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Abstract. Learned sparse retrieval (LSR) models exhibit varying trade-
offs between effectiveness and efficiency. But while standard tools exist
for evaluating LSR effectiveness, there is none for evaluating efficiency.
Also, datasets with high-quality relevance judgments are too large for re-
peated efficiency experiments, e.g., on different hardware configurations.
To promote the evaluation of LSR models in terms of their effectiveness
and efficiency, we introduce the lsr_benchmark, which measures retrieval
efficiency at each step of an LSR pipeline (document embedding, index-
ing, query embedding, and retrieval) as well as its overall effectiveness.
To ensure tractability and extensibility, we apply current corpus sub-
sampling methods to eleven TREC tasks, precompute embeddings with
eleven LSR models per task, and evaluate eight retrieval engines as base-
lines. For the benchmark’s hosted version, a modular API, along with
tools for evaluating effectiveness and efficiency, facilitates the submission
of new approaches. Our experiments show that the chosen embedding
model significantly affects the efficiency of a retrieval engine and that
LSR is more effective but less efficient than BM25—an efficiency gap
that our benchmark now tracks as new LSR models are published.
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1 Introduction

Learned sparse retrieval (LSR) models embed documents and queries into sparse
embeddings that weight terms according to their importance in a document or
query [46]. They use transformer-based language models to derive these term
weights, in contrast to lexical models such as BM25 [49], which use corpus statis-
tics. In this way, LSR integrates what is known in lexical retrieval as query or
document expansion/reduction with embedding into a sparse latent term space,
increasing effectiveness compared to lexical retrieval [26, 27, 35, 37].
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Table 1: The datasets in the lsr_benchmark together with the embeddings that
we release publicly for retrieval experiments without access to the corpus.
Corpus Tracks Queries Judgm. Docs. Embeddings

Avg.
∑

ClueWeb09 Web [13–16] 198 84 366 315 095 117.9MB 5.1GB
ClueWeb12 Web/Dec. [1, 17, 18] 150 51 765 225 636 116.0MB 3.7GB
Disks 4/5 Robust04 [59] 249 311 410 285 756 106.4MB 5.7GB
MS MARCO DL 19/20 [20, 21] 97 20 646 81 737 40.1 MB 0.9GB
MS MARCO2.1 RAG 24 [57] 89 20 429 116 694 170.0MB 1.8 GB∑

11 TREC Tracks 783 488 616 1 024 918 106.8 MB 17.2GB

While the term weights differ between lexical and learned sparse retrieval [41],
the representations of queries and documents as high-dimensional sparse vectors
are structurally identical. Therefore, retrieval systems that process lexical repre-
sentations [39, 44] can also process LSR representations. But the different term
weight distributions cause efficiency optimizations that used to work for lexical
retrieval [3, 56] to fail for LSR [41], so that new optimizations are required [7, 22].

Retrieval engines that have been optimized for learned sparse retrieval sub-
stantially improved the latency for LSR embeddings [7, 22]. However, previ-
ous efficiency experiments did not compare retrieval engines across diverse re-
trieval scenarios and many LSR models, as many IR evaluations build on web-
scale datasets that cannot be processed with LSR models with reasonable cost-
effectiveness due the high embedding costs. To enable holistic learned sparse
retrieval evaluations that account for effectiveness and efficiency, we present the
lsr_benchmark. We assume a standard four-step learned sparse retrieval pipeline
where (1) documents are embedded and (2) indexed, after which (3) queries are
embedded to (4) retrieve results. Efficiency is monitored at each step with the
tirex_tracker [33] and we persist all measurements in the ir_metadata format [2]
to make runs fully self-contained. We decouple the embedding step from the re-
trieval step to ensure that all combinations of embedding models and retrieval
engines can be explored easily. We use the recently proposed corpus subsampling
methods by Fröbe et al. [29] to enable, for the first time, a systematic evaluation
of complex learned sparse retrieval models as first-stage retrievers on web-scale
corpora. Table 1 provides an overview of the datasets that we include into the
first version of the lsr_benchmark.

Our experiments show that there is still a substantial gap between lexical
and learned sparse retrieval. LSR achieves higher effectiveness, at the cost of
latency in the 90% percentile, where retrieval latency increases 24-fold across
retrieval engines and LSR embeddings. The framework, submission instructions,
and aggregated efficiency and effectiveness evaluations are available online.8

8 Code, tutorials, and documentation: https://github.com/reneuir/lsr-benchmark
Submission and evaluations: https://www.tira.io/task-overview/lsr-benchmark
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2 Related Work

We review learned sparse retrieval, corpus subsampling, green and efficient IR,
and on tools which the lsr_benchmark aims to support and builds upon.

Learned Sparse Retrieval (LSR). Early retrieval systems used lexical priors (e.g.,
term frequency and inverse document frequency [54]) to represent documents.
Such representations are sparse (the number of unique terms in a document is
orders of magnitude smaller than the number of possible terms) but can struggle
to capture semantics. Learned sparse retrieval improves semantic matching by
replacing lexical priors with priors from deep learning models [12, 27, 37, 62, 46].

Since lexical and LSR models both use structurally identical output represen-
tations, retrieval engines that can handle lexical retrieval can also handle learned
sparse retrieval. However, efficient lexical retrieval engines exhibit a tenfold in-
crease in latency when applied to learned sparse representations [41]. Later works
improved LSR-latency by specifically designed retrieval engines [7, 8, 40, 42, 47].
However, LSR efficiency is often only evaluated on few datasets and models.
As our experiments include many retrieval scenarios, embedding models, and
retrieval algorithms, we can reproduce cases with previously reported latency
differences, but we also find cases where the latency gap between lexical and
LSR increases 70-fold, emphasizing the need for further investigations.

Corpus Subsampling. High quality evaluation corpora constructed in TREC-
style shared tasks come with many graded relevance judgments (beneficial for
nDCG) and their reliability for subsequent evaluations can be tested [58]. How-
ever, TREC-style collections are often very large (even web-scale), as TREC
aimed to transfer the Cranfield Paradigm to large document collections [60].
The size of TREC collections causes problems for the evaluation of modern neu-
ral models that have high energy/compute requirements [51]. While building a
lexical ClueWeb09 index takes less than a day with PISA [44], embedding 50% of
the ClueWeb09 on an Nvidia V100 GPU takes 71 days [36]. Those high computa-
tional costs make it impossible to run efficiency-oriented experiments with neural
models and multiple repetitions on web-scale corpora. Corpus subsampling [29]
reduces the size of document collections so that expensive neural models can
also be reliably evaluated on large corpora. All runs that were pooled are used
to take the top-k documents of all pooled systems, where k is substantially larger
than the pooling depth, which yields diverse hard-negative documents. We use
this to run experiments on collections that would otherwise not be possible.

Green IR and Efficiency. Several studies investigate how to optimize search en-
gine efficiency from the perspective of energy consumption. Catena et al. [11]
propose specialized CPU governors that use information on the query server’s
load to adjust the CPU frequency to reduce the energy consumption which later
evolved into energy-aware schedulers that can reduce CPU energy consumption
by up to 50% [10]. With the wide use of large language models, numerous con-
tributions have emphasized that their improved effectiveness comes at the cost
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of substantially higher hardware and energy demands. Several studies address
this issue through strategies aimed at mitigating such resource drifts [51, 55].
In this direction, the ReNeuIR workshop at SIGIR fostered an active discussion
on alleviating the computational burden of these models [4–6, 28]. This ongoing
work highlights the need for a holistic and concrete definition of efficiency, as well
as the existence of several open research gaps in efficiency-centered evaluation.
To help to bridge these gaps, the ReNeuIR community has initiated a shared
task initiative. We aim to support such initiatives with our work.

Related Tooling for Simplified IR Experiments. The ongoing discussion on how
to conduct efficiency-oriented IR experiments [4, 6, 28] that inspired our work
and to which we aim to contribute, needs tool support. Therefore, we build
our lsr_benchmark compatible with existing IR tooling. The ir_datasets [38]
framework provides an API for accessing IR evaluation datasets. Our API is
compatible with ir_datasets and extends it by adding sparse embeddings. Ad-
ditionally, we need to enable efficiency evaluations. For this, we incorporate the
tirex_tracker [33], a lightweight native library that can be embedded into many
programming languages and monitors all efficiency metrics, thereby following the
spirit that there is not yet a consensus on how to measure efficiency. Compared
to alternatives such as codecarbon [19], tirex_tracker is independent of the
programming language, captures the efficiency over time, and can export the
monitored resource consumption in the ir_metadata format [2], yielding higher
compatibility with IR tools. Our lsr_benchmark is the first project that uses
the tirex_tracker in efficiency-oriented experiments to collect efficiency mea-
surements of IR workloads at scale. We aim to be orthogonal and to support
theoretically oriented efficiency frameworks such as PEIR [34] (which uses the-
oretical modeling to assess efficiency). We see our work as an initiative in this
direction and hope to inspire similar initiatives in the IR community.

3 Overview of the lsr_benchmark

The lsr_benchmark aims to support holistic evaluations of Learned Sparse Re-
trieval (LSR) methods, accounting for efficiency and effectiveness. Our LSR
pipelines first embed documents and queries into a standardized format (Sec-
tion 3.2), and then perform the index and retrieve step (Section 3.3). We use
TIRA/TIREx [30, 31] for the embedding as it allows to process datasets that are
not public. The subsequent retrieval experiments can run with any frameworks
and infrastructures, while all steps are monitored with the tirex_tracker [33] to
capture efficiency-oriented metrics in the ir_metadata [2] format. We designed
the architecture of the lsr_benchmark (Section 3.1) to have a low barrier of entry.

The lsr_benchmark is pip-installable. Listing 1 shows how public embeddings
and runs can be accessed via the command line. The public embeddings are used
as input for retrieval engines, without needing the underlying corpus (only the
embeddings are public). The public runs serve as baselines and for exploratory
analysis. Listing 2 shows the evaluate command that uses run files as input
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# download pre -computed embeddings
lsr -benchmark download -embeddings \

--embedding webis/splade \
--dataset msmarco -passage/trec -dl -2019

# download a run
lsr -benchmark download -run \

--embedding webis/splade \
--dataset msmarco -passage/trec -dl -2020 \
--retrieval seismic

Listing 1: The command line interface of the lsr_benchmark for downloading
public pre-computed embeddings (allows easy experiments) and baseline runs.

lsr -benchmark evaluate OUTPUT -BY -SEISMIC OUTPUT -BY-NAIVE -SEARCH

Seismic Naïve-Search

index.runtime_wallclock 32365 ms 0 ms
index.energy_total 7.0 0.0
retrieval.runtime_wallclock 35 ms 858 ms
retrieval.energy_total 0.0 0.0
embedding/model webis/splade webis/splade
embedding/doc.runtime_wallclock 96789 ms 96789 ms
embedding/doc.energy_total 17896.0 17896.0
embedding/query.runtime_wallclock 1575 ms 1575 ms
embedding/query.energy_total 109.0 109.0
nDCG@10 0.720 0.720
ir_dataset msmarco-passage/trec-dl-2020

Listing 2: The evaluate command of the lsr_benchmark on the command line
for comparing runs in terms of efficency and effectiveness and the output.

and outputs effectiveness and efficiency measures, e.g., the energy required to
embed the documents and queries. The example (Listing 2) compares Seismic [7]
with Naïve Search (a simple linear scan) on the same embeddings, showing that
Seismic is optimized for low-latency retrieval (retrieval.runtime_wallclock of
35 msec. vs 858 msec.) while it has substantially higher indexing costs.

3.1 Architecture of the lsr_benchmark

We operationalize the lsr_benchmark in four stages that (1) add new datasets,
(2) embed queries and documents, (3) run retrieval engines, and (4) compare
efficiency and effectiveness. The first two stages run in the TIRA sandbox (open
for submissions), and the last two stages operate on the artifacts published from
the embedding stage, so that all retrieval experimentation is completely open
and can be executed on the side of the experimenter with the tools of their
choice. Figure 1 overviews this architecture that we explain next.
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TIRA Sandbox Public

Stage 1: Corpus Preparation

Corpus Subsampling

Segmentation

Queries + Documents

Stage 2: Embedding

Embed Queries

Embed Documents

ir_metadata Embeddings

Stage 3: Indexing and Retrieval

Index

Retrieval

ir_metadata run.txt

Stage 4: Evaluation

Effectiveness

Efficiency

Fig. 1: The architecture of the lsr_benchmark. Stage one and two run in TIRA
to process non-public datasets. Stages three and four build on the embeddings
published in stage two and can run on any infrastructure of an experimenter.

Stage 1 (Adding Corpora). The process starts by uploading a new dataset to
TIRA. We release a detailed guide together with code examples in the doc-
umentation.9 We focus on TREC-style datasets that have many high-quality
relevance judgments from pooling, as this allows us to assess the reliability of
evaluations [58]. To add a new dataset, we download all runs submitted to the
corresponding TREC tracks to run corpus subsampling [29]. For each dataset, we
test for subsampling depths of 100 (was already reliable [29]), 125, 150, and 200
to select a configuration that yields a reasonable corpus size. Note that the corpus
subsampling that we use achieved the best reliability compared to other sampling
strategies, and that this subsampling is required, as otherwise no experimenta-
tion would be possible. After the subsampling, we segment the documents into
passages so that embedding approaches that aggregate multiple passages use the
same segmentation. We then upload the subsampled and segmented corpora to
TIRA. For public corpora (e.g., MS MARCO), the subsamples are public (to al-
low for local experimentation) while we configure that datasets that can not be
publicly shared (e.g., Robust04 and the ClueWebs) are only available in TIRA.

Stage 2 (Embedding Documents and Queries). Encoders take the queries and the
documents as text and embed them into sparse vectors, commonly represented
as a list of term–score tuples. We submit the encoders to TIRA, where they
are used to produce the embeddings in the TIRA sandbox without network
access—improving reproducibility and ensuring that the data remains private.
We also ensure that all embedding models run on the same host, and we track
the resource consumption during encoding with the tirex_tracker.

Stage 3 (Indexing and Retrieval). Retrieval engines use query and document
embeddings to (1) build an index, and (2) perform retrieval. Both stages are
monitored with the tirex_tracker. We build and publish a set of 8 retrieval
engines that can be used as baselines on any target architectures.

Stage 4 (Efficiency and Effectiveness Evaluations). After Stage 3 yields re-
trieval runs, evaluating efficiency and effectiveness as in Listing 2 are possible.
9 https://github.com/reneuir/lsr-benchmark/tree/main/data

https://github.com/reneuir/lsr-benchmark/tree/main/data
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with tracking(export_file_path=output_dir / "query"):
query_embeddings = model.predict(query_texts)

with tracking(export_file_path=output_dir / "docs"):
doc_embeddings = model.predict(texts)

save_embeddings(query_embeddings , doc_embeddings , output_dir)

Listing 3: Example of how queries and documents are embedded.

for query_id , tokens , values in query_embeddings:
print(query_id) # ’1030303 ’
print(tokens) # [’2002’ ’2010’ ’2032’ ... ]
print(values) # [0.02466838 0.49301645 0.99693686 ... ]

Listing 4: Queries/documents are embedded as token ids and importance scores.

As the tirex_tracker automatically captures all efficiency information in the
ir_metadata format, different aspects of efficiency can be evaluated in retrospect.

3.2 Embeddings for Learned Sparse Retrieval

Listing 3 shows how we track the efficiency of embedding documents and queries.
Loading models and persisting the results is done outside the tracking. We use
Lightning IR [52] to run the inference for most models, as it offers a unified
API for different model types (other frameworks can be integrated). We include
11 different models in our comparison;10 mostly SPLADE variants [27] (covering
smaller backbones [50] and inference-free architectures for the query [53, 32, 45])
as well as UniCoil [37] and the sparse variant of the BGE-M3 model [61].

Listing 4 illustrates how queries and documents are represented and how
they can be accessed. Each query and document is represented by a list of token
ids and corresponding embedding values. Note that we can publish these em-
beddings, even for restrictively licensed datasets, as one cannot reproduce the
original text from the embeddings without substantial effort.

3.3 Retrieval Engines for Learned Sparse Retrieval

The first version of our lsr_benchmark comes with eight retrieval engines. All
integrations monitor the efficiency of indexing and retrieval with a protocol as
showcased in Listing 5 to load, index, and evaluate any of the embeddings.
DuckDB [48] is a production ready and efficiency-oriented database system that
also comes with tooling to support learned sparse retrieval.
Naïve Search represents a simple baseline that exhaustively computes dot
products without indexing (implemented in Rust in the Seismic package).

10 bge-m3 OS2 Dist OS2 Doc OS2 Mini OS3 Dist Splade
Splade-v2 Dist Splade-v3 Splade-v3 Dist Splade-v3 Doc UniCoil

https://huggingface.co/BAAI/bge-m3
https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-v2-distill
https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill
https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v2-mini
https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v3-distill
https://huggingface.co/webis/splade
https://huggingface.co/naver/splade_v2_distil
https://huggingface.co/naver/splade-v3
https://huggingface.co/naver/splade-v3-distilbert
https://huggingface.co/naver/splade-v3-doc
https://huggingface.co/castorini/unicoil-noexp-msmarco-passage
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lsr_benchmark.register_to_ir_datasets("<DATASET -ID>")
ir_dataset = ir_datasets.load("lsr -benchmark/<DATASET -ID>")
doc_embeddings = ir_dataset.doc_embeddings(model_name="<MODEL >")
query_embeddings = ir_dataset.query_embeddings(model_name="<MODEL >")

with tracking(export_file_path=output_dir / "index"):
index = build_index(document_embeddings)

with tracking(export_file_path=output_dir / "retrieval"):
run = retrieval(index , query_embeddings)

save_run(output_dir , output_dir)

Listing 5: Indexing and retrieval while capturing efficiency metrics.

PISA [44] is a C++ library for efficiency-oriented research, originally for lexical
representations that comes with several pruning algorithms [3, 23, 43, 56]. (We
include two variants of PISA, one for lexical and one for sparse retrieval.)
PyTerrier [39] is a research-oriented retrieval engine that is mostly written in
Java and aims to scale to large datasets with declarative experimentation. (We
include two variants of PyTerrier, one for lexical and one for sparse retrieval.)
kANNolo [22] is a Rust framework for approximate nearest neighbors search
for dense and sparse retrieval, focusing on graph-based algorithms (e.g., HNSW).
Seismic [7–9] implements approximate nearest neighbor search in Rust for
sparse embeddings with block partitioning, forward indices, and skip vectors.

3.4 Submission of new Embedding Models and Retrieval Engines

We encourage the community to submit new embedding models and new re-
trieval engines to the lsr_benchmark. We envision that efficiency-oriented shared
tasks and workshops, such as ReNeuIR [6, 4, 28] and WOWS [25, 24]11 incorpo-
rate aspects of the lsr_benchmark to grow a community around it. We organize
the lsr_benchmark in a single mono-repository that contains all code in a clean
and consistent structure. Hence, we intend to collect new submissions via pull
requests. All code for embedding models and retrieval engines is “dockerized” and
compatible with Development Containers,12 reducing the effort to deploy them
on new hardware. For submitting new models, our Lightning IR code should,
in many cases, allow TIRA submissions from the existing code with just link-
ing against a different/new Hugging Face model. For collecting diverse efficiency
and effectiveness information for retrieval engines, we allow for uploading runs to
TIRA, so that executions of the retrieval engines that we dockerized on diverse
infrastructure yield a valuable parallel dataset (runs with their monitored exe-
cutions) with effectiveness and efficiency information. This setup ensures that
no prior experience with TIRA is needed to participate in the lsr_benchmark.
11 https://reneuir.org/ https://opensearchfoundation.org/wows2025/
12 https://containers.dev/

https://reneuir.org/
https://opensearchfoundation.org/wows2025/
https://containers.dev/
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Table 2: The efficiency of six LSR and two lexical retrieval engines measured
as wallclock runtime in milliseconds (50 %, 90%, and 99 % percentiles) and con-
sumed energy in Joules (average and total) for indexing (runtime per 1 000 docu-
ments) and retrieval (runtime per query) accross all embeddings and collections.
Engine Runtime (ms) Energy (J)

Index Retrieval Index Retrieval

50 90 99 50 90 99 Avg. Tot. Avg. Tot.

DuckDB 31.9 54.3 87.3 12.1 113.6 191.0 0.3 4.2 0.2 34.0
kANNolo 812.6 1206.8 1493.5 1.1 1.9 2.3 13.3 199.5 0.0 0.0
Naïve 0.0 0.0 0.0 10.2 55.5 73.7 0.0 0.0 0.0 7.0
PISA 162.6 219.0 281.2 4.3 31.5 76.1 2.3 34.1 0.0 4.0
PyTerrier 355.8 500.2 685.5 25.5 53.6 90.0 5.5 81.9 0.0 8.0
Seismic 1276.8 2289.3 3366.1 0.7 3.0 4.4 21.7 325.3 0.0 0.0

BM25@PyTerrier 789.2 7886.8 16012.6 16.4 18.4 19.2 69.6 1044.0 0.0 0.0
BM25@PISA 252.3 419.2 456.8 0.6 0.8 1.3 4.9 73.0 0.0 0.0

4 Evaluation

We show use cases and future perspectives of the lsr_benchmark and report
efficiency/effectiveness on our 11 datasets, 11 embedding models, and 8 retrieval
engines (968 runs). A leaderboard (hopefully growing over time) is available.13

4.1 The Efficiency of Learned Sparse Retrieval

We first analyze how retrieval engines and learned sparse embedding models
impact the efficiency. We focus our efficiency evaluations on latency and en-
ergy consumption of the embedding, indexing, and retrieval captured with the
tirex_tracker (other efficiency metrics such as CPU utilization, RAM usage,
etc. are captured in the ir_metadata, but we do not include them in the paper).
All embedding models were executed in TIRA on the same machine with Nvidia
A100 GPUs, and all retrieval experiments were executed on another machine
outside of TIRA (hardware specifications are included in the runs’ ir_metadata).

Table 2 provides an overview of the efficiency of the eight retrieval engines
for indexing and retrieval. The energy is reported on average (i.e., per dataset
and embedding) and total (for processing all datasets and embeddings). For la-
tency, we report the 50%, 90 %, and 99 % percentiles and normalize the values
such that they report the elapsed time to index 1000 documents and the time
to run retrieval for one query (the energy and latency of embedding documents
and queries are excluded for now as we focus on this later). We observe that the
retrieval engine has a substantial impact on the efficiency. Engines that allow for
low-latency retrieval invest substantial effort into the indexing stage, with Seis-
mic having the highest indexing latency (1.3 seconds to index 1000 documents
in the 50 % percentile) that yields the best retrieval latency (0.7 milliseconds in
the 50 % percentile). DuckDB and PyTerrier have at many percentiles a higher
13 https://www.tira.io/task-overview/lsr-benchmark

https://www.tira.io/task-overview/lsr-benchmark
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Table 3: Efficiency/Effectiveness comparison of retrieval engines for learned
sparse retrieval versus lexical BM25 retrieval in latency in milliseconds at 50 %,
90 %, and 99 % percentiles and the corresponding nDCG@10 effectiveness.

Engine Lerned Sparse Lexical (BM25)

Retrieval (ms) nDCG@10 Retrieval (ms) nDCG@10

50 90 99 50 90 99

DuckDB 12.35 108.56 188.71 0.385 6.75 8.34 8.51 0.266
Naïve 9.57 54.82 73.51 0.385 3.30 5.26 7.57 0.266
PISA 3.27 31.34 69.46 0.385 0.76 1.06 1.57 0.266
PyTerrier 24.79 51.59 89.53 0.385 20.25 26.32 26.81 0.266
Seismic 0.70 2.94 4.30 0.38 0.04 0.04 0.05 0.216

retrieval latency than the naïve search, which highlights that low-latency is not
the only requirement for production-ready systems. Lexical retrieval (the last
two rows) is less prone to latency problems than learned sparse retrieval (the
90 % and 99 % percentiles are very close to the 50 % percentile).

To repeat the study if lexical retrieval allows for more efficient retrieval than
learned sparse retrieval (observed in prior work [41] and in Table 2), we build
BM25 embeddings for every dataset (not counted in the 11 embeddings). These
BM25 embeddings map every term in the query to an importance of 1, and every
document term to its BM25 score that we calculate with PyTerrier. In contrast to
learned sparse embeddings, the vocabulary size is substantially larger (yielding
shorter posting lists). We run all retrieval engines on the BM25 embeddings
and compare the efficiency of lexical retrieval with learned sparse retrieval. Only
PISA and PyTerrier are initially built for lexical retrieval, whereas engines such
as kANNolo and Seismic focus on learned sparse retrieval. The kANNolo retrieval
engine failed to process BM25 embeddings (the maximum vocabulary size of
kANNolo is 216, which is too small for the lexical vocabulary of our datasets).
For all other retrieval engines, we show the difference in the retrieval latency
and effectiveness for learned sparse retrieval (across all 11 embedding models)
and lexical BM25 retrieval in Table 3. Across all reported percentiles and all
retrieval engines, BM25 retrieval is faster than learned sparse retrieval. Especially
in the higher percentiles, the efficiency difference is substantial, for instance,
the average speedup in the 90% percentile retrieval latency is 24× across the
retrieval engines (between 10× for Naïve and 70× for Seismic). Seismic is even
faster than PISA in lexical retrieval, but this comes at effectiveness reductions.
The nDCG@10 for Seismic is lower for lexical retrieval than for the other engines,
as Seismic prunes the search space optimized for learned sparse retrieval, while
the other engines do exact search. This highlights that different retrieval engines
can have a substantial impact on retrieval efficiency but also that there can be
an impact on effectiveness that we study next.
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Table 4: The nDCG@10 and P@10 of eleven LSR models and two lexical BM25
baselines on all test collections with the energy in Joules for the embeddings.

Embedding nDCG@10 P@10

Model Energy CW09 CW12 DL R04 RAG Avg. C09 C12 DL R04 RAG Avg.

BGE-M3 509815 .09 .23 .40 .34 .20 .25 .14 .30 .47 .31 .30 .28
OS2 Dist 45427 .24 .34 .72 .49 .43 .42 .33 .43 .80 .47 .59 .48
OS2 Doc 45345 .23 .33 .69 .46 .37 .40 .32 .41 .76 .44 .53 .45
OS2 Mini 31691 .23 .33 .69 .44 .35 .39 .30 .40 .75 .42 .51 .44
OS3 Dist 46885 .24 .33 .70 .46 .37 .40 .32 .40 .77 .44 .52 .45
Splade 42445 .22 .32 .74 .47 .42 .40 .31 .40 .81 .45 .56 .46
Splade-v2 Dist 45490 .21 .33 .72 .48 .37 .40 .29 .42 .80 .46 .52 .46
Splade-v3 68183 .22 .34 .74 .49 .44 .42 .31 .42 .82 .47 .59 .47
Splade-v3 Dist 45543 .23 .33 .75 .48 .39 .41 .31 .43 .82 .46 .55 .47
Splade-v3 Doc 68326 .16 .28 .71 .43 .32 .36 .22 .36 .77 .42 .47 .41
UniCoil 54712 .18 .27 .61 .38 .32 .33 .24 .34 .68 .38 .45 .38

BM25 PyTerrier .11 .30 .48 .40 .26 .30 .16 .40 .57 .38 .36 .35
BM25 PISA .10 .28 .48 .41 .25 .30 .14 .37 .57 .39 .35 .34

4.2 The Effectiveness of Learned Sparse Retrieval

We run all 8 retrieval engines on all 11 LSR models to study their effectiveness.
For learned sparse retrieval, we observe that the retrieval engine has no impact
on the effectiveness (nDCG@10 scores differ only in the third decimal place).
Table 4 reports the energy needed to build the embeddings and their effectiveness
in nDCG@10 and Precision@10 for all corpora (macro averaged), together with
the effectiveness of BM25 in PISA and PyTerrier (they use different defaults).
Most LSR engines are more effective than BM25 (UniCoil and BGE-M3 being
rather ineffective) and Splade v3 and OS2 Dist. achieving the highest nDCG@10
(we run no significance tests as our analysis is explorative).

We analyze the impact of different LSR models for all 8 retrieval engines
on the indexing and retrieval latency in Table 5. Different LSR models produce
different term distributions, and we observe that highly effective models are chal-
lenging for efficient indexing and retrieval. UniCoil needs in the 50% percentile
3.2 milliseconds per query whereas highly effective systems like Splade v3 and
OS2 Dist. need 10.3 respectively 32.0 milliseconds. The 99 % percentiles contain
cases where retrieval engines are highly inefficient (reaching 100 milliseconds).

4.3 Perspectives

With the lsr_benchmark, we support efficiency and effectiveness evaluations to
enable new research perspectives. We intend to support shared tasks and hope
that also other directions are enabled that are interesting to the community.

Continuous Intergration. The lsr_benchmark has a focus to support the develop-
ment of efficient retrieval, but needs to process ca. 20GB of embeddings. Deriving
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Table 5: The latency for indexing and retrieving LSR representations of different
LSR models in milliseconds for all retrieval engines at 50 %, 90 %, and 99 %.

Model Index Retrieval

50 90 99 50 90 99

BGE-M3 62.1 671.0 1621.5 5.5 25.5 29.7
OS2 Dist. 221.3 1053.8 1562.5 32.0 104.8 164.7
OS2 Doc 203.3 1078.8 1985.8 4.4 21.4 27.0
OS2 Mini 270.0 1305.0 2741.7 4.4 20.9 26.0
OS3 Dist. 198.3 937.8 1276.8 4.5 20.9 24.4
Splade 227.4 1331.9 2021.0 37.7 129.3 195.4
Splade2 Dist. 291.7 1762.9 3475.3 21.0 62.9 95.2
Splade3 220.6 1268.6 2170.7 10.3 39.3 57.0
Splade3 Dist. 243.3 1443.5 2321.5 9.6 43.3 69.0
Splade3 Doc 225.7 1020.3 1949.1 4.6 21.1 27.4
UniCoil 100.7 695.2 860.0 3.2 27.6 35.4

micro-benchmarks, e.g., via stratifying efficiency percentiles, could yield evalua-
tions that can run on every commit. Developing micro benchmarks that run fast
and correlate with the full lsr_benchmark would enable continuous intergration.
Interpolation Between Lexical and Learned Sparse Retrieval. LSR and lexical
retrieval already share the same underlying representations. One interesting di-
rection would be that a retrieval engine can, depending on the query, interpolate
between lexical and learned sparse retrieval (e.g., via efficiency predictions).
Red-Teaming for Efficiency Evaluations. Given our focus on efficiency, it would
be interesting to include retrieval engines that “purposefully cheat” (e.g., effi-
ciency oracles). Such oracles are not reachable but help to identify errors or
room for improvement (e.g., knowing which queries come during retrieval).
Enrichment of the Corpora. That we publish the document and query embed-
dings allows for many additional resources that could complement our work.
For instance, building query variants only needs access to the public topics and
allows to study the efficiency of LSR for queries of different verbosity.

5 Conclusion

We presented the lsr_benchmark for holistic evaluations of learned sparse retrieval
of efficiency and effectiveness. We supportrivate datasets derived from web-scale
corpora via corpus subsampling by running the LSR models within TIRA and
releasing only the resulting embeddings publically so that retrieval engines can
directly work on prepared embeddings. We showcased several use-cases for effi-
ciency and effectiveness-oriented evaluations, highlighting that the LSR model
substantially impacts the efficiency of an retrieval engine. Our released resources
allow to systematically identify efficiency problems at a low barrier of entry to
help addressing those problems in a sustainable and reproducible way.
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