ClueWeb and ChatNoir will ensure experiment reproducibility and controllability.

3. The new corpus: manually written digestible texts, topically matching plagiarism cases,
Web as source (for document synthesis and plagiarism detection).
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Considerations:

1. PAN’12 will use the English part of the ClueWeb09 corpus (used in TREC 2009-2011 for
several tracks) as a static Web snapshot. Size: 500 million web pages, 12.5TB

2. Participants get efficient corpus access via the API of the ChatNoir search engine.
ClueWeb and ChatNoir will ensure experiment reproducibility and controllability.

3. The new corpus: manually written digestible texts, topically matching plagiarism cases,
Web as source (for document synthesis and plagiarism detection).
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Considerations:

1. PAN’12 will use the English part of the ClueWeb09 corpus (used in TREC 2009-2011 for
several tracks) as a static Web snapshot. Size: 500 million web pages, 12.5TB

2. Participants get efficient corpus access via the API of the ChatNoir search engine.
ClueWeb and ChatNoir will ensure experiment reproducibility and controllability.

3. The new corpus: manually written digestible texts, topically matching plagiarism cases,
Web as source (for document synthesis and plagiarism detection).
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PAN competition 2012: [pan.webis.de]

❑ Key intention corpus: humans write essays on given topics, plagiarizing from the ClueWeb,
using the ChatNoir search engine.

❑ Key intention competition: detectors use ChatNoir to retrieve candidate documents from the
ClueWeb, using the ChatNoir search engine.

❑ Constraint: detectors get a budget of queries to model the cost scheme of commercial
search engine APIs wrt. posed queries and downloaded documents.
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Candidate Retrieval at PAN’12
About ChatNoir [chatnoir.webis.de]
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Candidate Retrieval at PAN’12
About ChatNoir [chatnoir.webis.de]

❑ employs BM25F retrieval model
(CMU’s Indri search engine is language-model-based)

❑ provides search facets capturing readability issues

❑ own index development based on externalized minimum
perfect hash functions

❑ index built on a 15 nodes Hadoop cluster

❑ search engine currently running on 11 machines
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Candidate Retrieval at PAN’12
About Corpus Construction
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Candidate Retrieval at PAN’12
About Corpus Construction

❑ an essays has approx. 5000 words which means 8-10 pages

❑ corpus will be freely available after the competition

❑ own web editor was developed for essay writing

❑ the writing is crowdsourced via oDesk

➜ full control over:
– plagiarized document
– anonymized author identifier
– set of used source documents
– annotations of paraphrased passages
– query log of the writer while writing the text
– search results for each query
– click-through data for each query
– browsing data of links clicked within ClueWeb
– key log of the document covering all keystrokes
– work diary and screenshots as recorded by oDesk

➜ insights on how humans work when reusing text
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Candidate Retrieval at PAN’12
TIRA: Experiments as a Service [tira.webis.de]

Retrieve research results along with their experiments.
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Candidate Retrieval at PAN’12
TIRA: Experiments as a Service

TIRA takes a locally executable program and turns it into a web service. The TIRA
approach features:

❑ Local execution
Data is kept confidential; the framework can reside with the data.

❑ Platform independence
A programs can be deployed as a web service without modifications.

❑ Result / experiment retrieval
Result management and online retrieval of matching experiments.

❑ Web dissemination
Experiments can be cited through their unique URL in publications.

❑ Peer-to-peer collaboration
TIRA instances can be connected to a network of experimentation nodes.
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Candidate Retrieval at PAN’12
TIRA: Experiments as a Service

PAN’12 comes with a TIRA experimentation service for evaluating and
communicating the participants’ training results.
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Candidate Retrieval at PAN’12
TIRA: Experiments as a Service

All you need to create the shown web page:

1. The generic command to run the PAN evaluation measure:
python perfmeasure.py -t $team -p $truth -d $det > scores.txt

2. The parameter definitions:

$team → [a-zA-Z0-9]+

$det → [a-zA-Z0-9]+\.zip

$truth → 01_no_plagiarism | 02_no_obfuscation |

03_artificial_low | 04_artificial_high |

05_translation | 06_simulated_paraphrase

3. A program description and descriptive labels for the parameters (optional).

111 [∧] Stein@WAC’12 April 17th 2012



Candidate Retrieval at PAN’12
Candidate Retrieval Summary

Key elements of the PAN’12 plagiarism competition:

❑ high-quality corpus in the form of short essays created by humans

❑ ClueWeb corpus to create as well as to hide plagiarized texts

❑ ChatNoir search engine as efficient and open API for retrieval

❑ TIRA platform for technology comparison and result dissemination
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Candidate Retrieval Summary

Key elements of the PAN’12 plagiarism competition:

❑ high-quality corpus in the form of short essays created by humans

❑ ClueWeb corpus to create as well as to hide plagiarized texts

❑ ChatNoir search engine as efficient and open API for retrieval

❑ TIRA platform for technology comparison and result dissemination

We are hoping to benefit in the following ways:

❑ realistic candidate retrieval situation from a

(a) plagiarism creation perspective

(b) plagiarism detection perspective

(c) computation resource perspective

❑ new search strategies for known-item-finding in the Web

❑ open and publicly available benchmarks
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Almost the End
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Almost the End
What We have Seen

❑ The Netspeak Word Search Engine

❑ Query Segmentation using the WAC

❑ Candidate Retrieval at PAN’12

Thank you for listening!
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