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Emma Strubell et al. (2020). “Energy and Policy Considerations for Modern Deep Learning Research.”. In: AAAI, pp. 13693–13696

NLP ML



Why?
Large (pre-trained) neural language models, now LLMs

– Expend high energy for training and inference
compared to traditional models

– The energy demands expected to continue growing
as size and complexity of models increase

– Data centers and other infrastructure
used to run these models also consume energy (and water )
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Why?
Large (pre-trained) neural language models, now LLMs

– Expend high energy for training and inference
compared to traditional models

– The energy demands expected to continue growing
as size and complexity of models increase

– Data centers and other infrastructure
used to run these models also consume energy (and water1)

1 Guido Zuccon et al. (2023). “Beyond CO2 Emissions: The Overlooked Impact of Water
Consumption of Information Retrieval Models.”. In: ICTIR, pp. 283–289.
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Emma Strubell et al. (2020). “Energy and Policy Considerations for Modern Deep Learning Research.”. In: AAAI, pp. 13693–13696

NLP ML

What about IR Research?



But what are emissions?

– Energy: amount of work done
�Measured in joules

– Power: energy per unit time
�Measured in watts; 1 watt = 1 joule/second
� kWh: energy consumed at a rate of 1 kilowatt in 1 hour

– Emissions: by-products created by producing power
Measured in kgCO2e; kilograms of carbon dioxide equivalent
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Emma Strubell et al. (2020). “Energy and Policy Considerations for Modern Deep Learning Research.”. In: AAAI, pp. 13693–13696

NLP ML

What about IR Research?
Isn’t this just retrieval efficiency?



Retrieval Efficiency
Speed a system can retrieve relevant information in response to a query

– Size and complexity of the search corpus

– Effectiveness of the retrieval models or techniques used

– Efficiency of the hardware and infrastructure used
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Okay, so what does this mean for IR?
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Utilisation and Green IR
Green IR is...

Research that yields novel results while taking into account the
computational cost, encouraging a reduction in resources spent.

Roy Schwartz et al. (2020). “Green AI.”. In: Commun. ACM, pp. 54–63
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Green IR is...

Research that yields novel results while taking into account the
computational cost, encouraging a reduction in resources spent.

Roy Schwartz et al. (2020). “Green AI.”. In: Commun. ACM, pp. 54–63

Neural methods require pre-trained LMs

– Expensive to create and use
– Have only become more expensive over time (e.g., GenIR methods)

Even more recently, LLMs used for IR

– Orders of magnitude more expensive to create and use
– Many applications: ranking, RAG, automatic assessment...

Missing dimension of IR evaluation: effectiveness, efficiency
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Utilisation and Green IR
Green IR is...

Research that yields novel results while taking into account the
computational cost, encouraging a reduction in resources spent.

Roy Schwartz et al. (2020). “Green AI.”. In: Commun. ACM, pp. 54–63

Neural methods require pre-trained LMs

– Expensive to create and use
– Have only become more expensive over time (e.g., GenIR methods)

Even more recently, LLMs used for IR

– Orders of magnitude more expensive to create and use
– Many applications: ranking, RAG, automatic assessment...

Missing dimension of IR evaluation: effectiveness, efficiency, utilisation
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Okay, so what does this mean for IR?
Okay, so how can I measure this?
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Measuring Energy/Emissions

pt = Ω ⋅ t ⋅ (pc + pr + pg)
1000

Energy/emissions �measures direct utilisation costs

First, measure power consumption:
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Measuring Energy/Emissions

pt = Ω ⋅ t ⋅ (pc + pr + pg)
1000

PUE Running Time

watts

Energy/emissions �measures direct utilisation costs

First, measure power consumption:
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kgCO2e = θ ⋅ Δq ⋅ pq
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1000
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kgCO2e = θ ⋅ Δq ⋅ pq

Power 
consumption of 
a single query

pt = Ω ⋅ t ⋅ (pc + pr + pg)
1000

PUE Running Time CPU, RAM, GPU power draw

watts

kgCO2e = θ ⋅ ptemissions
Power 

consumption of 
experiments

avg. CO2e (kg) per kWh 
where experiments 

took place

Energy/emissions �measures direct utilisation costs

First, measure power consumption:

Next, measure emissions:

Emissions of my search engine:

Maik Fröbe, Harry Scells Measuring Utilisation 51



Measuring Energy/Emissions

kgCO2e = θ ⋅ Δq ⋅ pq

No. queries 
issued per unit 

time Power 
consumption of 
a single query

pt = Ω ⋅ t ⋅ (pc + pr + pg)
1000

PUE Running Time CPU, RAM, GPU power draw

watts
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Power 
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Energy/emissions �measures direct utilisation costs

First, measure power consumption:

Next, measure emissions:

Emissions of my search engine:
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Measuring Energy/Emissions
An Example: Shower for ca. 5 minutes
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Measuring Energy/Emissions
An Example: Shower for ca. 5 minutes

Water consumption 38.9 Liter
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Measuring Energy/Emissions
An Example: Shower for ca. 5 minutes

Water consumption 38.9 Liter
Assumed hydroelectric energy, this shower caused:
4 gCO2e · 1.4 kWH = 5.6 gCO2e = 0.006 kgCO2e
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MeasuringWater

Water �measures indirect utilisation costs

Electricity
Hot water
Cold water
Warm water
Cold air
Hot air

Cooling TowerChillerPower Plant

Water Source

Air Conditioning

Data Center

Woff(M) =
T∑
t=1

e(M, t) · PUE(t) ·WUEoff(t)
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Hot water
Cold water
Warm water
Cold air
Hot air

Cooling TowerChillerPower Plant

Water Source

Air Conditioning

Data Center

In data centers, water is consumed through evaporation and blow down
evaporation� inefficiency in chiller, blow down� flush water in system
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MeasuringWater

Water �measures indirect utilisation costs

Electricity
Hot water
Cold water
Warm water
Cold air
Hot air

Cooling TowerChillerPower Plant

Water Source

Air Conditioning

Data Center

In data centers, water is consumed through evaporation and blow down
evaporation� inefficiency in chiller, blow down� flush water in system
Water consumption of M �on-site cooling (Won) and power plant (Woff)

Woff(M) =
T∑
t=1

e(M, t) · PUE(t) ·WUEoff(t)
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MeasuringWater

Water �measures indirect utilisation costs
We want to measure WM =Won(M) +Woff(M)

Woff(M) =
T∑
t=1

e(M, t) · PUE(t) ·WUEoff(t)
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MeasuringWater

Water �measures indirect utilisation costs
We want to measure WM =Won(M) +Woff(M)

Won(M) =
T∑
t=1

e(M, t) ·WUEon(t)

Time
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MeasuringWater

Water �measures indirect utilisation costs
We want to measure WM =Won(M) +Woff(M)

Won(M) =
T∑
t=1

e(M, t) ·WUEon(t)

Time
Energy used

Woff(M) =
T∑
t=1

e(M, t) · PUE(t) ·WUEoff(t)
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MeasuringWater

Water �measures indirect utilisation costs
We want to measure WM =Won(M) +Woff(M)

Won(M) =
T∑
t=1

e(M, t) ·WUEon(t)

Time
Energy used

Water Usage Effectiveness2

Woff(M) =
T∑
t=1

e(M, t) · PUE(t) ·WUEoff(t)

2 Guido Zuccon et al. (2023). “Beyond CO2 Emissions: The Overlooked Impact of Water
Consumption of Information Retrieval Models.”. In: ICTIR, pp. 283–289.
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MeasuringWater

Water �measures indirect utilisation costs
We want to measure WM =Won(M) +Woff(M)

Won(M) =
T∑
t=1

e(M, t) ·WUEon(t)

Time
Energy used

Water Usage Effectiveness2

Woff(M) =
T∑
t=1

e(M, t) · PUE(t) ·WUEoff(t)

Power Usage Efficiency

2 Guido Zuccon et al. (2023). “Beyond CO2 Emissions: The Overlooked Impact of Water
Consumption of Information Retrieval Models.”. In: ICTIR, pp. 283–289.
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Utilisation and Green IR
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Okay, so what does this mean for IR?
Okay, so how can I measure this?

Okay, so show me what this means in IR research practice!
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Howmany emissions produced to obtain a single result?
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Howmany emissions produced to obtain a single result?
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Howmuchwater used to produced to obtain a single result?

Time of year is important to how much water is used
experiments performed in Australia
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Howmuchwater used to produced to obtain a single result?
Time of year is important to how much water is used
experiments performed in Australia
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Is your model better than a dishwasher?

ca. 11.53kgCO2e
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Overview of Green IR

Measuring Utilisation

Corpus Subsampling



Retrieval Effectiveness
Evaluate how good our system can retrieve relevant documents
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Retrieval Effectiveness
Evaluate how good our system can retrieve relevant documents

Problem: Our evaluation will always give us some number

– Is this number meaningful?

Solution: Ensure that our evaluation is reliable

– Observations transfer to similar scenarios with a high probability

System A > System B

Two main aspects impact reliability
[Voorhees’19]

– Subjectiveness of relevance judgments
– Incompleteness of relevance judgments
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Retrieval Effectiveness
Problem (1): Relevance judgments are highly subjective
[Burgin’92; Lesk’68; Voorhees’00]
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Retrieval Effectiveness
Problem (1): Relevance judgments are highly subjective
[Burgin’92; Lesk’68; Voorhees’00]

Impact of disagreement on system rankings:

– Human relevance assessors disagree substantially
– Impact on system rankings is negligible
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Retrieval Effectiveness
Problem (2): Incompleteness of relevance judgments
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Retrieval Effectiveness
Problem (2): Incompleteness of relevance judgments
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Retrieval Effectiveness
Problem (2): Incompleteness of relevance judgments
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Retrieval Effectiveness
Problem (2): Incompleteness of relevance judgments

Default assumption: Relevance judgments are essentially complete

– An unjudged document is assumed to be non-relevant
– New systems that retrieve new documents might be underestimated
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Measure Reliability of Experiments [Breuer’20]

Ranking correlations can confirm the reliability of evaluations
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Measure Reliability of Experiments [Breuer’20]

Ranking correlations can confirm the reliability of evaluations
Step 1: Create a system ranking

– Input: A set of retrieval systems and an evaluation measure
– Rank all systems by their effectiveness

System A > Sytem B > System C > System D
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Measure Reliability of Experiments [Breuer’20]

Ranking correlations can confirm the reliability of evaluations
Step 1: Create a system ranking

– Input: A set of retrieval systems and an evaluation measure
– Rank all systems by their effectiveness

System A > Sytem B > System C > System D

Step 2: Repeat the experiment

– Observe new system rankings
– Calculate ranking correlation between old and new system ranking

Example:

New System Ranking τ

System A > Sytem B > System C > System D 1.0
System A > Sytem B > System D > System C 0.8
System D > Sytem C > System B > System A -1.0
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Emma Strubell et al. (2020). “Energy and Policy Considerations for Modern Deep Learning Research.”. In: AAAI, pp. 13693–13696

Goal: Green and Reliable IR Experiments



How build our Evaluation Dataset? Step 1: Queries
Many queries with few judgments or few queries with many judgments?
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How build our Evaluation Dataset? Step 1: Queries
Many queries with few judgments or few queries with many judgments?

Few Judgments: E.g., one relevant document derived via click logs.

Top-k Pooling:

– Multiple teams develop retrieval systems independent of each other
– Judge the top-k results of each system (usually graded)
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How build our Evaluation Dataset? Step 2: Documents
What documents should we include?

Evaluation Corpora with top-k pooling typically:

– Have 50 queries
– Pool 30 to 100 systems
– Between 10 million and 1 billion documents
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How build our Evaluation Dataset? Step 2: Documents
What documents should we include?

Evaluation Corpora with top-k pooling typically:

– Have 50 queries
– Pool 30 to 100 systems
– Between 10 million and 1 billion documents

Considerations:

– A few million document suffice to satisfy most information needs
[Mei’08]

– We do not need to include all relevant documents
– We only need a subset that allows reliable evaluations
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How build our Evaluation Dataset? Step 2: Documents
What documents should we include?

Evaluation Corpora with top-k pooling typically:

– Have 50 queries
– Pool 30 to 100 systems
– Between 10 million and 1 billion documents

Considerations:

– A few million document suffice to satisfy most information needs
[Mei’08]

– We do not need to include all relevant documents
– We only need a subset that allows reliable evaluations

What documents to include to evaluate on ca. 50 pooled queries?
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How build our Evaluation Dataset? Step 2: Documents
Judgment Pool:

– Select all documents with a judgment. E.g., the top-10 pool
– Disadvantage: Effectiveness overestimated in post-hoc experiments

[Sakai’08,Fröbe’23]
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How build our Evaluation Dataset? Step 2: Documents
Judgment Pool:

– Select all documents with a judgment. E.g., the top-10 pool
– Disadvantage: Effectiveness overestimated in post-hoc experiments

[Sakai’08,Fröbe’23]

Re-Ranking:

– Select all documents retrieved by a model. E.g., the top-1k of BM25
– Disadvantage: Bias towards the first stage model
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How build our Evaluation Dataset? Step 2: Documents
Judgment Pool:

– Select all documents with a judgment. E.g., the top-10 pool
– Disadvantage: Effectiveness overestimated in post-hoc experiments

[Sakai’08,Fröbe’23]

Re-Ranking:

– Select all documents retrieved by a model. E.g., the top-1k of BM25
– Disadvantage: Bias towards the first stage model

Judgment Pool + Random

– All documents with a judgment plus random documents
– Disadvantage: Random documents are too easy negatives
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How build our Evaluation Dataset? Step 2: Documents
Judgment Pool:

– Select all documents with a judgment. E.g., the top-10 pool
– Disadvantage: Effectiveness overestimated in post-hoc experiments

[Sakai’08,Fröbe’23]

Re-Ranking:

– Select all documents retrieved by a model. E.g., the top-1k of BM25
– Disadvantage: Bias towards the first stage model

Judgment Pool + Random

– All documents with a judgment plus random documents
– Disadvantage: Random documents are too easy negatives

Re-Pooling

– Re-Pool to k′
>> k. E.g., top-100 or 1k for a top-10 judgment pool

– Advantage: Incorporates all query interpretations. Can use all above.
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How build our Evaluation Dataset? Step 2: Documents
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Evaluation of Corpus Subsampling
Reliability: What subsampling approaches yield robust observations?

Step 1: Create ground truth system rankings

– Use complete judgment pool to evaluate all systems from all teams
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Evaluation of Corpus Subsampling
Reliability: What subsampling approaches yield robust observations?

Step 1: Create ground truth system rankings

– Use complete judgment pool to evaluate all systems from all teams

Step 2: Repeat Experiments with Leave-one-Group-out method

– For each team, assume all systems of the team did not participate
– Remove all documents from the judgment pool and corpus solely

retrieved by the left-out team
– Yields incomplete judgment pool and incomplete corpus subsample
– Re-Evaluate all systems/teams with incomplete judgments/corpus
– How similar is the new system ranking with the ground-truth?

- Best result: system rankings are identical, i.e., τ = 1.0
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Evaluation of Corpus Subsampling
Experimental Setup:

– We run the subsampling approaches on 9 evaluation campaigns
- 4 on ClueWeb09: 1.0 billion documents (4.0 TB)
- 2 on ClueWeb12: 0.7 billion documents (4.5 TB)
- 1 on Robust04: 0.5 million documents (0.6 GB)
- 2 on MS MARCO: 8.8 million documents (2.9 GB)
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Evaluation of Corpus Subsampling
Experimental Setup:

– We run the subsampling approaches on 9 evaluation campaigns
- 4 on ClueWeb09: 1.0 billion documents (4.0 TB)
- 2 on ClueWeb12: 0.7 billion documents (4.5 TB)
- 1 on Robust04: 0.5 million documents (0.6 GB)
- 2 on MS MARCO: 8.8 million documents (2.9 GB)

Results:

Subsampling τ

ClueWeb09 ClueWeb12 Robust04 MSMARCO

Judgment Pool 0.944 0.941 0.983 0.978
Re-Ranking BM25 0.936 0.938 0.836 0.994
Judgment Pool + Random 0.799 0.765 0.789 0.794
Re-Pooling k′

= 100 0.980 0.987 0.995 0.999
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Evaluation of Corpus Subsampling
Experimental Setup:

– We run the subsampling approaches on 9 evaluation campaigns
- 4 on ClueWeb09: 1.0 billion documents (4.0 TB)
- 2 on ClueWeb12: 0.7 billion documents (4.5 TB)
- 1 on Robust04: 0.5 million documents (0.6 GB)
- 2 on MS MARCO: 8.8 million documents (2.9 GB)

Re-Pooling does not overestimate:

Subsampling ∆nDCG@10

ClueWeb09 ClueWeb12 Robust04 MSMARCO

Judgment Pool 0.030 0.031 0.005 0.011
Re-Ranking BM25 -0.013 -0.053 0.049 -0.005
Judgment Pool + Random 0.375 0.325 0.062 0.259
Re-Pooling k′

= 100 -0.030 -0.060 -0.004 -0.007
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Corpus Subsampling
How big are the resulting subcorpora?
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Some other Side-Aspects of the work :)
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Some other Side-Aspects of the work :)
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Conclusion and Future Work

– There are many diverse ways to measure efficiency and utilization
– The emissions of our experiments is not negligible
– Averages can hide many things: Is an evaluation reliable?
– From the perspective of GreenIR:

- Many (pooled) judgments per query > one/few judgments per query
- Corpus subsampling: reliable evaluation orders of magnitude fewer

documents

Future Work

– Can corpus subsampling be incorporated into evaluation
campaigns?

– How to do holistic evaluations that combine efficiency with
effectiveness?

– Upcoming workshop on that: ReNeuIR 2025 at SIGIR
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