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Introduction

@ Graph neural networks (GNNs) have become the dominant approach for
learning graph-structured data.

Bohang Zhang (Peking University) June 7, 2023 4/38



Introduction

@ Message-passing neural networks (MPNNs) [Gilmer et al., 2017, Kipf and
Welling, 2017, Hamilton et al., 2017, Velickovi¢ et al., 2018]:

» Maintain a node feature h(v) for each node v;

» Update:
h® (v) = UPDATE( (/,‘ =1 (1), AGGRY <{{h“’1)(u) Lu€ N(:(v)}}))

» Graph representation is obtained by pooling all node representations.

MPNN Update
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Introduction

Introduction
o MPNNs:
» Maintain a node feature h(v) for each node v;
» Update:
h® (v) = UPDATE® ( ,AGGR? <{{h“’”(u) € Nc(v)}}))

> Graph representation is obtained by pooling all node representations.

o Examples:

» GCN [Kipf and Welling, 2017]:

1
hY) =ReLU | W | i > A7V | +b
NG(U) +1 uEN G (v)Uv

» GIN [Xu et al., 2019]:

hY =MLP | 1+ bV + > h{Y
uENG(v)
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The Expressive Power of GNNs

@ Are GNNs able to learn a general function on graphs?
f =y

@ A highly related condition: GNN should be able to distinguish topologically
different graphs.

X A
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Graph isomorphism

@ Graph isomorphism problem: Given two graphs G = Vg, E¢) and
H= (Vy,Ex), determine if there is a bijective mapping f: Vo — Vg, such
that {u, v} € Eq iff {f(uw), f(v)} € En.

@ Hardness: no polynomial algorithm has been found.

@ Therefore, to study the expressive power of GNNs, it is important to
characterize what graphs GNNs cannot distinguish.

@ Seminal work: Morris et al. [2019], Xu et al. [2019] first linked GNN
expressivity to an important algorithm called Weisfeiler-Lehman test
[Weisfeiler and Leman, 1968].

Bohang Zhang (Peking University) June 7, 2023 8/38



Introduction

The Classic Weisfeiler-Lehman Test

e Given a graph G = (V,€), 1-WL computes a color mapping x¢ : Vg — C by
iteratively refining each node color using its neighboring node colors.

Algorithm 1: The 1-dimensional Weisfeiler-Lehman Algorithm

1 Initialize: x%(v) := ¢ for all v€ V (¢ € C is a fixed color)
2 for t<+1to T do

3 for each v €V do

o || () = hash (x5 (), {5 (W) wE No(v)})
5 Return: Xg

o If {xc(v):ve Vel # {xu(v): ve Vu}, then G is not isomorphic to H!

bhollobis

Example of 1-WL (Color refinement) iterations.
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MPNNs are at Most as Expressive as 1-WL

@ Whenever 1-WL fails to distinguish two non-isomorphic graphs, MPNNs also
fail.

o Failure cases:

@ It is a central problem to study how to design more expressive GNNs beyond
the 1-WL test.
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Higher-order GNNs

o Leveraging higher-order WL variants to design provably more powerful GNNs
[Morris et al., 2019, 2020, Maron et al., 2019, Geerts and Reutter, 2022].

1-WL Test == 2-WL Test == 3-WL Test == ==) Graph isomorphism
1-WL GNN == 2-WL GNN == 3-WL GNN =) —)
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Higher-order GNNs

o Leveraging higher-order WL variants to design provably more powerful GNNs
[Morris et al., 2019, 2020, Maron et al., 2019, Geerts and Reutter, 2022].

1-WL Test == 2-WL Test == 3-WL Test == ==) Graph isomorphism
1-WL GNN == 2-WL GNN == 3-WL GNN =) —)

> Severe computation/memory costs
» Coarse bound between 1-WL and 3-WL [Morris et al., 2022]

> Unclear about necessity for real-world tasks
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Higher-order GNNs

o Leveraging higher-order WL variants to design provably more powerful GNNs
[Morris et al., 2019, 2020, Maron et al., 2019, Geerts and Reutter, 2022].

1-WL Test == 2-WL Test == 3-WL Test == ==) Graph isomorphism
1-WL GNN == 2-WL GNN == 3-WL GNN =) —)

> Severe computation/memory costs
» Coarse bound between 1-WL and 3-WL [Morris et al., 2022]

> Unclear about necessity for real-world tasks

@ Overall, the WL hierarchy is too abstract to guide designing practical GNNs!
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Other Related Works on Expressive GNNs

@ Other works still keeps the message-passing framework for efficiency.
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Other Related Works on Expressive GNNs

@ Other works still keeps the message-passing framework for efficiency.

@ Substructure-based GNNs [Bouritsas et al., 2022,
Barcel6 et al., 2021, Bodnar et al., 2021b,a]:

» Based on heuristics and requiring specific domain
knowledge.
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Other Related Works on Expressive GNNs

@ Other works still keeps the message-passing framework for efficiency.

@ Substructure-based GNNs [Bouritsas et al., 2022,
Barcel6 et al., 2021, Bodnar et al., 2021b,a]:

1-WL

» Based on heuristics and requiring specific domain
knowledge.

@ Subgraph GNNs [Cotta et al., 2021, Zhang and Li,
2021, You et al., 2021, Bevilacqua et al., 2022,
Zhao et al., 2022, Qian et al., 2022, Frasca et al.,
2022, Huang et al., 2023]:

» Unclear what power they can systematically and

HEH-H
s$32

provably gain.

» Expressiveness justified by toy examples

» Unclear of the expressivity relation of different “bag” of
design paradigms subgraphs
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Topics Involved in This Talk

@ Can we develop a class of principled and convincing metrics beyond the WL
hierarchy that can

» formally measure the expressive power of different GNN families

> guide the design of provably better GNN architectures
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Biconnectivity
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Graph Biconnectivity

@ A central property in graph theory

o Key concepts:
> cut vertex
> cut edge
> biconnected components

» block cut tree
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Biconnectivity

Concepts related to Biconnectivity

o Cut vertices/edges can be regarded as “hubs” in a graph that link different
subgraphs into a whole.

@ The link between cut vertices/edges and biconnected components forms
exactly a tree structure, called the Block Cut-vertex Tree and Block Cut-edge
Tree, respectively.
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Biconnectivity is Important for Both Theory and
Practice

@ From a practical perspective: Q
» Chemical reactions are highly related to O
edge-biconnectivity of molecule graphs. O
> Social networks are related to
vertex—biconnectivity. 1!2_dipheny|benzene
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Biconnectivity

Biconnectivity is Important for Both Theory and
Practice

@ From a practical perspective: Q
» Chemical reactions are highly related to O
edge-biconnectivity of molecule graphs. O
> Social networks are related to
vertex—biconnectivity. 1!2_dipheny|benzene

@ From a theoretical perspective:

> Network flow and spanning tree.

> Planar graph isomorphism [Hopcroft and
Tarjan, 1972].
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Biconnectivity Can be Efficiently Computed!

@ Linear-time algorithm exists for all biconnectivity problems by using
Depth-first Search [Tarjan, 1972].

> ldentifying all cut vertices/edges;
» Finding all biconnected components;

> Building block cut trees.

@ Remark: the complexity is the same as an MPNN!
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Investigating Known GNNs Architectures via Graph Biconnectivity
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Problem Formulation

@ Most common GNN architectures can be cast into corresponding color
refinement (CR) algorithms.

@ A CR algorithm takes a graph G as input and outputs a color mapping
xa : Vg — C where C is called the color set.

@ Several concepts in a CR algorithm:
> Node feature: x¢(u) for u €V
» Edge feature: {xc(w),xc(v)}} for {u,v} € &
> Graph representation: {xc(u): u € Ve}
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Problem Formulation

@ Three types of biconnectivity problems (with increasing difficulties):
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Problem Formulation

@ Three types of biconnectivity problems (with increasing difficulties):

» Distinguish whether a graph is vertex/edge-biconnected:
for any graphs G, H where G is vertex/edge-biconnected but H is not, their
graph representations are different.
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Problem Formulation

@ Three types of biconnectivity problems (with increasing difficulties):

» Distinguish whether a graph is vertex/edge-biconnected:
for any graphs G, H where G is vertex/edge-biconnected but H is not, their
graph representations are different.

> ldentify cut vertices:
for any graphs G, H and nodes u € V¢, v € Vi where u is a cut vertex but v is
not, their node features are different.
Identify cut edges:
for any {u, v} € £ and {w, z} € Ex where {u, v} is a cut edge but {w, z} is
not, their edge features are different.
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Problem Formulation

@ Three types of biconnectivity problems (with increasing difficulties):

» Distinguish whether a graph is vertex/edge-biconnected:
for any graphs G, H where G is vertex/edge-biconnected but H is not, their
graph representations are different.

> ldentify cut vertices:
for any graphs G, H and nodes u € V¢, v € Vi where u is a cut vertex but v is
not, their node features are different.
Identify cut edges:
for any {u, v} € £ and {w, z} € Ex where {u, v} is a cut edge but {w, z} is
not, their edge features are different.

» Distinguish block cut-vertex/edge trees:
for any graphs G, H satisfying BCVTree(G) % BCVTree(H) (or
BCETree(G) 2 BCETree(H)), their graph representations are different.
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Can 1-WL Solve Biconnectivity Problems?

S - 38 11
B & B

(a) (b) ()

@ The answer is no. They cannot even solve the easiest problem: to distinguish
whether a graph is vertex/edge-biconnected!
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Investigating Known GNNs Architectures via Graph Biconnectivity [ =rens

How about Advanced GNN Architectures?

@ We investigate three types of popular GNNs in prior works:

> Substructure-based GNNs [Bouritsas et al., 2022];
» Simplicial/Cullular GNNs [Bodnar et al., 2021b,al;
» Overlap Subgraph GNN [Wijesinghe and Wang, 2022];

@ Unfortunately, still, none of these GNNs can solve even the easiest
biconnectivity task.

m-+2
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Generalized Distance Weisfeiler-Lehman Test
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Our Motivation

@ Problem: Can we design a principled and efficient GNN framework with
provable expressiveness for biconnectivity?

dis=5

@ Let us restart from the classic 1-WL. Why cannot it /—\
encode biconnectivity?
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Our Motivation

@ Problem: Can we design a principled and efficient GNN framework with
provable expressiveness for biconnectivity?

dis=5

@ Let us restart from the classic 1-WL. Why cannot it /—\
encode biconnectivity?

@ We argue that a major weakness is that it is agnostic
to distance information between nodes, since each dis=4

node can only “see” its neighbors in aggregation.

@ Idea: incorporating distance into the aggregation
procedure!
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Our Approach: GD-WL

Algorithm 2: The Genealized Distance Weisfeiler-Lehman Algorithm
Input : Graph G = (V,€), distance metric dg : V x V — R4
Output: Color mapping xg:V — C

1 Initialize: x%(v) := ¢y for all v €V where ¢, € C is a fixed color

2 for t< 1to T do

3 L for each v € V do

4 | x&(v) :=hash ({(de(v,w), x5 ' (w) : ue V})

5 Return: x[
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Special Case: SPD-WL

@ When choosing the shortest path distance dg = disg, we obtain SPD-WL.

@ It can be equivalently written as
X (v) =hash (xG(v), {x6(u) : uwe No(v)}, {x6(u) : dise(v, u) = 2},
oA (u) s disg(v, w) = n— 18, xG(u) : disg(v, v) = oo}}) .

@ |t is strictly more powerful than 1-WL since it additionally aggregates the
k-hop neighbors for all k> 1.
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Special Case: SPD-WL

@ SPD-WL is fully expressive for edge-biconnectivity.

Theorem
Let G= (Vg,E¢) and H= (Vy,Ex) be two graphs, and let x ¢ and x g be the
corresponding SPD-WL color mapping. Then the following holds:
@ For any two edges {wy, ws} € E¢ and {21, 12} € &, if
{xc(w), xa(w) P = Lxu(z1), xa(z2)}}, then {wy, we} is a cut edge if and
only if {x1, 22} is a cut edge.

o If {xc(w): we Vel = {xu(w): we Vy}, then
BCETree(G) ~ BCETree(H).
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Discussions

@ The result is highly non-trivial. It combines three seemingly
unrelated concepts (i.e., SPD, biconnectivity, and the WL
test) into a unified conclusion.

@ Distinguishing non-isomorphic graphs with different block
cut-edge trees can be much easily solved than the general
case [Cai et al., 1992, Babai, 2016].
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Discussions

@ The result is highly non-trivial. It combines three seemingly
unrelated concepts (i.e., , biconnectivity, and the WL
test) into a unified conclusion.

@ Distinguishing non-isomorphic graphs with different block
cut-edge trees can be much easily solved than the general
case [Cai et al., 1992, Babai, 2016].

@ However, SPD-WL cannot distinguish vertex-biconnectivity
(see the right figure).
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Another Special Case: RD-WL

@ Due to the generality of GD-WL, we can use arbitrary distance metrics.

@ Another basic metric in graph theory is the Resistance Distance (RD).

> dis'é;(u, v): the effective resistance between u and v when treating G as an
electrical network where each edge corresponds to a resistance of one ohm.

@ Properties of RD:
» Valid metric: non-negative, semidefinite, u v
symmetric, and satisfies the triangular inequality.
» Similar to SPD, 0 < disg(u, v) <n—1, and
dis(u, v) = disg(u, v) if Gis a tree.

» RD is highly related to the graph Laplacian and can
be efficiently calculated.
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Another Special Case: RD-WL

Theorem

Let G= (Vg,Eq) and H= Vg, Ex) be two graphs, and let x¢ and x g be the
corresponding RD-WL color mapping. Then the following holds:

@ For any two nodes w € V¢ and z € Vy, if x¢(w) = xu(z), then wis a cut
vertex if and only if z is a cut vertex.

o If {xc(w): we Vsl = {xu(w): we Vg}}, then
BCVTree(G) ~ BCVTree(H).

@ Therefore, RD-WL is fully expressive for vertex-biconnectivity.
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Another Special Case: RD-WL

Theorem

Let G= Vg, Eq) and H= (Vg, Ex) be two graphs, and let x¢ and x g be the
corresponding RD-WL color mapping. Then the following holds:

@ For any two nodes w € V¢ and z € Vy, if x¢(w) = xu(z), then wis a cut
vertex if and only if z is a cut vertex.

o If {xo(w): we Vgl = {xu(w): we Vg}}, then
BCVTree(G) ~ BCVTree( H).

@ Therefore, RD-WL is fully expressive for vertex-biconnectivity.

Corollary

When using both SPD and RD (i.e., by setting

de(u,v) == (disa(u, v), dis%,(u, v))), the corresponding GD-WL is fully expressive
for both vertex-biconnectivity and edge-biconnectivity.
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Practical Implementation

o GD-WL enjoys great simplicity and full parallelizability.
o Graphormer-GD: (A Transformer-like architecture)

Y" = [¢1(D) @ softmax (XW{(XW}) " + ¢5(D))] XW%,
o Conputational cost: O(n?).

Theorem

When choosing proper functions gbi‘ and ¢>§ and using a sufficiently large number
of heads and layers, Graphormer-GD is as powerful as GD-WL.
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Upper Bound of GD-WL

@ The upper bound of the expressiveness of GD-WL is 2-FWL.

Theorem
The 2-FWL algorithm is more powerful than both SPD-WL and RD-WL.

Corollary

The 2-FWL is fully expressive for both vertex-biconnectivity and
edge-biconnectivity.
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Detecting Cut Vertices/Edges

Accuracy on cut vertex (articulation point) and cut edge (bridge) detection tasks.

Cut Vertex

Model .
ode Detection

Cut Edge
Detection

GCN [Kipf and Welling, 2017]  51.5%+1.3%
GAT [Veli¢kovi¢ et al., 2018] 52.0%+1.3%

62.4%+1.8%
62.8%+1.9%
63.1%+2.2%
70.7%+2.1%
84.5%+3.3%

GIN [Xu et al., 2019] 53.9%+1.7%
GSN [Bouritsas et al., 2022] 60.1%+1.9%
Graphormer [Ying et al., 2021]  76.4%+2.8%
Graphormer-GD (ours) 100%

- w/o. Resistance Distance 83.3%+2.7%

100%
100%

@ GD-WL achieves 100% accuracy on both tasks, which is consistent to our

theory. In contrast, prior GNNs fails on both tasks.
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ZINC Dataset

. Test MAE
Method ~ Model Time (s) Params ZINC-Subset  ZINC-Full
GIN [Xu et al., 2019] 8.05 509,549 0.526+0.051 0.088+0.002
MPNNs GraphSAGE [Hamilton et al., 2017]  6.02 505,341 0.398+0.002 0.126+0.003
GAT [Veli¢kovi¢ et al., 2018] 8.28 531,345 0.384+0.007 0.111+0.002
GCN [Kipf and Welling, 2017] 5.85 505,079 0.367+0.011 0.1134+0.002
Higher-order RingGNN [Chen et al., 2019] 178.03 527,283 0.353+0.019 -
GNNs 3WLGNN [Maron et al., 2019] 179.35 507,603 0.303+0.068 -
Substructure- GSN [Bouritsas et al., 2022] - ~500k 0.101+0.010 -
based GNNs CIN-Small [Bodnar et al., 20213 - ~100k 0.094+0.004 0.044+0.003
NGNN [Zhang and Li, 2021] - ~500k 0.11140.003 0.029+0.001
Subgraph DSS-GNN [Bevilacqua et al., 2022] - 445,709 0.097+0.006 -
“GﬁN" GNN-AK [Zhao et al., 2022] - ~500k 0.105:0.010 -
®  GNN-AK+ [Zhao et al, 2022] - ~500k 0.091+0.011 -
SUN [Frasca et al., 2022] 15.04 526,489 0.083+0.003 -
Graph GT [Dwivedi and Bresson, 2021] - 588,929 0.226+0.014 -
Traramt SAN [Kreuzer et al., 2021] - 508,577 0.139::0.006 -
ransIOMMerS G raphormer [Ying et al., 2021] 12.26 489,321 0.12240.006 0.052-0.005
GD-WL  Graphormer-GD (ours) 12,52 502,793 0.081+0.009 0.025+0.004
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Take aways

@ Graph biconnectivity is a central property.
@ Most prior GNNs are not expressive for biconnectivity.

@ There are deep relations between distance and biconnectivity.
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Open Directions

@ More efficient architectures?

@ A deeper understanding of GD-WL (e.g., its spectral properties)
@ Encoding other distance metrics?

@ Beyond biconnectivity: higher-order connectivity metrics
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