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Introduction

Introduction

Graph neural networks (GNNs) have become the dominant approach for
learning graph-structured data.
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Introduction

Introduction

Message-passing neural networks (MPNNs) [Gilmer et al., 2017, Kipf and
Welling, 2017, Hamilton et al., 2017, Veličković et al., 2018]:

▶ Maintain a node feature h(v) for each node v;
▶ Update:

h(l)(v) = UPDATE(l)
(

h(l−1)(v),AGGR(l)
(
{{h(l−1)(u) : u ∈ NG(v)}}

))
▶ Graph representation is obtained by pooling all node representations.

v

MPNN Update
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Introduction

MPNNs:
▶ Maintain a node feature h(v) for each node v;
▶ Update:

h(l)(v) = UPDATE(l)
(

h(l−1)(v),AGGR(l)
(
{{h(l−1)(u) : u ∈ NG(v)}}

))
▶ Graph representation is obtained by pooling all node representations.

Examples:
▶ GCN [Kipf and Welling, 2017]:

h(l)
v = ReLU

W

 1

NG(v) + 1

∑
u∈NG(v)∪v

h(l−1)
u

+ b


▶ GIN [Xu et al., 2019]:

h(l)
v = MLP

(1 + ϵ)h(l−1)
v +

∑
u∈NG(v)

h(l−1)
u


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Introduction

The Expressive Power of GNNs

Are GNNs able to learn a general function on graphs?

A highly related condition: GNN should be able to distinguish topologically
different graphs.
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Introduction

Graph isomorphism

Graph isomorphism problem: Given two graphs G = (VG, EG) and
H = (VH, EH), determine if there is a bijective mapping f : VG → VH, such
that {u, v} ∈ EG iff {f(u), f(v)} ∈ EH.

Hardness: no polynomial algorithm has been found.

Therefore, to study the expressive power of GNNs, it is important to
characterize what graphs GNNs cannot distinguish.

Seminal work: Morris et al. [2019], Xu et al. [2019] first linked GNN
expressivity to an important algorithm called Weisfeiler-Lehman test
[Weisfeiler and Leman, 1968].
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Introduction

The Classic Weisfeiler-Lehman Test
Given a graph G = (V, E), 1-WL computes a color mapping χG : VG → C by
iteratively refining each node color using its neighboring node colors.

Algorithm 1: The 1-dimensional Weisfeiler-Lehman Algorithm
1 Initialize: χ0

G(v) := c for all v ∈ V (c ∈ C is a fixed color)
2 for t← 1 to T do
3 for each v ∈ V do
4 χt

G(v) := hash
(
χt−1

G (v), {{χt−1
G (u) : u ∈ NG(v)}}

)
5 Return: χT

G

If {{χG(v) : v ∈ VG}} ̸= {{χH(v) : v ∈ VH}}, then G is not isomorphic to H!

1 2

3 4 5

1 2

3 4 5

1 2

3 4 5
Example of 1-WL (Color refinement) iterations.

Bohang Zhang (Peking University) June 7, 2023 9 / 38



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction

MPNNs are at Most as Expressive as 1-WL

Whenever 1-WL fails to distinguish two non-isomorphic graphs, MPNNs also
fail.

Failure cases:

It is a central problem to study how to design more expressive GNNs beyond
the 1-WL test.
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Introduction

Higher-order GNNs

Leveraging higher-order WL variants to design provably more powerful GNNs
[Morris et al., 2019, 2020, Maron et al., 2019, Geerts and Reutter, 2022].

▶ Severe computation/memory costs
▶ Coarse bound between 1-WL and 3-WL [Morris et al., 2022]
▶ Unclear about necessity for real-world tasks

Overall, the WL hierarchy is too abstract to guide designing practical GNNs!
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Introduction

Other Related Works on Expressive GNNs

Other works still keeps the message-passing framework for efficiency.

Substructure-based GNNs [Bouritsas et al., 2022,
Barceló et al., 2021, Bodnar et al., 2021b,a]:

▶ Based on heuristics and requiring specific domain
knowledge.

Subgraph GNNs [Cotta et al., 2021, Zhang and Li,
2021, You et al., 2021, Bevilacqua et al., 2022,
Zhao et al., 2022, Qian et al., 2022, Frasca et al.,
2022, Huang et al., 2023]:

▶ Unclear what power they can systematically and
provably gain.

▶ Expressiveness justified by toy examples
▶ Unclear of the expressivity relation of different

design paradigms
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Introduction

Topics Involved in This Talk

Can we develop a class of principled and convincing metrics beyond the WL
hierarchy that can

▶ formally measure the expressive power of different GNN families
▶ guide the design of provably better GNN architectures
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Biconnectivity

Graph Biconnectivity

A central property in graph theory

Key concepts:
▶ cut vertex
▶ cut edge
▶ biconnected components
▶ block cut tree

L

G

C

E

F

H

D

J

I

N

B

A

MK
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Biconnectivity

Concepts related to Biconnectivity

L

G

C

E

F

H

D

J

I

N

B

A

MK

{G}

{H}{A,B,C}

{J,K,L,M,N}

{D,E,F,I}

C

FD

J

{A,B,C}

{D,E,F,I}

{J,K,L} {J,M,N}

{F,G}

{F,H}

{I,J}

I

{C,D}

Cut vertices/edges can be regarded as “hubs” in a graph that link different
subgraphs into a whole.

The link between cut vertices/edges and biconnected components forms
exactly a tree structure, called the Block Cut-vertex Tree and Block Cut-edge
Tree, respectively.
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Biconnectivity

Biconnectivity is Important for Both Theory and
Practice

From a practical perspective:
▶ Chemical reactions are highly related to

edge-biconnectivity of molecule graphs.
▶ Social networks are related to

vertex-biconnectivity.

From a theoretical perspective:
▶ Network flow and spanning tree.
▶ Planar graph isomorphism [Hopcroft and

Tarjan, 1972].
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Biconnectivity

Biconnectivity Can be Efficiently Computed!

Linear-time algorithm exists for all biconnectivity problems by using
Depth-first Search [Tarjan, 1972].

▶ Identifying all cut vertices/edges;
▶ Finding all biconnected components;
▶ Building block cut trees.

Remark: the complexity is the same as an MPNN!
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Investigating Known GNNs Architectures via Graph Biconnectivity Problem Formulation

Problem Formulation

Most common GNN architectures can be cast into corresponding color
refinement (CR) algorithms.

A CR algorithm takes a graph G as input and outputs a color mapping
χG : VG → C where C is called the color set.

Several concepts in a CR algorithm:
▶ Node feature: χG(u) for u ∈ V
▶ Edge feature: {{χG(u), χG(v)}} for {u, v} ∈ E
▶ Graph representation: {{χG(u) : u ∈ VG}}
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Investigating Known GNNs Architectures via Graph Biconnectivity Problem Formulation

Problem Formulation

Three types of biconnectivity problems (with increasing difficulties):

▶ Distinguish whether a graph is vertex/edge-biconnected:
for any graphs G,H where G is vertex/edge-biconnected but H is not, their
graph representations are different.

▶ Identify cut vertices:
for any graphs G,H and nodes u ∈ VG, v ∈ VH where u is a cut vertex but v is
not, their node features are different.
Identify cut edges:
for any {u, v} ∈ EG and {w, x} ∈ EH where {u, v} is a cut edge but {w, x} is
not, their edge features are different.

▶ Distinguish block cut-vertex/edge trees:
for any graphs G,H satisfying BCVTree(G) ̸≃ BCVTree(H) (or
BCETree(G) ̸≃ BCETree(H)), their graph representations are different.
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Investigating Known GNNs Architectures via Graph Biconnectivity Failure Examples

Can 1-WL Solve Biconnectivity Problems?

(a) (b) (c) (d)

The answer is no. They cannot even solve the easiest problem: to distinguish
whether a graph is vertex/edge-biconnected!
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Investigating Known GNNs Architectures via Graph Biconnectivity Failure Examples

How about Advanced GNN Architectures?
We investigate three types of popular GNNs in prior works:

▶ Substructure-based GNNs [Bouritsas et al., 2022];
▶ Simplicial/Cullular GNNs [Bodnar et al., 2021b,a];
▶ Overlap Subgraph GNN [Wijesinghe and Wang, 2022];

Unfortunately, still, none of these GNNs can solve even the easiest
biconnectivity task.
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Our Motivation

Problem: Can we design a principled and efficient GNN framework with
provable expressiveness for biconnectivity?

Let us restart from the classic 1-WL. Why cannot it
encode biconnectivity?

We argue that a major weakness is that it is agnostic
to distance information between nodes, since each
node can only “see” its neighbors in aggregation.

Idea: incorporating distance into the aggregation
procedure!

dis = 5

dis = 4
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Our Approach: GD-WL

Algorithm 2: The Genealized Distance Weisfeiler-Lehman Algorithm
Input : Graph G = (V, E), distance metric dG : V × V → R+

Output: Color mapping χG : V → C
1 Initialize: χ0

G(v) := c0 for all v ∈ V where c0 ∈ C is a fixed color
2 for t← 1 to T do
3 for each v ∈ V do
4 χt

G(v) := hash
(
{{(dG(v, u), χt−1

G (u)) : u ∈ V}}
)

5 Return: χT
G
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Special Case: SPD-WL

When choosing the shortest path distance dG = disG, we obtain SPD-WL.

It can be equivalently written as
χt+1

G (v) = hash
(
χt

G(v), {{χt
G(u) : u ∈ NG(v)}}, {{χt

G(u) : disG(v, u) = 2}},
· · · , {{χt

G(u) : disG(v, u) = n− 1}}, {{χt
G(u) : disG(v, u) =∞}}

)
.

It is strictly more powerful than 1-WL since it additionally aggregates the
k-hop neighbors for all k > 1.
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Special Case: SPD-WL

SPD-WL is fully expressive for edge-biconnectivity.

Theorem
Let G = (VG, EG) and H = (VH, EH) be two graphs, and let χG and χH be the
corresponding SPD-WL color mapping. Then the following holds:

For any two edges {w1,w2} ∈ EG and {x1, x2} ∈ EH, if
{{χG(w1), χG(w2)}} = {{χH(x1), χH(x2)}}, then {w1,w2} is a cut edge if and
only if {x1, x2} is a cut edge.
If {{χG(w) : w ∈ VG}} = {{χH(w) : w ∈ VH}}, then
BCETree(G) ≃ BCETree(H).
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Generalized Distance Weisfeiler-Lehman Test

Discussions

The result is highly non-trivial. It combines three seemingly
unrelated concepts (i.e., SPD, biconnectivity, and the WL
test) into a unified conclusion.

Distinguishing non-isomorphic graphs with different block
cut-edge trees can be much easily solved than the general
case [Cai et al., 1992, Babai, 2016].

However, SPD-WL cannot distinguish vertex-biconnectivity
(see the right figure).
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Another Special Case: RD-WL

Due to the generality of GD-WL, we can use arbitrary distance metrics.

Another basic metric in graph theory is the Resistance Distance (RD).
▶ disR

G(u, v): the effective resistance between u and v when treating G as an
electrical network where each edge corresponds to a resistance of one ohm.

Properties of RD:
▶ Valid metric: non-negative, semidefinite,

symmetric, and satisfies the triangular inequality.
▶ Similar to SPD, 0 ≤ disR

G(u, v) ≤ n − 1, and
disR

G(u, v) = disG(u, v) if G is a tree.
▶ RD is highly related to the graph Laplacian and can

be efficiently calculated.

𝑢𝑢 𝑣𝑣
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Another Special Case: RD-WL

Theorem
Let G = (VG, EG) and H = (VH, EH) be two graphs, and let χG and χH be the
corresponding RD-WL color mapping. Then the following holds:

For any two nodes w ∈ VG and x ∈ VH, if χG(w) = χH(x), then w is a cut
vertex if and only if x is a cut vertex.
If {{χG(w) : w ∈ VG}} = {{χH(w) : w ∈ VH}}, then
BCVTree(G) ≃ BCVTree(H).

Therefore, RD-WL is fully expressive for vertex-biconnectivity.
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Another Special Case: RD-WL

Theorem
Let G = (VG, EG) and H = (VH, EH) be two graphs, and let χG and χH be the
corresponding RD-WL color mapping. Then the following holds:

For any two nodes w ∈ VG and x ∈ VH, if χG(w) = χH(x), then w is a cut
vertex if and only if x is a cut vertex.
If {{χG(w) : w ∈ VG}} = {{χH(w) : w ∈ VH}}, then
BCVTree(G) ≃ BCVTree(H).

Therefore, RD-WL is fully expressive for vertex-biconnectivity.

Corollary
When using both SPD and RD (i.e., by setting
dG(u, v) := (disG(u, v), disR

G(u, v))), the corresponding GD-WL is fully expressive
for both vertex-biconnectivity and edge-biconnectivity.
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Generalized Distance Weisfeiler-Lehman Test

Practical Implementation

GD-WL enjoys great simplicity and full parallelizability.

Graphormer-GD: (A Transformer-like architecture)

Yh =
[
ϕh
1(D)⊙ softmax

(
XWh

Q(XWh
K)⊤ + ϕh

2(D)
)]

XWh
V

Conputational cost: O(n2).

Theorem
When choosing proper functions ϕh

1 and ϕh
2 and using a sufficiently large number

of heads and layers, Graphormer-GD is as powerful as GD-WL.
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Upper Bound of GD-WL

The upper bound of the expressiveness of GD-WL is 2-FWL.

Theorem
The 2-FWL algorithm is more powerful than both SPD-WL and RD-WL.

Corollary
The 2-FWL is fully expressive for both vertex-biconnectivity and
edge-biconnectivity.
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Generalized Distance Weisfeiler-Lehman Test

Detecting Cut Vertices/Edges

Accuracy on cut vertex (articulation point) and cut edge (bridge) detection tasks.

Model Cut Vertex
Detection

Cut Edge
Detection

GCN [Kipf and Welling, 2017] 51.5%±1.3% 62.4%±1.8%
GAT [Veličković et al., 2018] 52.0%±1.3% 62.8%±1.9%
GIN [Xu et al., 2019] 53.9%±1.7% 63.1%±2.2%
GSN [Bouritsas et al., 2022] 60.1%±1.9% 70.7%±2.1%
Graphormer [Ying et al., 2021] 76.4%±2.8% 84.5%±3.3%

Graphormer-GD (ours) 100% 100%
- w/o. Resistance Distance 83.3%±2.7% 100%

GD-WL achieves 100% accuracy on both tasks, which is consistent to our
theory. In contrast, prior GNNs fails on both tasks.
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ZINC Dataset

Method Model Time (s) Params Test MAE
ZINC-Subset ZINC-Full

MPNNs
GIN [Xu et al., 2019] 8.05 509,549 0.526±0.051 0.088±0.002
GraphSAGE [Hamilton et al., 2017] 6.02 505,341 0.398±0.002 0.126±0.003
GAT [Veličković et al., 2018] 8.28 531,345 0.384±0.007 0.111±0.002
GCN [Kipf and Welling, 2017] 5.85 505,079 0.367±0.011 0.113±0.002

Higher-order
GNNs

RingGNN [Chen et al., 2019] 178.03 527,283 0.353±0.019 -
3WLGNN [Maron et al., 2019] 179.35 507,603 0.303±0.068 -

Substructure-
based GNNs

GSN [Bouritsas et al., 2022] - ∼500k 0.101±0.010 -
CIN-Small [Bodnar et al., 2021a] - ∼100k 0.094±0.004 0.044±0.003

Subgraph
GNNs

NGNN [Zhang and Li, 2021] - ∼500k 0.111±0.003 0.029±0.001
DSS-GNN [Bevilacqua et al., 2022] - 445,709 0.097±0.006 -
GNN-AK [Zhao et al., 2022] - ∼500k 0.105±0.010 -
GNN-AK+ [Zhao et al., 2022] - ∼500k 0.091±0.011 -
SUN [Frasca et al., 2022] 15.04 526,489 0.083±0.003 -

Graph
Transformers

GT [Dwivedi and Bresson, 2021] - 588,929 0.226±0.014 -
SAN [Kreuzer et al., 2021] - 508,577 0.139±0.006 -
Graphormer [Ying et al., 2021] 12.26 489,321 0.122±0.006 0.052±0.005

GD-WL Graphormer-GD (ours) 12.52 502,793 0.081±0.009 0.025±0.004
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Conclusion

Take aways

Graph biconnectivity is a central property.

Most prior GNNs are not expressive for biconnectivity.

There are deep relations between distance and biconnectivity.
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Conclusion

Open Directions

More efficient architectures?

A deeper understanding of GD-WL (e.g., its spectral properties)

Encoding other distance metrics?

Beyond biconnectivity: higher-order connectivity metrics
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Thank You!
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