

WEAKLY SUPERVISED LABELING STRATEGIES FOR CLASSIFYING USER-GENERATED CONTENT

by

Matti Wiegmann

Disputation to obtain the degree

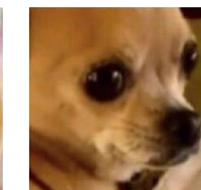
Dr. rer. nat.

Part 1

Supervised Learning

Motivation

Example: Chihuahua or Muffin?



Supervised Learning

Motivation

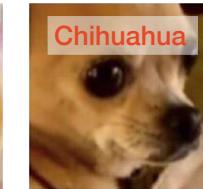
Example: Chihuahua or Muffin?

Chihuahua

Muffin

Chihuahua

Muffin



Chihuahua

Chihuahua

Chihuahua

Muffin

Muffin

Classification Problems

Determine the label $c \in C$ of a data point $x \in X$.

Supervised Learning

Find an optimal model $y : X \rightarrow C$ over a set D of examples.

~ The classifier learns from labeled data.

$$D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\} \subseteq X \times C$$

Motivation

Example: Chihuahua or Muffin?

Classification Problems

Determine the label $c \in C$ of a data point $x \in X$.

Supervised Learning

Find an optimal model $y : X \rightarrow C$ over a set D of examples.

~ The classifier learns from labeled data.

$$D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\} \subseteq X \times C$$

Assumption: The labels stem from an ideal label function.

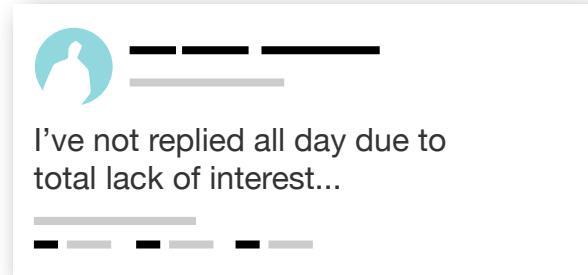
- The labels are correct and complete.
- Human annotation is considered an ideal label function. In NLP, IR, CSS, ...

Example: Chihuahua or Muffin?

Problems of human annotation:

- Limited human ability
Subjectivity, limited domain expertise, complex labels
- Scaling and cost

Is the user in a depression or not?



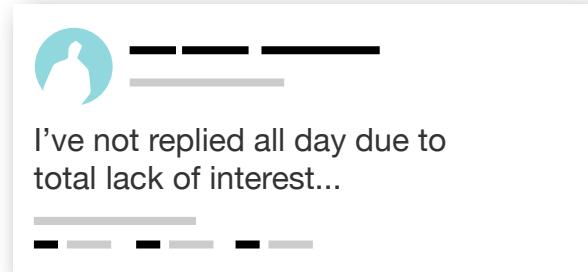
Problems of human annotation:

- Limited human ability
Subjectivity, limited domain expertise, complex labels
- Scaling and cost

~ Automatic labeling functions:

- Semi-supervised learning
- Self-supervised learning
- Weak supervision

Is the user in a depression or not?



Weak Supervision

Use a distant source of knowledge to derive the label.

- ❑ Use a **heuristic labeling function** to link data and distant knowledge.

Motivation

Is the user in a depression or not?

I've not replied all day due to
total lack of interest...

Weak Supervision

Use a distant source of knowledge to derive the label.

- ❑ Use a **heuristic labeling function** to link data and distant knowledge.

Motivation

Is the user in a depression or not?

I've not replied all day due to
total lack of interest...

Use knowledge from later posts

I was in a depression, but I'm trying
to get out of it now.

Use a distant source of knowledge to derive the label.

- ❑ Use a **heuristic labeling function** to link data and distant knowledge.

Problems

There is no general theory on weak supervision.

- ❑ What sources of data and knowledge are available?
- ❑ What are pitfalls of common labeling functions?
- ❑ How to evaluate the labeling functions?
- ❑ ...

Is the user in a depression or not?

I've not replied all day due to total lack of interest...

Use knowledge from later posts

I was in a depression, but I'm trying to get out of it now.

1. **Surveying successful applications** to establish a theoretic foundation.
2. **Constructing novel datasets** via new, complex labeling functions.
3. **Answering research questions** based on the new datasets.

1. **Surveying successful applications** to establish a theoretic foundation.
2. **Constructing novel datasets** via new, complex labeling functions.
3. **Answering research questions** based on the new datasets.

Profiling Influencers on Twitter

[Wiegmann et al., ACL 2019] [Wiegmann et al., PAN@CLEF 2019] [Wiegmann et al., PAN@CLEF 2020]

Analyzing the Persuasiveness of Debaters

[Wiegmann et al., COLING 2022]

Trigger Warning Assignment

[Wiegmann et al., ACI 2023] [Wiegmann et al., PAN@CLEF 2023] [Wolska and Wiegmann et al., EMNLP 2023]
[Wiegmann et al., CLEF 2024]

Part 2

Survey Method

What are eligible sources of data?

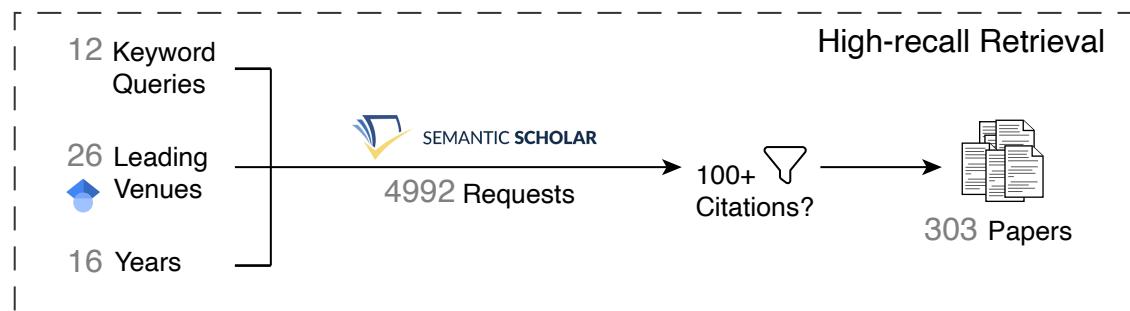
What are sources of distant knowledge?

What are common labeling functions?

How can we evaluate labeling functions?

Survey Method

Identify successful papers in NLP, IR, ML, and WSM research.



What are eligible sources of data?

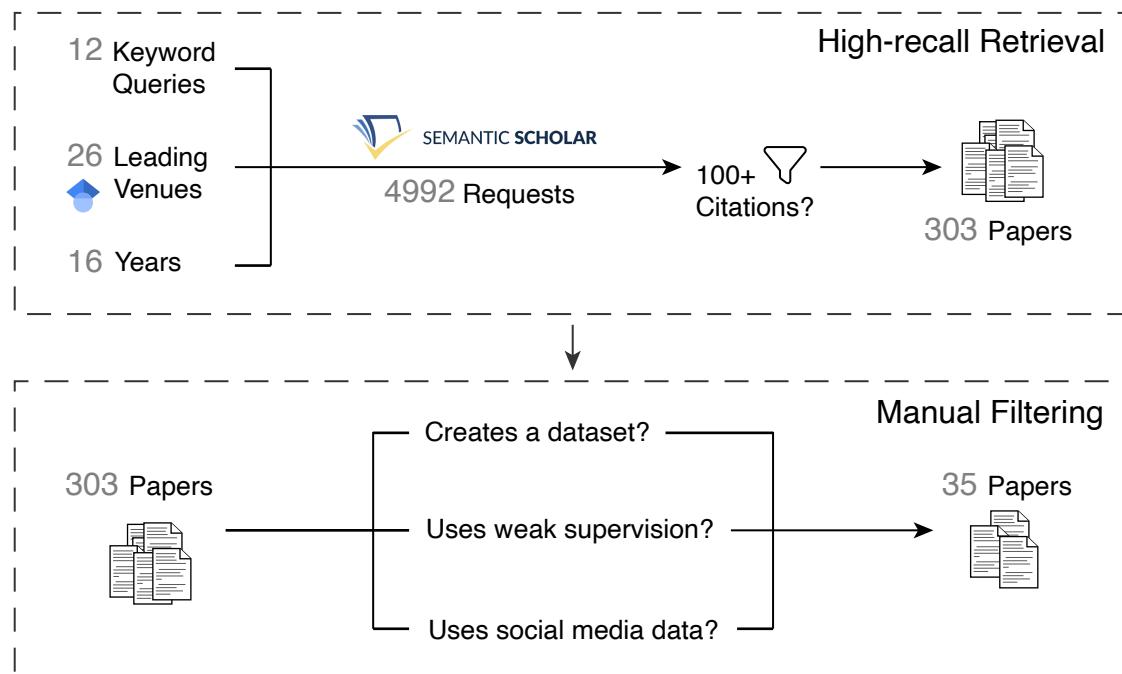
What are sources of distant knowledge?

What are common labeling functions?

How can we evaluate labeling functions?

Survey Method

Identify successful papers in NLP, IR, ML, and WSM research.



What are eligible sources of data?

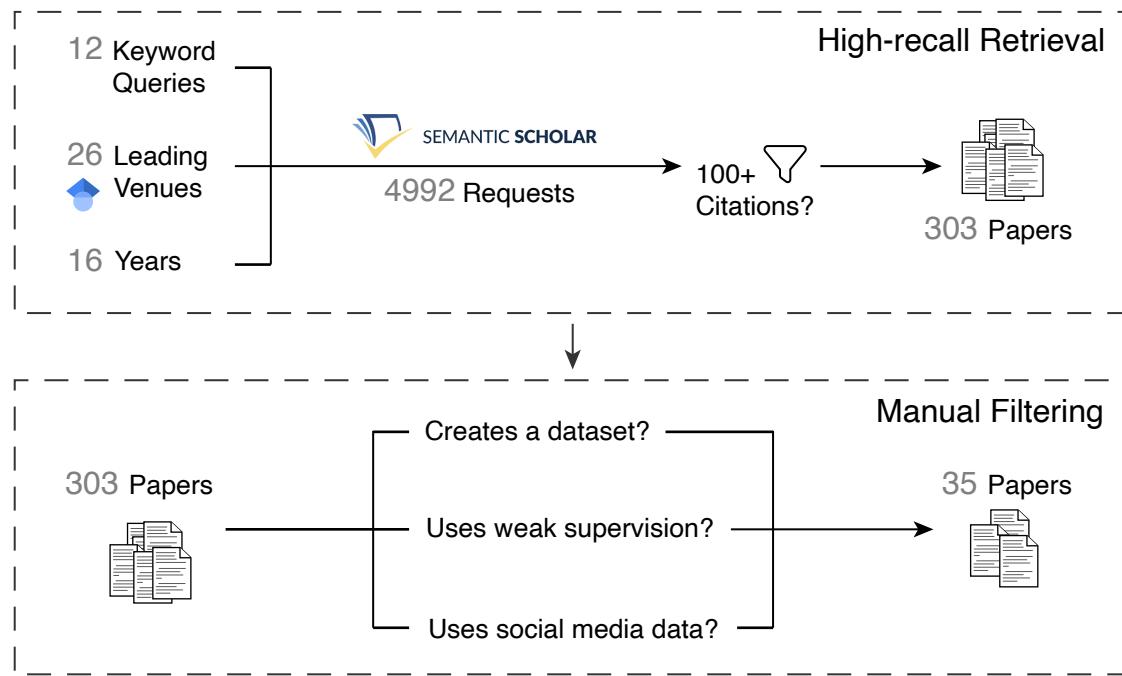
What are sources of distant knowledge?

What are common labeling functions?

How can we evaluate labeling functions?

Survey Method

Identify successful papers in NLP, IR, ML, and WSM research.



What are eligible sources of data?

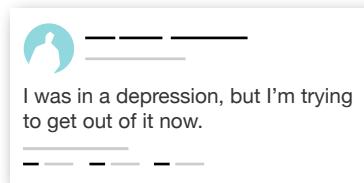
What are sources of distant knowledge?

What are common labeling functions?

How can we evaluate labeling functions?

Heuristic Distance

Use knowledge from later posts (*short distance*)



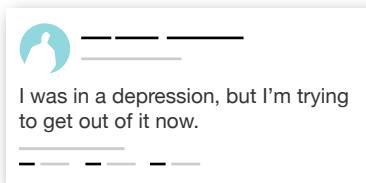
Theory

Heuristics:

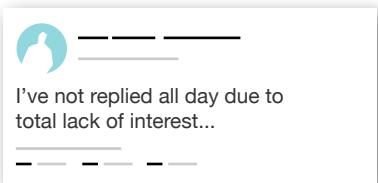
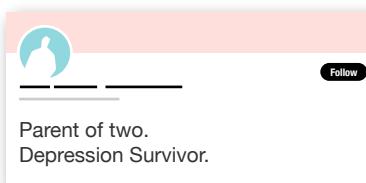
- Time of the depression is between both posts.

Heuristic Distance

Use knowledge from later posts (*short distance*)



Use knowledge from user bio



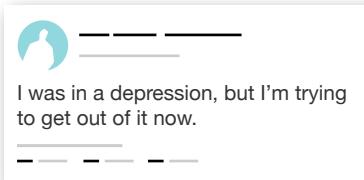
Theory

Heuristics:

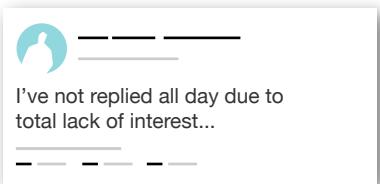
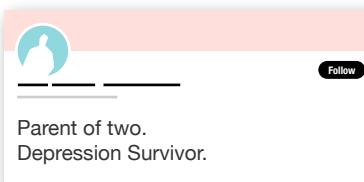
- Time of the depression is between both posts.
- Time of the depression is the complete post history.

Heuristic Distance

Use knowledge from later posts (*short distance*)



Use knowledge from user bio



Use knowledge from external site (*long distance*)

Theory

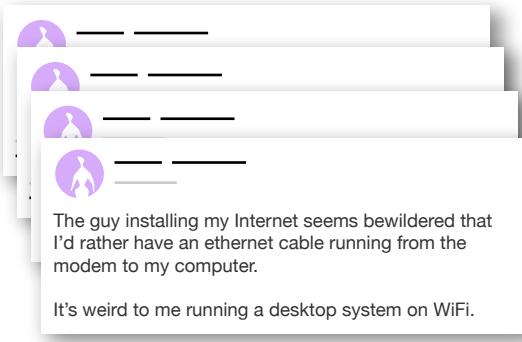
Heuristics:

- Time of the depression is between both posts.
- Time of the depression is the complete post history.
- Identical account names mean it is same person.
- Forum users are in a depression.

Part 3

Task: Author Profiling

Given a Twitter timeline, determine the user's personal attributes.



Platform
Twitter

Data
Timeline of a user's tweets

Size
71K timelines
239 attributes

Knowledge
Database (Wikidata)

Evaluation
Weak Labels

Task: Author Profiling

Given a Twitter timeline, determine the user's personal attributes.



Problems for human annotation

- Many labels are rare.
- Humans can not assign the labels.

Platform
Twitter

Data
Timeline of a user's tweets

Size
71K timelines
239 attributes

Knowledge
Database (Wikidata)

Evaluation
Weak Labels

Heuristic labeling function

Link Twitter accounts to Wikidata pages.

Platform
Twitter

Data
Timeline of a user's tweets

Size
71K timelines
239 attributes

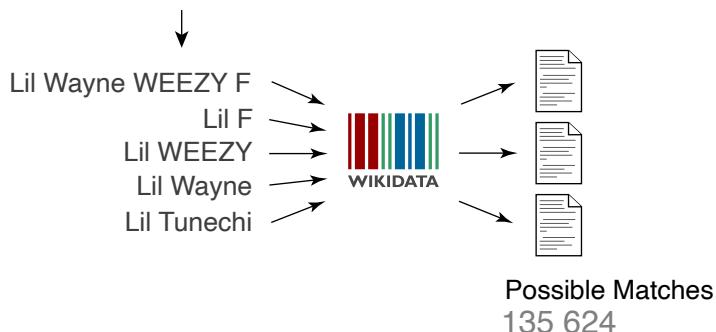
Knowledge
Database (Wikidata)

Evaluation
Weak Labels

Heuristic labeling function

Link Twitter accounts to Wikidata pages.

Verified Users
297 878



Platform
Twitter

Data
Timeline of a user's tweets

Size
71K timelines
239 attributes

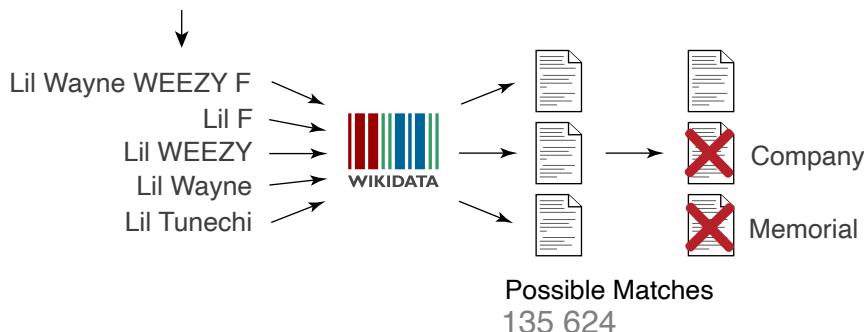
Knowledge
Database (Wikidata)

Evaluation
Weak Labels

Heuristic labeling function

Link Twitter accounts to Wikidata pages.

Verified Users
297 878



Platform
Twitter

Data
Timeline of a user's tweets

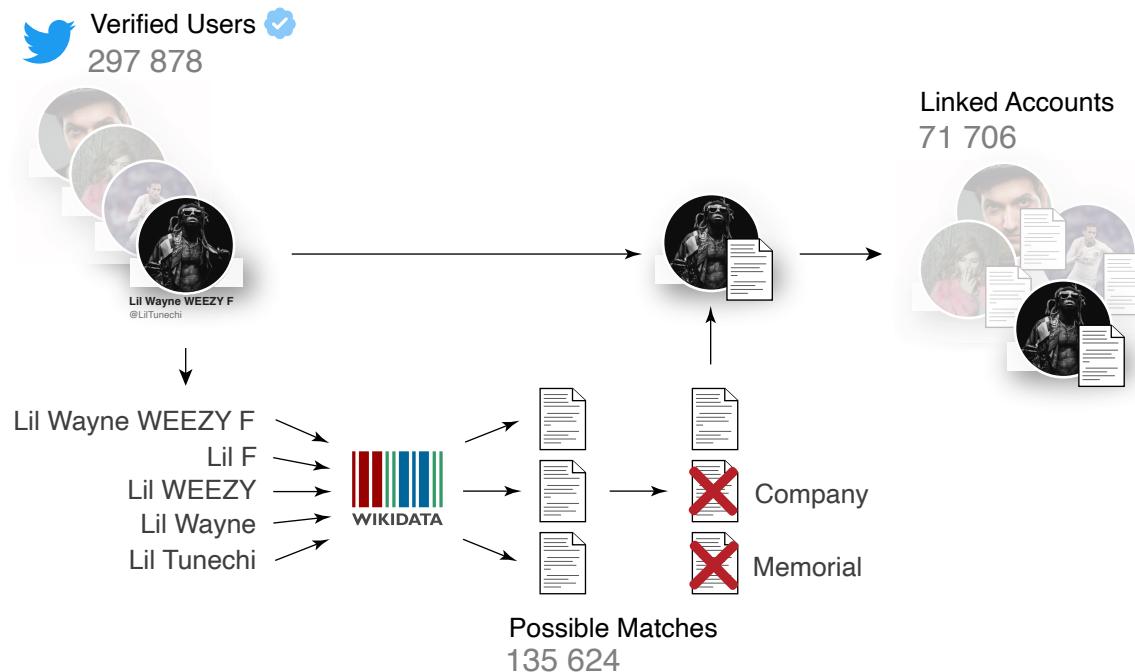
Size
71K timelines
239 attributes

Knowledge
Database (Wikidata)

Evaluation
Weak Labels

Heuristic labeling function

Link Twitter accounts to Wikidata pages.



Platform
Twitter

Data
Timeline of a user's tweets

Size
71K timelines
239 attributes

Knowledge
Database (Wikidata)

Evaluation
Weak Labels

Evaluation of the labeling function

Weak labels

- 28K Wikidata entities contain a Twitter handle.
- ~ 7,751 are not in our dataset (0.72 recall)
- ~ 124 are incorrectly linked (0.99 precision)
- Errors can be attributed to the individual name candidate rules.

Platform
Twitter

Data
Timeline of a user's tweets

Size
71K timelines
239 attributes

Knowledge
Database (Wikidata)

Evaluation
Weak Labels

Answering research questions

RQ 1. Can we transfer profilers between populations?

- ❑ Transfer learning [ACL 2019]
Train and test on different datasets
- ❑ Shared task evaluation [CLEF 2019]
Finding the best classifiers; 8 submissions

RQ 2. Are fan posts indicative of influencer attributes?

- ❑ Profiling via follower tweets [CLEF 2020]
Shared task evaluation; 3 submissions

Platform

Twitter

Data

Timeline of a user's tweets

Size

71K timelines
239 attributes

Knowledge

Database (Wikidata)

Evaluation

Weak Labels

Task: Trigger Warning Assignment

Given a document, assign it a warning label if needed.

The disfigurement of each
hapless undead body, some
missing limbs, covered in
blood and ooze, ...

Platform

Archive of Our Own (AO3)

Data

Fanfiction documents

Size

1M documents
36 labels

Knowledge

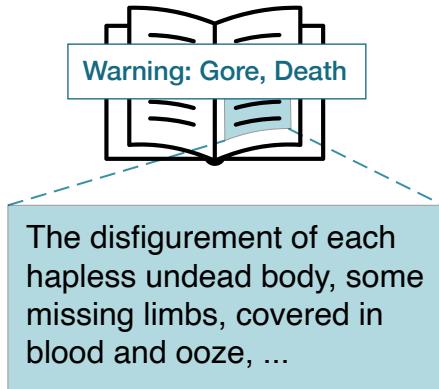
Curated List, Document Metadata

Evaluation

Spot Checks, Weak Labels

Task: Trigger Warning Assignment

Given a document, assign it a warning label if needed.



Platform

Archive of Our Own (AO3)

Data

Fanfiction documents

Size

1M documents
36 labels

Knowledge

Curated List, Document Metadata

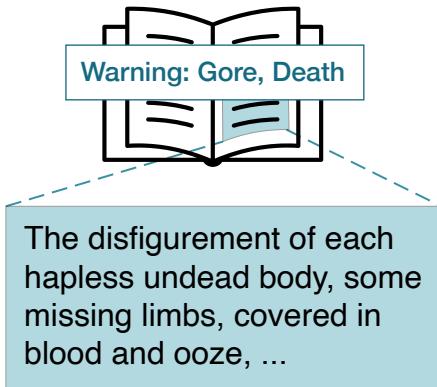
Evaluation

Spot Checks, Weak Labels

Trigger Warning Assignment

Task: Trigger Warning Assignment

Given a document, assign it a warning label if needed.



ESRB Game Ratings

MPAA Movie Ratings

Case Studies

Platform

Archive of Our Own (AO3)

Data

Fanfiction documents

Size

1M documents
36 labels

Knowledge

Curated List, Document Metadata

Evaluation

Spot Checks, Weak Labels

Problems for human annotation

- ❑ Documents are too long for annotation.
- ❑ Some objectionable topics are very rare.

Heuristic labeling function

Link freeform text descriptors to a label taxonomy.

 Fiction Documents
7.9 Million

Rating: Teen And Up Audiences

Archive Warning: Graphic Depictions Of Violence

Fandom: 僕のヒーローアカデミア | Boku no Hero Academia | My Hero Academia

Relationships: Midoriya Izuku & Yagi Toshinori | All Might, Midoriya Izuku & Todoroki Shouto, Midoriya Izuku & Uraraka Ochako, Iida Tenya & Midoriya Izuku

Characters: Midoriya Izuku, Yagi Toshinori | All Might, Midoriya Inko, Shimura Nana, Bakugou Katsuki, Todoroki Shouto, Uraraka Ochako, Iida Tenya, Iida Tensei | Ingenium

Additional Tags: Alternate Universe – Canon Divergence, BAMF Midoriya Izuku, The Sixth Sense AU, Bakugou Katsuki Swears A Lot, Izuku Sees Dead People, Queerplatonic Relationships, Midoriya Izuku Has a Quirk, Platonic Slow Burn, Panic Attacks, past trauma, Body Horror, Character Death, Implied/Referenced Child Abuse, CONTENT WARNINGS CAN BE FOUND IN CHAPTER ENDNOTES

Language: English

Stats: Published: 2016-10-21 Completed: 2019-10-12 Words: 424,070 Chapters: 60/60 Comments: 24,894 Kudos: 95,593 Bookmarks: 23,262 Hits: 3,501,502

Platform

Archive of Our Own (AO3)

Data

Fanfiction documents

Size

1M documents

36 labels

Knowledge

Curated List, Document Metadata

Evaluation

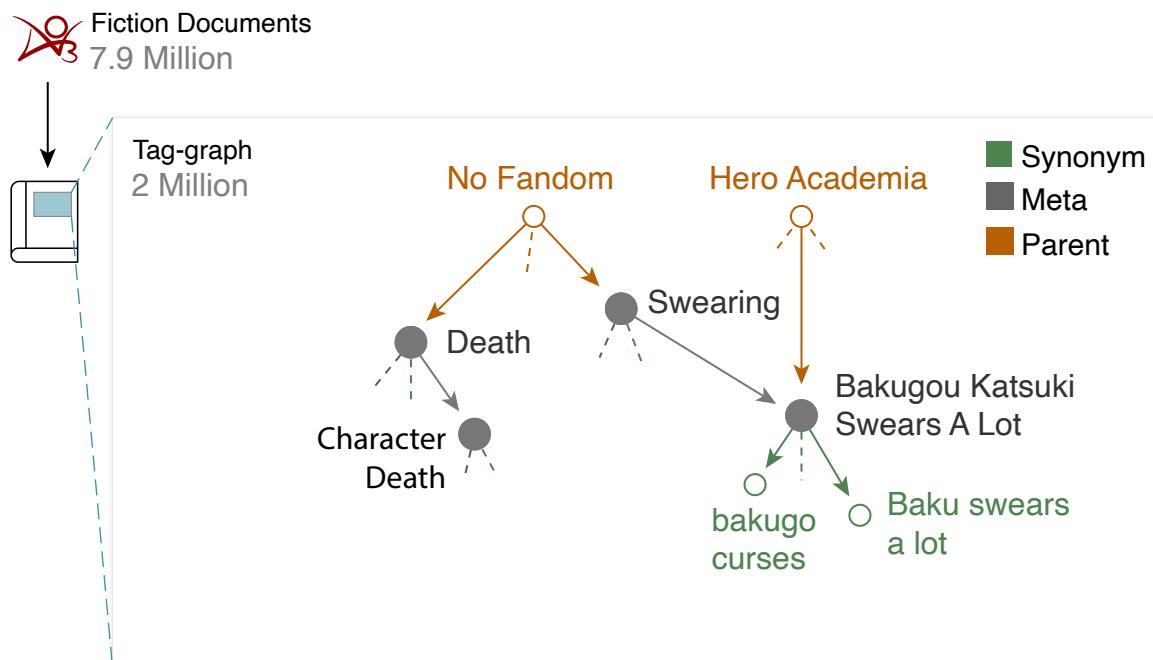
Spot Checks, Weak Labels

Trigger Warning Assignment

Case Studies

Heuristic labeling function

Link freeform text descriptors to a label taxonomy.



Platform

Archive of Our Own (AO3)

Data

Fanfiction documents

Size

1M documents
36 labels

Knowledge

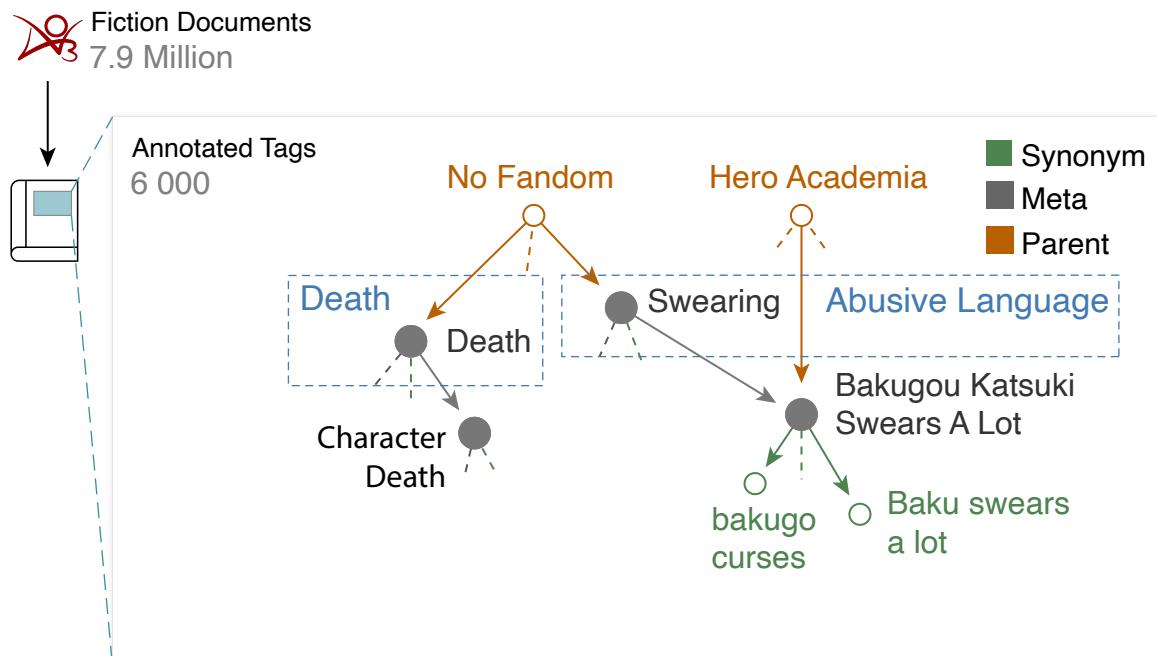
Curated List, Document Metadata

Evaluation

Spot Checks, Weak Labels

Heuristic labeling function

Link freeform text descriptors to a label taxonomy.



Platform

Archive of Our Own (AO3)

Data

Fanfiction documents

Size

1M documents
36 labels

Knowledge

Curated List, Document Metadata

Evaluation

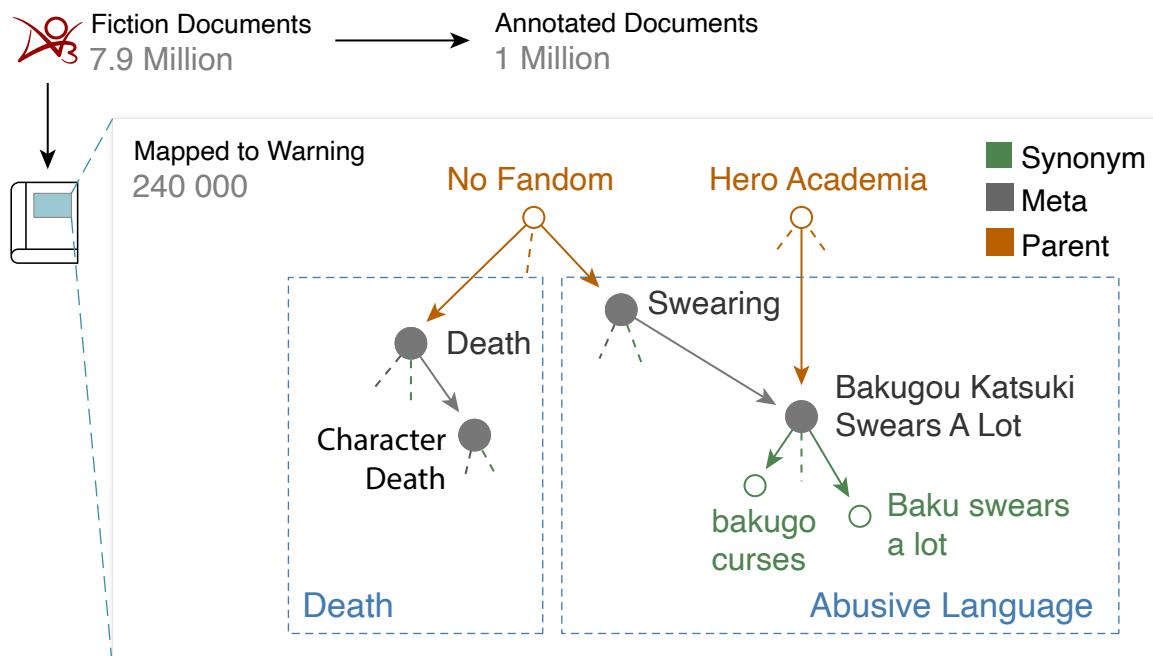
Spot Checks, Weak Labels

Trigger Warning Assignment

Case Studies

Heuristic labeling function

Link freeform text descriptors to a label taxonomy.



Platform

Archive of Our Own (AO3)

Data

Fanfiction documents

Size

1M documents
36 labels

Knowledge

Curated List, Document Metadata

Evaluation

Spot Checks, Weak Labels

Evaluation of the labeling function

Spot checks

- ❑ Manually annotated test sets.
- ❑ 0.94 F_1 on 2,000 most common tags.
- ❑ 0.96 F_1 on 10-11k most common tags.

Platform

Archive of Our Own (AO3)

Data

Fanfiction documents

Size

1M documents
36 labels

Knowledge

Curated List, Document Metadata

Evaluation

Spot Checks, Weak Labels

Evaluation of the labeling function

Spot checks

- ❑ Manually annotated test sets.
- ❑ 0.94 F₁ on 2,000 most common tags.
- ❑ 0.96 F₁ on 10-11k most common tags.

But

Tag-graph covers only ~80% of tag occurrences and ~20% of all unique tags.

Platform

Archive of Our Own (AO3)

Data

Fanfiction documents

Size

1M documents
36 labels

Knowledge

Curated List, Document Metadata

Evaluation

Spot Checks, Weak Labels

Answering research questions

RQ 1. Can we assign trigger warnings to documents?

- ❑ Violence Classification [EMNLP 2023]
Input vs document length, popularity, confounder analysis
- ❑ Multi-label Classification [ACI 2023]
Role of support for each tag, granularity of the taxonomy
- ❑ Shared Task Evaluation [PAN@CLEF 2023]
Finding the best classifiers; 6 submissions

Platform

Archive of Our Own (AO3)

Data

Fanfiction documents

Size

1M documents
36 labels

Knowledge

Curated List, Document Metadata

Evaluation

Spot Checks, Weak Labels

Answering research questions

RQ 2. Does label noise influence model evaluation?

Noise Reduction [CLEF 2024]

LLM-based pruning to remove noisy labels from test data

Platform

Archive of Our Own (AO3)

Data

Fanfiction documents

Size

1M documents

36 labels

Knowledge

Curated List, Document Metadata

Evaluation

Spot Checks, Weak Labels

1. **Surveying successful applications** to establish a theoretic foundation.
2. **Constructing novel datasets** via new, complex labeling functions.
3. **Answering research questions** based on the new datasets.

Profiling Influencers on Twitter

[Wiegmann et al., ACL 2019] [Wiegmann et al., PAN@CLEF 2019] [Wiegmann et al., PAN@CLEF 2020]

Analyzing the Persuasiveness of Debaters

[Wiegmann et al., COLING 2022]

Trigger Warning Assignment

[Wiegmann et al., ACI 2023] [Wiegmann et al., PAN@CLEF 2023] [Wolska and Wiegmann et al., EMNLP 2023]
[Wiegmann et al., CLEF 2024]

Appendix

Distant Knowledge

- Curated list
 - Emoticons to emotion label
 - Phrases (“*I'm 35 as of today*”) to demographic group
- Database (structured, unstructured)
 - Wikidata, a database of known bots, Google ...
- Metadata (direct, distant, computed)
 - Geo-tags as user home location ...
- Classifiers

Evaluation strategies

- Spot checks
- Weak labels
- Annotated data
- Models

Evaluation of the labeling function

- 28K Wikidata entities contain a Twitter handle.
- ~ 7,751 are not in our dataset (0.72 recall)
- ~ 124 are incorrectly linked (0.99 precision)

Error rates and matches by name candidate:

	Name Candidate Rule						
	I	II	III	IV	V	VI	all
Matches	91.8%	2.8%	0.1%	1.8%	2.9%	0.3%	71,706
Errors	50.0%	3.2%	0.0%	23.3%	21.8%	1.6%	124

Platform

Twitter.

Data

Timeline of a users tweets.

Size

71K timelines.

239 different attributes.

Knowledge

Database (Wikidata properties).

Evaluation

Weak Labels.

Name Candidate Rules

- (1) Remove non-alphanumeric characters from *display name*.
- (2) Split *handle* at capitalized characters. (@FirstLast)
- (3) Split off the *display name* from the *handle*.
- (4) Split (1) on whitespace, use first and last parts.
- (5) Split (1) on whitespace, use all but the last part.
- (6) Split (1) on whitespace, use all but the last two parts.

Platform

Twitter.

Data

Timeline of a users tweets.

Size

71K timelines.

239 different attributes.

Knowledge

Database (Wikidata properties).

Evaluation

Weak Labels.

Labels

Label	Occurrences	Most frequent value	
Sex	65,035	90.1%	Male 71.7%
Occupation	63,017	87.9%	Actor 15.3%
Date of birth	60,493	84.4%	- -
Educated at	28,134	39.2%	Harvard 2.1%
Sport	18,688	26.1%	Football 30.8%
Languages spoken	12,094	16.9%	English 54.9%
Political party	6,703	9.4%	Republican 16.4%
Genre	6,699	9.3%	Pop Music 21.6%
Race	3,531	0.5%	African Am. 66.5%
Religion	2,960	0.4%	Islam 23.5%

Platform

Twitter.

Data

Timeline of a users tweets.

Size

71K timelines.

239 different attributes.

Knowledge

Database (Wikidata properties).

Evaluation

Weak Labels.

Classifier transfer

Model	Test Dataset				
	PAN15	PAN16	PAN17	PAN18	Celeb
alvarezcamona15	0.859	–	–	–	0.723
nissim16	–	0.641	–	–	0.740
nissim17	–	–	0.823	–	0.855
danehsvar18	–	–	–	0.822	0.817
CNN (Celeb)	0.747	0.590	0.747	0.756	0.861

Platform

Twitter.

Data

Timeline of a users tweets.

Size

71K timelines.

239 different attributes.

Knowledge

Database (Wikidata properties).

Evaluation

Weak Labels.

Shared task evaluation campaign.

Classification across four personal attributes.

Participant	Gender (3)	Age (5)	Renown (3)	Occupation (8)
Radivchev	0.609	0.657	0.548	0.461
Pelzer	0.547	<u>0.518</u>	0.460	<u>0.481</u>
Moreno-Sandoval	0.561	0.516	0.518	0.418
Martinc	<u>0.594</u>	0.347	0.507	0.486
Petrik	0.555	0.360	<u>0.526</u>	0.385
Fernquist	0.465	0.467	0.482	0.300
Asif	0.588	0.254	0.504	0.427
Bryan	0.335	0.207	0.289	0.165

Platform

Twitter.

Data

Timeline of a users tweets.

Size

71K timelines.

239 different attributes.

Knowledge

Database (Wikidata properties).

Evaluation

Weak Labels.

Shared task evaluation campaign.

Class-wise scores of the most effective submitted system.

Gender	F_1	Occupation	F_1
Male	0.951	Sports	0.90
Female	0.881	Entertainer	0.79
Diverse	0.307	Politician	0.74
		Creator	0.57
<hr/>		Scientist	0.32
<hr/>		Clergy	0.27
<hr/>		Manager	0.23
<hr/>		Professional	0.21

Platform
Twitter.

Data
Timeline of a users tweets.

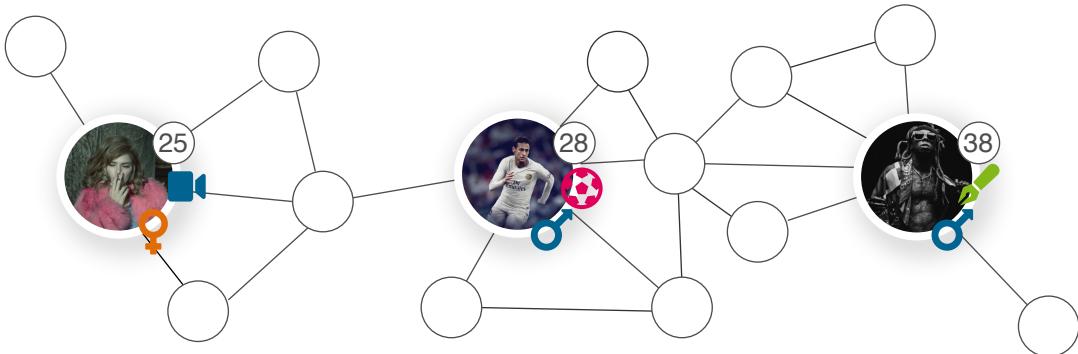
Size
71K timelines.
239 different attributes.

Knowledge
Database (Wikidata properties).

Evaluation
Weak Labels.

Profiling via follower tweets. [CLEF 2020]

Dataset extension method



Platform
Twitter.

Data
Timeline of a users tweets.

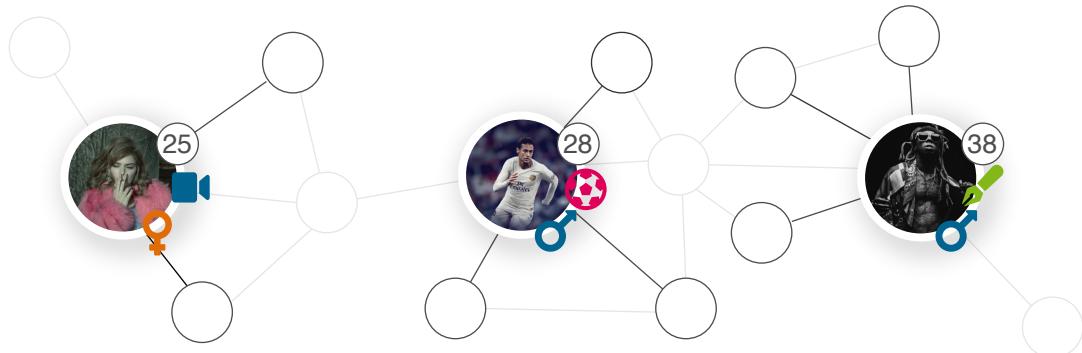
Size
71K timelines.
239 different attributes.

Knowledge
Database (Wikidata properties).

Evaluation
Weak Labels.

Profiling via follower tweets. [CLEF 2020]

Dataset extension method



Platform Twitter.

Data

Timeline of a users tweets.

Size
71K timelines.
239 different attributes.

Knowledge Database (Wikidata properties).

Evaluation Weak Labels.

Profiling via follower tweets. [CLEF 2020]

Results of the shared task evaluation

Participant	Age (5)	Gender (2)	Occupation (4)
baseline-oracle	0.50	0.75	0.70
Hodge	0.43	0.68	0.71
Koloski	0.41	0.62	0.60
Alroobaea	0.32	0.70	0.60
baseline	0.36	0.58	0.52

Platform
Twitter.

Data
Timeline of a users tweets.

Size
71K timelines.
239 different attributes.

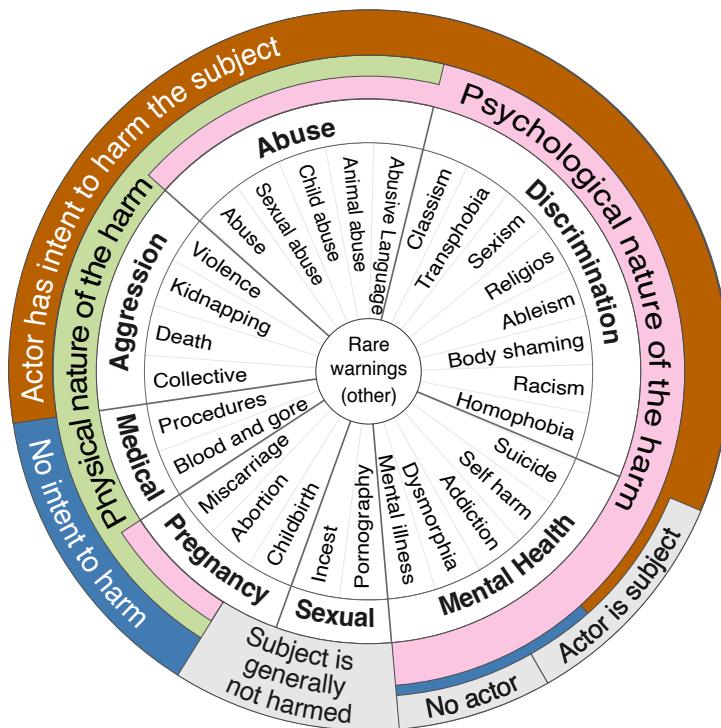
Knowledge
Database (Wikidata properties).

Evaluation
Weak Labels.

Trigger Warning Assignment

Appendix

Warning Taxonomy



Platform

Archive of Our Own (AO3)

Data

Fanfiction documents

Size

1M documents
36 labels

Knowledge

Curated List, Document Metadata

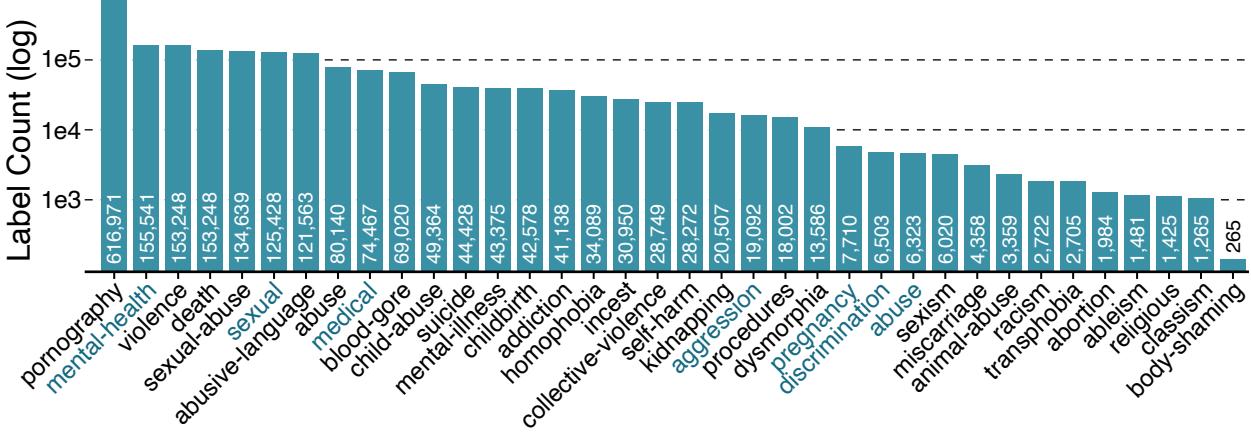
Evaluation

Spot Checks, Weak Label

Trigger Warning Assignment

Appendix

Dataset Statistics



Platform

Archive of Our Own (AO3)

Data

Fanfiction documents

Size

1M documents

36 labels

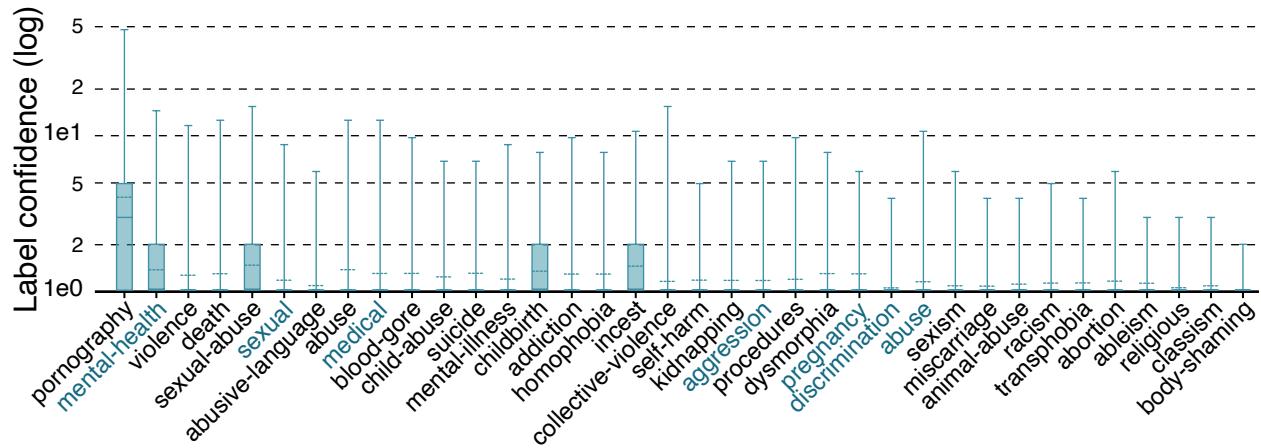
Knowledge

Curated List, Document Metadata

Evaluation

Spot Checks, Weak Label

Dataset Statistics



Platform

Archive of Our Own (AO3)

Data

Fanfiction documents

Size

1M documents

36 labels

Knowledge

Curated List, Document Metadata

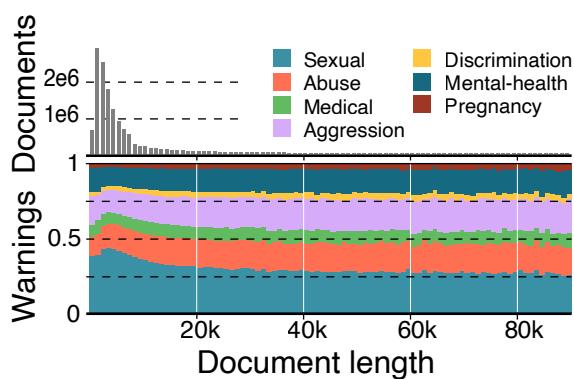
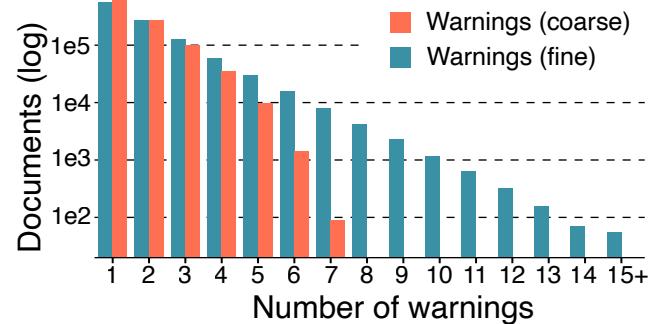
Evaluation

Spot Checks, Weak Label

Dataset Statistics

Left: Warning distribution by document length.

Right: Number of warnings per document.



Platform

Archive of Our Own (AO3)

Data

Fanfiction documents

Size

1M documents

36 labels

Knowledge

Curated List, Document Metadata

Evaluation

Spot Checks, Weak Label

Evaluation of the labeling function

Manually annotated test sets:

- 0.94 F_1 on 2,000 most common tags.
- 0.96 F_1 on 10-11k most common tags.

Via verbatim warnings. ('warning: abuse', 'tw: needles', ...)

	Occurrences	Unique Tags
Total	62,316	27,694
Classified as warning	34,806	9,595
- of all wrangled	0.86	0.79
- of all free-form	0.56	0.35

Platform

Archive of Our Own (AO3)

Data

Fanfiction documents

Size

1M documents
36 labels

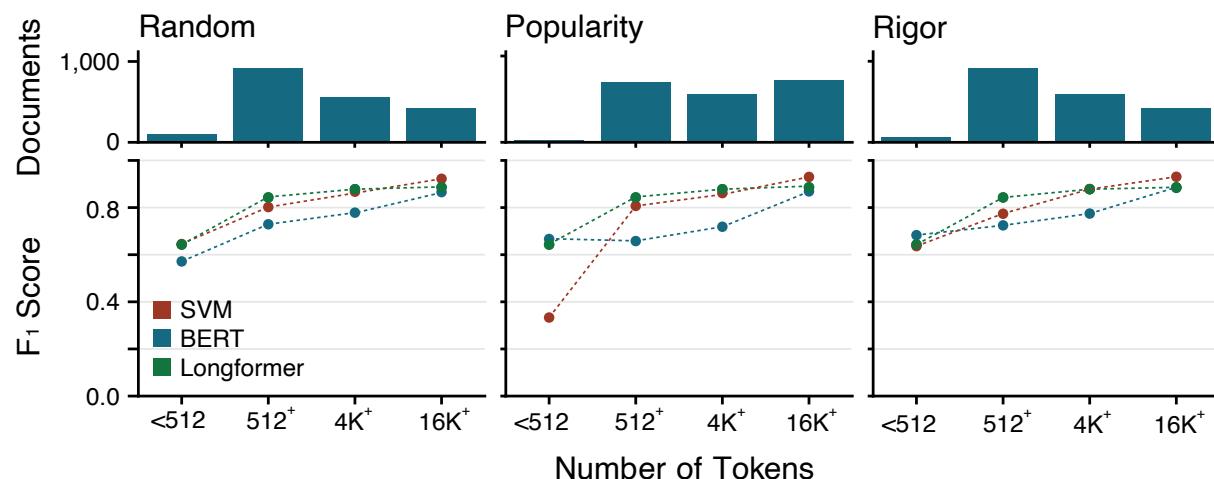
Knowledge

Curated List, Document Metadata

Evaluation

Spot Checks, Weak Label

Violence Classification.



Platform

Archive of Our Own (AO3)

Data

Fanfiction documents

Size

1M documents
36 labels

Knowledge

Curated List, Document Metadata

Evaluation

Spot Checks, Weak Label

Violence Classification.

Features indicating violence		
Random	Popularity	Rigor
4.65 blood	3.82 blood	4.54 blood
2.40 dead	2.32 screams	2.62 dead
2.37 kill	2.02 scream	2.23 screams
2.33 screams	1.94 dead	2.13 pain
1.99 screamed	1.91 kill	2.03 bloody
1.95 flesh	1.89 pain	1.96 scream
1.89 screaming	1.89 killed	1.93 bleeding
1.86 scream	1.84 bloody	1.93 blade
1.79 pain	1.81 bleeding	1.91 kill
1.77 killed	1.75 blade	1.87 killed
⋮	⋮	⋮
0.91 hannibal (84)	0.55 sith (341)	0.97 hannibal (67)

Platform

Archive of Our Own (AO3)

Data

Fanfiction documents

Size

1M documents

36 labels

Knowledge

Curated List, Document Metadata

Evaluation

Spot Checks, Weak Label

Violence Classification.

Features indicating non-violence		
Random	Popularity	Rigor
-1.67 kiss	-1.16 kiss	-1.86 kiss
-1.07 managed	-0.96 embarrassing	-1.00 teasing
-1.01 ridiculous	-0.91 halfway	-0.93 spent
-0.92 admit	-0.90 experience	-0.92 demanded
-0.91 teasing	-0.90 surprised	-0.90 hadn
-0.91 shoulders	-0.87 close	-0.89 fin
-0.89 snorted	-0.82 dance	-0.89 flushed
-0.89 curled	-0.81 teasing	-0.87 imagined
-0.88 weekend	-0.80 ridiculous	-0.85 ridiculou
-0.88 surprised	-0.80 kissing	-0.84 carefully

Platform

Archive of Our Own (AO3)

Data

Fanfiction documents

Size

1M documents

36 labels

Knowledge

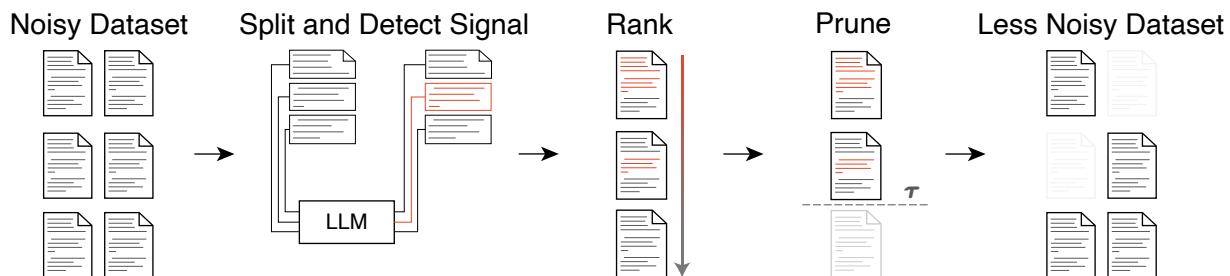
Curated List, Document Metadata

Evaluation

Spot Checks, Weak Label

Noise Reduction.

Estimate the aggregated “signal strength” for each label.



Platform

Archive of Our Own (AO3)

Data

Fanfiction documents

Size

1M documents
36 labels

Knowledge

Curated List, Document Metadata

Evaluation

Spot Checks, Weak Label

Noise Reduction Evaluation.

1. Find reliable labels ↗ should not be removed.

Some authors add detailed warnings to individual chapters.

Chapter 3

Notes:

Edit 12/26/17: By popular demand and my own personal desire, I have made a minor aesthetic modification to Izuku in this story; this chapter has been edited to include it.

CW: Gore, discussions of past domestic abuse, car accidents, and murder.

[PitViperOfDoom, 2016]

Platform

Archive of Our Own (AO3)

Data

Fanfiction documents

Size

1M documents
36 labels

Knowledge

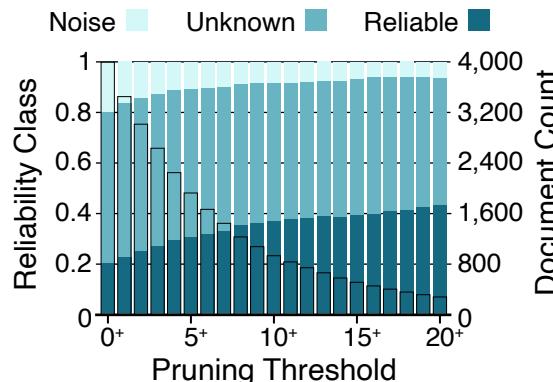
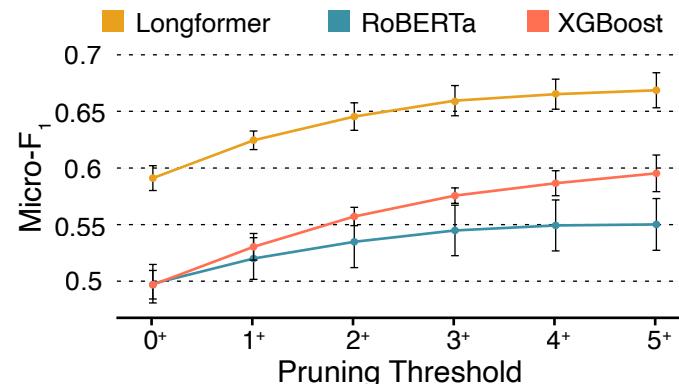
Curated List, Document Metadata

Evaluation

Spot Checks, Weak Label

Noise Reduction Evaluation.

1. Find reliable labels \rightsquigarrow should not be removed.
2. Add artificial label noise \rightsquigarrow should be removed.
3. Model F_1 and model differences should increase.



Platform

Archive of Our Own (AO3)

Data

Fanfiction documents

Size

1M documents

36 labels

Knowledge

Curated List, Document Metadata

Evaluation

Spot Checks, Weak Label

Task: Debater analysis

Given a debaters post history, is the debater persuasive or not?

Platform

Reddit ([/r/ChangeMyView](#))

Data

Debater histories

Size

3.8K histories

3 labels

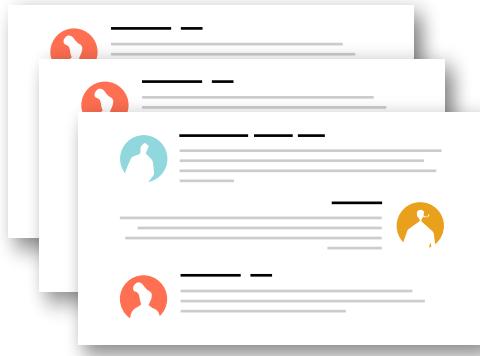
Knowledge

Metadata (Delta)

Evaluation

Task: Debater analysis

Given a debaters post history, is the debater persuasive or not?



Platform

Reddit ([/r/ChangeMyView](#))

Data

Debater histories

Size

3.8K histories
3 labels

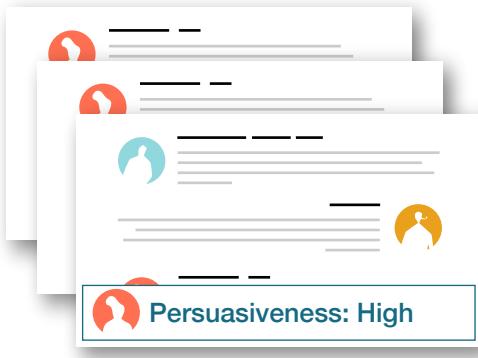
Knowledge

Metadata (Delta)

Evaluation

Task: Debater analysis

Given a debaters post history, is the debater persuasive or not?



Problem for human annotation

- ❑ Persuasiveness is subjective.
- ❑ Need many debates for each of many debaters.

Platform

Reddit (/r/ChangeMyView)

Data

Debater histories

Size

3.8K histories

3 labels

Knowledge

Metadata (Delta)

Evaluation

Heuristic labeling Function

Aggregate debate delta across debate histories.

 Active Debaters
13 254

 Real-Intention-7998
u/Real-Intention-7998

 r/changemyview · CMV: Prostitution and Drugs should be 100% legal and regulated.
Real-Intention-7998 commented 11 hr. ago

 r/changemyview · CMV: Not voting for the "lesser of two evils" is essentially the same as if you were to simply walk away from the "Trolley Problem"
Real-Intention-7998 replied to Bowoodstock 11 hr. ago

 r/changemyview · CMV: A huge amount (Most) of the criticisms of Israel these last two years stems from antisemitism
Real-Intention-7998 commented 12 hr. ago

Platform

Reddit (/r/ChangeMyView)

Data

Debater histories

Size

3.8K histories
3 labels

Knowledge

Metadata (Delta)

Evaluation

Heuristic labeling Function

Aggregate debate delta across debate histories.

 Active Debaters
13 254

 Real-Intention-7998
u/Real-Intention-7998

 r/changemyview · CMV: Prostitution and Drugs should be 100% legal and regulated.
Real-Intention-7998 commented 11 hr. ago

 r/changemyview · CMV: Not voting for the "lesser of two evils" is essentially the same as if you were to simply walk away from the "Trolley Problem".
Real-Intention-7998 replied to Bowoodstock 11 hr. ago

 r/changemyview · CMV: A huge amount (Most) of the criticisms of Israel these last two years stems from antisemitism
Real-Intention-7998 commented 12 hr. ago

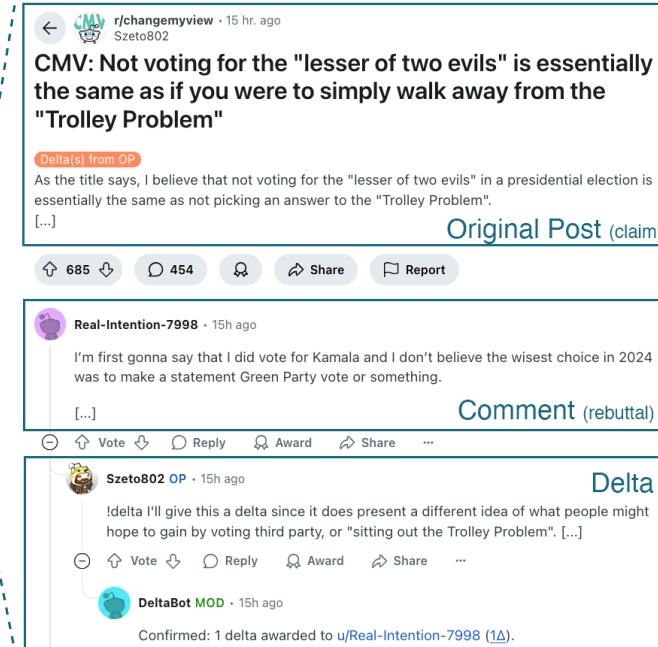


Diagram illustrating the flow of debate history from active debaters to a specific user's posts and comments, with a dashed line indicating the path.

Active Debaters (13 254) → **Real-Intention-7998** (u/Real-Intention-7998) → **Comment (rebuttal)** (Real-Intention-7998) → **Delta** (Szeto802) → **Comment (rebuttal)** (Real-Intention-7998) → **Delta** (Szeto802)

Original Post (claim) (Szeto802): CMV: Not voting for the "lesser of two evils" is essentially the same as if you were to simply walk away from the "Trolley Problem".

Comment (rebuttal) (Real-Intention-7998): I'm first gonna say that I did vote for Kamala and I don't believe the wisest choice in 2024 was to make a statement Green Party vote or something.

Delta (Szeto802): !delta I'll give this a delta since it does present a different idea of what people might hope to gain by voting third party, or "sitting out the Trolley Problem".

Comment (rebuttal) (Real-Intention-7998): Confirmed: 1 delta awarded to u/Real-Intention-7998 (1Δ).

Platform

Reddit (/r/ChangeMyView)

Data

Debater histories

Size

3.8K histories

3 labels

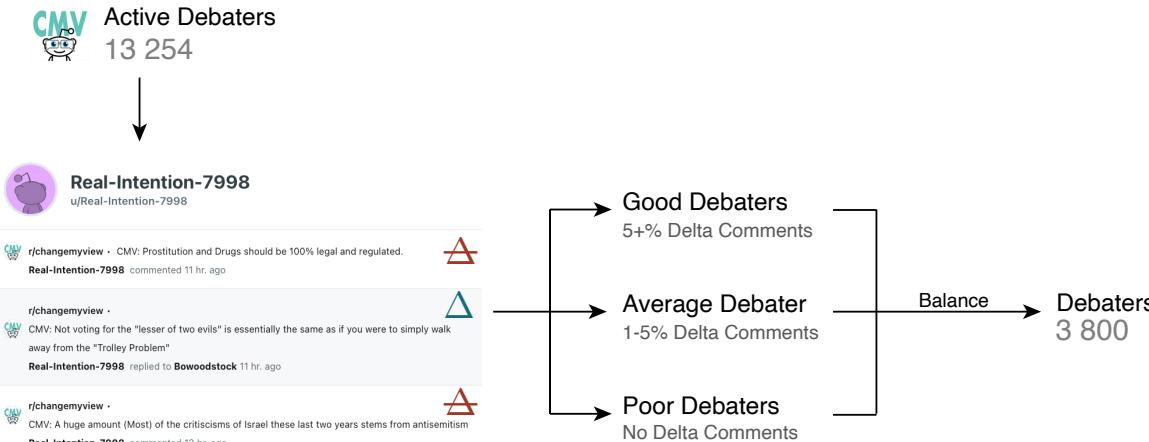
Knowledge

Metadata (Delta)

Evaluation

Heuristic labeling Function

Aggregate debate delta across debate histories.



Platform

Reddit (/r/ChangeMyView)

Data

Debater histories

Size

3.8K histories

3 labels

Knowledge

Metadata (Delta)

Evaluation

Answering research questions

RQ 1. Why are some debaters more persuasive than others?

- **Diachronic analysis.** [COLING 2022]
Role of engagement and experience in persuasiveness
- **Feature analysis.**
Which features predict persuasiveness in a classifier?
- **Style analysis.**
Which lexical, syntactic, and semantic features explain persuasiveness?

Platform

Reddit (/r/ChangeMyView)

Data

Debater histories

Size

3.8K histories

3 labels

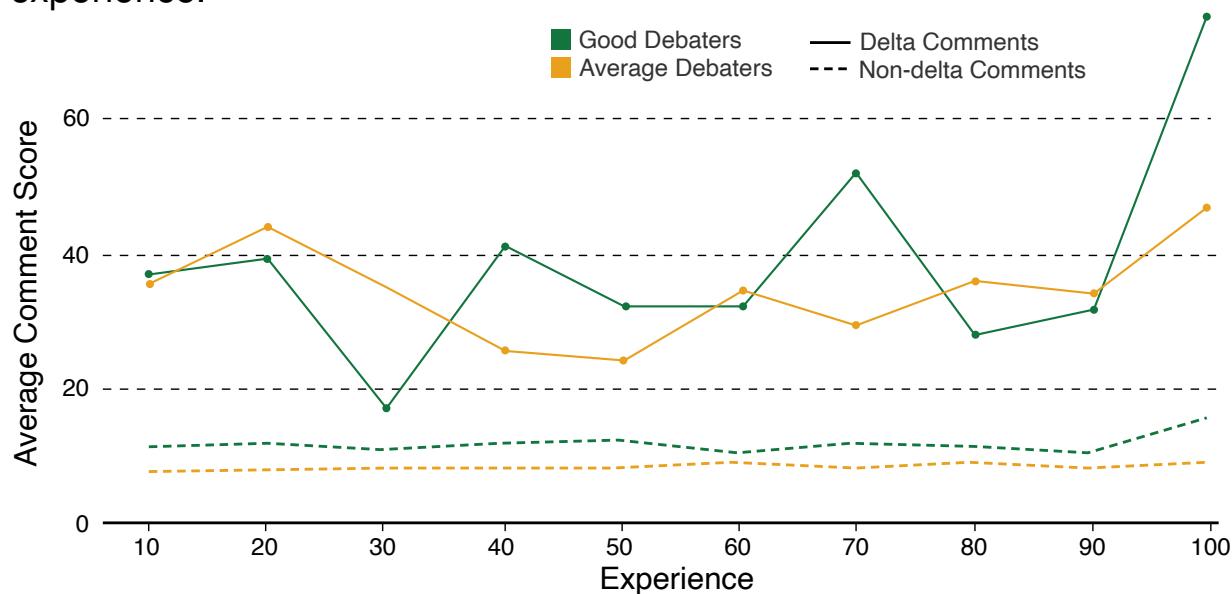
Knowledge

Metadata (Delta)

Evaluation

Diachronic analysis

Comment score of delta/non-delta comments with increasing debater experience.



Platform

Reddit ([/r/ChangeMyView](#))

Data

Debater histories

Size

3.8K histories

3 labels

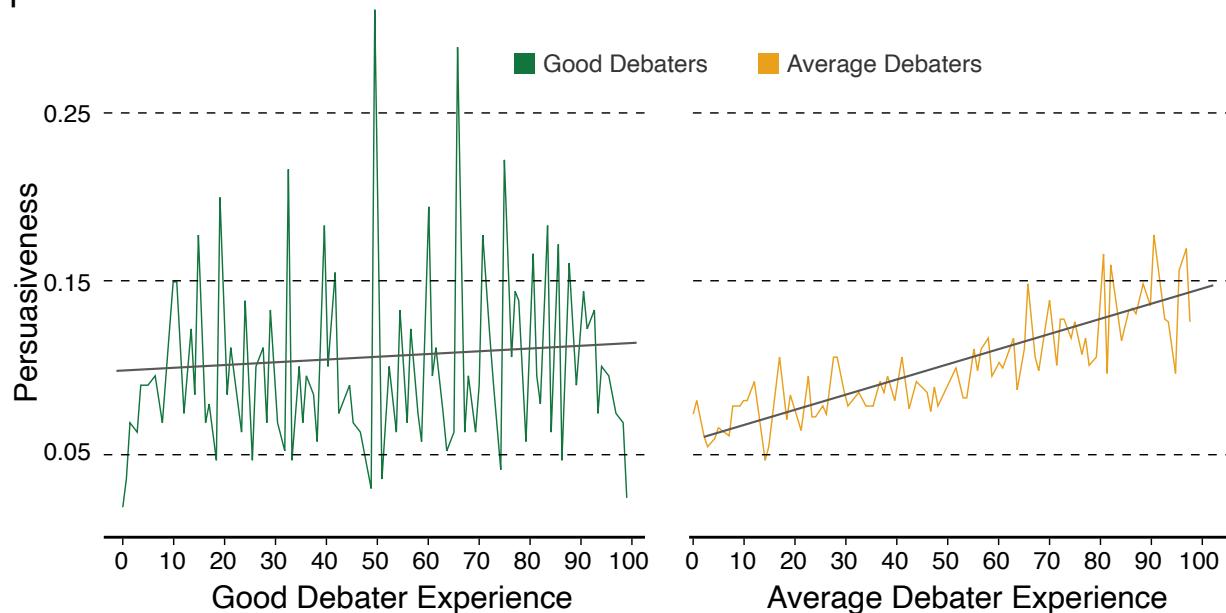
Knowledge

Metadata (Delta)

Evaluation

Diachronic analysis

Persuasiveness with increasing experience for debaters in different persuasiveness classes.



Platform

Reddit ([/r/ChangeMyView](#))

Data

Debater histories

Size

3.8K histories

3 labels

Knowledge

Metadata (Delta)

Evaluation

Feature analysis

Features	Good vs	
	Average	Poor
<i>Baseline Features</i>		
Bag of Words	0.60	0.68
Stylometry	0.62	0.67
Vocabulary Interplay	0.58	0.67
<i>Syntactic Features</i>		
Word class n -grams	0.57	0.51
Text Complexity	0.65	0.61
<i>Semantic Features</i>		
Word Mover's Distance	0.59	0.63

Platform

Reddit (/r/ChangeMyView)

Data

Debater histories

Size

3.8K histories

3 labels

Knowledge

Metadata (Delta)

Evaluation

Feature analysis

Features	Good vs	
	Average	Poor
<i>Pragmatic Features</i>		
Elementary Units	0.51	0.59
Claim or Premise	0.47	0.55
Claim Type	0.48	0.58
Premise Type	0.48	0.58
Claim and Premise Types	0.48	0.58
Frames	0.70	0.72

Platform

Reddit ([/r/ChangeMyView](https://www.reddit.com/r/ChangeMyView))

Data

Debater histories

Size

3.8K histories

3 labels

Knowledge

Metadata (Delta)

Evaluation

—

Style analysis

Persuasive debaters

- ❑ write long comments,
- ❑ have lower lexical diversity and syntactic complexity,
- ❑ have a higher semantic diversity,
- ❑ more often use rhetorical statements, and
- ❑ more often use political and cultural identity frames.

Platform

Reddit ([/r/ChangeMyView](#))

Data

Debater histories

Size

3.8K histories

3 labels

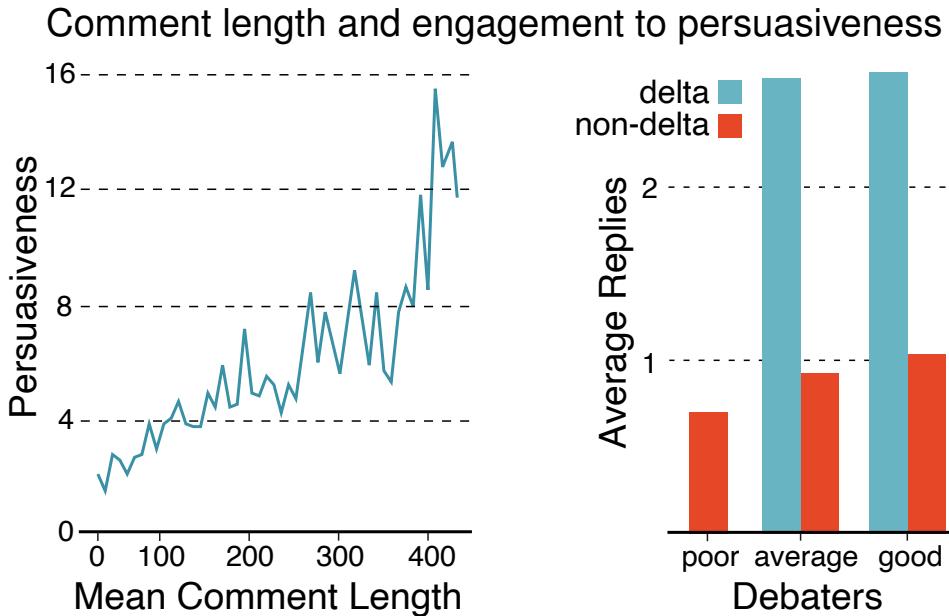
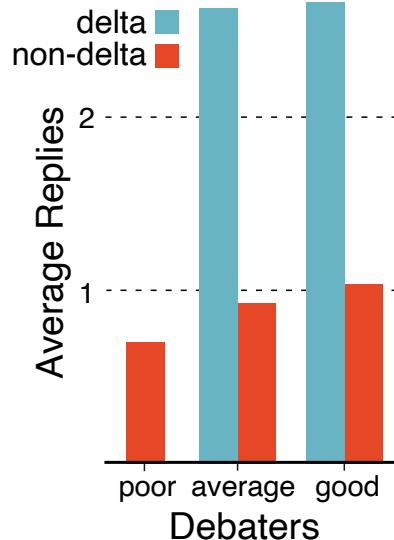
Knowledge

Metadata (Delta)

Evaluation

—

Style analysis



Platform

Reddit ([/r/ChangeMyView](#))

Data

Debater histories

Size

3.8K histories

3 labels

Knowledge

Metadata (Delta)

Evaluation