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X1 CONTENTS

Deep R Programming is a comprehensive and in-depth introductory course on one of
the most popular languages for data science. It equips ambitious students, profession-
als, and researchers with the knowledge and skills to become independent users of
this potent environment so that they can tackle any problem related to data wrangling
and analytics, numerical computing, statistics, and machine learning.

For many students around the world, educational resources are hardly affordable.
Therefore, I have decided that this book should remain an independent, non-profit,
open-access project (available both in PDF* and HTML* forms). Whilst, for some
people, the presence of a “designer tag” from a major publisher might still be a proxy
for quality, it is my hope that this publication will prove useful to those seeking know-
ledge for knowledge’s sake.

Any bug/typo reports/fixes are appreciated. Please submit them via this project’s Git-
Hub repository?. Thank you.

Citation: Gagolewski M. (2026), Deep R Programming, Melbourne, DOI: 10.5281/zen-
0d0.7490464*, ISBN: 978-0-6455719-2-9, URL: https://deepr.gagolewski.com/.

Make sure to check out Minimalist Data Wrangling with Python® [28], too.

! https://deepr.gagolewski.com/deepr.pdf
2 https://deepr.gagolewski.com/

3 https://github.com/gagolews/deepr/issues
4 https://dx.doi.org/10.5281/zenodo.7490464
5 https://datawranglingpy.gagolewski.com/
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Preface

0.1 ToR,ornottoR

R has been named the eleventh most dreaded programming language in the 2022
StackOverflow Developer Survey®.

Also, it is a free app, so there must be something wrong with it, right?
But whatever, R is deprecated anyway; the modern way is to use tidyverse.

Or we should all just switch to Python’.

Yeah, nah.

0.2 R(GNUS)asalanguage and an environment

Let’s get one® thing straight: R is not just a statistical package. It is a general-purpose,
high-level programming language that happens to be very powerful for numerical,
data-intense computing activities of any kind. It offers extensive support for statist-
ical, machine learning, data analysis, data wrangling, and data visualisation applica-
tions, but there is much more.

As we detail below, R has a long history. It is an open-source version of the S environ-
ment, which was written for statisticians, by statisticians. Therefore, it is a free, yet
often more capable alternative to other software (but without any strings attached).
Unlike in some of them, in R, a spreadsheet-like GUI is not the main gateway for per-
forming computations on data. Here, we must write code to get things done. Despite
the beginning of the learning curve’s being a little steeper for non-programmers, in
the long run, R empowers us more because we are not limited to tackling the most
common scenarios. If some functionality is missing or does not suit our needs, we
can easily (re)implement it ourselves.

6 https://survey.stackoverflow.co/2022

7 https://datawranglingpy.gagolewski.com/

8 Also, we must not confuse RStudio with R. The former is merely one of many development environ-
ments for our language. We program in R, not in RStudio.
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R is thus very convenient for rapid prototyping. It helps turn our ideas into fully op-
erational code that can be battle-tested, extended, polished, run in production, and
otherwise enjoyed. As an interpreted language, it can be executed not only in an inter-
active read-eval-print loop (command-result, question—answer, ...), but also in batch
mode (running standalone scripts).

Therefore, we would rather position R amongst such environments for numerical or
scientific computing as Python with numpy and pandas, Julia, GNU Octave, Scilab, and
MATLAB. However, it is more specialised in data science applications than any of them.
Hence, it provides a much smoother experience. This is why, over the years, R has be-
come the de facto standard in statistics and related fields.

Important R isawhole ecosystem. Apart from the R language interpreter, it features
advanced.:

« graphics capabilities (see Chapter 13),
. a consistent, well-integrated help system (Section 1.4),

- ways for convenient interfacing with compiled code (Chapter 14),

a package system and centralised package repositories (such as CRAN and Biocon-
ductor; Section 7.3.1),

« alively community of users and developers — curious and passionate people, like
you and yours cordially.

Note R [71]isadialect of the very popular S system designed in the mid-1970s by Rick
A. Becker, John M. Chambers, and Allan R. Wilks at Bell Labs. For historical notes, see
[3, 4, 5, 6]. For works on newer versions of S, refer to [7, 10, 14, 58]. Quoting from [4]:

The design goal for S is, most broadly stated, to enable and encourage good data
analysis, that is, to provide users with specific facilities and a general environ-
ment that helps them quickly and conveniently look at many displays, summar-
ies, and models for their data, and to follow the kind of iterative, exploratory path
that most often leads to a thovough analysis. The system is designed for interact-
ive use with simple but geneval expressions for the user to type, and immediate,
informative feedback from the system, including graphic output on any of a vari-
ety of graphical devices.

S became popular because it offered greater flexibility than the standalone statistical
packages. It was praised for its high interactivity and array-centrism that was taken
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from APL, the familiar syntax of the C language involving {curly braces}, the ability
to treat code as data known from Lisp (Chapter 15), the notion of lazy arguments
(Chapter 17), and the ease of calling external C and Fortran routines (Chapter 14). Its
newer versions were also somewhat object-orientated (Chapter 10).

However, S was a proprietary and closed-source system. To address this, Robert Gen-
tleman and Ross Thaka of the Statistics Department, University of Auckland developed
R in the 1990s°. They were later joined by many contributors™®. It has been decided
that it will be distributed under the terms of the free GNU General Public License, ver-
sion 2.

In essence, R was supposed to be backwards-compatible with S, but some design
choices led to their evaluation models’ being slightly different. In Chapter 16, we dis-
cuss that R’s design was inspired by the Scheme language [1].

0.3 Aims, scope, and design philosophy

Many users were introduced to R by means of some very advanced operations in-
volving data frames, formulae, and functions that rely on nonstandard evaluation
(metaprogramming), like:

Im(

Ozone~Solar.R+Temp,

data=subset(airquality, Temp>60, select=-(Month:Day))
) |> summary()

This is horrible.

Another cohort was isolated from base R through a thick layer of popular third-party
packages that introduce an overwhelming number of functions (every operation, re-
gardless of its complexity, has a unique name). They often duplicate the core function-
ality, and might not be fully compatible with our traditional system.

Both user families ought to be fine, as long as they limit themselves to solving only the
most common data processing problems.

But we yearn for more. We do not want hundreds of prefabricated recipes for popular
dishes that we can mindlessly apply without much understanding.

Our aim is to learn the fundamentals of base R, which constitutes the lingua franca of

9 See [13, 38] for historical notes. R version 0.49 released in April 1997 (the first whose source code is avail-
able on CRAN; see https://cloud.r-project.org/src/base/R-0), was already fairly feature-rich. In particular,
it implemented S3 methods, formulae, and data frames that were introduced in the 1991 version of S [14].

1° The beauty of the employed open-source model is that all the contributors are real human beings,
not anonymous contractors working for soulless corporations; see https://www.r-project.org/contributors.
html.
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all R users. We want to be able to indite code that everybody should understand; code
that will work without modifications in the next decades, too.

We want to be able to tackle any data-intense problem. Furthermore, we want to de-
velop transferable skills so that learning new tools such as Python with numpy and pan-
das (e.g., [28, 48]) or Julia will be much easier later. After all, R is not the only notable
environment out there.

Anyway, enough preaching. This graduate'-level textbook is for readers who:
- would like to experience the joy of solving problems by programming,
- want to become independent users of the R environment,
- can appreciate a more cohesively and comprehensively'* organised material,
« donot mind a slightly steeper learning curve at the beginning,
« do not want to be made obsolete by artificial “intelligence” in the future.

Some readers will benefit from this book’s being their first introduction to R (yet,
without all the pampering). For others®, this will be a fine course from intermediate
to advanced (do not skip the first chapters, though).

Either way, we should not forget to solve all the prescribed exercises.

Good luck!

0.4 Classification of R data types and book structure
The most commonly used R data types can be classified as follows; see also Figure 1.
1. Basictypes are discussed in the first part of the book:

- atomicvectors represent whole sequences of values, where every element is of
the same type:

- logical (Chapter 3) includes items that are TRUE (“yes”, “present”),
FALSE (“no”, “absent”), or NA (“not available”, “missing”);

1 The author taught similar courses for his wonderfully ambitious undergraduate data/computer sci-
ence and mathematics students at the Warsaw University of Technology, where our approach has proven
not difficult whatsoever.

12 Yours truly has not chosen to play a role of a historian, a stenographer, nor a grammarian. Thus, he has
made a few noninvasive idealisations for didactic purposes. Languages evolve over time, R is now different
from what it used to be, and we can shape it (slowly; we value its stable API) to become something even
better in the future.

B Tt might also happen that for certain readers, this will not be an appropriate course at all, either at this
stage of their career (come back later) or in general (no dramas). This is a non-profit, open-access project,
but it does not mean it is ideal for everyone. We recommend giving other sources a try, e.g., [9, 11, 16, 46, 59,
62, 63, 70], etc. Some of them are freely available.
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NULL
logical
i
numeric
) character
list
function
factor
R Data Types
matrix
array
data.frame
Compound
formula
Date
kmeans

Figure 1. An overview of the most prevalent R data types; see Figure 17.2 for a more
comprehensive list.

- numeric (Chapter 2) represents real numbers, such as 1, 3.14, -0.
0000001, etc.;

- character (Chapter 6) contains strings of characters, e.g., "groR",
"123", or “Ilobpuii feHs’;

. function (Chapter 7) is used to group a series of expressions (code lines) so
that they can be applied on miscellaneous input data to generate the (hope-
fully) desired outcomes, for instance, cat, print, plot, sample, and sum;

- list (generic vector; Chapter 4) can store elements of mixed types.

The above will be complemented with a discussion on vector indexing (Chapter 5)
and ways to control the program flow (Chapter 8).

2. Compound types are mostly discussed in the second part. They are wrappers around
objects of basic types that might behave unlike the underlying primitives thanks
to the dedicated operations overloaded for them. For instance:

« factor (Section 10.3.2) is a vector-like object that represents qualitative data
(on a nominal or an ordered scale);

« matrix(Chapteri1)storestabulardata, i.e., arranged into rows and columns,
where each cell is usually of the same type;

. data.frame (Chapter 12) is also used for depositing tabular data, but this
time such that each column can be of a different type;

- formula (Section 17.6) is utilised by some functions to specify supervised
learning models or define operations to be performed within data sub-
groups, amongst others;
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- and many more, which we can arbitrarily define using the principles of S3-
style object-orientated programming (Chapter 10).

In this part of the book, we also discuss the principles of sustainable coding
(Chapter 9) as well as introduce ways to prepare publication-quality graphics
(Chapter 13).

3. More advanced material is discussed in the third part. For most readers, it should
be of theoretical interest only. However, it can help gain a complete understanding
of and control over our environment. This includes the following data types:

« symbol (name), call, expression (Chapter 15) are objects representing un-
evaluated R expressions that can be freely manipulated and executed if
needed;

. environment (Chapter 16) store named objects in hash maps and provides
the basis for the environment model of evaluation;

- externalptr (Section 14.2.8) provides the ability to maintain any dynamic-
ally allocated C/C++ objects between function calls.

We should not be surprised that we did not list any data types defined by a few trendy**
third-party packages. We will later see that we can most often do without them. If that
is not the case, we will become skilled enough to learn them quickly ourselves.

0.5 About the author

I, Marek Gagolewski® (pronounced like Maarek (Mark) Gong-o-leaf-ski), am cur-
rently an Associate Professor in Data Science at the Faculty of Mathematics and In-
formation Science, Warsaw University of Technology.

My research interests are related to data science, in particular: modelling complex
phenomena, developing usable, general-purpose algorithms, studying their analyt-
ical properties, and finding out how people use, misuse, understand, and misunder-
stand methods of data analysis in research, commercial, and decision-making set-
tings. I am an author of ~100 publications, including journal papers in outlets such
as Proceedings of the National Academy of Sciences (PNAS), Journal of Statistical Software, The
R Journal, Journal of Classification, Information Fusion, International Journal of Forecasting,
Statistical Modelling, Physica A: Statistical Mechanics and its Applications, Information Sci-
ences, Knowledge-Based Systems, IEEE Transactions on Fuzzy Systems, and Journal of Infor-
metrics.

In my “spare” time, I write books for my students: check out my Minimalist Data

4 Which does not automatically mean good. For instance, sugar, salt, and some drugs are very popular,
but it does not make them healthy.
5 https://www.gagolewski.com/
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Wrangling with Python'® [28]. I also develop'” open-source software for data analysis,
such as stringi’® (one of the most often downloaded R packages) and genieclust?
(a fast and robust clustering algorithm in both Python and R).

0.6 Acknowledgements

R, and its predecessor S, is the result of a collaborative effort of many program-
mers*®. Without their generous intellectual contributions, the landscape of data ana-
lysis would not be as beautiful as it is now. R is distributed under the terms of the GNU
General Public License version 2. We occasionally display fragments of its source code
for didactic purposes.

We describe and use R version 4.5.2 (2025-10-31). However, we expect 99.9% of the
material covered here to be valid in future releases (consider filing a bug report if you
discover this is not the case).

Deep R Programming is based on the author’s experience as an R user (since ~2003),
developer of open-source packages, tutor/lecturer (since ~2008), and an author of a
quite successful Polish textbook Programowanie w jezyku R [26] which was published by
PWN (1st ed. 2014, 2nd ed. 2016). Even though the current book is an entirely different
work, its predecessor served as an excellent test bed for many ideas conveyed here.

In particular, the teaching style exercised in this book has proven successful in many
similar courses that yours truly was responsible for, including at Warsaw University of
Technology, Data Science Retreat (Berlin), and Deakin University (Melbourne). I thank
all my students and colleagues for the feedback given over the last 15-odd years.

This work received no funding, administrative, technical, or editorial support from
Deakin University, Warsaw University of Technology, Polish Academy of Sciences, or
any other source.

This book was prepared in a Markdown superset called MyST*, Sphinx?**, and TeX
(XeLaTeX). Code chunks were processed with the R package knitr [65]. All fig-
ures were plotted with the low-level graphics package using the author’s own style
template. A little help from Makefiles, custom shell scripts, and Sphinx plugins
(sphinxcontrib-bibtex?}, sphinxcontrib-proof?*)dotted the j's and crossed the f’s.

16 https://datawranglingpy.gagolewski.com/

17 https://github.com/gagolews

18 https://stringi.gagolewski.com/

19 https://genieclust.gagolewski.com/

20 https://www.r- project.org/contributors.html

2L https://myst- parser.readthedocs.io/en/latest/index.html
22 https://www.sphinx-doc.org/

23 https://pypi.org/project/sphinxcontrib-bibtex

24 hteps://pypi.org/project/sphinxcontrib- proof
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The Ubuntu Mono? fontis used for the display of code. The typesetting of the main text
relies on the Alegreya®® typeface.

0.7 You can make this book better

When it comes to quality assurance, open, non-profit projects have to resort to the
generosity of the readers’ community.

If you find a typo, a bug, or a passage that could be rewritten or extended for better
readability/clarity, do not hesitate to report it via the Issues tracker available at https:
//github.com/gagolews/deepr. New feature requests are welcome as well.

%5 https://design.ubuntu.com/font
26 https://www.huertatipografica.com/en
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Introduction

1.1 Hello, world!

Traditionally, every programming journey starts by printing a “Hello, world”-like
greeting. Let’s then get it over with asap:

cat("My hovercraft is full of eels.\n") # ‘"|n' == newline
## My hovercraft is full of eels.

By calling (invoking) the cat function, we printed out a given character string that we
enclosed in double-quote characters.

Documenting code is a good development practice. It is thus worth knowing that any
text following a hash sign (that is not part of a string) is a comment. It is ignored by the
interpreter.

# This is a comment.

# This is another comment.

cat("I cannot wait", "till lunchtime.\n") # two arguments (another comment)
## I cannot wait till lunchtime.

cat("# I will not buy this record.\n# It is scratched.\n")

## # I will not buy this record.

#4 # It is scratched.

By convention, in this book, R’s textual output is always preceded by two hashes. This
makes it easier to copy-paste all code chunks in case we would like to experiment with
them (which is always highly encouraged).

Whenever a call to a function is to be made, the round brackets are obligatory. All objects
within the parentheses (they are separated by commas) constitute the input data to
be consumed by the operation. Thus, the syntax is: a_function_to_call(argument1,
argument2, etc.).
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1.2 Setting up the development environment
1.2.1 Installing R

It is quite natural to pine for the ability to execute the foregoing code ourselves; to
learn programming without getting our hands dirty is impossible.

The official precompiled binary distributions of R can be downloaded from https://
cran.r-project.org/.

For serious programming work’, we recommend, sooner rather than later, switch-
ing to” one of the UNIX-like operating systems. This includes the free, open-source
== good) variants of GNU/Linux, amongst others, or the proprietary (== not so good)
m**0S. In such a case, we can employ our favourite package manager (e.g., apt, dnf,
pacman, or Homebrew) to install R.

Other users (e.g., of Win***s) might consider installing Anaconda or Miniconda, es-
pecially if they would like to work with Jupyter (Section 1.2.5) or Python as well.

Below we review several ways in which we can write and execute R code. It is up to
the benign readers to research, set up, and learn the development environment that
suits their needs. As usual in real life, there is no single universal approach that always
works best in all scenarios.

1.2.2 Interactive mode

Whenever we would like to compute something quickly, e.g., determine basic aggreg-
ates of a few numbers entered by hand or evaluate a mathematical expression like
“2+2”, R's read-eval-print loop (REPL) can give us instant gratification.

How to start the R console varies from system to system. For instance, the users of
UNIX-like boxes can simply execute R from the terminal (shell, command line). Those
on Win***s can activate RGui from the Start menu.

Important When working interactively, the default® command prompt, “>”, means: I
am awaiting orders. Moreover, “+” denotes: Please continue. In the latter case, we should
either complete the unfinished expression or cancel the operation by pressing ESC or
CTRL+C (depending on the operating system).

> cat("And now
+ for something
(continues on next page)

! For instance, when interoperability with other programming languages/environments is required or
when we think about scheduling jobs on Linux-based computing/container clusters.

2 Or at least trying out — by installing a copy of GNU/Linux on a virtual machine (VM).

3 It can be changed; see help("options").
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(continued from previous page)

completely different

awaiting another double quote character and then the closing bracket...

+
+

o

+ 1t is an unfinished expression...
+

o

+ press ESC or CTRL+C to abort input
>

For readability, we never print out the command prompt characters in this book.

1.2.3 Batch mode: Working with R scripts (**)

The interactive mode of operation is unsuitable for more complicated tasks, though.
The users of UNIX-like operating systems will be interested in another extreme, which
involves writing standalone R scripts that can be executed line by line without any user
intervention. To do so, in the terminal, we can invoke:

Rscript file.R

where file.R is the path to a source file; see Section 9.2.3 for more details

Exercise 1.1 (**) In your favourite text editor (e.g., Kate, vi, Emacs, Notepad++, RStud?io,
or VSCodium), create a file named test.R. Write a few calls to the cat function. Then, execute
this script from the terminal through Rscript.

1.2.4 Weaving: Automatic report generation (**)

Reproducible data analysis* requires us to keep the results (text, tables, plots, auxiliary
files) synchronised with the code and data that generate them.

utils: :Sweave (the Sweave function from the utils package) and knitr [65] are two
example template processors that evaluate R code chunks within documents written
in LaTeX, HTML, or other markup languages. The chunks are replaced by the outputs
they yield.

This book is a showcase of such an approach: all the results, including Figure 2.3 and
the message about busy hovercrafts, were generated programmatically. Thanks to its
being written in the highly universal Markdown® language, it could be converted to a
single PDF document® as well as the whole website”. This was facilitated by tools like
pandoc and docutils.

4 The idea dates back to Knuth's literate programming concept; see [41].
5 https://daringfireball.net/projects/markdown

6 https://deepr.gagolewski.com/deepr.pdf

7 https://deepr.gagolewski.com/
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Exercise1.2 (**) Call install.packages("knitr") in R. Then, create a text file named
test. Rmd with the following content:

# Hello, Markdown!

This is my first automatically generated report,
where I print messages and stuff.

Sl
print("G'day!"
print(2+2)

plot((1:10)"2)

Thank you for your attention.

Assuming that the file is located in the current working divectory (compare Section 7.3.2), call
knitr::knit("test.Rmd") from the R console, or run in the terminal:

Rscript -e 'knitr::knit("test.Rmd")'

Inspect the generated Markdown file, test. md.

Furthermore, if you have the pandoc tool installed, to generate a standalone HTML file, execute
in the terminal:

pandoc test.md --standalone -o test.html

Alternatively, see Section 7.3.2 for ways to call external programs from R.

1.2.5 Semi-interactive modes (Jupyter Notebooks, sending code to the asso-
ciated R console, etc.)

The nature of the most frequent use cases of R encourages a semi-interactive work-
flow, where we quickly progress with prototyping by trial and error. In this mode,
we compose a series of short code fragments inside a standalone R script. Each frag-
ment implements a simple, well-defined task, such as loading data files, data cleans-
ing, feature visualisation, computations of information aggregates, etc. Importantly,
any code chunk can be sent to the associated R console and executed there. This way,
we can inspect the result it generates. If we are not happy with the outcome, we can
apply the necessary corrections.

There are quite a few integrated development environments that enable such a work-
flow, including JupyterLab, Emacs, RStudio, and VSCodium. Some of them require
additional plugins for R.

Executing an individual code line or a whole text selection is usually done by pressing
(configurable) keyboard shortcuts such as Ctrl+Enter or Shift+Enter.
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Exercise 1.3 (*) JupyterLab®isadevelopment environment that runs in a web browser. It was
programmed in Python, but supports many programming languages. Thanks to IRkernel®, we

can use it with R.

1. Install JupyterLab and IRkernel (forinstance, if you use Anaconda, runconda install
-c r r-essentials).

2. From the File menu, select Create a new R source file and save it as, e.g., test.R.

3. Click File and select Create a new console for the editor running the R kernel.

4. Input a few print “Hello, world”-like calls.

5. Press Shift+Enter (whilst working in the editor) to send different code fragments to the
console and execute them. Inspect the results.

See Figure1.1foranillustration. Notethatissuing options(jupyter.rich_display=FALSE)
may be necessary to disable rich HTML outputs and make them look move like ones in this book.

= File Edit View Run Kemel Tabs Settings Help

[ ]

| OPENTABS

() £ testR
testR

i= | KERNELS
testR

» TERMINALS

c

Close All

Shut Down All

Shut Down All

£ testR
&

# <Source Editor>

1

2

3 # Press Shift+Enter to execute current line or selection
4 # in the associated console below
5
6
7

plot(rnorm(1000), rnorm(1600), main="G'day!")

o

testR
&

[1]:

plot(rnorm(1600), rnorm(1600), main="G'day!")

orm(1000)

G'day!

Figure 1.1. JupyterLab: A source file editor and the associated R console, where we can
run arbitrary code fragments.

Example1.4 (*) JupyterLab also handles dedicated Notebooks, where editable and execut-
able code chunks and results they generate can be kept together in a single . ipynb (JSON) file;
see Figure 1.2 for an illustration and Chapter 1 of [28] for a quick introduction (from the Python

language kernel perspective).

This environment is convenient for live coding (e.g., for teachers) ov performing exploratory data
analyses. However, for move serious programming work, the code can get messy. Luckily, there is
always an option to export a notebook to an executable, plain text R script.

8 hteps://jupyterlab.readthedocs.io/en/stable
9 https://irkernel.github.io/
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7 Jupyter Welcome (unsaved changes) Q| Losout

File  Edit  View  Insert  Cell  Kemel  Widgets  Help Trusted RO

Example Jupyter Notebook

In [1]: plot(rnorm(1600), rnorm(1600), main="G'day!")

G'day!

‘morm(1000)

morm(1000)

Figure 1.2. An example Jupyter Notebook, where we can keep code and results to-
gether.

1.3 Atomic vectors at a glance

After printing “Hello, world”, a typical programming course would normally proceed
with the discussion on basic data types for storing individual numeric or logical values.
Next, we would be introduced to arithmetic and relational operations on such scalars,
followed by the definition of whole arrays or other collections of values, complemented
by the methods to iterate over them, one element after another.

In R, no separate types representing individual values have been defined. Instead,
what seems to be a single datum, is already a vector (sequence, array) of length one.

2.71828 # input a number; here: the same as print(2.71828)
## [1] 2.7183

length(2.71828) # it is a vector with one element

## [1] 1

To create a vector of any length, we can call the c function, which combines given ar-
guments into a single sequence:

c(1, 2, 3) # three values combined

## [1] 1 2 3

length(c(1, 2, 3)) # indeed, it is a vector of length three
## [1] 3
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In Chapter 2, Chapter 3, and Chapter 6, we will discuss the most prevalent types of
atomic vectors: numeric, logical, and character ones, respectively.

c(6, 1, -3.14159, 12345.6) # four numbers

# [1] 0.0000 1.0000 -3.1416 12345.6000

c(TRUE, FALSE) # two logical values

## [1] TRUE FALSE

c("spam", "bacon", "spam") # three character strings

## [1] "spam" "bacon" "spam"

We call them atomic for they can only group together values of the same type. Lists,
which we will discuss in Chapter 4, are, on the other hand, referred to as generic vectors.
They can be used for storing items of mixed types: other lists as well.

Note Not having separate scalar types greatly simplifies the programming of numer-
ical computing tasks. Vectors are prevalent in our main areas of interest: statistics,
simulations, data science, machine learning, and all other data-orientated comput-
ing. For example, columns and rows in tables (characteristics of clients, ratings of
items given by users) or time series (stock market prices, readings from temperature
sensors) are all best represented by means of such sequences.

The fact that vectors are the core part of the R language makes their use very natural,
as opposed to the languages that require special add-ons for vector processing, e.g.,
numpy for Python [35]. By learning different ways to process them as a whole (instead of
one element at a time), we will ensure that our ideas can quickly be turned into opera-
tional code. For instance, computing summary statistics such as, say, the mean abso-
lute deviation of a sequence x, will be as effortless as writing mean(abs(x-mean(x))).
Such code is not only easy to read and maintain, but it is also fast to run.

1.4 Getting help
Our aim is to become independent, advanced R programmers.

Independent, however, does not mean omniscient. The R help system is the authorit-
ative source of knowledge about specific functions or more general topics. To open a
help page, we call:

help("topic") # equivalently: ?"topic”
Exercise 1.5 Sight (without going into detail) the manual on the length function by calling
help("length"). Note that most help pages are structured as follows:

1. Header: package: base means that the function is a base one (see Section 7.3.1 for more
details on the R package system);
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2. Title;
3. Description: a short description of what the function does;
4. Usage: the list of formal arguments (parameters) to the function;
5. Arguments: the meaning of each formal argument explained;
6. Details: technical information;
7. Value: return value explained;
8. References: further reading;
9. See Also: links to other help pages;
10. Examples: R code that is worth inspecting.

We can also search within all the installed help pages by calling:

help.search("vague topic") # equivalently: ??"vague topic"

This way, we will be able to find answers to our questions more reliably than when
asking DuckDuckGo or G**gle, which commonly return many low-quality, irrelevant,
or distracting results from splogs. We do not want to lose the sacred code writer’s flow!
It is a matter of personal hygiene and good self discipline.

Important All code chunks, including code comments and textual outputs, form an
integral part of this book’s text. They should not be skipped by the reader. On the con-
trary, they must become objects of our intense reflection and thorough investigation.

For instance, whenever we introduce a function, it may be a clever idea to look it up
in the help system. Moreover, playing with the presented code (running, modifying,
experimenting, etc.) is also very beneficial. We should develop the habit of asking
ourselves questions like “What would happen if..”, and then finding the answers on
our own.

We are now ready to discuss the most significant operations on numeric vectors,
which constitute the main theme of the next chapter. See you there.

1.5 Exercises
Exercise 1.6 What are the three most important types of atomic vectors?

Exercise 1.7 According to the classification of the R data types we introduced in the previous
chapter, are atomic vectors basic ov compound types?
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Numeric vectors

In this chapter, we discuss the uttermost common operations on numeric vectors.
They are so fundamental that we will also find them in other scientific computing
environments, including Python with numpy or tensorflow, Julia, MATLAB, GNU
Octave, or Scilab.

At first blush, the number of functions we are going to explore may seem quite large.
Still, the reader is kindly asked to place some trust (a rare thing these days) in yours
truly. Itis because our selection is comprised only of the most representative and edu-
cational amongst the plethora of possible choices. More complex building blocks can
often be reduced to a creative combination of the former or be easily found in a num-
ber of additional packages or libraries (e.g., GNU GSL [29]).

A solid understanding of base R programming is crucial for dealing with popular pack-
ages (such as data.table, dplyr, or caret). Most importantly, base R's API is stable.
Hence, the code we compose today will most likely work the same way in ten years. It
is often not the case when we rely on external add-ons.

In the sequel, we will be advocating a minimalist, keep-it-simple approach to the art of
programming data processing pipelines, one that is a healthy balance between “doing

itallby ourselves”, “minimising the information overload”, “beinglazy”, and “standing
on the shoulders of giants”.

Note The exercises that we suggest in the sequel are all self-contained, unless expli-
citly stated otherwise. The use of language constructs that are yet to be formally intro-
duced (in particular, if, for, and while explained in Chapter 8) is not just unneces-
sary: it is discouraged. Moreover, we recommend against taking shortcuts by looking
up partial solutions on the internet. Rather, to get the most out of this course, we
should be seeking relevant information within the current and preceding chapters as
well as the R help system.

2.1 Creating numeric vectors
2.1.1 Numeric constants

The simplest numeric vectors are those of length one:
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-3.14

## [1] -3.14
1.23e-4

## [1] 0.000123

The latter is in what we call scientific notation, which is a convenient means of entering
numbers of very large or small orders of magnitude. Here, “e” stands for ... times 10 to
the power of..”. Therefore, 1.23e-4isequalto 1.23x10~# = 0.000123. In other words,
given 1.23, we move the decimal separator by four digits towards the left, adding zer-
oes if necessary.

In real life, some information items may be inherently or temporarily missing, un-
known, or Not Available. As R is orientated towards data processing, it was equipped
with a special indicator:

NA_real_ # numeric NA (missing value)
## [1] NA

It is similar to the Null marker in database query languages such as SQL. Note that
NA_real_is displayed simply as “NA”, chiefly for readability.

Moreover, Inf denotes infinity, oo, i.e., an element that is larger than the largest rep-
resentable double-precision (64 bit) floating point value. Also, NaN stands for not-a-
number, which is returned as the result of some illegal operations, e.g., 0/0 or co — co.

Let’s provide a few ways to create numeric vectors with possibly more than one ele-
ment.

2.1.2 Concatenating vectors with c

First, the c function can be used to combine (concatenate) many numeric vectors, each
of any length. It results in a single object:

c(1, 2, 3) # three vectors of length one -> one vector of length three
## [1] 1 2 3

c(1, c(2, NA_real_, 4), 5, c(6, c(7, Inf)))

## [1] 1 2 N 4 5 6 7 Inf

Note Running help("c"), we will see that its usage is like c(...). In the current
context, this means that the ¢ function takes an arbitrary number of arguments. In
Section 9.4.6, we will study the dot-dot-dot (ellipsis) parameter in more detail.

2.1.3 Repeating entries with rep

Second, rep replicates the elements in a vector a given number of times.
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rep(1l, 5)

## (1] 11111

rep(c(1, 2, 3), 4)

## [1] 123123123123

In the second case, the whole vector (1, 2, 3) has been recycled (tiled) four times. Inter-
estingly, if the second argument is a vector of the same length as the first one, the
behaviour will be different:

rep(c(1, 2, 3), c(2, 1, 4))

## [1] 1123333

rep(c(l, 2, 3), c(4, 4, 4))

# [1] 111122223333

Here, each element is repeated the corresponding number of times.

Calling help("rep"), we find that the function’s usage is like rep(x, ...).Itisrather
peculiar. However, reading further, we discover that the ellipsis (dot-dot-dot) may be
fed with one of the following parameters:

« times,
. length.out?,
« each.

So far, we have been playing with times, which is listed second in the parameter list
(after x, the vector whose elements are to be repeated).

Important The undermentioned function calls are all equivalent:

rep(c(l, 2, 3), 4) # positional matching of arguments: “x*, then ‘times'’
rep(c(1, 2, 3), times=4) # “times' is the second argument

rep(x=c(1, 2, 3), times=4) # keyword arguments of the form name=value
rep(times=4, x=c(1, 2, 3)) # keyword arguments can be given in any order
rep(times=4, c(1, 2, 3)) # mixed positional and keyword arguments

We can also pass each or length.out, but their names must be mentioned explicitly:

rep(c(1, 2, 3), length.out=7)

## [1] 1231231

rep(c(1, 2, 3), each=3)

## [1] 111222333

rep(c(1, 2, 3), length.out=7, each=3)
## [1] 1112223

Note Whether we consider a good programming practice the implementation of a

! A dot has no special meaning in R; see Section 2..2..
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range of varied behaviours inside a single function is a question of taste. On the one
hand, in all of the preceding examples, we do repeat the input elements somehow,
so remembering just one function name is really convenient. Nevertheless, a drastic
change in the repetition pattern depending, e.g., on the length of the times argument
can be bug-prone. Anyway, we have been warned?.

Zero-length vectors are possible too:

rep(c(1, 2, 3), 0)
## numeric(0)

Even though their handling might be a little tricky, we will later see that they are in-
dispensable in contexts like “create an empty data frame with a specific column struc-
ture”.

Also, note that R often allows for partial matching of named arguments, but its use is
abad programming practice; see Section 15.4.4 for more details.

rep(c(1, 2, 3), len=7) # not recommended (see later)

## Warning in rep(c(1, 2, 3), len = 7): partial argument match of 'len' to
## "length.out’

## [1] 1231231

We see the warning only because we have set options(warnPartialMatchArgs=TRUE)
in our environment. It is not used by default.

2.1.4 Generating arithmetic progressions with seqand *:"

Third, we can call the seq function to create a sequence of equally-spaced numbers on
alinear scale, i.e., an arithmetic progression.

seq(1, 15, 2)
## [1] 1 3 5 7 9 11 13 15

From the function’s help page, we discover that seq accepts the from, to, by, and
length.out arguments, amongst others. Thus, the preceding call is equivalent to:

seq(from=1, to=15, by=2)
## [1] 1 3 5 7 9 11 13 15

Note that to actually means “up to”:

% Some “caring” R users might be tempted to introduce two new functions now, one for generating (1,
2,3,1, 2,3, ..) only and the other outputting patterns like (1, 1, 1, 2, 2, 2, ...). They would most likely wrap
them in a new package and announce that on social media. But this is nothing else than a multiplication of
entities without actual necessity. This way, we would end up with three functions. First is the original one,
rep, which everyone ought to know anyway because it is part of the standard library. Second and third are
the two redundant procedures whose user-friendliness is only illusory. See also Chapter 9 for a discussion
on the design of functions.
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seq(from=1, to=16, by=2)
## [1] 1 3 5 7 9 11 13 15

We can also pass length.out instead of by. In such a case, the increments or decre-
ments will be computed via the formula ((to - from)/(length.out - 1)). This
default value is reported in the Usage section of help("seq").

seq(1, 0, length.out=5)

## [1] 1.00 0.75 0.50 0.25 0.00

seq(length.out=5) # default “from® is 1

## [1] 12345

Arithmetic progressions with steps equal to 1 or -1 can also be generated via the *:"
operator.

1:10 # seq(1, 10) or seq(1, 10, 1)

## [1] 1 2 3 4 5 6 7 8 9 10

-1:10  # seq(-1, 10) or seq(-1, 10, 1)

# [1] -1 0 1 2 3 4 5 6 7 8 9 10
-1:-10 # seq(-1, -10) or seq(-1, -10, -1)

## [1] -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

Let’s highlight the order of precedence of this operator: -1:10 means (-1):10, and
not - (1:10); compare Section 2.4.3.

Exercise 2.1 Take a look at the manual page of seq_along and seq_len and determine
whether we can do without them, having seq® at hand.

2.1.5 Generating pseudorandom numbers

We can also generate sequences drawn independently from a range of univariate prob-
ability distributions.

runif(7) # uniform U(O, 1)
#4 [1] 0.287578 0.788305 0.408977 0.883017 0.940467 0.045556 0.528105
rnorm(7) # normal N(O, 1)
## [1] 1.23950 -0.10897 -0.11724 0.18308 1.28055 -1.72727 1.69018

These correspond to seven pseudorandom deviates from the uniform distribution on
the unit interval (i.e., (0, 1)) and the standard normal distribution (i.e., with expecta-
tion 0 and standard deviation 1), respectively; compare Figure 2.3.

For more named distribution classes frequently occur in various real-world statistical
modelling exercises, see Section 2.3.4.

Another worthwhile function picks items from a given vector, either with or without
replacement:

3 Certain configurations of seq and its variants might return vectors of the type integer instead of
double, some of them in a compact (ALTREP) form; see Section 6.4.1.
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sample(1:10, 20, replace=TRUE) # 20 with replacement (allow repetitions)
## [1] 3 310 2 6 5 4 6 910 5 3 9 9 9 3 810 7 16
sample(1:10, 5, replace=FALSE) # 5 without replacement (do not repeat)
## [1] 9 3 4 6 1

The distribution of the sampled values does not need to be uniform; the prob argument
may be fed with a vector of the corresponding probabilities. For example, here are 20
independent realisations of the random variable X such that Pr(X = 0) = 0.9 (the
probability that we obtain o is equal to 90%) and Pr(X = 1) = 0.1:

sample(0:1, 20, replace=TRUE, prob=c(0.9, 0.1))
# [1] OO0 OO0 100060001606060006000 1

Note If nis a single number (a numeric vector of length 1), then sample(n, ...)
is equivalent to sample(1:n, ...). Similarly, seq(n) is a synonym for seq(1, n)
orseq(1l, length(n)), depending on the length of n. This is a dangerous behaviour
that can occasionally backfire and lead to bugs (check what happens when n is, e.g.,
0). Nonetheless, we have been warned. From now on, we are going to be extra careful
(but are we really?). Read more at help("sample") and help("seq").

Let’s stress that the numbers we obtain are merely pseudorandom because they are gen-
erated algorithmically. R uses the Mersenne-Twister MT19937 method [47] by default;
see help("RNG") and [22, 30, 43]. By setting the seed of the random number generator,
i.e., resetting its state to a given one, we can obtain results that are reproducible.

set.seed(12345) # seeds are specified with integers
sample(1:10, 5, replace=TRUE) # a,b,c,d,e

## [1] 310 8 10 8

sample(1:10, 5, replace=TRUE) # f,g,h, 1,7

## [1] 2 6 6 7 10

Setting the seed to the one used previously gives:

set.seed(12345)
sample(1:10, 5, replace=TRUE) # a,b,c,d,e
## [1] 3 10 8 10 8

We did not(?) expect that! And now for something completely different:

set.seed(12345)
sample(1:10, 10, replace=TRUE) # a,b,c,d,e,f,g,h, 1,7
## [1] 316 8160 8 2 6 6 7 10

Reproducibility is a crucial feature of each truly scientific experiment. The same initial
condition (here: the same seed) leads to exactly the same outcomes.

Note Some claim that the only unsuspicious seed is 42 but in matters of taste, there
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can be no disputes. Everyone can use their favourite picks: yours truly savours 123, 1234,
and 12345 as well.

When performing many runs of Monte Carlo experiments, it may also be a clever idea
to call set.seed(1) in the i-th iteration of a simulation we are trying to program.

We should ensure that our seed settings are applied consistently across all our scripts.
Otherwise, we might be accused of tampering with evidence. For instance, here is the
ultimate proof that we are very lucky today:

set.seed(1679619) # totally unsuspicious, right?
sample(0:1, 20, replace=TRUE) # so random
## [1] 1111111111111 1111111

This is exactly why reproducible scripts and auxiliary data should be published along-
side all research reports or papers. Only open, transparent science can be fully trust-
worthy.

If set.seed is not called explicitly, and the random state is not restored from the pre-
viously saved R session (see Chapter 16), then the random generator is initialised based
on the current wall time and the identifier of the running R instance (PID). This may
justify the impression that the numbers we generate appear surprising.

To understand the “pseudo” part of the said randomness better, in Section 8.3, we will
build a very simple random generator ourselves.

2.1.6 Reading data with scan

An example text file named euraud-20200101-20200630.csv* gives the EUR to AUD
exchange rates (how many Australian Dollars can we buy for 1 Euro) from 1 January to
30 June 2020 (remember COVID-19?). Let’s preview the first couple of lines:

# EUR/AUD Exchange Rates

# Source: Statistical Data Warehouse of the European Central Bank System
# https://www.ecb.europa.eu/stats/policy_and_exchange_rates/

# (provided free of charge)

NA

1.6006

1.6031

NA

The four header lines that begin with “#” merely serve as comments for us humans.
They should be ignored by the interpreter. The first “real” value, NA, corresponds to
1 January (Wednesday, New Year’s Day; Forex markets were closed, hence a missing
observation).

We can invoke the scan function to read all the inputs and convert them to a single
numeric vector:

4 hteps://github.com/gagolews/teaching- data/raw/master/marek/euraud-20200101-20200630.csv
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scan(paste@("https://github.com/gagolews/teaching-data/raw/",
"master/marek/euraud-20200101-20200630.csv"), comment.char="#")
# [1] NA 1.6006 1.6031 NA NA 1.6119 1.6251 1.6195 1.6193 1.6132

# [11] NA NA 1.6117 1.6110 1.6188 1.6115 1.6122 NA NA 1.6154
## [21] 1.6177 1.6184 1.6149 1.6127 NA NA 1.6291 1.6290 1.6299 1.6412
## [31] 1.6494 NA NA 1.6521 1.6439 1.6299 1.6282 1.6417 NA NA
## [41] 1.6373 1.6260 1.6175 1.6138 1.6151 NA NA 1.6129 1.6195 1.6142
# [51] 1.6294 1.6363 NA NA 1.6384 1.6442 1.6565 1.6672 1.6875 NA
# [61] NA 1.6998 1.6911 1.6794 1.6917 1.7103 NA NA 1.7330 1.7377
## [71] 1.7389 1.7674 1.7684 NA NA 1.8198 1.8287 1.8568 1.8635 1.8226
# [81] NA NA 1.8586 1.8315 1.7993 1.8162 1.8209 NA NA 1.8021
## [91] 1.7967 1.8053 1.7970 1.8004 NA NA 1.7790 1.7578 1.7596

## [ reached 'max' / getOption("max.print") -- omitted 83 entries ]
We used the paste0 function (Section 6.1.3) to concatenate two long strings (too long
to fit a single line of code) and form a single URL.

We can also read the files located on our computer. For example:

scan("~/Projects/teaching-data/marek/euraud-20200101-20200630.csv",
comment.char="#")

It used an absolute file path that starts at the user’s home directory, denoted “~”. Yours
truly’s case is /home/gagolews.

Note For portability reasons, we suggest slashes, “/”, as path separators; see also
help("file.path") and help(".Platform"). They are recognised by all UNIX-like
boxes as well as by other popular operating systems, including Win***s. Note that
URLs, such as https://deepr.gagolewski.com/, consist of slashes, too.

« »

Paths can also be relative to the current working directory, denoted “.”, which can
be read via a call to getwd. Usually, it is the location wherefrom the R session
has been started. For instance, if the working directory was /home/gagolews/
Projects/teaching-data/marek, we could write the file path equivalently as ./
euraud-20200101-20200630.csv or even euraud-20200101-20200630.csv.

«

On as side note, “..” marks the parent directory of the current working directory.
In the above example, ../r/iris.csv is equivalent to /home/gagolews/Projects/
teaching-data/r/iris.csv.

Exercise 2.2 Read the help page about scan. Take note of the following formal arguments and
their meaning: dec, sep, what, comment.char, and na. strings.

Later we will discuss the read.table and read.csv functions. They are wrappers
around scan that reads structured data. Also, write exports an atomic vector’s contents
to a text file.

Example 2.3 Figure 2.1 shows the graph of the aforementioned exchange rates, which was gen-
erated by calling:


https://deepr.gagolewski.com/

2 NUMERIC VECTORS 19

plot(scan(paste@("https://github.com/gagolews/teaching-data/raw/",
"master/marek/euraud-20200101-20200630.csv"), comment.char="#"),
xlab="Day", ylab="EUR/AUD")
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Figure 2.1. EUR/AUD exchange rates from 2020-01-01 (day 1) to 2020-06-30 (day 182).

Somewhat misleadingly (and for reasons that will become apparent later), the documentation of
plot can be accessed by calling help("plot.default"). Read about, and experiment with,
different values of the main, xlab, ylab, type, col, pch, cex, Lty, and lwd arguments. More
plotting routines will be discussed in Chapter 13.

2.2 Creating named objects

The objects we bring forth will often need to be memorised so that they can be referred
to in further computations. The assignment operator, "<-", can be used for this pur-
pose:

X <- 1:3 # creates a numeric vector and binds the name ‘x' to it

The now-named object can be recalled® and dealt with as we please:

print(x) # or just ‘x' in the R console
## [1] 1 2 3
(continues on next page)

5 Name bindings are part of environment frames; see Chapter 16.
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(continued from previous page)

sum(x) # example operation: compute the sum of all elements in ‘x°
## [1] 6

Important In R, all names are case-sensitive. Hence, x and X can coexist peacefully:
when set, they refer to two different objects. If we tried calling Print(x), print(X),
or PRINT(x), we would get an error.

Typically, we will be using syntacticnames. In help( "make.names" ), we read: A syntactic-
ally valid name consists of letters, numbers and the dot or underline characters and starts with
a letter or the dot not followed by a number. Names such as . 2way ave not valid, and neither are
the reserved words such as if, for, function, next, and TRUE, but see Section 9.3.1 for
an exception.

A fine name is self-explanatory and thus reader-friendly: patients, mean, and aver -
age_scores are way better (if they are what they claim they are) than xyz123, crap, or
spam. Also, it might not be such a bad idea to get used to denoting:

. vectors by x, y, z,

. matrices (and matrix-like objects) by A, B, ..., X, Y, Z,
. integer indexes by letters 1, j, k, 1,

- object sizes by n, m, d, p or nx, ny, etc.,

especially when they are only of temporary nature (for storing auxiliary results, iter-
ating over collections of objects, etc.).

There are numerous naming conventions that we can adopt, but most often they are
a matter of taste; snake_case, lowerCamelCase, UpperCamelCase, flatcase, or dot.
case are equally sound as long as they are used coherently (for instance, some use
snake_case for vectors and UpperCamelCase for functions). Occasionally, we have
little choice but to adhere to the naming conventions of the project we are about to
contribute to.

Note Generally,adot, “.”, has no special meaning®; na.omit is as appropriate a name
as na_omit, naOmit, NAOMIT, naomit, and NaOmit. Readers who know other program-
ming languages will need to habituate themselves to this convention.

R, as a dynamic language, allows for introducing new variables at any time. Moreover,
existing names can be bound to new values. For instance:

(y <- "spam") # bracketed expression - printing not suppressed
## [1] "spam"
(continues on next page)

6 See Section 10.2 and Section 16.2.1 for a few asterisks.
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(continued from previous page)
X <-y # overwrites the previous ‘x'
print(x)
## [1] "spam”

Now x refers to a verbatim copy of y.

Note Objects are automatically destroyed when we cannot access them anymore. By
now, the garbage collector is likely to have got rid of the foregoing 1:3 vector (to which
the name x was bound previously).

2.3 Vectorised mathematical functions

Mathematically, we will be denoting a given vector x of length n by (x4, x5, ..., x,,). In
other words, x; is its i-th element. Let’s review a few operations that are ubiquitous in
numerical computing.

2.3.1 absandsqrt

R implements vectorised versions of the most popular mathematical functions, e.g.,
abs (absolute value, |x[) and sqrt (square root, vXx).

abs(c(2, -1, 0, -3, NA_real ))
## [1] 2 1 60 3 NA

Here, vectorised means that instead of being defined to act on a single numeric value,
they are applied on each element in a vector. The i-th resulting item is a transformed
version of the i-th input:

|x| = (|x1|/ |x2|/ ey |xn|)-
Moreover, if an input is a missing value, the corresponding output will be marked as
unknown as well.
Another example:

X <- c(4, 2, -1)

(y <- sart(x))
## Warning in sqrt(x): NaNs produced
## [1] 2.0000 1.4142  NaN

To attract our attention to the fact that computing the square root of a negative value is
areckless act, R generated an informative warning. However, a warning is not an error:
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the result is being produced as usual. In this case, the ill value is marked as not-a-
number.

Also, the fact that the irrational 2 is displayed” as 1.4142 does not mean thatit is such
a crude approximation to 1.414213562373095048801688724209698.... It was roun-
ded when printing purely for aesthetic reasons. In fact, in Section 3.2.3, we will point
out that the computer’s floating-point arithmetic has roughly 16 decimal digits preci-
sion (but we shall see that the devil is in the detail).

print(y, digits=16) # display more significant figures
## [1] 2.000000000000000 1.414213562373095 NaN

2.3.2 Rounding
The following functions drop all or portions of fractional parts of numbers:
« floor(x) (rounds down to the nearest integer, denoted | x|),
. ceiling(x) (rounds up, denoted [x] = —|—x]),
« trunc(x) (rounds towards zero),
. round(x, digits=0) (rounds to the nearest number with digits decimal digits).

For instance:

x <- c(7.0001, 6.9999, -4.3149, -5.19999, 123.4567, -765.4321, 0.5, 1.5, 2.5)

floor(x)

## [1] 7 6 -5 -6 123 -766 0 1 2
ceiling(x)

# [1] 8 7 -4 -5 124 -765 1 2 3
trunc(x)

## [1] 7 6 -4 -5 123 -765 0 1 2

Note When we write that a function’s usage is like round(x, digits=0), compare
help("round"), we mean that the digits parameter is equipped with the default value
of o. In other words, if rounding to o decimal digits is what we need, the second argu-
ment can be omitted.

round(x) # the same as round(x, 0); round half to even

## [1] 7 7 -4 -5 123 -765 ¢} 2 2

round(x, 1) # round to tenths (nearest 0.1s)

#h [1] 7.0 7.0 -4.3 -5.2 123.5 -765.4 0.5 1.5 2.5
round(x, -2) # round to hundreds (nearest 100s)

##[1] 0 o 0 0 100 -800 O 0 0

7 There are a couple of settings in place that control the default behaviour of the print function; see
width, digits, max.print, OutDec, scipen, etc. in help("options").
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2.3.3 Natural exponential function and logarithm
Moreover:

+ exp(x) outputs the natural exponential function, e*, where Euler’s number e =~
2.718,

« log(x, base=exp(1)) computes, by default, the natural logarithm of x, log, x
(which is most often denoted simply by log x).

Recall thatif x = €Y, thenlog, x = y, i.e., one is the inverse of the other.

log(c(0, 1, 2.7183, 7.3891, 20.0855)) # grows slowly
## [1] -Inf 6 1 2 3

exp(c(0, 1, 2, 3)) # grows fast
## [1] 1.0000 2.7183 7.3891 20.0855

These functions enjoy a number of very valuable identities and inequalities. In partic-
ular, we should know from school that log(x - y) = logx + logy, log(x¥) = ylogx,
and e¥tY =¥ . ¢Y.

For the logarithm to a different base, say, log; , x, we can call:
log(c(0, 1, 10, 100, 1000, 1e10), 10) # or log(..., base=10)
## [1] -Inf @ 1 2 3 10

Recall thatiflog, x = y, thenx = b¥, forany 1 # b > 0.

Example 2.4 Commonly, a logarithmic scale is used for variables that grow rapidly when ex-
pressed as functions of each other; see Figure 2.2.

x <- seq(0, 10, length.out=1001)

par(mfrow=c(1, 2)) # two plots in one figure (one row, two columns)

plot(x, exp(x), type="1") # left subplot

plot(x, exp(x), type="1", log="y") # log-scale on the y-axis; right subplot

Let’s highlight that e* on the log-scale is nothing more than a straight line. Such a transforma-
tion of the axes can only be applied in the case of values strictly greater than o.

2.3.4 Probability distributions (*)

It should come as no surprise that R offers extensive support for many univariate prob-
ability distribution families, including:

- continuous distributions, i.e., those whose support is comprised of uncountably
many real numbers (e.g., some interval or the whole real line):

— *unif (uniform),
— *norm (normal),

- *exp (exponential),
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Figure 2.2. Linear- vs log-scale on the y-axis.

- *gamma (gamma, I),

- *beta (beta, B),

- *Llnorm (log-normal),

— *t (Student),

- *cauchy (Cauchy-Lorentz),
- *chisq(chi-squared, )(2),
— *f (Snedecor-Fisher),

- *weibull (Weibull);

with the prefix “*” being one of:

d (probability density function, PDF),

p (cumulative distribution function, CDF; or survival function, SF),

q (quantile function, being the inverse of the CDF),

r (generation of random deviates; already mentioned above);

- discrete distributions, i.e., those whose possible outcomes can easily be enumer-
ated (e.g., some integers):

- *binom (binomial),
— *geom (geometric),

— *pois (Poisson),
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- *hyper (hypergeometric),
- *nbinom (negative binomial);
prefixes “p” and “r” retain their meaning, however:
- d now gives the probability mass function (PMF),

- q brings about the quantile function, defined as a generalised inverse of the
CDF.

Each distribution is characterised by a set of underlying parameters. For instance, a
normal distribution N(p, o) can be pinpointed by setting its expected value y € R
and standard deviation ¢ > 0. In R, these two have been named mean and sd, re-
spectively; see help("dnorm" ). Therefore, e.g., dnorm(x, 1, 2) computes the PDF of
N(1,2) at x.

Note The parametrisations assumed in R can be subtly different from what we know
from statistical textbooks or probability courses. For example, the normal distribu-
tion can be identified based on either standard deviation or variance, and the expo-
nential distribution can be defined via expected value or its reciprocal. We thus advise
the reader to study carefully the documentation of help("dnorm"), help("dunif"),
help("dexp"), help("dbinom"), and the like.

It is also worth knowing the typical use cases of each of the distributions listed, e.g.,
a Poisson distribution can describe the probability of observing the number of in-
dependent events in a fixed time interval (e.g., the number of users downloading a
copy of R from CRAN per hour), and an exponential distribution can model the time
between such events; compare [24].

Exercise 2.5 A call to hist(x) draws a histogram, which can serve as an estimator of the un-
derlying continuous probability density function of a given sample; see Figure 2.3 for an illustra-
tion.

par(mfrow=c(1, 2)) # two plots in one figure

# left subplot: uniform U(O, 1)

hist(runif(10000, 0, 1), col="white", probability=TRUE, main="")

x <- seq(0, 1, length.out=101)

lines(x, dunif(x, 0, 1), lwd=2) # draw the true density function (PDF)
# right subplot: normal N(O, 1)

hist(rnorm(10000, 0, 1), col="white", probability=TRUE, main="")

x <- seq(-4, 4, length.out=101)

lines(x, dnorm(x, 0, 1), lwd=2) # draw the PDF

Draw a histogram of some random samples of different sizes n from the following distributions:

« rnorn(n, u, o)-normal N(u, o) with expected values y € {—1,0,5} (i.e., u being
equal to either —1, 0, or 5; read “€” as “belongs to the given set” or “in”) and standard devi-
ationso € {0.5,1,5};
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Figure 2.3. Example histograms of some pseudorandom samples and the true under-
lying probability density functions: the uniform distribution on the unit interval (left)
and the standard normal distribution (right).

- runif(n, a, b)-uniformU(a,b) ontheinterval (a,b) witha = Oandb = 1 aswell
asa = —landb =1;

. rbeta(n, a, B)-betaB(a,B)witha, f € {0.5,1,2};
« rexp(n, A)-exponential E(A) withratesA € {0.5,1,10};

Moreover, read about and play with the breaks, main, xlab, ylab, xlim, ylim, and col para-
meters; seehelp("hist").

Example 2.6 We roll a six-sided dice twelve times. Let C be a vandom variable describing the
number of cases where the “1” face is thrown. C follows a binomial distribution Bin(n, p) with
parametersn = 12 (the number of Bernoulli trials) and p = 1/6 (the probability of success
in a single roll).

The probability mass function, dbinom, represents the probabilities that the number of “1”s rolled
isequalto0,1, ..., 0r12,i.e., P(C = 0), P(C = 1), ..., or P(C = 12), respectively:

round(dbinom(0:12, 12, 1/6), 2) # PMF at 13 different points
## [1] 0.11 0.27 0.30 0.20 0.09 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00

On the other hand, the probability that we throw no more than three “1”s, P(C < 3), can be
determined by means of the cumulative distribution function, pbinom:

pbinom(3, 12, 1/6) # pbinom(3, 12, 1/6, lower.taill=FALSE)
## [1] 0.87482

The smallest ¢ such that P(C < ¢) > 0.95 can be computed based on the quantile function:
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gbinom(0.95, 12, 1/6)

## [1] 4

pbinom(3:4, 12, 1/6) # for comparison: 0.95 is in-between
## [1] 0.87482 0.96365

In other words, at least 95% of the time, we will be observing no more than four successes.

Also, here are 30 pseudorandom realisations (simulations) of the random variable C:

rbinom(30, 12, 1/6) # how many successes in 12 trials, repeated 30 times
## [1] 132440242242320410144326232211

2.3.5 Special functions (¥)

Within mathematical formulae and across assorted application areas, certain func-
tions appear more frequently than others. Hence, for the sake of notational brevity
and computational precision, many of them have been assigned special names. For
instance, the following functions are mentioned in the definitions related to a few
probability distributions:

. gamma(x) for x > 0 computes I'(x) = fooo Lot gt

. beta(a, b) fora,b > Oyields B(a,b) = ré?;ig;) = fol =11 — pb-14¢,

Why do we have beta if it is merely a mix of gammas? A specific, tailored function is
expected to be faster and more precise than its DIY version; its underlying implement-
ation does not have to involve any calls to gamma.

beta(0.25, 250) # okay

## [1] 0.91213
gamma(0.25)*gamma(250)/gamma(250.25) # not okay
## [1] NaN

The I function grows so rapidly that already gamma(172) gives rise to Inf. It is due to
the fact that a computer’s arithmetic is not infinitely precise; compare Section 3.2.3.

Special functions are plentiful; see the open-access NIST Digital Library of Mathematical
Functions [52] for one of the most definitive references (and also [2] for its predecessor).
R package gs1 [34] provides a vectorised interface to the GNU GSL [29] library, which
implements many of such routines.

Exercise 2.7 The Pochhammer symbol, (a), = I'(a + x) /T (a), can be computed via a call to
gsl::poch(a, x),i.e., the poch function from the gsl package:

# call install.packages("gsl") first
library("gsl") # load the package

poch(10, 3:6) # calls gsl_sf poch() from GNU GSL
## [1] 1320 17160 240240 3603600
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Read the documentation of the corresponding gs1_sf_poch function in the GNU GSL manual®.
And when you are there, do not hesitate to go through the list of all functions, including those
related to statistics, permutations, combinations, and so forth.

Many functions also have their logarithm-of versions; see, e.g., 1gamma and lbeta.
Also, for instance, dnorm and dbeta have the log parameter. Their classical use case
is the (numerical) maximum likelihood estimation, which involves the sums of the
logarithms of densities.

2.4 Arithmetic operations
2.4.1 Vectorised arithmetic operators
R features the following binary arithmetic operators:
« "+ (addition) and " - (subtraction),
« **" (multiplication) and * /" (division),
« “%/% (integer division) and ‘%%  (modulo, division remainder),
« A" (exponentiation; synonym: ~**"),

They are all vectorised: they take two vectors as input and produce another vector as
output.

c(1, 2, 3) * c(10, 100, 1000)
## [1] 10 200 3000

The operation was performed in an elementwise fashion on the corresponding pairs of ele-
ments from both vectors. The first element in the left sequence was multiplied by the
corresponding element in the right vector, and the result was stored in the first element
of the output. Then, the second element in the left... all right, we get it.

Other operators behave similarly:

0:10 + seq(0, 1, 0.1)

## [1] 0.0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 11.0

0:7 / rep(3, length.out=8) # division by 3

#4 [1] 0.00000 0.33333 0.66667 1.00000 1.33333 1.66667 2.00000 2.33333
0:7 %/% rep(3, length.out=8) # integer division

## [1] 00011122

0:7 %% rep(3, length.out=8) # division remainder

## [1] 01201201

Operations involving missing values also yield NAs:

8 hteps://www.gnu.org/software/gsl/doc/html
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c(1, NA_real_, 3, NA_real_) + c(NA_real_, 2, 3, NA_real )
## [1] NA NA 6 NA

2.4.2 Recycling rule

Some of the preceding statements can be written more concisely. When the operands
are of different lengths, the shorter one is recycled as many times as necessary, as in
rep(y, length.out=length(x)). For example:

0:7 / 3

## [1] 0.00000 0.33333 0.66667 1.00000 1.33333 1.66667 2.00000 2.33333
1:10 * c(-1, 1)

## [1] -1 2 -3 4 -5 6 -7 8 -9 10

2 N (0:10)

#o[1] 1 2 4 8 16 32 64 128 256 512 1024

We call this the recycling rule.

Ifan operand cannot be recycled in its entirety, a warning® is generated, but the output
is still available.

c(1, 10, 100) * 1:8

## Warning in c(1, 10, 100) * 1:8: longer object length is not a multiple of
# shorter object length

# [1] 1 20 300 4 50 600 7 80

Vectorisation and the recycling rule are perhaps most fruitful when applying binary
operators on sequences of identical lengths or when performing vector-scalar (i.e., a
sequence vs a single value) operations. However, there is much more: schemes like
“every k-th element” appear in Taylor series expansions (multiply by c(-1, 1)), k-fold
cross-validation, etc.; see also Section 11.3.4 for use cases in matrix/tensor processing.

Also, pmin and pmax return the parallel minimum and maximum of the corresponding
elements of the input vectors. Their behaviour is the same as the arithmetic operators,
but we call them as ordinary functions:

pmin(c(1, 2, 3, 4), c(4, 2, 3, 1))

## [1] 12 3 1

pmin(3, 1:5)

## [1] 1 2 3 3 3

pmax(0, pmin(1, c(0.25, -2, 5, -0.5, 0, 1.3, 0.99))) # clipping to [0, 1]
#4 [1] 0.25 0.00 1.00 0.00 0.00 1.00 0.99

Note Some functions can be very deeply vectorised, i.e., with respect to multiple ar-
guments. For example:

9 A few functions do not warn us whatsoever when they perform incomplete recycling (e.g., paste; see
Section 6.1.3) or can even give an error (e.g., as.data.frame.list; compare Section 12.1.1). Consider this
inconsistency as an annoying bug and hope it will be fixed, in the next decade or so.
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runif(3, c(10, 20, 30), c(11, 22, 33))
## [1] 10.288 21.577 31.227

generates three random numbers uniformly distributed over the intervals (10,11),
(20,22), and (30, 33), respectively.

2.4.3 Operator precedence

Expressions involving multiple operators need a set of rules governing the order
of computations (unless we enforce it using round brackets). We have said that
-1:10 means (-1):10 rather than -(1:10). But what about, say, 1+1+1+1+1*@ or
3*%270:5+10?

Let’s list the operators mentioned so far in their order of precedence, from the least to the
most binding (see also help("Syntax")):

1. '<-" (right to left),
2. "+ and -’ (binary),
3. "* and /",

4. %% and “%/%",

5.,

6. "+ and - (unary),

7. A" (right to left).

Hence, -272/3+3*4 means ((-(272))/3)+(3*4) and not, e.g., - ((2°(2/(3+3)))*4).

ENEERNEEEN

Notice that “+" and *-7, **" and * /", as well as %% and "%/%" have the same priority.
Expressions involving a series of operations in the same group are evaluated left to
right, with the exception of *#" and “<-", which are performed the other way around.
Therefore:

. 2*3/4*5isequivalent to ((2*3)/4)*5,
« 27374 is 27 (3"4) because, mathematically, we would write it as 23* — 981 ,

o “X <- y <- 4*3%%8/2” binds both y and x to 6, not x to the previous value of y
and theny to 6.

When in doubt, we can always bracket a subexpression to ensure it is executed in the
intended order. It can also increase the readability of our code.

2.4.4 Accumulating

The “+" and **" operators, as well as the pmin and pmax functions, implement element-
wise operations that are applied on the corresponding elements taken from two given
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vectors. For instance:

X1 Y1 X1t
X Y2 X2 + Y2
Xz |t| Y3 [=| X3+Y3
xn yn xn + yn

However, we can also scan through all the values in a single vector and combine the
successive elements that we inspect using the corresponding operation:

- cumsum(x) gives the cumulative sum of the elements in a vector,
- cumprod(x) computes the cumulative product,

. cummin(x) yields the cumulative minimum,

. cummax(x) breeds the cumulative maximum.

The i-th element in the output vector will consist of the sum/product/min/max of the
first i inputs. For example:

X1 X1
X X1 + X
cumsum X3 = X1 + Xn + X3
Xy X1 +Xp +X3+ -+ X,

cumsum(1:8)

#4 [1] 1 3 6 10 15 21 28 36

cumprod(1:8)

## [1] 1 2 6 24 120 720 5040 40320
cummin(c(3, 2, 4, 5, 1, 6, 0))

## [1] 3222110

cummax(c(3, 2, 4, 5, 1, 6, 0))

## [1] 3345566

Example 2.8 On a side note, diff can be considered an inverse to cumsum. It computes the it-
erated difference: subtracts the first two elements, then the second from the third one, the third
from the fourth, and so on. In other words, diff(x) givesy such thaty; = x;,1 — X;.

x <-c(-2, 3, 6, 2, 15)

diff(x)

## [1] 5 3 -4 13

cumsum(diff(x))

## [1] 5 8 4 17

cumsum(c(-2, diff(x))) # recreates x
## [1] -2 3 6 2 15

Thanks to diff, we can compute the daily changes to the EUR/AUD forex vates studied earlier;
see Figure 2.4.
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aud <- scan(paste@("https://github.com/gagolews/teaching-data/raw/",

"master/marek/euraud-20200101-20200630.csv"), comment.char="#")
aud_all <- na.omit(aud) # remove all missing values
plot(diff(aud_all), type="s", ylab="Daily change [EUR/AUD]") # "steps"
abline(h=0, lty="dotted") # draw a horizontal line at y=0
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Figure 2.4. Iterated differences of the exchange rates (non-missing values only).

2.4.5 Aggregating

If we are only concerned with the last cumulant, which summarises all the inputs, we

have the following’ functions at our disposal:

. n
« sum(x) computes the sum of elements inavector, Y ._; x; = X1 + X5 + - + X,

. prod(x) outputs the product of all elements, ]—[?:1 Xj = X1Xp e+ Xy,
- min(x) determines the minimum,
. max(x) reckons the greatest value.

sum(1:8)

## [1] 36

prod(1:8)

## [1] 40320

min(c(3, 2, 4, 5, 1, 6, 0))
## [1] 0

(continues on next page)

10 Chapter 7 will discuss the Reduce function, which generalises the above by allowing any binary opera-

tion to be propagated over a given vector.
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(continued from previous page)

max(c(3, 2, 4, 5, 1, 6, 0))
## [1] 6

The foregoing functions form the basis for the popular summary statistics" (sample
aggregates) such as:

- mean(x) gives the arithmetic mean, sum(x)/length(x),
- var(x) yields the (unbiased) sample variance, sum( (x-mean(x))"2)/(length(x)-1),
« sd(x) is the standard deviation, sqrt(var(x)).

Furthermore, median(x) computes the sample median, i.e., the middle value in the
sorted'* version of x.

For instance:

X <- runif(1000)
c(min(x), mean(x), median(x), max(x), sd(x))
## [1] 0.00046535 0.49727780 0.48995025 0.99940453 0.28748391

Exercise 2.9 Letx be any vector of length n with positive elements. Compute its geometric and
harmonic mean, which are given by, respectively,

n
1 n . n
K nxi =en Zi:l logx; and =n 1
Jz‘:l 2isl

When solving exercises like this one, it does not really matter what data you apply these functions
on. We are being abstract in the sense that thex vector can be anything: from the one that features
very accurate socioeconomic predictions that will help make this world less miserable, through
the data you have been collecting for the last ten years in relation to your super important PhD
research, whatever your company asked you to crunch today, to something related to the hobby
project that you enjoy doing after hours. But you can also just test the above on something like “x
<- runif(10)”, and move on.

Allaggregation functions return a missing value if any of the input elements is unavail-
able. Luckily, they are equipped with the na.rm parameter, on behalf of which we can
request the removal of NAs.

aud <- scan(paste@("https://github.com/gagolews/teaching-data/raw/",
"master/marek/euraud-20200101-20200630.csv"), comment.char="#")

c(min(aud), mean(aud), max(aud))

## [1] NA NA NA

c(min(aud, na.rm=TRUE), mean(aud, na.rm=TRUE), max(aud, na.rm=TRUE))

## [1] 1.6006 1.6775 1.8635

1 Actually, var and median, amongst others, are defined by the stats package. But this one is automat-
ically loaded by default, so let’s not make a fuss about it now.

2 min, median, and max are generalised by the quantile function. We will discuss it much later (Sec-
tion 4.4.3), because it returns a named vector.
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Otherwise, we could have called, e.g., mean(na.omit(x)).

Note Inthe documentation, we read that the usage of sum, prod, min, and max is like
sum(..., na.rm=FALSE), etc. In this context, it means that they accept any number
of input vectors, and each of them can be of arbitrary length. Therefore, min(1, 2,
3),min(c(1, 2, 3))aswellasmin(c(1, 2), 3) allreturn the same result.

However, we also read that we have mean(x, trim=0, na.rm=FALSE, ...).Thistime,
only one vector can be aggregated, and any further arguments (except trimand na.rm)
are ignored.

The extra flexibility (which we do not have to rely on, ever) of the former group is due to
their being associative operations. We have, e.g., (2+3) +4 = 2+ (3+4). Hence, these
operations can be performed in any order, in any group. They are primitive operations:
it is mean that is based on sum, not vice versa.

2.5 Exercises
Exercise 2.10 Answer the following questions.
« What is the meaning of the dot-dot-dot parameter in the definition of the ¢ function?
« We say that the round function is vectorised. What does that mean?
« Whatiswrong with a calltoc(sqrt(1), sqrt(2), sqrt(3))?
« What do we mean by saying that multiplication operates element by element?
« How does the recycling rule work when applying “+°?
« How to (and why) set the seed of the pseudorandom number generator?
« What is the difference between NA_real_ and NaN?
« How are default arguments specified in the manual of, e.g., the round function?
o Isacalltorep(times=4, x=1:5) equivalenttorep(4, 1:5)?
- List a few ways to genevate a sequence like (-1, -0.75, -0.5, ..., 0.75, 1).

o Is-3:5thesameas - (3:5)? What about the precedence of operators in expressions such as
213/4*576, 5%6+4/17%%8, and 1+-2°3:4-1?

o If x is a numeric vector of length n (for some n > 0), how many values will sample(x)
output?

« Does scan support reading dirvectly from compressed archives, e.g., . csv. gz files?

When in doubt, refer back to the material discussed in this chapter or the R manual.
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Exercise 2.11 Thanks to vectorisation, implementing an example graph of arcsine and ar-
ccosine is straightforward.

x <- seq(-1, 1, length.out=11) # increase length.out for a smoother curve

plot(x, asin(x), # asin() computed for 11 points
type="1", # lines
ylim=c(-pi/2, pi), #y axis limits like c(y_min, y_max)

ylab="asin(x), acos(x)") # y axis label
lines(x, acos(x), col="red", lty="dashed") # adds to the current plot
legend("topright", c("asin(x)", "acos(x)"),

lty=c("solid", "dashed"), col=c("black", "red"), bg="white")

Thusly inspired, plot the following functions: | sin X2, Isin |x|l, Vixl,and1/(1 + e™*). Recall
that the documentation of plot can be accessed by calling help("plot.default").

Exercise 2.12 The expression:
(—1)i+1 1 1 1 1
4 N (A
Z 2i—1 1 375777

slowly converges to 7t as n approaches co. Calculate it forn = 1000 000 and n =
1 000 000 000 using the vectorised functions and operators discussed in this chapter, making
use of the recycling rule as much as possible.

Exercise 2.13 Let x and y be two vectors of identical lengths n, say:

x <- rnorm(100)
y <- 2*x+10+rnorm(100, 0, 0.5)

Compute the Pearson linear correlation coefficient given by:
1
L (-2 5hy) (-7 5L y)
2
VEE (x= 2 ) E (0 2 a)

To make sure you have come up with a correct implementation, compare your vesult to a call to
cor(x, y).

r(x,y) =

>

Exercise 2.14 (*) Find an R package providing a function to compute moving (rolling) averages
and medians of a given vector. Apply them on the EUR/AUD currency exchange data. Draw thus
obtained smoothened versions of the time series.

Exercise 2.15 (**) Usea callto convolve(..., type="filter")tocomputethek-moving
average of a numeric vector.

In the next chapter, we will study operations that involve logical values.






3

Logical vectors

3.1 Creatinglogical vectors

R defines three(!) logical constants: TRUE, FALSE, and NA representing, respectively,
“yes”, “no”, and “???”. When instantiated, each of them is an atomic vector of length
one. To generate logical vectors of arbitrary size, we can call some of the functions
introduced in the previous chapter, for instance:

c(TRUE, FALSE, FALSE, NA, TRUE, FALSE)

## [1] TRUE FALSE FALSE NA TRUE FALSE

rep(c(TRUE, FALSE, NA), each=2)

## [1] TRUE TRUE FALSE FALSE NA NA

sample(c(TRUE, FALSE), 10, replace=TRUE, prob=c(0.8, 0.2))

## [1] TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE TRUE TRUE

Note By default, T is a synonym for TRUE and F stands for FALSE. However, these are
not reserved keywords and can be reassigned to any other values. Therefore, we advise
against relying on them: they are not used throughout the course of this course.

Also, notice that the logical missing value is spelled simply as NA, and not NA_logical_.
Both the logical NA and the numeric NA_real_ are, for the sake of our widely-conceived
wellbeing, both printed as “NA” on the R console. This, however, does not mean they are
identical; see Section 4.1 for discussion.

3.2 Comparing elements
3.2.1 Vectorised relational operators

Logical vectors frequently come into being as a result of various festing activities. In
particular, the binary operators:

« "< (less than),

« “<=" (less than or equal),
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*>" (greater than),

« “>=" (greater than or equal)

‘== (equal),
« “1=" (not equal),
compare the corresponding elements of two numeric vectors and output a logical vector.

1<3

## [1] TRUE

c(1, 2, 3, 4) == c(2, 2, 3, 8)

## [1] FALSE TRUE TRUE FALSE

1:10 <= 10:1

## [1] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE

Thus, they operate in an elementwise manner. Moreover, the recycling rule is applied
if necessary:

3<1:5 #c(3, 3, 3, 3, 3) <c(1, 2, 3, 4, 5)
## [1] FALSE FALSE FALSE TRUE TRUE

c(1l, 4) == 1:4 #c(1, 4, 1, 4) == c(1, 2, 3, 4)
## [1] TRUE FALSE FALSE TRUE

Therefore, we can say that they are vectorised in the same manner as the arithmetic
operators + , *°, etc.;compare Section 2.4.1.

3.2.2 Testing for NA, NaN, and Inf

Comparisons against missing values and not-numbers yield NAs. Instead of the incor-
rect “x == NA_real_”, testing for missingness should rather be performed via a call to
the vectorised is.na function.

is.na(c(NA_real_, Inf, -Inf, NaN, -1, 0, 1))

## [1] TRUE FALSE FALSE TRUE FALSE FALSE FALSE

i1s.na(c(TRUE, FALSE, NA, TRUE)) # works for logical vectors, too
## [1] FALSE FALSE TRUE FALSE

Moreover, is.finite is noteworthy since it returns FALSE on Infs, NA_real_s and
NaNs.

is.finite(c(NA_real_, Inf, -Inf, NaN, -1, 0, 1))
## [1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE

See also the more specific is.nan and is.infinite.
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3.2.3 Dealing with round-off errors (*)

In mathematics, real numbers are merely an idealisation. In practice, however, it is
impossible to store them with infinite precision (think 7w = 3.141592653589793...):
computer memory is limited, and our time is precious.

Therefore, a consensus had to be reached. In R, we rely on the double-precision floating
point format. The floating point part means that the numbers can be both small (close to
zero like +2.23 x 1073%8) and large (e.g., +1.79 x 10308)

Note

2.23e-308 == 0.00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
0000000223

1.79e308 == 179000000
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000

These two are pretty distant.

Every numeric value takes 8 bytes (or, equivalently, 64 bits) of memory. We are, how-
ever, able to store only about 15-17 decimal digits:

print(0.12345678901234567890123456789012345678901234, digits=22) # 22 is max
## [1] 0.1234567890123456773699

which limits the precision of our computations. We wrote about because, unfortu-
nately, the numbers are stored the computer-friendly binary base, not the human-
aligned decimal one. This can lead to counterintuitive outcomes. In particular:

« 0.1 cannot be represented exactly for it cannot be written as a finite series of re-
ciprocals of powers of 2 (we have 0.1 = 274 + 275 + 278 + 279 1 ). This leads
to surprising results such as:

0.1 +0.1+0.1==20.3
## [1] FALSE

Quite strikingly, what follows does not show anything suspicious:
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c(0.1, 0.1 + 0.1 + 0.1, 0.3)
## [1] 0.1 0.3 0.3

Printing involves rounding. In the above context, it is misleading. Actually, we ex-
perience something more like:

print(c(0.1, 0.1 + 0.1 + 0.1, 0.3), digits=22)

## [1] 0.1000000000000000055511 0.3000000000000000444089

## [3] 0.2999999999999999888978

. All integers between —2°3 and 23 all stored exactly. This is good news. However,
the next integer is beyond the representable range:

2753 + 1 == 2753
## [1] TRUE

« The order of operations may matter. In particular, the associativity property can
be violated when dealing with numbers of contrasting orders of magnitude:

2753 + 2A-53 - 2753 - 2A-53 # should be == 0.0
## [1] -1.1102e-16

« Some numbers may just be too large, too small, or too close to zero to be repres-
ented exactly:

c(sum(27((1023-52):1023)), sum(2~((1023-53):1023)))
## [1] 1.7977e+308 Inf

c(27(-1022-52), 27(-1022-53))

## [1] 4.9407e-324 0.0000e+00

Important The double-precision floating point format (IEEE 754) is not specific to
R. It is used by most other computing environments, including Python and C++. For
discussion, see [33, 36, 43], and the more statistically-orientated [31].

Can we do anything about these issues?

Firstly, dealing with integers of a reasonable order of magnitude (e.g., various resource
or case IDs in our datasets) is safe. Their comparison, addition, subtraction, and mul-
tiplication are always precise.

In all other cases (including applying other operations on integers, e.g., division or
sqrt), we need to be very careful with comparisons, especially involving testing for
equality via “==". The sole fact that sin7t = 0, mathematically speaking, does not
mean that we should expect that:

sin(pi) == 0
## [1] FALSE
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Instead, they are so close that we can treat the difference between them as negligible. Thus,
in practice, instead of testing if x = y, we will be considering:

« |x — y| (absolute error), or

lx—yl
vl
count but obviously cannot be applied if i is very close to 0),

(relative error; which takes the order of magnitude of the numbers into ac-

and determining if these are less than an assumed error margin, ¢ > 0, say, 1078 or
2726 For example:

abs(sin(pi) - 0) < 27-26
## [1] TRUE

Note Rounding can sometimes have a similar effect as testing for almost equality in
terms of the absolute error.

round(sin(pi), 8) == 0
## [1] TRUE

Important The foregoing recommendations are valid for the most popular applic-
ations of R, i.e., statistical and, more generally, scientific computing*. Our datasets
usually do not represent accurate measurements. Bah, the world itself is far from
ideal! Therefore, we do not have to lose sleep over our not being able to precisely pin-
point the exact solutions.

3.3 Logical operations
3.3.1 Vectorised logical operators

The relational operators such as “==" and "> accept only two arguments. Their chain-
ing is forbidden. A test that we would mathematically write as 0 < x < 1 (or
x € [0,1]) cannot be expressed as “0 <= x <= 1”in R. Therefore, we need a way
to combine two logical conditions so as to be able to state that “x > 0 and, at the same
time, x < 17.

In such situations, the following logical operators and functions come in handy:

« " 1" (not, negation; unary),

! However, in financial applications, we had rather rely on base-10 numbers (compare the aforemen-
tioned issue with 0.1). There are some libraries implementing higher precision floating-point numbers or
even interval arithmetic that keeps track of error propagation in operation chains.
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« & (and, conjunction; are both predicates true?),
« | (or, alternation; is at least one true?),

« xor (exclusive-or, exclusive disjunction, either-or; is one and only one of the pre-
dicates true?).

They again act elementwisely and implement the recycling rule if necessary (and ap-
plicable).

x <- c(-10, -1, -0.25, 0, 0.5, 1, 5, 100)

(x >=0) & (x <= 1)

## [1] FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE
(x<0) | (x>1)

## [1] TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE
H(x < 0) | (x>1))

## [1] FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE
xor(x >= -1, x <= 1)

## [1] TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE

Important The vectorised "&" and *|" operators should not be confused with their
scalar, short-circuit counterparts, “&& and " | | ; see Section 8.1.4.

3.3.2 Operator precedence revisited

The operators introduced in this chapter have lower precedence than the arithmetic
ones, including the binary "+ and *-". Calling help("Syntax") reveals that we can
extend our listing from Section 2.4.3 as follows:

—

. “<-" (vight to left; least binding),

4. ! (unary),
5. '<', s tes', szt 's=t and1st,
6. "+ and - (binary),

7. % and /",

The order of precedence is intuitive, e.g., “x+1 <= y & y <= z-1 | x <= z” means
“(Ux+1) <= y) & (y <= (z-1))) | (x <= z)".
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3.3.3 Dealing with missingness

Operations involving missing values follow the principles of Lukasiewicz’s three-
valued logic, which is based on common sense. For instance, “NA | TRUE” is TRUE
because the alternative (o) needs at least one argument to be TRUE to generate a posit-
ive result. On the other hand, “NA | FALSE” is NA since the outcome would be different
depending on what we substituted NA for.

Let’s contemplate the logical operations’ truth tables for all the possible combinations
of inputs:

u <- c(TRUE, FALSE, NA, TRUE, FALSE, NA, TRUE, FALSE, NA)
v <- c(TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, NA, NA, NA)
lu

## [1] FALSE TRUE NA FALSE TRUE NA FALSE TRUE NA
ué&v

## [1] TRUE FALSE NA FALSE FALSE FALSE NA FALSE NA
u | v

## [1] TRUE TRUE TRUE TRUE FALSE NA  TRUE NA NA
xor(u, v)

## [1] FALSE TRUE NA TRUE FALSE NA NA NA NA

3.3.4 Aggregating with all, any, and sum

Just like in the case of numeric vectors, we can summarise the contents of logical se-
quences. all tests whether every element in a logical vector is equal to TRUE. any de-
termines if there exists an element that is TRUE.

X <- runif(10000)

all(x <= 0.2) # are all values in x <= 0.2?

## [1] FALSE

any(x <= 0.2) # is there at least one element in x that is <= 0.2?
## [1] TRUE

any(c(NA, FALSE, TRUE))

## [1] TRUE

all(c(TRUE, TRUE, NA))

## [1] NA

Note allwill frequently be used in conjunction with “==" as the latter is itself vector-
ised: it does not test whether a vector as a whole is equal to another one.

z <- c(1, 2, 3)

z == 1:3 # elementwise equal

## [1] TRUE TRUE TRUE

all(z == 1:3) # elementwise equal summarised
## [1] TRUE

However, let’s keep in mind the warning about the testing for exact equality of floating-
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point numbers stated in Section 3.2.3. Sometimes, considering absolute or relative
errors might be more appropriate.

z <- sin((0:10)*pil) # sin(0), sin(pi), sin(2*pi), ..., sin(10*pi)
all(z == 0.0) # danger zone! please don't...

## [1] FALSE

all(abs(z - 0.0) < 1e-8) # are the absolute errors negligible?
## [1] TRUE

We can also call sum on a logical vector. Taking into account that it interprets TRUE as
numeric 1 and FALSE as @ (more on this in Section 4.1), it will give us the number of
elements equal to TRUE.

sum(x <= 0.2) # how many elements in x are <= 0.2?
## [1] 1998

Also, by computing sum(x) /length(x), we can obtain the proportion (fraction) of val-
ues equal to TRUE in x. Equivalently:

mean(x <= 0.2) # proportion of elements <= 0.2
## [1] 0.1998

Naturally, we expect mean(runif(n) <= 0.2) to be equal to 0.2 (20%), but with ran-
domness, we can never be sure.

3.3.5 Simplifying predicates

Each aspiring programmer needs to become fluent with the rules governing the trans-
formations of logical conditions, e.g., that the negation of “(x >= 0) & (x < 1)”is
equivalentto “(x < 0) | (x >= 1)”. Such rules are called tautologies. Here are a few
of them:

« 1(!p) is equivalent to p (double negation),

« !(p & q) holdsifand onlyif !p | !q(De Morgan’s law),
« !(p | g)is!p & !q(another De Morgan's law),

« all(p) is equivalent to !any(!p).

Various combinations thereof are, of course, possible. Further simplifications are en-
abled by other properties of the binary operations:

. commutativity (symmetry),e.g.,a+b=b+a,axb=">bxa,

- associativity, e.g., (@ + b) + ¢ = a + (b + ¢), max(max(a,b),c) =
max(a, max(b,c)),

- distributivity, e.g., a * b+ a * ¢ = a * (b + ¢), min(max(a, b), max(a,c)) =
max(a, min(b, ¢)),
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and relations, including:
- transitivity, e.g., ifa < band b < ¢, then surelya < c.
Exercise 3.1 Assuming that a, b, and c are numeric vectors, simplify the following expressions:
o I(b>a & b<c),
o I(a>=b & b>=c & a>=c),
« a>b & a<c | a<c & a>b,
o a>b | a<=b,
e a<=b & a>c | a>b & a<=c,
e a<=b & (a>c | a>b) & a<=c,

o lall(a > b & b < c).

3.4 Choosing elements with ifelse

The ifelse function is a vectorised version of the scalar if..else conditional state-
ment, which we will forgo for as long as until Chapter 8. It permits us to select an
element from one of two vectors based on some logical condition. A call to ifelse(1,
t, f), where lisalogical vector, returns a vector y such that:

[t ifl;isTRUE,
Yi=1 f ifl;isFALSE.

In other words, the i-th element of the result vector is equal to ¢; if I; is TRUE and to f;
otherwise. For example:

(z <- rnorm(6)) # example vector

## [1] -0.560476 -0.230177 1.558708 0.070508 0.129288 1.715065
ifelse(z >= 0, z, -z) # like abs(z)

#4 [1] 0.560476 0.230177 1.558708 0.070508 0.129288 1.715065

or:

(x <- rnorm(6)) # example vector

## [1] 0.46092 -1.26506 -0.68685 -0.44566 1.22408 0.35981
(y <- rnorm(6)) # example vector

## [1] 0.40077 0.11068 -0.55584 1.78691 0.49785 -1.96662
ifelse(x >= vy, x, y) # like pmax(x, y)

#4 [1] 0.46092 0.11068 -0.55584 1.78691 1.22408 0.35981

We should not be surprised anymore that the recycling rule is fired up when necessary:
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ifelse(x > 0, x*2, 0) # squares of positive xs and 0 otherwise
#4 [1] 0.21244 0.00000 0.00000 0.00000 1.49838 0.12947

Note Allarguments are evaluated in their entirety before deciding on which elements
are selected. Therefore, the following call generates a warning:

ifelse(z >= 0, log(z), NA_real_)
## Warning in log(z): NaNs produced
# [1] NA NA 0.44386 -2.65202 -2.04571 0.53945

This is because, with log(z), we compute the logarithms of negative values anyway.
To fix this, we can write:

log(ifelse(z >= 0, z, NA_real ))
#h [1] NA NA 0.44386 -2.65202 -2.04571 0.53945

In case we yearn for an if..else 1if..else-type expression, the calls to ifelse can
naturally be nested.

Example 3.2 Aversion of pmax(pmax(x, y), z) canbewritten as:

ifelse(x >=y,
ifelse(z >= x, z, x),
ifelse(z >= y, z, y)
)
## [1] 0.46092 0.11068 1.55871 1.78691 1.22408 1.71506

However, determining three intermediate logical vectors is not necessary. We can save one call to
*>=" by introducing an auxiliary variable:

xy <- ifelse(x >=y, x, y)
ifelse(z >= xy, z, xy)
## [1] 0.46092 0.11068 1.55871 1.78691 1.22408 1.71506

Exercise 3.3 Figure 3.1 depicts a realisation of the mixture Z = 0.2X + 0.8Y of two normal
distributions X ~ N(—=2,0.5)andY ~ N(3,1).

n <- 100000
z <- ifelse(runif(n) <= 0.2, rnorm(n, -2, 0.5), rnorm(n, 3, 1))
hist(z, breaks=101, probability=TRUE, main="", col="white")

In other words, we generated a variate from the normal distribution that has the expected value
of —2 with probability 20%, and from the one with the expectation of 3 otherwise. Thus inspired,
generate the Gaussian mixtures:

« 3X + 1Y, where X ~ N(100,16) and Y ~ N(116,8),
¢ 0.3X +04Y +0.3Z, where X ~ N(—=10,2),Y ~ N(0,2),and Z ~ N(10,2).
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Figure 3.1. A mixture of two Gaussians generated with ifelse.

(*) On a side note, knowing that if X follows N(0, 1), then the scaled-shifted o X + p is distrib-
uted N(p, o), the above can be equivalently written as:

w <- (runif(n) <= 0.2)

zZ <-

3.5

rnorm(n, 0, 1)*ifelse(w, 0.5, 1) + ifelse(w, -2, 3)

Exercises

Exercise 3.4 Answer the following questions.

Why the statement “The Earth is flat or the smallpox vaccine is proven effective” is obviously
true?

What is the difference between NA and NA_real_?
Why is “FALSE & NA” equal to FALSE, but “TRUE & NA”is NA?

Why has ifelse(x>=0, sqrt(x), NA_real_) atendency to generate warnings and
how to rewrite it so as to prevent that from happening?

What is the interpretation of mean(x >= 0 & x <= 1)?

For some integer x and y, how to verify whether 0 < x < 100,0 < y < 100, andx < y,
all at the same time?

Mathematically, for all veal x,y > 0, we have logxy = logx + logy. Why then
all(log(x*y) == log(x)+log(y)) can sometimes return FALSE? How to fix this?
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o Isx/y/z always equal to x/ (y/z)? How to fix this?

« Whatis the purpose of very specific functions such as log1p and expm1 (see their help page)
and many others listed in, e.g., the GNU GSLlibrary [29]? Is our referring to them a violation
of the beloved “do not multiply entities without necessity” rule?

« Ifwe know that x may be subject to error, how to test whether x > 0 in a robust manner?
o Is“y<-5"thesameas“y <- 5”orrather“y < -57?

Exercise 3.5 What is the difference between all and 1sTRUE? What about *==", identical,
and all.equal? Is the last one properly vectorised?

Exercise 3.6 Computethe cross-entropy loss between a numericvectorp with valuesin the inter-
val (0,1) and a logical vectory, both of length n (you can generate them randomly or manually,
it does not matter, it is just an exercise):

QC(P/J’) = % i Ei/
i=1

where

0 = —logp; ify; isTRUE,
"7 —log(1—p;) ify,isFALSE.

Interpretation: in classification problems, y; € {FALSE, TRUE} denotes the true class of the i-
th object (say, whether the i-th hospital patient is symptomatic) and p; € (0, 1) is a machine
learning algorithm’s confidence that i belongsto class TRUE (e.g., how sure a decision tree model
is that the corresponding person is unwell). 1deally, if y; is TRUE, p; should be close to 1 and to 0
otherwise. The cross-entropy loss quantifies by how much a classifier differs from the omniscient
one. The use of the logarithm penalises strong beliefs in the wrong answer.

By the way, if we have solved any of the exercises encountered so far by referring to
if statements, for loops, vector indexing like x[ ... ], or any external R package, we
recommend going back and rewrite our code. Let’s keep things simple (effective, read-
able) by only using base R’s vectorised operations that we have introduced.



4
Lists and attributes

After two brain-teasing chapters, it is time to cool it down a little. In this more tech-
nical part, we will introduce lists, which serve as universal containers for R objects of
any size and type. Moreover, we will also show that each R object can be equipped
with a number of optional attributes. Thanks to them, we will be able to label elements
in any vector, and, in Chapter 10, introduce new complex data types such as matrices
and data frames.

4.1 Type hierarchy and conversion

So far, we have been playing with three types of atomic vectors:
1. logical (Chapter 3),
2. numeric (Chapter 2),

3. character (which we have barely touched upon yet, but rest assured that they will
be covered in detail very soon; see Chapter 6).

To determine the type of an object programmatically, we can call the typeof function.

typeof(c(1, 2, 3))

## [1] "double"

typeof (c(TRUE, FALSE, TRUE, NA))

## [1] "logical”

typeof(c("spam", "spam", "bacon", "eggs", "spam"))
## [1] "character"

We can easily convert between these types, either on our explicit demand (type casting)
or on-the-fly (coercion, when we perform an operation that expects something differ-
ent from the kind of input it was fed with).

Note (*) Numeric vectors are reported as being either of the type double (double-
precision floating-point numbers) or integer (32-bit; it is a subset of double); see
Section 6.4.1. In most practical cases, this is a technical detail that we can risklessly
ignore; compare also the mode function.
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4.1.1 Explicit type casting

We can use functions such as as.logical, as.numeric!, and as.character to convert

given objects to the corresponding types.

as.numeric(c(TRUE, FALSE, NA, TRUE, NA, FALSE)) # synonym: as.double

## [1] 1 ONA 1 NA O
as.logical(c(-2, -1, 0, 1, 2, 3, NA_real_, -Inf, NaN))
## [1] TRUE TRUE FALSE TRUE TRUE TRUE NA TRUE

NA

Important The rules are:
« TRUE > 1,
« FALSE - o,
« NA— NA_real
and:
« 0 — FALSE,
« NA_real_andNaN — NA,

- anything else — TRUE.

The distinction between zero and non-zero is commonly applied in other program-

ming languages as well.

Moreover, in the case of the conversion involving character strings, we have:

as.character(c(TRUE, FALSE, NA, TRUE, NA, FALSE))
#4 [1] "TRUE" "FALSE" NA "TRUE" NA "FALSE"

as.character(c(-2, -1, 0, 1, 2, 3, NA_real_, -Inf, NaN))

## [1] "-2" g g ngn non Y NA
as.logical(c("TRUE", "True", "true", "T",
"FALSE", "False", "false", "F",

"_Inf" "NaN"

"anything other than these", NA_character_))

## [1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE

as.numeric(c("0", "-1.23e4", "pi", "2+2", "NaN", "-Inf",

## Warning: NAs introduced by coercion
## [1] 0 -12300 NA NA  NaN  -Inf NA

4.1.2 Implicit conversion (coercion)

NA NA
NA_character_))

Recall that we referred to the three vector types as atomic ones. They can only be used
to store elements of the same type. If we make an attempt at composing an object of

1 (*) as.numeric is a built-in generic function identical to (synonymous with) as.double; see Sec-
tion 10.2.3. is.numeric is generic too, and is more universal than is.double, which only verifies whether
typeof returns "double". For instance, vectors of the type integer which we mention later are considered

numeric as well.
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mixed types with ¢, the common type will be determined in such a way that data are
stored without information loss:

c(-1, FALSE, TRUE, 2, "three", NA)

## [1] "-1" "FALSE" "TRUE" "2" "three" NA
c("zero", TRUE, NA)

## [1] "zero" "TRUE" NA

c(-1, FALSE, TRUE, 2, NA)

## [1] -1 0 1 2 NA

Hence, we see that logical is the most specialised of the tree, whereas character is
the most general.

Note The logical NA is converted to NA_real_ and NA_character_ in the preceding
examples. R users tend to rely on implicit type conversion when they write c(1, 2,
NA, 4)rather thanc(1, 2, NA_real_, 4).In most cases, this is fine, but it might
make us less vigilant.

However, occasionally, it will be wiser to be more unequivocal. For instance,
rep(NA_real_, 1e9) preallocates a long numeric vector instead of a logical one.

Some functions that expect vectors of specific types can apply coercion by themselves
(or act as if they do so0):

c(NA, FALSE, TRUE) + 10 # implicit conversion logical -> numeric

## [1] NA 10 11

c(-1, 0, 1) & TRUE # implicit conversion numeric -> logical

## [1] TRUE FALSE TRUE

sum(c(TRUE, TRUE, FALSE, TRUE, FALSE)) # same as sum(as.numeric(...))
## [1] 3

cumsum(c(TRUE, TRUE, FALSE, TRUE, FALSE))

## [1] 122 3 3

cummin(c(TRUE, TRUE, FALSE, TRUE, FALSE))

## [1] 11000

Exercise 4.1 In Exercise 3.6, we computed the cross-entropy loss between a logical vectory €
{0, 1} and a numeric vectorp € (0, 1)"™. This measure can be equivalently defined as:

1 n
L.y =~ (Zyi log(p;) + (1 —y;) log(1 —Pi)).
i=1

Implement this formula using vectorised operations, but not relying on ifelse this time. Then,
compute the cross-entropy loss between, for instance, “y <- sample(c(FALSE, TRUE), n,
replace=TRUE)” and “p <- runif(n)”forsome n. Note how seamlessly we translate between
FAL SE/TRUEs and o/1s in the above equation (in particular, where 1 — y; means the logical neg-
ation of y;).
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4.2 Lists

Lists are generalised vectors. They can be comprised of R objects of any kind, also other
lists. It is why we classify them as recursive (and not atomic) objects. They are especially
useful wherever there is a need to handle some multitude as a single entity.

4.2.1 Creating lists

The most straightforward way to create a list is by means of the 1ist function:

list(1, 2, 3)
#r [[1]]

## [1] 1

##

## [[2]]

## [1] 2

##

## [[3]]

## [1] 3

Notice that it is not the same as c(1, 2, 3). We got a sequence that wraps three
numeric vectors, each of length one. More examples:

1ist(1:3, 4, c(TRUE, FALSE, NA, TRUE), "and so forth") # different types
## [[1]]

## [1] 1 2 3

##

## [[2]]

## [1] 4

##

## [[3]]

## [1] TRUE FALSE NA  TRUE

##

## [[4]]

## [1] "and so forth"

1ist(list(c(TRUE, FALSE, NA, TRUE), letters), list(1:3)) # a list of lists
## [[1]]

## [[1]][[1]]

## [1] TRUE FALSE NA  TRUE

##

## [[1]]1[[2]]

g [1] "a” "B "c" "d" "e" U ngh UhU MU nFn mn wp wgn wpw ngw wpu ngw
B [18] "rT ST TET Myt Ty Myt Tt myn g

##

##

## [[2]]

(continues on next page)
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(continued from previous page)

## [[2]][[1]]
## [1] 1 2 3

The display of lists is (un)pretty bloated. However, the str function prints any R object
in a more concise fashion:

str(list(list(c(TRUE, FALSE, NA, TRUE), letters), list(1:3)))
## List of 2

## S :List of 2

## ..S : logi [1:4] TRUE FALSE NA TRUE

## .S : chr [1:26] "a" "b" "c" "d" ...

## S :List of 1

##  ..S :int [1:3] 1 2 3

Note In Section 4.1, we said that the c function, when fed with arguments of mixed
types, tries to determine the common type that retains the sense of data. If coercion
to an atomic vector is not possible, the result will be a list.

c(1, "two", identity) # ‘identity' is an object of the type "function"
## [[1]]

## [1] 1

##H

## [[2]]

## [1] "two"

##H

## [[3]]

## function (x)

## X

## <environment: namespace:base>

Thus, the ¢ function can also be used to concatenate lists:

c(list(1), list(2), list(3)) # three lists -> one list
## [[1]]

## [1] 1

##H

## [[2]]

## [1] 2

##H

## [[3]]

## [1] 3

Lists can be repeated using rep:

rep(list(1:11, LETTERS), 2)
## [[1]]

(continues on next page)
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(continued from previous page)
## [1] 1 2 3 4 5 6 7 8 9 10 11
#H
## [[2]]
23 [A] AT TP et TR O U0 Ggh Opd Op0 Db GpD 0)0 Onm oD oph Opn o
2 Pagy] TP UGT TFT yP oyo opm Gpm Do oo
#H
## [[3]]
## [1] 1 2 3 4 5 6 7 8 9 10 11
##H
## [[4]]
2 4] AT THR 9T TpP CET O O@pe quo Opm Dyn Gen D)0 opo ogo oo opo oo
## [18] "R" "S" "T" "y" "y "w" "X" "y" "z7"

4.2.2 Converting to and from lists

The conversion of an atomic vector to a list of vectors of length one can be done via a
call to as. list:

as.list(c(1, 2, 3)) # vector of length 3 -> list of 3 vectors of length 1
## [[1]]

## [1] 1

##

## [[2]]

## [1] 2

##

## [[3]]

## [1] 3

Unfortunately, calling, say, as.numeric on a list arouses an error, even if it is com-
prised of numeric vectors only. We can try flattening it to an atomic sequence by call-
ing unlist:

unlist(list(list(1, 2), list(3, list(4:8)), 9))

## [1] 123456789

unlist(list(list(1, 2), list(3, list(4:8)), "spam"))

## [1] "1" "2" "3" "q" "5 "6" "7" "8" "spam"

Note (*) Chapter 11 will mention the simplify2array function, which generalises
unlist in a way that can sometimes give rise to a matrix.
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4.3 NULL

NULL, being the one and only instance of the eponymous type, can be used as a place-
holder for an R object or designate the absence of any entities whatsoever.

1ist(NULL, NULL, month.name)

## [[1]]

## NULL

##

## [[2]]

## NULL

##

## [[3]]

## [1] "January" "February" "March" "April” "May
##  [6] "June" "July" "August" "September" "October"
## [11] "November" "December"

"

NULL is different from a vector of length zero because the latter has a type. However,
NULL sometimes behaves like a zero-length vector. In particular, length(NULL) returns
0. Also, c called with no arguments returns NULL.

Testing for NULL-ness can be done with a call to is.null.

Important NULL is not the same as NA. The former cannot be emplaced in an atomic
vector.

c(1, NA, 3, NULL, 5) # here, NULL behaves like a zero-length vector
## [1] 1 NA 3 5

They have very distinct semantics (no value vs a missing value).

Later we will see that some functions return NULL invisibly when they have nothing
interesting to report. This is the case of print or plot, which are called because of
their side effects (printing and plotting).

Furthermore, in certain contexts, replacing content with NULL will actually result in
its removal, e.g., when subsetting a list.

4.4 Object attributes

Lists can embrace many entities in the form of a single item sequence. Attributes, on
the other hand, give means to inject extra data into an object. They are unordered
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key=value pairs, where key is a single string, and value is any R object except NULL.
We can introduce them by calling, amongst others?, the structure function:

x_simple <- 1:10

X <- structure(
x_simple, # the object to be equipped with attributes
attributel="valuel",
attribute2=c(6, 100, 324)

4.4.1 Developing perceptual indifference to most attributes

Let’s see how the foregoing x is reported on the console:

print(x)

## [1] 1 2 3 4 5 6 7 8 9 10
## attr(, "attribute1”)

## [1] "valuel”

## attr(, "attribute?”)

## [1] 6 100 324

The object of concern, 1:10, was displayed first. We need to get used to that. Most of
the time, we suggest to treat the “attr..” parts of the display as if they were printed in
tiny font.

Equipping an object with attributes does not usually change its nature; see, however,
Chapter 10 for a few exceptions. The above x is still treated as an ordinary sequence
of numbers by most functions:

sum(x) # the same as sum(1:10); ‘sum’ does not care about any attributes
## [1] 55

typeof(x) # just a numeric vector, but with some perks

## [1] "integer"

Important Attributes are generally ignored by most functions unless they have spe-
cifically been programmed to pay attention to them.

4.4.2 Butthere are a few use cases

Some R functions add attributes to the return value to sneak extra information that
might be useful, justin case. For instance, na.omit, whose main aim is to remove miss-
ing values from an atomic vector, yields:

% Other ways include the replacement versions of the attr and attributes functions; see Section 9.3.6.
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y <- c(10, 20, NA, 40, 50, NA, 70)
(y_na_free <- na.omit(y))

#4 [1] 10 20 460 50 70

## attr(, "na.action")

## [1] 3 6

## attr(, "class")

## [1] "omit"

We can enjoy the NA-free version of y in further computations:

mean(y_na_free)
## [1] 38

Additionally, the na.action attribute indicates the former whereabouts of the miss-
ing observations:

attr(y_na_free, "na.action") # read the attribute value
## [1] 3 6

## attr(, "class")

## [1] "omit"

We ignore the class part until Chapter 10.

As another example, gregexpr discussed in Chapter 6 searches for a given pattern in
a character vector:

needle <- "spam|durian" # pattern to search for: spam OR durian
haystack <- c("spam, bacon, and durian-flavoured spam", "spammer") # text
(pos <- gregexpr(needle, haystack, perl=TRUE))

## [[1]]

## [1] 1 18 35

## attr(, "match. length")

## [1] 4 6 4

## attr(, "index. type")

## [1] "chars"

## attr(, "useBytes")

## [1] TRUE

##

## [[2]]

## [1] 1

## attr(, "match. length")

## [1] 4

## attr(, "index. type")

## [1] "chars"

## attr(, "useBytes")

## [1] TRUE

We sought all occurrences of the pattern within two character strings. As their number
may vary from string to string, wrapping the results in a list was a good design choice.
Each list element gives the starting positions where matches can be found: there are
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three and one match(es), respectively. Moreover, every vector of positions has a desig-
nated match.length attribute (amongst others), in case we need it.

Exercise 4.2 Create a list with EUR/AUD, EUR/GBE, and EUR/USD exchange rates read
from the euraud-*. csv, eurgbp-*.csv, and eurusd-*.csv files in our data repository>.
Each of its three elements should be a numeric vector storing the currency exchange rates. Further-
more, equip them with currency_from, currency_to, date_from, and date_to attributes.
For example:

#H [1] NA 1.6006 1.6031 NA NA 1.6119 1.6251 1.6195 1.6193 1.6132
#4 [11] NA NA 1.6117 1.6110 1.6188 1.6115 1.6122 NA

## attr(, "currency_from")

## [1] "EUR"

## attr(, "currency_to")

## [1] "AUD"

## attr(, "date_from")

## [1] "2020-01-01"

## attr(, "date_to")

## [1] "2020-06-30"

Such an additional piece of information could be stoved in a few separate variables (other vectors),
but then it would not be as convenient to use as the above representation.

4.4.3 Special attributes

Attributes have great potential which is somewhat wasted, for R users rarely know:
. that attributes exist (pessimistic scenario), or
« how to handle them (realistic scenario).

But we know now.

What is more, certain attributes have been predestined to play a unique role in R.
Namely, the most prevalent amongst the special attributes are:

- names, row.names, and dimnames are used to label the elements of atomic and gen-
eric vectors (see below) as well as rows and columns in matrices (Chapter 11) and
data frames (Chapter 12),

« dimturns flat vectors into matrices and other tensors (Chapter 11),
- levels labels the underlying integer codes in factor objects (Section 10.3.2),

« class canbe used to bring forth new complex data structures based on basic types
(Chapter 10).

We call them special because:

- they cannot be assigned arbitrary values; for instance, we will soon see that names
can accept a character vector of a specific length,

3 hteps://github.com/gagolews/teaching- data/tree/master/marek
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- they can be accessed via designated functions, e.g., names, class, dim, dimnames,
levels, etc.,

« they are widely recognised by many other functions.
However, in spite of the above, special attributes can still be managed as ordinary ones.

Exercise 4.3 comment is perhaps the most rarely used special attribute. Create an object
(whatever) equipped with the comment attribute. Verify that assigning to it anything other than
a character vector leads to an error. Read its value by calling the comment function. Display the
object equipped with this attribute. Note that the print function ignores its existence whatsoever:
this is how special it is.

Important (*) The accessor functions such as names or class might return meaningful
values, even if the corresponding attribute is not set explicitly; see, e.g., Section 11.1.5
for an example.

4.4.4 Labelling vector elements with the names attribute

The special attribute names labels atomic vectors’ and lists’ elements.

(x <- structure(c(13, 2, 6), names=c("spam", "sausage", "celery")))
## spam sausage celery
## 13 2 6

The labels may improve the expressivity and readability of our code and data.

Exercise 4.4 Verify that the above x is still an ordinary numeric vector by calling typeof and
sumonit.

Let’s stress that we can ignore the names attribute whatsoever. If we apply any oper-
ation discussed in Chapter 2, we will garner the same result regardless whether such
extra information is present or not.

Itis just the print function that changed its behaviour slightly. After all, it is a special
attribute. Instead of reporting:

## [1] 13 2 6
## attr(, "names")
#4 [1] "spam" "sausage

non

celery”

we got a nicely formatted table-like display. Non-special attributes are still printed in
the standard way:

structure(x, additional_attribute=1:10)
## spam sausage celery

## 13 2 6

## attr(, "additional_attribute")

#¢ [1] 1 2 3 4 5 6 7 8 910
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Note Chapter 5 will also mention that some operations (such as indexing) gain super-
powers in the presence of the names attribute.

This attribute can be read by calling:

attr(x, "names") # just like any other attribute

## [1] "spam" "sausage" "celery"
names(x) # because it i1s so special
## [1] "spam” "sausage" "celery"

Named vectors can be easily created with the c and 1ist functions as well:

c(a=1, b=2)

## a b

## 12

list(a=1, b=2)

## Sa

## [1] 1

##

## Sb

## [1] 2
c(a=c(x=1, y=2), b=3, c=c(z=4)) # this is smart
## a.x a.y bc.z
## 1 2 3 4

Let’s contemplate how a named list is printed on the console. Again, it is still a list, but
with some extras.

Exercise 4.5 Awhole lot of functions return named vectors. Evaluate the following expressions
and read the corresponding pages in their documentation:

o quantile(runif(100)),
o hist(runif(160), plot=FALSE),
. options() (takenote of digits, scipen, max.print, and width),

o capabilities().

Note (*) Most of the time, lists are used merely as containers for other R objects. This
is a dull yet essential role. However, let’s just mention here that every data frame is,
in fact, a generic vector (see Chapter 12). Each column corresponds to a named list
element:

(df <- head(iris)) # some data frame
##  Sepal.length Sepal.Width Petal.lLength Petal.Width Species

## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa

(continues on next page)
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(continued from previous page)

## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa

typeof(df) # it is just a list (with extras that will be discussed later)
## [1] "list"

unclass(df) # how it is represented exactly (without the extras)
## SSepal.lLength

## [1] 5.1 4.9 4.7 4.6 5.0 5.4

##

## SSepal.Width

## [1] 3.5 3.0 3.2 3.1 3.6 3.9

##

## SPetal.lLength

## [1] 1.4 1.4 1.3 1.5 1.4 1.7

##

## SPetal.Width

## [1] 0.2 0.2 0.2 0.2 0.2 0.4

##

## SSpecies

## [1] setosa setosa setosa setosa setosa setosa
## Levels: setosa versicolor virginica

##

## attr(, "row.names")

## [1] 123456

Therefore, the functions we discuss in this chapter are of use in processing such struc-
tured data, too.

4.4.5 Altering and removing attributes

We know that a single attribute can be read by calling attr. Their whole list is gener-
ated with a call to attributes.

(x <- structure(c("some", "object"), names=c("X", "Y"),
attributel="valuel", attribute2="value2", attribute3="value3"))
## X 14
##  "some" "object"
## attr(, "attribute1”)
#4 [1] "valuel”
## attr(, "attribute2")
## [1] "value2"
## attr(, "attribute3”)
## [1] "value3"
attr(x, "attributel") # reads a single attribute, returns NULL if unset
## [1] "valuel”
attributes(x) # returns a named list with all attributes of an object
## Snames
(continues on next page)
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(continued from previous page)

## [1] "X" "y"
#H

## Sattributel
## [1] "valuel"
##

## Sattribute?
## [1] "value2"
#H

## Sattribute3
## [1] "value3"

We can alter an attribute’s value or add further attributes by referring to the struc-
ture function once again. Moreover, setting an attribute’s value to NULL gets rid of it
completely.

structure(x, attributel=NULL, attribute4="added", attribute3="modified")
## X 14

##  "some" "object"

## attr(, "attribute2")

## [1] "value2"

## attr(, "attribute3”)

## [1] "modified"

## attr(, "attribute4")

## [1] "added"

As far as the names attribute is concerned, we may generate an unnamed copy of an
object by calling:

unname(x)

#4 [1] "some" "object"
## attr(, "attribute1”)
## [1] "valuel"

## attr(, "attribute2"”)
## [1] "value2"

## attr(, "attribute3")
#4 [1] "value3"

In Section 9.3.6, we will introduce replacement functions. They will enable us to modify or
remove an object’s attribute by calling “attr(x, "some_attribute") <- new_value”.

Moreover, Section 5.5 highlights that certain operations (such as vector indexing, ele-
mentwise arithmetic operations, and coercion) might not preserve all attributes of the
objects that were given as their inputs.
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4.5 Exercises
Exercise 4.6 Provide an answer to the following questions.
« What is the meaning of c(TRUE, FALSE)*1:10?
o What does sum(as. logical(x)) compute when x is a numeric vector?

We said that atomic vectors of the type character are the most general ones. Therefore, is
as.numeric(as.character(x)) the same as as.numeric(x), regardless of the type of
x?

« What is the meaning of as. logical (x+y) if x and y are logical vectors? What about as.
logical(x*y),as.logical(1-x),andas. logical(x!=y)?

« What is the meaning of the following when x is a logical vector?

cummin(x) and cummin(!x),

cummax(x) and cummax(!x),

cumsum(x) and cumsum(!x),

cumprod(x) and cumprod(!x).

« Let x be a named numeric vector, e.g., “x <- quantile(runif(100))”. What is the
result of 2*x, mean(x), and round(x, 2)?

o What is the meaning of x == NULL?
« Give two ways to create a named character vector.

- Give two ways (discussed above; there are more) to remove the names attribute from an ob-
ject.

Exercise 4.7 There are a few peculiarities when joining or coercing lists. Compare the results
generated by the following pairs of expressions:

# 1)

as.character(list(list(1, 2), list(3, list(4)), 5))
as.character(unlist(list(list(1, 2), list(3, list(4)), 5)))
#2)

as.numeric(list(list(1, 2), list(3, list(4)), 5))
as.numeric(unlist(list(list(1, 2), list(3, list(4)), 5)))
# 3)

unlist(list(list(1, 2), sd))

list(1, 2, sd)

# 4)

c(list(c(1, 2), 3), 4, 5)

c(list(c(1, 2), 3), c(4, 5))

Exercise 4.8 Given numericvectors x, y, z, and w, how to combine x, y, and list(z, w) soas
to obtain list(x, y, z, w)? More generally, given a set of atomic vectors and lists of atomic
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vectors, how to combine them to obtain a single list of atomic vectors (not a list of atomic vectors
and lists, not atomic vectors unwound, etc.)?

Exercise 4.9 saveRDS serialises R objects and writes their snapshots to disk so that they can be
restored via a call to readRDS at a later time. Verify that this function preserves object attributes.
Also, check out dput and dget which work with objects’ textual representations in the form of
executable R code.

Exercise 4.10 () Use jsonlite: :fromJSONtoread a JSON file in the form of a named list.

In the extremely unlikely event of our finding the current chapter boring, let’s rejoice:
some of the exercises and remarks that we will encounter in the next part, which is
devoted to vector indexing, will definitely be mouthwatering.



5

Vector indexing

We now know plenty of ways to process vectors in their entirety, but how to extract and
replace their specific parts? We will be collectively referring to such activities as index-
ing. This is because they are often performed through the index operator, [ .

5.1 headand tail

Let’s begin with something more lightweight, though. The head function fetches a few
elements from the beginning of a vector.

x <- 1:10

head(x) # head(x, 6)

## [1] 123456

head(x, 3) # get the first three
## [1] 1 2 3

head(x, -3) # skip the last three
## [1] 1234567

Similarly, tail extracts a couple of items from the end of a sequence.

tall(x) # tail(x, 6)

## [1] 5 6 7 8 9 10

tail(x, 3) # get the last three
## [1] 8 9 10

tail(x, -3) # skip the first three
# [1] 4 5 6 7 8 9 10

Both functions work on lists too’. They are useful for previewing the contents of really
big objects. Also, they never complain about our trying to fetch supernumerary ele-
ments:

head(x, 100) # no more than the first 100 elements
## [1] 1 2 3 4 5 6 7 8 910

! head and tail are actually S3 generics defined in the utils package. We can call them on matrices and
data frames, too; see Chapter 10.
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5.2 Subsetting and extracting from vectors

Let x be a vector. Then x[ 1] returns its subset comprised of elements indicated by the
indexer i, which can be a single vector of:

- nonnegative integers (gives the positions of elements to retrieve),
- negative integers (gives the positions to omit),
- logical values (states which items should be fetched or skipped),

« character strings (locates the elements with specific names).

5.2.1 Nonnegative indexes

Consider example vectors:

(x <- seq(10, 100, 10))

## [1] 10 20 30 40 50 60 70 80 90 100
(y <- list(1, 11:12, 21:23))
## [[1]]

## [1] 1

##

## [[2]]

## [1] 11 12

##

## [[3]]

## [1] 21 22 23

The first element in a vector is at index 1. Hence:

x[1] # the first element
## [1] 10
x[length(x)] # the last element
## [1] 100

Important We might have wondered why “[1]” is displayed each time we print out
an atomic vector on the console:

print((1:51)*10)

## [1] 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 1760
#4 [18] 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340
## [35] 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 5160

It is merely a visual hint indicating which vector element we output at the beginning
of each line.
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Vectorisation is a universal feature of R. It comes as no surprise that the indexer can
also be of length greater than one.

x[c(1, length(x))] # the first and the last
#4 [1] 10 100

x[1:3] # the first three

## [1] 10 20 30

Take note of the boundary cases:

x[c(1, 2, 1, 0, 3, NA_real_, 1, 11)] # repeated, 0, missing, out of bound
#4 [1] 10 20 10 30 NA 10 NA

x[c()] # indexing by an empty vector

## numeric(0)

When applied on lists, the index operator always returns a list as well, even if we ask
for a single element:

y[2] # a list that includes the second element

## [[1]]

## [1] 11 12

y[c(1, 3)] # not the same as x[1, 3] (a different story)

## [[1]]
## [1] 1
##

## [[2]]
## [1] 21 22 23

If we want to extract a component, i.e., to dig into what is inside a list at a specific
location, we can refer to “[[:

y[[2]] # extract the second element
#4 [1] 11 12

This is exactly why R displays “[[1]]”, “[[2]]”, etc. when lists are printed.

Onasidenote, calling x[ [ 1]] on an atomicvector, where 1 is a single value, has almost?
the same effect as x[1]. However, "[[* generates an error if the subscript is out of
bounds.

Important Let’s reflect on the operators’ behaviour in the case of nonexistent items:

c(1, 2, 3)[4]
## [1] NA
list(1, 2, 3)[4]
## [[1]]
## NULL
(continues on next page)

% See also Section 5.5 for the discussion on the preservation of object attributes.
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(continued from previous page)
c(1, 2, 3)[[4]]
##4 Error in c(1, 2, 3)[[4]]: subscript out of bounds
list(1, 2, 3)[[4]]
## Error in list(1, 2, 3)[[4]]: subscript out of bounds

Note (*) '[[" also supports multiple indexers.

y[[e(1, 3)1]
## Error in y[[c(1, 3)]]: subscript out of bounds

Its meaning is different from y[c(1, 3)], though; we are about to extract a single
value, remember? Here, indexing is applied recursively. Namely, the above is equivalent
toy[[1]]1[[3]]. We got an error because y[[1]] is of a length smaller than three.

More examples:

y[[c(3, 111 # y[[3]][[1]]

## [1] 21

Tist(list(7))[[c(1, 1)]] # 7, not list(7)
## [1] 7

5.2.2 Negative indexes

The indexer can also be a vector of negative integers. This way, we can exclude the ele-
ments at given positions:

y[-1] # all but the first

## [[1]]

## [1] 11 12

##

## [[2]]

## [1] 21 22 23

x[-(1:3)] # all but the first three

#4 [1] 40 50 60 70 860 90 100

x[-c(1, 0, 2, 1, 1, 8:100)] # 0, repeated, out of bound indexes
## [1] 30 40 50 60 70

Note Negative and positive indexes cannot be mixed.

x[-1:3] # recall that -1:3 == (-1):3
## Error in x[-1:3]: only 0's may be mixed with negative subscripts

Also, NA indexes cannot be mixed with negative ones.
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5.2.3 Logicalindexer

Avector can also be subsetted by means of a logical vector. If they both are of identical
lengths, the consecutive elements in the latter indicate whether the corresponding
elements of the indexed vector are supposed to be selected (TRUE) or omitted (FALSE).

# 1*** 2 3 4 5*** 6*** 7 8*** 9.7 10***
x[c(TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, NA, TRUE)]
## [1] 10 50 60 80 NA 100

In other words, x[ 1], where 1is a logical vector, returns all x[ 1] with 1 such that 1[1]
is TRUE. We thus extracted the elements at indexes 1, 5, 6, 8, and 10.

Important Be careful: if the element selector is NA, we will get a missing value (for
atomic vectors) or NULL (for lists).

c("one", "two", "three")[c(NA, TRUE, FALSE)]
## [1] NA "two"

list("one", "two", "three")[c(NA, TRUE, FALSE)]
w# [[1]]

## NULL

##

w# [[2]]

## [1] "two"

This, lamentably, comes with no warning, which might be problematic when indexers
are generated programmatically. As a remedy, we sometimes pass the logical indexer
to the which function first. It returns the indexes of the elements equal to TRUE, ignor-
ing the missing ones.

which(c(NA, TRUE, FALSE, TRUE, FALSE, NA, TRUE))
#p [1] 2 4 7

c("one", "two", "three")[which(c(NA, TRUE, FALSE))]
## [1] "two"

Recall that in Chapter 3, we discussed ample vectorised operations that generate lo-
gical vectors. Anything thatyields alogical vector of the same length as x can be passed
as an indexer.

X > 60 # yes, it is a perfect indexer candidate

## [1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE

x[x > 60] # select elements in ‘x' that are greater than 60

## [1] 70 80 90 100

x[x < 30 | 70 < x] # elements not between 30 and 70

## [1] 10 20 80 90 100

x[x < mean(x)] # elements smaller than the mean

## [1] 10 20 30 40 50

x[x"2 > 7777 | logl0(x) <= 1.6] # indexing via a transformed version of ‘x'
(continues on next page)
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(continued from previous page)
## [1] 10 20 30 90 100
(z <- round(runif(length(x)), 2)) # ten pseudorandom numbers
## [1] 0.29 0.79 0.41 0.88 0.94 0.05 0.53 0.89 0.55 0.46
x[z <= 0.5] # indexing based on ‘z°, not ‘x': no problem
## [1] 10 30 60 100

The indexer is always evaluated first and then passed to the subsetting operation. The
index operator does not care how an indexer is generated.

Furthermore, the recycling rule is applied when necessary:

x[c(FALSE, TRUE)] # every second element
#4 [1] 20 40 60 80 100
y[c(TRUE, FALSE)] # interestingly, there is no warning here

## [[1]]
## [1] 1
#t

## [[2]]
## [1] 21 22 23

Exercise 5.1 Consider a simple database about six people, their favourite dishes, and birth
years.

name <- c("Graham", "John", "Terry", "Eric", "Michael", "Terry")
food <- c("bacon", ‘"spam", "spam", '"eggs", ‘"spam", "beans")
year <- c( 1941, 1939, 1942, 1943, 1943, 1940 )

The consecutive elements in different vectors correspond to each other, e.g., Graham was born in
1941, and his go-to food was bacon.

« List the names of people born in 1941 or 1942.

« Listthe names of those who like spam.

« List the names of those who like spam and were born after 1940.

- Compute the average birth year of the lovers of spam.

- Give the average age, in 1969, of those who didn't find spam utmostly delicious.

The answers must be provided programmatically, i.e., do not just write "Eric" and "Graham".
Make the code generic enough so that it works in the case of any other database of this kind, no
matter its size.

Exercise 5.2 Remove missing values from a given vector without referring to na. omit.

5.2.4 Characterindexer

Let’s consider a vector equipped with the names attribute:
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X <- structure(x, names=letters[1:10]) # add names
print(x)

## a b ¢ d e f g h 1 j

# 10 20 30 40 50 60 70 80 90 100

These labels can be referred to when extracting the elements. To do this, we use an
indexer that is a character vector:

X[C(”a”’ H_FII, IVaH’ IIgH’ "Z”)]
##t a f a g <NA>
## 10 60 10 70 NA

Important We have said that special object attributes add extra functionality on top
of the existing ones. Therefore, indexing by means of positive, negative, and logical
vectors is still available:

x[1:3]

# a b c

## 10 20 30

x[-(1:5)]

# f g h T j
# 60 70 80 90 100
x[x > 70]

# h 1 j

## 80 90 100

Lists can also be subsetted this way.

(y <- structure(y, names=c("first", "second", "third")))
## Sfirst
#w# [1] 1
##
## Ssecond
## [1] 11 12
##
## Sthird
## [1] 21 22 23
ylc("first", "second")]
## Sfirst
## [1] 1
##
## Ssecond
## [1] 11 12
y["third"] # result is a list
## Sthird
## [1] 21 22 23
(continues on next page)
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(continued from previous page)

y[["third"]] # result is the specific element unwrapped
## [1] 21 22 23

Important Labels do not have to be unique. When we have repeated names, the first
matching element is extracted:

structure(c(1, 2, 3), names=c("a", "b", "a"))["a"]
## a
## 1

There is no direct way to select all but given names, just like with negative integer in-
dexers. For a workaround, see Section 5.4.1.

Exercise 5.3 Rewrite the solution to Exercise 5.1 assuming that we now have three features
wrapped inside a list.

(people <- list(
Name=c("Graham", "John", "Terry", "Eric", "Michael", "Terry", "Steve"),

Food=c("bacon", "spam", "spam", ‘'eggs", "spam", "beans", "spam"),
Year=c( 1941, 1939, 1942, 1943, 1943, 1940, NA_real_)
J))
## SName
## [1] "Graham" "John" "Terry" "Eric" "Michael" "Terry" "Steve"
##
## SFood
## [1] "bacon" "spam" "spam" ‘"eggs" "spam" "beans" "spam"
##
## SYear

## [1] 1941 1939 1942 1943 1943 1940 NA

Do not refer to name, food, and year directly. Instead, use the full people[[ "Name "] ] etc. ac-
cessors. There is no need to pout: it is just a tiny bit of extra work. Also, notice that Steve has joined
the group; hello, Steve.

5.3 Replacing elements
5.3.1 Modifying atomic vectors

There are also replacement versions of the aforementioned indexing schemes. They al-
low us to substitute some new content for the old one.

(x <- 1:12)
## [1] 1 2 3 4 5 6 7 8 910 11 12

(continues on next page)
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(continued from previous page)
x[length(x)] <- 42 # modify the last element
print(x)
## [1] 1 2 3 4 5 6 7 8 910 11 42

The principles of vectorisation, recycling rule, and implicit coercion are all in place:

x[c(TRUE, FALSE)] <- c("a", "b", "c")
print(x)
g% [1] "a" "2" "h" 4" "¢’ Ugn fgU ngn npt nggn "t ngpv

Long story long: first, to ensure that the new content can be poured into the old wine-
skin, R coerced the numeric vector to a character one. Then, every second element
therein, a total of six items, was replaced by a recycled version of the replacement se-
quence of length three. Finally, the name x was rebound to such a brought-forth object
and the previous one became forgotten.

Note For more details on replacement functions in general, see Section 9.3.6. Such
operations alter the state of the object they are called on (quite rare a behaviour in
functional languages).

Exercise 5.4 Replace missing values in a given numeric vector with the arithmetic mean of its
well-defined observations.

5.3.2 Modifying lists

List contents can be altered as well. For modifying individual elements, the safest op-
tion is to use the replacement version of the "[ [ operator:

y <- list(a=1, b=1:2, c=1:3)
y[[1]] <- 100:110

y[["c"1] <- -y[["c"]]
print(y)

## Sa

## [1] 100 101 102 103 104 105 106 107 108 109 110
##

## Sb

## [1] 1 2

##

## Sc

## [1] -1 -2 -3

The replacement version of " [ modifies a whole sub-list:

y[1:3] <- list(1, c("a", "b", "c"), c(TRUE, FALSE))

print(y)
## Sa
(continues on next page)
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(continued from previous page)
## [1] 1
#H
## Sb
## [1] "a" "b" "c"
##
## Sc
## [1] TRUE FALSE

Moreover:

y[1] <- 1ist(1:10) # replace one element with one object
y[-1] <- 10:11 # replace two elements with two singletons
print(y)

## Sa

## [1] 1 2 3 4 5 6 7 8 910

##

## Sb

## [1] 10

##

# Sc

## [1] 11

Note Let i be a vector of positive indexes of elements to be modified. Overall, calling
“y[1] <- z” behaves as if we wrote:

Loy[[ i[1] 1] <- z[[1]],
2. y[[ i[2] 11 <- z[[2]],
3. yI[ 03] 11 <- z[[3]],
and so forth.

Furthermore, z (but not i) will be recycled when necessary. In other words, we retrieve
z[[j %% length(z)]] for consecutive js from 1 to the length of 1.

Exercise 5.5 Reflect on the results of the following expressions:
. y[1] <- C(”a”, ”bll’ HC”))
. y[[l]] <- C(”a/lJ Hb”) ”C”),

e y[[1]] <- list(c("a", "b", "c")),
e y[1:3] <- ¢("a", "b", "c"),

e y[1:3] <- list(c("a", "b", "c")),
e y[1:3] <- "a"

o y[1:3] <- list("a"),
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R y[C(l, 2’ 1)] <- C(”G", ”b”, IICH).

Important Setting a list item to NULL removes it from the list completely.

y <- list(1, 2, 3, 4)

y[1] <- NULL # removes the first element (i.e., 1)

y[[1]] <- NULL # removes the first element (i.e., now 2)

y[1] <- Uist(NULL) # sets the first element (i.e., now 3) to NULL
print(y)

## [[1]]

## NULL

##

## [[2]]

## [1] 4

The same notation convention is used for dropping object attributes; see Section 9.3.6.

5.3.3 Inserting new elements

New elements can be pushed at the end of the vector easily®.

(x <- 1:5)

## [1] 12345

x[length(x)+1] <- 6 # insert at the end

print(x)

## [1] 123456

x[10] <- 10 # insert at the end but add more items
print(x)

## [1] 1 2 3 4 5 6 NA NA NA 10

The elements to be inserted can be named as well:

x["a"] <- 11 # still inserts at the end

x["z"] <- 12

x["c"] <- 13

x["z"] <- 14 # z is already there; replace
print(x)

## a z c¢

## 1 2 3 4 5 6 NA NA NA 10 11 14 13

Note that x was not equipped with the names attribute before. The unlabelled elements
were assigned blank labels (empty strings).

Note It is not possible to insert new elements at the beginning or in the middle of a
sequence, at least not with the index operator. By writing “x[3:4] <- 1:5”we do not

3 And often cheaply; see Section 8.3.5 for performance notes. Still, a warning can be generated on each
size extension if the "check.bounds" flag is set; see help("options").
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replace two elements in the middle with five other ones. However, we can always use
the c function to slice parts of the vector and intertwine them with some new content:

X <- seq(10, 100, 10)

X <- c(x[1:2], 1:5, x[5:7])

print(x)

## [1] 10 206 1 2 3 4 5 50 60 70

5.4 Functions related to indexing

Let’s review a few operations which pinpoint interesting elements in a vector (or func-
tions based on these).

5.4.1 Matching elements in another vector

We know that the “==" operator acts in an elementwise manner. It compares each ele-
ment in a vector on its left side to the corresponding element in a vector on the right
side. Thus, missing values and the recycling rule aside, if “z <- (x == y)”, thenz[1]
is TRUE if and only if x[1] is equal to y[1].

The “%in%" operator* is vectorised differently. It checks whether each element on the
left-hand side matches one of the elements on the right. Given “z <- (x %in% y)”,
z[1] is TRUE whenever x[ 1] is equal to y[ j] for some j.

c("spam", "bacon”, "spam", "eggs", "spam") %in% c("eggs", "spam", "ham")
## [1] TRUE FALSE TRUE TRUE TRUE

Example 5.6 Here is how we can remove the elements of a vector that have been assigned spe-
cified labels.

(x <- structure(1:12, names=month.abb)) # example vector

## Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

## 1 2 3 4 5 6 7 8 9 10 11 12

x[!(names(x) %in% c("Jan", "May", "Sep", "Oct"))] # get rid of some elements
## Feb Mar Apr Jun Jul Aug Nov Dec

## 2 3 4 6 7 8 11 12

More generally, match(x, y) gives us the index of the element in y that matches each
x[1].

match(c("spam”, "bacon", "spam", "eggs", "spam"), c("eggs", "spam", "ham"))
## [1] 2 NA 2 1 2
(continues on next page)

4 A fantastic name; see Section 9.3.5.
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(continued from previous page)

match(month.abb, c("Jan", "May", "Sep", "Oct")) # is the month on the list?
#4 [1] 1 NANANA 2 NANANA 3 4 NA NA

match(c("Jan", "May", "Sep", "Oct"), month.abb) # which month is it?

## [1] 1 5 9 10

By default, a missing value denotes a no-match.

Exercise 5.7 Check outthe documentation of “%in%" to see how this operator is reduced to a call
to match. Also, verify that it treats missing values as well-defined ones.

If the elements in y are not unique, the smallest index j such that x[1] == y[j]is
returned. Therefore, for example, match(TRUE, 1) fetches the index of the first occur-
rence of a positive value in a logical vector 1.

(x <- round(runif(10), 2)) # example vector

## [1] 0.29 0.79 0.41 0.88 0.94 0.05 0.53 0.89 0.55 0.46
match(TRUE, x>0.8) # index of the first value > 0.8 (from the left)
## [1] 4

5.4.2 Assigning numbers into intervals

findInterval can come in handy where the assigning of numeric values into real in-
tervals is needed. Namely, z <- findInterval(x, y) for increasing y gives z[1]
being the index j such that x[1] is between y[j] (by default, inclusive) and y[j+1]
(by default, exclusive).

For example, a sequence of five knotsy = (—o0,0.25,0.5,0.75, co) splits the real line
into four intervals:

[—o0,0.25) [0.25,0.5) [0.5,0.75) [0.75,00)
® @ ©) @

Hence, for instance:

findInterval(c(0, 0.2, 0.25, 0.4, 0.66, 1), c(-Inf, 0.25, 0.5, 0.75, Inf))
## [1] 1122 34

Exercise 5.8 Referto the manual of findInterval toverify the function’s behaviour when we
do notinclude + oo as endpoints and how to make o classified as a member of the fourth interval.

Exercise 5.9 Using a call to findInterval, compose a statement that generates a logical vec-
tor whose i-th element indicates whether x[ 1] is in the interval [0.25,0.5]. Was this easier to
write than an expression involving “<="and ">="?

5.4.3 Splitting vectors into subgroups

split(x, z) can take the output of match or findInterval (and many other opera-
tions) and divide the elements in a vector x into subgroups corresponding to identical
zs.
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For instance, we can assign people into groups determined by their favourite dish:

name <- c("Graham", "John", "Terry", "Eric", "Michael", "Terry")
food <- c("bacon", 'spam", "spam", 'eggs", "spam", "beans")
split(name, food) # group names with respect to food

## Sbacon

## [1] "Graham"

##

## Sbeans

## [1] "Terry"

##

## Seggs

## [1] "Eric”

##

## Sspam

## [1] "John" "Terry"  "Michael”

The result is a named list with labels determined by the unique elements in the second
vector.

Here is another example, where we pigeonhole some numbers into the four previously
mentioned intervals:

X <- c(0, 0.2, 0.25, 0.4, 0.66, 1)
split(x, findInterval(x, c(-Inf, 0.25, 0.5, 0.75, Inf)))
#S1

# [1] 0.0 0.2

##

# S 2"

## [1] 0.25 0.40

##

## 53"

## [1] 0.66

##

#wW s'4°

## [1] 1

Items in the first argument that correspond to missing values in the grouping vector
will be ignored. Also, unsurprisingly, the recycling rule is applied when necessary.

We can also split x into groups defined by a combination of levels of two or more vari-
ables z1, z2, etc., by calling split(x, list(z1l, z2, ...)).

Example5.10 The ToothGrowth dataset is a named list (more precisely, a data frame; see
Chapter 12) that represents the results of an experimental study involving 60 guinea pigs. The
experiment’s aim was to measure the effect of different vitamin C supplement types and doses
on the growth of the rodents’ teeth Lengths:

ToothGrowth <- as.list(ToothGrowth) # it is a list, but with extra attribs
ToothGrowth[["supp"]] <- as.character(ToothGrowth[["supp"]]) # was: factor
(continues on next page)
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(continued from previous page)
print(ToothGrowth)
## Slen
# [1] 4.2 11.5 7.3 5.8 6.4 10.0 11.2 11.2 5.2 7.0 16.5 16.5 15.2 17.3
## [15] 22.5 17.3 13.6 14.5 18.8 15.5 23.6 18.5 33.9 25.5 26.4 32.5 26.7 21.5
## [29] 23.3 29.5 15.2 21.5 17.6 9.7 14.5 10.0 8.2 9.4 16.5 9.7 19.7 23.3
## [43] 23.6 26.4 20.0 25.2 25.8 21.2 14.5 27.3 25.5 26.4 22.4 24.5 24.8 30.9
## [57] 26.4 27.3 29.4 23.0
##
## Ssupp
## [1] "vc" "vc" "vc" "vc" "vc" "vc" o "vc" "ve" "ve" 've' 've' 've' "ve' o 've"
## [15] "vc" "vc" "vc" "vc" "vc" "vc" "ve' otve" 've' "ve' 've' tve' 've' 've'
## [29] "vc" "vc" "oJ" "oJ" "oJ" "03" "03" "03" "0J" "0J" "0J" "0J" "0J" "0J"
## [43] "0J" "oJ" "oJ" "oJ" "o3" "o3" "03" "03" "0J3" "0J" "0J" "0J" "0J" "0J"
## [57] "03" "0J" "0J" "03"
##
## Sdose
## [1] 6.5 0.5 0.5 0.5 0.50.50.50.50.50.51.0 1.0 1.0 1.0 1.0 1.0 1.0
## [18] 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 0.5 0.5 0.5 0.5
## [35] 6.5 0.5 0.5 0.50.50.51.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0
## [52] 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

We can split Len with respect to the combinations of supp and dose (also called interactions)
by calling:

split(ToothGrowth[["len"]], ToothGrowth[c("supp", "dose")], sep="_")
## $07 0.5

## [1] 15.2 21.5 17.6 9.7 14.5 10.0 8.2 9.4 16.5 9.7
##

## SVC 0.5

## [1] 4.2 11.5 7.3 5.8 6.4 10.0 11.2 11.2 5.2 7.0
##

## $0J 1

## [1] 19.7 23.3 23.6 26.4 20.0 25.2 25.8 21.2 14.5 27.3
##

## SVC_1

## [1] 16.5 16.5 15.2 17.3 22.5 17.3 13.6 14.5 18.8 15.5
##

## $0J 2

## [1] 25.5 26.4 22.4 24.5 24.8 30.9 26.4 27.3 29.4 23.0
##

## SVC_2

## [1] 23.6 18.5 33.9 25.5 26.4 32.5 26.7 21.5 23.3 29.5

Othersynonyms are, of course, possible, e.g., split(ToothGrowth[[1]], ToothGrowth[-1])
and split(ToothGrowth[[1]], Ulist(ToothGrowth[[2]], ToothGrowth[[3]])).
We recommend meditating upon our conscious use of double vs single square brackets here.

Functions such asMap (Section 7.2) will soon enable us to compute any summary statistics within
groups, e.g., the group averages like those obtained by executing “SELECT AVG(len) FROM



80 | DEeep

ToothGrowth GROUP BY supp, dose”inSQL. Asan appetiser, let’s pass a list of vectors to
the boxplot function; see Figure 5.1.

boxplot(split(ToothGrowth[["len"]], ToothGrowth[c("supp", "dose")], sep="_"))
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Figure 5.1. Box-and-whisker plots of len split by supp and dose in ToothGrowth.

Note unsplit revokes the effects of split. Later, we will get used to calling un-
split(Map(some_transformation, split(x, z)), z) tomodify the valuesin x in-
dependently in each group defined by z (e.g., standardise the variables within each
class separately).

5.4.4 Ordering elements

The order function finds the ordering permutation of a given vector, i.e., a sequence
of indexes that leads to a sorted version thereof.

x <- c(1024, 7, 42, 666, 0, 32787)

(o <- order(x)) # the ordering permutation of x
## [1] 523416

x[o] # the ordered version of x

## [1] o 7 42 666 1024 32787

Note that o[ 1] is the index of the smallest element in x, o[2] is the position of the
second smallest, ..., and o[ length(o)] is the index of the greatest value. Hence, e.g.,
x[0[1]] is equivalent to min(x).

Another example:
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nan "

x <- c("b", "a", "abs
(o <- order(x))

## [1] 2756 314
x[o]

#4 [1] "a" "aaaargh" "aaargh" "aargh"

, "bass", "aaargh", "aargh", "aaaargh")

"

abs" "hi "hass"

Here, as x is a character vector, the ordering is lexicographical (like in a dictionary).
This is exactly how “<=" on strings works.

Note The ordering permutation that order returns is unique (that is why we call it the
permutation), even for inputs containing duplicated elements. Owing to the use of a
stable sorting algorithm, ties (repeated elements) will be listed in the order of occur-
rence.

order(c(10, 20, 40, 10, 10, 30, 20, 10, 10))
## [1] 145892763

We have, e.g., five 10s at positions 1, 4, 5, 8, and 9. These five indexes are guaranteed
to be listed in this very order.

Ordering can also be performed in a nonincreasing manner:

x[order(x, decreasing=TRUE)]
## [1] "bass" "b" "abs" "aargh” "aaargh" "aaaargh" "a

"

Note A callto sort(x) is equivalent to x[order(x)], but the former function can be
faster in certain scenarios. For instance, one of its arguments can induce a partially
sorted vector which can be helpful if we only seek a few order statistics (e.g., the seven
smallest values). Speed is rarely a bottleneck in the case of sorting (when it is, we have
aproblem!). This is why we will not bother ourselves with such topics until the last part
of this pleasant book. Currently, we aim at expanding our skill repertoire so that we
can implement anything we can think of.

Exercise 5.11 is.unsorted(x) determines if the elements in x are... not sorted with respect
to “<=". Write an R expression that generates the same result by referring to the order function.
Also, assuming that x is numeric, do the same by means of a call to diff.

order also accepts one or more arguments via the dot-dot-dot parameter, *...". This
way, we can sort a vector with respect to many criteria. If there are ties in the first
variable, they will be resolved by the order of elements in the second variable. This is
most useful for rearranging rows of a data frame, which we will exercise in Chapter 12.

x <- c("a", "b", "a", "a", "b", "b")
y <- c( 60, 40, 10, 30, 50, 20)
Xy <- paste@(x, y) # elementwise concatenate; see next chapter
(continues on next page)



82 | DEeep
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xy[order(x)] # ordered by x
## [1] "a60" "a10” "a30" "b40" "b50" "b20"
xy[order(y)] # ordered by y
## [1] "a10" "b20" "a30" "b40" "b50" "a6d"
xy[order(x, y)] # ordered by x (primary) and y (secondary key)
## [1] "a10” "a30" "a60" "b20" "b40" "b50"

Note (*) We represent a permutation with a vector that is an arbitrary arrangement
of n consecutive natural numbers. A composition (product) of two permutations can
be determined using simple vector indexing:

(o1 <- order(y))

## [1] 3642 51

(02 <- order(x[o1]))

## [1] 136245

ol[o02] # permutation composition (not the same as o2[o1])
## [1] 341625

xy[ o1[02] ] # same as (xy[ol])[o02]

## [1] "a10" "a30" "a60" "b20" "b40" "b50"

Note (*)Calling order on a permutation determines its inverse.

z <- c(10, 30, 40, 20, 10, 10, 50, 30)

(o <- order(z))

## [1] 15642837

order(o) # the inverse of the above permutation
## [1] 15742386

o[order(o)] # the identity permutation

## [1] 12345678

order(o)[o] # the identity permutation again
## [1] 12345678

(z[o])[order(o)] # we get z again

## [1] 10 30 460 20 10 10 50 30

Note that order(order(z)) can be considered as a way to rank all the elements in z.
For instance, the third value in z, 40, is assigned rank 7: it is the seventh smallest value
in this vector. This breaks the ties on a first-come, first-served basis. But we can also
write:

order(order(z, runif(length(z)))) # ranks with ties broken at random
## [1] 25743186

For different variations of these, see the rank function.

Exercise 5.12 Recall that sample(x) returns a pseudorandom permutation of elements of a
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given vector unless x is a single positive number. Write an expression that always produces a
proper rearrangement, regardless of the size of x.

5.4.5 Identifying duplicates

Whether any element in a vector was already listed in the previous part of the sequence
can be verified by calling:

x <- c(10, 20, 30, 20, 40, 50, 50, 50, 20, 20, 60)
duplicated(x)
## [1] FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE FALSE

This function can be used to remove repeated observations; see also unique. This func-
tion returns a value that is not guaranteed to be sorted (unlike in some other lan-
guages/libraries).

Exercise 5.13 What can be the use case of a call tomatch(x, unique(x))?

Exercise 5.14 Given two named lists x and y, which we treat as key-value pairs, determine their
set-theoretic union (with respect to the keys). For example:

x <- list(a=1, b=2)
y <- list(c=3, a=4)

Z <- ...to.do... # combine x and y
str(z)
## List of 3

#4 S a: num 4
## S b: num 2
## S c: num 3

5.4.6 Counting index occurrences

tabulate takes a vector of values from a set of small positive integers (e.g., indexes)
and determines their number of occurrences:

X <- C(ZJ 4: 6; 2; 2: 2: 3: 6; 6: 3)
tabulate(x)
## [1] 04210 3

In other words, there are o ones, 4 twos, ..., and 3 sixes.

Exercise 5.15 Using a call to tabulate (amongst others), return a named vector with the num-
ber of occurrences of each unique element in a character vector. For example:

y <- ¢c('a’, "b", "a", "c’, "a", "d", "e", "e", 'g", "g", "c", 'c", "g")
result <- ...to.do...

print(result)

#abcdeg

## 313123
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5.5 Preserving and losing attributes

Attributes are conceived of as extra data. It is thus up to a function’s authors what they
will decide to do with them. Generally, it is safe to assume that much thought has been
putinto the design of base R functions. Oftentimes, they behave fairly reasonably. This
is why we are now going to spend some time now exploring their approaches to the
handling of attributes.

Namely, for functions and operators that aim at transforming vectors passed as their
inputs, the assumed strategy may be to:

- ignore the input attributes completely,
« equip the output object with the same set of attributes, or
- take care only of a few special attributes, such as names, if that makes sense.

Below we explore some common patterns; see also Section 1.3 of [69].

5.51 cC

First, c drops® all attributes except names:

(x <- structure(1:4, names=c("a", "b", "c", "d"), attrib1="<3"))
## abcd

## 12 3 4

## attr(, "attrib1"”)

## [1] "<3"

c(x) # only ‘names' are preserved

# abcd

# 12 3 4

We can therefore end up calling this function chiefly for this nice side effect. Also, recall
that unname drops the labels.

unname(x)

## [1] 12 3 4

## attr(, "attrib1")
## [1] "<3"

5.5.2 as.something

as.vector, as.numeric, and similar drop all attributes in the case where the output
is an atomic vector, but it might not necessarily do so in other cases (because they are
S3 generics; see Chapter 10).

5 To be precise, we mean the default S3 method of c here; compare Section 10.2.4.
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as.vector(x) # drops all attributes if x is atomic
## [1] 12 3 4

5.5.3 Subsetting

Subsetting with “[* (except where the indexer is not given) drops all attributes but
names (as well as dim and dimnames; see Chapter 11), which is adjusted accordingly:

x[1] # subset of labels

## a

## 1

x[[1]] # this always drops the labels (makes sense, right?)
## [1] 1

The replacement version of the index operator modifies the values in an existing vector
whilst preserving all the attributes. In particular, skipping the indexer replaces all the
elements:

y <- X
y[] <- c("u", "v") # note that c("u", "v") has no attributes
print(y)

## a b c d

## o "u" v "u" v

## attr(, "attrib1")

## [1] "<3"

5.5.4 Vectorised functions

Vectorised unary functions tend to copy all the attributes.

round(x)

#% a b cd

# 12 3 4

## attr(, "attrib1")
## [1] "<3"

Binary operations are expected to get the attributes from the longer input. If they are
of equal sizes, the first argument is preferred to the second.

y <- structure(c(1, 10), names=c("f", "g"), attrib1=":|", attrib2=":0")
y * x # x 1s longer
# a b c d
#0120 3 40
## attr(, "attrib1")
## [1] "<3"
y[c("h", "1")] <- c(100, 1000) # add two new elements at the end
y ¥ x
(continues on next page)
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(continued from previous page)
## f g h i
## 1 20 300 4000
## attr(, "attrib1")

## [1] " "

## attr(, "attrib2")
## [1] ":0"

X *y

## a b c d
## 1 20 300 4000
## attr(, "attrib1")

## [1] "<3"
## attr(, "attrib2")
## [1] ":0"

Also, Section 9.3.6 mentions a way to copy all attributes from one object to another.

Important Even in base R, the foregoing rules are not enforced strictly. We con-
sider them inconsistencies that should be, for the time being, treated as features (with
which we need to learn to live as they have not been fixed for years, but hope springs
eternal).

As far as third-party extension packages are concerned, suffice it to say that alot of R
programmers do not know what attributes are whatsoever. It is always best to refer to
the documentation, perform a few experiments, and/or manually ensure the preser-
vation of the data we care about.

Exercise 5.16 Check what attributes are preserved by ifelse.

5.6 Exercises
Exercise 5.17 Answer the following questions (contemplate first, then use R to find the answer).
o Whatistheresultof x[c()]?Isit the sameas x[]?
« Isx[c(1, 1, 1)]equivalenttox[1]?
« Isx[1] equivalenttox["1"]?
o Isx[c(-1, -1, -1)]equivalenttox[-1]?
o Whatdoesx[c(0, 1, 2, NA)] do?
o What does x[0] return?
o Whatdoesx[1, 2, 3]do?
o Whataboutx[c(0, -1, -2)]andx[c(-1, -2, NA)]?
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« Why x[NA] is so significantly different from x[c(1, NA)]?
Whatis x[c(FALSE, TRUE, 2)]?

o What will we obtain by calling x[ x<min(x)]?
What about x[ length(x)+1]?

Why x[min(y)] is most probably a mistake? What could it mean? How can it be fixed?

"n

« Why cannot we mix indexes of different types and write x[c(1, "b", "c", 4)]?Orcan
we?

« Why would we call as. vector (na.omit(x)) instead of just na. omit(x)?

What is the difference between sort and order?

What is the type and the length of the object returned by a call to split(a, u)?Whatabout
split(a, c(u, v))?

How to get rid of the seventh element from a list of ten elements?

How to get rid of the seventh, eight, and ninth elements from a list with ten elements?

How to get rid of the seventh element from an atomic vector of ten elements?

Ifyisalist, by how many elements “y[c(length(y)+1, length(y)+1, length(y)+1)]
<- list(1, 2, 3)”willextendit?

« What is the difference between x[x>0] and x[which(x>0)]?

Exercise 5.18 If x is an atomic vector of length n, x[5: n] obviously extracts everything from
the fifth element to the end. Does it, though? Check what happens when x is of length less than
five, including o. List different ways to correct this expression so that it makes (some) sense in the
case of shorter vectors.

Exercise5.19 Similarly, x[length(x) + 1 - 5:1] is supposed to return the last five ele-
ments in x. Propose a few alternatives that are correct also for short xs.

Exercise 5.20 Given a numeric vector, fetch its five largest elements. Ensure the code works for
vectors of length less than five.

Exercise 5.21 We can compute a trimmed mean of some x by setting the trim argument to
the mean function. Compute a similar robust estimator of location — the p-winsorised mean, p €
[0, 0.5] defined as the arithmetic mean of all elements in x clipped to the [Q,,, Q1 _, ] interval,
where Qp is the vector’s p-quantile; see quantile. For example, if x is (8, 5,2, 9,7, 4, 6,1, 3),
we have Qg o5 = 3 and Qg 75 = 7 and hence the 0.25-winsovised mean will be equal to the
arithmetic mean of (7, 5,3, 7,7, 4,6, 3, 3).

Exercise 5.22 Let x and y be two vectors of the same length, n, and no ties. Implement the for-
mula for the Spearman vank correlation coefficient:

63 d?

ox,y) =1~ m,



88 | DEeep

whered; = r;—s;,i =1,...,n, andr; ands; denote the rank of x; and y;, respectively; see also
cor.

Exercise 5.23 (*) Given vectors x and y both of length n, a calltoapprox(x, y, ...)canbe
used to interpolate linearly between the points (x1,Y1), (X2,Y2), ..., (X, Y,,). Wecan use it to
generatenew ys for previously unobserved xs (somewhere “in-between” the data we already have).
Moreover, spline(x, y, ...)canperformacubicsplineinterpolation, which is smoother; see
Figures.2.

x <-c(1, 3, 5, 7, 10)
y <- c(1, 15, 25, 6, 0)
Xx_new <- seq(1, 10, by=0.25)
y_newl <- approx(x, y, xout=x_new)[["y"]]
y_new2 <- spline(x, y, xout=x_new)[["y"]]
plot(x, y, ylim=c(-10, 30)) # the points to interpolate between
lines(x_new, y _newl, col="black", lty="solid") # linear interpolation
lines(x_new, y _new2, col="darkred", lty="dashed") # cubic interpolation
legend( "topright", legend=c("linear", "cubic"),

lty=c("solid", "dashed"), col=c("black", "darkred"), bg="white")

oL
o .
— linear
- --- cubic
ol
o~
~Qer
o-
o-
v 1 1 1 1 1
2 4 6 8 10
X

Figure 5.2. Piecewise linear and cubic spline interpolation.

Using a call to one of the above, impute missing data in euraud-20200101-20200630. csv®,
e.g., theblanksin (0.60, 0.62, NA, 0.64, NA, NA, 0.58) should befilled soasto obtain
(0.60, 0.62, 0.63, 0.64, 0.62, 0.60, 0.58).

Exercise 5.24 Givensome 1< froms to<n,use findInterval to generate a logical vector of
length n with TRUE elements only at indexes between from and to, inclusive.

6 https://github.com/gagolews/teaching-data/raw/master/marek/euraud-20200101-20200630.csv
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Exercise 5.25 Implement expressions that give rise to the same vesults as calls to which,
which.min, which.max, and rev functions. What is the difference between x[x>y] and
x[which(x>y)]? What aboutwhich.min(x) vswhich(x == min(x))?

Exercise 5.26 Given two equal-length vectors x and y, fetch the value from the former that cor-
responds to the smallest value in the latter. Write three versions of such an expression, each deal-
ing with potential ties in y differently. For example:

X <= c("a", "b", "c", "d", "e", "f")
y<-c( 3 1, 2, 1, 1, 4)

It should choose the first ("b"), last ("e"), or random element from x fulfilling the above property
("b", "d", or "e" with equal probability). Make sure your code works for x being of the type
character or numeric aswell as an empty vector.

Exercise 5.27 Implement an expression that yields the same result as duplicated(x) for a
numeric vector x, but using diff and order.

Exercise 5.28 Based on match and unique, implement your versions of union(x, y), in-
tersect(x, y), setdiff(x, y),is.element(x, y),andsetequal(x, y)forxandy
being nonempty numeric vectors.






6

Character vectors

Text is a universal, portable, economical, and efficient means of interacting between
humans and computers as well as exchanging data between programs or APIs. This
book is 99% made of text. And, wow, how much valuable knowledge is in it, innit?

6.1 Creating character vectors
6.1.1 Inputting individual strings

Specific character strings are delimited by a pair of either double or single quotes (apo-
strophes).

"a string”

## [1] "a string”

'another string' # and, of course, neither 'like this" nor "like this'
## [1] "another string”

The only difference between these two is that we cannot directly include, e.g., an apo-
strophe in a single quote-delimited string. On the other hand, "' tis good ol' spam"
and 'I "love" bacon' are both okay.

To embrace characters whose inclusion might otherwise be difficult or impossible, we
may always employ the so-called escape sequences. R uses the backslash, “\”, as the escape
character. In particular:

« \"inputs a double quote,
« \' generates a single quote,
« \\ includes a backslash,

« \nendows a new line.

(x <- "I \"love\" bacon\n\\\"/")
## [1] "I |"love|" bacon\n|\||"/"

The print function (which was implicitly called to display the above object) does not
reveal the special meaning of the escape sequences. Instead, print outputs strings in
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the same way that we ourselves would follow when inputting them. The number of
characters in x is 18, and not 23:

nchar(x)
## [1] 18

To display the string as-it-really-is, we call cat:

cat(x, sep="\n")
## I "love" bacon
w "/

In raw character constants, the backslash character’s special meaning is disabled.
They can be entered using the notation like r"(...)", r"{...}", or r"[...1";
see help("Quotes"). These can be useful when inputting regular expressions (Sec-

tion 6.2.4).

x <- r"(spam\n\\\"maps)" # also: r"-(...)-", r"--(...)--", etc.

print(x)

## [1] "spam|\n| ||| ||| "maps"
cat(x, sep="\n")

## spam\n| || "maps

Furthermore, the string version of the missing value marker is NA_character_.

Note (*) The Unicode standard 15.1 (version dated September 2023) defines 149 813
characters, i.a., letters from different scripts, mathematical symbols, and emojis.
Eachis assigned a unique numeric identifier; see the Unicode Character Code Charts?.
For example, the inverted exclamation mark (see the Latin-1 Supplement section therein)
has been mapped to the hexadecimal code 0xA1 (or 161 decimally). Knowing this magic
number permits us to specify a Unicode code point using one of the following escape
sequences:

« \uxxxx — codes using four hexadecimal digits,
« \Uxxxxxxxx — codes using eight hexadecimal digits.

For instance:

cat("!\ubeal1!\UOOOOOOal1!", sep="\n")
w1l

All R installations allow for working with Unicode strings. More precisely, they sup-
port dealing with UTF-8, being a super-encoding that is native to most UNIX-like
boxes, including GNU/Linux and m**OS. Other operating systems may use some 8-
bit encoding as the system one (e.g., latinl or cp1252), but they can be mixed with
Unicode seamlessly; see help("Encoding"), help("iconv"), and [27] for discussion.

! https://www.unicode.org/charts
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Nevertheless, certain output devices (web browsers, LaTeX renderers, text terminals)
might fail to display some Unicode characters, e.g., because of missing fonts. How-
ever, as far as processing character data is concerned, this does not matter because R
does it with its eyes closed. For example:

cat("\U0001f642\u2665\uObb8\U00O1f923\U0001f60d\u2307", sep="\n")
## 000000

In the PDF version® of this adorable book, the Unicode glyphs are not rendered cor-
rectly for some reason. However, its HTML variant®, generated from the same source
files, should be displayed by most web browsers properly.

Note (*) Some output devices may support the following codes that control the posi-
tion of the caret (text cursor):

« \binserts a backspace (moves cursor one column to the left),

- \t implants a tabulator (advances to the next tab stop, e.g., a multiply of four or
eight text columns),

« \rinjects a carriage return (move to the beginning of the current line).

cat("abc\bd\tef\rg\nhij", sep="\n")
## gbd ef
## hij

These can be used on unbuffered outputs like stderr to display the status of the cur-
rent operation, for instance, an animated textual progress bar, the print-out of the
ETA, or the percentage of work completed.

Further, certain terminals can also understand the ECMA-48/ANSI-X3.64 escape se-
quences* of the form \u@01b[... to control the cursor’s position, text colour, and
even style. For example, \u601b[1;31m outputs red text in bold font and \u6o1b[em
resets the settings to default. We recommend giving, e.g., cat("\u001b[1;31mspam\
u001b[Om") or cat("\u00O1b[5;36m\u601b[Abacon\uG01b[Espam\ubO1b[Om") a try.

6.1.2 Many strings, one object

Less trivial character vectors (meaning, of length greater than one) can be constructed
by means of, e.g., cor rep°.

2 https://deepr.gagolewski.com/deepr.pdf

3 https://deepr.gagolewski.com/

4 https://en.wikipedia.org/wiki/ANSI_escape_code

5 Internally, there is a string cache (a hash table). Multiple clones of the same string do not occupy more
RAM than necessary.
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(x <- c(rep("spam", 3), "bacon", NA_character_, "spam"))
## [1] "spam" "spam" "spam" "bacon" NA "spam"

Thus, a character vector is, in fact, a sequence of sequences of characters®. As usual,
the total number of strings can be fetched via the length function. However, the
length of each string may be read with the vectorised nchar.

length(x) # how many strings?

## [1] 6

nchar(x) # the number of code points in each string
## [1] 4 4 4 5NA 4

6.1.3 Concatenating character vectors

paste can be used to concatenate (join) the corresponding elements of two or more
character vectors:

paste(c("a", "b", "c"), c("1", "2", "3")) # sep=" " by default

## [1] "a 1" "b 2" "c 3"

paste(c("a", "b", "c"), c("1", "2", "3"), sep="") # see also paste®
## [1] "a1" "b2" "c3"

The function is deeply vectorised (but note the lack of a warning about the partial re-
cycling):

paste(c("a", "b", "c"), 1:5, c("!", "?")) # coercion of numeric to character
#E [1] "a 11" "h 22" "c 31" "ad 2" b5 "

We can also collapse (flatten, aggregate) a sequence of strings into a single string:

paste(c("a", "b", "c", "d"), collapse=",")

## [1] "a,b,c,d"

paste(c("a", "b", "c", "d"), 1:2, sep="", collapse="")
## [1] "a1b2c1d2"

Perhaps for convenience, alas, paste treats missing values differently from most other
vectorised functions:

paste(c("A", NA_character_, "B"), "!", sep="")
## [1] "Al" "NAI" "BI"

6 (*)Chapter 14 willmention that objects of the type character are internally represented as objects with
SEXPTYPE of STRSXP. They are arrays with elements whose SEXPTYPE is CHARSXP, each of which is a string
of characters (char¥*).
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6.1.4 Formatting objects

Strings can also arise by converting other-typed R objects into text. For example, the
quite customisable (see Chapter 10) format function prepares data for display in dy-
namically generated reports.

X <- c(123456.789, -pi, NaN)

format(x)

## [1] "123456.7890" " -3.1416" " NaNn"

cat(format(x, digits=8, scilentific=FALSE, drop@trailing=TRUE), sep="\n")
## 123456.789

## -3.1415927

## NaN

Moreover, sprintf is a workhorse for turning possibly many atomic vectors into
strings. Its first argument is a format string. Special escape sequences starting with
the per cent sign, “%”, serve as placeholders for the actual values. For instance, “%s” is
replaced with a string and “%f” with a floating point value taken from further argu-
ments.

sprintf("%s%s", "a", c("X", "Y", "Z")) # like paste(...)

## [1] "ax" "ay" "az"

sprintf("key=%s, value=%f", c("spam", "eggs"), c(100000, 0))

#4 [1] "key=spam, value=100000.000000" "key=eggs, value=0.000000"

The numbers’ precision, strings’ widths and justification, etc., can be customised, e.g.,
“%6.2f” is a number that, when converted to text, will occupy six text columns’, with
two decimal digits of precision.

sprintf("%10s=%6.2f%%", "rate", 2/3*100) # "%%" renders the per cent sign

#t [1] " rate= 66.67%"
sprintf("%.*f", 1:5, pil) # variable precision
## [1] "3.1" "3.14" "3.142" "3.1416" "3.14159"

Also, e.g., “%1$s”, “%2$s”, ... inserts the first, second, ... argument as text.

sprintf("%1S$s, %25s, %1S$s, and %1$s", "spam", "bacon") # numbered argument
## [1] "spam, bacon, spam, and spam"

Exercise 6.1 Read help("sprintf") (highly recommended!).

6.1.5 Reading text data from files

Given a raw text file, readLines loads it into memory and represents it as a character
vector, with each line stored in a separate string.

7 This is only true for 8-bit native encodings or ASCII; see also sprintf from the stringx package, which
takes the text width and not the number of bytes into account.
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head(readLines(
"https://github.com/gagolews/teaching-data/raw/master /README.md"

))

## [1] "# Prof. [Marek](https://www.gagolewski.com)'s Data for Teaching"

# [2] """

## [3] "> *See the comment lines within the files themselves for"

## [4] "> a detailed description of each dataset.*"

#t [5] """

## [6] "*Good* datasets are actually hard to find!"

writeLines is its counterpart. There is also an option to read or write parts of files at
a time using file connections which we mention in Section 8.3.5. Moreover, cat(...,
append=TRUE) can be used to create a text file incrementally.

6.2 Pattern searching
6.2.1 Comparing whole strings

We have already reviewed a couple of ways to compare strings as a whole. For instance,
the “==" operator implements elementwise testing:

c("spam", "spam", "bacon", "eggs") == c("spam", "eggs") # recycling rule
## [1] TRUE FALSE FALSE TRUE

In Section 5.4.1, we introduced the match function and its derivative, the *%in%" oper-
ator. They are vectorised in a different way:

match(c("spam", "spam", "bacon", "eggs"), c("spam", "eggs"))
## [1] 1 1N 2

c("spam", "spam", "bacon", "eggs") %in% c("spam", "eggs")
## [1] TRUE TRUE FALSE TRUE

Note (*) match relies on a simple, bytewise comparison of the corresponding code
points. It might not be valid in natural language processing activities, e.g., where
the German word grof$ should be equivalent to gross [19]. Moreover, in the rare situ-
ations where we read Unicode-unnormalised data, canonically equivalent strings may
be considered different; see [18].

6.2.2 Partial matching

When only a consideration of the initial part of each string is required, we can call:
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startsWith(c("s", "spam", "spamtastic", "spontaneous", "spoon"), "spam")
## [1] FALSE TRUE TRUE FALSE FALSE

If we provide many prefixes, the above function will be applied elementwisely, just like
the “==" operator.

On the other hand, charmatch performs a partial matching of strings. It is an each-vs-
all version of startsWith:

charmatch(c("s", "sp", "spam", "spams", "eggs", "bacon"), c("spam", "eggs"))
# [1] 1 1 1NA 2 NA

charmatch(c("s", "sp", "spam", "spoo", "spoof"), c("spam", "spoon"))

## [1] 0 0 1 2 NA

Note that 0 designates that there was an ambiguous match.

Note (*)In Section9.4.7, we discuss match.arg, which a few R functions rely on when
they need to select a value from a range of possible choices. Furthermore, Section 9.3.2
and Section 15.4.4 mention the (discouraged) partial matching of list labels and func-
tion argument names.

6.2.3 Matching anywhere within a string

Fixed patterns can also be searched for anywhere within character strings using grepl:

x <- c("spam", "y spammite spam", "yummy SPAM", "sram"
grepl("spam", x, fixed=TRUE) # fixed patterns, as opposed to regexes below
## [1] TRUE TRUE FALSE FALSE

Important The order of arguments is like grepl(needle, haystack), notvice versa.
Also, this function is not vectorised with respect to the first argument.

Exercise 6.2 Howthecallstogrep(y, x, value=FALSE) andgrep(y, x, value=TRUE)
can be implemented based on grepl and other operations we are already familiar with?

Note (*) As a curiosity, agrepl performs approximate matching, which can account
for a smoll nmber of tpyos.

agrepl("spam", x)

## [1] TRUE TRUE FALSE TRUE
agrepl("ham", x, ignore.case=TRUE)
## [1] TRUE TRUE TRUE TRUE
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It is based on Levenshtein’s edit distance that measures the number of character inser-
tions, deletions, or substitutions required to turn one string into another.

6.2.4 Using regular expressions (*)

Setting per1=TRUE allows for identifying occurrences of patterns specified by regular
expressions (regexes).

grepl("~spam", x, perl=TRUE) # strings that begin with ‘spam’

## [1] TRUE FALSE FALSE FALSE

grepl("(?1)”spam|spam$", x, perl=TRUE) # begin or end; case ignored
## [1] TRUE TRUE TRUE FALSE

Note For more details on regular expressions in general, see, e.g., [25]. The ultimate
reference on the PCRE2 pattern syntax is the Unix man page pcre2pattern(3)®. From
now on, we assume that the reader is familiar with it.

Apart from the Perl-compatible regexes, R also gives access to the TRE library (ERE-
like), which is the default one; see help("regex"). However, we discourage its use
because it is feature-poorer.

Exercise 6.3 The list. files function generates the list of file names in a given directory that
match a given regular expression. For instance, the following gives all CSV files in a folder:

list.files("~/Projects/teaching-data/r/", "|\|.csvS")
## [1] "air_quality_1973.csv" "anscombe.csv” "iris.csv”
## [4] "titanic.csv" "tooth_growth.csv" "trees.csv”

## [7] "world_phones.csv"

Write a single reqular expression that matches file names ending with “.csv” or “.csv.gz”.
Also, scribble a regex that matches CSV files whose names do not begin with “eurusd”.

6.2.5 Locating pattern occurrences

regexpr finds the first occurrence of a pattern in each string:

regexpr("spam", x, fixed=TRUE)
## [1] 1 3 -1 -1

## attr(, "match. length")

## [1] 4 4 -1 -1

## attr(, "index. type")

## [1] "chars"

## attr(, "useBytes")

## [1] TRUE

8 http://www.pcre.org/current/doc/html/pcrezpattern.html
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In particular, there is a pattern occurrence starting at the third code point of the
second string in x. Moreover, the last string has no pattern match, which is denoted
by -1.

The match. length attribute is generally more informative when searching with regu-
lar expressions.

To locate all the matches, i.e., globally, we use gregexpr:

# ‘spam’ followed by 0 or more letters, case insensitively
gregexpr("(?1)spam\\p{L}*", x, perl=TRUE)
## [[1]]

## [1] 1

## attr(, "match. length")
## [1] 4

## attr(, "index. type")
## [1] "chars"

## attr(, "useBytes")

## [1] TRUE

##

## [[2]]

## [1] 3 12

## attr(, "match. length")
## [1] 8 4

## attr(, "index. type")
## [1] "chars"

## attr(, "useBytes")

## [1] TRUE

##

## [[3]]

## [1] 7

## attr(, "match. length")
## [1] 4

## attr(, "index.type")
## [1] "chars"

## attr(, "useBytes")

## [1] TRUE

##

## [[4]]

## [1] -1

## attr(, "match. length")
## [1] -1

## attr(, "index. type")
## [1] "chars"

## attr(, "useBytes")

## [1] TRUE

As we noted in Section 4.4.2, wrapping the results in a list was a clever choice for the
number of matches can obviously vary between strings.

In Section 7.2, we will look at the Map function, which, along with substring intro-
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duced below, can aid in getting the most out of such data. Meanwhile, let’s just men-
tion that regmatches extracts the matching substrings:

regmatches(x, gregexpr("(?i)spam\\p{L}*", x, perl=TRUE))
## [[1]]

## [1] "spam"

##

## [[2]]

#4 [1] "spammite" "spam"
##

## [[3]]

## [1] "SPAM"

##

## [[4]]

## character(0)

Note (*) Consider what happens when a regular expression contains parenthesised
subexpressions (capture groups).

r <- "(?<basename>[". J+)\\.(?<extension>[" ]*)"

This regex consists of two capture groups separated by a dot. The first one is labelled
“basename”. It comprises several arbitrary characters except for spaces and dots. The
second group, named “extension”, is a substring consisting of anything but spaces.

Such a pattern can be used for unpacking space-delimited lists of file names.

z <- "dataset.csv.gz something_else.txt spam"
regexpr(r, z, perl=TRUE)

## [1] 1

## attr(, "match. length")

## [1] 14

## attr(, "index. type")

## [1] "chars"

## attr(, "useBytes")

## [1] TRUE

## attr(, "capture.start")
#H basename extension
## [1,] 1 9
## attr(, "capture. length")
#H basename extension
## [1,] 7 6
## attr(, "capture.names")
## [1] "basename" "extension"
gregexpr(r, z, perl=TRUE)
## [[1]]

## [1] 1 16

## attr(, "match. length")
## [1] 14 18

(continues on next page)
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(continued from previous page)
## attr(, "index. type")
## [1] "chars"
## attr(, "useBytes")

## [1] TRUE

## attr(, "capture.start")
## basename extension
## [1,] 1 9
## [2,] 16 31
## attr(, "capture. length")
## basename extension
## [1,] 7 6
w [2,] 14 3
## attr(, "capture.names")
## [1] "basename" "extension"

The capture.* attributes give us access to the matches to the individual capture
groups, i.e., the basename and the extension.

Exercise 6.4 (*) Check out the difference between the results generated by regexec and reg-
expr as well as between the outputs of gregexec and gregexpr.

6.2.6 Replacing pattern occurrences

sub and gsub can replace the first and all, respectively, matches to a pattern:

x <- c("spam", "y spammite spam", "yummy SPAM", "sram"
sub("spam", "ham", x, fixed=TRUE)

## [1] "ham" "y hammite spam" "yummy SPAM" "sram"
gsub("spam", "ham", x, fixed=TRUE)
## [1] "ham" "y hammite ham" "yummy SPAM" "sram"

Note (*) Ifaregex defines capture groups, matches thereto can be mentioned not only
in the pattern itself but also in the replacement string:

gsub("(\\p{LI\\p{L}\\1", "\\1", "aha egg gag NaN spam", perl=TRUE)
## [1] "a egg g N spam”

Matched are, in the following order: a letter (it is a capture group), another letter, and
the former letter again. Each such palindrome of length three is replaced with just the
repeated letter.

Exercise 6.5 (*) Display the source code of glob2rx by calling print(glob2rx) and study
how this function converts wildcards such as file??2?.* or *.csv to reqular expressions that
can be passed to, e.g., list. files.
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6.2.7 Splitting strings into tokens

strsplit divides each string in a character vector into chunks.

wen

strsplit(c("spam;spam;eggs;;bacon", "spam"), ";", fixed=TRUE)
## [[1]]

## [1] "spam” "spam” "eggs”
##H

## [[2]]

## [1] "spam"”

"

"bacon”

Note that this time the search pattern specifying the token delimiter is given as the
second argument (an inconsistency).

6.3 Other string operations
6.3.1 Extracting substrings

substring extracts parts of strings between given character position ranges.

substring("spammity spam", 1, 4) # from the first to the fourth character
## [1] "spam"”

substring("spammity spam", 10) # from the tenth to end

## [1] "spam"”

substring("spammity spam", c(1, 10), c(4, 14)) # vectorisation

#4 [1] "spam" "spam"

substring(c("spammity spam", "bacon and eggs"), 1, c(4, 5))

## [1] "spam" "bacon"

Note There is also a replacement (compare Section 9.3.6) version of the foregoing:

X <- "spam, spam, bacon, and spam"
substring(x, 7, 11) <- "eggs"
print(x)

## [1] "spam, eggs, bacon, and spam”

Unfortunately, the number of characters in the replacement string should not exceed
thelength of the part being substituted (try "chickpeas" instead of "eggs"). However,
substring replacement can be written as a composition of substring extraction and
concatenation:

paste(substring(x, 1, 6), "chickpeas", substring(x, 11), sep="")
## [1] "spam, chickpeas, bacon, and spam”
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Exercise 6.6 Take the output generated by regexpr and apply substring to extract the pat-
tern occurrences. Ifthere is no match in a string, the corresponding output should be NA.

6.3.2 Translating characters

tolower and toupper converts between lower and upper case:

toupper("spam")
## [1] "SPAM"

Note Like many other string operations in base R, these functions perform very
simple character substitutions. They might not be valid in natural language processing
tasks. For instance, grof3 is not converted to GROSS, being the correct case folding in
German.

Moreover, chartr translates individual characters:

chartr("\\", "/", "c:\\windows\\system\\cmd.exe") # chartr(old, new, x)
## [1] "c:/windows/system/cmd.exe"

chartr("([S", ")I*", ":( :S :[")

#ho[1] ":) :* :]"

In the first line, we replace each backslash with a slash. The second example replaces
u(n, u[n} a’nd usn Wlth u)n, u]n) and u*n, respectively.

6.3.3 Ordering strings

We have previously mentioned that operators and functions such as “<*, *>=", sort,
order, rank, and xtfrm® are based on the lexicographic ordering of strings.

sort(c("chtodny", "hardy", "chladny", "hladny"))
## [1] "chladny" "chlodny” "hardy” "hladny"

It is worth noting that the ordering depends on the currently selected locale; see Sys.
getlocale("LC_COLLATE"). For instance, in the Slovak language setting, we would
obtain "hardy" < "hladny" < "chladny" < "chtodny".

Note Many “structured” data items can be displayed or transmitted as human-
readable strings. In particular, we know that as.numeric can convert a string to a
number. Moreover, Section 10.3.1 will discuss date-time objects such as "1970-01-01
00:00:00 GMT". We will be processing them with specialised functions such as strp-
time and strftime.

9 See Section 12.3.1 for a use case.
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Important (*) Many string operations in base R are not necessarily portable. The
stringx package defines drop-in, “fixed” replacements therefor. They are based on
the International Components for Unicode (ICU™) library, a de facto standard for pro-
cessing Unicode text, and the R package stringi;see [27].

# call install.packages("stringx") first
suppressPackageStartupMessages(library("stringx")) # load the package
sort(c("chtodny", "hardy", "chladny", "hladny"), locale="sk_SK")

#4# [1] "hardy" "hladny" "chladny" "chtodny"

toupper("gro\u@ODF") # compare base: :toupper("gro\ubODF")

## [1] "GROSS"

detach("package:stringx") # remove the package from the search path

6.4 Other atomic vector types (%)

We have discussed four vector types: logical, double, character, and list. To geta
more complete picture of the sequence-like types in R, let’s briefly mention integer,
complex, and raw atomic types so that we are not surprised when we encounter them.

6.4.1 Integer vectors (*)
Integer scalars can be input manually by using the L suffix:

(x <- c(1L, 2L, -1L, NA_integer_)) # looks like numeric
## [1] 1 2 -1 NA

typeof(x) # but is integer

## [1] "integer"

Some functions return them in a few contexts'':

typeof(1:10) # seq(1, 10) as well, but not seq(1, 10, 1)
## [1] "integer"

as.integer(c(-1.1, 0, 1.9, 2.1)) # truncate/round towards 0O
## [1] -1 0 1 2

In most expressions, integer vectors behave like numeric ones. They are silently co-

1° https://icu.unicode.org/

I Actually, 1:10 returns an integer vector in a compact (ALTREP; see [56]) form; compare the results of
the call to .Internal(inspect(1:10)) and .Internal(inspect(seq(1, 10, 1))). This way, the whole
vector does not have to be allocated. This saves memory and time. At the R level, though, it behaves as any
other integer (numeric) sequence.
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erced to double if need be. Usually, there is no practical** reason to distinguish
between them. For example:

1L/2L # like 1/2 == 1.0/2.0
# [1] 0.5

Note (*)R integers are 32-bit signed types. In the double type, we can store more of
them. The maximal contiguously representable integer is 231 —1 and 2°3, respectively;
see Section 3.2.3:

as.integer(2731-1) + 1L # 32-bit integer overflow

## Warning in as.integer(2731 - 1) + 1L: NAs produced by integer overflow
## [1] NA

as.integer(2731-1) + 1 == 2731 # integer+double == double - OK

## [1] TRUE

(2753 - 1) + 1 == 2753 # OK

## [1] TRUE

(2753 + 1) - 1 == 27"53 # lost due to FP rounding; left side equals 2753 - 1
## [1] FALSE

Note Since R 3.0, there is support for vectors longer than 23! — 1 elements. As there

are no 64-bitintegersin R, long vectors are indexed by doubles (we have been doing all
this time). In particular, x[1.9] is the same as x[1], and x[-1.9] means x[-1], i.e.,
the fractional part is truncated. It is why the notation like x[ length(x)*0.2] works,
whether the length of x is a multiple of five or not.

6.4.2 Raw vectors ()

Vectors of the type raw can store bytes, i.e., unsigned 8-bit integers, whose range is
0-255. For example:

as.raw(c(-1, 0, 1, 2, Oxc0O, 254, 255, 256, NA))
## Warning: out-of-range values treated as @ in coercion to raw
## [1] 00 00 01 62 cO fe ff 00 60

They are displayed as two-digit hexadecimal (base-16) numbers. There are no raw NAs.

Only a few functions deal with such vectors: e.g., readBin, charToRaw, and raw-
ToChar.

Interestingly, the meaning of the logical operators differs for raw vectors; they denote
bitwise operations. See also bitwAnd, bitwOr etc. that work on integer vectors.

12 They are of internal interest, e.g., when writing C/C++ extensions; see Chapter 14.
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xor(as.raw(0xf0), as.raw(0x0f))

## [1] ff
bitwXor (Ox0fffofeo, 0x0feOfoff)
## [1] 16777215

Example 6.7 (*) One use case of bitwise operations is for representing a selection of items in a
small set of possible values. This can be useful for communicating with routines implemented in
C/C++. Forinstance, let’s define three flags:

HAS_SPAM <- 0x01 # binary 00000001
HAS_BACON <- 0x02 # binary 00000010
HAS_EGGS <- 0x04 # binary 00000100

Now a particular subset can be created using the bitwise OR:

dish <- bitwOr(HAS_SPAM, HAS_EGGS) # {spam, eggs}

Testing for inclusion is done via the bitwise AND:

as. logical(bitwAnd(dish, c(HAS_SPAM, HAS_BACON, HAS_EGGS)))
## [1] TRUE FALSE TRUE

6.4.3 Complex vectors (*)

We can also play with vectors of the type complex, with “11” representing the imagin-

ary unit, \/—_1 . Complex numbers appear in quite a few engineering or scientific ap-
plications, e.g., in physics, electronics, or signal processing. They are (at least: ought
to be) part of introductory subjects or textbooks in university-level mathematics, in-
cluding the statistics- and machine learning-orientated ones because of their heavy
use of numerical computing; see e.g., [20, 32].

c(0, 11, pi+pi*1i, NA_complex_)
# [1] 0.0000+0.00001 0.0000+1.00001 3.1416+3.14161 NA

Apart from the basic operators, mathematical and aggregation functions, procedures
like fft, solve, qr, or svd can be fed with or produce such data. For more details, see
help("complex") and some matrix examples in Chapter 11.

6.5 Exercises

Exercises marked with (*) might require tinkering with regular expressions or third-
party R packages.

Exercise 6.8 Answer the following questions.
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« How many characters ave there in the string "ab\n| |\ || ||| ""? What about r "-{ab|
Al e - )82

What is the result of a call to paste(NA, 1:5, collapse="")?

o Whatis the meaning of the following sprintf format strings: “%s”, “%20s”, “%- 20s”, “%f”,
((%g") ((O/Oe”’ ((%Sf”, ((%5' Zf%%”, ((%. 2f”, ((%0+5f") and “[%+ _5. 2f] ”?

What s the difference between regexpr and gregexpr? What does “g” in the latter function
name stand for?

What s the result of a call to grepl(c("spam”, "spammity spam”, "aubergines"),
”Spaf'l n)?

Is it always the case that “"Aaron" < "Zorro"”?
« Why“x < "10"”and “x < 10” may return different results?
o Ifxisacharactervector, is “x == x” always equal to TRUE?

« If x and y are character vectors of lengths n and m, respectively, what is the length of the
output ofmatch(x, y)?

If x is a named vector, why is there a difference between x [NA] and x[NA_character_]?
o Whatis the difference between “x == y”and “x %in% y”?

Exercise 6.9 Let x, y, and z be atomic vectors and a and b be single strings. Generate the same
results as pastena(x, collapse=b),pastena(x, y, sep=a),pastena(x, y, sep=a,
collapse=b), pastena(x, y, z, sep=a),pastena(x, y, z, sep=a, collapse=b),
assuming that pastena is a version of paste (which we do not have) that handles missing data
in a way consistent with most other functions.

Exercise 6.10 Based on list. files and glob2rx, generate the list of all PDFs on your com-
puter. Then, use file. size to filter out the files smaller than 10 MiB.

Exercise 6.11 Read a text file that stoves a long paragraph of some banal prose. Concatenate
all the lines to form a single, long string. Using strwrap and cat, output the paragraph on the
console, nicely formatted to fit a block of text of an aesthetic width, say, 60 columns.

Exercise 6.12 (*) Implement a simplified version of basename and dirname.

Exercise 6.13 (*) Implement an operation similar to trimws using the functions introduced in
this chapter.

Exercise 6.14 (*) Write a regex that extracts all words from each string in a given character
vector.

Exercise 6.15 (*) Write a regex that extracts, from each string in a character vector, all:
« integers numbers (signed or unsigned),
« floating-point numbers,
« numbers of any kind (including those in scientific notation),

« #hashtags,
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o email@address.es,
« hyperlinks of the form http://... and https://....
Exercise 6.16 (*) What do 421, 42L, and 0x42 stand for?

Exercise 6.17 (*) Check out stri_sort in the stringi package (or sort.character in
stringx) fora way to obtain an ordering like "a1" < "a2" < "a10" < "a11" < "a100".

Exercise 6.18 (*) In sprintf, the formatter "%20s " means that if a string is less than 20 bytes
long, the remaining bytes will be replaced with spaces. Only for ASCII characters (English letters,
digits, some punctuation marks, etc.), it is true that one character is vepresented by one byte. Other
Unicode code points can take up between two and four bytes.

cat(sprintf("..%6s..", c("abc", "1!<", "aBc", "qRe")), sep="\n") # aligned?
# .. abc. .

.. 1l<..
#4 .. afc..
## . .qfe. .

Use the stri_pad function from the stringi package to align the strings aesthetically. Altern-
atively, check out sprintf from stringx.

Exercise 6.19 (*) Implement an operation similar to stri_pad from stringi using the func-
tions introduced in this chapter.
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Functions

R is a functional language, i.e., one where functions play first fiddle. Each action we
perform reduces itself to a call to some function or a combination thereof.

So far, we have been tinkering with dozens of available functions which were mostly
part of base R. They constitute the essential vocabulary that everyone must be able to
speak fluently.

Any operation, be it sum, sqrt, or paste, when fed with a number of arguments, gen-
erates a (hopefully fruitful) return value.

sum(1:10) # invoking ‘sum' on a specific argument
#4 [1] 55

From a user’s perspective, each function is merely a tool. To achieve a goal at hand, we
do not have to care about what is going on under its bonnet, i.e., how the inputs are
being transformed so that, after a couple of nanoseconds or hours, we can relish what
has been bred. This is very convenient: all we need to know is the function’s specifica-
tion which can be stated, for example, informally, in plain Polish or Malay, on its help

page.

In this chapter, we will learn how to write our own functions. Using this skill is a good
development practice when we expect that the same operations will need to be executed
many times but perhaps on different data.

Also, some functions invoke other procedures, for instance, on every element in a list
or every section of a data frame grouped by a qualitative variable. Thus, it is advisable
to learn how we can specify a custom operation to be propagated thereover.

Example 7.1 Given some objects (whatever):

x1 <- runif(16)
x2 <- runif(32)
x3 <- runif(64)

assume we want to apply the same action on different data, say, compute the root mean square.
Then, instead of retyping almost identical expressions (or a bunch of them) over and over again:

sqrt(mean(x172)) # very fresh
## [1] 0.6545
sqrt(mean(x272)) # the same second time; borderline okay
(continues on next page)
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(continued from previous page)
## [1] 0.56203

sqrt(mean(x372)) # third time the same; tedious, barbarous, and error-prone
## [1] 0.57206

we can generalise the operation to any object like x:

ms <- # bind the name ‘rms’ to..
function(x) # a function that takes one parameter, “x°
sqrt(mean(x”2)) # transforming the input to yield output this way

and then reuse it on different concrete data instances:

rms(x1)
## [1] 0.6545
rms(x2)
## [1] 0.56203
rms(x3)
## [1] 0.57206

or even combine it with other function calls:

rms(sqrt(c(x1, x2, x3)))"2
## [1] 0.50824

Thus, custom functions are very useful.

Important Does writing own functions equal reinventing the wheel? Can everything
be found online these days (including on Stack Overflow, GitHub, or CRAN)? Luckily,
it is not the case. Otherwise, data analysts’, researchers’, and developers’ lives would
be monotonous, dreary, and uninspiring. What is more, we might be able to compose
a function from scratch much more quickly than to get through the whole garbage
dump called the internet from where, only occasionally, we can dig out some pearls.
Let’s remember that we advocate for minimalism in this book. We will reflect on such
issues in Chapter 9. There is also the personal growth side: we become more skilled pro-
grammers by crunching those exercises.

7.1 Creating and invoking functions
7.1.1 Anonymous functions

Functions are usually created through the following notation:
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function(args) body

First, args is a (possibly empty) list of comma-separated parameter names which act
as input variables. Second, body is a single R expression that is evaluated when the func-
tion is called. The value this expression yields will constitute the function’s output.

For example, here is a definition of a function that takes no inputs and generates a
constant output:

function() 1
## function ()
## 1

We thus created a function object. However, as we have not used it at all, it disappeared
immediately thereafter.

Any function f can be invoked, i.e., evaluated on concrete data, using the syntax f(arg1,
., argn). Here, arg1, ..., argn are expressions passed as arguments to f.

(function() 1)() # invoking f like f(); here, no arguments are expected
## [1] 1

Only now have we obtained a return value.

Note (*)Calling typeof on a function object will report "closure" (user-defined func-
tions), "builtin",or "primitive" (built-in, base ones) for the reasons that we explain
in more detail in Section 9.4.3 and Section 16.3.2. In our case:

typeof (function() 1)
## [1] "closure"

7.1.2 Named functions

Names can be bound to function objects. This way, we can refer to them multiple times:
one <- function() 1 # one <- (function() 1)
We created an object named one (we use bold font to indicate that it is of the type

function for functions are so crucial in R). We are very familiar with such a notation,
as not since yesterday we are used to writing “x <- 1”, etc.

Invoking one, which can be done by writing one(), will generate a return value:

one() # (function() 1)()
## [1] 1

This output can be used in further computations. For instance:
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0:2 - one() # 0:2 - (function() 1)(), i.e., 0:2 - 1
## [1] -1 0 1

7.1.3 Passing arguments to functions

Functions with no arguments are kind of boring. Thus, let’s distil a more highbrowed
operation:

concat <- function(x, y) paste(x, y, sep="")

We created a mapping whose aim is to concatenate two objects using a specialised call
to paste. Yours faithfully pleads guilty to multiplying entities needlessly: it should not
be a problem for anyone to write paste(x, y, sep="") each time. Yet, ‘tis merely an
illustration.

The concat function has two parameters, x and y. Hence, calling it will require the pro-
vision of two arguments, which we put within round brackets and separate from each
other by commas.

u<- 1:5
concat("spam", u) # i.e., concat(x="spam", y=1:5)
## [1] "spam1" "spam2" "spam3" "spam4" "spam5"

Important Notice the distinction: parameters (formal arguments) are abstract, general,
or symbolic; “something, anything that will be put in place of x when the function is
invoked”. Contrastingly, arguments (actual parameters) are concrete, specific, and real.

During the above call, x in the function’s body is precisely "spam" and nothing else.
Also, the u object from the caller’s environment can be accessed via y in concat. Most
of the time (yet, see Section 16.3), it is best to think of the function as being fed not
with u per se but the value that u is bound to, i.e., 1:5.

Also:
X <- 1:5
y <= "span”

concat(y, x) # concat(x="spam", y=1:5)
##4 [1] "spam1" "spam2" "spam3" "spam4

non

spam5"

This call is equivalent to concat(x=y, y=x).The argument x is assigned the value of
y from the calling environment, "spam". Let’s stress that one x is not the same as the
other x; which is which is unambiguously defined by the context.

Exercise 7.2 Writea function standardise that takes a numeric vector x as argument and re-
turns its standardised version, i.e., from each element in x, subtract the sample arithmetic mean
and then divide it by the standard deviation.



7 FUNCTIONS 113

Note Section 2.1.3 mentioned that, syntactically speaking, the following are perfectly
valid alternatives to the positionally-matched call concat("spam", u):

concat(x="spam", y=u)
concat(y=u, x="spam")
concat("spam", y=u)
concat(u, x="spam")
concat(x="spam", u)
concat(y=u, "spam")

However, we recommend avoiding the last two for the sake of the readers’ sanity. It is
best to provide positionally-matched arguments before the keyword-based ones; see
Section 15.4.4 for more details.

Also, Section 10.4 mentions the (overused) forward pipe operator, " |>", which will en-
able us to rewrite the above as “"spam" |> concat(u)”.

7.1.4 Grouping expressions with curly braces, *{*

We have been informed that a function’s body is a single R expression whose evaluated
value is passed to the user as its output. This may sound restrictive and in contrast
with what we have experienced so far. Seldom are we faced with such simple com-
puting tasks, and we have already seen R functions performing quite sophisticated
operations.

Grammatically, a single R expression can be arbitrarily complex (Chapter 15). We can
use curly braces to group many calls that are to be evaluated one after another. For
instance:

{
cat("first expression\n")
cat("second expression\n")
# ...
cat("last expression\n")

}

## first expression
## second expression
## last expression

We used four spaces to visually indent the constituents for greater readability (some
developers prefer tabs over spaces, others find two or three spaces more urbane, but
we do not). This single (compound) expression can now play a role of a function’s body.

Important The last expression evaluated in a curly-braces delimited block will be con-
sidered its output value.
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3 # <--- last expression: will be taken as the output value

}
print(x)
## [1] 3

This code block can also be written more concisely by replacing newlines with semi-
colons, albeit with perhaps some loss in readability:

{1; 2; 3}
## [1] 3

Section 9.3 will give a few more details about “{".

Example 7.3 Here is a version of our concat function that guarantees a more Chapter 2-style
missing values’ propagation:

concat <- function(a, b)

{

z <- paste(a, b, sep="")

z[is.na(a) | is.na(b)] <- NA_character_

z # last expression in the block - return value
}
Example calls:

concat("a", 1:3)

## [1] "a1" "a2" "a3"
concat(NA_character_, 1:3)
## [1] NA NA NA

concat(1:6, c("a", NA_character_, "c"))
## [1] "1a” NA  "3c" "4a" NA  "6c"

Let’s appreciate the fact that we could keep the code brief thanks to paste’s and * [ s implement-
ing the recycling rule.

Exercise 7.4 Write a function normalise that takes a numeric vector x and returns its ver-
sion shifted and scaled to the [0, 1] interval. To do so, subtract the sample minimum from each
element, and then divide it by the range, i.e., the difference between the maximum and the min-
imum. Avoid computing min(x) twice.

Exercise 7.5 Write a function that applies the robust standardisation of a numeric vector: sub-
tract the median and divide it by the median absolute deviation, 1.4826 times the median of the
absolute differences between the values and their median.

Note Risan open-source (free, libre) project distributed under the terms of the GNU
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General Public License version 2. Therefore, we are not only encouraged to run the
software for whatever purpose, but also study and modify its source code without re-
strictions. To facilitate this, we can display all function definitions:

print(concat) # the code of the above procedure
## function (a, b)

#o{

#H z <- paste(a, b, sep = "")

## z[is.na(a) | is.na(b)] <- NA_character._
## z

# o}

print(union) # a built-in function
## function (x, y)

## o{

## if (.set_ops_need as_vector(x, y)) {
# X <- as.vector(x)

## y <- as.vector(y)

## }

# else if (!isa(x, class(y)))

## x <- c(y[oL], x)

## X <- unique(x)

# names(x) <- NULL

## y <- unique(y)

## names(y) <- NULL

# c(x, y[match(y, x, OL) == OL])
)

## <environment: namespace:base>

Nevertheless, some functionality might be implemented in compiled programming
languages such as C, C++, or Fortran; notice a call to . Internal in the source code of
paste, .Primitive in list, or .Callin runif. Therefore, we will sometimes have to
dig a bit deeper to access the underlying definition; see Chapter 14 for more details.

7.2 Functional programming

Ris a functional programming language. As such, it shares several features with other
languages that emphasise the role of function manipulation in software development
(e.g., Common Lisp, Scheme, OCaml, Haskell, Clojure, F#). Let’s explore these com-
monalities now.

7.2.1 Functions are objects

R functions were given the right to a fairgo; they are what we refer to as first-class citizens.
In other words, our interaction with them is not limited to their invocation; we treat
them as any other language object.
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« They can be stored inside list objects, which can embrace R objects of any kind:

list(identity, NROW, sum) # a list storing three functions
## [[1]]

## function (x)

##H X

## <environment: namespace:base>

##

## [[2]]

## function (x)

## 1f (length(d <- dim(x))) d[1L] else length(x)
## <environment: namespace:base>

##

## [[3]]

## function (..., na.rm = FALSE) .Primitive("sum"

« They can be created and then called inside another function’s body:

euclidean_distance <- function(x, y)

{
square <- function(z) z*2 # auxiliary/internal/helper function
sqrt(sum(square(x-y))) # square root of the sum of squares

euclidean_distance(c(0, 1), c(1, 0)) # example call
## [1] 1.4142

This is why we tend to classify functions as representatives of recursive types (com-
pare is.recursive).

« They can be passed as arguments to other operations:

# Replaces missing values with a given aggregate
# of all non-missing elements:
fill_na <- function(x, filler_fun)

{
missing_ones <- is.na(x) # otherwise, we'd have to call is.na twice
replacement_value <- filler_fun(x[!missing_ones])
x[missing_ones] <- replacement_value
X
}

fill_na(c(®, NA_real_, NA_real_, 2, 3, 7, NA_real_), mean)
## [1] 0 332 37 3

fill_na(c(0®, NA_real_, NA_real_, 2, 3, 7, NA_real_), median)
## [1] 0.0 2.5 2.5 2.0 3.0 7.0 2.5

Procedures like this are called higher-order functions.
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Note More advanced techniques, which we discuss in the third part of the book, will
let the functions be:

. returned as other functions’ outputs,
- equipped with auxiliary data,
- generated programmatically on the fly,

. modified at runtime.

Let’s review the most essential higher-order functions, including do.call and Map.

7.2.2 Calling on precomputed arguments with do.call

Notation like f(argl, ..., argn) has no monopoly over how we call a function on
a specific sequence of arguments. The list of actual parameters does not have to be

hardcoded.

Here is an alternative. We can first prepare a number of objects to be passed as f’s
inputs, wrap them in a list 1, and then invoke do.call(f, 1) to get the same result.

words <- list(

("span”, "bacon", "eggs"),
c("buckwheat", "guinoa", "barley"),
e S —)

)

do.call(paste, words) # paste(words[[1]], words[[2]], words[[3]])

## [1] "spam buckwheat ham" "bacon quinoa spam" "eggs barley spam"
do.call(cbind, words) # column-bind; returns a matrix (explained later)

## .17 [,2] L]

## [1,] "spam" "buckwheat" "ham"

#4 [2,] "bacon" "quinoa" "spam"

## [3,] "eggs" ‘"barley" "spam"

do.call(rbind, words) # row-bind (explained later)
## [,1] [,2] [,3]

## [1,] "spam" "bacon" "eggs"

## [2,] "buckwheat" "quinoa" "barley"

#4 [3,] "ham" "spam" "spam"

The length and content of the list passed as the second argument of do.call can be
arbitrary (possibly unknown at the time of writing the code). See Section 12.1.2 for
more use cases, e.g., ways to concatenate a list of data frames (perhaps produced by
some complex chain of commands) into a single data frame.

If elements of the list are named, they will be matched to the corresponding keyword
arguments.

x <- 2"(seq(-2, 2, length.out=101))
(continues on next page)
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(continued from previous page)
plot_opts <- list(col="red", lty="dashed", type="1")
do.call(plot, c(list(x, log2(x), xlab="x", ylab="log2(x)"), plot_opts))
## (plot display suppressed)

Notice that our favourite plot_opts can now be reused in further calls to graphics
functions. This is very convenient as it avoids repetitions.

7.2.3 Common higher-order functions

There is an important class of higher-order functions that permit us to apply custom
operations on consecutive elements of sequences without relying on loop-like state-
ments, at least explicitly. They can be found in all functional programming languages
(e.g., Lisp, Haskell, Scala) and have been ported to various add-onlibraries (functools
in Python, more recent versions of the C++ Standard Library, etc.) or frameworks
(Apache Spark and the like). Their presence reflects the obvious truth that certain op-
erations occur more frequently than others. In particular:

« Map calls a function on each element of a sequence in order to transform:

- theirindividual components (just like sqrt, round, or the unary *!* operator
in R), or

- the corresponding elements of many sequences so as to vectorise a given op-
eration elementwisely (compare the binary “+" or paste),

« Reduce (also called accumulate) applies a binary operation to combine consecutive
elementsin a sequence, e.g., to generate the aggregates, like, totally (compare sum,
prod, all, max) or cumulatively (compare cumsum, cummin),

- Filter creates a subset of a sequence that is comprised of elements that enjoy a
given property (which we typically achieve in R by means of the “[* operator),

- Find locates the first element that fulfils some logical condition (compare which).

Below we will only focus on the Map function. The inspection of the remaining ones
is left as an exercise. This is because, oftentimes, we can be better off with their more
R-ish versions (e.g., using the subsetting operator, [ ).

7.2.4 Vectorising functions with Map

In data-centric computing, we are frequently faced with tasks that involve processing
eachvector element independently, one after another. Such use cases can benefit from
vectorised operations like those discussed in Chapter 2, Chapter 3, and Chapter 6.

Unfortunately, most of the functions that we introduced so far cannot be applied on
lists. For instance, if we try calling sqrt on a generic vector, we will get an error, even
if it is a list of numeric sequences only. One way to compute the square root of all
elements would be to invoke sqrt(unlist(...)). Itisa go-to approach if we want to
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treat all the list’s elements as one sequence. However, this comes at the price of losing
the list’s structure.

We have also discussed a few operations that are not vectorised with respect to all their
arguments, even though they could have been designed this way, e.g., grepl.

The Map function® applies an operation on each element in a vector or the correspond-
ing elements in a number of vectors. In many situations, it may be used as a more
elegant alternative to for loops that we will introduce in the next chapter.

First?, a call to Map(f, x) yields a list whose i-th element is equal to f(x[[1]]). For
example:

x <- list( # an example named list
x1=1:3,
x2=seq(0, 1, by=0.25),
x3=c(1, 0, NA_real_, 0, 0, 1, NA_real_)
)
Map(sqrt, x) # x is named, hence the result will be named as well
# Sx1
## [1] 1.0000 1.4142 1.7321
##
# Sx2
## [1] 0.00000 0.50000 0.70711 0.86603 1.00000
##
## Sx3
## [1] 1 ONA O O 1 NA
Map(length, x)
# Sx1
## [1] 3
##
# Sx2
## [1] 5
##
## Sx3
w# [1] 7
unlist(Map(mean, x)) # compute three aggregates, convert to an atomic vector
## x1 x2 X3
# 2.0 0.5 NA

Exercise 7.6 Given a list of numeric vectors, fetch their last elements in the form of an atomic
vector.

Recall that *[[* works on atomic vectors, too. Thus, we can call, e.g.:

! Yes, the author is aware that Map was implemented using the slightly more primitive mapply but we
are not fond of the latter function’s having the SIMPLIFY argument set to TRUE by default.

2 This use case scenario can also be programmed using lapply; lapply(x, f, ...) isequivalent to
Map(f, x, MoreArgs=list(...)).
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x <- c(2, 4, 6)

Map(function(n) round(runif(n, -1, 1), 1), Xx)
## [[1]]

## [1] 0.4 0.8

##

## [[2]]

## [1] 0.5 0.8 -0.1 -0.7

##

## [[3]]

## [1] -0.3 0.0 0.5 1.0 -0.9 -0.7

Next, we can vectorise a given function over several parameters. A call to, e.g., Map(f,
X, ¥, z) breedsalist whose i-th element is equal to f(x[[1]], y[[1]], z[[1]]).
Like in the case of, e.g., paste, the recycling rule will be applied if necessary.

For example, the following generates list(seq(1, 6), seq(11, 13), seq(21, 29)):

Map(seq, c(1, 11, 21), c(6, 13, 29))
## [[1]]

## [1] 123456

##

## [[2]]

## [1] 11 12 13

##

## [[3]]

## [1] 21 22 23 24 25 26 27 28 29

Moreover, we can get list(seq(1, 40, length.out=10), seq(11, 40, length.
out=5), seq(21, 40, length.out=10), seq(31, 40, length.out=5)) by calling:

Map(seq, c(1, 11, 21, 31), 40, length.out=c(10, 5))

## [[1]]

## [1] 1.0000 5.3333 9.6667 14.0000 18.3333 22.6667 27.0000 31.3333
##  [9] 35.6667 40.0000

##

## [[2]]

## [1] 11.00 18.25 25.50 32.75 40.00

#H

## [[3]]

#4 [1] 21.000 23.111 25.222 27.333 29.444 31.556 33.667 35.778 37.889 40.000
#H

## [[4]]

## [1] 31.00 33.25 35.50 37.75 40.00

Note If we have some additional arguments to be passed to the function applied
(which it does not have to be vectorised over), we can wrap them inside a separate
list and toss it via the MoreArgs argument (2 la do. call).
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unlist(Map(mean, x, MoreArgs=1list(na.rm=TRUE))) # mean(..., na.rm=TRUE)
## [1] 2 4 6

Alternatively, we can always construct a custom anonymous function:

unlist(Map(function(xi) mean(xi, na.rm=TRUE), X))
## [1] 2 4 6

Exercise 7.7 Hereisanexample list of files (see our teaching data repository®) with daily Forex
rates:

file_names <- c(
"euraud-20200101-20200630.csv",
"eurgbp-20200101-20200630.csv",
"eurusd-20200101-20200630.csv"

Call Map to read them with scan. Determine each series’ minimal, mean, and maximal value.

Exercise 7.8 Implement yourversion of the Filter function based on a call to Map.

7.3 Accessing third-party functions

When we indulge in the writing of a software piece, a few questions naturally arise. Is
the problem we are facing fairly complex? Has it already been successfully addressed
in its entirety? If not, can it, or its parts, be split into manageable chunks? Can it be
constructed based on some readily available nontrivial components?

A smart developer is independent but knows when to stand on the shoulders to cry on.
Let’s explore a few ways to reuse the existing function libraries.

7.3.1 Using R packages

Most contributed R extensions come in the form of add-on packages, which can include:
- reusable code (e.g., new functions),
« data (which we can exercise on),
« documentation (manuals, vignettes, etc.);

see Section 9.2.2 for more and Writing R Extensions [66] for all the details.

Most packages are published in the moderated repository that is part of the Compre-

3 hteps://github.com/gagolews/teaching- data/tree/master/marek
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hensive R Archive Network (CRAN*). However, there are also other popular sources such
as Bioconductor® which specialises in bioinformatics.

We call install.packages("pkg") to fetch a package pkg from a repository (CRAN by
default; see, however, the repos argument).

Acallto library("pkg") loads an indicated package and makes the exported objects
available to the user (i.e., attaches it to the search path; see Section 16.2.6).

For instance, in one of the previous chapters, we have mentioned the gs1 package:

# call install.packages("gsl") first
library("gsl") # load the package

poch(10, 3:6) # calls gsl_sf poch() from GNU GSL
#i [1] 1320 17160 240240 3603600

Here, poch is an object exported by package gs1. If we did not call library("gsl"),
trying to access the former would raise an error.

We could have also accessed the preceding function without attaching it to the search
path using the pkg: : fun syntax, namely, gsl: : poch.

Note For more information about any R extension, call help(package="pkg"). Also,
it is advisable to visit the package’s CRAN entry at an address like https://CRAN.R-
project.org/package=pkg to access additional information, e.g., vignettes. Why waste
our time and energy by querying a web search engine that will likely lead us to a dodgy
middleman when we can acquire authoritative knowledge directly from the source?

Moreover, it is worth exploring various CRAN Task Views® that group the packages
into topics such as Genetics, Graphics, and Optimisation. They are curated by experts in
their relevant fields.

Important Frequently, R packages are written in their respective authors’ free time,
many of whom are volunteers. Neither get they paid for this, nor do it as part of the
so-called their job. Yes, not everyone is driven by money or fame.

Someday, when we come up with something valuable for the community, we will be-
come one of them. Before this happens, we can show appreciation for their generosity
by, e.g., spreading the word about their software by citing it in publications (see cita-
tion(package="pkg")), talking about them during lunchtime, or mentioning them in
(un)social media. We can also help them improve the existing code base by reporting
bugs, polishing documentation, proposing new features, or cleaning up the redund-
ant fragments of their APIs.

4 hteps://cloud.r-project.org/
5 https://bioconductor.org/
¢ https://cloud.r-project.org/web/views


https://cloud.r-project.org/
https://bioconductor.org/
https://cloud.r-project.org/web/views

7 FUNCTIONS 123

Default packages

The base package is omnipresent. It provides us with the most crucial functions such
as the vector addition, c, Map, and library. Certain other extensions are also loaded
by default:

getOption("defaultPackages")
## [1] "datasets" ‘utils" "grDevices" "graphics" '"stats"
## [6] "methods"

In this book, we assume that they are always attached (even though this list can, the-
oretically, be changed’). Due to this, in Section 2.4.5, there was no need to call, for
example, library("stats") before referring to the var and sd functions.

On a side note, grbevices and graphics will be discussed in Chapter 13. methods will
be mentioned in Section 10.5. datasets brings a few example R objects on which we
can exercise our skills. The functions from utils, graphics, and stats already ap-
peared here and there.

Exercise 7.9 Usethe find function to determine which packages define mean, var, find, and
Map. Recall from Section 1.4 where such information can be found in these objects’ manual pages.

Source vs binary packages ()

R is an open environment. Therefore, its packages are published primarily in the
source form. This way, anyone can study how they work and improve them or reuse
parts thereof in different projects.

If we call install.packages("path", repos=NULL, type="source"), we should
be able to install a package from sources: path can be pinpointing either a direct-
ory or a source tarball (most often as a compressed pkg_version.tar.qgz file; see
help("untar")).

Note that type="source" is the default unless one is on a Win***s or m**0S box;
see getOption("pkgType"). This is because these two operating systems require ad-
ditional build tools, especially if a package relies on C or C++ code; see Chapter 14 and
Section C.3 of [68]:

« RTools® on Win***s,
« Xcode Command Line Tools? on m**0S.

These systems are less developer-orientated. Thus, as a courtesy to their users, CRAN
also distributes the platform-specific binary versions of the packages (.zip or .tgz files).
install.packages will try to fetch them by default.

Example 7.10 It is very easy to retrieve a package’s source directly from GitLab and GitHub,
which are popular hosting platforms. The relevant links ave, respectively:

7 ()Ris greatly configurable: we can have custom ~/ .Renvironand ~/ .Rprofile files thatare processed
on R’s startup; see help("Startup").

8 https://cran.r- project.org/bin/windows/Rtools

2 https://developer.apple.com/xcode/resources
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- https://gitlab.com/user/repo/-/archive/branch/repo-branch.zip,
« https://github.com/user/repo/archive/branch.zip.

For example, to download the contents of the master branch in the GitHub repository rpack-
agedemo owned by gagolews, we can call:

f <- tempfile() # download destination: a temporary file name
download. file("https://github.com/gagolews/rpackagedemo/archive/master.zip",
destfile=f)

Next, the contents can be extracted with unzip:

t <- tempdir() # temporary directory for extracted files
(d <- unzip(f, exdir=t)) # returns extracted file paths

The path where the files were extracted can be passed to install. packages:

install.packages(dirname(d)[1], repos=NULL, type="source")
file.remove(c(f, d)) # clean up

Exercise 7.1 Usethe git2r package to clone the git repository located at https://github.com/
gagolews/rpackagedemo.git and install the package published therein.

Managing dependencies (*)

By calling update. packages, all installed add-on packages may be upgraded to their
most recent versions available on CRAN or other indicated repository.

As a general rule, the more experienced we become, the less excited we get about the
new. Sure, bug fixes and well-thought-out additional features are usually welcome.
Still, just we wait until someone updates a package’s API for the n-th time, n > 2,
breaking our so-far flawless program.

Hence, when designing software projects (see Chapter 9 for more details), we must
ask ourselves the ultimate question: do we really need to import that package with
lots of dependencies from which we will just use only about 3-5 functions? Wouldn't
it be better to write our own version of some functionality (and learn something new,
exercise our brain, etc.), or call a mature terminal-based tool?

Otherwise, as all the historical versions of the packages are archived on CRAN™,
simple software dependency management can be conducted by storing different re-
leases of packages in different directories. This way, we can create an isolated envir-
onment for the add-ons. To fetch the locations where packages are sought (in this very
order), we call:

.libPaths()
## [1] "/home/gagolews/R/x86_64-suse-linux-gnu-library/4.5"
## [2] "/usr/1ib64/R/library"

19 https://cran.r- project.org/src/contrib/Archive
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The same function can add new folders to the search path; see also the environment
variable R_LIBS_USER that we can set using Sys.setenv. The install.packages func-
tion will honour them as target directories; see its 1ib parameter for more details.
Note that only one version of a package can be loaded at a time, though.

Moreover, the packages may deposit auxiliary data on the user’s machine. Therefore,
it might be worthwhile to set the following directories (via the corresponding environ-
ment variables) relative to the current project:

tools::R_user_dir("pkg", "data") # R_USER_DATA_DIR
## [1] "/home/gagolews/. local/share/R/pkg"
tools::R_user_dir("pkg", "config") # R_USER_CONFIG DIR
## [1] "/home/gagolews/.config/R/pkg"
tools::R_user_dir("pkg", "cache") # R _USER_CACHE_DIR
## [1] "/home/gagolews/.cache/R/pkg"

7.3.2 Calling external programs

Many tasks can be accomplished by calling external programs. Such an approach is
particularly natural on UNIX-like systems, which classically follow modular, minim-
alist design patterns. There are many tools at a developer’s hand and each of them is
specialised at solving a single, well-defined problem. Apart from the many standard
UNIX commands", we may consider:

« pandoc'* converts documents between markup formats, e.g., Markdown, HTML,
reStructuredText, and LaTeX and can generate LibreOffice Writer documents,
EPUB or PDF files, or slides;

- jupyter-nbconvert converts Jupyter” notebooks (see Section 1.2.5) to other
formats such as LaTeX, HTML, Markdown, etc.;

. convert (from ImageMagick'¥) applies various operations on bitmap graphics
(scaling, cropping, conversion between formats);

« graphviz'® and PlantUML'® draws graphs and diagrams;

- python, perl, ... can be called to perform tasks that can be expressed more easily
in languages other than R.

The good news is that we are not limited to calling R from the system shell in the in-
teractive or batch mode; see Section 1.2. Our environment serves particularly well as
a glue language, too.

The system2 function invokes an external command. The communication between dif-
ferent programs may be done using, e.g., intermediate text, JSON, CSV, XML, or any

" hteps://en.wikipedia.org/wiki/List_of_Unix_commands
2 hteps://pandoc.org/

B https://jupyter.org/

14 https://imagemagick.org/

15 https://graphviz.org/

16 https://plantuml.com/
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other files. The stdin, stdout, and stderr arguments control the redirection of the
standard I/O streams.

system2("pandoc", "-s input.md -o output.html")
system2("bash", "-c 'for 1 in 'seq 1 2 10"; do echo $1; done'", stdout=TRUE)
## [1] "1" "3" "5" 7" rgQr
system2("python3", "-", stdout=TRUE,
input=c(
"import numpy as np",
"print(repr(np.arange(5)))"
))
## [1] "array([0, 1, 2, 3, 4])"

On a side note, the current working directory can be read and changed through a call
to getwd and setwd, respectively. By default, it is the directory where the current R
session was started.

Important Relying on system2 assumes that the commands referred to are available
on the target platform. Hence, it might not be portable unless additional assumptions
are made, e.g., that a user runs a UNIX-like system and that certain libraries are avail-
able. We strongly recommend GNU/Linux or FreeBSD for both software development
and production use, as they are free, open, developer-friendly, user-loving, reliable,
ethical, and sustainable. Users of other operating systems are missing out on so many
good features.

7.3.3 Interfacing C, C++, Fortran, Python, Java, etc. (**)

Most standalone data processing algorithms are implemented in compiled, slightly
lower-level programming languages. This usually makes them faster and more re-
usable in other environments. For instance, an industry-standard library might be
written in very portable C, C++, or Fortran and define bindings for easier access from
within R, Python, Julia, etc. It is the case with FFTW, LIBSVM, mlpack, OpenBLAS,
ICU, and GNU GSL, amongst many others. Chapter 14 explains basic ways to refer to
such compiled code.

Also, the rJava package can dynamically create JVM objects and access their fields and
methods. Similarly, reticulate can be used to access Python objects, including numpy
arrays and pandas data frames (but see also the rpy2 package for Python).

Important We should not feel obliged to use Rin all parts of a data processing pipeline.
Some activities can be expressed more naturally in other languages or environments
(e.g., parse raw data and create a SQL database in Python but visualise it in R).



7 FUNCTIONS 127

7.4 Exercises
Exercise 7.12 Answer the following questions.

« Whatistheresultof ‘{x <- "x"; x <- function(x) x; x(x)}"?

How to compose a function that returns two objects?

What is a higher-order function?

What are the use cases of do. call?

Why a call to Map is redundant in the expression Map(paste, x, y, z)?

.

What is the difference between Map (mean, x, na.rm=TRUE) andMap(mean, x, More-
Args=list(na.rm=TRUE))?

o What do we mean when we write stringx: : sprintf?

« Howto get access to the vignettes (tutorials, FAQs, etc.) of the data. table and dplyr pack-
ages? Why perhaps 95% of R users would just googleit, and what is suboptimal about this
strategy?

What is the difference between a source and a binary package?
« How to update the base package?

« How to ensure that we will always run an R session with only specific versions of a set of
packages?

Exercise 7.13 Write a function that computes the Gini index of a vector of positive integers x,
which, assuming xq < Xy < ... < x,,, is equal to:

S (n=2i+ 1)x;

G(xq,...,x,) = —
m=131%

Exercise 7.14 Implement a function between(x, a, b) thatverifies whether each element
in x is in the [a, bl interval. Return a logical vector of the same length as x. Ensure the function
is correctly vectorised with respect to all the arguments and handles missing data correctly.

Exercise 7.15 Write your version of the strrep function called dup.

dup <- ...to.do...

dup(c("a", "b", "c"), c(1, 3, 5))
## [1] "a" "bbb" "cccec”
dup("a", 1:3)

## [1] "a" "aa" "aaa"
dup(c("a", "b", "c"), 4)

## [1] "aaaa" "bbbb" "cccc"

Exercise 7.16 Given a list x, generate its sublist with all the elements equal to NULL removed.
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Exercise 7.17 Implement your version of the sequence function.

Exercise 7.18 Using Map, how can we generate window indexes like below?

## [[1]]

## [1] 1 2 3
##

## [[2]]

## [1] 2 3 4
##

## [[3]]

## [1] 345
##

## [[4]]

## [1] 456

Write a function windows (k, n) that yields index windows of length k with elements between
1 and n (the above example is fork = 3andk = 6).

Exercise 7.19 Write a function to extract all g-grams, q > 1, from a given character vector.
Return a list of character vectors. For example, bigrams (2-grams) in "abcd" are: "ab", "bc",
ucdn\.

Exercise 7.20 Implement a function movstat(f, x, k) thatcomputes, using Map, a given
aggregate f of each k consecutive elements in x. For instance:

movstat <- ...to.do...

x <- c(1, 3, 5, 10, 25, -25) # example data
movstat(mean, x, 3) # 3-moving mean
## [1] 3.0000 6.0000 13.3333 3.3333
movstat(median, x, 3) # 3-moving median

# [1] 3.0000 6.0000 13.3333 3.3333

Exercise 7.21 Recode a charactervectorwith a small number of distinct values to a vector where
each unique code is assigned a positive integer from 1 to k. Here are example calls and the corres-
ponding expected results:

recode <- ...to.do...
recode(c("a", "a", "a", "b", "b"))
## (1] 11122

recode(c("x", "z", "y", "x", "y", "x"))
##[1] 132121

Exercise 7.22. Implement a function that returns the number of occurrences of each unique ele-
ment in a given atomic vector. The return value should be a numeric vector equipped with the
names attribute. Hint: use match and tabulate.

count <- ...to.do...
count(c(5, 5, 5, 5, 42, 42, 954))
# 5 42 954
(continues on next page)
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(continued from previous page)
# 4 2 1

count(c("x", "z", "y, "x", "y", "x", "w", "x", "x", "y" NA_character._))
## W X vy z <NA>
## 1 5 3 1 1

Exercise 7.23 Extend the built-in duplicated function. For each vector element, indicate
which occurrence of a repeated value is it (starting from the beginning of the vector).

duplicatedn <- ...to.do...
duplicatedn(c("a", "a", "a", "b", "b"))
#4 [1] 12312

duplicatedn(c("x", "z", "y", "x", "y", "x", "w", "x", "x", "y", "z"))
## [1] 11122314532

Exercise 7.24 Based on a call to Map, implement your version of split that takes two atomic
vectors as arguments. Then, extend it to handle the second argument being a list of the form
list(y1, y2, ...) representing the product of many levels. If the ys are of different lengths,
apply the recycling rule.

Exercise 7.25 Implement my_unsplit being your version of unsplit. For any x and g of the
same lengths, ensure that my_unsplit(split(x, g), g)isequaltox.

Exercise 7.26 Write a function that takes as arguments: (a) an integer n, (b) a numeric vector
x of length k and no duplicated elements, (c) a vector of probabilities p of length k. Verify that

p; = 0foralliand Zle p; = 1. Based on a random number generator from the uniform
distribution on the unit interval, generate n independent realisations of a random variable X
suchthatPr(X = x;) = p; fori = 1,..., k. To obtain a single value:

1. generateu € [0, 1],

2. fimdm € {1,...,k} suchthatu € (Z]mz_ll pjs Z]."il p]-],
3. theresultisthenx,,.

Exercise 7.27 Write a function that takes as arguments: (a) an increasingly sorted vector x of
length n, (b) any vector y of length n, (c) a vector z of length k and elements in [x1, x,,). Letf be
the piecewise linear spline that interpolates the points (x1,Y1), ..., (X,,, Y,,). Return a vectorw
oflength k such thatw; = f (z;).

Exercise 7.28 (*) Write functions dpareto, ppareto, qpareto, and rpareto that imple-
ment the functions related to the Pareto distribution; compare Section 2.3.4.






8

Flow of execution

The ifelse and Map functions are potent. However, they allow us to process only the
consecutive elements in a vector. Below we will (finally!) discuss different ways to alter
a progrant’s control flow manually, based on some criterion, and to evaluate the same
expression many times, but perhaps on different data. Nevertheless, before proceed-
ing any further, let’s meditate on the fact that we have managed without them for such
along time, even though the data processing exercises we solved were far from trivial.

8.1 Conditional evaluation

Life is full of surprises, so it would be nice if we were able to adapt to any future chal-
lenges. The following evaluates a given expression ifand only if alogical conditionis
true.

if (condition) expression

When performing some other_expression is preferred rather than doing nothing in
the case of the condition’s being false, we can write:

if (condition) expression else other_expression

For instance:

(x <- runif(1)) # to spice things up

## [1] 0.28758

if (x > 0.5) cat("head\n") else cat("tail\n")
## tail

Many expressions can, of course, be grouped with curly braces, *{".

if (x > 0.5) {
cat("head\n")
X <-1
} else { # do not put newline before else!
cat("tail\n")
X <- 0

(continues on next page)
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(continued from previous page)
## tail
print(x)
## [1] 0

Important At the top level, we should not put a new line before else. Otherwise, we
will get an error like Error: unexpected 'else' in "else". This is because the
interpreter enthusiastically executes the statements read line by line as soon as it re-
gards them as standalone expressions. In this case, we first get an if without else,
and then, separately, a dangling else without the preceding if.

This is not an issue when a conditional statement is part of an expression group as the
latter is read in its entirety.

function (x)
{ # opening bracket - start
if (x > 0.5)
cat("head\n")
else # not dandling because {...} i1s read as a whole
cat("tail\n")
} # closing bracket - expression ends

As an exercise, try removing the curly braces and see what happens.

8.1.1 Returnvalue

*if" is a function (compare Section 9.3). Hence, it has a return value: the result of eval-
uating the conditional expression.

(x <- runif(1))

## [1] 0.28758

y <- i1f (x > 0.5) "head" # no else
print(y)

## NULL

y <- i1f (x > 0.5) "head" else "tail"
print(y)

## [1] "tail”

This is particularly useful when a call to “if" is the last expression in a curly brace-
delimited code block that constitutes a function’s body.

mint <- function(x)
{
cond <- (x > 0.5) # could be something more sophisticated
if (cond) # the last expression in the code block
"head" # this can be the return value...
else
(continues on next page)
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(continued from previous page)

"tail" # or this one, depending on the condition
}
mint(x)
## [1] "tail”

unlist(Map(mint, runif(5)))
## [1] "tail"” "head" "tail" "head" "head"

Example 8.1 Add-on packages can be loaded using requireNamespace. Contrary to lib-
rary, the former does not fail when a package is not available. Also, it does not attach it to the
search path; see Section 16.2.6. Instead, it veturns a logical value indicating if the package is
available for use. This can be helpful in situations where the availability of some features depends
on the user environment’s configuration:

process_data <- function(x)

{
if (requireNamespace("some_extension_package", quietly=TRUE))
some_extension_package: :very_fast_method(x)
else
normal_method(x)
7

8.1.2 Nested ifs

If more than two test cases are possible, i.e., when we need to go beyond either con-
dition or !condition, then we can use the following construct:

if (a) {
expression_a

} else if (b) {
expression_b

} else if (c) {
expression_c

} else {
expression_else

This evaluates all conditions a, b, ... (in this order) until the first positive case is found
and then executes the corresponding expression. Itis worth stressing that the forego-
ingis nothing else than a series of nested if statements but written in a more readable*
manner:

if (a) {
expression_a
(continues on next page)

! (*) Somewhat related is the switch function which relies on the lazy evaluation of its arguments
(Chapter 17). However, it can always be replaced by a series of ifs.
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(continued from previous page)
} else {
if (b) {
expression_b
} else {
if (o) {
expression_c
} else {
expression_else

Exercise 8.2 Write a function named sign that determines if a given numeric value is "pos -

"o

itive”, "negative”, or "zero".

8.1.3 Condition: Either TRUE or FALSE

if expectsa conditionthatisasingle, well-defined logical value, either TRUE or FALSE.
Thence, problems may arise when this is not the case. First, if the condition is not of
length one, we get an error:

if (c(TRUE, FALSE)) cat("spam\n")

## Error in 1f (c(TRUE, FALSE)) cat("spam\n"): the condition has length > 1
if (logical(0)) cat("bacon\n")

## Error in i1f (logical(0)) cat("bacon\n"): argument is of length zero

We cannot pass a missing value either:

if (NA) cat("ham\n")
## Error in if (NA) cat("ham\n"): missing value where TRUE/FALSE needed

Important If we think that we are immune to writing code violating the preceding
constraints, just we wait until the condition becomes a function of data for which
there is no sanity-checking in place.

mint <- function(x)
if (x > 0.5) "head" else "tail"

mint(0.25)

## [1] "tail”

mint(runif(5))

## Error in 1f (x > 0.5) "head" else "tail": the condition has length > 1
mint(log(rnorm(1))) # not obvious, error raised occasionally

## Warning in log(rnorm(1)): NaNs produced

## Error in if (x > 0.5) "head" else "tail": missing value where TRUE/FALSE
##t needed
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Chapter 9 will be concerned with ensuring input data integrity so that such cases will
either fail gracefully or succeed bombastically. In the above example, we should prob-
ably verify that x is a single finite numeric value. Alternatively, we might need to apply
ifelse, all, or any.

Interestingly, conditions other that logical are coerced:

x <- 1:5

if (length(x)) # i.e., length(x) != 0, but way less readable
cat("length is not zero\n")

## length is not zero

Recall that coercion of numeric to logical yields FALSE if and only if the original value
is zero.

8.1.4 Short-circuit evaluation

Especially for formulating logical conditions in if and while (see below), we have the
scalar * | |" (alternative) and "&&" (conjunction) operators.

FALSE || TRUE
## [1] TRUE
NA || TRUE
## [1] TRUE

Contrary to their vectorised counterparts (" | and "&), the scalar operators are lazy
(Chapter 17) in the sense that they evaluate the first operand and then determine if the
computing of the second one is necessary (because, e.g., FALSE && whatever is always
FALSE anyway). Therefore,

if (a && b)

expression

is equivalent to:

if (a) {
if (b) { # compute b only if a is TRUE
expression

}

and

if (a [] b)
expression

corresponds to:
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if (a) {
expression

} else if (b) { # compute b only if a is FALSE
expression

}

For instance, “is.vector(x) 8&& length(x) > 0 && x[[1]] > 0”is a risk-free
test. It takes into account that x[[1]] has the desired meaning only for objects that
are nonempty vectors.

Some more examples:

{cat("spam"); FALSE} || {cat("ham"); TRUE} || {cat("cherries"); FALSE}
## spamham

## [1] TRUE

{cat("spam"); TRUE} && {cat("ham"); FALSE} && {cat("cherries"); TRUE}
## spamham

## [1] FALSE

Recall that the expressions within the curly braces are evaluated one after another and
that the result is determined by the last value in the series.

Exercise 8.3 Study the source code of 1sTRUE and isFALSE and determine if these functions
could be useful in formulating the conditions within the i f expressions.

8.2 Exception handling

Exceptions are exceptional, but they may happen and break stuff. For instance, we are
in deep skit when the internet connection drops while we try to download a file, an
optimisation algorithm fails to converge, or:

read.csv("/path/to/a/file/that/does/not/exist")
## Warning in file(file, "rt"): cannot open file '/path/to/a/file/that/does/
# not/exist': No such file or directory
## Error in file(file, "rt"): cannot open the connection
Three types of conditions are frequently observed.:
« errors stop the flow of execution,
- warnings are not critical, but can be turned into errors (see warn in option),
- messages transmit diagnostic information.

They can be manually triggered using the stop, warning, and message functions.

Errors (but warnings too) can be handled by means of the tryCatch function, amongst
others.
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tryCatch({ # block of expressions to execute, until an error occurs
cat("a...\n")
stop("b!™") # error - breaks the linear control flow
cat("c?\n")
Fo

error = function(e) { # executed immediately on an error
cat(sprintf("[error] %s\n", e[["message"]]))
Fo
finally = { # always executed at the end, regardless of error occurrence
cat("d.\n")
}
)
## a...
## [error] b!
## d.

The two other conditions can be ignored by calling suppressWarnings and suppress-
Messages.

log(-1)

## Warning in log(-1): NaNs produced

## [1] NaN

suppressWarnings(log(-1)) # yeah, yeah, we know what we're doing
## [1] NaN

Exercise 8.4 At the time of writing this book, when the data. table package is attached, it
emits a message. Call suppressMessages to silence it. Note that consecutive calls to Library
do not reload an already loaded package. Therefore, the message will only be seen once per R ses-
sion.

Related functions include stopifnot discussed in Section 9.1and on.exit mentioned
in Section 17.4; see Section 9.2.4 for some code debugging tips.

8.3 Repeated evaluation
And now for something completely different... time for the elephant in the room!

We have been able to manage without loops so far (and will be quite all right in the
second part of the book too). This is because many data processing tasks can be writ-
ten in terms of vectorised operations such as *+°, sqrt, sum, *[*, Map, and Reduce. Of-
tentimes, compared to their loop-based counterparts, they are more readable and ef-
ficient. We will explore this in the coming exercises.

However, at times, using an explicit while or for loop might be the only natural way
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to solve a problem, for instance, when processing chunks of data streams. Also, an ex-
plicitly “looped” algorithm may occasionally have better” time or memory complexity.

8.3.1 while

if considers a logical condition provided and determines whether to execute a given
statement. On the other hand:

while (condition) # single TRUE or FALSE, as in ‘if’
expression

evaluates a given expression as long as the logical condition is true. Therefore, it is
advisable to make the condition dependent on some variable that the expression
can modify.

i<-1

while (1 <= 3) {
cat(sprintf("%d, ", 1))
i<-1+1

}

#t 1, 2, 3,

Nested loops are possible too:

i<-1
while (1 <= 2) {
j<-1
while (j <= 3) {
cat(sprintf("%d %d, ", i, j))
j<-3i+1
}
cat("\n")
1<-1+1
}
## 11, 12, 1 3,
# 21, 2 2, 2 3,

Exercise 8.5 Implement a simple linear congruential pseudorandom number generator that,
given some seed X € [0, m), outputs a sequence (X1, X5, ... ) defined by:

X; = (@X;_1 +¢) mod m,
with, e.g.,a = 75,¢c = 74, and m = 216 4 1 (here, mod is the division remainder, “%%"). This

generator has poor statistical properties and its use in practice is discouraged. In particular, after
a rather small number of iterations k, we will find a cycle such that Xj = X1, Xpp1 = Xo, ...

2 In such a case, rewriting it in C or C++ might be beneficial; see Chapter 14.
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8.3.2 for
The for-each loop:

for (name in vector)
expression

takes each element, from the beginning to the end, in a given vector, assigns it some
name, and evaluates the expression. For example:

fridge <- c("spam", "spam", "bacon", "eggs")
for (food in fridge)

cat(sprintf("%s, ", food))
## spam, spam, bacon, eggs,

Another example:

for (1 in 1:1length(fridge)) # better: seq along(fridge); see below
cat(sprintf("%s, ", fridge[i]))
## spam, spam, bacon, eggs,

One more:

for (1 in 1:2) {
for (j in 1:3)
cat(sprintf("%d %d, ", i, j))
cat("\n")
}
## 11, 12, 1 3,
# 21, 22, 2 3,

The iterator still exists after the loop’s watch has ended:

print(i)
#w# [1] 2
print(j)
## [1] 3

Important Writing:

for (1 in 1:length(x))
print(x[i])

is reckless. If x is an empty vector, then we will observe undesired behaviour because
we ask to iterate over 1:0:

x <- logical(0)
for (1 in 1:1length(x))
print(x[i])
(continues on next page)
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## [1] NA
## logical(0)

Recall from Chapter 5 that x[1] tries to access an out-of-bounds element here, and
x[0] returns nothing. We generally suggestreplacing 1: length(x) with seq_along(x)
or seq_len(length(x)) wherever possible.

Note The preceding model for loop is roughly equivalent to:

name <- NULL

tmp_vector <- vector

tmp_1iter <- 1

while (tmp_1iter <= length(tmp_vector)) {
name <- tmp_vector[[tmp_1iter]]
expression
tmp_1iter <- tmp_iter + 1

}

Note that the tmp_vector is determined before the loop itself. Hence, any changes to
the vector will not influence the execution flow. Furthermore, due to the use of "[[°,
the loop can also be applied on lists.

Example 8.6 Let x be a list and f be a function. The following code generates the same result as
Map(f, x):

n <- length(x)
ret <- vector("list", n) # a new list of length 'n’
for (1 in seq_len(n))

ret[[1]] <- f(x[[1]])

Example 8.7 Let x and y be two lists and f be a function. Here is the most basic version of
Map(f, X, y).

nx <- length(x)
ny <- length(y)
n <- max(nx, ny)
ret <- vector("list", n)
for (1 in seq_len(n))
ret[[1]] <- fOx[[((1-1)%%nx)+1]], y[[((1-1)%%ny)+1]])

Note that x and y might be of different lengths. Feel free to upgrade this code by adding a warning
like the longer argument is not a multiple of the length of the shorter one. Also, rewrite
it without using the modulo operator, %% .
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8.3.3 breakand next

break can be used to escape the current loop. next skips the remaining expressions
and advances to the next iteration (where the testing of the logical condition occurs).
Here is a rather random example:

x <- c(10, 0.03, 0.04, 1, 0.001, 0.05)
s <-0
for (e in x) {
if (e > 0.1) # skip the current element if it i1s greater than 0.1
next

print(e)
if (e < 0.01) # stop at the first element less than 0.01
break

S <-S + e
}
## [1] 0.03
## [1] 0.04
## [1] 0.001
print(s)
## [1] 0.07

We have used a frequently occurring design pattern:
for (e in x) {

if (condition)
next

many_statements...

which is equivalent to:
for (e in x) {

if (!condition) {
many_statements...

but which avoids introducing a nested block of expressions.

Note (¥) There is a third loop type,

repeat
expression

which is a shorthand for:
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while (TRUE)
expression

i.e., itis a possibly infinite loop. Such constructs are invaluable when expressing situ-
ations like repeat-something-until-success, e.g., when we want to execute a command
at least once.

i<-1

repeat { # while (TRUE)
# simulate dice casting until we throw "1"
if (runif(1) < 1/6) break # repeat until this
i <- 1+1 # how many times until success

}

print(i)

# [1] 6

Exercise 8.8 What is wrong with the following code?

jo<-1

while (j <= 10) {
if (7 %% 2 == 0) next
print(j)
Jj<-3j+1

}

Exercise 8.9 What about this one?

jo<-1
while (j <= 10);
j<-3J+1

8.3.4 return

return, when called from within a function, immediately yields a specified value and
goes back to the caller. For example, here is a simple recursive function that flattens a
given list:

my_unlist <- function(x)
{
if (is.atomic(x))
return(x)

# so if we are here, x is definitely not atomic
out <- NULL
for (e in x)

out <- c(out, my _unlist(e))

(continues on next page)



8 FLOW OF EXECUTION 143

(continued from previous page)

out # or return(out); not necessary as it's the last expression

}

my_unlist(list(list(list(1, 2), 3), list(4, list(5, list(6, 7:10)))))
## [1] 1 2 3 4 5 6 7 8 9 10

return is a function: the round brackets are obligatory.

8.3.5 Time and space complexity of algorithms (*)

Analysis of algorithms can give us a rough estimate of their run time or memory con-
sumption as a function of the input problem size, especially for big data (e.g., [15, 44]).
In scientific computing and data science, we often deal with vectors (sequences) or
matrices/data frames (tabular data). Therefore, we might be interested in determin-
ing how many primitive operations need to be performed as a function of their length n
or the number of rows n and columns m, respectively.

The O (Big-Oh) notation can express the upper bounds for time/resource consumption
in asymptotic cases. For instance, we say that the time complexity is O(n?), if for large
n, the number of operations to perform or memory cells to use will be proportional to
at most the square of the vector size (more precisely, there exists m and C > 0 such
that for all n > m, the number of operations is < Cn?).

Therefore, if we have two algorithms that solve the same task, one that has O(1?) time
complexity, and other of O(1%), it is better to choose the former. For large problem
sizes, we expect it to be faster. Moreover, whether time grows proportionally to logn,
vn,n,nlogn, n?, n3, or 2", can be informative in predicting how big the data can be
if we have a fixed deadline or not enough space left on the disk.

Exercise 8.10 The hclust function determines a hierarchical clustering of a dataset. It is fed
with an object that stores the distance between all the pairs of input points. Therearen(n —1) /2
(i.e., O(n?)) unique point pairs for any given n. One numeric scalar (doub Le type) takes 8 bytes
of storage. If you have 16 GiB of RAM, what is the largest dataset that you can process on your
machine using this function?

Oftentimes, we can learn about the time or memory complexity of the functions we
use from their documentation; see, e.g., help("findInterval").

Example 8.11 A coursein data structuresin algorithms, which this oneis not, will give us plenty
of opportunities to implement many algorithms ourselves. This way, we can gain a lot of insights
and intuitions. For instance, here is an O (n)-time algorithm:

for (i1 in seq_len(n))
expression

and this one runs in O(n?) time:

for (1 in seq_len(n))
(continues on next page)
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for (j in seq_len(n))
expression

as long as, of course, the expression is rather primitive (e.g., operations on scalar variables).

Ris a very expressive language. Hence, complex and lengthy operations can look pretty innocent.
After all, it is a glue language for rapid prototyping. For example:

for (i1 in seq_len(n))
for (j in seq_len(n))
z <-z+ x[[1]] + y[[]]]

can be seen as running in O(n3) time if each element in the lists x and y as well as z itself are
atomic vectors of length n. Similarly,

Map(mean, x)

is O(n?) if x is a list of n atomic vectors, each of length n.

Note A quite common statistical scenario involves generating a data buffer of a fixed
size:

ret <- c() # start with an empty vector
for (1 in seq_len(n))
ret[[1]] <- generate_data(i) # here: ret[[length(ret)+1]] <- ...

This notation, however, involves growing the ret array in each iteration. Luckily, since
R version 3.4.0, each such size extension has amortised O(1) time as some more
memory is internally reserved for its prospective growth (dynamic arrays; see, e.g.,
Chapter 17 of [15]).

However, it is better to preallocate the output vector of the desired final size. We can
construct vectors of specific lengths and types in an efficient way (more efficient than
with rep) by calling:

numeric(3)
## [1] 0 0 0
numeric(0)
## numeric(0)
logical(5)
## [1] FALSE FALSE FALSE FALSE FALSE
character(2)
g [1] "o
vector("numeric", 8)
#% [1] 0 06 0 0 00 0 0
vector("list", 2)
## [[1]]
## NULL
(continues on next page)



8 FLOW OF EXECUTION 145

(continued from previous page)
##

## [[2]]
## NULL

Note Notall data fitinto memory, but it does not mean that we should start installing
Apache Hadoop and Spark immediately. Some datasets can be processed chunk by
chunk. R enables data stream handling (some can be of infinite length) through file
connections. For example:

f <- file("https://github.com/gagolews/teaching-data/raw/master/README.md",
open="r") # a big file, the biggest file ever

i<-0

while (TRUE) {
few_lines <- readlLines(f, n=4) # reads only four lines at a time
if (length(few_lines) == 0) break
i <- 1 + length(few_lines)

}

close(f)

print(i) # the number of lines

# [1] 90

Many functions support reading from/writing to already established connections
of different types, e.g., file, gzfile, textConnection, batch by batch. A common
scenario involves reading a very large CSV, JSON, or XML file only by thousands of
lines/records at a time, parsing and cleansing them, and exporting them to SQL data-
bases (which we will exercise in Chapter 12).

8.4 Exercises

From now on, we must stay alert. Many, if not all, of the undermentioned tasks, can
still be implemented without the explicit use of the R loops but based only on the op-
erations covered in the previous chapters. If this is the case, try composing both the
looped and loop-free versions. Use proc. time to compare their run times>.

Exercise 8.12 Answer the following questions.

o Let x be a numericvector. When does “if(x > 0) ...”yield awarning? When does it give
an error? How to guard ourselves against them?

« Whatis a dangling else?

3 It might be the case that a for-based solution is faster (e.g., for larger objects) because of the use of a
more efficient algorithm. Such cases will benefit from a rewrite in C or C++ (Chapter 14).



146 | DEeep

« What happens if you put if as the last expression in a curly braces block within a function’s
body?

Why dowe say that “&&" and " [ |~ are lazy? What are their use cases?

« What is the difference between "8&" and “&"?

« Canwhile always be replaced with for? What about the other way around?
« Whatis wrong with “return (1+2)*3"?

Exercise 8.13 Verify which of the following can be safely used as logical conditions in if state-
ments. If that is not the case for all x, y, ..., determine the additional conditions that must be
imposed to make them valid.

e X == 0,

« x[y] > 6,

+ any(x>0),

o match(x, y),

e any(x %in% y).

Exercise 8.14 What can go wrong in the following code chunk, depending on the type and form
of x? Consider as many scenarios as possible.

count <- 0
for (1 in 1:length(x))
if (x[i] > 0)

count <- count + 1

Exercise 8.15 Implement shift_left(x, n)and shift_right(x, n). The former func-
tion gets rid of the first n observations in x and adds n missing values at the end of the resulting
vector, e.g., shift_left(c(1, 2, 3, 4, 5), 2)isc(3, 4, 5, NA, NA).Ontheother
hand, shift_right(c(1, 2, 3, 4, 5), 2)isc(NA, NA, 1, 2, 3).

Exercise 8.16 Implement your version of diff.

Exercise 8.17 Write a function that determines the longest ascending trend in a given numeric
vector, i.e., the length of the longest subsequence of consecutive increasing elements. For example,
theinpute(1, 2, 3, 2, 1, 2, 3, 4, 3)shouldyield 4.

Exercise 8.18 Implement the functions that vound down and round up each element in a nu-
meric vector to a number of decimal digits.

This concludes the first part of this magnificent book.
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9
Designing functions

In Chapter 7, we learnt how to compose simple functions. This skill is vital to enforcing
the good development practice of avoiding code repetition: running the same com-
mand sequence on different data.

The current chapter is devoted to designing reusable methods so that they are easier
to use, test, and maintain. We also provide more technical details about functions.
They were not of the highest importance during our first exposure to this topic but are
crucial to our better understanding of how R works.

9.1 Managing data flow

A function, most of the time, can and should be treated as a black box. Its callers do
not have to care what it hides inside. After all, they are supposed to use it. Given some
inputs, they expect well-defined outputs that are explained in detail in the function’s
manual.

9.1.1 Checking input data integrity and argument handling

A function takes R objects of any kind as arguments, but it does not mean feeding it
with everything is healthy for its guts. When designing functions, it is best to handle
the inputs in a manner similar to base R’s behaviour. This will make our contribu-
tions easier to work with. Lamentably, base functions frequently do not process ar-
guments of a similar kind fully consistently. Such variability might be due to many
reasons and, in essence, is not necessarily bad. Usually, there might be many possible
behaviours and choosing one over another would make a few users unhappy anyway.
Some choices might not be optimal, but they are for historical compatibility (e.g., with
S). Of course, it might also happen that something is poorly designed or there is a bug
(but the likelihood is low). This is why we should rather keep our vocabulary restricted.
Even if there are exceptions to the general rules, with fewer functions, they are easier
to remember. We advocate for such minimalism in this book.

Consider the following case study, illustrating that even the extremely simple scenario
dealing with a single positive integer is not necessarily straightforward.

Exercise 9.1 In mathematical notation, we usually denote the number of objects in a collection
by the famous “n”. Itis implicitly assumed that such n is a single natural number (albeit whether
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this includes o or not should be specified at some point). The functions runif, sample, seq, rep,
strrep, and class: :knn take it as arguments. Nonetheless, nothing stops us from trying to
challenge them by passing:

e 2.5, -1,0,1-1e- 16 (non-positive numbers, non-integers);
- NA_real_, Inf (notfinite);

o 1:5 (not oflength 1; after all, there are no scalars in R);

« numeric(0) (an empty vector);

o TRUE,NA, c(TRUE, FALSE, NA),"1",c("1", "2", "3") (non-numeric, but coercible
to);

o list(1), list(1, 2, 3),list(1:3, 4) (non-atomic);
« "Spanish Inquisition" (unexpected nonsense);

. as.matrix(1), factor(7), factor(c(3, 4, 2, 3)), etc. (compound types;
Chapter 10).

Read the aforementioned functions’ reference manuals and call them on different inputs. Notice
how differently they handle such atypical arguments.

Sometimes we will rely on other functions to check data integrity for us.

Example 9.2 Consider a function that generates n pseudorandom numbers from the unit in-
terval rounded to d decimal digits. We strongly believe, or at least hope (the good faith and high
competence assumption), that its author knew what he was doing when he wrote:

round_rand <- function(n, d)
{
x <- runif(n) # runif will check if 'n’' makes sense
round(x, d) # round will determine the appropriateness of ‘d’

}

What constitutes correct n and d and how the function behaves when not provided with positive
integers is determined by the two underlying functions, runif and round:

round_rand(4, 1) # the expected use case
## [1] 0.3 0.8 0.4 0.9

round_rand(4.8, 1.9) # 4, 2

## [1] 0.94 0.05 0.53 0.89

round_rand(4, NA)

## [1] NA NA NA NA

round_rand(0, 1)

## numeric(0)

Some design choices can be defended if they are well thought out and adequately doc-
umented. Certain programmers will opt for high uniformity/compatibility across nu-
merous tools, as there are cases where diversity does more good than harm.
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Our functions might become part of a more complicated data flow pipeline. Let’s con-
sider what happens when another procedure generates a value that we did not expect
(due to a bug or because we did not study its manual). The problem arises when this
unthinkable value is passed to our function. In our case, this would correspond to the
said n’s or d’s being determined programmatically.

Example 9.3 Continuing the previous example, the following might be somewhat challenging
with regard to our being flexible and open-minded:

round_rand(c(100, 42, 63, 30), 1) # n=length(c(...))
## [1] 0.7 0.6 0.1 0.9

round_rand("4", 1) # n=as.numeric("4")

## [1] 0.2 0.0 0.3 1.0

Sure, it is convenient. Nevertheless, it might lead to problems that are hard to diagnose.

Also, note the not so informative error messages in cases like:

round_rand(NA, 1)

## Error in runif(n): invalid arguments

round_rand(4, "1")

## Error in round(x, d): non-numeric argument to mathematical function

Defensive design strategies are always welcome, especially if they lead to constructive
error messages.

Important stopifnot gives a convenient means to assert the enjoyment of our ex-
pectations about a function’s arguments (or intermediate values). A call to stopi-
fnot(condl, cond2, ...)is more or less equivalent to:

if (!(is.logical(condl) && !any(is.na(condl)) && all(condl)))
stop(" condl” are not all TRUE")

if (!(is.logical(cond2) && 'any(is.na(cond2)) && all(cond2)))
stop(" cond2" are not all TRUE")

Thus, if all the elements in the given logical vectors are TRUE, nothing happens. We can
move on with certainty.

Example 9.4 We can rewrite the preceding function as:

round_rand2 <- function(n, d)
{
stopifnot(
is.numeric(n), length(n) == 1,
is.finite(n), n > 0, n == floor(n),
is.numeric(d), length(d) == 1,
is.finite(d), d > 0, d == floor(d)

(continues on next page)
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(continued from previous page)
)
x <- runif(n)
round(x, d)
}

round_rand2(5, 1)

## [1] 0.7 0.7 0.5 0.6 0.3

round_rand2(5.4, 1)

## Error in round_rand2(5.4, 1): n == floor(n) is not TRUE
round_rand2(5, "1")

## Error in round_rand2(5, "1"): is.numeric(d) is not TRUE

It is the strictest test for “a single positive integer” possible. In the case of any violation of the un-
derlying condition, we get a very informative error message.

Example 9.5 Atothertimes, we might be interested in a more liberal yet still foolproof argument
checking like:

if (!is.numeric(n))
n <- as.numeric(n)

if (length(n) > 1) {
warning("only the first element will be used")
n <- nf1]

}

n <- floor(n)

stopifnot(is.finite(n), n > 0)

Thisway, "4" and c(4.9, 100) will all be accepted as 4".

We see that there is always a tension between being generous/flexible and pre-
cise/restrictive. Also, because of their particular use cases, for certain functions, it will
be better to behave differently from the others. Excessive uniformity is as bad as chaos.
We are always expected to rely on common sense. Let’s not be boring bureaucrats.

Still, it is our duty to be explicit about all the assumptions we make or exceptions we
tolerate (by writing comprehensive documentation; see Section 9.2..2).

Note (*) Example exercises related to improving the consistency of base R's argument
handling in different domains include the vctrs and stringx packages. Can these
contributions be justified?

Exercise 9.6 Reflect on how you would respond to miscellaneous boundary cases in the follow-
ing scenarios (and how base R and other packages or languages you know deal with them):

« avectorised mathematical function (empty vector? non-numeric input? what ifit is equipped
with the names attribute? what if it has other ones?);

! We rely on the S3 generics is.numeric and as.numeric here; see Section 10.2.3.
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- an aggregation function (what about missing values? empty vector?);

« a function vectorised with regard to two arguments (elementwise vectorisation? recycling
rule? only scalar vs vector, or vector vs vector of the same length allowed? what if one argu-
ment is a row vector and the other is a column vector?);

- a function vectorised with respect to all arguments (really all? maybe some exceptions are
necessary?);

« afunction vectorised with respect to the first argument but not the second (why such a restric-
tion? when?).

Find a few functions that match each case.

9.1.2 Putting outputs into context

Our functions do not exist in a vacuum. We should put them into a much broader
context: how can they be combined with other tools? As a general rule, we ought to
generate outputs of a predictable kind. This way, we can easily deduce what will happen
in the code chunks that utilise them.

Example 9.7 Some base R functions do not adhere to this rule for the sake of (questionable)
users’ convenience. We will meet a few of them in Chapter 11 and Chapter 12. In particular, sap -
ply and the underlying simplify2array, can return a list, an atomic vector, or a matrix.

simplify2array(list(1, 3:4)) # list
## [[1]]

## [1] 1

##

## [[2]]

## [1] 3 4

simplify2array(list(1, 3)) # vector
## [1] 1 3

simplify2array(list(1:2, 3:4)) # matrix
## [,1] [,2]

## [1,] 1 3

## [2,] 2 4

Further, the index operator with drop=TRUE, which is the default, may output an atomic vector.
However, it may as well yield a matrix or a data frame.

(A <- matrix(1:6, nrow=3)) # an example matrix
## [,1] [,2]

## [1,] 1 4

## [2,] 2 5

## [3,] 3 6

Al1, ] # vector

## [1] 1 4

Alf1:2, ] # matrix

## [,1] [,2]

(continues on next page)
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(continued from previous page)
## [1,] 1 4
## [2,] 2 5
A[1, , drop=FALSE] # matrix with 1 row
## [,11 [,2]
## [1,] 1 4

We proclaim that, if there are many options, the default behaviour should be to return
an object of the most generic kind possible, even when it is not the most convenient
form. Then, either:

. we equip the function with a further argument which must be explicitly set if we
really want to simplify the output, or

- we ask the user to call a simplifier explicitly after the function call; in this case, if
the simplifier cannot neaten the object, it should probably fail by issuing an error
oratleast try to apply some brute force solution (e.g., “fill the gaps” somehow itself,
preferably with a warning).

For instance:

as.numeric(A[1:2, ]) # always returns a vector

## [1] 1245

stringil::stri_list2matrix(list(1, 3:4)) # fills the gaps with NAs
## [,1] [,2]

## [1,] "1" "3"

# [2,] NA "q"

Ideally, a function is expected to perform one (and only one) well-defined task. If it
tends to generate objects of different kinds, depending on the arguments provided, it
might be better to compose two or more separate procedures instead.

Exercise 9.8 Functionssuch as rep, seq, and samp le do not perform a single task. Or do they?

Note (%) In a purely functional programming language, we can assume the so-called
referential transparency: a call to a pure function can always be replaced with the value it
generates. If thisis true, then for the same set of argument values, the output is always
the same. Furthermore, there are no side effects. In R, it is not exactly the case:

. acallcanintroduce/modify/delete variables in other environments (see Chapter 16),
e.g., the state of the random number generator,

« due to lazy evaluation, functions are free to interpret the argument forms (passed
expressions, i.e., not only: values) however they like; see Section 9.4.7, Section 12.3.9,
and Section 17.5,

. printing, plotting, file writing, and database access have apparent consequences
with regard to the state of certain external devices or resources.
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Important Each function must return a value. However, in several instances (e.g.,
plotting, printing) this does not necessarily make sense. In such a case, we may con-
sider returning invisible(NULL), a NULL whose first printing will be suppressed.
Compare the following:

f <- function() invisible(NULL)

f() # printing suppressed

x <- f() # by the way, assignment also returns an invisible value
print(x) # no longer invisible

## NULL

9.2 Organising and maintaining functions
9.2.1 Functionlibraries

Definitions of frequently-used functions or datasets can be emplaced in separate
source files (.R extension) for further reference. Such code banks can be executed by
calling:

source("path_to_file.R")

Exercise 9.9 Create a source file (script) named my1ib. R, where you define a function called
nlargest which returns a few largest elements in a given atomic vector. From within another
script, call source("mylib.R"); note that relative paths refer to the current working directory
(Section 2.1.6). Then, write a few lines of code where you test nlargest on some example inputs.

9.2.2 Writing R packages (*)

When a function library grows substantially, there is a need for equipping its contents
with the relevant help pages, or we wish to rely on compiled code, turning it into an R
package might be worth considering.

Important Packages can be written only for ourselves or a small team’s purpose. We
do not have to publish them on CRAN?. Have mercy on the busy CRAN maintainers and
do not contribute to the information overload unless we have come up with something

2 Always consult the CRAN Repository Policy at https://cran.r-project.org/web/packages/policies.html.
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potentially of service? for other R users. Packages can always be hosted on and installed
from GitLab or GitHub.

Package structure ()
A source package is a directory containing the following special files and subdirectories:

« DESCRIPTION — a text file that gives the name of the project, its version, authors,
dependencies on other packages, license, etc.;

« NAMESPACE - a text file containing directives stating which objects are available to
the package users and which names are imported from other packages;

« R—adirectorywith Rscripts (.R files), which define, e.g., functions, example data-
sets, etc.;

. man - a directory with R documentation files (.Rd), describing at least all the ex-
ported objects (Section 9.2.2);

. src — optional; compiled code (Chapter 14);
. tests — optional; tests to run on the package check (Section 9.2.4).

See Section 1 of Writing R Extensions [66] for more details and other options. We do
not need to repeat the information from the official manual as all readers can read it
themselves.

Exercise 9.10 Inspect the source code of the example package available for download from https:
//github.com/gagolews/rpackagedemo.

Building and installing (¥)

Recall from Section 7.3.1 that a source package can be built and installed by calling:
install.packages("pkg_directory", repos=NULL, type="source")

Then it can be used as any other R package (Section 7.3.1). In particular, it can be loaded
and attached to the search path (Section 16.2.6) via a call to:

library("pkg")

All the exported objects mentioned in its NAMESPACE file are now available to the user;
see also Section 16.3.5.

Exercise 9.11 Create a package mypkg with the solutions to the exercises listed in the previous
chapter. When in doubt, refer to the official manual [66].

3 Let's make it less about ourselves and more about the community. Developing expertise in any complex
area takes years of hard work. In the meantime, we can help open-source projects by spreading the good
word about them, submitting bug fixes, extending documentation, supporting other users through their
journey, etc.


https://github.com/gagolews/rpackagedemo
https://github.com/gagolews/rpackagedemo
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Note (*)The building and installing of packages also be done from the command line:

R CMD build pkg_directory # creates a distributable source tarball (.tar.gz)
R CMD INSTALL pkg-version.tar.gz
R CMD INSTALL --build pkg_directory

Also, some users may benefit from authoring Makefiles that help automate the pro-
cesses of building, testing, checking, etc.

Documenting (*)

Documenting functions and commenting code thoroughly is critical, even if we just
write for ourselves. Most programmers sooner or later will notice that they find it hard
to determine what a piece of code is doing after they took a break from it. In some
sense, we always communicate with external audiences, which includes our future
selves.

The help system is one of the stronger assets of the R environment. By far, we most
likely have interacted with many documentation pages and got a general idea of what
constitutes an informative documentation piece.

From the technical side, documentation (.Rd) files are located in the man subdirectory
of a source package. All exported objects (e.g., functions) should be described clearly.
Additional topics can be covered, too. Documentation files use a LaTeX-like syntax,
which looks obscure to an untrained eye. The relevant commands are explained in very
detail in Section 2 of [66]. During the package installation, the .Rd files are converted
to various output formats, e.g., HTML or plain text, and displayed on a call to the well-
known help function.

Note The process of writing .Rd files by hand might be tedious, especially keeping
track of the changes to the \usage and \arguments commands. Rarely do we recom-
mend using external packages for base R facilities are usually sufficient. But roxygen2
might be worth a try because it makes the developers’ lives easier. Most importantly, it
allows the documentation to be specified alongside the functions’ definitions, which
is much more natural.

Exercise 9.12 Add a few manual pages to your example R package.

9.2.3 Writing standalone programs (**)

Section 7.3.2 mentioned how to call external programs using system2. On UNIX-like
operating systems, it is easy to turn our R scripts into standalone tools that can be
run from the terminal: we have already touched upon this topic in Section 1.2.3. As
an addition, the commandArgs function returns the list of arguments passed from the
command line to our script in the form of a character vector. What we do with them
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is up to us. Moreover, q can terminate a script, yielding any integer return code. By
convention, anything other than o indicates an error.

Example 9.13 Say we have the following script named test f1le in the current directory:

#!/bin/env -S Rscript --vanilla

argv <- commandArgs(trailingOnly=TRUE)
cat("commandArgs:\n")
print(argv)

if (length(argv) == 0) {
cat("Usage: testfiles filel file2 ...\|n")
g(save="no", status=1) # exit with code 1

}

if (lall(file.exists(argv))) {
cat("Some files do not exist.|n")
g(save="no", status=2) # exit with code 2

}
cat("All files exist.|n")

# exits with code @ (success)

Example interactions with this program from a UNIX-like shell (bash):

chmod u+x testfiles # add permission to execute
./testfiles

## commandArgs:

## character(0)

## Usage: testfiles filel file2 ...
./testfiles spanish_inquisition

## commandArgs:

## [1] "spanish_inquisition”

## Some files do not exist
./testfiles spam bacon eggs spam

## commandArgs:

## [1] "spam" "bacon" "eggs" "spam"
## ALl files exist.

stdin, stdout, and stderr represent the always-open connections mapped to the
standard input (“keyboard”), as well as the normal and error output. They can be read
from or written to using functions such as scan or cat.

During run time, we can redirect stdout and stderr to different files or even strings
using sink.
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9.2.4 Assuring quality code

Below we mention some good development practices related to maintaining quality
code. This is an important topic, but writing about them is tedious to the same extent
that reading about them is dull. It is the more artistic part of software engineering
as such heuristics are learnt best by observing and mimicking what more skilled pro-
grammers are doing (the coming exercises aim to make up for our not having them at
hand at the moment).

Managing changes and working collaboratively

We recommend employing a source code version control system, such as git, to keep
track of the changes made to the software.

Note Itisworth investing time and effort to learn how to use git from the command
line; see https://git-scm.com/doc.

There are a few hosting providers for git repositories, with GitLab and GitHub being
particularly popular among open-source software developers. They support working
collaboratively on the projects and are equipped with additional tools for reporting
bugs, suggesting feature requests, etc.

Exercise 9.14 Find source code of your favourite R packages or other projects. Explore the corres-
ponding repositories, feature trackers, wikis, discussion boards, etc. Each community is different

and is governed by varied, sometimes contrasting guidelines; after all, we come from all corners
of the world.

Test-driven development and continuous integration

It is often hygienic to include some principles of test-driven development.

Exercise 9.15 Assume that, for some reason, we were asked to compose a function to compute the
root mean square (quadratic mean) of a given numeric vector. Before implementing the actual
routine, we need to reflect upon what we want to achieve, especially how we want our function to
behave in certain boundary cases.

stopifnot gives simple means to ensure that a given assertion is fulfilled. If that is the case, it
will move forward without fuss. Say we have come up with the following set of expectations:

stopifnot(all.equal(rms(1), 1))
stopifnot(all.equal(rms(1:100), 58.16786054171151931769))
stopifnot(all.equal(rms(rep(pi, 10)), pi))
stopifnot(all.equal(rms(numeric(0)), 0))

Write a function rms that fulfils these assertions.

Exercise 9.16 Implementyourversion of the sample function (assuming replace=TRUE), us-
ing calls to runif. Start by writing a few unit tests.

A couple of R packages support writing and executing unit tests, including testthat,
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tinytest, RUnit, or realtest. However, in the most typical use cases, relying on
stopifnot is powerful enough.

Exercise 9.17 (*) Consult the Writing R Extensions manual [66] about where and how to
include unit tests in your example package.

Note (*) R can check a couple of code quality areas: running R CMD check
pkg_directory from the command line (preferably using the most recent version of
the environment) will suggest several improvements. Also, it is possible to use vari-
ous continuous integration techniques that are automatically triggered when push-
ing changes to our software repositories; see GitLab CI or GitHub Actions. For in-
stance, we can run a package build, install, and check process on every git commit.
Also, CRAN deploys continuous integration services, including checking the package
on various platforms.

Debugging

R has an interactive debugger; see the browser function and Section 9 of [70] for more
details. Some IDEs (e.g., RStudio) also support this feature; see their corresponding
documentation.

However, for all his life, the current author has been debugging his programs primar-
ily by manually printing the state of the suspicious variables (printf and the like) in
different code areas. This is old-school but uncannily efficient.

Profiling

Typically, a program spends relatively long time executing only a small portion of code.
The Rprof function can be a helpful tool to identify which chunks might need a rewrite,
for instance, using a compiled language (Chapter 14). Please remember, though, that
bottlenecks are not only formed by using algorithms with high computational com-
plexity, but also data input and output (such as reading files from disk, printing mes-
sages on the console, querying Web APIs, etc.).

9.3 Special functions: Syntactic sugar

Some functions, such as “**, are somewhat special. They can be referred to using infix
syntax which, for obvious reasons, most of us accepted as the default one. However,
we will later reveal, amongst others, that “5 * 9” reduces to an ordinary function call:

‘*'(5, 9) # a call to '*' with two arguments, equivalent to 5 * 9
## [1] 45
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9.3.1 Backticks

In Section 2.2, we mentioned that via “<-" we can assign syntactically valid names to
our objects. Most identifiers comprised of letters, digits, dots, and underscores can be
used directly in R code. Nevertheless, it is possible to label our objects however we like.
Not syntactically valid (nonstandard) identifiers just need to be enclosed in backticks
(back quotes, grave accents):

‘42 a quite peculiar name :0° <- c(a=1, ‘b c'=2, "42'=3, '"1'=4)
1/(1+exp(-"42 a quite peculiar name :0°))
# a b c 42 !

## 0.73106 0.88080 0.95257 0.98201

Such names are less convenient but backticks allow us to refer to them in any setting.

9.3.2 Dollar, *$" ()

The dollar operator, *$", can be an alternative accessor to a single element in a named
list*. If a label is a syntactically valid name, then x$label does the same job as
x[["label"]] (saving five keystrokes: such a burden!).

x <- list(spam="a", eggs="b", ‘eggs and spam'="c", best.spam.ever="d")

x5$eggs

## [1] "b"

x$best.spam.ever # recall that a dot has no special meaning in most contexts
## [1] "d"

Nonstandard names must still be enclosed in backticks (or quotes):

x$'eggs and spam’ # x[["eggs and spam"]] is okay as usual
w# [1] "c”

We are minimalist by design here. Thence, we will avoid this operator for it does not
increase the expressive power of our function repertoire. Also, it does not work on
atomic vectors nor matrices. Furthermore, it does not support names that are gener-
ated programmatically:

what <- "spam"

x$what # the same as x[["what"]]; we do not want this
## NULL

x[[what]] # works fine

## [1] "a"

The support for the partial matching of element names has been added to provide users
working in interactive programming sessions with some relief in the case where they
find typing the whole label daunting:

4 And hence also in data frames.
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XSS
## Warning in x$s: partial match of 's' to 'spam'
## [1] "a"

Compare:

x[["s"]1] # no warning here...
## NULL

x[["s", exact=FALSE]]

## [1] "a"

Partial matching is generally a rubbishy programming practice. The result depends on
the names of other items in x (which might change later) and can decrease code read-
ability. The only reason why we obtained a warning message was because this book
enforces the options(warnPartialMatchDollar=TRUE) setting, which, sadly, is not
the default.

Note the behaviour on an ambiguous partial match:

x$egg # ambiguous resolution
## NULL

as well as on an element assignment:

x$s <- "e"

str(x)

## List of 5

## S spam : chr "a"
#4 S eggs : chr "b"

" _n

## S eggs and spam : chr "c
## S best.spam.ever: chr "d"
# S s : chr "e"

It did not modify spam but added a new element, s. Confusing? Just let’s not use the
dollar operator and we will have one less thing to worry about.

9.3.3 Curlybraces, “{*

A block of statements grouped with curly braces, *{", corresponds to a function call.
When we write:

{
print(TRUE)
cat("two")
3

}

## [1] TRUE

## two

## [1] 3
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The parser translates it to a call to:

{"(print(TRUE), cat("two"), 3)
## [1] TRUE

## two

## [1] 3

Whenitis executed, every argumentto “{" is evaluated one by one. Then, the last value
is returned as the result of that call.

9.3.4 if’
if is a function too. As mentioned in Section 8.1, it returns the value corresponding
to the expression that is evaluated conditionally. Hence, we may write:

if (runif(1) < 0.5) "head" else "tail"
## [1] "head"

but also:

“if(runif(1) < 0.5, "head", "tail")
## [1] "head"

Note Acalllike "if (test, what_if_true, what_if_false) canonlywork correctly
because of the lazy evaluation of function arguments; see Chapter 17.

On a side note, while, for, repeat can also be called that way, but they return invis-
ible(NULL).

9.3.5 Operators are functions
Calling built-in operators as functions

Every arithmetic, logical, and relational operator is translated to a call to the corres-
ponding function. For instance:

CHCH(C-T(3), 4)), 5) # 24(-3)*M < 5
## [1] TRUE

Also, x[1] is equivalentto “[*(x, i1)and x[[1]] mapsto [[ (x, i).

Knowing the above will not only enable us to manipulate unevaluated R code
(Chapter 15) or access the corresponding manual pages (see, e.g., help("[")), but also
verbalise certain operations more concisely. For instance:

X <- list(1:5, 11:17, 21:23)
unlist(Map('[', x, 1)) # 1 is a further argument passed to ‘[
## [1] 1 11 21
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is equivalent to a call to Map(function(e) e[1], x).

Note Unsurprisingly, the assignment operator, “<-", is also a function. It returns the
assigned value invisibly. *<-" binds right to left (compare help("Syntax")). Thus, the
expression “a <- b <- 1” assigns 1 to both b and a. It is equivalent to *<-"("a",
‘<-"("b", 1))and <-"("b", 1) returnsI.

Owing to the pass-by-value-like semantics (Section 9.4.1), we can also expect that we
will be assigning a copy” of the value on the right side of the operator (with the excep-
tion of environments; Chapter 16).

X <- 1:6

y <- x # makes a copy (but delayed, on demand, for performance reasons)
y[c(TRUE, FALSE)] <- NA_real_ # modify every second element

print(y)

## [1] NA 2 NA 4 NA 6

print(x) # state of x has not changed; x and y are different objects
## [1] 123456

However, with no harm to the semantics, the copying of x is postponed until abso-
lutely necessary (Section 16.1.4). This is efficient both time- and memory-wisely.

Defining binary operators

We can also introduce custom binary operators named like *%myopname% :
“%:)%" <- function(el, e2) (el+e2)/2

5%:)% 1:10
# [1] 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

Recall that “%%", *%/%", and "%in% are built-in operators denoting division remainder,
integer division, and testing for set inclusion. Also, in Chapter 11, we will learn about
*%*%", which implements matrix multiplication.

Note Chapter 10 notes that most existing operators can be overloaded for objects of
custom types.

9.3.6 Replacement functions

Functions generally do not change the state of their arguments. However, there is
some syntactic sugar that permits us to replace objects or their parts with new con-
tent. We call them replacement functions.

For instance, three of the following calls replace the input x with its modified version:

5 This is especially worth pointing out to Python (amongst others) programmers, where the example
assignment below would mean that x and y both refer to the same (shared) object in the computer’s memory.
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X <- 1:5 # example input

x[3] <- 0 # replace the third element with 0

length(x) <- 7 # "replace” length

names(x) <- LETTERS[seq_along(x)] # replace the names attribute
print(x) # ‘x' is now different

# A B C D E F G

# 1 2 0 4 5 NA NA

Creating replacement functions

A replacement function is a mapping named like *f<-" with at least two parameters:
« x (the object to be modified),
« ... (possible further arguments),

- value (as the last parameter; the object on the right-hand side of the *<-" oper-
ator).

We will most often interact with existing replacement functions, not create our own
ones. But knowing how to do the latter is vital to understanding this language feature.
For example:

‘add<-' <- function(x, where=TRUE, value)

{
x[where] <- x[where] + value
x # the modified object that will replace the original one

This function aims to add a value to a subset of the input vector x (by default, to each
element therein). Then, it returns its altered version.

y <- 1:5 # example vector
add(y) <- 10 # calls y <- ‘add<-"(y, value=10)
print(y) # vy has changed

## [1] 11 12 13 14 15

add(y, 3) <- 1000 # calls y <- ‘add<-"(y, 3, value=1000)
print(y) # y has changed again

## [1] 11 12 1013 14 15

Thus, invoking “add(y, w) <- v’isequivalentto“y <- ‘add<-"(y, w, value=v)”.

Note (*)According to [70], a call “add(y, 3) <- 1000” is a syntactic sugar precisely
for:

‘*tmp*' <- y # temporary substitution

y <- ‘add<-"(*tmp*’, 3, value=1000)
rm("*tmp*") # remove the named object from the current scope

This has at least two implications. First, in the unlikely event that a variable " *tmp*"
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existed before the call to the replacement function, it will be no more, it will cease to be.
It will be an ex-variable. Second, the temporary substitution guarantees that y must
exist before the call (due to lazy evaluation, a function’s body does not have to refer to
all the arguments passed).

Substituting parts of vectors

The replacement versions of the index-like operators are named as follows:
« “[<-"isused in substitutions like “x[1] <- value”,
« “[[<-" is called when we perform “x[[1]] <- value”,
« “$<-" isused whilst calling “x$1 <- value”.

X <- 1:5

“[<-"(x, c(3, 5), NA_real_) # returns a new object
## [1] 1 2 NA 4 NA

print(x) # does not change the original input

## [1] 12345

Exercise 9.18 Write a function “extend<-", which pushes new elements at the end of a given
vector, modifying it in place.

‘extend<-' <- function(x, value) ...to.do...

Example use:

X <- 1

extend(x) <- 2 # push 2 at the back
extend(x) <- 3:10 # add 3, 4, ..., 10
print(x)

##¢ [1] 1 2 3 4 5 6 7 8 9 10

Replacing attributes

There are many replacement functions to reset object attributes (Section 4.4). In partic-
ular, each special attribute has its replacement procedure, e.g., “names<-", “class<- ",
“dim<-", "levels<-", etc.

X <- 1:3

names(x) <- c("a", "b", "c") # change the ‘names' attribute
print(x) # x has been altered

## a b c

#H 12 3

Individual (arbitrary, including non-special ones) attributes can be set using “attr<-",
and all of them can be established via a single call to “attributes<-".
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X <- "spam"

attributes(x) <- list(shape="oval", smell="meaty")
attributes(x) <- c(attributes(x), taste="umami"
attr(x, "colour") <- "rose"

print(x)

## [1] "spam"”

## attr(, "shape")

## [1] "oval"

## attr(, "smell")

## [1] "meaty"

## attr(, "taste")

## [1] "umami"

## attr(, "colour")

## [1] "rose"

Also, setting an attribute to NULL results, by convention, in its removal:

attr(x, "taste") <- NULL # it is tasteless now
print(x)

##4 [1] "spam"

## attr(, "shape")

## [1] "oval”

##4 attr(, "smell")

## [1] "meaty"

## attr(, "colour")

## [1] "rose"

attributes(x) <- NULL # remove all
print(x)

#4 [1] "spam"

Which can be worthwhile in contexts such as:

x <- structure(c(a=1, b=2, c=3), some_attrib="value")
y <- ‘attributes<-'(x, NULL)

y is a version of x with metadata removed. The latter remains unchanged.

Compositions of replacement functions (*)

Updating only selected names like:

x <- c(a=1, b=2, c=3)
names(x)[2] <- "spam"
print(x)

## a spam c

## 1 2 3

is possible due to the fact that “names(x)[1] <- v”isequivalent to:

167
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old_names <- names(x)
new_names <- [<-'(old_names, i, value=v)
X <- ‘names<- (x, value=new_names)

Important More generally, a composition of replacement calls “g(f(x, a), b)
<- y”yields a result equivalent to “x <- ‘f<-"(x, a, value="g<-"(f(x, a), b,
value=y))”. Both f and “f<-" need to be defined, but having g is not necessary.

Exercise 9.19 (*) Whatis“h(g(f(x, a), b), c) <- y”equivalentto?

Exercise 9.20 Write a (convenient!) function “recode<-" which replaces specific elements in
a character vector with other ones, allowing the following interface:

‘recode<-' <- function(x, value) ...to.do...

x <- c("spam", "bacon", "eggs", "spam", "eggs")

recode(x) <- c(eggs="best spam", bacon="yummy spam")

print(x)

## [1] "spam"” "yummy spam" "best spam" "spam" "best spam”

We see that the named character vector gives a few from="to" pairs, e.g., all eggs are to be
replaced by best spam. Determine which calls are equivalent to the following:

x <- c(a=1, b=2, c=3)

recode(names(x)) <- c(c="z", b="y") # or equivalently = ... ?
print(x)

#ay z

## 12 3

y <- list(c("spam", "bacon", "spam"), c("spam", "eggs", "cauliflower"))
recode(y[[2]]) <- c(cauliflower="broccoli") # or = ... ?
print(y)

## [[1]]

## [1] "spam" "bacon" "spam"

##

## [[2]]

#4 [1] "spam" "eggs" "broccoli”

Exercise 9.21 (*) Consider an example matrix with the dimnames attribute whose names at-
tribute is set (move details in Chapter 11):

(x <- Titanic["Crew", , "Adult", ])
#H Survived
## Sex No Yes
## Male 670 192
##  Female 3 20

Applying the “recode<-" function from Exercise 9.20, we can change the x object in place:
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recode(names(dimnames(x))) <- c(Sex="sex", Survived="survived")

print(x)
#H survived
## sex No Yes

## Male 670 192
##  Female 3 20

Compose a single call that alters names (dimnames (x) ) without modifying x in place but re-
turning a recoded copy of the following:

« names(dimnames(x)),
« dimnames(x),
. X.

Exercise 9.22 (*) Considerthe “recode<-" function again but now let an example object be a
list with an element of the factor class:

x <- as.list(iris[c(1, 2, 51, 101), c(1, 5)])

recode(levels(x[["Species"]])) <- c(
setosa="SET", versicolor="VER", virginica="VIR"

)

print(x)

## SSepal.Length

## [1] 5.1 4.9 7.0 6.3

##

## SSpecies

## [1] SET SET VER VIR

## Levels: SET VER VIR

How to change levels(x[[ "Species"]]) and return an altered copy of:
o levels(x[["Species"]]),
o x[["Species"]],
. X

without modifying x in place?
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9.4 Arguments and local variables
9.4.1 Call by “value”

As a general rule, functions cannot change the state of their arguments®. We can think
of them as being passed by value, i.e., as if their copy was made.

test_change <- function(y)

{
y[1] <- 7
y

}

X <- 1:5

test_change(x)

## [1] 72345
print(x) # same
## [1] 12345

If the preceding statement was not true, the state of x would change after the call.

9.4.2 Variable scope

Function arguments and any other variables we create inside a function’s body are
relative to each call to that function.

test_change <- function(x)

{
X <- X+1
zZ <- -X
z

}

X <- 1:5

test_change(x*10)

## [1] -11 -21 -31 -41 -51

print(x) # x in the function's body was a different x
## [1] 12345

print(z) # z was local

## Error: object 'z' not found

Both x and z are local variables. They only live whilst our function is being executed.
The former temporarily masks’ the object of the same name from the caller’s context.

6 With the exception of objects of the type environment, which are passed by reference; see Chapter 16.
Also, the fact that we have access to unevaluated R expressions can cause further deviations to this rule
because, actually, R implements the call-by-need strategy; see Chapter 17.

7 Chapter 16 discusses this topic in-depth: names are bound to objects within environment frames.



9 DESIGNING FUNCTIONS m

Important Itis a good development practice to refrain from referring to objects not
created within the current function, especially to “global” variables. We can always
pass an object as an argument explicitly.

Note Itisa function call as such, not curly braces per se that form a local scope. When
werun“x <- { y <- 1; y + 1 }”, yisnotatemporary variable. It is an ordinary
named object created alongside x.

On the other hand, in “x <- (function() { z <- 1; z + 1 })()”, zwill not be
available thereafter.

9.4.3 Closures (*)

Most user-defined functions are, in fact, instances of the so-called closures; see Sec-
tion 16.3.2 and [1]. They not only consist of an R expression to evaluate but also can
carry auxiliary data.

For instance, given two numeric vectors x and y of the same length, a call to approx-
fun(x, y) returns a function that linearly interpolates between the consecutive points
(x1,Y1), (X2,Y2), etc., so that a corresponding y can be determined for any x.

x <- seq(0, 1, length.out=11)

f1 <- approxfun(x, x"2)

f2 <- approxfun(x, x"3)

f1(0.75) # check that it is close to the true 0.75"2
## [1] 0.565

f2(0.75) # compare with 0.75"3

## [1] 0.4275

Let’s inspect the source code of the above functions:

print(f1)

## function (v)

## .approxfun(x, y, v, method, yleft, yright, f, na.rm)
## <environment: Ox55adfb9f5b08>

print(f2)

## function (v)

## .approxfun(x, y, v, method, yleft, yright, f, na.rm)
## <environment: Ox55adfb8dd4do>

We might wonder why they produce different results: after all, they are identical. It
turns out, however, that they internally store additional data that are referred to when
they are called:

Moreover, R uses lexical (static) scoping, which is not necessarily intuitive, especially taking into account
that a function’s environment can always be changed.
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environment(f1)[["y"]]

## [1] 0.00 0.01 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81 1.00
environment(f2)[["y"]]

## [1] 0.000 0.001 0.008 0.027 0.064 0.125 0.216 0.343 0.512 0.729 1.000

We will explore these concepts in detail in the third part of this book.

9.4.4 Defaultarguments

We often need to find a sweet spot between being generous, mindful of the diverse
needs of our users, and making the API neither overwhelming nor oversimplistic. We
have established thatitis bestifa function performs a single, well-specified task. How-
ever, we are always delighted when it also lets us tweak its behaviour should we wish
to do so. The use of default arguments can facilitate this principle.

For instance, log computes logarithms, by default, the natural ones.

log(2.718) # the same as log(2.718, base=exp(1)), i.e., default base, e
## [1] 0.9999

log(4, base=2) # different base

# [1] 2

Exercise 9.23 Study the documentation of the following functions and note the default values
they define: round, hist, grep, and download. file.

Let’s create a function equipped with such recommended settings:

test_default <- function(x=1) x

test_default() # use default

## [1] 1

test_default(2) # use something else
## [1] 2

Most often, default arguments are just constants, e.g., 1. Generally, though, they can
be any R expressions, also ones that include a reference to other arguments passed to
the same function; see Section 17.2.

Default arguments usually appear at the end of the parameter list, but see Section 9.3.6
(on replacement functions) for a well-justified exception.

9.4.5 Lazyvseager evaluation

In some languages, function arguments are always evaluated prior to a call. In R,
though, they are only computed when actually needed. We call it lazy or delayed evalu-
ation. Recall thatin Section 8.1.4, we introduced the short-circuit evaluation operators
*|1" (or) and "&&" (and). They can do their job precisely thanks to this mechanism.

Example 9.24 In the following example, we do not use the function’s argument at all:
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lazy testl <- function(x) 1 # x is not used

lazy testi({cat("and now for something completely different!"); 7})
w# [1] 1

Otherwise, we would see a message being printed out on the console.

Example 9.25 Next, let’s use x amidst other expressions in a function’s body:

lazy test2 <- function(x)

{
cat("it's... ")
y <- x+x # using x twice
cat(" a man with two noses")
y

}

lazy test2({cat("and now for something completely different!"); 7})
## it's... and now for something completely different! a man with two noses
## [1] 14

An argument is evaluated once, and its value is stored for further reference. If that was not the
case, we would see two messages like “and now. . .”. We will elaborate on this in Chapter 17.

9.4.6 Ellipsis,”..."
We will start with an exercise.

Exercise 9.26 Noticethepresenceof ™. .. intheparameterlistofc, list, structure,cbind,
rbind, cat, Map (and the underlying mapply), lapply (a specialised version of Map), optim-
ise, optim, uniroot, integrate, outer, aggregate. What purpose does it serve, according
to these functions’ documentation pages?

We can create a variadic function by including *..." (dot-dot-dot, ellipsis; see
help("dots")) somewhere in its parameter list. The ellipsis serves as a placeholder
for all objects passed to the function but not matched by any formal (named) paramet-
ers.

The easiest way to process arguments passed via . . .~ programmatically (see also Sec-
tion 17.3) is by redirecting them to list.

test_dots <- function(...)
list(...)

test_dots(1, a=2)
## [[1]]

#w# [1] 1

##

## Sa

#w# [1] 2
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Such a list can be processed just like... any other generic vector. What we can do
with these arguments is only limited by our creativity (in particular, recall from Sec-
tion 7.2.2 the very powerful do. call function). There are two primary use cases of the
ellipsis®:

- create a new object by combining an arbitrary number of other objects:

c(1, 2, 3) # three arguments

## [1] 1 2 3

c(1:5, 6:7) # two arguments

## [1] 1234567

structure("spam") # no additional arguments
## [1] "spam"

structure("spam", color="rose", taste="umami") # two further arguments
## [1] "spam"

## attr(, "color")

#4# [1] "rose”

## attr(, "taste")

## [1] "umami"

cbind(1:2, 3:4) # two

## [,1] [,2]

#[1,] 1 3

## [2,] 2 4

cbind(1:2, 3:4, 5:6, 7:8) # four

## [,17 [,2] [,3] [,4]

##[1,] 1 3 5 7

## [2,] 2 4 6 8

sum(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 42) # twelve
## [1] 108

pass further arguments (as-is) to other methods:

lapply(list(c(1, NA, 3), 4:9), mean, na.rm=TRUE) # mean(x, na.rm=TRUE)
## [[1]]
## [1] 2
##
# [[2]]
## [1] 6.5
integrate(dbeta, 0, 1,
shapel=2.5, shape2=0.5) # dbeta(x, shapel=2.5, shape?=0.5)
## 1 with absolute error < 1.2e-05

Example 9.27 Thedocumentation of Lapp Ly states that this function is defined like Lapply (X,
FUN, ...).Here, the ellipsis is a placeholder for a number of optional arguments that can be
passed to FUN. Hence, if we denote the i-th element of a vector X by X[ [1] ], calling lapply (X,
FUN, ...)will veturn alist whose i-th element will be equal to FUN(X[[1]], ...).

Exercise 9.28 Using a single call to lapply, generate a list with three numeric vectors of

8 Which is somewhat similar to Python's *args and **kwargs in a function’s parameter list.
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lengths 3, 9, and 7, vespectively, drawn from the uniform distribution on the unit interval. Then,
upgrade your code to get numbers sampled from the interval [—1, 1].

Example 9.29 Chapter 4 mentioned that concatenating a mix of lists and atomic vectors with
¢, unfortunately, unrolls the latter:

str(c(u=list(1:2), v=list(a=3:4, b=5:6), w=7:8))
## List of 5

## Su :int [1:2] 12

# v.a: int [1:2] 3 4

## S v.b: int [1:2] 56

## wl : int 7

# w2 : int 8

“n n n n

Let’s implement a fix:

as.list2 <- function(x) if (is.list(x)) x else list(x)

clist <- function(...) do.call(c, lapply(list(...), as.list2))
str(clist(u=list(1:2), v=list(a=3:4, b=5:6), w=7:8))

## List of 4

## S u :int [1:2] 12

## S v.a: int [1:2] 3 4

## S v.b: int [1:2] 56

# Sw : int [1:2] 7 8

9.4.7 Metaprogramming (*)

We can access expressions passed as a function's arguments without evaluating them. In
particular, a call to the composition of deparse and substitute converts them to a
character vector.

test_deparse_substitute <- function(x)
deparse(substitute(x)) # does not evaluate whatever is behind ‘x°’

test_deparse_substitute(testing+1+2+3)

## [1] "testing + 1 + 2 + 3"

test_deparse_substitute(spam & spam”2 & bacon | grilled(spam))
## [1] "spam & spam”2 & bacon | grilled(spam)"

Exercise 9.30 Check out the y-axis label generated by plot.default((1:100)"2). Inspect
its source code. Notice a call to the two aforementioned functions. Similarly, call shapiro.
test(log(rlnorm(100))) and take note of the “data:” field.

A function is free to do with such an expression whatever it likes. For instance, it can
modify the expression and then evaluate it in a very different context. Such alanguage
feature allows certain operations to be expressed much more compactly. In theory, itis
apotenttool. Alas, itis easy to find many practical examples where it was over/misused
and made learning or using R confusing.
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Example 9.31 (*) In Section 12.3.9 and Section 17.5, we explain that subset and transform
use metaprogramming techniques to specify basic data frame transformations. For instance:

transform(
subset(
iris,
Sepal.lLength>=7.7 & Sepal.Width >= 3.0, # huh?
select=c(Species, Sepal.lLength:Sepal.Width) # le what?

)}
Sepal.Length.mm=Sepal.Length/10 # pardon my French, but pardon?

)

#H Species Sepal.lLength Sepal.Width Sepal.Length.mm
## 118 virginica 7.7 3.8 0.77
## 132 virginica 7.9 3.8 0.79
## 136 virginica 7.7 3.0 0.77

None of the arguments (except 1ris) makes sense outside of the function’s call. In particular,
neither Sepal. Length nor Sepal . Width exists as a standalone variable.

The authors of the two functions took the liberty to interpret the arguments passed how they
wanted. They created virtual realities within our well-defined world. The reader must refer to the
documentation to understand the meaning of the new syntax.

Note (*) Some functions have rather bizarre default arguments. For instance, in
the manual page of prop.test, we read that the alternative parameter defaults to
c("two.sided", "less", "greater").However, ifa user does not set this argument
explicitly, alternative="two.sided" (the first element in the above vector), will ac-
tually be assumed.

If we call print(prop.test), we will find the code line responsible for this odd beha-
viour: “alternative <- match.arg(alternative)”. Consider the following example:

test_match_arg <- function(x=c("a", "b", "c")) match.arg(x)

test_match_arg() # missing argument; choose first

## [1] "a"

test_match_arg("c") # one of the predefined options

## [1] "c”

test_match_arg("d") # unexpected setting

## Error in match.arg(x): 'arg' should be one of "a", "b", "c"

In the current context, match.arg only allows an actual parameter from a given set of
choices. However, if the argument is missing, it selects the first option.

Unfortunately, we have to learn this behaviour by heart, because the above source code
is far from self-explanatory. If such an expression was normally evaluated, we would
use either the default argument or whatever the user passed as x (but then the func-
tion would not know the range of possible choices). A call to match.arg(x, c("a",
"b", "c")) could guarantee the desired functionality and would be much more read-
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able. Instead, metaprogramming techniques enabled match. arg to access the enclos-
ing function’s default argument list without explicitly referring to them.

One may ask: why is it so? The only sensible answer to this will be “because its program-
mer decided it must be this way”. Let’s contemplate this for a while. In cases like these,
we are not dealing with some base R language design choice that we might like or dis-
like, but which we should just accept as an inherent feature. Instead, we are struggling
intellectually because of some programmers’ (mis)use (in good faith...) of R’s flexibility
itself. They have introduced a slang/dialect on top of our mother tongue, whose mean-
ing is valid only within this function. Blame the middleman, not the environment,
please.

This is why we generally advocate for avoiding metaprogramming-based techniques
wherever possible. We shall elaborate on this topic in the third part of this book.

9.5 Principles of sustainable design ()

Fine design is more art than science. As usual in real life, we will need to make many
compromises. This is because improving things with regard to one criterion some-
times makes them worse with respect to other aspects® (also those that we are not
aware of). Moreover, not everything that counts can nor will be counted.

We do not want to be considered heedless enablers who say that if anything is possible,
it should be done. Therefore, below we serve some food for thought. However, as there
is no accounting for taste, the kind readers might as well decide to skip this spicy meal.

9.5.1 To write or abstain

Our functions can often be considered merely creative combinations of the building
blocks available in base R or a few high-quality add-on packages. Some are simpler
than others. Thus, there is a question if a new operation should be introduced at all:
whether we are faced with the case of multiplying entities without necessity.

On the one hand, the DRY (don't repeat yourself) principle tells us that the most fre-
quently used code chunks (say, called at least thrice) should be generalised in the form
of a new function. As far as complex operations are concerned, this is definitely a cor-
rect approach.

On the other hand, not every generalisation is necessarily welcome. Let’s say we are
tired of writing g(f(x)) for the n-th time, n > 2. Why not introduce h defined as
a combination of g and f? This might seem like a clever idea, but let’s not take it for
granted. Being tired might be an indication that we need a rest. Beinglazy can be a call

° Compare the notion of Pareto efficiency.
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for more self-discipline (not an overly popular word these days, but still, an endearing
trait).

Example 9.32 paste0 is a specialised version of pas te, but has the sep argument hardcoded
to an empty string.

« Even if this might be the most often applied use case, is the introduction of a new function
justifiable? Is it so hard to write sep="""each time?

« Would changing paste’s default argument be better? That, of course, would harm backward
compatibility, but what strategies could we apply to make the transition as smooth as pos-
sible?

"

« What about introducing a new version of paste with sep defaulting to "", and informing
the users that the old version is deprecated and will be removed in, say, two years? (or maybe
one month is preferable? or five?)

Example 9.33 R 4.0 defined a new function called deparse1. It is nothing but a combination
of deparse and paste:

print(deparsel)

## function (expr, collapse = " ", width.cutoff = 500L, ...)
## paste(deparse(expr, width.cutoff, ...), collapse = collapse)
## <environment: namespace:base>

Let’s say this covers 90% of use cases: was introducing it a justified idea then? What if that num-
ber was 99%? Might it lead to new users’ not knowing that the more primitive operations are
available?

Overall, more functions contribute to information overload. We do not want our users
to be overwhelmed by unreasonably many choices. Luckily, nothing is cemented once
and for all. Had we made bad design choices resulting in our API’s being bloated, we
could always cancel those that no longer spark joy.

9.5.2 To pamper or challenge

We should think about the kind of audience we would like to serve: is it our team
only, students, professionals, certain client groups, etc.? Do they have mathematical,
programming, engineering, or scientific background? Not everything appropriate for
one cohort will be valuable for another. Not everything pleasing some now will benefit
them in the long run: people (their skills, attitudes, etc.) change.

Example 9.34 Assumewe ave writing a friendly package for novices who would like to grasp the
rudiments of data analysis as quickly as possible. Without much effort, it could enable them to
solve 80-95% of the most common, easy problems.

Think of introducing the students to a function that veturns the five largest observations in a given
vector. Let’s call it nlargest. So pleasant. It makes the students feel empowered and improves
their retention'®.

1 Brought to the extreme, this strategy is employed by certain companies (and drug dealers): make the in-
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However, when faced with the remaining 5-20% of tasks, they will have to learn another, more
advanced, generic, and capable tool anyway (in our case, the base R itself). Are they determined
and skilled enough to do that? Some might, unfortunately, say: “it is not my problem, I made sure
everyone was happy at that time”. Due to this shortsightedness, it is our problem now.

Recall that it took us some time to arrive at order and subsetting via " [ . Assuming that we read
this book from the beginning to the end and solve all the exercises, which we should, we are now
able to author the said nlargest (and lots of other functions) ourselves, using a single line of
code. This will also pay off in many scenarios that we will be facing in the future, e.g., when we
consider matrices and data frames.

Yes, everyone will be reinventing their own nlargest this way. But this constitutes a great ex-
ercise: by our being immoderately nice (spoonfeeding), some might have lost an opportunity to
learn a new, more universal skill.

Although most users would love to minimise the effort put into all their activities, ul-
timately, they sometimes need to learn new things. Let’s thus not be afraid to teach
them stuff.

Furthermore, we do not want to discourage experts (or experts to-be) by presenting
them with overly simplified solutions that keep their hands tied when something more
ambitious needs to be done.

9.5.3 To build or reuse

The fail-fast philosophy encourages us to build applications using prefabricated com-
ponents. This is fantastic at the early stage of their life cycles. Nonetheless, if we con-
struct something uncomplicated or whose only purpose is to illustrate an idea, edu-
cate, or show off, let’s be explicit about it so that other users do not feel obliged to
treat our product (exercise) seriously.

In the (not so likely, probabilistically speaking) event of its becoming successful, we
are expected to start thinking about the project’s long-term stability and sustainability.
After all, relying on third-party functions, packages, or programs makes our software
projects less... independent. This may be problematic because:

« the dependencies might not be available on every platform or may behave differ-
ently across various system configurations,

- they may be huge (and can depend on other external software too),

« their APIs may be altered, which can cause our code to break,

« their functionality can change, which can lead to unexpected behaviour.
Hence, it might be better to rewrite some parts from scratch on our own.

Exercise 9.35 Identify afew R packages on CRAN with many dependencies. See what functions
they import from other packages. How often do they only borrow a few lines of code?

troductory experience smooth and fun. At the same time, do not permit your users to become independent
too easily. Instead, make them rely on your product lines/proprietary solutions/payable services, etc.
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The UNIX philosophy emphasises building and using minimalist yet nontrivial, single-
purpose, high-quality pieces of software that can work as parts of more complex
pipelines. R serves as a glue language very well.

In the long run, our software project might mature to become such a tool. Thus, at
some point, we might have to standardise its API (e.g., make it available from the com-
mand line; Section 1.2) so that the users of other languages can benefit from our work.

Important If our project is merely a modified interface/front-end to a standalone
program developed by others, we should be humble about it. We should strive to en-
sure we are not the ones who get all the credit for other people’s work. Also, we must
clearly state how the original tools can be used to achieve the same goals, e.g., when
working from the command line. In other words, let’s not be selfish jerks.

9.5.4 To revolt or evolve

The wise, gradual improving of things is generally welcome. It gives everyone time
to adjust. Some projects, however, are developed in a compulsive way, reinforced by
neurotic thinking that “stakeholders need to be kept engaged or we're going to lose
popularity”. It is not a sustainable strategy. Less is better, even though slightly more
challenging. Put good engineering first.

Someday we might realise that “everything so far was wrong and we need a global
reset”. But if we become very successful, we will cause a divide in the community. Es-
pecially when we decide to duplicate the existing, base functionality, we should note
that some users will be introduced to the system through the supplementary interface
and they will not be familiar with the classic one. Others will have to learn the added
syntax to be able to communicate with the former group. This gives rise to a whole new
set of issues (how to make all the functions interoperable with each other seamlessly,
etc.). Such moves are sometimes necessary, but let’s not treat them lightly; it is a great
responsibility.

9.6 Exercises
Exercise 9.36 Answer the following questions.

- Will stopifnot(1) stop? What about stopifnot(NA), stopifnot(TRUE, FALSE),
and stopifnot(c(TRUE, TRUE, NA))?

o What does the “if" function return?
« Does ‘attributes<-"(x, NULL)modify x?

« When can we be interested in calling * [~ and *[<-" as functions (and not as operators) dir-
ectly?
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« How to define a new binary operator? Can it be equipped with default arguments?
« What are the main use cases of the ellipsis?
o What is wrong with transform, subset, and match.arg?

o When acalllike f(-1, do_something_that_takes_a_million_years()) does not
necessarily have to be a regrettable action?

« What is the difference between “names(x)[1] <- new_name” and “names(x[1]) <-
new_name”?

o What might be the form of x if it is legit to call it like x [ [c (1, 2)]1()()()[[1]]1()()?

Exercise 9.37 Consider a function:

f <- function(x)
for (e in x)
print(e)

What is the return value of a call to f(list(1, 2, 3))?Isit NULL, invisible(NULL),
x[[length(x)]],orinvisible(x[[length(x)]])? Does it change relative to whether x is
empty or not?

Exercise 9.38 The split function also has its replacement version. Study its documentation to
learn how it works.

Exercise 9.39 A call to Is(envir=baseenv()) returns all objects defined in the base pack-
age (see Chapter 16). List the names corresponding to replacement functions.

Important Apply the principle of test-driven development when solving the remain-
ing exercises.

Exercise 9.40 Implement your version of the Position and Find functions. Evaluation
should stop as soon as the first element fulfilling a given predicate has been found.

Exercise 9.41 Implement your version of the Reduce function.

Exercise 9.42 Write a function slide(f, x, k, ...) which returns a list y with
length(x)-k+1elementssuchthaty[[1]] = f(x[1:(i+k-1)], ...)

unlist(slide(sum, 1:5, 1))
## [1] 12345
unlist(slide(sum, 1:5, 3))
## [1] 6 9 12
unlist(slide(sum, 1:5, 5))
## [1] 15

Exercise 9.43 Using slide defined above, write another function that counts how many in-
creasing pairs of numbers ave in a given numeric vector. For instance, in (0,2, 1,1, 0, 1, 6, 0),
there ave three such pairs: (0, 2), (0, 1), (1, 6).
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Exercise 9.44 (*) Writeyourversionoftools: : package_dependencies with reverse=TRUE
based on information extracted by calling utils: :available. packages.

Exercise 9.45 (**) Write a standalone program which can be run from the system shell and
which computes the total size of all the files in directories given as the script’s arguments (via
commandArgs).
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S3 classes

Let x be a randomly generated matrix with 1 000 000 rows and 1 000 columns, y be
a data frame with results from the latest survey indicating that things are way more
complicated than what most people think, and z be another matrix, this time with
many zeroes.

The human brain is not capable of dealing with excessive amounts of data that are im-
moderately specific. This is why we have a natural tendency to group different entities
based on their similarities. This way, we form more abstract classes of objects.

Also, many of us are inherently lazy. Oftentimes we take shortcuts to minimise energy
(at a price to be paid later).

Printing out a matrix, a data frame, and a time series are all instances of the display-
ing of things, although they undoubtedly differ in detail. By now, we have probably
forgotten which objects are hidden behind the aforementioned x, y, and z. Being able
to simply call print(y) without having to recall that, yes, y is a data frame, seems

pretty appealing.

This chapter introduces S3 classes [14]. They provide a lightweight object-orientated
programming (OOP) approach for automated dispatching calls to generics of the type
print(y) to concrete methods such as print.data.frame(y), based on the class of the
object they are invoked on.

We shall see that S3 classes in their essence are beautifully simple’. Ultimately, gener-
ics and methods are ordinary R functions (Chapter 7) and classes are merely additional
object attributes (Section 4.4).

Of course, this does not mean that wrapping our heads around them will be effort-
less. However, unlike other “class systems”*, S3 is ubiquitous in most R programming
projects. Suffice it to say that factors, matrices, and data frames discussed in the com-
ing chapters are straightforward, S3-based extensions of the concepts we are about to
introduce.

! They were built on top of the ordinary (“old R”) S so they have inherent limitations that we discuss in
the sequel: classes cannot be formally defined (often we will use named lists for representing objects, and
we know we cannot be any more flexible than this), and method dispatching can only be based on the class
of one of the arguments (usually the first one, but, e.g., binary operators take both types into account).

2 Other class systems may give an impression that they are alien implants which were forcefully added
to our language to solve a specific, rather narrow class of problems;e.g., S4 (Section 10.5), reference classes
(Section 16.1.5), and other ones proposed by third-party packages.
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10.1 Object type vs class

Recall that typeof (introduced in Section 4.1) returns the internal type of an object. So
far, we were mostly focused on atomic and generic vectors; compare Figure 1 in the
Preface.

typeof (NULL)

## [1] "NULL"

typeof (c(TRUE, FALSE, NA))

## [1] "logical"

typeof(c(1, 2, 3, NA_real ))

## [1] "double"

typeof(c("a", "b", NA_character_))
## [1] "character"

typeof (list(list(1, 2, 3), LETTERS))
## [1] "list”

typeof (function(x) x)

## [1] "closure”

The number of admissible types is small?, but they open the world of endless possibil-
ities*. They provide a basis for more complex data structures. This is thanks to the fact
that they can be equipped with arbitrary attributes (Section 4.4).

Most compound types constructed using the mechanisms discussed in this chapter only
pretend they are something different from what they actually are. Still, they often do
their job very well. By looking under their bonnet, we will be able to manipulate their
state outside of the prescribed use cases.

Important Setting the class attribute might make some objects behave differently
in certain scenarios.

Example10.1 Let’s equip two identical objects with different c Lass attributes.

xt <- structure(123, class="POSIXct") # POSIX calendar time
xd <- structure(123, class="Date")

Both objects are represented using numeric vectors:

c(typeof(xt), typeof(xd))
## [1] "double" "double"

However, when printed, they are decoded differently:

3 Their list is hardcoded at the C language level; see the list of SEXPTYPEs in Table 14.1and [69].
4 In particular, Section 14.2.8 mentions externalptrs which are simple pointers to memory blocks that
can be instances of any C structs or C++ classes. This makes R a very extensible language.
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print(xt)

## [1] "1970-01-01 01:02:03 CET"
print(xd)

## [1] "1970-05-04"

In the former case, 123 is understood as the number of seconds since the UNIX epoch, 1970-01-
01T00:00:00+0000. The latter is deciphered as the number of days since the said timestamp.
Therefore, we expect that theve must exist a mechanism that calls a version of print dependent
on an object’s virtual class. That it only relies on the c Lass attribute, which might be set, unset,
or reset freely, is emphasised below.

attr(xt, "class") <- "Date" # change class from POSIXct to Date
print(xt) # same 123, but now interpreted as Date

## [1] "1970-05-04"

as.numeric(xt) # drops all attributes

## [1] 123

unclass(xd) # drops the class attribute; ‘attr<-'(xd, "class", NULL)
## [1] 123

We are having so much fun that one more illustration can only grow our joy.

Example10.2 Consider an example data frame:

X <- 1ris[1:3, 1:2] # a subset of an example data frame

print(x)

##  Sepal.length Sepal.Width
## 1 5.1 3.5
## 2 4.9 3.0
## 3 4.7 3.2

Itis an object of the class (an object whose c Lass attribute is set to):

attr(x, "class")
## [1] "data.frame"

Some may say, and they are absolutely right, that we have not covered data frames yet. After all,
they are the topic of Chapter 12, which is still ahead of us. However, from the current perspective,
we should know that R data frames are nothing but lists of vectors of the same lengths equipped
with the names and row. names attributes.

typeof(x)
## [1] "list”
‘attr<-'(x, "class", NULL) # or unclass(x)
## SSepal.lLength
## [1] 5.1 4.9 4.7
##
## SSepal.Width
## [1] 3.5 3.0 3.2
##
(continues on next page)
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(continued from previous page)

## attr(, "row.names")

## [1] 1 2 3

print(x)

##  Sepal.length Sepal.Width
# 1 5.1 3.5
#H 2 4.9 3.0
## 3 4.7 3.2

Important Revealing how x is actually represented enables us to process it using the
extensive skill set that we have already® developed by studying the material covered
in the previous part of our book (including all the exercises). This fact is noteworthy
because some built-in and third-party data types are not particularly well-designed.

Let’s underline again that attributes are simple additions to R objects. However, as
we said in Section 4.4.3, certain attributes are special, and class is one of them. In
particular, we can only set class to be a character vector (possibly of length greater
than one; see Section 10.2.5).

X <- 12345
attr(x, "class") <- 1 # character vectors only
## Error in attr(x, "class") <- 1: attempt to set invalid 'class' attribute

Furthermore, the class function can read the value of the class attribute. Its replace-
ment version is also available.

class(x) <- "Date" # set; the same as attr(x, "class") <- "Date"
class(x) # get; here, it is the same as attr(x, "class")
## [1] "Date"

Important The class function always yields a value, even if the corresponding attrib-
ute is not set. We call it an implicit class. Compare the following results:

class(NULL) # no ‘class' set because NULL cannot have any attributes

## [1] "NULL"

class(c(TRUE, FALSE, NA)) # no attributes so class is implicit (= typeof)
## [1] "logical"

class(c(1, 2, 3, NA_real_)) # typeof returns "double"

#4 [1] "numeric”

class(c("a", "b", NA_character_))

## [1] "character"

class(list(list(1, 2, 3), LETTERS))

## [1] "list”

(continues on next page)

5 For instance, consider once again the example from Section 5.4.3 that applies the split function on a
data frame reduced to a list.
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(continued from previous page)

class(function(x) x) # typeof gives "closure"
##4 [1] "function”

Also, Chapter 11 will explain that any object equipped with the dim attribute also has
an implicit class:

(x <- as.matrix(c(1, 2, 3)))

## [,1]

## [1,] 1

w# [2,] 2

## [3,] 3

attributes(x) # ‘class’ is not amongst the attributes
## Sdim

## [1] 3 1

class(x) # implicit class

## [1] "matrix" "array"

typeof(x) # it is still a numeric vector (under the bonnet)
## [1] "double"

10.2 Generics and method dispatching
10.2.1 Generics, default, and custom methods

Let’s inspect the source code of the print function:

print(print) # sic!/
## function (x, ...)
## UseMethod("print")
## <environment: namespace:base>

Any function like the above® we will call from now on a generic (an S3 generic, from S
version 3 [14]). Its only job is to invoke UseMethod("print"). It dispatches the control
flow to another function, referred to as a method, based on the class of the first argu-
ment.

6 Some functions can have a version of UseMethod hidden at the C language level (internally); see Sec-
tion 10.2.3.
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Important All arguments passed to the generic will also be available” in the method
dispatched to.

For example, let’s define an object of the class categorical (a name that we have just
come up with; we could have called it cat, CATEGORICAL, or SpanishInquisition as
well). It will be our version of the factor type that we discuss later.

X <- structure(
C(li 3} 2) 1) 1! 1) 3))
levels=c("a", "b", "c"),
class="categorical"

We assume that such an object is a sequence of small positive integers (codes). It is
equipped with the levels attribute, which is a character vector of length not less than
the maximum of the said integers. In particular, the first level deciphers the meaning
of the code 1. Hence, the above vector represents a sequence 4, ¢, b, a, 4, a, .

There is no special method for displaying objects of the categorical class. Hence,
when we call print, the default (fallback) method is invoked:

print(x)

## [1] 1321113
## attr(, "levels")
## [1] "a" "b" "c”
## attr(, "class")

## [1] "categorical”

This is the standard function for displaying numeric vectors. We are well familiar with
it. Its name is print.default, and we can always call it directly:

print.default(x) # the default print method
## [1] 1 321113

## attr(, "levels")

## [1] "a" "b" "c"

## attr(, "class")

## [1] "categorical”

However, we can introduce a designated method for printing categorical objects. Its
name must precisely be print.categorical:

print.categorical <- function(x, ...)
{

(continues on next page)

7 However, it cannot be implied by reading the preceding source code. UseMethod heavily relies on some
obscure hacks. We may only call it inside a function’s body. Once invoked, it does not return to the generic.
Before dispatching to a particular method, it creates a couple of hidden variables which give more detail on
the operation conveyed, e.g., * .Generic' or *.Class"; see help("UseMethod") and Section 5 of [70].
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(continued from previous page)
Xx_character <- attr(x, "levels")[unclass(x)]
print(x_character) # calls ‘print.default"’
cat(sprintf("Categories: %s\n",
paste(attr(x, "levels"), collapse=", ")))
invisible(x) # this is what all print methods do; see help("print")

Calling print automatically dispatches the control flow to this method:

print(x)
## [1] "a" "c" "b" "a" "a" "a" "c"
## Categories: a, b, c

Of course, the default method can still be called. Referring to print.default(x) dir-
ectly will output the same result as the one a few chunks above.

Note print.categoricalhasbeenequipped with the dot-dot-dot attribute since the
generic print had one too®.

10.2.2 Creating generics

Introducing new S3 generics is as straightforward as defining a function that calls Use -
Method. For instance, here is a dispatcher which creates new objects of the categor -
ical class based on other objects:

as.categorical <- function(x, ...)
UseMethod("as.categorical") # synonym: UseMethod("as.categorical”, x)

We always need to define the default method:

as.categorical.default <- function(x, ...)
{
if (!is.character(x))
X <- as.character(x)
xu <- unique(sort(x)) # drops NAs
structure(
match(x, xu),
class="categorical",
levels=xu

Testing:

8 (*) Ensuring S3 generic/method consistency is part of R package check.
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non nan nn

as.categorical(c("a", "c", "a", "a", "d", "c"))
## [1] "a" "c" "a" "a" "d" "c"

## Categories: a, c, d

as.categorical(c(3, 6, 4, NA, 9, 9, 6, NA, 3))
## [1] "3" "6" "4" NA "9" "9" "6" NA "3"

## Categories: 3, 4, 6, 9

This method is already quite flexible. It handles a wide variety of data types because it
relies on the built-in generic as.character (Section 10.2.3).

Example 10.3 We might want to forbid the conversion from lists because it does not necessarily
make sense:

as.categorical.list <- function(x, ...)
stop("conversion of lists to categorical is not supported")

The users can always be instructed in the method’s documentation that they are responsible for
converting lists to another type prior to a call to as . categorical.

Example10.4 The default method deals with logical vectors perfectly fine:

as.categorical (c(TRUE, FALSE, NA, NA, FALSE)) # as.categorical.default
## [1] "TRUE" "FALSE" NA NA "FALSE"
## Categories: FALSE, TRUE

However, we might still want to introduce its specialised version. This is because we know a
slightly more efficient algorithm (and we have nothing better to do) based on the fact that FAL SE
and TRUE converted to numeric yield o and 1, respectively:

as.categorical. logical <- function(x, ...)
{
if (!is.logical(x))
x <- as.logical(x) # or maybe stopifnot(is.logical(x))?
structure(
x + 1, #only 1, 2, and NAs will be generated
class="categorical",
levels=c("FALSE", "TRUE")

}

It spawns the same result as the default method but is slightly faster.

as.categorical(c(TRUE, FALSE, NA, NA, FALSE)) # as.categorical.logical
## [1] "TRUE" "FALSE" NA NA "FALSE"
## Categories: FALSE, TRUE

We performed some argument consolidation at the beginning because a user is always able to call
a method divectly on an R object of any kind (which is a good thing; see Section 10.2.4). In other
words, there is no guarantee that the argument x must be of type logical.
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10.2.3 Built-in generics

Many® functions and operators we have introduced so far are, in fact, S3 generics:
print, head, '[*, '[[', '[<-', [[<-", length, "+, "<=", is.numeric, as.numeric, is.
character, as.character, as.list, round, log, sum, rep, ¢, and na.omit, to name a
few.

Example 10.5 Let’s overload the as. character method. The default one does not make much
sense for the objects of our custom type:

as.character(x)
g [1] "17 "3" "0 ngn vgn ngn v

So:

as.character.categorical <- function(x, ...)
attr(x, "levels")[unclass(x)]

And now:

as.character(x)
## [1] "a” "c" "b" "a" "a" "a" "c"

Exercise10.6 Overload the unique and rep methods for objects of the class categorical.

Example10.7 New types ought to be designed carefully. For instance, if we forget to overload
the to-numeric converter, some users might be puzzled'® when they see:

(x <- as.categorical(c(4, 9, 100, 9, 9, 100, 42, 666, 4)))

## [1] "4" "9" "100" "9" "9" "100" "42" "666" "4"

## Categories: 100, 4, 42, 666, 9

as.double(x) # synonym: as.numeric(x); here, it calls as.double.default(x)
## [1] 251551342

Hence, we might want to introduce a new method:

° Generating the list of all S3 generics is somewhat tricky, but at least the internal ones are enumer-
ated in help("InternalMethods") and help("groupGeneric"); compare *.S3PrimitiveGenerics”, *
internalGenerics’, " .knownS3Generics", and *.S3_methods_table'. Some of them do not even call Use-
Method explicitly; they dispatch at the C language level. This is unfortunate as it decreases transparency. In-
stead of simply inspecting a function’s source code (compare, e.g., cbind), we need to look this information
up in the documentation. Also, methods may be hardcoded internally, and thus be unoverloadable. How-
ever, sometimes these design choices can be defended because they improve execution speed or memory
consumption.

19 1t is a different story if we really want this behaviour. Provided that we document it thoroughly (see
how help("factor") discusses the behaviour of a to-numeric conversion), we can start holding the users
responsible for their feeling confused (those who have experience in teaching others will certainly agree
how complex this matter is). Remember that we can never make an API fully foolproof and that there will
always be someone to challenge/stress-test our ideas. Bad design is always wrong, but being overprotective
or too defensive also has its cons. We should maintain our audience wisely. Users of open-source software
are not our clients. We do not work for them. We are in this together.
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as.double.categorical <- function(x, ...) # not: as.numeric.categorical

{
# actually: as.double.default(as.character.categorical(x))
as.double(as.character(x))

}

It now yields:

as.double(x) # or as.numeric(x); calls as.double.categorical(x)
## [1] 4 9 100 9 9 100 42 666 4

Note We can still use unclass to fetch the codes:

unclass(x)

## [1] 251551342

## attr(, "levels")

#4 [1] "100" "4" "42"  "666" "9"

It is because the foregoing returns a class-free object, which is now guaranteed to be
processed by the default methods (print, subsetting, as.character, etc.).

Exercise 10.8 What would happen if we used as.numeric instead of unclass in print.
categorical and as.character. categorical?

Exercise 10.9 Update the preceding methods so that we can also create named objects of the
class categorical (i.e., equipped with the names attribute).

Exercise 10.10 The levels of x are sorted lexicographically, not numerically. Introduce a single
method that would let the above code (When rerun without any alterations) generate a move nat-
ural vesult.

10.2.4 First-argument dispatch and calling S3 methods directly

With S3, dispatching is most often done based on the class of only one™ argument: by
default, the first one from the parameter list.

For example, the c function is a generic that dispatches on the first argument’s class.
Let’s overload it for categorical objects. In other words, we will create a function to
be called by the generic when it is invoked on a series of objects whose first element is
of the said class.

1 There are many exceptions to this rule. They were made for the (debatable) sake of the R users’ con-
venience. In particular, in Section 12.1.2 we mention that cbind and rbind will dispatch to the data. frame
method if at least one argument is a data frame (and others are unclassed). Binary operators consider the
type of both operands; see Section 10.2.6. Furthermore, it is worth noting that the S4 class system (Sec-
tion 10.5) allows for dispatching based on the classes many arguments.
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c.categorical <- function(...)
as.categorical(
unlist(
lapply(list(...), as.character)

It converts each argument to a character vector, relying on the generic as.character
to take care of the details. It works because unlist converts a list of such atomic vec-
tors to a single sequence of strings.

Calling c with the first argument of the class categorical dispatches to the above
method:

x <- c(9, 5,7, 7, 2)

XC <- as.categorical(x)

c(xc, x) # c.categorical

## [1] "9" "sv oty tyvorprorgn vt vynonzwonpn
## Categories: 2, 5, 7, 9

However, if the first argument is, say, unclassed, the default method will be consulted:

c(x, xc) # default c
## [1] 957 7242331

Itignored the class attribute and saw xc as it is, a bareboned numeric vector:

“attributes<-"(xc, NULL) # the underlying codes
## [1] 42 3 3 1

Itis not a bug. Itis a well-documented (and now explained) behaviour. After all, com-
pound types (classed objects) are emulated through the basic ones.

Important In most cases, S3 methods can be called directly to get the desired out-
come:

c.categorical(x, xc) # force a call to the specific method
w# [1] 19" "5 nzv npw ngw ngu wgw wzu wzn wyn

## Categories: 2, 5, 7, 9

We said in most cases because methods can be:

« hardcoded at the C language level (e.g., there is no c.default defined at all'¥),

« hidden (defined in a package’s namespace but not exported; Section 16.3.6),

12 Dispatching to internal methods can also be done... internally. For instance, overloading ‘<.
character” (or Compare.character; see below) will have no effect unless the base "< is replaced with a
custom one that makes an explicit call to UseMethod. Most often, we can expect that the built-in types (e.g.,
atomic vectors), factors, data frames, and matrices and other arrays might be treated specially.
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. overloaded as a group; see Section 10.2.6 and help("groupGeneric").

Example 10.11 Purely forjollity, let’s find a partition of the iris dataset into three clusters us-
ing the k-means algorithm:

res <- kmeans(iris[-5], centers=3, nstart=10)

print(res)

## K-means clustering with 3 clusters of sizes 50, 62, 38
##

## Cluster means:

##  Sepal.lLength Sepal.Width Petal.lLength Petal.Width

#H 1 5.0060 3.4280 1.4620 0.2460
## 2 5.9016 2.7484 4.3935 1.4339
## 3 6.8500 3.0737 5.7421 2.0711
##

## Clustering vector:

## [1] 11 1111111111111 11111111111111111111
#4 [36] 1111111111111 1122322222222222222222
#p[71] 22222223222222222222222222222

## [ reached 'max' / getOption("max.print") -- omitted 51 entries ]

##

## Within cluster sum of squares by cluster:

## [1] 15.151 39.821 23.879

## (between_SS / total _SS = 88.4 %)

##

## Avatilable components:

#H#

## [1] "cluster” "centers" "totss" "withinss"
## [5] "tot.withinss" "betweenss" "size" "iter"

## [9] "ifault”

Itis an object of the class:

class(res)
## [1] "kmeans"

which, in fact, is a:

typeof(res)
## [1] "list"

The underlying list looks like:

unclass(res)
## Scluster
## [1] 1111111111111 1111111111111111111111
## [36] 1 1111111111111 122322222222222222222
#E[71] 22222223222222222222222222222
## [ reached 'max' / getOption("max.print") -- omitted 51 entries ]

(continues on next page)
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(continued from previous page)
##
## Scenters
##  Sepal.lLength Sepal.Width Petal.lLength Petal.Width

# o1 5.0060 3.4280 1.4620 0.2460
#t 2 5.9016 2.7484 4,3935 1.4339
## 3 6.8500 3.0737 5.7421 2.0711
##

## Stotss

## [1] 681.37

##

## Swithinss

## [1] 15.151 39.821 23.879
##

## Stot.withinss
## [1] 78.851
##

## Sbetweenss

## [1] 602.52
##

## Ssize

## [1] 50 62 38
##

## Siter

#w# [1] 2

##

## Sifault

## [1] 0

We already know that res was displayed in a fancy way only because there is a print method
overloaded for objects of the kmeans class.

But is there?

print.kmeans
## Error: object 'print.kmeans' not found

Even though the method is hidden (internal) in the stats package’s namespace, from Sec-
tion16.3.6 wewill learn that it can be accessed by calling getS3method( "print", "kmeans")
or referring to stats: : :print. kmeans (note the triple colon).

10.2.5 Multi-class-ness

The class attribute can be instantiated as a character vector of any length. For ex-
ample:

(tl <- Sys.time())
## [1] "2026-01-07 10:42:02 CET"

(continues on next page)
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(continued from previous page)

(t2 <- strptime("2021-08-15T12:59:59+1000", "%Y-%m-%dT%H:%M:%S%z"))
## [1] "2021-08-15 04:59:59"

Let’s inspect the classes of these two objects:

class(t1)
## [1] "POSIXct" "POSIXt"
class(t2)
## [1] "POSIXLt" "POSIXt"

Section 10.3.1 will discuss date-time classes in more detail. It will highlight that the
former is represented as a numeric vector, while the latter is a list. Thus, these two
should primarily be seen as instances of two distinct types. However, as both of them
have a lot in common, it was a wise design choice to allow them to be seen also as the
representatives of the same generic category of POSIX time objects.

Important When calling a generic function® f on an object x of the classes* class1,
class?, ..., classK (in this order), UseMethod (f, x) dispatches to the method determ-
ined as follows:

1. if f.class1is available®, call it;

2. otherwise, if f.class2 is available, call this one;
3. .

4. otherwise, if f.classK is available, invoke it;

5. otherwise, refer to the fallback f.default.

Example10.12 There is a method diff for objects of the class POSIXt that carries a statement:

r <- if (inherits(x, "POSIXIt")) as.POSIXct(x) else x

This way, we can process both POSIXct and POSIXLt instances using the same procedure.

We should see no magic in this simple scheme. It is nothing more than a way to de-
termine the method to be called for a particular R object. It can be used as a mech-
anism to mimic the idea of inheritance in object-orientated programming languages.
However, the S3 system does not allow for defining classes in any formal manner.

For example, we cannot say that objects of the class POSIXct inherit from POSIXt.
Neither can we say that each object of the class POSIXct is also an instance of POSIXt.
The class attribute can still be set arbitrarily on a per-object basis. We can create

B3 The case of binary operators is handled differently; see Section 10.2..6.

14 UseMethod dispatches on the implicit class as determined by the class function. Note that the class
attribute does not necessarily have to be set in order for class to return a sensible answer.

15 For more details on S3 method lookup, see Section 16.3.6.
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ones whose class is simply POSIXct (without the POSIXt part) or even c("POSIXt",
"POSIXct") (in this order).

Note Inany method, it is possible to call the method corresponding to the next class
by calling NextMethod.

For instance, if we arein f.class1, a call to NextMethod (f) will try invoking f.class2.
If such a method does not exist, further methods in the search chain will be probed,
falling back to the default method if necessary. We will give an illustration later.

10.2.6 Operator overloading

Operators are ordinary functions (Section 9.3.5). Even though what follows can par-
tially be implied by what we have already said, as usual in R, some oddities are to be
expected.

For example, let’s overload the index operator for objects of the class categorical.
Looking at help("["), we see that the default method has two arguments: x (the cat-
egorical object being sliced) and 1 (the indexer). Ours will have the same interface
then:

"[.categorical” <- function(x, 1)

{
structure(
unclass(x)[1], # ‘[ (unclass(x), 1)
class="categorical",
levels=attr(x, "levels") # the same levels as input
)
}

The default S3 method, *[ .default’, is hardcoded at the C language level and we can-
not refer to it directly. This is why we called unclass instead. Alternatively, we can also
invoke NextMethod:

"[.categorical” <- function(x, 1)

{
structure(
NextMethod("["), # call default method, passing ‘x' and 'i°
class="categorical",
levels=attr(x, "levels") # the same levels as input
)
}

We can also introduce the replacement version of this operator:

‘[<-.categorical’® <- function(x, i, value)
{

(continues on next page)
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(continued from previous page)
levels <- attr(x, "levels")
value <- match(value, levels) # integer codes corresponding to levels
structure(
NextMethod("[<-"), # call default method, passing ‘x°, ‘i1°, ‘values’
class="categorical",
levels=levels # same levels as input

# # or, equivalently:
# structure(

# ‘[<-"(unclass(x), 1, value=match(value, attr(x, "levels"))),
# class="categorical”,
# levels=attr(x, "levels")
#)
}
Testing:

X <- as.categorical(c(3, 6, 4, NA, 9, 9, 6, NA, 3))
x[1:4]

## [1] "3" "6" "4" NA

## Categories: 3, 4, 6, 9

x[1:4] <- c("6", "7")

print(x)

## [1] "6" NA "6" NA "9" "9" "6" NA "3"

## Categories: 3, 4, 6, 9

Notice how we handled the case of nonexistent levels and that the recycling rule has
been automagically inherited (amongst other features) from the default index oper-
ator.

Exercise 10.13 Do these two operators preserve the namess attribute of x? Is indexing with neg-
ative integers or logical vectors supported as well? Why is that/is that not the case?

Furthermore, let’s overload the *==" operator. Assume'® that we would like two cat-
egorical objects to be compared based on the actuallabels they encode, in an element-
wise manner:

‘==.categorical’ <- function(el, e2)
as.character(el) == as.character(e2)

We are feeling lucky: by not performing any type checking, we rely on the particular
as.character methods corresponding to the types of el and e2. Also, assuming that

16 There are, of course, many possible ways to implement the *==" operator for the discussed objects. For
instance, it may return either a single TRUE or FALSE depending on if two objects are identical (although
probably overloading all.equal would be a better idea). We could also compare the corresponding under-
lying integer codes instead of the labels, etc.
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as.character always' returns a character object, we dispatch to the default method
for “==" (which handles atomic vectors).

Some examples:

as.categorical(c(1, 3, 5, 1)) == as.categorical(c(1, 3, 1, 1))
## [1] TRUE TRUE FALSE TRUE

as.categorical(c(1, 3, 5, 1)) == c(1, 3, 1, 1)

## [1] TRUE TRUE FALSE TRUE

c(1, 3, 5, 1) == as.categorical(c(1, 3, 1, 1))

## [1] TRUE TRUE FALSE TRUE

Important In the case of binary operators, dispatching is done based on the classes
of both arguments. In all three preceding calls, we call *==.categorical’, regardless
of whether the classed object is the first or the second operand.

If two operands are classed, and different methods are overloaded for both, a warning
will be generated, and the default internal method will be called.

‘==,A" <- function(el, e2) "A"

‘==,B" <- function(el, e2) "B"

structure(c(1, 2, 3), class="A") == structure(c(2, NA, 3), class="B")
## Warning: Incompatible methods ("==.A", "==.B") for "=="

## [1] FALSE NA  TRUE

Note (*) By creating a single Ops method, we can define the meaning of all binary
operators at once.

Ops.categorical <- function(el, e2)

{
if (!(.Generic %in% c("<", ">", "<=", ">=", "==", "1=")))
stop(sprintf("%s not defined for 'categorical' objects", .Generic))
el <- as.character(el)
e2 <- as.character(e2)
NextMethod(.Generic) # dispatch to the default method (for character)
}

as.categorical(c(1, 3, 5, 1)) > c(1, 2, 4, 2)
## [1] FALSE TRUE TRUE FALSE

Here, " .Generic’ is a variable representing the name of the operator (generic) being
invoked; see Section 16.3.6.

Other group generics are: Summary (including functions such as min, sum, and all),

7 Which, of course, does not have to be the case; it is merely an assumption based on our belief in the
common sense of other developers.
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Math (abs, log, round, etc.), matrixOps (‘%*%'), and Complex (e.g., Re, Im); see
help("groupGeneric") for more details.

Sometimes we must rely on the *.S3method" function to let R recognise a custom
method related to such generics.

10.3 Common built-in S3 classes

Below we discuss a few noteworthy classes, including those representing date-time
information and factors (ordered or not). Note that classes representing tabular data
will be dealt with in separate parts, owing to their importance and ubiquity. Namely,
matrices and other arrays are covered in Chapter 11, and data frames are discussed in
Chapter 12. Inspecting other'® interesting compound types is left as a simple exercise
for the studious reader.

10.3.1 Date, time, etc.
The Date class represents... dates (calendar ones, not fruits).

(x <- c(Sys.Date(), as.Date(c("1969-12-31", "1970-01-01", "2023-02-29"))))
## [1] "2026-01-07" "1969-12-31" "19760-01-01" NA

class(x)

## [1] "Date"

Complex types are built on basic ones. Underneath, what we deal with here is:

typeof(x)

## [1] "double"

unclass(x)

## [1] 20460 o] 6  NA

which is the number of days since the UNIX epoch, 1970-01-01T00:00:00+0000 (mid-
night GMT/UTC).

The POSIXct (calendar time) class represents date-time objects:

(x <- Sys.time())

## [1] "2026-01-07 10:42:02 CET"
class(x)

## [1] "POSIXct" "POSIXt"
typeof(x)

## [1] "double"

(continues on next page)

8 unique(.S3_methods_table[, 2]) approximates the list of available classes.
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(continued from previous page)

unclass(x)
## [1] 1767778923

Underneath, it is the number of seconds since the UNIX epoch. By default, whilst
printing, the current default timezone is used (see Sys . timezone). However, such ob-
jects can be equipped with the tzone attribute.

structure(l, class=c("POSIXct", "POSIXt")) # using current default timezone
## [1] "1970-01-01 01:00:01 CET"

structure(1l, class=c("POSIXct", "POSIXt"), tzone="UTC")

## [1] "1970-01-01 00:00:01 UTC"

In both cases, the time is 1 second after the beginning of the UNIX epoch. On the au-
thor’s PC, the former is displayed in the current local timezone, though.

Exercise10.14 UseISOdatetinme toinspecthowmidnightsaredisplayedin different timezones.

The POSIXLt (local time) class is represented using a list of atomic vectors™.

(x <- as.POSIX1lt(c(a="1970-01-01 00:00:00", b="2030-12-31 23:59:59")))
## a b

## "1970-01-01 00:00:00 CET" "2030-12-31 23:59:59 CET"

class(x)

## [1] "POSIXIt" "POSIXt"

typeof(x)

## [1] "list”

str(unclass(x)) # calling str instead of print to make display more compact
## List of 11

#4 S sec :onum [1:2] 0 59

## S min : int [1:2] 0 59

## S hour : int [1:2] 0 23

#4 S mday : int [1:2] 1 31

## S mon : int [1:2] 6 11
## S year : Named int [1:2] 70 130
#4 .- attr(*, "names")= chr [1:2] "a" "b"

## S wday : int [1:2] 4 2

## S yday : int [1:2] 0 364

#4 S isdst : int [1:2] 0 0

## S zone : chr [1:2] "CET" "CET"

## S gmtoff: int [1:2] NA NA

##4 - attr(*, "tzone")= chr [1:3] "" "CET" "CEST"
## - attr(*, "balanced")= logi TRUE

Exercise 10.15 Read about the meaning of each named element, especially mon and year; see
help("DateTimeClasses").

The manual states that POSIX1lt is supposedly closer to human-readable forms than

¥ Which was inspired by struct tmin C’s <time.h>.
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POSIXct, but it is a matter of taste. Some R functions return the former, and other
output the latter type.

Exercise 10.16 The two main functions for date formatting and parsing, strftime and strp-
time, use special field formatters (similarto sprintf). Read about them in the R manual. What
type of inputs do they accept? What outputs do they produce?

There are several methods overloaded for objects of the said classes. In fact, the first
call in this section already involved the use of c.Date.

Exercise 10.17 Play around with the overloaded versions of seq, rep, and as. character.

A specific number of days or seconds can be added to or subtracted from a date or time,
respectively. However, " - (see also diff) can also be applied on two date-time objects,
which yields an object of the class difftime.

Sys.Date() - (Sys.Date() - 1)
## Time difference of 1 days
Sys.time() - (Sys.time() - 1)
## Time difference of 1 secs

Exercise 10.18 Check out how objects of the class difftime are internally represented.

Applying other arithmetic operations on date-time objects raises an error. Because
date-time objects are just numbers, they can be compared to each other using binary
operators®®. Also, methods such as sort and order? could be applied on them.

Exercise10.19 Checkoutthe stringx package, which veplaces the base R date-time processing
functions with their more portable counterparts.

Exercise 10.20 proc. time can be used to measure the time to execute a given expression:

tO <- proc.time() # timer start

# ... to do - something time-consuming ...
sum(runif(1e7)) # whatever, just testing
## [1] 4999488

print(proc.time() - t0) # elapsed time
# user system elapsed

##  0.120 0.005 0.124

The function returns an object of the class proc_time. Inspect how it is represented internally.

10.3.2 Factors

The factor classis often used to represent qualitative data, e.g., species, groups, types.
In fact, categorical (our example class) was inspired by the built-in factor.

20 The overloaded group generic Ops prevents us from adding or multiplying two dates and defines the
meaning of the relational operators. As an exercise, check out its source code.
21 See an exercise below on the use of xtfrm.
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(x <- c("spam", "spam", "bacon", "sausage", "spam", "bacon"))

## [1] "spam" "spam" "bacon" "sausage" "spam" "bacon”
(f <- factor(x))

## [1] spam spam bacon  sausage spam bacon

## Levels: bacon sausage spam

Note how factors are printed. There are no double quote characters around the labels.
The list of levels is given at the end.

Internally, such objects are represented as integer vectors (Section 6.4.1) with ele-
ments between 1 and k. They are equipped with the special (as in Section 4.4.3) levels
attribute, which is a character vector of length k**.

class(f)

## [1] "factor"
typeof (f)

## [1] "integer"
unclass(f)

## [1] 3312 3 1
## attr(, "levels")

non

## [1] "bacon" "sausage" "spam"
attr(f, "levels") # also: levels(f)
## [1] "bacon" "sausage" "spam"

Factors are often used instead of character vectors defined over a small number of
unique labels®, where there is a need to manipulate their levels conveniently.

attr(f, "levels") <- c("a", "b", "c") # also levels(f) <- c(....new...)
print(f)

## [1] c ca b ca

## Levels: a b c

The underlying integer codes remain the same.

Certain operations on vectors of small integers are relatively easy to express, espe-
cially those concerning element grouping: splitting, counting, and plotting (e.g., Fig-
ure 13.17). It is because the integer codes can naturally be used whilst indexing other
vectors. Section 5.4 mentioned a few functions related to this, such as match, split,
findInterval, and tabulate. Specifically, the latter can be implemented like “for
each i, increase count[factor_codes[1]] by one”.

Exercise10.21 Study the source code of the factor function. Note the use of as. character,
unique, order, and match.

22 [70] states: Factors are currently implemented using an integer array to specify the actual levels and a second array
of names that are mapped to the integers. Rather unfortunately users often make use of the implementation in order to
make some calculations easier. This, however, is an implementation issue and is not guaranteed to hold in all implement-
ations of R. Still, fortunately, this has been a de facto standard for factors for a very long time.

23 Recall that there is a global (internal) string cache. Hence, having many duplicated strings is not a
burden on the computer’s memory.
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Exercise 10.22 Implement a simplified version of table based on tabulate. It should work
for objects of the class fac tor and return a named numeric vector.

Exercise 10.23 Implement a version of cut based on findInterval.

Important The as.numeric method has not been overloaded for factors. Therefore,
when we call the generic, the default method is used: it returns the underlying integer
codes as-is. This can surprise unaware users when they play with factors representing
integer numbers:

(g <- factor(c(11, 15, 16, 11, 13, 4, 15))) # converts numbers to strings
#4 [1] 11 15 16 11 13 4 15

## Levels: 4 11 13 15 16

as.numeric(g) # the underlying codes

## [1] 2452 314

as.numeric(as.character(g)) # to get the numbers encoded

## [1] 11 15 16 11 13 4 15

Alas, support for factors is often hardcoded at the C language level. From the end user
perspective, it makes this class behave less predictably. In particular, the manual over-
loading of certain methods for factor objects might have no effect.

Important If fisafactor, then x[f] does not behavelike x[as.character(f)],i.e.,it
is notindexing by labels using the names attribute. Instead, we get x[ as. numeric(f)];
the underlying codes determine the positions.

h <- factor(c("a", "b", "a", "c", "a", "c"))

levels(h)[h] # the same as c("a", "b", "c")[c(1, 2, 1, 3, 1, 3)]
## [1] "a" "b" "a" "c" "a" "c"

c(b="x", c="y", a="z")[h] # names are not used whilst indexing
## b ¢ b a b a

#r "x" "yt x" " x!t "z

c(b="x", c="y", a="z")[as.character(h)] # names are used now

# a b a c a c

#r "z" "x" "zt ty" !ty

More often than not, indexing by factors will happen “accidentally”**, leaving us
slightly puzzled. In particular, factors look much like character vectors when they are
carried in data frames:

(df <- data.frame(A=c("x", "y", "z"), B=factor(c("x", "y", "z"))))
#% A B
(continues on next page)

24 (*) Up until R 4.0, many functions (including data.frame and read.csv) had the stringsAsFactors
option set to TRUE; see help("options"). It resulted in all character vectors’ being automatically conver-
ted to factors, e.g., when creating data frames (compare Section 12.1.5). Luckily, this is no longer the case.
However, factor objects can still be encountered; for instance, check the class of iris[["Species"]].
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(continued from previous page)

## 1 x x

#H2yy

# 3z z

class(df[["A"]1])

## [1] "character”

class(df[["B"]])

## [1] "factor"

Important Be careful when combining factors and not-factors:

x <- factor(c("A", "B", "A"))
c(x, "C")

#4 [1] "1" 2" "1" C”

c(x, factor("C"))

## [1] AB A C

## Levels: A B C

Exercise 10.24 When subsetting a factor object, the result will inherit the levels attribute in
its entirety:

flc(1, 2)] # drop=FALSE
## [1] c ¢
## Levels: a b c

However:

flc(1, 2), drop=TRUE]
## [1] c c
## Levels: ¢

Implement your version of the droplevels function, which removes the unused attributes.

Exercise 10.25 The replacement version of the index operator does not automatically add new
levels to the modified object:

x <- factor(c("A", "B", "A"))

‘[<-'(x, 4, value="C") # like in x[4] <- "C"

## Warning in ‘[<-.factor ' (x, 4, value = "C"): invalid factor level, NA
## generated

## [1] A B A <NA>

## Levels: A B

Implement aversion of [<-. factor" that has such a capability.
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10.3.3 Ordered factors

When creating factors, we can enforce a particular ordering and the number of levels:

X <- c("spam", "spam", "bacon", "sausage", "spam", "bacon")
factor(x, levels=c("eggs", "bacon", "sausage", "spam"))

## [1] spam spam bacon sausage spam bacon

## Levels: eggs bacon sausage spam

If we want the arrangement of the levels to define a linear ordering relation over the
set of labels, we can call:

(f <- factor(x, levels=c("eggs", "bacon", "sausage", "spam"), ordered=TRUE))

## [1] spam spam bacon  sausage spam bacon
## Levels: eggs < bacon < sausage < spam
class(f)

## [1] "ordered" "factor"

Ityields an ordered factor, which enables comparisons like:

f[f >= "bacon"] # what's not worse than bacon?
##4 [1] spam spam bacon  sausage spam bacon
## Levels: eggs < bacon < sausage < spam

How is that possible? Well, based on information provided in this chapter, it will come
as no surprise thatitis because... someone has created a relational operator for objects
of the class ordered.

10.3.4 Formulae (%)

Formulae are created using the "~ operator. Some R users employ them to specify
widely-conceived statistical models in functions such as lm (e.g., linear regression), glm
(generalised linear models like logistic regression etc.), aov (analysis of variance),
wilcox.test (the two-sample Mann-Whitney-Wilcoxon test), aggregate (comput-
ing aggregates within data groups), boxplot (box-and-whisker plots for a variable
split by a combination of factors), or plot (scatter plots); see also Chapter 11 of [59].
For instance, formulae can be used to describe symbolic relationships such as:

« “yasalinear combination of x1, x2, and x3”,
- “y grouped/split by a combination of x1 and x2”,
where y, x1, etc., are, for example, column names in a data frame.

Formulae are interpreted by the corresponding functions, and not the R language it-
self. Thus, programmers are free to assign them any meaning. As their syntax is quite
esoteric, beginners might find them confusing. Hence, we will postpone discussing
them until Section 17.6. Luckily, the use of formulae can usually easily be avoided*.

25 For example, Im. fit can be used instead of m. It is slightly more difficult to learn, but it has the added
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10.4 (Over)using the forward pipe operator, * [>" ()

The OOP paradigm is utile when we wish to define a new data type, perhaps even a
hierarchy of types. Many development teams find it an efficient tool to organise larger
pieces of software. However, in the data science and numerical computing domains,
more often than not, we are the consumers of object orientation rather than class de-
signers.

Thanks to the S3 method dispatch mechanism, ourlanguage is easily extensible. Some-
thing that mimics a new data type can easily be introduced. Most importantly, meth-
ods can be added?® or removed during runtime, e.g., when importing external pack-
ages.

However, R is still a functional programming language, where functions are not just
first-class citizens: they are privileged. In functional programming, the emphasis is
on operations (verbs), not data (nouns). Itleads to a very readable syntax. For example,
assuming that square, x, and y are sensibly defined, the mean squared difference can
be written as:

mean(square(x-y)) # read: mean of squares of differences

Example10.26 Base R is extremely flexible. We can introduce new vocabulary as we please. In
Section 12.3.7, we will study an example where we define:

- group_by (afunction that splits a data frame with respect to a combination of levels in given
named columns and returns a list of data frames with class list_dfs),

. aggregate. list_dfs (which applies an aggregation function on every column of all data
frames in a given list), and

- mean. list_dfs (a specialised version of the former that calls mean).

The specifics do not matter now. Let’s just consider the notation we use when the operations are
chained:

# select a few rows and columns from the “iris' data frame:
iris_subset <- iris[51:150, c("Sepal.Width", "Petal.lLength", "Species")]
# compute the averages of all variables grouped by Species:
mean(group_by(iris_subset, "Species"))
## Species X Mean
(continues on next page)

benefit of ensuring the user knows that the emergence of all model variables is not magical (especially the
nonlinear/mixed effect terms).

26 (*) In more traditional object-orientated programming languages, the method list is often sealed in-
side the class’ definition (like in C++) or cumbersome patches must be applied to inject a method (like in
Python; see also the concept of extension methods in C# or Kotlin and, to some extent, of class inheritance).
When methods are parts of particular classes, there can be a lot of duplicated code. Functional OOP can
be more developer-friendly as we can provide all methods related to roughly the same functionality in one
spot.
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(continued from previous page)
## 1 versicolor Sepal.Width 2.770
## 2 versicolor Petal.lLength 4.260
## 3 virginica Sepal.Width 2.974
## 4 virginica Petal.lLength 5.552

The functional syntax is very reader-centric (by the way, self-explanatory variable names and
rich comments are priceless). We compute the mean in groups defined by Species in a subset of
the iris data frame. All verbs appear on the left side of the expression, with the final (the most
important?) operation being listed first.

Nonetheless, when implementing more complex data processing pipelines, program-
mers think in different categories: “first, we need to do this, then we need to do that,
and afterwards..”. When they write their ideas down, they have to press Home and End
or arrow keys a few times to move the caret to the right places:

finally(thereafter(then(first(x))))

As people are inherently lazy, they might want to “optimise” their workflow to save a
bit of energy. Thus, many popular languages rely on message-passing syntax, where
operations are propagated (and written) left-to-right instead of inside-out. For in-
stance, object.method1().method2() might mean “call method1 on the object and
then call method?2 on the result”. Here, the object is told what to do.

Since R 4.1.0, we have the pipe operator?’, * | >*. It is merely syntactic sugar for translat-
ing between the message-passing and function-centric notion. In a nutshell, instead
of writing:

h(g(f(x), y))
mean(square(x-y))
mean(group_by(iris_subset, "Species"))

we have the following equivalent forms:

x [ f() |>g(y) > h()
(x-y) |> square() |> mean()
iris_subset |> group_by("Species") |> mean()

Such syntax is developer-centric. It might be faster to write. It emphasises the order
in which the operations are executed. However, we must stress that there is nothing
that cannot be achieved through the function-centric form and perhaps a few auxili-
ary variables. As this book is minimalist by design, we refrain ourselves from using it.
Those unconvinced should take note of the following.

First, expressions on the right side of the pipe operator must always be proper calls.
Therefore, the use of round brackets is obligatory. Thus, when passing anonymous
functions, we must write:

27 It was inspired by | * in Bash and " |>@" in F# and Julia (which are part of the language specification).
Also, there is a “%>% operator (and related ones) in the R package magrittr.
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runif(10) |> (function(x) mean((x-mean(x))"2))() # note the "()" at the end
## [1] 0.078184

Peculiarly, in R 4.1.0, a “shorthand” notation for creating functions was introduced.
We can save seven keystrokes and scribble “\ (...) expr”instead of “function(...)
expr”.

runif(10) [> (\(x) mean((x-mean(x))"2))() # again: "()" at the end
## [1] 0.078184

Also, the placeholder *_* can be used on the right side of the pipe operator (only once)
to indicate that the left side must be matched with a specific named argument of the
function to be called. Otherwise, the left side is always passed as the first argument.
Therefore, the two following expressions are equivalent:

x |> median() |> '-'(el=x, e2=_) |> abs() |> median()
median(abs(x-median(x)))

Note When writing code interactively, we may sometimes benefit from using the
rightward " ->" operator. Suffice it to say that “name <- value” and “value -> name”
are synonymous. This way, we can type some lengthy code, store the result in an inter-
mediate variable, and then continue in the next line (possibly referring to that auxili-
ary value more than once). For instance:

runif(10) -> .
mean((.-mean(.))"2)
## [1] 0.078184

Recall that *." is as valid a variable name as any other one. Another example:

iris[, c("Sepal.Width", "Petal.Length", "Species")] -> .

I .[, "Species"] %in% c("versicolor", "virginica"), ] -> .
mean(group_by(., "Species"))

## Species X Mean

## 1 versicolor Sepal.Width 2.770

## 2 versicolor Petal.Length 4.260

## 3 virginica Sepal.Width 2.974

## 4 virginica Petal.lLength 5.552




210 Il DEEPER

10.5 S4classes (%)

The S3-style OOP is based on a brilliantly simple idea: calling a generic f(x) dispatches
automatically to a method f.class_of_x(x) or f.default(x) in the case where the
former does not exist. Naturally, S3 has some inherent limitations:

« classes cannot be formally defined; the class attribute may be assigned arbitrarily
to any object??,

. argument dispatch is performed only*® with regard to one data type*°.

In most cases, and with an appropriate level of mindfulness, they are not a problem
at all. However, it is a typical condition of programmers who come to our world from
more mainstream languages (e.g., C++ or Java; yours truly included) until they appre-
ciate the true beauty of R’s being somewhat different. Before they fully develop such
an acquired taste, though, they grow restless as “R is has no real OOP because it lacks
polymorphism, encapsulation, formal inheritance, and so on, and something must be
done about it!”. The truth is that it had not had to, but with high probability, it would
have anyway in one way or another.

And so the fourth version of the S language was introduced in 1998 (see [10]). It brought
a new object-orientated system, which we are used to referring to as S4. Its R version
is defined by the methods package. Below we discuss it briefly. For more details, see
help("Classes_Details") and help("Methods Details") as well as [11] and [12].

Note (¥) S4 was loosely inspired by the Common Lisp Object System (with its def -
class, defmethod, etc.; see, e.g., [21]). In the current author’s opinion, the S4 system
is somewhat of an afterthought. Due to appendages like this, R seems like a patchwork
language. Suffice it to say that it was not the last attempt to introduce a “real” OOP in
the overall functional R: the story will resume in Section 16.1.5.

The main issue with all the supplementary OOP approaches is that each of them is
parallel to S3 which never lost its popularity and is still in the very core of our language.
We are thus covering them only for the sake of completeness for the readers might
come across such objects. In particular, we shall explain the meaning of a notation
like x@slot. Moreover, in Section 11.4.7 we mention the Matrix class which is perhaps
the most prominent showcase of S4.

Nonetheless, the current author advises taking with a pinch of salt statements such

28 A partial solution to this could involve defining a method like validate.class_name, which is called
frequently and which checks whether a given object enjoys a few desirable constraints.

29 Certain functions implement ad hoc workarounds (see, e.g., cbind, which dispatches to cbind.data.
frame if one argument is a data frame and the remaining ones are vectors or matrices). Also, we said in the
previous chapter that binary operators consider the classes of both operands.

3° Hypothetically, we can imagine an OOP system relying on methods named like method.class_name1.
class_name2 where dispatching is based on two argument types. This would be beautiful, but it is not the
caseinR.
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as “for new projects, it is recommended to use the more flexible and robust S4 scheme
provided in the methods package” mentioned in help("UseMethod").

10.5.1 Defining S4 classes

An S4 class can be formally registered through a call to setClass. For instance:

library("methods") # in the case where it is not auto-loaded
setClass("qualitative", slots=c(data="integer", levels="character"))

We defined a class named qualitative (similarity to our own categorical and the
built-in factor S3 classes is intended). It has two slots: data and levels being integer
and character vectors, respectively. This notation is already outlandish. There is no
assignment suggesting that we have introduced something novel.

An object of the above class can be instantiated by calling new:

z <- new("qualitative", data=c(1L, 2L, 2L, 1L, 1L), levels=c("a", "b"))
print(z)

## An object of class "qualitative"

## Slot "data":

## [1] 122 11

##H
## Slot "levels":
## [1] "a" "b"

That z is of this class can be verified by calling is.

is(z, "qualitative")

## [1] TRUE

class(z) # also: attr(z, "class")
## [1] "qualitative"

## attr(, "package")

## [1] ".GlobalEnv"

Important A few R packagesimport the methods package only to get access the handy
is function. It does not mean they are defining new S4 classes.

Note S4 objects are marked as being of the following basic type:

typeof(z)
## [1] "S4"

See Section 1.12 of [69] for technical details on how they are internally represented. In
particular, in our case, all the slots are simply stored as object attributes:
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attributes(z)

## Sdata

#p [1] 1221 1
##H

## Slevels

## [1] "a" "b"

##H

## Sclass

## [1] "qualitative"
## attr(, "package")
## [1] ".GlobalEnv"

10.5.2 Accessing slots

Reading or writing slot contents can be done via the '@ operator and the slot function
or their replacement versions.

z@data # or slot(z, "data")
## [1] 12211
z@levels <- c("A", "B")

Note The "@ operator can only be used on S4 objects, and some sanity checks are
automatically performed:

z@unknown <- "spam"

## Error in (function (cl, name, valueClass) : 'unknown' is not a slot in
# class "qualitative"

z@data <- "spam"

## Error in (function (cl, name, valueClass) : assignment of an object of
# class "character" is not valid for @'data' in an object of class
#H "qualitative"; is(value, "integer") is not TRUE

10.5.3 Defining methods

For the S4 counterparts of the S3 generics (Section 10.2), see help("setGeneric").
Luckily, there is a reasonable degree of interoperability between the S3 and S4 systems.

Let’s introduce a new method for the well-known as.character generic. Instead of
defining as.character.qualitative, we need to register a new routine with set-
Method.

setMethod(
"as.character", # name of the generic
"qualitative", # class of 1st arg; or: signature=c(x="qualitative")

(continues on next page)
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(continued from previous page)

function(x, ...) # method definition
x@levels[x@data]

Testing:

as.character(z)
## [1] "A" "B" "B" "A" "A"

show is the S4 counterpart of print:

setMethod(

"show",

"qualitative",

function(object)

{
X <- as.character(object)
print(x) # calls ‘print.default’
cat(sprintf("Categories: %s\n",

paste(object@levels, collapse=", ")))

Interestingly, it is involved automatically on a call to print:

print(z) # calls ‘show' for ‘qualitative’
## [1] "A" "B" "B" "A" "A"
## Categories: A, B

Methods that dispatch on the type of multiple arguments are also possible. For ex-
ample:

setMethod(
"split",
c(x="ANY", f="qualitative"),
function (x, f, drop=FALSE, ...)
split(x, as.character(f), drop=drop, ...)

It permits the first argument to be of any type (like a default method). Moreover, here
is its version tailored for matrices (see Chapter 11).

setMethod(
"split",
c(x="matrix", f="qualitative"),
function (x, f, drop=FALSE, ...)
Lapply(
split(seq_len(NROW(x)), f, drop=drop, ...), # calls the above
(continues on next page)
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(continued from previous page)

function(i) x[1, , drop=FALSE])

Some tests:

A <- matrix(1:35, nrow=5) # whatever
split(A, z) # matrix, qualitative

## SA

## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 1 6 11 16 21 26 31
## [2,] 4 9 14 19 24 29 34
## [3,] 5 10 15 20 25 30 35
##

## SB

## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 2 7 12 17 22 27 32
## [2,] 3 8 13 18 23 28 33
split(1:5, z) # ANY, qualitative

## SA

## [1] 145

##H

## SB

## [1] 2 3

Exercise 10.27 Overload the *[" operator for the qualitative class.

10.5.4 Defining constructors

We can also overload the initialize method, which is automatically called by new:

setMethod(

"initialize", # note the American spelling
"qualitative",
function(.0Object, x)
{ # the method itself

if (!is.character(x))

X <- as.character(x) # see above
Xu <- unique(sort(x)) # drops NAs

.Object@data <- match(x, xu)
.Object@levels <- xu

.Object # return value - a modified object

This constructor yields instances of the class qualitative based on an object coercible
to a character vector. For example:
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nan n_n nan non

w <- new("qualitative", c("a", "c", "a", "a", "d", "c"))
print(w)

## [1] "a" "c" "a" "a" "d" "c"

## Categories: a, c, d

Exercise 10.28 Set up a validating method for our class; see help("setValidity").

10.5.5 Inheritance
New S4 classes can be derived from existing ones. For instance:

setClass("binary", contains="qualitative")

Itisachild class thatinherits all slots from its parent. We can overload its initialisation
method:

setMethod(

"initialize",

"binary",

function(.Object, x)

{
if (!is.logical(x))

X <- as.logical(x)

X <- as.character(as.integer(x))
xu <- c("0", "1")
.Object@data <- match(x, xu)
.Object@levels <- xu
.Object

Testing:

new("binary", c(TRUE, FALSE, TRUE, FALSE, NA, TRUE))
## [1] "1" "0" "1" "9" NA 1"
## Categories: 0, 1

We can still use the show method of the parent class.

10.6 Exercises
Exercise 10.29 Answer the following questions.
« How to display the source code of the default methods for head and tail?

« Can there be, at the same time, one object of the classc("A", "B") and another one of the
classc("B", "A")?
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« If fis a factor, what are the relationships between as.character(f), as.numeric(f),
as.character(as.numeric(f)), and as.numeric(as.character(f))?

« Ifxisanamedvectorand fisafactor,isx[ f] equivalenttox[as.character(f)] orrather
x[as.numeric(f)]?

Exercise 10.30 A user calls:

plot(x, y, col="red", ylim=c(1, max(x)), log="y")

where x and y are numeric vectors. Consult help("plot") forthe meaning of the y Limand log
arguments. Was that straightforward?

Exercise 10.31 Explain why the two following calls return significantly different results.

c(Sys.Date(), "1970-01-01")
## [1] "2026-01-07" "1970-01-01"
c("1970-01-01", Sys.Date())
## [1] "1970-01-01" "20460"

Propose a workaround.

Exercise 10.32 Write methods head and tail for our example categorical class.

Exercise 10.33 (*) Write an R package that defines S3 class categorical. Add a few methods
forthis class. Note the need to use the S3method directive in the NAMESPACE file; see [66].

Exercise 10.34 Inspecttheresultofacallto binom. test(79, 100)andtorle(c(1, 1, 1,
4, 3, 3, 3, 3, 3, 2, 2)).Findthe methods responsible for such objects’ pretty-printing.

Exercise 10.35 Read more about the connection class. In particular, see the Value section of
help("connections").

Exercise10.36 Read about the subsetting operators overloaded for the package_version
class; see help("numeric_version").

Exercise 10.37 There are xtfrm methods overloaded for classes such as numeric_version,
difftime, Date, and factor. Find out how they work and where they might be of service (es-
pecially in velation to order and sort; see also Section 12.3.1).

Exercise 10.38 Givean examplewheresplit(x, list(y1, y2)) (withdefault arguments)
will fail to generate the correct result.

Exercise 10.39 Write a function that determines the mode, i.e., the most frequently occurring
value in a given object of the class factor. If the mode is not unique, return a randomly chosen
one (each with the same probability).

Exercise 10.40 Implement your version of the gl function.
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Matrices and other arrays

When we equip an atomic or generic vector with the dim attribute, it automatically
becomes an object of the S3 class array. In particular, two-dimensional arrays (of the
primary S3 class matrix) allow us to represent tabular data where items are aligned
into rows and columns:

structure(1:6, dim=c(2, 3)) # a matrix with two rows and three columns
## o dl] [[o&]] (o8]
#[1,] 1 3 5
## [2,] 2 4 6

Combined with the fact that there are many functions overloaded for the matrix class,
we have just opened up a whole world of new possibilities, which we explore in this
chapter. Namely, we will discuss how to perform the algebraic operations such as mat-
rix multiplication, transpose, finding eigenvalues, and performing various decom-
positions. We will also cover data wrangling operations such as array subsetting and
column- and rowwise aggregation. Furthermore, the next chapter will present data
frames: matrix-like objects whose columns can be of any (not necessarily the same)

type.

Important Oftentimes, a numeric matrix with n rows and m columns is used to rep-
resent 1 points (samples, observations) in an m-dimensional space (with m numeric
features or variables), R™.

11.1 Creating arrays
11.1.1 matrixandarray
A matrix can be conveniently created using the following function.

(A <- matrix(1:6, byrow=TRUE, nrow=2))
## [,1] [,2] [,3]
## [1,] 1 2 3
# [2,] 4 5 6

It converted an atomic vector of length six to a matrix with two rows. The number of
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columns was determined automatically (ncol=3 could have been passed, additionally
or instead, to get the same result).

Important By default, the elements of the input vector are read column by column:

matrix(1:6, ncol=3) # byrow=FALSE
## [,1] [,2] [,3]
# [1,] 1 3 5
## [2,] 2 4 6

A matrix can be equipped with an attribute that defines dimension names, being a list
of two character vectors of appropriate sizes which label each row and column:

nan

matrix(1:6, byrow=TRUE, nrow=2, dimnames=1list(c("x", "y"), c("a", "b", "c")))
#  abc
# x 12 3
##y 456

Alternatively, to create a matrix, we can use the array function. It requires the number
of rows and columns to be specified explicitly.

array(1:6, dim=c(2, 3))
## (N2 G5
## [1,] 1 3 5
## [2,] 2 4 6

The elements were consumed in the column-major order.

Arrays of other dimensionalities are also possible. Here is a one-dimensional array:

array(1:6, dim=6)
## [1] 123456

When printed, itis indistinguishable from an atomic vector (but the class attribute is
still set to array). And now for something completely different: a three-dimensional
array of size 3 x 4 x 2:

array(1:24, dim=c(3, 4, 2))
# o, , 1

##

## [,1] [,2] [,3] [,4]
## [1,] 1 4 7 10
#[2,] 2 5 8 11
##[3,] 3 6 9 12
##

# o, , 2

##

## [,1] [,2] [,3] [,4]

(continues on next page)
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(continued from previous page)

## [1,] 13 16 19 22
## [2,] 14 17 20 23
## [3,] 15 18 21 24

It can be thought of as two matrices of size 3 x 4 (because how else can we print out a
3D object on a 2D console?).

The array function can be fed with the dimnames argument, too. For instance, the
above three-dimensional hypertable would require a list of three character vectors of
sizes 3, 4, and 2, respectively.

Exercise 11.1 Verify that 5-dimensional arrays can also be created.

11.1.2 Promoting and stacking vectors

We can promote an ordinary vector to a column vector, i.e., a matrix with one column,
by calling:

as.matrix(1:2)

## [,1]
## [1,] 1
## [2,] 2
cbind(1:2)

## [,1]
w# [1,] 1
# [2,] 2

and to a row vector:

t(1:3) # transpose

## [,1] [,2] [,3]
## [1,] 1 2 3
rbind(1:3)

## [,1] [,2] [,3]
## [1,] 1 2 3

Actually, cbind and rbind stand for column- and row-bind. They permit multiple vec-
tors and matrices to be stacked one after/below another:

rbind(1:4, 5:8, 9:10, 11) # row-bind
## [1] [,2] [,3] [,4]

## [1,] 1 2 3 4

#[2,] 5 6 7 8

##[3,] 9 10 9 10

## [4,] 11 11 11 11

cbind(1:4, 5:8, 9:10, 11) # column-bind
## [1] [,2] [,3] [,4]

## [1,] 1 5 9 11

(continues on next page)



220 Il DEEPER

(continued from previous page)

## [2,] 2 6 10 11

## [3,] 3 7 9 11

## [4,] 4 8 10 11

cbind(1:2, 3:4, rbind(11:13, 21:23)) # vector, vector, 2x3 matrix

## [,11 [,2] [,3] [,4] [,5]

## [1,] 1 3 11 12 13

# [2,] 2 4 21 22 23

and so forth. Unfortunately, the generalised recycling rule is not implemented in full:

cbind(1:4, 5:8, cbind(9:10, 11)) # different from cbind(1:4, 5:8, 9:10, 11)
## Warning in cbind(1:4, 5:8, cbind(9:10, 11)): number of rows of result 1is
## not a multiple of vector length (arg 1)

## [,1] [.2] [,3] [.4]

## [1,] 1 5 9 11

## [2,] 2 6 10 11

Note that the first two arguments were of length four.

11.1.3  Simplifying lists

simplify2array is an extension of the unlist function. Given a list of atomic vectors,
each of length one, it will return a flat atomic vector. However, if longer vectors of the
same lengths are given, they will be converted to a matrix.

simplify2array(list(1, 11, 21)) # each of length one

## [1] 1 11 21

simplify2array(list(1:3, 11:13, 21:23, 31:33)) # each of length three
## [,1] [,2] [,3] [,4]

## [1,] 1 11 21 31

## [2,] 2 12 22 32

## [3,] 3 13 23 33

simplify2array(list(1, 11:12, 21:23)) # no can do (without warning!)
## [[1]]

## [1] 1

##

## [[2]]

## [1] 11 12

##

## [[3]]

## [1] 21 22 23

In the second example, each vector becomes a separate column of the resulting matrix,
which can easily be justified by the fact that matrix elements are stored in a column-
wise order.

Example11.2 Quite a few functions call the foregoing automatically; compare the simplify
argumenttoapply, sapply, tapply, orreplicate, andthe SIMPLIFY (sic!) argumenttomap-
ply. Forinstance, sapply combines lapply with simplify2array:
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min_mean_max <- function(x) c(Min=min(x), Mean=mean(x), Max=max(x))
sapply(split(iris[["Sepal.Length"]], iris[["Species"]]), min_mean_max)

#H setosa versicolor virginica
## Min  4.300 4.900 4.900
## Mean 5.006 5.936 6.588
## Max  5.800 7.000 7.900

Take note of what constitutes the columns of the return matrix.

Exercise 11.3 Inspect the behaviour of as.matrix on list arguments. Write your version of
simplify2array named as.matrix. list that always returns a matrix. If a list of non-
equisized vectors is given, fill the missing cells with NAs and generate a warning.

Important Sometimes a call to do.call(cbind, x) might be a better idea than a
referral to simplify2array. Provided that x is a list of atomic vectors, it always returns
a matrix: shorter vectors are recycled (which might be welcome, but not necessarily).

do.call(cbind, list(a=c(u=1), b=c(v=2, w=3), c=c(i=4, j=5, k=6)))
## Warning in (function (..., deparse.level = 1) : number of rows of result

## is not a multiple of vector length (arg 2)
# abc
#1124
## j 135
# k126

Example11.4 Consider a toy named list of numeric vectors:

x <- list(a=runif(10), b=rnorm(15))

Compare the results generated by sapply (which calls simplify2array):

sapply(x, function(e) c(Mean=mean(e)))

## a.Mean b.Mean

## 0.57825 0.12431

sapply(x, function(e) c(Min=min(e), Max=max(e)))
## a b

## Min 0.045556 -1.9666

## Max 0.940467 1.7869

with its version based on do. call and cbind:

sapply2 <- function(...)
do.call(cbind, lapply(...))

sapply2(x, function(e) c(Mean=mean(e)))
## a b
## Mean 0.57825 0.12431

(continues on next page)
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(continued from previous page)

sapply2(x, function(e) c(Min=min(e), Max=max(e)))
# a b
## Min 0.045556 -1.9666
## Max 0.940467 1.7869

Notice that sapply may return an atomic vector with somewhat surprising names.

More examples appear in Section 12.3.7.

11.1.4 Beyond numeric arrays

Arrays based on non-numeric vectors are also possible. For instance, we will later
stress that matrix comparisons are performed elementwisely. They spawn logical
matrices:

A>=3

#it [1] [,2] [,3]
## [1,] FALSE FALSE TRUE
## [2,] TRUE TRUE TRUE

Matrices of character strings can be useful too:

matrix(strrep(LETTERS[1:6], 1:6), ncol=3)

## [1,] "A" "CCC" "EEEEE"
## [2,] "BB" "DDDD" "FFFFFF"

And, of course, complex matrices:

A+ 11

## [,1] [,2] [,3]
## [1,] 1+11 2+11 3+1i
#h [2,] 4+11 5+11 6+11

We are not limited to atomic vectors. Lists can be a basis for arrays as well:

matrix(list(1, 11:21, "A", list(1, 2, 3)), nrow=2)
## [,1] [,2]

## [1,] 1 A

## [2,] integer,11 list,3

Certain elements are not displayed correctly, but they are still there.

11.1.5 Internal representation

An object of the S3 class array is an atomic vector or a list equipped with the dim at-
tribute being a vector of nonnegative integers. Interestingly, we do not have to set the
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class attribute explicitly: the accessor function class will return an implicit* class
anyway.

class(1) # atomic vector

## [1] "numeric"

class(structure(1l, dim=rep(1, 1))) # 1D array (vector)
## [1] "array"

class(structure(1, dim=rep(1, 2))) # 2D array (matrix)
## [1] "matrix" "array"

class(structure(1, dim=rep(1, 3))) # 3D array

## [1] "array"

Note that a two-dimensional array is additionally of the matrix class.

Optional dimension names are represented by means of the dimnames attribute, which
is a list of d character vectors, where d is the array’s dimensionality.

(A <- structure(1:6, dim=c(2, 3), dimnames=1ist(letters[1:2], LETTERS[1:3])))
# A BC

## a1l 35

#b246

dim(A) # or attr(A, "dim")

## [1] 2 3

dimnames(A) # or attr(A, "dimnames")
## [[1]]

## [1] "a" "b"

##

## [[2]]

## [1] "A" "B" "C"

Important Internally, elements in an array are stored in the column-major (Fortran)
order:

as.numeric(A) # drop all attributes to reveal the underlying numeric vector
## [1] 123456

Setting byrow=TRUE in a call to the matrix function only affects the order in which this
constructor reads a given source vector, not the resulting column/row-majorness.

(B <- matrix(1:6, ncol=3, byrow=TRUE))
w# [,1] [,2] [,3]

## [1,] 1 2 3

## [2,] 4 5 6

as.numeric(B)

## [1] 142536

The two said special attributes can be modified through the replacement functions

! See Section 10.1. Interestingly, calling unclass on a matrix has no effect.
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‘dim<-" and “dimnames<-" (and, of course, “attr<-" as well). In particular, changing
dimdoes not alter the underlying atomic vector. It only affects how other functions, in-
cluding the corresponding print method, interpret their placement on a virtual grid:

“dim<- (A, c(3, 2)) # not the same as the transpose of ‘A"
## [,1] [,2]
## [1,] 1 4
#[2,] 2 5
## [3,] 3 6

We obtained a different view of the same flat data vector. Also, the dimnames attribute
was dropped because its size became incompatible with the newly requested dimen-
sionality.

Exercise 11.5 Study the source code of the nrow, NROW, ncol, NCOL, rownames, row. names,
and colnames functions.

Interestingly, for one-dimensional arrays, the names function returns a reasonable
value (based on the dimnames attribute, which is a list with one character vector), des-
pite the names attribute’s not being set.

What is more, the dimnames attribute itself can be named:

names(dimnames(A)) <- c("ROWS", "COLUMNS")
print(A)

## COLUMNS

## ROWS A B C

##H al35

## b246

It is still a numeric matrix, but its presentation has been slightly prettified.

Exercise11.6 outer appliesan elementwisely vectorised function on each pair of elements from
two vectors, forming a two-dimensional result grid. Implement it yourself based on two calls to
rep. Some examples:

outer(c(x=1, y=10, z=100), c(a=1, b=2, c=3, d=4), "*") # multiplication
#H a b ¢ d

#H X 1 2 3 4

##y 10 20 30 40

## z 100 200 300 400

outer(c("A", "B"), 1:8, paste, sep="-") # concatenate strings

## [,11 [,2] [,3] [.,4] [,5] [,6] [,7] [,8]

## [1,] "A-1" "A-2" "A-3" "A-4" "A-5" "A-6" "A-7" "A-8"

## [2,] "B-1" "B-2" "B-3" "B-4" "B-5" "B-6" "B-7" "B-8"

non

Exercise 11.7 Show how match(y, z) can be implemented using outer. Is its time and
memory complexity optimal, though?

Exercise11.8 table creates a contingency matrix/array that counts the number of unique ele-
ments or unique pairs of corresponding items from one or more vectors of equal lengths. Write its
one- and two-argument version based on tabulate. For example:
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tips <- read.csv(paste@("https://github.com/gagolews/teaching-data/raw/",
"master/other/tips.csv"), comment.char="#") # a data.frame (list)

table(tips[["day"]])

##

## Fri Sat Sun Thur

# 19 87 76 62

table(tips[["smoker"]], tips[["day"]])

##

##t Fri Sat Sun Thur

## No 4 45 57 45

## Yes 15 42 19 17

11.2 Arrayindexing

Array subsetting can be performed by means of the overloaded® [ method.

11.2.1 Arrays are built on basic vectors

Consider two example matrices:

(A <- matrix(1:12, byrow=TRUE, nrow=3))

w# [,1] [,2] [,3] [,4]

## [1,] 1 2 3 4

## [2,] 5 6 7 8

## [3,] 9 10 11 12

(B <- ‘dimnames<-'(A, list( # copy of ‘A° with ‘dimnames"’ set
c("a", "b", "c"), # row labels
c("x", "y", "z", "w") # column labels

)))

. OoxXx Yy zZ w

#al 2 3 4

# b5 6 7 8

## c 9 10 11 12

Subsetting based on one indexer (asin Chapter 5) will refer to the underlying flat vector.
For instance:

Al6]
## [1] 10

It is the element in the third row, second column. Recall that values are stored in the
column-major order.

2 Hidden deeply at the C language level; see help("[").
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11.2.2  Selecting individual elements

Our example 3 x 4 real matrix A € R34 is like:

a11 412 413 414 1 2 3 4
A= ay; ayp (3 a4 |=|5 6 7 8
43,1 432 433 434 9 10 11 12

Matrix elements are aligned in a two-dimensional grid. Hence, we can pinpoint a cell
using two indexes. In mathematical notation, 4; ; refers to the i-th row and the j-th
column. Similarly in R:

A[3, 2] # the third row, the second column
## [1] 10

B["c", "y"] # using dimnames == B[3, 2]

## [1] 10

11.2.3 Selecting rows and columns

Some textbooks, and we are fond of this notation here as well, mark with a; . a vector
that consists of all the elements in the i-th row and with a_ ; allitems in the j- th column.
In R, this corresponds to one of the indexers being left out.

A[3, ] # the third row

## [1] 9 10 11 12

A[, 2] # the second column
## [1] 2 6 10

B["c", 1 # or B[3, ]

#H Xy zZ w

# 9 10 11 12

B[, "y"]1 # or B[, 2]

# a b c

# 2 6 10

Let’s stress that A[1], A[1, 1,and A[, 1] have different meanings. Also, we see that
the results’ dimnames are adjusted accordingly; see also unname, which can take care of
them once and for all.

Exercise11.9 Use duplicated to remove repeating rows in a given numeric matrix (see also
unique).

11.2.4 Dropping dimensions

Extracting an individual element or a single row/column from a matrix brings about
an atomic vector. If the resulting object’s dim attribute consists of 1s only, it will be
removed whatsoever; see also the drop function which removes the dimensions with
only one level.

In order to obtain proper row and column vectors, we can request the preservation of
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the dimensionality of the output object (and, more precisely, the length of dim). This
can be done by passing drop=FALSE to "[".

A[1, 2, drop=FALSE] # the first row, second column
## [,1]

## [1,] 2

A[1, , drop=FALSE] # the first row

## [,1] [.2] [,3] [,4]

## [1,] 1 2 3 4

A[ , 2, drop=FALSE] # the second column

## [,1]
## [1,] 2
## [2,] 6
## [3,] 10

Important Unfortunately, the drop argument defaults to TRUE. Many bugs could be
avoided otherwise, primarily when the indexers are generated programmatically.

Note For list-based matrices, we can also use a multi-argument version of "[[* to
extract the individual elements.

C <- matrix(list(1, 11:12, 21:23, 31:34), nrow=2)

C[1, 2] # for ‘[, input type is the same as the output type, hence a list
## [[1]]

## [1] 21 22 23

C[1, 2, drop=FALSE]

## [,1]

## [1,] integer, 3

C[[1, 2]] # extract

## [1] 21 22 23

11.2.5 Selecting submatrices

Indexing based on two vectors, both of length two or more, extracts a sub-block of a
given matrix.

A[1:2, c(1, 2, 4)] # rows 1 and 2, columns 1, 2, and 4
## [,11 [,2] [,3]

## [1,] 1 2 4

## [2,] 5 6 8

B[c("a", "b"), -3] # some rows, omit the third column
#oXxyw

#ta l24

#4 b 56 8
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Note again that we have drop=TRUE by default, which affects the operator’s behaviour
if one of the indexers is a scalar.

Alc(1, 3), 3]
## [1] 3 11
Alc(1, 3), 3, drop=FALSE]
## [,1]
## [1,] 3
w# [2,] 11

Exercise11.10 Define the split method for the matrix class that returns a list of n matrices
when given a matrix with n rows and an object of the class factor of length n (or a list of such
objects). For example:

split.matrix <- ...to.do...

A <- matrix(1:12, nrow=3) # matrix whose rows are to be split
s <- factor(c("a", "b", "a")) # determines a grouping of rows
split(A, s)

## Sa

## [1] [,2] [,3] [,4]

## [1,] 1 4 7 10

##[2,] 3 6 9 12

##

## Sb

w# [,1] [,2] [,3] [,4]

# [1,] 2 5 8 11

11.2.6 Selecting elements based on logical vectors

Logical vectors can also be used as indexers, with consequences that are not hard to
guess:

A[c(TRUE, FALSE, TRUE), -1] # select 1st and 3rd row, omit 1st column

## [,1] [,2] [,3]

## [1,] 4 7 10

## [2,] 6 9 12

B[B[, "x"]>1 & B[, "x"]<=9, ] # all rows where x's contents are in (1, 9]
# Xy zZ w

#bs5 6 7 8

## c 9 10 11 12

A[2, colMeans(A)>6, drop=FALSE] # 2nd row and the columns whose means > 6
## [,1] [,2]

#[1,] 8 11

Note Section 11.3 notes that comparisons involving matrices are performed in an ele-
mentwise manner. For example:



A>7
##

L1 [,2] [,3] [,4]
## [1,] FALSE FALSE FALSE TRUE
## [2,] FALSE FALSE TRUE TRUE
## [3,] FALSE FALSE TRUE TRUE
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Such logical matrices can be used to subset other matrices of the same size. This kind

of indexing always gives rise to a (flat) vector:

A[A>7]

## [1] 8 9 10 11 12

It is nothing else than the single-indexer subsetting involving two flat vectors (a nu-
meric and a logical one). The dim attributes are not considered here.

Exercise 11.11 Implement your versions of max. col, lower . tri, and upper. tri.

11.2.7 Selecting based on two-column numeric matrices

We can also index a matrix A by a two-column matrix of positive integers I. For in-

stance:

(I <- cbind(

c(li 3} 21 1) 2))
c(2, 3, 2, 2, 4)

))
i

## [1,]
# [2,]
## [3,]
## [4,]
## [5,]

Now A[I] gives easy access to:
« A[ I[1, 1], I[1, 2] 1,
« A[ I[2, 1], I[2, 2] 1],
« A[ I[3, 1], I[3, 2] 1,

[,1] [,2]
1 2
3 3
2 2
12
2 4

and so forth. In other words, each row of I gives the coordinates of the elements to

extract. The result is always a flat vector.

A[I]

## [1] 4 9 5 4 11

Thisisexactly A[1, 2], A[3, 31, A[2, 2], A[1, 2], A[2, 4].
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Note which can also return a list of index matrices:

which(A>7, arr.ind=TRUE)

#H row col
## [1,] 2 3
# [2,] 3 3
## [3,] 1 4
## [4,] 2 4
## [5,] 3 4

Moreover, arrayInd converts flat indexes to multidimensional ones.

Exercise 11.12 Implement yourversion of arrayInd and a function performing the inverse op-
evation.

Exercise 11.13 Write your version of diag.

11.2.8 Higher-dimensional arrays

For d-dimensional arrays, indexing can involve up to d indexes. It is particularly valu-
able for arrays with the dimnames attribute set representing contingency tables over a
Cartesian product of multiple factors. The datasets: : Titanic object is an exemplary
four-dimensional table:

str(dimnames(Titanic)) # for reference (note that dimnames are named)

## List of 4

## S Class : chr [1:4] "1st" "2nd" "3rd" "Crew"
#4 S Sex 2 chr [1:2] "Male" "Female"

## S Age :chr [1:2] "Child" "Adult"

## S Survived: chr [1:2] "No" "Yes"

Here is the number of adult male crew members who survived the accident:

Titanic["Crew", "Male", "Adult", "Yes"]
## [1] 192

Moreover, let’s fetch a slice corresponding to adults travelling in the first class:

Titanic["1st", , "Adult", ]
# Survived
## Sex No Yes
##  Male 118 57
#4  Female 4 140

Exercise11.14 Check if the above four-dimensional array can be indexed using matrices with
four columns.
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11.2.9 Replacing elements

Generally, subsetting drops all attributes except names, dim, and dimnames (unless it
does not make sense otherwise). The replacement variant of the index operator modi-
fies vector values but generally preserves all the attributes. This enables transforming
matrix elements like:

B[B<10] <- A[B<10]”2 # ‘A’ has no ‘dimnames' set
print(B)

#oox y z w

## a 1 16 49 100

#4 b 4 25 64 121

## c 9 10 11 12

B[] <- rep(seq_len(NROW(B)), NCOL(B)) # NOT the same as B <- ...
print(B) # ‘dim' and ‘dimnames’ were preserved
#OoXyzZw

##al111

#b2222

## c 3333

Exercise 11.15 Given a character matrix with entities that can be interpreted as numbers like:

(X <- rbind(x=c(a="1", b="2"), y=c("3", "4")))

## a b
s x 117 "o
w5y 3" 4"

convert it to a numeric matrix with a single line of code. Preserve all attributes.

11.3 Common operations
11.3.1 Matrix transpose

The matrix transpose, mathematically denoted by AT, is available via a call to t:

(A <- matrix(1:6, byrow=TRUE, nrow=2))

## [,1] [,2] [,3]

## [1,] 1 2 3

## [2,] 4 5 6

t(A)

## [,1] [,2]

## [1,] 1 4

w[2,] 2 5

# [3,] 3 6

Hence, if B = AT, then it is a matrix such that b;; = aj;. In other words, in the
transposed matrix, rows become columns, and columns become rows.
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For higher-dimensional arrays, a generalised transpose can be obtained through
aperm (try permuting the dimensions of Titanic). Also, the conjugate transpose of
a complex matrix A is done via Conj(t(A)).

11.3.2 Vectorised mathematical functions

Vectorised functions such as sqrt, abs, round, log, exp, cos, sin, etc., operate on each
array element’.

A <- matrix(1/(1:6), nrow=2)

round(A, 2) # rounds every element in A
## Lodll U2l o8

## [1,] 1.0 0.33 0.20

# [2,] 0.5 0.25 0.17

Exercise 11.16 Using a single call to matplot, which allows the y argument to be a matrix,
draw a plot of sin(x), cos(x), | sin(x)|, and | cos(x)| forx € [—27t, 677]; see Section 13.3 for
more details.

11.3.3 Aggregating rows and columns

When we call an aggregation function on an array, it will reduce all elements to a single
number:

(A <- matrix(1:12, byrow=TRUE, nrow=3))
## [,1] [.2] [,3] [.4]

w# [1,] 1 2 3 4

## [2,] 5 6 7 8

## [3,] 9 160 11 12

mean(A)

## [1] 6.5

The apply function may be used to summarise individual rows or columns in a matrix:

. apply(A, 1, f)appliesa given function f on each row of a matrix A (over the first
axis),

. apply(A, 2, f)applies f on each column of A (over the second axis).

For instance:

apply(A, 1, mean) # synonym: rowMeans(A)
## [1] 2.5 6.5 10.5

apply(A, 2, mean) # synonym: colMeans(A)
## [1] 56 7 8

The function being applied does not have to return a single number:

3 They are simply applied on each element of the underlying flat vector. Section 5.5 mentioned that unary
functions preserve all attributes of their inputs, hence also dim and dimnames.
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apply(A, 2, range) # min and max

## [1] [,2] [,3] [,4]

## [1,] 1 2 3 4

## [2,] 9 10 11 12

apply(A, 1, function(row) c(Min=min(row), Mean=mean(row), Max=max(row)))
w# [,1] [,2] [,3]

## Min 1.0 5.0 9.0

## Mean 2.5 6.5 10.5

## Max 4.0 8.0 12.0

Take note of the columnwise order of the output values. Moreover, apply also works
on higher-dimensional arrays:

apply(Titanic, 1, mean) # over the first axis, "Class" (dimnames works too)
## Ist 2nd 3rd Crew

##  40.625 35.625 88.250 110.625

apply(Titanic, c(1, 3), mean) # over c("Class", "Age")

## Age

## Class Child Adult

## 1st 1.50 79.75

## 2nd  6.00 65.25

## 3rd 19.75 156.75

##  Crew 0.00 221.25

11.3.4 Binary operators

In Section 5.5, we stated that binary elementwise operations, such as addition or mul-
tiplication, preserve the attributes of the longer input or both (with the first argument
preferred to the second) if they are of equal sizes. Taking into account that:

- anarray is simply a flat vector equipped with the dim attribute, and
- we refer to the respective default methods when applying binary operators,

we can deduce how "+, “<=", &, etc. behave in several different contexts.

Array-array. First, let's note what happens when we operate on two arrays of identical
dimensionalities.

(A <- rbind(c(1, 10, 100), c(-1, -10, -100)))
## [,11 [,2] [,3]

## [1,] 1 10 100

## [2,] -1 -10 -100

(B <- matrix(1:6, byrow=TRUE, nrow=2))

## [,11 [,2] [,3]

## [1,] 1 2 3

## [2,] 4 5 6

A + B # elementwise addition

## Lodl] L2l (o8]

(continues on next page)
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(continued from previous page)
## [1,] 2 12 103
## [2,] 3 -5 -94
A * B # elementwise multiplication (not: algebraic matrix multiply)
## (.1 [,2] [,3]
#[1,] 1 20 300
# [2,] -4 -50 -600

They are simply the addition and multiplication of the corresponding elements of two
given matrices.

Array-scalar. Second, we can apply matrix-scalar operations:

(-1)*B

## [,1] [,2] [,3]

## [1,] -1 -2 -3

## [2,] -4 -5 -6

AN2

## [,1] [,2] [,3]
## [1,] 1 100 10000
## [2,] 1 100 10000

They multiplied each element in B by -1 and squared every element in A, respectively.
The behaviour of relational operators is of course similar:

A>=18&A <= 100

## [,1] [,2] [,3]
## [1,] TRUE TRUE TRUE
## [2,] FALSE FALSE FALSE

Array-vector. Next, based on the recycling rule and the fact that matrix elements are
ordered columnwisely, we have that:

B * c(10, 100)

## [,1] [,2] [,3]
## [1,] 10 20 30
## [2,] 400 500 600

It multiplied every element in the first row by 10 and each element in the second row
by 100. If we wish to multiply each element in the first, second, ..., etc. column by the
first, second, ..., etc. value in a vector, we should not call:

B * c(1, 100, 1000)

## [,1] [,2] [,3]
## [1,] 1 2000 300
## [2,] 400 5 6000

but rather:
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t(t(B) * c(1, 100, 1000))
## [,1] [,2] [,3]
## [1,] 1 200 3000
## [2,] 4 500 6000

or:

t(apply(B, 1, **', c(1, 100, 1000)))
## [,1] [,2] [,3]
## [1,] 1 200 3000
## [2,] 4 500 6000

Exercise 11.17 Write a function that standardises the values in each column of a given matrix:
for all elements in each column, subtract their mean and then divide them by the standard devi-
ation. Try to implement it in a few different ways, including via a call to apply, sweep, scale,
or based solely on arithmetic operators.

Note Some sanity checks are done on the dim attributes, so not every configuration
is possible. Notice some peculiarities:

A+ t(B) # ‘dim’ equal to c(2, 3) vs c(3, 2)

## Error in A + t(B): non-conformable arrays

A * cbind(1, 10, 100) # this is too good to be true

## Error in A * cbind(1, 10, 100): non-conformable arrays

A * rbind(1, 10) # but A * c(1, 10) works...

## Error in A * rbind(1, 10): non-conformable arrays

A+ 1:12 # 'A° has six elements

## Error: dims [product 6] do not match the length of object [12]
A + 1:5 # partial recycling is okay

## Warning in A + 1:5: longer object length is not a multiple of shorter
#H object length

## [,1] [,2] [,3]

## [1,] 2 13 105

#[2,] 1 -6 -99

11.4 Numerical matrix algebra (*)

Many data analysis and machine learning algorithms, in their essence, involve rather
straightforward matrix algebra and numerical mathematics. Suffice it to say that any-
one serious about data science and scientific computing should learn the necessary
theory; see, for example, [32] and [31].

R is a convenient interface to the stable and well-tested algorithms from, amongst
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others, BLAS* and LAPACK. Below we mention a few of them. External packages imple-
ment hundreds of algorithms tackling differential equations, constrained and uncon-
strained optimisation, etc.; CRAN Task Views® provide a good overview.

11.4.1 Matrix multiplication

*** performs elementwise multiplication. For what we call the (algebraic) matrix mul-
tiplication, we use the "%*%" operator. It can only be performed on two matrices of
compatible sizes: the number of columns in the left matrix must match the number of
rows in the right operand. Given A € R and B € RP*", their multiply is a mat-
rix C = AB € R™" such that; ; is the dot product of the i-th row in A and the j-th
column in B:

P
Gy =, b= by,
k=1

fori=1,...,nandj =1,...,m. For instance:

(A <- rbind(c(0, 1, 3), c(-1, 1, -2)))
w# [,1] [,2] [,3]

## [1,] 0 1 3

## [2,] -1 1 =g

(B <- rbind(c(3, -1), c(1, 2), c(6, 1)))
## [,11 [,2]

## [1,] 3 -1

## [2,] 1 2

## [3,] 6 1

A %*% B

w# [,1] [,2]

## [1,] 19 5

## [2,] -14 1

Note When applying ‘%*%" on one or more flat vectors, their dimensionality will be
promoted automatically to make the operation possible. However, c(a, b) %*% c(c,
d) gives a scalarac + bd, and not a 2 x 2 matrix.

Further, crossprod(A, B) yields ATB and tcrossprod(A, B) determines ABT more
efficiently than relying on *%*%" . We can omit the second argument and get AT A and
AAT, respectively.

crossprod(c(2, 1)) # Euclidean norm squared
## [,1]
## [1,] 5

(continues on next page)

4 (*) We can select the underlying implementation of BLAS at R’s compile time; see Section A.3 of [68].
Some of them are faster than others.
5 https://cran.r-project.org/web/views
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(continued from previous page)
crossprod(c(2, 1), c(-1, 2)) # dot product of two vectors
## [,1]
## [1,] 0
crossprod(A) # same as t(A) %*% A, i.e., dot products of all column pairs
## [,1] [,2] [,3]
## [1,] S
w# [2,] -1 2 1
## [3,] 2 1 13

Recall that if the dot product of two vectors equals 0, we say that they are orthogonal
(perpendicular).

Exercise 11.18 (*) Write your versions of cov and cor: functions to compute the covariance and
correlation matrices. Make use of the fact that the former can be determined with crossprod
based on a centred version of an input matrix.

11.4.2  Solving systems of linear equations

The solve function can be used to determine the solution to m systems of n linear
equations of the form AX = B, where A € R™" and X,B € R™ (via the LU
decomposition with partial pivoting and row interchanges).

11.4.3 Norms and metrics

Given an n x m matrix A, calling norm(A, "1"), norm(A, "2"), and norm(A, "I"),
we can compute the operator norms:

n
A, = max;—1, .m Zi:l |111',j|/

AX||
1A, = 01(A) = Supgcpm
Al

m
max;_q, . n D=1 i,

where o gives the largest singular value (see below). Also, passing "F" as the second

argument yields the Frobenius norm, ||Allp = ,/Z?:l Z]nil al.zj, and "M" computes
the maximum norm, ||Al|y; = max =L la; ;1.

j=1,..,m
If A is a column vector, then ||A|r and ||All, are equivalent. They are referred to as
the Euclidean norm. Moreover, ||Ally; = ||All; gives the supremum norm and ||A|ly
outputs the Manhattan (taxicab) one.

Exercise11.19 Givenannxmmatrix A, normalise each column so that it becomes a unitvector,
i.e., whose Euclidean norm equals 1.

Further, dist determines all pairwise distances between a set of 1 vectors in R™ , writ-
ten as an 1 x m matrix. For example, let’s consider three vectors in R2:

(X <- rbind(c(1, 1), c(1, -2), c(0, 0)))
(continues on next page)
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(continued from previous page)

## [,1] [,2]

w# [1,] 1 1

## [2,] 1 -2

## [3,] 0 0]

as.matrix(dist(X, "euclidean"))

#H 1 2 3

## 1 0.0000 3.0000 1.4142

## 2 3.0000 0.0000 2.2361

## 3 1.4142 2.2361 0.0000

Thus, the Euclidean distance between the first and the third vector, [x1 . — X3 [, =

\/(xLl —x31)2 + (X1 2 — X32)2, is roughly 1.4142. The maximum, Manhattan, and
Canberra distances/metrics are also available, amongst others.

Exercise 11.20 dist returns an object of the S3 class dist. Inspect how it is represented.

Example 11.21 adist implements a couple of string metrics. For example:

x <- c("spam", "bacon", "eggs", "spa", "spams", "legs")
names(x) <- x

(d <- adist(x))

#H spam bacon eggs spa spams legs

## spam %] 5 4 1 1
## bacon 5
## eggs 4
## spa 1
## spams 1
## legs 4

L L L L ©
N AN NS WK
AN DA W0
A SN AW
S AN AN UGN

It gave the Levenshtein distances between each pair of strings. In particular, we need two edit
operations (character insertions, deletions, or replacements) to turn "eggs " into "legs " (add 1
and remove g).

Example 11.22 Objects of the class dist can be used to find a hierarchical clustering of a data-
set. For example:

h <- hclust(as.dist(d), method="average") # see also: plot(h, labels=x)
cutree(h, 3)

## spam bacon eggs spa spams legs

## 1 2 3 1 1 3

It determined three clusters using the average linkage strategy ("legs " and "eggs " ave grouped

"non

together, "spam”, "spa", "spams" form another cluster, and "bacon" is a singleton).

11.4.4 Eigenvalues and eigenvectors

eigen returns a sequence of eigenvalues (Aq,...,A,) ordered nondecreasingly
w.r.t. |A;], and a matrix V whose columns define the corresponding eigenvectors
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(scaled to the unit length) of a given matrix X. By definition, for all j, we have Xv. ; =
AV
]

Example11.23 (*) Here are the eigenvalues and the corresponding eigenvectors of the matrix
defining the rotation in the xy-plane about the origin (0, 0) by the counterclockwise angle 7t/ 6:

(R <- rbind(c( cos(pi/6), sin(pi/6)),
c(-sin(pi/6), cos(pi/6))))

## [,1] [,2]

## [1,] 0.86603 0.50000

## [2,] -0.50000 0.86603

eigen(R)

## eigen() decomposition

## Svalues

## [1] 0.86603+0.51 0.86603-0.51

##

## Svectors

## [,1] [,2]

#4 [1,] 0.70711+0.000001 0.70711+0.000001

## [2,] 0.00000+0.707111 0.00000-0.707111

The complex eigenvalues are e=""/% and e’/ and we have |e=7/6"| = ¢7/6%| = 1.
Example11.24 (%) Consider a pseudorandom sample that we depict in Figure 11.1:

S <- rbind(c(sqrt(5), o),
c( 0, sqrt(2)))
mu <- c(10, -3)
Z <- matrix(rnorm(2000), ncol=2) # each row i1s a standard normal 2-vector
X <- t(t(Z %*% S %*% R)+mu) # scale, rotate, shift
plot(X, asp=1) # scatter plot
# draw principal axes:
A <- t(t(matrix(c(0,0, 1,0, 0,1), ncol=2, byrow=TRUE) %*% S %*% R)+mu)
arrows(A[1, 1], A[1, 2], A[-1, 1], A[-1, 2], col="red", lwd=1, length=0.1)

X was created by generating a vealisation of a two-dimensional standard normal vector Z, scal-
ing it by (\/g, \/§>, rotating by the counterclockwise angle 7t/6, and shifting by (10, —3),

which we denote by X = ZSR + pT. It follows a bivariate® normal distribution centred at
1 = (10, —3) and with the covariance matrix £ = (SR)T (SR):

crossprod(S %*% R) # covariance matrix

## [.1] [,2]

## [1,] 4.250 1.299

## [2,] 1.299 2.750

cov(X) # compare: sample covariance matrix (estimator)
## 1] [,2]

(continues on next page)

6 For drawing random samples from any multivariate distribution, refer to the theory of copulas, e.g.,
[50]. There are a few R packages on CRAN that implement the most popular models.
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X[,2]
4 -2

-6

o 5 10 15 20
X[1]

Figure 11.1. A sample from a bivariate normal distribution and its principal axes.

(continued from previous page)

## [1,] 4.1965 1.2386
## [2,] 1.2386 2.7973

Itis known that eigenvectors of the covariance matrix correspond to the principal components of
the original dataset. Furthermore, its eigenvalues give the variances explained by each of them.

eigen(cov(X))

## eigen() decomposition
## Svalues

## [1] 4.9195 2.0744

#H

## Svectors

##t [,1] [,2]
## [1,] -0.86366 0.50408
#4# [2,] -0.50408 -0.86366

It roughly corresponds to the principal directions (cos 71/6,sin7w/6) = (0.866,0.5) and
the thereto-orthogonal (— sin 7t /6, cos 71/6) = (—0.5,0.866) (up to an orientation inverse)
with the corresponding variances of 5 and 2, respectively (i.e., standard deviations of \/E and \/E).
Note that this method of performing principal component analysis, i.e., recreating the scale and
rotation transformation applied on Z based only on X, is not particularly numerically stable; see
Exercise 11.26 for an alternative.
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11.4.5 QR decomposition

Letn > m. We say that a real nxm matrix Q is orthogonal, whenever QT Q = I (identity
matrix). This is equivalent to Qs columns’ being orthogonal unit vectors. Also, if Q is
a square matrix, then Q7 = Q! ifand onlyif Q7Q = QQT =1

Let A be areal” n x m matrix with n > m. Then A = QR s its QR decomposition, if Q
is an orthogonal n x m matrix and R is an upper triangular m x m one. Note that such a
decomposition is not necessarily unique (without imposing additional requirements),
and that we speak here of a QR factorisation in the so-called narrow form.

The gr function returns an object of the S3 class qr from which we can extract the two
components of interest; see the qr.Q and qr.R functions.

Example11.25 Let X be an n x m data matrix, representing n points in R™, and a vector
y € R", wherey; gives the desired output corresponding to the inputx; .

Let 0 be a vector of m parameters. For fitting a linear modely = xT 0 = 01x1 + - + 0,,x,,,,
we can use the method of least squares, which minimises the quadratic loss function:

n

L0) =) (x]0- yl-)2 = I1X0 - yl5.

i=1
It might be shown that if we have the QR factorisation X = QR, then the optimal 0 is given by:
0 = (X"X)" XTy = R-1QTy,

which can conveniently be determined via a call to qr . coef.

In particular, we can fit a simple linear regression model y = ax + b = x" 0 by considering
x = (x,1)and @ = (a,b). Forinstance:

x <- cars[["speed"]]

y <- cars[["dist"]]

X1 <- cbind(x, 1) # the model is theta[1]*x + theta[2]*1
grX1 <- qr(X1)

(theta <- qgr.coef(qrXi, y))

## X

##  3.9324 -17.5791

plot(x, y, xlab="speed", ylab="dist") # scatter plot
abline(theta[2], theta[1], lty=2) # add the regression line

Thus, the fitted model isy = 3.9324x — 17.5791, see Figure 11.2.

The same approach is used by Im. fit, the workhorse behind the Um method that allows for spe-
cifying regression models using an R formula (which some readers might be familiar with; com-
pare Section 17.6).

7If A is a complex matrix, its QR decomposition spawns Q that is a unitary matrix.
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Figure 11.2. The cars dataset and the fitted regression line.

Im. fit(cbind(x, 1), y)[["coefficients"]] # also: Im(dist~speed, data=cars)
## X
## 3.9324 -17.5791

As an exercise, let us compute 0 = R=1QTy manually. We note that the one-argument version
of solve determines the inverse of a given matrix. Thus:

Q <- gr.Q(qrx1)

R <- gr.R(qrX1)

solve(R) %*% t(Q) %*% y # or solve(R) %*% crossprod(Q, y)
#H [,1]

## X 3.9324

## -17.5791

However, from the perspective of numerical stability, computing a matrix inverse is rarely a good
idea. Multiplying both sides of the equation & = R~'QTy by R, we get that it holds RO = b
withb = QTy. This is a triangular system of linear equations, which can be efficiently solved
using a designated routine:

backsolve(R, crossprod(Q, y))
## [,1]
## [1,] 3.9324
## [2,] -17.5791
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11.4.6 SVD decomposition

Given a real n x m matrix X, its singular value decomposition (SVD) is given by
X = UDVT, where U and V are orthogonal matrices of dimensions 7 x p and m x p,
respectively, and D is a p x p diagonal matrix with the singular values of X. It is usually
assumed thatd; ; > ... > dp,p > 0, p = min{n, m}, and then the SVD factorisation
is unique.

The corresponding svd function may be used to perform the principal component ana-
lysis®. Namely, if X = UDV7, then the columns of V give the eigenvectors of X”X.
The latter is precisely its scaled covariance matrix if we assume that X is centred at 0,

Example11.26 (*) Continuing Exercise 11.24 that features a rotated bivariate normal sample,
we can determine the principal divections by referring to the V component of the SVD decompos-
ition of a centred version of the data matrix:

Xc <- t(t(X)-colMeans(X)) # centred version of X
svd(Xc)[["v"]]

w# [,1] [,2]

## [1,] -0.86366 -0.50408

## [2,] -0.50408 0.86366

The SVD factorisation can also aid in determining the solution to linear regression. In
the previous section, we mentioned that the parameter vector # minimising |X60 —
yl is given by 6 = (XTX)_l XTy. The component X* = (XTX)_1 XT is called
the pseudoinverse of X for it holds that X*X = I. If the SVD decomposition is X =
UDVT, then X* = VD*UT, where D™ is the transposed version of D carrying the
reciprocals of its non-zero elements.

Example11.27 Let us go back to the simple linear regression model discussed in Exercise 11.25.
The same solution can be obtained by computing:

svdX1 <- svd(X1)

V <- svdXi[["v"]]

d <- svdX1[["d"]] # only the elements on the diagonal
U <- svdXi[["u"]]

V %*% diag(1/d) %*% t(U) %*% y

## [,1]

## [1,]  3.9324

## [2,] -17.5791

The book [8] gives many more applications of the SVD factorisation in data science.

11.4.7 Anote on the Matrix package

The Matrix package is perhaps the most widely known showcase of the S4 object ori-
entation (Section 10.5). It defines classes and methods for dense and sparse matrices,
including rectangular, symmetric, triangular, band, and diagonal ones. In particular,

8 See the source code of getS3method("prcomp", "default").
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large graph (e.g., in network sciences) or preference (e.g., in recommender systems)
data can be represented using sparse matrices, i.e., those with many zeroes. After all,
it is much more likely for two vertices in a network not to be joined by an edge than to
be connected. For example:

library("Matrix")

(D <- Diagonal(x=1:5))

## 5 x 5 diagonal matrix of class "ddiMatrix"
## [,1] [,2] [,3] [.4] [,5]

#[1,] 1 . . . .

# [2,] . 2 .

## [3,] . . 3 .

#[4,] . . . 4 .

## [5,] 5 5 5 5 5

We created a real diagonal matrix of size 5 x 5; 20 elements equal to zero are specially
marked. Moreover:

S <- as(D, "sparseMatrix")

S[1, 2] <- 7

S[4, 1] <- 42

print(S)

## 5 x 5 sparse Matrix of class "dgCMatrix"
##

w# [1,] 17 .

## [2,] . 2. .

#o[3,] .. 3..

## [4,] 42 . . 4 .

# (5] ... .5

It yielded a general sparse real matrix in the CSC (compressed, sparse, column-
orientated) format.

For more information on this package, see vignette(package="Matrix").

11.5 Exercises

Exercise 11.28 Let X be a matrix with dimnames set. For instance:

X <- matrix(1:12, byrow=TRUE, nrow=3) # example matrix
dimnames(X)[[2]] <- c("a", "b", "c", "d") # set column names
print(X)

##
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Explain the meaning of the following expressions involving matrix subsetting. Note that a few
of them are invalid.

X1, ],

X[, 3],

X[, 3, drop=FALSE],

X[3],

X[, "a"],

X[, c("a", "b", "c")],

X[, -2],

X[X[,1] > 5, ],

X[X[,1]>5, c("a", "b", "c")],
X[X[,1]>=5 & X[,1]<=10, ],
X[(X[,1]>=5 & X[,1]<=10, c("a", "b", "c")],
X[, c(1, "b", "d")].

Exercise 11.29 Assuming that X is an array, what is the difference between the following oper-
ations involving indexing?

X['1", Jvsx[1, ],

X[, "a", "b", "c"JvsX["a", "b", "c"JvsX[, c("a", "b", "c")]JvsX[c("a",
b, "c")],

X[1]vsX[, 1]vsX[1, ],

X[X>0] vs X[X>0, JvsX[, X>0],

X[X[, 1]>0]vsX[X[, 1]>0, JvsX[,X[,1]>0],

X[X[, 1]>5, X[1, J<10]vsX[X[1, ]>5, X[, 1]<10].

Exercise 11.30 Give a few ways to create a matrix like:

##

## [1,] 1
#[2,]
## [3,]
## [4,]
## [5,]
## [6,]

[,1] [,2]

NN N R R
W N R WIN R

and one like:
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## [,1] [,2] [,3]
## [1,] 1 1 1
## [2,] 1 1 2
## [3,] 1 2 1
## [4,] 1 2 2
## [5,] 1 3 1
## [6,] 1 3 2
# [7,] 2 1 1
## [8,] 2 1 2
## [9,] 2 2 1
## [10,] 2 2 2
## [11,] 2 3 1
## [12,] 2 3 2

Exercise 11.31 Fora given real n x m matrix X, encoding n input points in an m-dimensional
space, determine their bounding hyperrectangle, i.e., return a 2 x m matrix B with by ; =

minl‘ xl',]' and bz,] = max; xl',]'.

Exercise11.32 Lett be a vector of n integersin {1, ..., k}. Write a function to one-hot encode
each t;, i.e., return a o-1 matrix R of sizen x k such thatr; ; = 1ifand onlyifj = t; (sucha
representation is beneficial when solving, e.g., a multiclass classification problem by means ofk
binary classifiers). For example, ift = [1,2,3,2,4] andk = 4, then:

1 000
010
R=|0 01 0
01 00
0 001

Then, compose another function, but this time setting r; ; = 1ifand only ifj > t;, e.g.:

1111
0111
R=(0 011
01 11
00 01

Important Asusual, try to solve all the exercises without using explicit for and while
loops (provided that it is possible).

Exercise 11.33 Given ann X k real matrix, apply the softmax function on each row, i.e., map
(x; . .
Z:Xp—x’(’). Then, one-hot decode the values in each row, i.e., find the column number
1=1 €Xp(x; 1)
with the greatest value. Return a vector of size n with elementsin {1, ..., k}.

Exercise 11.34 Assume that ann x m real matrix X represents n points in R™. Write a func-
tion (but do not refer to dist) that determines the pairwise Euclidean distances between all the
n points and a giveny € R, Return a vector d of length n withd; = |x; . — yll,.
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Exercise11.35 Let X and Y be two real-valued matrices of sizes n x m and k x m, respectively,
representing two sets of points in R™. Return an integervectorr of length k such thatr; indicates
the index of the point in X with the least distance to (the closest to) the i-th pointin'Y, i.e., r; =
argmin; [IX; . =y .llp.

Exercise 11.36 Write your version of utils::combn.

Exercise 11.37 Time series are vectors or matrices of the class ts equipped with the tsp attrib-
ute, amongst others. Referto help("ts") for more information about how they are represented
and what S3 methods have been overloaded for them.

Exercise 11.38 (*) Numeric matrices can be stoved in a CSV file, amongst others. Usually, we
will be loading them via read. csv, which returns a data frame (see Chapter 12). For example:

X <- as.matrix(read.csv(
pasted(
"https://github.com/gagolews/teaching-data/",
"raw/master/marek/eurxxx-20200101-202006360.csv"
s

comment.char="#",

sep=",

J))

Write a function read_numeric_matrix(file_name, comment, sep) which isbased on
a few calls to scan instead. Use file to establish a file connection so that you can ignove the
comment lines and fetch the column names before reading the actual numeric values.

Exercise11.39 (*) Using readBin, readthe t 10k - images - idx3-ubyte. gz fromthe MNIST
database homepage® . The output object should be a three-dimensional, 10000 x 28 x 28 array
with real elements between 0 and 255. Refer to the File Formats section therein for more details.

Exercise11.40 (**) Circular convolution of discrete-valued multidimensional signals can be
performed by means of fft and matrix multiplication, whereas affine transformations require
only the latter. Apply various image transformations such as sharpening, shearing, and rotating
on the MNIST digits and plot the results using the image function.

Exercise 11.41 (*) Using constrOptim, find the minimum of the Constrained Betts Function
fxq,x) = 0.01x% -+ x% — 100 with linear constraints 2 < x; < 50, =50 < x, < 50, and
10x1 > 10 + x5. (**) Also, use solve. QP from the quadprog package to find the minimum.

9 https://web.archive.org/web/20211107114045/http:/[yann.lecun.com/exdb/mnist


https://web.archive.org/web/20211107114045/http://yann.lecun.com/exdb/mnist
https://web.archive.org/web/20211107114045/http://yann.lecun.com/exdb/mnist
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Data frames

Most matrices are built on top of atomic vectors. Hence, only items of the same type
can be arranged into rows and columns. On the other hand, data frames (objects of
the S3 class data. frame, first introduced in [14]) are collections of vectors of the same
lengths or matrices with identical row counts. Hence, they represent structured* data
of possibly heterogeneous types. For instance:

class(iris) # ‘iris’ is an example data frame

## [1] "data.frame"

iris[c(1, 51, 101), 1 # three chosen rows from ‘iris’

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species

## 1 5.1 3.5 1.4 0.2 setosa
## 51 7.0 3.2 4.7 1.4 versicolor
## 101 6.3 3.3 6.0 2.5 virginica

It is a mix of numeric and factor-type data.

The good news is that not only are data frames built on named lists (e.g., to extract a
column, we can refer to *[[ ), but also many functions consider them matrix-like (e.g.,
to select specific rows and columns, two indexes can be passed to *[ " like in the preced-
ing example). Hence, it will soon turn out that we already know a lot about performing
basic data wrangling activities, even if we do not fully realise it now.

12.1 Creating data frames
12.1.1 data.frameand as.data.frame

Most frequently, we create data frames based on a series of logical, numeric, or char-
acter vectors of identical lengths. In such a scenario, the data. frame function is par-
ticularly worthwhile.

(x <- data.frame(
a=c(TRUE, FALSE),

(continues on next page)

! We are already highly skilled in dealing with unstructured data and turning them into something that
is much more regular. The numerous functions, which we have covered in the first part of this book, allow
us to extract meaningful data from text, handle missing values, engineer features, and so forth.
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(continued from previous page)
b=1:6,
c=runif(6),
d=c("span", "span", "eggs")

))

# a c d
## 1 TRUE 1 0.77437 spam
## 2 FALSE 2 0.19722 spam

## 4 FALSE 4 0.20133 spam
## 5 TRUE 5 0.36124 spam

b
1
2
## 3 TRUE 3 0.97801 eggs
4
5
## 6 FALSE 6 0.74261 eggs

The shorter vectors were recycled. We can verify that the diverse column types were
retained and no coercion was made by calling:

str(x)

## 'data. frame': 6 obs. of 4 variables:
## S a: logl TRUE FALSE TRUE FALSE TRUE FALSE
## S b: int 123456

## S c: num 0.774 0.197 0.978 0.201 0.361 ...

non non

## S d: chr "spam" "spam" "eggs" "spam" ...

Important For many reasons (see, e.g., Section 12.1.5 and Section 12.1.6), we recom-
mend having the type of each column always checked, e.g., by calling the str function.

Many objects, such as matrices, can easily be coerced to data frames using particular
as.data. frame methods. Here is an example matrix:

(A <- matrix(1:6, nrow=3,
dimnames=11ist(

NULL, # no row labels
c("u", "v") # some column labels

)

## uv

## [1,] 14

## [2,] 25

# [3,] 36

Let’s convert it to a data frame:

as.data.frame(A) # as.data.frame.matrix
## U v
# 114
#2225
## 3 3 6
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Note that a matrix with no row labels is printed slightly differently than a data frame
with (as it will soon turn out) the default row.names.

Named lists are amongst other aspirants to a meaningful conversion. Consider an ex-
ample list where all elements are vectors of the same length:

(1 <- Map(
function(x) {
c(Min=min(x), Median=median(x), Mean=mean(x), Max=max(x))

Yo

split(iris[["Sepal.Length"]], iris[["Species"]])
))
## Ssetosa

## Min Median  Mean Max
## 4.300 5.000 5.006 5.800
##

## Sversicolor

## Min Median  Mean Max
#H 4.900 5.900 5.936 7.000
##

## Svirginica

# Min Median  Mean Max
## 4.900 6.500 6.588 7.900

Each list element will be turned into a separate column:

as.data.frame(l) # as.data.frame.list

# setosa versicolor virginica
## Min 4.300 4.900 4.900
## Median 5.000 5.900 6.500
## Mean 5.006 5.936 6.588
## Max 5.800 7.000 7.900

Sadly, as.data.frame is not particularly fond of lists of vectors of incompatible
lengths:

as.data.frame(list(a=1, b=11:12, c=21:23))
## Error in (function (..., row.names = NULL, check.rows = FALSE, check.names
## = TRUE, : arguments imply differing number of rows: 1, 2, 3

These vectors could have been recycled with a warning. But they were not.

as.data.frame(list(a=1:4, b=11:12, c=21)) # recycling rule okay
# a b c
# 1 1 11 21
#H 2 2 12 21
## 3 3 11 21
# 4 4 12 21

The method for the S3 class table (mentioned in Chapter 11) can be helpful as well.
Here is an example contingency table together with its unstacked (wide) version.
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(t <- table(mtcars[["vs"]], mtcars[["cyl"]1]))

##

## 4 6 8

## 0 1 314

## 110 4 0

as.data.frame(t) # as.data.frame.table; see the stringsAsFactors note below!
## Vari Var2 Freq

## 1 0 4 1
## 2 1 4 10
## 3 0 6 3
## 4 1 6 4
## 5 0 8 14
## 6 1 8 0

as.data.frame.table is so handy that we might want to call it directly on any array.
This way, we can convert it from the wide format to the long (tall) one; see Section 12.3.6
for more details.

Note The aforementioned method is based on expand.grid, which determines all
combinations of a given series of vectors.

expand.grid(1:2, c("a", "b", "c")) # see the stringsAsFactors note below!
## Var1l Var2

# 1 1 a
## 2 2 a
## 3 1 b
# 4 2 b
## 5 1 c
## 6 2 c

Overall, many classes of objects can be included? in a data frame. The popular choices
include Date, POSIXct, and factor.

Example 12.1 It is worth noting that format is used whilst printing the columns. Here is its
custom method for what we would like to call from now on the S3 class spam:

format.spam <- function(x, ...)
pasted("<", x, ">")

Testing data frame printing:

data. frame(
a=structure(c("lovely", "yummy", "delicious"), class="spam"),
b=factor(c("spam", "bacon", "spam")),
c=Sys.Date()+1:3
(continues on next page)

2 The attributes of objects stored as columns will generally be preserved (even if they are not displayed
by print; see str though).
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(continued from previous page)

)

## a b c
# o1 <lovely> spam 2026-01-08
#i 2 <yummy> bacon 2026-01-09

## 3 <delicious> spam 2026-01-10

12.1.2 cbind.data.frameand rbind.data.frame

There are data frame-specific versions of cbind or rbind (which we discussed
in the context of stacking matrices; Section 11.1.2). They are used quite eagerly:
help("cbind") states that they will be referred to if at least’® one of its arguments is a
data frame, and the other arguments are atomic vectors or lists (possibly with the dim
attribute). For example:

x <- iris[c(1, 51, 101), c("Sepal.Length", "Species")] # whatever
cbind(Yummy=c(TRUE, FALSE, TRUE), x)

#H Yummy Sepal.lLength Species
## 1 TRUE 5.1 setosa
## 51 FALSE 7.0 versicolor
## 101 TRUE 6.3 virginica

It added a new column to a data frame x. Moreover:

rbind(x, list(42, "virginica"))
## Sepal.Length Species

## 1 5.1 setosa
## 51 7.0 versicolor
## 101 6.3 virginica
#H 11 42.0 virginica

Itadded a new row. Note that columns are of different types. Hence, the values to row-
bind had to be provided as a list.

The generic vector used as a new row specifier can also be named. It can consist of
sequences of length greater than one that are given in any order:

rbind(x, list(
Species=c("virginica", "setosa"),
Sepal.Length=c(42, 7)

))

#H Sepal.Length Species
# 1 5.1 setosa
## 51 7.0 versicolor
## 101 6.3 virginica

(continues on next page)

3 This is a clear violation of the rule that an S3 generic dispatches on the type of only one argument
(usually: the first). It is an exception made for the sake of the questionable user convenience. Also, note that
there is no cbind.default method available: it is hardcoded at the C language level.
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(continued from previous page)

## 11 42.0 virginica
## 2 7.0 setosa

A direct referral to cbind.data. frame and rbind.data.frame will sometimes be ne-
cessary. Consider an example list of atomic vectors:

x <- list(a=1:3, b=11:13, c=21:23)

First, we call the generic, which dispatches to the default method.:

do.call(cbind, x)
#H a b c
## [1,] 1 11 21
w# [2,] 2 12 22
## [3,] 3 13 23

It created a matrix. If we want to ensure we garner a data frame, we need to write:

do.call(cbind.data.frame, x)
# a b c
## 1 1 11 21
#H 2 2 12 22
## 3 3 13 23

This is useful for fetching outputs from Map et al., as they are wrapped inside a list.
Here is a fancy way to obtain an illustrative list:

1 <- unname(Map(
function(x) list( # objects are of different types, hence a list
Sepal.Length=mean(x[["Sepal.Length"]]),
Sepal.Width=mean(x[["Sepal.Width"]]),
Species=x[["Species"]][1] # all are the same, so the first will do
Da

split(iris, iris[["Species"]]) # split.data.frame; see below

))

str(l)

## List of 3

#4 S :List of 3

## ..S Sepal.Length: num 5.01

##  ..S Sepal.width : num 3.43

##  ..S Species : Factor w/ 3 levels "setosa", "versicolor",..: 1
## S :List of 3

## ..S Sepal.Length: num 5.94

## ..S Sepal.Width : num 2.77

##  ..S Species : Factor w/ 3 levels "setosa","versicolor",..: 2
## S :List of 3

## ..S Sepal.Length: num 6.59

##  ..S Sepal.width : num 2.97

non

## ..S Species : Factor w/ 3 levels "setosa", "versicolor”,..: 3
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We may now turn it into a data frame by calling:

do.call(rbind.data.frame, 1)
##  Sepal.length Sepal.Width Species

## 1 5.006 3.428 setosa
#ht 2 5.936 2.770 versicolor
## 3 6.588 2.974 virginica

On the other hand, do.call(rbind, 1) does not return an amiable object type:

do.call(rbind, 1)

## Sepal.lLength Sepal.Width Species

## [1,] 5.006 3.428 setosa

#4 [2,] 5.936 2.77 versicolor
## [3,] 6.588 2.974 virginica

Despite the pretty face, it is a matrix... over a list:

str(do.call(rbind, 1))

## List of 9

## S : num 5.01

#4 S : num 5.94

#4 S : num 6.59

## S : num 3.43

# S :onum 2.77

# S : onum 2.97

## S : Factor w/ 3 levels "setosa", "versicolor",..: 1
## S : Factor w/ 3 levels "setosa", "versicolor",..: 2
#4 S : Factor w/ 3 levels "setosa", "versicolor"”,..: 3
## - attr(*, "dim")= int [1:2] 3 3

## - attr(*, "dimnames")=List of 2

#H .S o NULL

## ..S : chr [1:3] "Sepal.Length" "Sepal.Width" "Species"

12.1.3 Reading data frames

Structured data can be imported from external sources, such as CSV/TSV (comma/tab-
separated values) or HDFs files, relational databases supporting SQL (see Sec-
tion 12.1.4), web APIs (e.g., through the curl and jsonlite packages), spreadsheets
[67], and so on. In particular, read.csv and the like fetch data from plain text files
consisting of records, where commas, semicolons, tabs, etc. separate the fields. For
instance:

x <- data.frame(a=runif(3), b=c(TRUE, FALSE, TRUE)) # example data frame
f <- tempfile() # temporary file name
write.csv(x, f, row.names=FALSE) # export

It created a CSV file that looks like:
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cat(readLines(f), sep="\n") # print file contents
## "a","b"

## 0.287577520124614, TRUE

## 0.788305135443807, FALSE

## 0.4089769218117, TRUE

which can be read by calling:

read.csv(f)

# a b
## 1 0.28758 TRUE
## 2 0.78831 FALSE
## 3 0.40898 TRUE

Exercise12.2 Check out help("read. table") for a long list of tunable parameters, espe-
cially: sep, dec, quote, header, comment. char, and row. names. Further, note that reading
from compressed files and interned URLs is supported directly.

Important CSV is the most portable and user-friendly format for exchanging matrix-
like objects between different programs and computing languages (Python, Julia, Lib-
reOffice Calc, etc.). Such files can be opened in any text editor.

Also, asmentioned in Section 8.3.5, we can process data frames chunk by chunk. This is
beneficial especially when data do not fit into memory (compare the nrows argument
toread.csv).

12.1.4 Interfacing relational databases and querying with SQL (%)

The DBI package provides a universal interface for many database management sys-
tems whose drivers are implemented in add-ons such as RSQLite, RMariaDB, RPost-
gresqQL, etc., or, more generally, RODBC or odbc. For more details, see Section 4 of [67].

Example12.3 Let’s play with an in-memory (volatile) instance of an SQLite database.
library("DBI")

con <- dbConnect(RSQLite::SQLite(), ":memory:")

It veturned an object representing a database connection which we can refer to in further commu-
nication. An easy way to create a database table is to call:

dbWriteTable(con, "mtcars", mtcars) # ‘mtcars' 1s a toy data frame
Alternatively, we could have called dbExecute to send SQL statements such as “CREATE TABLE
... ”followed by a series of “INSERT INTO ...”. We can now retrieve some data:

dbGetQuery(con, "
SELECT cyl, vs, AVG(mpg) AS mpg_ave, AVG(hp) AS hp_ave
(continues on next page)
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(continued from previous page)
FROM mtcars
GROUP BY cyl, vs
")
## cyl vs mpg_ave hp_ave
#t 1 4 0 26.000 91.00

## 2 4 1 26.730 81.80
# 3 6 0 20.567 131.67
## 4 6 1 19.125 115.25
## 5 8 0 15.100 209.21

It gave us an ordinary R data frame. We can process it in the same fashion as any other object of
this kind.

At the end, the database connection must be closed.
dbDisconnect(con)
Exercise 12.4 Database passwords must never be stoved in plain text files, let alone in R scripts
in version-controlled repositories. Consider a few ways to fetch credentials programmatically:
- using environment variables (see help("Sys.getenv")),
- using the keyring package,

« calling system2 (Section 7.3.2) to retrieve it from the system keyring (e.g., the keyring
package for Python provides a platform-independent command-line utility).

12.1.5 Strings as factors?

Some functions related to data frames automatically convert character vectors to
factors. This behaviour is frequently controlled by an argument named stringsAs-
Factors. It can be particularly problematic because, when printed, factor and charac-
ter columns look identical:

(x <- data.frame(a=factor(c("U", "V")), b=c("U", "V")))
#  ab
# 1 U U
#2VV

We recall from Section 10.3.2 that factors can be nasty. For example, passing factors as
indexers in "[* or converting them with as.numeric might give counterintuitive res-
ults. Also, when we want to extend factors by previously unobserved data, new levels
must be added manually. This can cause unexpected behaviour in contexts such as:

rbind(x, c("N', "N"))

## Warning in ‘[<-.factor ( *tmp*°, ri, value = "W"): invalid factor level,
## NA generated

## ab

## 1 uu

(continues on next page)
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(continued from previous page)
## 2 /"
## 3 <NA> W

Therefore, always having the data types checked is a praiseworthy habit. For instance:

str(x)

## 'data. frame': 2 obs. of 2 variables:
## S a: Factor w/ 2 levels "U","V": 1 2

## S b: chr "U" "V"

Before R 4.0, certain functions, including data.frame and read.csv had the string-
sAsFactors argument defaulting to TRUE. It is no longer the case. However, excep-
tions to this rule still exist, e.g., including as.data.frame.table and expand.grid.
Besides, some example data frames continue to enjoy factor-typed columns, e.g.:

class(iris[["Species"]])
## [1] "factor"

In particular, adding a new flower variety might be oblique:

iris2 <- iris[c(1, 101), ] # example subset
rbind(iris2, c(6, 3, 3, 2, "croatica"))

## Warning in ‘[<-.factor (' *tmp*', ri, value = "croatica"): invalid factor
## level, NA generated

#h Sepal.lLength Sepal.Width Petal.lLength Petal.Width  Species

## 1 5.1 3.5 1.4 0.2 setosa

## 101 6.3 3.3 6 2.5 virginica

## 3 6 3 3 2 <NA>

Compare it to:

levels(iris2[["Species"]])[nlevels(iris2[["Species"]])+1] <- "croatica"
rbind(iris2, c(6, 3, 3, 2, "croatica"))
## Sepal.Length Sepal.Width Petal.lLength Petal.Width  Species

## 1 5.1 3.5 1.4 0.2 setosa
## 101 6.3 3.3 6 2.5 virginica
## 3 6 3 3 2 croatica

12.1.6 Internal representation

Objects of the S3 class data.frame are erected on lists of vectors of the same length
or matrices with identical row counts. Each list element defines a column or column
group. Apart from class, data frames must be equipped with the following special
attributes:

- names — a character vector (as usual in any named list) that gives the column labels,

. row.names — a character or integer vector with no duplicates nor missing values,
doing what is advertised.
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Therefore, a data frame can be created from scratch by calling, for example:

structure(
list(a=11:13, b=21:23), # sets the ‘names' attribute
row.names=1:3,
class="data.frame"

)

# a b

## 1 11 21

#H 2 12 22

## 3 13 23

Here is a data frame based on a list of length five, a matrix with five rows, and a nu-
meric vector with five items. We added some fancy row names on top:

structure(

1ist(
a=1ist(1, 1:2, 1:3, numeric(0), -(4:1)),
b=cbind(u=11:15, v=21:25),
c=runif(5)

Da

row.names=c("spam", "bacon", "eggs", "ham", "aubergine"),

class="data.frame"

)

## a b.u b.v c
## spam 1 11 21 0.28758
## bacon 1, 2 12 22 0.78831
## eggs 1, 2, 3 13 23 0.40898
## ham 14 24 0.88302

## aubergine -4, -3, -2, -1 15 25 0.94047

In general, the columns of the type 1ist can contain anything, e.g., other lists or R
functions. Including atomic vectors of varying lengths, just like above, permits us to
create something a la ragged arrays.

The issue with matrix entries, on the other hand, is that they appear as if they were
many columns. Still, as it will turn out in the sequel, they are often treated as a single
complex column, e.g., by the index operator (see Section 12.2). Therefore, from this
perspective, the aforementioned data frame has three columns, not four. Such com-
pound columns can be output by aggregate (see Section 12.3), amongst others. They
are valuable in certain contexts: the column groups can be easily accessed as a whole and
batch-processed in the same way.

Important Alas, data frames with list or matrix columns cannot be created with the
data.frame nor cbind functions. This might explain why they are less popular. This
behaviour is dictated by the underlying as . data. frame methods, which they both call.
As a curiosity, see help("I"), though.
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Exercise 12.5 Verify that if a data frame carries a matrix column, this matrix does not need to
have any column names (the second element of dimnames).

The names and row.names attributes are special in the sense of Section 4.4.3. In partic-
ular, they can be accessed or modified via the dedicated functions.

It is worth noting that row.names(df) always returns a character vector, even when
attr(df, "row.names") isinteger. Further, calling “row.names(df) <- NULL”will re-
set* this attribute to the most commonly desired case of consecutive natural numbers.
For example:

(x <- iris[c(1, 51, 101), ]) # comes with some sad row names
## Sepal.Length Sepal.Width Petal.lLength Petal.Width Species

## 1 5.1 3.5 1.4 0.2 setosa
## 51 7.0 3.2 4.7 1.4 versicolor
## 101 6.3 3.3 6.0 2.5 virginica

‘row.names<-"(x, NULL) # reset to seq_len(NROW(x))
##  Sepal.length Sepal.Width Petal.lLength Petal.Width Species

## 1 5.1 3.5 1.4 0.2 setosa
# 2 7.0 3.2 4.7 1.4 versicolor
#4 3 6.3 3.3 6.0 2.5 wvirginica

Exercise 12.6 Implement yourversion of expand. grid.

Exercise 12.7 Write a version of xtabs that does not rely on a formula interface (compare Sec-
tion 10.3.4). Allow three parameters: a data frame, the name of the “counts” column, and the
names of the cross-classifying factors. Hence, my_xtabs(x, "Freq", c("Var1", "Var2"))
should be equivalent to xtabs (Freq~Vari+Var2, x).

12.2 Dataframe subsetting
12.2.1 Data frames are lists

Adata frameis anamed list whose elements represent individual columns. Therefore’,
length yields the number of columns and names gives their respective labels.

Let’s play around with this data frame:

(x <- data.frame(
a=runif(6),

(continues on next page)

4'attr<-"(df, "row.names", value) does not run the same sanity checks as “row.names<-"(df,
value). For instance, it is easy to corrupt a data frame by setting too short a row. names attribute.

5 This is a strong word. This implication relies on an implicit assumption that the primitive functions
length and names have not been contaminated by treating data frames differently from named lists. Luckily,
thatisindeed not the case. Even though we have the index operators specially overloaded for the data. frame
class, they behave reasonably. As we will see, they support a mix of list- and matrix-like behaviours.
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(continued from previous page)
b=rnorm(6),
C=LETTERS[1:6],
d1=c(FALSE, TRUE, FALSE, NA, FALSE, NA),
d2=c(FALSE, TRUE, FALSE, TRUE, FALSE, TRUE)
))
## a b c d1 daz
## 1 0.287578 0.070508 A FALSE FALSE
## 2 0.788305 0.129288 B TRUE TRUE
## 3 0.408977 1.715065 C FALSE FALSE
## 4 0.883017 0.460916 D NA  TRUE
## 5 0.940467 -1.265061 E FALSE FALSE
## 6 0.045556 -0.686853 F NA  TRUE
typeof(x) # each data frame is a list
## [1] "list"
length(x) # the number of columns
## [1] 5
names(x)  # column labels
## [1] "a" "b" "c" "d1" "d2"

The one-argument versions of extract and index operators behave as expected. “[[*
fetches (looks inside) the contents of a given column:

x[["a"]1] # or x[[1]]
## [1] 0.287578 0.788305 0.408977 0.883017 0.940467 0.045556

[ returns a data frame (a list with extras):

x["a"] # or x[1]; a data frame with one column
## a

## 1 0.287578

## 2 0.788305

#4 3 0.408977

## 4 0.883017

## 5 0.940467

#4 6 0.045556

x[c(TRUE, TRUE, FALSE, TRUE, FALSE)]
## a b d1

#4 1 0.287578 0.070508 FALSE

## 2 0.788305 0.129288 TRUE

## 3 0.408977 1.715065 FALSE

#4 4 0.883017 0.460916 NA

## 5 0.940467 -1.265061 FALSE

## 6 0.045556 -0.686853 NA

Just like with lists, the replacement versions of these operators can add new columns
or modify existing ones.



262 Il DEEPER

(y <- head(x, 1)) # example data frame

## a b c d1 daz

## 1 0.28758 0.070508 A FALSE FALSE

y[["a"]] <- round(y[["a"]], 1) # replaces the column with new content
y[["b"]] <- NULL # removes the column, like, totally

y[["e"]] <- 10*y[["a"]]"2 # adds a new column at the end

print(y)

# ac d1 a2 e

## 1 0.3 A FALSE FALSE 0.9

A

Example 12.8 Some spam for thought to show how much we already know. Here are a few com-
mon scenarios involving indexing.

(y <- head(x, 1)) # example data frame
#H a b c d1 d2
## 1 0.28758 0.070508 A FALSE FALSE

Move the column a to the end:

ylunique(c(names(y), "a"), fromLast=TRUE)]
# b c d1 a2 a
## 1 0.070508 A FALSE FALSE 0.28758

Remove the columns a and c:

y[-match(c("a", "c"), names(y))] # or y[setdiff(names(y), c("a", "c"))]
## b d1 daz
## 1 0.070508 FALSE FALSE

Select all columns between a and c:

y[match("a", names(y)):match("c", names(y))]
#H a b c
## 1 0.28758 0.070508 A

Fetch the columns with names starting with d:

y[grep("~d", names(y), perl=TRUE)]
## d1 a2
## 1 FALSE FALSE

Change the name of column c to z:

names(y)[names(y) == "c"] <- "z"
print(y) # ‘names<-‘(y, ‘[<-‘(names(y), names(y) == "c", "z"))
##H a Bz d1 42

## 1 0.28758 0.070508 A FALSE FALSE

Change names: d2 to u and d1 to v:
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names(y)[match(c("d2", "d1"), names(y))] <- c("v", "u")
print(y)

#H a b z u v

## 1 0.28758 0.070508 A FALSE FALSE

Note Some users prefer the *$" operator over "[[*, but we do not. By default, the
former supports partial matching of column names which might be appealing when
R is used interactively. Nonetheless, it does not work on matrices nor it allows for
programmatically generated names. It is also trickier to use on not syntactically valid
labels; compare Section 9.3.1.

Exercise 12.9 Write a function rename that changes the names of columns based on a transla-
tion table given in a from=to fashion (we have already solved a similar exercise in Chapter 9).
For instance:

rename <- function(x, ...) ...to.do..
rename(head(x, 1), c="new c", a="new_a")
## new_a b new _c d1 a2

## 1 0.28758 0.070508 A FALSE FALSE

12.2.2 Data frames are matrix-like

Data frames can be considered “generalised” matrices. They store data of any kind
(possibly mixed) organised in a tabular fashion. A few functions mentioned in the pre-
vious chapter are overloaded for the data frame case. They include: dim (despite the
lack of the dim attribute), NROW, NCOL, and dimnames (which is, of course, based on
row.names and names). For example:

(x <- data.frame(
a=runif(6),
b=rnorm(6),
c=LETTERS[1:6],
d1=c(FALSE, TRUE, FALSE, NA, FALSE, NA),
d2=c(FALSE, TRUE, FALSE, TRUE, FALSE, TRUE)
))
# a b c d1 a2
## 1 0.287578 0.070508 A FALSE FALSE
## 2 0.788305 0.129288 B TRUE TRUE
## 3 0.408977 1.715065 C FALSE FALSE
## 4 0.883017 0.460916 D NA TRUE
## 5 0.940467 -1.265061 E FALSE FALSE
## 6 0.045556 -0.686853 F NA  TRUE
dim(x) # the number of rows and columns
## [1] 6 5
dimnames(x) # row and column labels
## [[1]]

(continues on next page)
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## [1] "1" "2 "3 gr vsn g
##

## [[2]]
## [1] "a" "' "c' "d1" "d2”

In addition to the list-like behaviour, which only allows for dealing with particular
columns or their groups, the *[* operator can also take two indexers:

x[1:2, ] # first two rows

##t a b c d1 dz

## 1 0.28758 0.070508 A FALSE FALSE

## 2 0.78831 0.129288 B TRUE TRUE

x[x[["a"]] >= 0.3 & x[["a"]] <= 0.8, -2] # or use x[, "a"]
## ac d1 dz

## 2 0.78831 B TRUE TRUE

## 3 0.40898 C FALSE FALSE

Recall the drop argument to “[* and its effects on matrix indexing (Section 11.2.4). In
the current case, its behaviour will be similar with regard to the operations on indi-
vidual columns:

x[, 1] # synonym: x[[1]] because drop=TRUE

## [1] 0.287578 0.788305 0.408977 0.883017 0.940467 0.045556
x[, 1, drop=FALSE] # synonym: x[1]

##H a

## 1 0.287578

## 2 0.788305

## 3 0.408977

## 4 0.883017

## 5 0.940467

## 6 0.045556

When we extract a single row and more than one column, drop does not apply. It is
because columns (unlike in matrices) can potentially be of different types:

x[1, 1:2] # two numeric columns but the result is still a numeric
## a b
# 1 0.28758 0.070508

However:

x[1, 1] # a single value

## [1] 0.28758

x[1, 1, drop=FALSE] # a data frame with one row and one column
## a

## 1 0.28758
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Note Once again, let’s take note of logical indexing in the presence of missing values:

x[x[["d1"]], ] # 'di’ is of the type logical

#H a b c di az

## 2 0.78831 0.12929 B TRUE TRUE

## NA NA NA <NA> NA NA

## NA. 1 NA NA <NA> NA NA
x[which(x[["d1"]]), 1 # ‘which' drops missing values
## a bc di a2

## 2 0.78831 0.12929 B TRUE TRUE

The default behaviour is consistent with many other R functions. It explicitly indic-
ates that something is missing. After all, when we select a “don’t know”, the result is
unknown as well. Regretfully, this comes with no warning. As we seldom check miss-
ing values in the outputs manually, our absent-mindedness can lead to code bugs.

By far, we might have already noted that the index operator adjusts (not: resets) the
row.names attribute. For instance:

(xs <- x[order(x[["a"]], decreasing=TRUE)[1:3], 1)
##t a b c d1 dz
## 5 0.94047 -1.26506 E FALSE FALSE
## 4 0.88302 0.46092 D NA  TRUE
## 2 0.78831 0.12929 B TRUE TRUE

It is a version of x comprised of the top three values in the a column. Indexing by
means of character vectors will refer to row.names and names:

xs["5", c("a", "b")]
## a b
## 5 0.94047 -1.2651

It is not the same as xs[5, c(
integer vector here.

a", "b")1], even though row.names is formally an

Regarding the replacement version of the two-indexer variant of the *[ " operator, it is
a flexible tool. It permits the new content to be a vector, a data frame, a list, or even a
matrix. Verifying this is left as an exercise.

Note Ifadataframe carries a matrix, to access a specific sub-column, we need to use
the index/extract operator twice:

(x <- aggregate(iris[1], iris[5], function(x) c(Min=min(x), Max=max(x))))

#H Species Sepal.Length.Min Sepal.lLength.Max
## 1 setosa 4.3 5.8
## 2 versicolor 4.9 7.0
## 3 virginica 4.9 7.9

(continues on next page)
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x[["Sepal.Length"]][, "Min"]
## [1] 4.3 4.9 4.9

In other words, neither x[["Sepal.Length.Min"]] nor x[, "Sepal.Length.Min"]
works.

Exercise 12.10 Write two replacement functions®. First, author set_row_names which re-
places the row. names of a data frame with the contents of a specific column. For example:

(x <- aggregate(iris[1], iris[5], mean)) # an example data frame

## Species Sepal.lLength
## 1 setosa 5.006
## 2 versicolor 5.936
## 3 virginica 6.588
set_row_names(x) <- "Species"
print(x)

## Sepal.Length
## setosa 5.006
## versicolor 5.936
## virginica 6.588

Second, implement reset_row_names which converts row. names to a standalone column of a
given name. For instance:

reset_row_names(x) <- "Type"

print(x)

##  Sepal.lLength Type
## 1 5.006 setosa
##t 2 5.936 versicolor
## 3 6.588 virginica

These two functions may be handy for they enable writing x[something, ] instead of
x[x[["column"]] %in% something, ].

12.3 Common operations

Below we review the most commonly applied operations related to data frame
wrangling. We have a few dedicated functions or methods overloaded for the data.
frame class. However, we have already mastered most skills to deal with such objects
effectively. Let’s repeat: data frames are just lists exhibiting matrix-like behaviour.

6 (*) Compare pandas.DataFrame.set_index and pandas.DataFrame.reset_index in Python.
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12.3.1 Ordering rows

Ordering rows in a data frame with respect to different criteria can be easily achieved
through the order function and the two-indexer version of [ *. For instance, here are
the six fastest cars from mtcars in terms of the time (in seconds) to complete a 402-
metre race:

mtcars6 <- mtcars[order(mtcars[["qsec"]])[1:6], c("gsec", "cyl", "gear")]
(mtcars6 <- ‘row.names<- ' (cbind(model=row.names(mtcars6), mtcars6), NULL))
## model gqsec cyl gear

## 1 Ford Pantera L 14.50 8
## 2 Maserati Bora 14.60
## 3 Camaro Z28 15.41
## 4  Ferrari Dino 15.50
## 5 Duster 360 15.84
##H 6 Mazda RX4 16.46

Oy o O ® @™
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order uses a stable sorting algorithm. Therefore, any sorting with respect to a differ-
ent criterion will not break the relative ordering of gsec in row groups with ties:

mtcars6[order(mtcars6[["cyl"]]), ]

## model qsec cyl gear
## 4  Ferrari Dino 15.50 6 5
## 6 Mazda RX4 16.46 6 4
## 1 Ford Pantera L 14.50 8 5
## 2 Maserati Bora 14.60 8 5
## 3 Camaro Z28 15.41 8 3
## 5 Duster 360 15.84 8 3

gsec is still increasing in each of the two cy1 groups.

Example 12.11 Notice the difference between ordering by cyl and gear:

mtcars6[order(mtcars6[["cyl"]], mtcarsé6[["gear"]]), ]
## model qsec cyl gear

##H 6 Mazda RX4 16.46 6

## 4  Ferrari Dino 15.50

## 3 Camaro Z28 15.41
## 5 Duster 360 15.84
## 1 Ford Pantera L 14.50
## 2 Maserati Bora 14.60

® © © © O
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vsgear and cyl:

mtcarsé6[order(mtcars6[["gear"]], mtcars6[["cyl"]]), ]

## model gqsec cyl gear
## 3 Camaro 228 15.41 8 3
## 5 Duster 360 15.84 8 3
## 6 Mazda RX4 16.46 6 4
## 4  Ferrari Dino 15.50 6 5

(continues on next page)
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## 1 Ford Pantera L 14.50 8 5
## 2 Maserati Bora 14.60 8 5

Note Mixing increasing and decreasing ordering is tricky as the decreasing argu-
ment to order currently does not accept multiple flags in all the contexts. Perhaps the
easiest way to change the ordering direction is to use the unary minus operator on the
column(s) to be sorted decreasingly.

mtcars6[order(mtcars6[["gear"]], -mtcars6[["cyl"]]), ]
## model gqsec cyl gear

## 3 Camaro Z28 15.41 8
## 5 Duster 360 15.84

## 6 Mazda RX4 16.46
## 1 Ford Pantera L 14.50
## 2 Maserati Bora 14.60
## 4  Ferrari Dino 15.50

N o © O ™
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For factor and character columns, xtfrm can convert them to sort keys first.

mtcars6[order(mtcars6[["cyl"]], -xtfrm(mtcars6[["model"]])), ]
#H model qsec cyl gear

## 6 Mazda RX4 16.46 6
## 4  Ferrari Dino 15.50
## 2 Maserati Bora 14.60
## 1 Ford Pantera L 14.50
## 5 Duster 360 15.84
## 3 Camaro Z28 15.41

® G © S O
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Both statements act like the unsupported decreasing=c(FALSE, TRUE).

Exercise 12.12 Write a method sort.data. frame that orders a data frame with respect to a
given set of columns.

sort.data. frame <- function(x, decreasing=FALSE, cols) ...to.do...
sort(mtcars6, cols=c("cyl", "model"))

# model qsec cyl gear

## 4  Ferrari Dino 15.50 6

## 6 Mazda RX4 16.46

## 3 Camaro Z28 15.41

## 5 Duster 360 15.84
## 1 Ford Pantera L 14.50
## 2 Maserati Bora 14.60

© ® ®® o O
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Unfortunately, that decreasing must be of length one and be placed as the second argument is
imposed by the sort S3 generic.
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12.3.2 Handling duplicated rows

duplicated, anyDuplicated, and unique have methods overloaded for the data.
frame class. They can be used to indicate, get rid of, or replace the repeating rows.

sum(duplicated(iris)) # how many duplicated rows are there?

## [1] 1

iris[duplicated(iris), ] # show the duplicated rows

## Sepal.Length Sepal.Width Petal.lLength Petal.Width  Species
#4143 5.8 2.7 5.1 1.9 virginica

12.3.3 Joining (merging) data frames

The merge function can perform the join operation that some readers might know from
SQL’. It matches the items in the columns that two given data frames somewhat share.
Then, it returns the combination of the corresponding rows.

Example 12.13 Two calls to merge could be used to match data on programmers (each identi-
fied by developer_1id and giving such details as their name, location, main skill, etc.) with
the information about the open-source projects (each identified by project_id and informing
us about its title, scope, website, and so forth) they ave engaged in (based on a third data frame
defining developer_idand project_idpairs).

As a simple illustration, consider two objects:

A <- data.frame(
u=c("bo", "b1", "b2", "b3"),
v=c("a0", "a1", "a2", "a3")

B <- data.frame(
v=c("a", "a2", "a2", "ad"),
w=c("c0", "c1", "c2", "c3")

The two common columns, i.e., storing data of similar nature (a-something strings),
are both named v.

First is the inner (natural) join, where we list only the matching pairs:

merge(A, B) # x=A, y=B, by="v", all.x=FALSE, all.y=FALSE
## vV ou w
## 1 a0 bO co
## 2 a2 b2 c1
## 3 a2 b2 c2

7 Join is the reverse operation to data normalisation from relational database theory. It reduces data re-
dundancy and increases their integrity. What data scientists need in data analysis, visualisation, and pro-
cessing activities is sometimes the opposite of what the art of data management focuses on, i.e., efficient
collection and storage of information. The readers are encouraged to learn about various normalisation
forms from, e.g., [17] or any other course covering this topic.
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The common column is included in the result only once. Next, the leff join guarantees
that all elements in the first data frame will be included in the result:

merge(A, B, all.x=TRUE) # by="v", all.y=FALSE
## vV ou w
#4 1 a0 bO cO
## 2 al bl <NA>
## 3 a2 b2 c1
#4 4 a2 b2 c2
## 5 a3 b3 <NA>

The right join includes all records in the second argument:

merge(A, B, all.y=TRUE) # by="v", all.x=FALSE
## v u w
## 1 a0 bo co
## 2 a2 b2 c1
## 3 a2 b2 c2
## 4 a4 <NA> c3

Lastly, the full outer join is their set-theoretic union:

merge(A, B, all.x=TRUE, all.y=TRUE) # by="v"
## v u %

## 1 a0 bO cO
## 2 al b1 <NA>
## 3 a2 b2 c1
## 4 a2 b2 c2
## 5 a3 b3 <NA>
## 6 a4 <NA> c3

Joining on more than one common column is also supported.
Exercise 12.14 Show how match (Section 5.4.1) can help author a very basic version of merge.

Exercise 12.15 Implement a version of match that allows the x and table arguments to be
data frames with the same number of columns so that also the matching of pairs, triples, etc. is
possible.

12.3.4 Aggregating and transforming columns

It might be tempting to try aggregating data frames with apply. Sadly, currently, this
function coerces its argument to a matrix. Hence, we should refrain from applying it
on data frames whose columns are of mixed types. However, taking into account that
data frames are special lists, we can always call Map and its relatives.

Example 12.16 Consider an example data frame:

(iris_sample <- iris[sample(NROW(iris), 6), ])
## Sepal.lLength Sepal.Width Petal.lLength Petal.Width Species
(continues on next page)
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## 28 5.2 3.5 1.5 0.2 setosa
## 80 5.7 2.6 3.5 1.0 versicolor
## 101 6.3 3.3 6.0 2.5 wvirginica
## 111 6.5 3.2 5.1 2.0 virginica
#4137 6.3 3.4 5.6 2.4 virginica
## 133 6.4 2.8 5.6 2.2 virginica

To get the class of each column, we can call:

sapply(iris_sample, class) # or unlist(Map(class, iris))
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#H "numeric"” "numeric” "numeric” "numeric"” "factor”

Next, here is a way to compute some aggregates of the numeric columns:

unlist(Map(mean, Filter(is.numeric, iris_sample)))
## Sepal.lLength Sepal.Width Petal.lLength Petal.Width
## 6.0667 3.1333 4.5500 1.7167

or:

sapply(iris_sample[sapply(iris_sample, is.numeric)], mean)
## Sepal.lLength Sepal.Width Petal.lLength Petal.Width
## 6.0667 3.1333 4.5500 1.7167

We can also fetch more than a single summary of each column:

as.data. frame(Map(
function(x) c(Min=min(x), Max=max(x)),
Filter(is.numeric, iris_sample)

))
## Sepal.lLength Sepal.Width Petal.lLength Petal.Width
## Min 5.2 2.6 1.5 0.2
## Max 6.5 3.5 6.0 2.5
or:

sapply(iris_sample[sapply(iris_sample, 1is.numeric)], quantile, c(0, 1))

## Sepal.lLength Sepal.Width Petal.lLength Petal.Width
## 0% 5.2 2.6 1.5 0.2
## 100% 6.5 3.5 6.0 2.5

The latter called simplify2array automatically. Thus, the result is a matrix.

On the other hand, the standardisation of all numeric features can be performed, e.g., via a call:

iris_sample[] <- Map(function(x) {
if (!is.numeric(x)) x else (x-mean(x))/sd(x)
}, iris_sample)
(continues on next page)
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print(iris_sample)
# Sepal.lLength Sepal.Width Petal.lLength Petal.Width Species

#H 28 -1.760405 1.03024 -1.76004 -1.65318 setosa
## 80 -0.72094 -1.49854 -0.60591 -0.78117 versicolor
#4101 0.45878 0.46829 0.83674 0.85384 virginica
#H 111 0.85202 0.18732 0.31738 0.30884 virginica
## 137 0.45878 0.74927 0.60591 0.74484 virginica
## 133 0.65540 -0.93659 0.60591 0.52684 virginica

12.3.5 Handling missing values

The is.na method for objects of the class data. frame returns a logical matrix of the
same dimensionality®, indicating whether the corresponding items are missing or
not. Of course, the default method can still be called on individual columns. Further,
na.omit gets rid of rows with missing values.

Exercise 12.17 Given a data frame, use is.na and other functions like apply or approx to:
1. remove all rows that bear at least one missing value,
2. remove all rows that only consist of missing values,

3. remove all columns that carry at least one missing value,

»

for each column, replace all missing values with the column averages,

5. for each column, replace all missing values with values that linearly interpolate between
the preceding and succeeding well-defined observations (which is of use in time series pro-
cessing), e.g., the blanks in c(0.60, 0.62, NA, 0.64, NA, NA, 0.58) should be
filled to obtainc(0.60, 0.62, 0.63, 0.64, 0.62, 0.60, 0.58).

12.3.6 Reshaping data frames

Consider an example matrix:

A <- matrix(round(runif(6), 2), nrow=3,
dimnames=11ist(
c("X", "y", "z"), # row labels

c("u", "v") # column labels
))
names(dimnames(A)) <- c("Row", "Col")
print(A)
#H Col

## Row u 1%
## X 0.29 0.88
## Y 0.79 0.94
## Z 0.41 0.05

8 Provided that a data frame does not carry a matrix column.
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The as.data. frame method for the table class can be called directly on any array-like
object:

as.data.frame.table(A, responseName="Val", stringsAsFactors=FALSE)
##  Row Col Val

## 1 X u 0.29
## 2 Y u0.79
## 3 Z u 0.41
## 4 X v 0.88
##5 Y v 0.94
## 6 Z v 0.05

It is an instance of array reshaping. More precisely, we call it stacking. We converted
from a wide (okay, in this example, not so wide, as we only have two columns) to a long
(tall) format.

The above can also be achieved by means of the reshape function which is more flexible
and operates directly on data frames (but is harder to use):

(df <- “names<- " (
data.frame(row.names(A), A, row.names=NULL),
c("Row", "Col.u", "Col.v")))

##  Row Col.u Col.v

# 1 X 0.29 0.88

## 2 Y 0.79 0.94

## 3 Z 0.41 0.05

(stacked <- reshape(df, varying=2:3, direction="1long"))

#H Row time Col id
## 1.u X u6.29 1
## 2.u |4 uo0.79 2
## 3.u 7 u0.41 3
## 1.v X v 0.88 1
#t2.v Y v 0.94 2
# 3.v 7 v 0.05 3

Maybe the default column names are not superb, but we can adjust them manually
afterwards. The reverse operation is called unstacking:

reshape(stacked, idvar="Row", timevar="time", drop="1d", direction="wide")
# Row Col.u Col.v
## 1.u X 0.29 0.88
#H 2.u Y 0.79 0.94
## 3.u Z 0.41 0.05

Exercise 12.18 Given a named numeric vector, convert it to a data frame with two columns. For
instance:

convert <- function(x) ...to.do...
X <- c(spam=42, eggs=7, bacon=3)
convert(x)

(continues on next page)
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## key value
## 1 spam 42
## 2 eggs 7
## 3 bacon 3

Exercise 12.19 Stack the Wor ldPhones dataset. Then, unstack it back. Furthermore, unstack
the stacked set after removing® five random rows from it and randomly permuting all the remain-
ing rows. Fill in the missing entries with NAs.

Exercise 12.20 Implement a basic version of as. data. frame. table manually (using rep
etc.). Also, write a function as. table. data. frame that computes its reverse. Make sure both
functions are compatible with each other.

Exercise12.21 Titanic isa four-dimensional array. Convert it to a long data frame.
Exercise 12.22 Perform what follows on the undermentioned data frame:
1. convert the second column to a list of character vectors (splitat ", ");
2. extract the first elements from each of such vectors;
3. extract the last elements;
(%) unstack the split data frame;
() stack it back to a data frame that carries a list;

"noon

convert the list back to a character column (concatenate with ", " as separator).

S

(x <- data. frame(
name=c("Kat", "Ron", "Jo", "Mary"),
food=c("buckwheat", "spam,bacon,spam”, "", "eggs,spam,spam,lollipops")

))

##  name food
## 1 Kat buckwheat
## 2 Ron spam, bacon, spam
# 3 Jo

## 4 Mary eggs, spam, spam, lollipops

Exercise 12.23 Write a function that converts all matrix-based columns in a given data frame
to separate atomic columns. Furthermore, author a function that does the opposite, i.e., groups
all columns with similar prefixes and turns them into matrices.

12.3.7 Aggregating data in groups

We can straightforwardly apply various transforms on data groups determined by a
factor-like variable or their combination thanks to the split.data.frame method,
which returns a list of data frames. For example:

9 The original dataset can be thought of as representing a fully crossed design experiment (all combina-
tions of two grouping variables are present). Its truncated version is like an incomplete crossed design.
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X <- data.frame(

a=c( 10, 20, 30, 40, 50),

u=c("spam", "spam", "eggs", "spam", "eggs"),

v=c( 1, 2, 1, 1, 1)
)
split(x, x["u"]) # i.e., split.data.frame(x, x["u"]) or x[["u"]]
## Seggs

## a uv
## 3 30 eggs 1
## 5 50 eggs 1
##

## Sspam

## a uv
## 1 10 spam 1
## 2 20 spam 2
## 4 40 spam 1

It split x with respect to the u column, which served as the grouping variable. On the
other hand:

split(x, x[c("u", "v")]) # sep="."
## Seggs.1

## a uv

## 3 30 eggs 1

## 5 50 eggs 1

##

## Sspam. 1

## a uv

## 1 10 spam 1

## 4 40 spam 1

##

## Seggs.?2

#4 [1] au v

## <O rows> (or 0-length row.names)
##

## Sspam.2

## a uv

## 2 20 spam 2

It partitioned with respect to a combination of two factor-like sequences. A nonexist-
ent level pair (eggs, 2) resulted in an empty data frame.

Exercise 12.24 split.data.frame (when called directly) can also be used to break a matrix
into a list of matrices (rowwisely). Given a matrix, perform its train-test split: allocate, say, 70%
of the rows at random into one matrix and the remaining 30% into another.

sapply is convenient if we need to aggregate grouped numeric data. To recall, it
is a combination of lapply (one-vector version of Map) and simplify2array (Sec-
tion 11.1.3).
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sapply(split(iris[1:2], iris[5]), sapply, mean)

#H setosa versicolor virginica
## Sepal.Length 5.006 5.936 6.588
## Sepal.Width 3.428 2.770 2.974

If the function to apply returns more than a single value, sapply will not return too
informative a result. The list of matrices converted to a matrix will not have the row.
names argument set:

MinMax <- function(x) c(Min=min(x), Max=max(x))
sapply(split(iris[1:2], iris[5]), sapply, MinMax)

# setosa versicolor virginica
## [1,] 4.3 4.9 4.9
## [2,] 5.8 7.0 7.9
## [3,] 2.3 2.0 2.2
## [4,] 4.4 3.4 3.8

Asaworkaround, we either call simplify2array explicitly, or pass simplify="array"
to sapply:

(res <- sapply(

split(iris[1:2], iris[5]),

sapply,

MinMax,

simplify="array"
)) # or simplify2array(lapply(...) or Map(...) etc.)
## , , setosa

##

#H Sepal.lLength Sepal.Width
## Min 4.3 2.3
## Max 5.8 4.4
##H

## , , versicolor

##

## Sepal.lLength Sepal.Width
## Min 4.9 2.0
## Max 7.0 3.4
##H

## , , virginica

##

## Sepal.Length Sepal.Width
## Min 4.9 2.2
## Max 7.9 3.8

It produced a three-dimensional array, which is particularly handy if we now wish to
access specific results by name:

res[, "Sepal.Length", "setosa"]

(continues on next page)
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## Min Max
#4 4.3 5.8

The previously mentioned as.data.frame.table method will work on it like a charm
(up to the column names, which we can change):

as.data.frame.table(res, stringsAsFactors=FALSE)

## Var1 Var2 Var3 Freq
## 1 Min Sepal.Length setosa 4.3
## 2 Max Sepal.lLength setosa 5.8
## 3 Min Sepal.Width setosa 2.3
## 4  Max Sepal.Width setosa 4.4
## 5 Min Sepal.lLength versicolor 4.9
## 6 Max Sepal.Length versicolor 7.0
## 7 Min Sepal.Width versicolor 2.0
## 8 Max Sepal.Width versicolor 3.4
## 9  Min Sepal.lLength virginica 4.9
## 10 Max Sepal.lLength virginica 7.9
## 11 Min Sepal.Width virginica 2.2
## 12 Max Sepal.Width virginica 3.8

Note If the grouping (by) variable is a list of two or more factors, the combined
levels will be concatenated to a single string. This behaviour yields a result that may be
deemed convenient in some contexts but not necessarily so in other ones.

as.data.frame.table(as.array(sapply(
split(ToothGrowth["len"], ToothGrowth[c("supp", "dose")], sep="_"),
sapply, # but check also: function(...) as.matrix(sapply(...)),
mean

)), stringsAsFactors=FALSE)

## Varl Freq

## 1 07 0.5.len 13.23

## 2 VC_0.5.len 7.98

## 3 07 1.len 22.70
## 4 VC 1.len 16.77
## 5 0J_2.len 26.06
## 6 VC 2.len 26.14

The name of the aggregated column (len) has been included, because sapply simpli-
fies the result to a flat vector too eagerly.

aggregate can assist us when a single function is to be applied on all columns in a data
frame:

aggregate(iris[-5], iris[5], mean) # neither iris[[5]] nor iris[, 5]
#H Species Sepal.lLength Sepal.Width Petal.Length Petal.Width
(continues on next page)
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## 1 setosa 5.006 3.428 1.462 0.246
## 2 versicolor 5.936 2.770 4.260 1.326
## 3 virginica 6.588 2.974 5.552 2.026

aggregate(ToothGrowth["len"], ToothGrowth[c("supp", "dose")], mean)
##  supp dose len

## 1 0J 0.5 13.23
# 2 VC 0.5 7.98
## 3 0J 1.0 22.70
## 4 VC 1.0 16.77
# 5 0] 2.0 26.06
## 6 VC 2.0 26.14

The second argument, by, must be list-like (this includes data frames). Neither a factor
nor an atomic vector is acceptable. Also, if the function being applied returns many
values, they will be wrapped into a matrix column:

(x <- aggregate(iris[2], iris[5], function(x) c(Min=min(x), Max=max(x))))

#H Species Sepal.Width.Min Sepal.Width.Max
## 1 setosa 2.3 4.4
## 2 versicolor 2.0 3.4
## 3 virginica 2.2 3.8

class(x[["Sepal.Width"]])

## [1] "matrix" "array"

x[["Sepal.Width"]] # not: Sepal.Width.Max, etc.
## Min Max

# [1,] 2.3 4.4

#t [2,] 2.0 3.4

## [3,] 2.2 3.8

It is actually handy: by referring to x[["Sepal.Width"]], we access all the stats for
this column. Further, if many columns are being aggregated simultaneously, we can
process all the summaries in the same way.

Exercise12.25 Check out the by function, which supports basic split-apply-bind use cases.
Note the particularly odd behaviour of the print method for the by class.

The most flexible scenario involves applying a custom function returning any set of
aggregates in the form of a list and then row-binding the results to obtain a data frame.

Example12.26 The following implements an R version of what we would express in SQL as:

SELECT supp, dose, AVG(len) AS ave_len, COUNT(*) AS count
FROM ToothGrowth
GROUP BY supp, dose

Ad rem:

do.call(rbind.data. frame, lapply(
split(ToothGrowth, ToothGrowth[c("supp", "dose")]),

(continues on next page)
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function(df) list(
supp=df[1, "supp"],
dose=df[1, "dose"],
ave_len=mean(df[["len"]]),
count=NROW(df)

J))

# supp dose ave_len count
# 0J.0.5 0J 0.5 13.23 10
## VC.0.5 vc 0.5 7.98 10

## 0J.1 0J 1.0 22.70 10
## VC. 1 vc 1.0 16.77 10
## 0J.2 0J 2.0 26.06 10
## VC.2 vc 2.0 26.14 10

Exercise12.27 Many aggregation functions are idempotent, which means that when they are
fed with a vector with all the elements being identical, the result is exactly that unique element:
min, mean, median, and max behave this way. Overload the mean and median methods for char-
acter vectors and factors. They should return NA and give a warning for sequences where not all
elements are the same. Otherwise, they are expected to output the unique value.

mean.character <- function(x, na.rm=FALSE, ...) ...to.do..
mean. factor <- function(x, na.rm=FALSE, ...) ...to.do..

This way, we can also aggregate the grouping variables conveniently:

do.call(rbind.data. frame,
lapply(split(ToothGrowth, ToothGrowth[c("supp", "dose")]), lapply, mean))
#H len supp dose
## 0J.0.5 13.23 0J 0.5
## VC.0.5 7.98 VvCc 0.5
## 0J.1 22.70 0J 1.0
## VC.1 16.77 Vvc 1.0
## 0J.2 26.06 0J 2.0
## VC.2 26.14 Vc 2.0

Example 12.28 Let’s study a function that takes a named list x (can be a data frame) and a
sequence of col=f pairs, and applies the function f (or each function from a list of functions f)
on the element named col in x:

napply <- function(x, ...)
{
fs <- list(...)
cols <- names(fs)
stopifnot(is.list(x), !is.null(names(x)))
stopifnot(all(cols %in% names(x)))
do.call(
c, # concatenates lists

(continues on next page)
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lapply(

structure(seq_along(fs), names=cols),
function(i)
{ # always returns a list

y <= x[[ cols[i] ]]

if (is.function(fs[[1]]))

list(fs[[1]](y))
else

lapply(fs[[i]], function(f) f(y))

}

For example:

first <- function(x, ...) head(x, n=1L, ...) # helper function
napply(ToothGrowth,
supp=first, dose=first, len=list(ave=mean, count=length)
)
## Ssupp
## [1] VC
## Levels: 0J VC
##H
## Sdose
## [1] 0.5
##H
## Slen.ave
## [1] 18.813
##H
## Slen.count
## [1] 60

It applied first on both ToothGrowth[["supp"]] and ToothGrowth[["dose"]] as well
asmean and length on ToothGrowth[ [ "len"] ]. Weincluded list names for a more dramatic
effect. And now:

do.call(
rbind.data. frame,
lapply(
split(ToothGrowth, ToothGrowth[c("supp", "dose")]),
napply,
supp=first, dose=first, len=list(ave=mean, count=length)
)
)
#H supp dose len.ave len.count
## 0J.0.5 0J 0.5 13.23 10
## VC.0.5 Vc 0.5 7.98 10

(continues on next page)
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## 0J.1 0J 1.0 22.70 10
## VC. 1 vc 1.0 16.77 10
## 0J.2 0J 2.0 26.06 10
## VC.2 vc 2.0 26.14 10
oreven:

gapply <- function(x, by, ...)
do.call(rbind.data. frame, lapply(
split(x, x[by]),

function(x, ...)

do.call(napply, c( # add all by=first calls
x=1list(x),
‘names<- “(rep(list(first), length(by)), by),
list(...)

))s

))
And now:

gapply(iris, "Species", Sepal.lLength=mean, Sepal.Width=list(min, max))

## Species Sepal.lLength Sepal.Widthl Sepal.Width?2
## setosa setosa 5.006 2.3 4.4
## versicolor versicolor 5.936 2.0 3.4
## virginica virginica 6.588 2.2 3.8
gapply(ToothGrowth, c("supp", "dose"), len=list(ave=mean, count=length))
#H supp dose len.ave len.count

## 03.0.5 03 0.5 13.23 10

## VC.0.5 vc 0.5 7.98 10

## 0J.1 0J 1.0 22.70 10

## VC.1 vc 1.0 16.77 10

## 0J.2 0J 2.0 26.06 10

## VC.2 vc 2.0 26.14 10

This brings fun back to R programming in the sad times when many things are given to us on a
plate (the thorough testing of the above is left as an exercise).

Example12.29 In Section 10.4, we mentioned (without giving the implementation) the
group_by function returning a list of the class 1ist_dfs. It splits a data frame into a list of
data frames with respect to a combination of levels in given named columns:

group_by <- function(df, by)
{
stopifnot(is.character(by), is.data.frame(df))
df <- droplevels(df) # factors may have unused levels
structure(
split(df, df[names(df) %in% by]),
class="list_dfs",
(continues on next page)
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by=by
}

The next function applies a set of aggregates on every column of each data frame in a given list
(two nested Lapplys plus cosmetic additions):

aggregate. list_dfs <- function(x, FUN, ...)
{
aggregates <- lapply(x, function(df) {
is_by <- names(df) %in% attr(x, "by")
res <- lapply(df[!is_by], FUN, ...)
res_mat <- do.call(rbind, res)
if (is.null(dimnames(res_mat)[[2]]))
dimnames(res_mat)[[2]] <- paste@("f", seq len(NCOL(res_mat)))
cbind(
‘row.names<- "(df[1, is_by, drop=FALSE], NULL),
x=row.names(res_mat),
‘row.names<-"(res_mat, NULL)
)
»
combined_aggregates <- do.call(rbind.data. frame, aggregates)
‘row.names<- "~ (combined_aggregates, NULL)
}
aggregate(group_by(ToothGrowth, c("supp", "dose")), range)
##  supp dose x f1 @ f2

# 1 0] 0.5 1len 8.2 21.5
# 2 VC 0.5 len 4.2 11.5
# 3 0J 1.0 len 14.5 27.3
# 4 VC 1.0 len 13.6 22.5
# 5 07 2.0 len 22.4 30.9
# 6 VC 2.0 len 18.5 33.9

We really want our API to be bloated, so let’s introduce a convenience function, which is a spe-
cialised version of the above:

mean. list_dfs <- function(x, ...)
aggregate. list_dfs(x, function(y) c(Mean=mean(y, ...)))
mean(group_by(iris[51:150, c(2, 3, 5)], "Species"))
## Species X Mean
## 1 versicolor Sepal.Width 2.770
## 2 versicolor Petal.Length 4.260
## 3 virginica Sepal.Width 2.974
## 4 virginica Petal.lLength 5.552
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12.3.8 Transforming data in groups

Variables will sometimes need to be transformed relative to what is happening in a
dataset’s subsets. This is the case, e.g., where we decide that missing values should be
replaced by the corresponding within-group averages or want to compute the relative
ranks or z-scores.

Iftheloss of the original ordering of rows is not an issue, the standard split-apply-bind
will suffice. Here is an example data frame:

(x <- data.frame(
a=c( 10, 1, NA, NA, NA, 4),
b=c( -1, 10, 40, 30, 1, 20),
c=runif(6),
d=c("v", "u", "u", "u", "v", "u")

))

## a b c

## 1 10 -1 0.52811

## 2 1 10 0.89242

## 3 NA 40 0.55144

## 4 NA 30 0.45661

## 5 NA 1 0.95683

# 6 4 20 0.45333

S < € C < < Q

Some operations:

fill_na <- function(x) "[<-'(x, is.na(x), value=mean(x[!is.na(x)]))
standardise <- function(x) (x-mean(x))/sd(x)

And now:

x_groups <- lapply(
split(x, x["d"]),
function(df) {
df[["a"]] <- fill_na(df[["a"]])
df[["b"]] <- rank(df[["b"1])
df[["c"]] <- standardise(df[["c"]])

df
}

)
do.call(rbind.data.frame, x_groups)
# ab cd
# u.2 1.0 1 1.46357 u
## u.3 2.5 4 -0.17823 u
## u.4 2.5 3 -0.63478 u
# u.6 4.0 2 -0.65057 u
## v.1 10.0 1 -0.70711 v
## v.5 10.0 2 0.70711 v

Only the relative ordering of rows within groups has been retained. Overall, the rows
are in a different order. If this is an issue, we can use the unsplit function:
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unsplit(x_groups, x["d"])

#H ab cd
## 1 10.0 1 -0.70711 v
## 2 1.0 1 1.46357 u
## 3 2.5 4 -0.17823 u
# 4 2.5 3 -0.63478 u
## 5 10.0 2 0.70711 v
## 6 4.0 2 -0.65057 u

Exercise 12.30 Show how we can perform the above also via the replacement version of split.

Example12.31 (*) Recreating the previous ordering can be done manually, too. It is because
the split operation behaves as if we first ordered the data frame with respect to the grouping vari-
able(s) (using a stable sorting algorithm). Here is a transformation of an example data frame
split by a combination of two factors:

(x <- ‘row.names<-"‘(ToothGrowth[sample(NROW(ToothGrowth), 10), ], NULL))

## len supp dose
# 1 23.0 0J 2.0
## 2 23.3 0J 1.0
## 3 29.4 0J 2.0
# 4 14.5 0J 1.0
## 5 11.2 vc 0.5
## 6 20.0 0J 1.0
# 7 24.5 0J 2.0
# 8 10.0 0J 0.5
# 9 9.4 0J 0.5
## 10 7.0 vc 0.5

(y <- do.call(rbind.data. frame, lapply(
split(x, x[c("dose", "supp")]), # two grouping variables
function(df) {
dff["len"]] <- dff["len"]] * 1007df[["dose"]] * # whatever

ifelse(df[["supp"]] == "0J", -1, 1) # do not overthink it
df
}

)))

## len supp dose
## 0.5.07.8 -100 0J 0.5
# 0.5.07.9 -94 0J 0.5
## 1.01.2 -2330 0J 1.0
## 1.07.4 -1450 0J 1.0
## 1.0J.6 -2000 0J 1.0
## 2.0J.1 -230000 03 2.0
## 2.0J.3 -294000 0J 2.0
## 2.01.7 -245000 0J 2.0
#® 0.5.VC.5 112 vc 0.5
## 0.5.VC.10 70 Vc 0.5

Section 5.4.4 mentioned that by calling order, we can determine the inverse of a given permuta-
tion. Hence, we can call:
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ylorder(order(x[["supp"]], x[["dose"]])), ] # not: dose, supp

#H len supp dose
## 2.0J.1 -230000 0J 2.0
## 1.0J.2 -2330 0J 1.0
## 2.0J.3 -294000 0J 2.0
## 1.0J.4 -1450 0J 1.0
## 0.5.VC.5 112 vc 0.5
## 1.0J.6 -2000 0J 1.0
## 2.0J.7 -245000 0J 2.0
## 0.5.07.8 -100 0J 0.5
## 0.5.0J7.9 -94 0J 0.5
## 0.5.VC.10 70 vc 0.5

Additionally, we can manually restore the oviginal row. names, et voild.

12.3.9 Metaprogramming-based techniques (*)

Section 9.4.7 mentioned a few functions that provide convenient interfaces to some
common data frame operations. These include transform, subset, with, and basic-
ally every procedure accepting a formula. The popular data.table and dplyr pack-
ages also belong to this class (Section 12.3.10).

Unfortunately, each method relying on metaprogramming must be studied separately
because it is free to interpret the form of the passed arguments arbitrarily, without
taking into account their real meaning. As we are concerned with developing a more
universal skill set, we avoid'® them in this course. They do not offer anything more
than what we have learnt so far.

Withal, they are thought-provoking on their own. Furthermore, they are popular in
other users’ code. Thus, after all, they deserve the honourable mention.

Example 12.32 Consider an example call to the subset function:

subset(iris, Sepal.lLength<4.5, -(Sepal.Width:Petal.Width))
#H Sepal.Length Species

## 9 4.4 setosa
## 14 4.3 setosa
## 39 4.4 setosa
## 43 4.4 setosa

Neither the second nor the third argument makes sense as a standalone R expression. We have
not defined the named variables used there:

10 We are not alone in our calling to refrain from using them. help("subset") (and help("transform")
similarly) warns: This is a convenience function intended for use interactively. For programming, it is better to use the
standard subsetting functions like [, and in particular the nonstandard evaluation of argument subset can have
unanticipated consequences. The same in help("with"): For interactive use, this is very effective and nice to read.
For programming however, i.e., in one’s functions, more care is needed, and typically one should refrain from using with,
as, e.g., variables in data may accidentally override local variables.
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Sepal.lLength<4.5 # utter nonsense
## Error: object 'Sepal.lLength' not found
-(Sepal.Width:Petal.Width) # gibberish

## Error: object 'Sepal.Width' not found

Only from help( "subset" ) we can learn that this tool assumes that the expression passed as
the second argument plays the role of a row selector. Moveover, the third one is meant to remove
all the columns between the two given ones.

In our course, we pay attention to developing transferable skills. We believe that R is not the only
language we will learn during our long and happy lives. It is much morve likely that in the next
environment, we will become used to writing something of the more basic form:

between <- function(x, from, to) match(from, x):match(to, x)
irisfiris[["Sepal.Length"]]<4.5,

-between(names(iris), "Sepal.Width", "Petal.Width")]
# Sepal.Length Species

## 9 4.4 setosa
## 14 4.3 setosa
## 39 4.4 setosa
## 43 4.4 setosa

Example 12.33 With transform, we can add, modify, and remove columns in a data frame.
Existing features can be referred to as if they were ordinary variables:

(mtcars4 <- mtcars[sample(seq_len(NROW(mtcars)), 4), c("hp", "am", "mpg")])

#H hp am mpg

## Maserati Bora 335 1 15.0

## Cadillac Fleetwood 205 0 10.4

## Honda Civic 52 1 30.4

## Merc 450SLC 180 0 15.2
transform(mtcars4, log_hp=log(hp), am=2*am-1, hp=NULL, fcon=235/mpg)
#H am mpg log_hp fcon
## Maserati Bora 1 15.0 5.8141 15.6667
## Cadillac Fleetwood -1 10.4 5.3230 22.5962
## Honda Civic 1 30.4 3.9512 7.7303
## Merc 450SLC -1 15.2 5.1930 15.4605

Similarly, attach adds any named list to the search path (see Section 16.2.6) but it does not
support altering their contents. As an alternative, within may be called:

within(mtcars4, {
log hp <- log(hp)
fcon <- 235/mpg
am <- factor(am, levels=c(0, 1), labels=c("no", "yes"))

hp <- NULL
»
# am mpg fcon log_hp
## Maserati Bora yes 15.0 15.6667 5.8141

(continues on next page)
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## Cadillac Fleetwood no 10.4 22.5962 5.3230
## Honda Civic yes 30.4 7.7303 3.9512
## Merc 450SLC no 15.2 15.4605 5.1930

Those who find writing mtcars4[ [ "name"] ] instead of name too exhausting, can save a few
keystrokes.

Example12.34 Asmentioned in Section 10.3.4 (see Section 17.6 for more details), formulae are
special objects that consist of two unevaluated expressions separated by a tilde, *~". Functions
can support formulae and do what they please with them. However, a popular approach is to
allow them to express “something grouped by something else” or “one thing as a function of other
things”.

do.call(rbind.data. frame, lapply(split(ToothGrowth, ~supp+dose), head, 1))
## len supp dose

## 0J.0.5 15.2 0J 0.5

## VC.0.5 4.2 vc 0.5

## 0J.1 19.7 07 1.0

## VC. 1 16.5 Vv 1.0

## 0J.2 25.5 0J 2.0

## VC.2 23.6 vc 2.0

aggregate(cbind(mpg, log_hp=log(hp))~am:cyl, mtcars, mean)

# am cyl mpg log_hp

## O 4 22.900 4.4186

## 1 4 28.075 4.3709

## 0 6 19.125 4.7447

## 1 6 20.567 4.8552
o 8
8
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## 15.050 5.2553

# 6 1 15.400 5.6950

head(model. frame(mpg+hp~log(hp)+I(1/qsec), mtcars))
## mpg + hp log(hp) I(1/qsec)

## Mazda RX4 131.0 4.7005 0.060753....

## Mazda RX4 Wag 131.0 4.7005 0.058754....

## Datsun 710 115.8 4.5326 0.053734....

## Hornet 4 Drive 131.4 4.7005 0.051440....

## Hornet Sportabout 193.7 5.1648 0.058754....

## Valiant 123.1 4.6540 0.049455. ...

Ifthese examples seem esoteric, it is because it is precisely the case. We need to consult the corres-
ponding functions’ manuals to discover what they do. And, as we do not recommend their use to
beginner programmers, we will not explain them here. Don't trip.

Exercise 12.35 In the last example, the peculiar printing of the last column is due to which
method’s being overloaded?

In the third part of this book, we will return to these functions for they will serve as an
amusing illustration of how to indite our own procedures that rely on metaprogram-
ming techniques.
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12.3.10 Anoteonthedplyr (tidyverse)and data.table packages (*)

data.tableand dplyr arevery popular packages thatimplement common data frame
transformations. In particular, the latter is part of an immerse system of interdepend-
ent extensions called tidyverse which became quite invasive over the last few years.
They both heavily rely on metaprogramming and introduce entirely new APIs featur-
ing hundreds of functions for the operations we already know well how to perform
(the calamity of superabundance).

Still, their users must remember that they will need to rely on base functions when
the processing of other prominent data structures is required, e.g., of fancy lists and
matrices. Base R (and its predecessor, S) has long ago proven to be a versatile tool for
rapid prototyping, calling specialised procedures written in C or Java, and wrangling
data that fit into memory. Even though some operations from the mentioned packages
may be much faster for larger datasets, the speed is less often an issue in practice than
what most users might think.

For larger problems, techniques for working with batches of data, sampling methods,
or aggregating data stored elsewhere are often the way to go, especially when building
machine learning models or visualisation" is required. Usually, the most recent data
will be stored in external, normalised databases, and we will need to join a few tables
to fetch something valuable from the perspective of the current task’s context.

Thus, we cannot stress enough that, in many situations, SQL, not the other tools, is
the most powerful interface to more considerable amounts of data. Learning it will
give us the skills we can use later in other programming environments.

Note Of course, certain functions from tidyverse and related packages we will find
very helpful after all. Quite annoyingly, they tend to return objects of the class tibble
(tbl_df)(e.g., haven: : read.xpt that reads SAS data files). Luckily, they are subclasses
of data.frame; we can always use as.data. frame to get our favourite objects back.

12.4 Exercises
Exercise 12.36 Answer the following questions.
« What attributes a data frame is equipped with?
« Ifrow. names is an integer vector, how to access rows labelled 1, 7, and 42?

« Howto create a data frame that carries a column that is a list of character vectors of different
lengths?

1 For example, drawing scatter plots of billions of points makes little sense as they may result in unread-
able images of large file sizes. The points need to be sampled or summarised somehow (e.g., binned); see
Chapter 13.
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- How to create a data frame that includes a matrix column?
« How to convert all numeric columns in a data frame to a numeric matrix?

o Assuming that x is an atomic vector, what is the difference between as . data. frame(x), as.
data. frame(as.list(x)),as.data. frame(list(a=x)), and data. frame(a=x)?

Exercise 12.37 Assuming that x is a data frame, what is the meaning of/difference between the
following:

o x["u"Jvsx[["u"]]vsx[, "u"]?

o x["u"J[1]vsx[["u"]][1]vsx[1, "u"Jvsx[1, "u", drop=FALSE]?
o x[which(x[[1]] > 0), Jvsx[x[[1]] > 0, ]?

o x[grep(""foo", names(x))]?

Exercise 12.38 We have a data frame with columns named like: ID (character), checked
(logical, possibly with missing values), category (factor), x0, ..., x9 (ten separate numeric
columns), y0, ..., y9 (ten separate numeric columns), coor ds (numeric matrix with two columns
named lat and long), and features (list of character vectors of different lengths).

« How to extract the rows where checked is TRUE?
« Howto extract the rows forwhich IDis like three letters and then five digits (e.g., XYZ12345)?
« How to select all the numeric columns in one go?

« How to extract a subset comprised only of the ID and x-something columns?

How to get rid of all the columns between x3 and y 7?

Assuming that the IDs are like three letters and then five digits, how to add two columns: ID3
(the letters) and ID5 (the five digits)?

« How to check whether both lat and long in coords are negative?

How to add the column indicating the number of features?
« How to extract the rows where "spam" is amongst the features?

« How to convert it to a long data frame with two columns: ID and feature (individual
strings)?

« How to change the name of the ID column to 1d?
« How to make the y-foo columns appear before the x-bar ones?

« How to order the rows with respect to checked (FAL SE first, then TRUE) and IDs (decreas-
ingly)?

« How to remove rows with duplicate IDs?
« How to determine how many entries correspond to each category?
« How to compute the average lat and long in each category?

« How to compute the average lat and Long for each category and checked combined?
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Exercise 12.39 Consider the flights' dataset. Give some ways to select all rows between
March and October (regardless of the year).

Exercise 12.40 In thistask, you will be working with a version of a dataset on 70k+ Melbourne
trees (urban_forest®).

1. Load the downloaded dataset by calling the read. csv function.

2. Fetch the IDs (CoM. ID) and trunk diameters (Diameter.Breast.Height) of the horse
chestnuts with five smallest diameters at breast height. The output data frame must be sorted
with respect to Diameter.Breast.Height, decreasingly.

3. Create a new data frame that gives the number of trees planted in each year.

4. Compute the average age (in years, based on Year . Planted) of the trees of genera (each
genus separately): Eucalyptus, Platanus, Ficus, Acer, and Quercus.

Exercise 12.41 (*) Consider the historic data dumps of Stack Exchange* available here'. Ex-
port these CSV files to an SQLite database. Then, write some R code that corresponds to the fol-
lowing SQL queries. Use dbGetQuery to verify your results.

First:

SELECT
Users.DisplayName,
Users.Age,
Users.Location,
SUM(Posts.FavoriteCount) AS FavoriteTotal,
Posts.Title AS MostFavoriteQuestion,
MAX(Posts.FavoriteCount) AS MostFavoriteQuestionlikes
FROM Posts
JOIN Users ON Users.Id=Posts.OwnerUserId
WHERE Posts.PostTypelId=1
GROUP BY OwnerUserId
ORDER BY FavoriteTotal DESC
LIMIT 10

Second:

SELECT

Posts. ID,

Posts.Title,

Posts2.PositiveAnswerCount
FROM Posts
JOIN (

SELECT
Posts.ParentID,
(continues on next page)

12 https://github.com/gagolews/teaching-data/blob/master/other/flights.csv

B hteps://github.com/gagolews/teaching-data/raw/master/marek/urban_forest.csv.gz

14 https://travel.stackexchange.com/

15 https://github.com/gagolews/teaching-data/tree/master/travel_stackexchange com_2017


https://github.com/gagolews/teaching-data/blob/master/other/flights.csv
https://github.com/gagolews/teaching-data/raw/master/marek/urban_forest.csv.gz
https://travel.stackexchange.com/
https://github.com/gagolews/teaching-data/tree/master/travel_stackexchange_com_2017

12 DATA FRAMES 291

(continued from previous page)

COUNT(*) AS PositiveAnswerCount
FROM Posts
WHERE Posts.PostTypeID=2 AND Posts.Score>0
GROUP BY Posts.ParentID
) AS Posts2
ON Posts.ID=Posts2.ParentID
ORDER BY Posts2.PositiveAnswerCount DESC
LIMIT 10

Third:

SELECT
Posts.Title,
UpVotesPerYear. Year,
MAX(UpVotesPerYear.Count) AS Count
FROM (
SELECT
PostId,
COUNT(*) AS Count,
STRFTIME('%Y', Votes.CreationDate) AS Year
FROM Votes
WHERE VoteTypeld=2
GROUP BY PostId, Year
) AS UpVotesPerYear
JOIN Posts ON Posts.Id=UpVotesPerYear.PostId
WHERE Posts.PostTypeld=1
GROUP BY Year

Fourth:

SELECT
Questions.Id,
Questions.Title,
BestAnswers.MaxScore,
Posts.Score AS AcceptedScore,
BestAnswers.MaxScore-Posts.Score AS Difference
FROM (
SELECT Id, ParentId, MAX(Score) AS MaxScore
FROM Posts
WHERE PostTypeld==2
GROUP BY ParentId
) AS BestAnswers
JOIN (
SELECT * FROM Posts
WHERE PostTypeId==1
) AS Questions
ON Questions.Id=BestAnswers.ParentId
JOIN Posts ON Questions.AcceptedAnswerId=Posts.Id
(continues on next page)
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WHERE Difference>50
ORDER BY Difference DESC

Fiﬁh:

SELECT
Posts.Title,
CmtTotScr.CommentsTotalScore
FROM (
SELECT
PostlID,
UserlID,
SUM(Score) AS CommentsTotalScore
FROM Comments
GROUP BY PostID, UserID
) AS CmtTotScr
JOIN Posts ON Posts.ID=CmtTotScr.PostID
AND Posts.OwnerUserId=CmtTotScr.UserID
WHERE Posts.PostTypeld=1
ORDER BY CmtTotScr.CommentsTotalScore DESC
LIMIT 10

Sixth:

SELECT DISTINCT
Users.Id,
Users.DisplayName,
Users.Reputation,
Users.Age,
Users.Location
FROM (
SELECT
Name, UserlID
FROM Badges
WHERE Name IN (
SELECT
Name
FROM Badges
WHERE Class=1
GROUP BY Name
HAVING COUNT(*) BETWEEN 2 AND 10
)
AND Class=1
) AS ValuableBadges
JOIN Users ON ValuableBadges.UserId=Users.Id

Seventh:

(continued from previous page)



SELECT
Posts.Title,
VotesByAge?2.0ldVotes
FROM Posts
JOIN (
SELECT
PostlId,
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MAX(CASE WHEN VoteDate = 'new' THEN Total ELSE 0 END) NewlVotes,
MAX(CASE WHEN VoteDate = 'old' THEN Total ELSE 0 END) OldVotes,

SUM(Total) AS Votes
FROM (
SELECT
PostId,
CASE STRFTIME('%Y', CreationDate)
WHEN '2017' THEN 'new'
WHEN '2016' THEN 'new'
ELSE 'old'
END VoteDate,
COUNT(*) AS Total
FROM Votes
WHERE VoteTypeld=2
GROUP BY PostId, VoteDate
) AS VotesByAge
GROUP BY VotesByAge.PostId
HAVING NewVotes=0
) AS VotesByAge2? ON VotesByAge?.PostId=Posts.ID
WHERE Posts.PostTypeld=1
ORDER BY VotesByAge2.0ldVotes DESC
LIMIT 10

Exercise 12.42 (*) Generatea CSV file that stores some random data arranged in a few columns
of a size at least two times larger than your available RAM. Then, export the CSV file to an SQLite
database. Use file connections (Section 8.3.5) and the nrow argument to read. table to process
it chunk by chunk. Determine whether setting colClasses in read. table speeds up the read-

ing of large CSV files significantly or not.

Exercise 12.43 (*) Export the whole XML data dump of StackOverflow'® published at https:
//archive.org/details/stackexchange (see also https://data.stackexchange.com/) to an SQLite

database.

16 https://stackoverflow.com/


https://stackoverflow.com/
https://archive.org/details/stackexchange
https://archive.org/details/stackexchange
https://data.stackexchange.com/




13
Graphics

The R project homepage advertises our free software as an environment for statistical
computing and graphics. Hence, had we not dealt with the latter use case, our course
would have been incomplete.

R is nowadays equipped with two independent (incompatible, yet coexisting) systems
for graphics generation; see Figure 13.1.

1. The (historically) newer one, grid (e.g., [49]), is very flexible but might seem com-
plicated. Some readers might have come across the lattice [54] and ggplot2 [61,
64] packages before: they are built on top of grid.

2. Onthe other hand, its traditional (S-style) counterpart, base graphics (e.g., [7]), is
much easier to master. It still gives their users complete control over the drawing
process. Itis simple, fast, and minimalist, which makes it very attractive from the
perspective of this course’s philosophy.

This is why we only cover the second system here. Most importantly, all figures in this
book were generated using graphics and its dependants. They are sufficiently aesthetic,
aren't they? Form precedes essence (but see [57, 60]).

13.1 Graphics primitives

In graphics, we do not choose from a superfluity of virtual objects to be placed on an
abstract canvas, letting some algorithm decide how and when to delineate them. We
just draw. We do so by calling functions that plot the following graphics primitives (see,
e.g., [37, 45]):

- symbols (e.g., pixels, circles, stars) of different shapes and colours,
. line segments of different styles (e.g., solid, dashed, dotted),

- polygons (optionally filled),

- text (using available fonts),

« raster images (bitmaps).

That's it. It will turn out that all other shapes (smooth curves, circles) may be easily
approximated using the above.
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higher-level functions (graphics)

@ graphics
@ stats

plot.default
plot.ecdf boxplot
plot.hclust hist
qqplot barplot
image

/

(

higher-level functions (grid)

@ ggplot2 ® lattice

T ya

@graphics

plot.new
plotwindow
plot.xy
polygon
text.default
rasterlmage

\

\g:aphics subsystems

@grid

graphics dewces\ J

(abstraction layer)

particular devices /

@ tikzDevice::tikz

Figure 13.1. Relation between the graphics subsystems.
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Of course, in practice, we do not always have to be so low-level. There are many func-
tions that provide the most popular chart types: histograms, bar plots, dendrograms,
etc. They will suit our basic needs. We will review them in Section 13.3.

The more primitive routines we discuss next will still be of service for fine-tuning our
figures and adding further details. However, if the prefabricated components are not
what we are after, we will be able to create any drawing from scratch.

Important In graphics, most of the function calls have immediate effects. Objects
are drawn on the active plot one by one, and their state cannot be modified later.

Example13.1 Figure 13.2 depicts some graphics primitives, which we plotted using the follow-
ing program. We will detail the meaning of all the functions in the next sections, but they should
be self-explanatory enough for us to be able to find the corresponding shapes in the plot.

par(mar=rep(0.5, 4)) # small plot margins (bottom, left, top, right)
plot.new() # start a new plot
plot.window(c(0, 6), c(0, 2), asp=1) # x range: 0-6, y: 0-2; proportional
x <- c(0, 0, NA, 1, 2, 3, 4, 4, 5, 6)
y <-c(0, 2, NA, 2, 1, 2, 2, 1, 0.25, 0)
points(x[-(1:6)], y[-(1:6)]) # symbols
lines(x, y) # line segments
text(c(0, 6), c(0, 2), c("(0, 6)", "(6, 2)"), col="red") # two text labels
rasterImage(
matrix(c(1, 0, # 2x3 pixel "image"; O=black, 1=white
0, 1,
0, 0), byrow=TRUE, ncol=2),
5, 0.5 6, 2, # position: xleft, ybottom, xright, ytop
interpolate=FALSE

)
polygon(
c(4, 5, 5.5, 4), # x coordinates of the vertices
c(o, 0, 1, 0.75), # y coordinates
lty="dotted", # border style
col="#ffffoe44" # fill colour: semi-transparent yellow
)

13.1.1 Symbols (points)

The points function can draw a series of symbols (by default, circles) on the two-
dimensional plot region, relative to the user coordinate system. We specify the points’
coordinates using the x and y arguments (two vectors of equal lengths; no recycling).
Alternatively, we may give a matrix or a data frame with two columns: its first column
(regardless of how and if it is named) defines the abscissae, and the second column
determines the ordinates.

This function permits us to plot each point differently if this is what we desire. Thus, it
is ideal for drawing scatter plots, possibly for grouped data (see Figure 13.17 below). It
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(olo)

Figure 13.2. Graphics primitives: plotting symbols, line segments, polygons, text la-
bels, and bitmaps. Objects are added one after another, with newer ones drawn over
the already existing shapes.

is vectorised with respect to, amongst others, the col (colour; see Section 13.2.1), cex
(scale, defaults to 1), and pch (plotting character or symbol, defaults to 1, i.e., a circle)
arguments.

Example13.2 Figure 13.3 gives an overview of the plotting symbols available. The most often
used ones are:

- NA_integer_ —mnosymbol,
e 0,..,14and 15, ..., 18— unfilled and filled symbols, respectively;

o 19, ..., 25— filled symbols with a border of width lwd; for codes 21, ..., 25, the fill colour is
controlled separately by the bg parameter,

. ", "—atiny point (a “pixel”),
. "a", "1", etc. —a single character (not all Unicode characters can be drawn); strings longer
than one will be truncated.

par(mar=rep(0.5, 4)); plot.new(); plot.window(c(0.9, 9.1), c(0.9, 4.1))
points(

cbind(1:9, 1), # or x=1:9, y=rep(1, 9); bottom row

col="red",

pch=c("A", "B", "a", "b", "Spanish Inquisition”, "*", "!", ".", "9")
)
xy <- expand.grid(1:9, 4:2)
text(xy, labels=0:(NROW(xy)-1), pos=1, cex=0.89, offset=0.75, col="darkgray")
points(xy, pch=0:(NROW(xy)-1), bg="yellow")
## Warning in plot.xy(xy.coords(x, y), type = type, ...): unimplemented pch
## value '26'

13.1.2 Line segments

lines can draw connected line segments whose mid- and endpoints are given in a
similar manner as in the points function. A series of segments can be interrupted by
defining an endpoint whose coordinate is a missing value; compare Figure 13.2..

Actually, points and lines are wrappers around the same function, plot.xy, which
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Figure 13.3. Plotting characters and symbols (pch).

we usually do not call directly. Their type arguments determine the object to draw; the
only difference is that by default the former uses type="p" whilst the latter relies on
type="1" . Changing these to type="b" (both) or type="0" (overplot) will give their
combination. Moreover, type="s" and type="S" creates step functions (with post-
and pre-increments, respectively), and type="h" draws bar plot-like vertical lines. For
an illustration, see Figure 13.4 (implement something similar yourself as an exercise).

type="S"
type="s"
type="0"
type="b"
type=
type="p"
type="h"

Hlu

Figure 13.4. Different type argument settings in lines or points.

The col argument controls the line colour (see Section 13.2.1), and 1wd determines the
line width (1 by default). Six named line types (lty) are available, which can also be
specified via their respective numeric identifiers, 1ty=1, ..., Lty=6; see Figure 13.5 (im-
plementing a similar plot is left as an exercise). Additionally, custom dashes can be
defined using strings of up to eight hexadecimal digits. Consecutive digits give the
lengths of the dashes and blanks (alternating). For instance, 1ty="1343" yields a dash
oflength 1, followed by a space of length 3, then a dash of length 4, followed by a blank
of length 3. The whole sequence will be recycled for as long as necessary.

Example13.3 lines can be used for plotting empirical cumulative distribution functions (we
will suggestit as an exercise later), regression models (e.g., lines, splines of different degrees), time
series, and any other mathematical functions, even when they are smooth and curvy. The naked
eye cannot tell the difference between a densely sampled piecewise linear approximation of an
object and its original version. The code below illustrates this (sad for the high-hearted idealists)
truth using the sine function; see Figure 13.6.
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"solid"or1 —m8 —— "dashed”,"44",0r2 === ====—-—--
"dotted”, "13",0r3 ----recsemeanaaaaans "dotdash”, "1343",0r 4 -=-m-mememamt -
longdash”,"73",0r§ ———————— "twodash", "2262", 0r 6 -—-—-—-—e—o—-.
5515 — - — - — i — - — - "985 — - — e — - — -

19" - - - - - - - 4484C4" - — — - — —-

Figure 13.5. Line types (Lty).

ns <- c(seq(3, 25, by=2), 50, 100)
par(mar=rep(0.5, 4)); plot.new(); plot.window(c(0, length(ns)*pi), c(-1, 1))
for (i in seq_along(ns)) {

x <- seq((i-1)*pi, i*pi, length.out=ns[1])

lines(x, sin(x))

text((1-0.5)*pi, 0, ns[i], cex=0.89)

Figure 13.6. The sine function approximated with line segments. Sampling more
densely gives the illusion of smoothness.

Exercise 13.4 Implement your version of the segments function using a call to lines.

Exercise13.5 (*) Implement a simplified version of the arrows function, where the length
of edges of the arrowhead is given in user coordinates (and not inches; you will be equipped
with skills to achieve this later; see Section 13.2.4). Use the 1join and lend arguments (see
help("par") foradmissible values) to change the line end and join styles (from the default roun-
ded caps).

13.1.3 Polygons

polygon draws a polygon with a border of specified colour and line type (border, 1ty,
wd). If the col argument is not missing, the polygon is filled (or hatched; cf. the dens -
ity and angle arguments).

Example13.6 Let’s draw a few regular (equilateral and equiangular) polygons; see Figure 13.7.
By increasing the number of sides, we can obtain an approximation to a circle.

regular_poly <- function(x@, y@, r, n=101, ...)
{

(continues on next page)
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(continued from previous page)
theta <- seq(0, 2*pi, length.out=n+1)[-1]
polygon(x@+r*cos(theta), yO+r*sin(theta), ...)
}

par(mar=rep(0.5, 4)); plot.new(); plot.window(c(0, 9.5), c(-1, 1), asp=1)
regular_poly(1, 0, 1, n=3)

regular_poly(3.5, 0, 1, n=7, density=15, angle=45, col="tan", border="red")
regular_poly(6, 0, 1, n=10, density=8, angle=-60, lty=3, lwd=2)
regular_poly(8.5, 0, 1, n=100, border="brown", col="lightyellow")

Figure 13.7. Regular polygons drawn using polygon.

Note the asp=1 argument to the plot . window function (which we detail below) that guarantees
the same scaling of the x- and y-axes. This way, the circle looks like one and not an oval.

Notice that the last vertex adjoins the first one. Also, if we are absent-minded (or par-
ticularly creative), we can produce self-intersecting or otherwise degenerate shapes.

Exercise 13.7 Implement yourversion of the rect function using a call to polygon.

13.1.4 Text

A call to text draws arbitrary strings (newlines and tabs are supported) centred at the
specified points. Moreover, by setting the pos argument, the labels may be placed be-
low, to the left of, etc., the pivots. Some further position adjustments are also possible
(adj, of fset); see Figure 13.8.

default pos=2 pos=4 ,\(/&) Mo
pos=3 B LR
R
pos=1
pos=1
offset=1.5

Figure 13.8. The positioning of text with text (plotting symbols added for reference).

col specifies the colour, cex affects the size, and srt changes the rotation of the text.

On many graphics devices, we have little but crude control over the font face used:
family chooses a generic font family ("sans", "serif", "mono"), and font selects
between the normal variant (1), bold (2), italic (3), or bold italic (4). See, however, Sec-
tion 13.2.6 for some workarounds.
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Note (*) There is limited support for mathematical symbols and formulae. It
relies on some quirky syntax that we enter using unevaluated R expressions
(Chapter 15). Still, it should be enough to meet our most basic needs. For instance,
passing quote(beta[1]~]) as the labels argument to text will output “ﬂ]i". See
help("plotmath") for more details.

For more sophisticated mathematical typesetting, see the tikzDevice graphics device
mentioned in Section 13.2.6. It outputs plot specifications that can be rendered by the
LaTeX typesetting system.

13.1.5 Raster images (bitmaps) (*)

Raster images are encoded in the form of bitmaps, i.e., matrices whose elements rep-
resent pixels (see Figure 13.2 for an example). They can be used for drawing heat maps
or backgrounds of contour plots; see Section 13.3.4.

Example 13.8 Optionally, bilinear interpolation can be applied if the drawing area is larger
than the true bitmap size, and we would like to smoothen the colour transitions out. Figure 13.9
presents a very stretched 4 x 3 pixel image, with and without interpolation.

par(mar=rep(0.5, 4)); plot.new(); plot.window(c(0, 9), c(0, 1))
I <- matrix(nrow=4, byrow=TRUE,
c( "red", "yellow", "white",

"vellow", "yellow", "orange",

"yvellow", "orange", "orange",

"white", "orange", "red")
)
rasterImage(I, 0, 0, 4, 1) # interpolate=TRUE; left subplot
rasterImage(I, 5, 0, 9, 1, interpolate=FALSE) # right subplot

Figure 13.9. Example bitmaps drawn with rasterImage, with (left) and without (right)
colour interpolation.

13.2 Graphics settings

par can be used to query and modify (as long as they are not read-only) many graph-
ics options. For instance, we have several parameters related to the current page or
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device settings, e.g., the plot’s margins (see Section 13.2.2) or user coordinates (see
Section 13.2.3). The reference list of available parameters is given in help("par"). Be-
low we discuss the most noteworthy ones.

Moreover, some functions source' the values of their default arguments by querying
par. This is the case of, e.g., col, pch, lty in the points and lines function.

Exercise 13.9 Study the following pseudocode.

lines(x, y) # use the default ‘lty', i.e., par("lty") == "solid"
old_settings <- par(lty="dashed") # change setting, save old for reference
lines(x, y) # use the new default ‘lty', i.e., par("lty") == "dashed"

lines(x, y, lty=3) # use the given ‘lty', but only for this call
lines(x, y) # default lty="dashed" again

par(old_settings) # restore the previous settings

lines(x, y) # lty="solid" now

13.2.1 Colours

Many functions allow for customising colours of the plotted objects or their parts; com-
pare, e.g., col and border arguments to polygon, or col and bg to points. There are
a few ways to specify colours (see the Colour Specification section of help("par") for
more details).

« We can use a "colour name" string, being one of the 657 predefined tags known
to the colours function:

sample(colours(), 8) # this is just a sample
## [1] "grey23” "darksalmon” "tan3" "violetred4"
## [5] "lightbluel” "darkorchid3" "darkseagreen1" "slategray3"

« Wecanpassa"#rrggbb" string, which specifies a position in the RGB colour space:
three series of hexadecimal numbers of two digits each, i.e., between ooy, = 0
(off) and FFp., = 255 (full on), giving the intensity of the red, green, and blue
channels?.

In practice, the col2rgb and rgb functions can convert between the decimal and
hexadecimal representations:

C <- c("black", "red", "green", "blue", "cyan", "magenta",
"yellow", "grey", "lightgrey", "pink") # example colours
(M <- structure(col2rgb(C), dimnames=1ist(c("R", "G", "B"), C)))
(continues on next page)

! Alas, it is not as straightforward as that. For instance, polygon is unaffected by the col setting, axis
uses col.axtis instead, etc. We should always consult the documentation.

2 From school, we probably know the subtractive CMY (cyan, magenta, yellow) model, where we obtain,
e.g., agreen colour by using blue-ish and yellow crayons (subtracting certain wavelengths from white light).
The RGB model, on the other hand, corresponds to the three photoreceptor/cone cells in the retinas of the
human eyes. Nonetheless, it is additive and, therefore, less intuitive: total darkness emerges when we emit
no light, yellow emerges when mixing red and green beams, etc.
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(continued from previous page)

##  black red green blue cyan magenta yellow grey lightgrey pink

## R 0 255 %] 0 0 255 255 190 211 255

## G 0 o 255 0 255 o 255 190 211 192

## B 0 0 0 255 255 255 0 190 211 203
structure(rgb(M[1, 1, M[2, 1, M[3, ], maxColorValue=255), names=C)

## black red green blue cyan  magenta yellow
## "#000000" "#FFOOOO" "#OOFFOO" "#OOOOFF" "#OOFFFF" "#FFOOFF" "#FFFFOO"
#4 grey lightgrey pink

## "#BEBEBE" "#D3D3D3" "#FFCOCB"

« An "#rrggbbaa" string is similar, but has the added alpha channel (two additional
hexadecimal digits): from ooy, = 0 denoting fully transparent, to FFp., = 255
indicating fully visible (lit) colour; see Figure 13.2 for an example.

Semi-transparency (translucency) can significantly enhance the expressivity of
our data visualisations; see Figure 13.18 and Figure 13.19.

« We can rely on an integer index to select an item from the current palette (with re-
cycling), which we can get or set by a call to palette. Moreover, 0 identifies the
background colour, par("bg").

Integer colour specifiers are particularly valuable when plotting data in groups
defined by factor objects. The underlying integer level codes can be mapped to con-
secutive colours from any palette; see Figure 13.17 below for an example.

Example 13.10 We recommend memorising the colours in the default palette:

palette() # get current palette
## [1] "black" "#DF536B" "#61DOAF" "#2297E6" "#28E2E5" "#CDOBBC" "#F5C710"
## [8] "gray62"

These are?, in order: black, red, green, blue, cyan, magenta, yellow, and grey; see* Figure 13.10.

k <- length(palette())

par(mar=rep(0.5, 4)); plot.new(); plot.window(c(0, k+1), c(0, 1))
points(1:k, rep(0.5, k), col=1:k, pch=16, cex=3)

text(1:k, 0.5, palette(), pos=rep(c(1, 3), length.out=k), col=1:k, offset=1)
text(1:k, 0.5, 1:k, pos=rep(c(3, 1), length.out=k), col=1:k, offset=1)

Choosing usable colours requires talents that most programmers lack. Therefore, we
will find ourselves relying on the built-in colour sets. palette.pals and hcl.pals re-
turn the names of the available discrete (qualitative) palettes. Then, palette.colors
and hcl.colors (note the American spelling) can generate a given number of colours
from a particular named set.

3 Actually, red-ish, green-ish, etc. The choice is more aesthetic than when pure red, green, etc. was used
(before R 4.0.0). It is also expected to be more friendly to people who have colour vision deficiencies. We
know that roughly every 1in 12 men (8%) and 1 in 200 women (0.5%), especially in the red-green or blue-
yellow spectrum; see [51] for more details.

4 The readers of the printed version of this book should know that its online version displays this figure
(and all others) in full colour. See you there.
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1 #DFs36B 3 #2297E6 5 #CDOBBC gray62
® &6 ® 6 0 O o
black 2 #61DoaF 4  #28E2F5 6 8

Figure 13.10. The default colour palette.

Continuous (quantitative) palettes are also available, see rainbow, heat.colors,
terrain.colors, topo.colors, cm.colors,and gray.colors. They transition smoothly
between predefined pivot colours, e.g., from blue through green to brown (like in a
topographic map with elevation colouring). They may be of use, e.g., when drawing
contour plots; compare Figure 13.27.

Exercise13.11 Create a demo of the aforementioned palettes in a similar (or nicer) style to that
in Figure 13.11.

R3

R4

ggplot2
Okabe-Ito
Accent

Dark 2

Paired

Pastel1

Pastel 2

Set1

Set2

Set3
Tableau10
Classic Tableau
Polychrome 36
Alphabet

Figure 13.11. Qualitative colour palettes in palette. pals; R4 is the default one, as seen
in Figure 13.10.

13.2.2 Plot margins and clipping regions

A device (page) region represents a single plot window, one raster image file, or a page
in a PDF document (see Section 13.2.6 for more information on graphics devices). As
we will learn from Section 13.2.5, it is capable of holding many figures.
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Usually, however, we draw one figure per page. In such a case, the device region is divided
into the following parts:

1) outer margins, which can be set via, e.g., the oma graphics parameter (in text lines,
based on the height of the default font); by default, they are equal to o;

2) figure region:

a) inner (plot) margins, by default mar=c(5.1, 4.1, 4.1, 2.1) textlines (bottom,
left, top, right, respectively); this is where we usually emplace the figure title, axes
labels, etc.

b) plot region, where we draw graphics primitives positioned relative to the user
coordinates.

Note Typically, all drawings are clipped to the plot region, but this can be changed with
the xpd parameter; see also the more flexible clip function.

Example 13.12 Figure 13.12 shows the default page layout. In the code chunk below, note the
use of mtext to print a text line in the inner margins, box to draw a rectangle around the plot or
figureregion, axis toadd the two axes (labels and tick marks), and title to print the descriptive
labels.

plot.new(); plot.window(c(-2, 2), c(-1, 1)) # whatever
for (i in 1:4) { # some text lines on the inner margins
for (j in seq_len(par("mar")[1]))
mtext(sprintf("Text line %d on inner margin %d", j, i),
side=i, line=j-1, col="lightgray")
}

title(main="Main", sub="sub", xlab="xlab", ylab="ylab")
box("figure", lty="dashed") # a box around the figure region
box("plot") # a box around the plot region

axis(1) # horizontal axis (bottom)

axis(2) # vertical axis (left)

rect(-10, -10, 10, 10, col="lightgray") # rectangle (clipped to plot region)
text(0, 0, "Plot region")

lines(c(-3, 0, 3), c(-2, 2, -2)) # standard clipping (plot region)
lines(c(-3, 0, 3), c(-2, 1.25, -2), xpd=TRUE, lty=3) # clip to figure region

13.2.3 User coordinates and axes
plot.window sets the user coordinates. It accepts the following parameters:

« x1im, ylim - vectors of length two giving the minimal and maximal ranges on the
respective axes; by default, they are extended by 4% in each direction for aesthetic
reasons (see, e.g., Figure 13.12) but we can disable this behaviour by setting the
xaxs and yaxs graphics parameters;
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Figure 13.12. Figure layout with default inner and outer margins (mar=c(5.1, 4.1,
4.1, 2.1)and oma=c(0, 0, 0, 0) textlines, respectively). We see that a lot of space
is wasted and hence some tweaking might be necessary to suit our needs better. Note
the clipping of the solid line to the grey plot region.

« asp — aspect ratio (y/x); defaults to NA, i.e., no adjustment; use asp=1 for circles
to look like ones, and not ovals;

« log — logarithmic scaling on particular axes: "" (none; default), "x", "y", or "xy".

Example 13.13 The graphics parameter usr can be used to read (and set) the extremes of the
user coordinates in the form (x1,%2,Y1,Y2).

plot.new()

plot.window(c(-1, 1), c(1, 1000), log="y", yaxs="1")
par("usr")

## [1] -1.08 1.08 0.00 3.00

Indeed, the x-axis range was extended by 4% in each direction (xaxs="r"). We have turned this
behaviour off for the y-axis (yaxs="1"), which uses the base-10 logarithmic scale. In this case,
its actual range is 10"par ("usr")[3:4] becauselog,, 1 = 0 andlog,, 1000 = 3.

Exercise 13.14 Implement your version of the abline function using lines.

Even though axes (labels and tick marks) can be drawn manually using the aforemen-
tioned graphics primitives, it is usually too tedious a work. This is why we tend to rely
on the axis function, which draws the object on one of the plot sides (as usual, 1=bot-
tom, ..., 4=right).

Once plot.window is called, axTicks can be called to guesstimate the tasteful (round)
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locations for the tick marks relative to the current plot size. By default, they are based
on the xaxp and yaxp graphics parameters, which give the axis ranges and the number
of intervals between the tick marks.

plot.new(); plot.window(c(-0.9, 1.05), c(1, 11))
par("usr") # (x1, x2, y1, y2)

## [1] -0.978 1.128 0.600 11.400
par("yaxp") # (y1, y2, n)

## [1] 2 10 4

axTicks(2) # left y-axis

## [1] 2 4 6 8 10

par("xaxp") # (x1, x2, n)

## [1] -0.5 1.0 3.0

axTicks(1) # bottom x-axis

## [1] -0.5 0.0 0.5 1.0
par(xaxp=c(-0.9, 1.0, 5)) # change
axTicks(1)

## [1] -0.90 -0.52 -0.14 0.24 0.62 1.00

axis relies on the same algorithm as axTicks. Alternatively, we can provide custom
tick locations and labels.

Example 13.15 Most of the plots in this book use the following graphics settings (except las=1
toaxis(2)); see Figure13.13. Check outhelp("par"), help("axis"), etc. and tune them up
to suit your needs.

par(mar=c(2.2, 2.2, 1.2, 0.6))

par(tcl=0.25) # the length of the tick marks (fraction of text line height)

par(mgp=c(1.1, 0.2, 0)) # axis title, axis labels, and axis line location

par(cex.main=1, font.main=2) # bold, normal size - main in title

par(cex.axis=0.8889)

par(cex. lab=1, font.lab=3) # bold italic, normal size

plot.new(); plot.window(c(0, 1), c(0, 1))

# a "grid":

rect(par("usr")[1], par("usr")[3], par("usr")[2], par("usr")[4],
col="#00000010")

abline(v=axTicks(2), col="white", lwd=1.5, lty=1)

abline(h=seq(0, 1, length.out=4), col="white", lwd=1.5, lty=1)

# set up axes:

axis(2, at=seq(0, 1, length.out=4), c("0", "1/3", "2/3", "1"), las=1)

axis(1)

title(xlab="xlab", ylab="ylab", main="main (use sparingly)")

box()

13.2.4 Plotdimensions (¥)
Certain sizes can be read or specified in inches (1” is exactly 25.4 mm):
« pin - plot dimensions (width, height),

. fin - figure region dimensions,
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Figure 13.13. Custom axes and other settings.

« din - page (device) dimensions,

« mati — plot (inner) margin size,

« omi — outer margins,

. cin — the size of the “default” character (width, height).

Ifthe figure is scaled, the virtual inch (the one reported by R) will not match the physical
one (e.g., the actual size in the printed version of this book or on the computer screen).

Important Most objects’ positions are specified in virtual user coordinates, as given by
usr. They are automatically mapped to the physical device region, taking into account
the page size, outer and inner margins, etc.

Knowing the above, some scaling can be used to convert between the user and
physical sizes (in inches). It is based on the ratios (usr[2]-usr[1])/pin[1] and
(usr[4]-usr[3])/pin[2]; compare the xinch and yinch functions.

Example13.16 () Figure 13.14 shows how we can pinpoint the edges of the figure and device
region in user coordinates.

Exercise13.17 (*) We cannot use mtext to print text on the right inner margin rotated by 180
degrees compared to what we see in Figure 13.12. Write your version of this function that will
allow you to do so. Hint: use text, the cin graphics parameter, and what you can read from
Figure 13.14.
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Figure13.14. User vs device coordinates. Note that the virtual inch does not correspond
to the physical one, as some scaling was applied.

13.2.5 Many figures on one page (subplots)

It is possible to create many figures on one page. In such a case, each subplot has its
own inner margins and plot region.

Acalltopar(mfrow=c(nr, nc)) orpar(mfcol=c(nr, nc)) splits the page into a regu-
lar grid with nr rows and nc columns. Each invocation of plot. newstarts a new figure.
Consecutive figures are either placed rowwisely (mfrow) or in the column-major order
(mfcol). Alternatively, any subplot can be activated by referring to the mfg parameter.

Example 13.18 Figure 13.15 depicts an example page with four figures aligned on a 2 x 2 grid.

par(oma=rep(1.2, 4)) # outer margins (default 0)
par(mfrow=c(2, 2)) # a 2x2 plot grid

for (i in 1:4) {
plot.new()
par(mar=c(3, 3, 2, 2)) # each subplot will have the same inner margins
plot.window(c(i-1, i+1), c(-1, 1)) # separate user coordinates for each

text(i, 0, sprintf("Plot region (plot %d)\n(%d, %d)", 1,
par("mfg")[1], par("mfg")[2]))

box("figure", lty="dashed") # a box around the figure region
box("plot") # a box around the plot region

axis(1) # horizontal axis (bottom)

axis(2) # vertical axis (left)

(continues on next page)
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(continued from previous page)

}

box("outer", lty="dotdash") # a box around the whole page
for (i in 1:4)
mtext(sprintf("Outer margin %d", 1), side=1, outer=TRUE)
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Figure 13.15. A page with four figures created using par(mfrow=c(2, 2)).

Thanks to mfrow and mfcol, we can create, e.g., a scatter plot matrix or different trel-
lis plots. If an irregular grid is required, we can call the slightly more sophisticated
layout function (which is incompatible with mfrow and mfcol). Examples will follow
later; see Figure 13.24 and Figure 13.26. Also, the fig parameter (with new=TRUE to sup-
press the creation of a new figure) creates a subplot in an arbitrary rectangular region
of the current page.

Certain grid sizes might affect the mex and cex parameters and hence the default font
sizes (amongst others). Refer to the documentation of par for more details.

13.2.6 Graphics devices

Where our plots are displayed depends on our development environment (Section 1.2).
Users of JupyterLab see the plots embedded into the current notebook, consumers
of RStudio display them in a dedicated Plots pane, working from the console opens a
new graphics window (unless we work in a text-only environment), whereas compiling
utils: :Sweave or knitr markup files brings about an image file that will be included
in the output document.
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In practice, we might be interested in exercising our creative endeavours on different
devices. For instance, to draw something in a PDF file, we can call:

Catiro::CairoPDF("figure.pdf", width=6, heilght=3.5) # open "device"
# ... calls to plotting functions...
dev.off() # save file, close device

Similarly, a call to CairoPNG or CairoSVG creates a PNG or a SVG file. In both
cases, as we rely on the Catiro library, we can customise the font family by calling
Cairo::CatiroFonts.

Note Typically, web browsers can display PNG, JPEG, and SVG files. On the other
hand, PDF is a popular choice in printed publications (e.g., articles or books).

It is worth knowing that PNG and JPEG are raster graphics formats, i.e., they store
figures as bitmaps (pixel matrices). They are fast to render, but the file sizes might
become immense if we want decent image quality (high resolution). Most importantly,
they should not be scaled: it is best to display them at their original widths and heights.
However, JPEG uses lossy compression. Therefore, it is not a particularly fortunate file
format for data visualisations. It does not support transparency either.

On the other hand, SVG and PDF files store vector graphics, where all primitives are
described geometrically. This way, the image can be redrawn at any size and is always
expected to be aesthetic. Unfortunately, scatter plots with millions of points will result
in considerable files size and relatively slow rendition times (but there are tricks to
remedy this).

Users of TeX should take note of tikzDevice: : tikz, which creates TikZ files that can
be rendered as standalone PDF files or embedded in LaTeX documents (and its vari-
ants). It allows for typesetting beautiful equations using the standard "$...$" syntax
within any R string.

Many other devices are listed in help("Devices").

Note (*) The opened graphics devices form a stack. Calling dev. of f will return to the
last opened device (if any). See dev. list and other functions listed in its help page for
more information.

Each device has separate graphics parameters. When opening a new device, we start
with default settings in place.

Also, dev.hold and dev. flush can suppress the immediate display of the plotted ob-
jects, which might increase the drawing speed on certain interactive devices.

The current plot can be copied to another device (e.g., a PDF file) using dev.print.

Exercise13.19 (*) Create an animated PNG displaying a large point sliding along the sine
curve. Generate a series of video frames like in Figure 13.16. Stove each frame in a separate PNG
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file. Then, use ImageMagick® (compare Section 7.3.2 or rely on another tool) to combine these
files as a single animated PNG.

LA .| o N
n' . :’ . :'
. M . . 0
0 . . 0
\ Y \ :
. . . .
. . . '
. . .
!
. )

frame1 +* i frame1 ~* i frame21 +* b frame31 +*

Figure 13.16. Selected frames of an example animation. They can be stored in separate
files and then combined as a single animated PNG.

13.3 Higher-level functions

Higher-level plotting commands call plot.new, plot.window, axis, box, title, etc.,
and draw graphics primitives on our behalf. They provide ready-to-use implementa-
tions of the most common data visualisation tools, e.g., box-and-whisker plots, histo-
grams, pairs plots, etc. Below we review a few of them. We also show how they can be
customised or even rewritten from scratch if we are not completely happy with them.
They will inspire us to practice lower-level graphics programming.

Exercise 13.20 Check out the meaning of the ask, new, xaxt, yaxt, and ann graphics para-
meters and how they affect plot. new, axis, title, and so forth.

13.3.1 Scatter and function plots with plot.default and matplot

The default method for the S3 generic plot is a convenient wrapper around points
and lines.

Example 13.21 plot.defaul t candraw ascatter plot of aset of pointsin R ? possibly grouped
by another categorical variable. From Section 10.3.2 we know that a factor is represented as a
vector of small natural numbers. Therefore, its underlying level codes can be used directly as col
or pch specifiers; see Figure 13.17 for a demonstration. Take note of a call to the legend function.

plot(
jitter(iris[["Sepal.Length"]]), # x (it is a numeric vector)
jitter(iris[["Petal.Width"]]), # y (it is a numeric vector)
col=as.numeric(iris[["Species"]]), # colours (integer codes)
pch=as.numeric(iris[["Species"]]), # plotting symbols (integer codes)
xlab="Sepal length", ylab="Petal width",
asp=1 # y/x aspect ratio

)

legend(

(continues on next page)

5 https://imagemagick.org/
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(continued from previous page)
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Figure 13.17. as.numeric can define different plotting styles for each factor level.

Exercise 13.22 Passann=FALSE and axes=FAL SE to plot to suppress the addition of axes and
labels. Then, draw them manually using the functions discussed in the previous section.

Exercise 13.23 Draw a plot of they = sinx function using plot. Then, call lines to add
y = cos x. Later, do the same using a single reference to matplot. Include a legend.

Example13.24 Semi-transparency may convey additional information. Figure 13.18 shows
two scatter plots of adult females’ weights vs heights. If the points are fully opaque, we cannot
judge the density around them. On the other hand, translucent symbols somewhat imitate the
two-dimensional histograms that we will later depict in Figure 13.29.

nhanes <- read.csv(paste@("https://raw.githubusercontent.com/gagolews/",
"teaching-data/master/marek/nhanes_adult_female_bmx_20260.csv"),
comment.char="#", col.names=c("weight", "height", "armlen", "leglen",
"armcirc", "hipcirc", "waistcirc"))
par(mfrow=c(1, 2))
for (col in c("black", "#00000010"))
plot(nhanes[["height"]], nhanes[["weight"]], col=col,
pch=16, xlab="Height", ylab="Weight")

Example13.25 Figure13.19 depicts the average monthly temperatures in your next holiday des-
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Figure 13.18. Semi-transparent symbols can reflect the points’ distribution density.

tination: Warsaw, Poland (a time series). Note that the translucent ribbon representing the low-
high average temperature intervals was added using a call to polygon.

# Warsaw monthly temperatures; source: https://en.wikipedia.org/wiki/Warsaw
high <- c( 0.6, 1.9, 6.6, 13.6, 19.5, 21.9,
24.4, 23.9, 18.4, 12.7, 5.9, 1.6)
mean <- c(-1.8, -0.6, 2.8, 8.7, 14.2, 17.0,
19.2, 18.3, 13.5, 8.5, 3.3, -0.7)
low <- c(-4.2, -3.6, -0.6, 3.9, 8.9, 11.8,
13.9, 13.1, 9.1, 4.8, 0.6, -3.0)
matplot(1:12, cbind(high, mean, low), type="o", col=c(2, 1, 4), lty=1,
xlab="month", ylab="temperature [°C]", xaxt="n", pch=16, cex=0.5)
axis(1, at=1:12, labels=month.abb, line=-0.25, lwd=0, lwd.ticks=1)
polygon(c(1:12, rev(1:12)), c(high, rev(low)), border=NA, col="#ffff0033")
legend("bottom", c("average high", "mean", "average low"),
lty=1, col=c(2, 1, 4), bg="white")

Example 13.26 Figure 13.20 depicts a scatter plot similar to Figure 13.18, but now with the
points’ hue being a function of a third variable.

midpoints <- function(x) 0.5%(x[-1]+x[-length(x)])
z <- nhanes[["waistcirc"]]
breaks <- seq(min(z), max(z), length.out=10)
zf <- cut(z, breaks, include.lowest=TRUE)
col <- hcl.colors(nlevels(zf), "Viridis", alpha=0.5)
layout(matrix(c(1, 2), nrow=1), # two plots in one page

widths=c(1, lcm(3))) # second one is of width "3cm" (scaled)
# first subplot:

(continues on next page)
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Figure 13.19. Example time series. A semi-transparent ribbon was added by calling
polygon to highlight the area between the low-high ranges (intervals).

(continued from previous page)

plot(nhanes[["height"]], nhanes[["weight"]], col=col[as.numeric(zf)],

pch=16, xlab="Height", ylab="Weight")
# second subplot:
par(mar=c(2.2, 0.6, 2.2, 0.6))
plot.new(); plot.window(c(0, 1), c(0, nlevels(zf)))
rasterImage(as.matrix(rev(col)), 0, 0, 1, nlevels(zf), interpolate=FALSE)
text(0.5, 1:nlevels(zf)-0.5, sprintf("%3.0f", midpoints(breaks)))
mtext("Waist 9", side=3)

Exercise 13.27 Implementyourversion of pairs, being the function to draw a scatter plot mat-
rix (a pairs plot).

Exercise 13.28 ecdf returns an object of the S3 classes ecdf and stepfun. There are plot
methods overloaded for them. Inspect their source code. Then, inspired by this, create a function
to compute and display the empirical cumulative distribution function corresponding to a given
numeric vector.

Exercise13.29 spline performs cubic spline interpolation, whereas smooth.spline de-
termines a smoothing spline of a given two-dimensional dataset. Plot different splines for

cars[["dist"]] as a function of cars[["speed"]]. Which of these two functions is more
appropriate for depicting this dataset?
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Figure 13.20. A 2D scatter plot with a third variable represented by colours.

13.3.2 Bar plots and histograms

A bar plot is drawn using a series of rectangles (i.e., certain polygons) of different
heights (or widths, if we request horizontal alignment).

Example 13.30 Let’s visualise the dataset® listing the most frequent causes of medication ervors
(data are fabricated):

cat_med = c(
"Unauthorised drug", "Wrong IV rate", "Wrong patient"”, "Dose missed",
"Underdose"”, "Wrong calculation", "Wrong route", "Wrong drug",
"Wrong time", "Technique error”, "Duplicated drugs", "Overdose"

)
counts_med = c(1, 4, 53, 92, 7, 16, 27, 76, 83, 3, 9, 59)

A Pareto chart combines a bar plot featuring bars of decreasing heights with a cumulative per-
centage curve; see Figure 13.21.

0 <- order(counts_med)
cato_med <- cat_med[o]
pcto_med <- counts_med[o]/sum(counts_med)*100
cumpcto_med <- rev(cumsum(rev(pcto_med)))
# bar plot of percentages
par(mar=c(2.2, 0.6, 2.2, 6.6)) # wide left margin
midp <- barplot(pcto_med, horiz=TRUE, xlab="%",

col="white", xlim=c(0, 25), xaxs="r", yaxs="r", yaxt="n",

(continues on next page)

6 https://www.cec.health.nsw.gov.au/CEC-Academy/quality-improvement- tools/pareto- charts
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(continued from previous page)

width=3/4, space=1/3)

text(pcto_med, midp, sprintf("%.1f%%", pcto_med), pos=4, cex=0.89)

axis(4, at=midp, labels=cato_med, las=1)

box()

# cumulative percentage curve in a new coordinate system

par(usr=c(-4, 104, par("usr")[3], par("usr")[4])) # 0-100 with 4% addition

lines(cumpcto_med, midp, type="o", col=4, pch=18)

axis(3, col=4)

mtext("cumulative %", side=3, line=1.2, col=4)

text(cumpcto_med, midp, sprintf("%.1f%%", cumpcto_med), cex=0.89, col=4,
pos=c(4, 2)[(cumpcto_med>80)+1], offset=0.5)

cumulative %
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Figure 13.21. An example Pareto chart (a fancy bar plot). Double axes have a general
tendency to confuse the reader.

Note that barplot returned the midpoints of the bars, which we put in good use. By default, it
sets the xaxs="1" graphics parameter and thus does not extend the x-axis range by 4% on both
sides. This would not make us happy here, therefore we needed to change it manually.

Exercise 13.31 Draw a bar plot summarising, for each passenger class and sex, the number of
adults who did not survive the sinking of the deadliest 1912 cruise; see Figure 13.22 and the T1i -
tanic dataset.

Exercise 13.32 Implement your version of barplot, but where the bars are placed precisely at
the positions specified by the user, e.g., allowing the bar midpoints to be consecutive integers.

We will definitely not cover the (in)famous pie charts in our book. The human brain
is not very skilled at judging the relative differences between the areas of geometric
objects. Also, they are ugly (pie charts, not geometric objects in general).
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Figure 13.22. An example bar plot representing a two-way contingency table.

Moving on: a histogram is a simple density estimator for continuous data. It can be
thought of as a bar plot with bars of heights proportional to the number of observa-
tions falling into the corresponding disjoint intervals. Most often, there is no space
between the bars to emphasise that the intervals cover the whole data range.

A histogram can be computed and drawn using the high-level function hist; see Fig-
ure 13.23.

par(mfrow=c(1, 2))
for (breaks in list("Sturges", 25)) {
# Sturges (a heuristic) is the default; any value is merely a suggestion
hist(iris[["Sepal.Length"]], probability=TRUE, xlab="Sepal length",
main=NA, breaks=breaks, col="white")
box() # oddly, we need to add it manually
}

Exercise 13.33 Study the source code of hist.default. Note the invisibly-returned list of the
S3 class histogram. Then, study graphics: : :plot.histogram. Implement similar func-
tions yourself.

Exercise 13.34 Modify your function to draw a scatter plot matrix so that it gives the histograms
of the marginal distributions on its diagonal.

Example 13.35 Using layout mentioned in Section 13.2.5, we can draw a scatter plot with
marginal histograms; see Figure 13.24. Note that we split the page into four plots of unequal sizes,
but the upper right part of the grid is unused. We use hist for binning only (plot=FAL SE). Then,
barplot is utilised for drawing as it gives greater control over the process (e.g., supports vertical
layout).
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Figure 13.23. Example histograms for the same dataset.
layout(matrix(

c(1, 1, 1, 0, # the first row: the first plot of width 3 and nothing
3, 3, 3, 2, # the third plot (square) and the second (tall) in 3 rows
3, 3, 3, 2,
3, 3, 3, 2), nrow=4, byrow=TRUE))
par(mex=1, cex=1) # the layout function changed this!
x <- jitter(iris[["Sepal.Length"]])
y <- jitter(iris[["Sepal.Width"]])
# the first subplot (top)
par(mar=c(0.2, 2.2, 0.6, 0.2), ann=FALSE)
hx <- hist(x, plot=FALSE, breaks=seq(min(x), max(x), length.out=20))
barplot(hx[["density"]], space=0, axes=FALSE, col="#00000011")
# the second subplot (right)
par(mar=c(2.2, 0.2, 0.2, 0.6), ann=FALSE)
hy <- hist(y, plot=FALSE, breaks=seq(min(y), max(y), length.out=20))
barplot(hy[["density"]], space=0, axes=FALSE, horiz=TRUE, col="#00000011")
# the third subplot (square)
par(mar=c(2.2, 2.2, 0.2, 0.2), ann=TRUE)
plot(x, y, xlab="Sepal length", ylab="Sepal width",
xlim=range(x), ylim=range(y)) # default xlim, ylim

Example 13.36 (%) Kernel density estimators (KDEs) are another way to guesstimate the data
distribution. The density function, for a given numeric vector, returns a list with, amongst oth-
ers, the x and y coordinates of the points that we can pass directly to the lines function. Below
we depict the KDEs of data split into three groups; see Figure 13.25.
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Figure 13.24. A scatter plot with marginal histograms: three (four) plots on one page,
but on a nonuniform grid created using layout.

adjust_transparency <- function(col, alpha)
rgb(t(col2rgb(col)/255), alpha=alpha) # alpha in [0, 1]

pal <- adjust_transparency(palette(), 0.2)
kdes <- lapply(split(iris[["Sepal.Length"]], iris[["Species"]]), density)
matplot(sapply(kdes, “[[", "x"), sapply(kdes, ‘[[*, "v"),
type="1", xlab="Sepal length", ylab="density", lwd=1.5)
for (1 in seq_along(kdes))
polygon(kdes[[1]][["x"]], kdes[[1]][["y"]], col=pal[i], border=NA)
legend("topright", legend=levels(iris[["Species"]]), bg="white", lwd=1.5,
col=seq_along(levels(iris[["Species"]])),
lty=seq_along(levels(iris[["Species"]])))
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Figure 13.25. Kernel density estimators of sepal length split by species in the iris data-
set. Note the semi-transparent polygons (again).

Exercise 13.37 (*) Implement a function that draws kernel density estimators for a given nu-
meric variable split by a combination of three factor levels; see Figure 13.26 for an example.

grid_kde <- function(data, values, x, y, hue) ...to.do...

tips <- read.csv(paste@("https://raw.githubusercontent.com/gagolews/",
"teaching-data/master/other/tips.csv”"),
comment.char="#", stringsAsFactors=TRUE)
head(tips, 3) # preview this example dataset

##  total bill tip sex smoker day time size
## 1 16.99 1.01 Female No Sun Dinner 2
#Ht 2 10.34 1.66 Male No Sun Dinner 3
#4 3 21.01 3.50 Male No Sun Dinner 3

grid _kde(tips, values="tip", x="smoker", y="time", hue="sex")

13.3.3 Box-and-whisker plots

We have already seen a chart generated by the boxplot function in Figure 5.1. Tinker-
ing with it will give us robust practice, which in turn shall make us perfect.

Exercise 13.38 Modify the code generating Figure 5.1 so that:

1. same doses are grouped together (more space between different doses added; also, on the
x-axis, only unique doses are printed),

2. different supps have different colours (add a legend explaining them).

Exercise 13.39 Write a function for drawing box plots using graphics primitives.
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Figure 13.26. An example grid plot (also known as a trellis, panel, conditioning, or lat-
tice plot) with kernel density estimators for a numeric variable (amount of tip in a US
restaurant) split by a combination of three factor levels (smoker, time, sex).

Exercise 13.40 (*) Write a function for drawing violin plots. They are similar to box plots but
use kernel density estimators.

Exercise 13.41 () Implement a bag plot, which is a two-dimensional version of a box plot. Use
chull to compute the convex hull of a point set.

13.3.4 Contour plots and heat maps

image is a convenient wrapper around rasterImage, which can draw contour plots,
two-dimensional histograms, heatmaps, etc. In particular, when plotting a function
of two variables like z = f (x, y), the magnitude of the z component can be expressed
using colour brightness or hue.

Example 13.42 Figure13.27 presents a filled contour plot of Himmelblaw's function, f (x,y) =
(% + y— 11)2 + (x + yz —7)2, forx € [-5,5] andy € [—4,4]. Acallto contour adds
labelled contour lines (which is actually a nontrivial operation).

x <- seq(-5, 5, length.out=250)

y <- seq(-4, 4, length.out=200)

z <- outer(x, y, function(xg, yg) (xg"2 + yg - 11)"2 + (xg + yg’2 - 7)"2)
image(x, y, z, col=grey(seq(1, 0, length.out=16)))

contour(x, y, z, nlevels=16, add=TRUE)

In image, the number of rows in z matches the length of x, whereas the number of
columns is equal to the size of y. This might be counterintuitive; when z is printed,
the image is its 90-degree rotated version.
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Figure 13.27. A filled contour plot with labelled contour lines.

Example 13.43 Figure 13.28 presents an example heatmap depicting Pearson’s correlations
between all pairs of variables in the nhanes data frame which we loaded some time ago.

o<-c(6, 5 1, 7, 4, 2, 3) # order of rows/cols (by similarity)
R <- cor(nhanes[o, o])
par(mar=c(2.8, 7.6, 1.2, 7.6), ann=FALSE)
image(1:NROW(R), 1:NCOL(R), R,
ylim=c(NROW(R)+0.5, 0.5),
zlim=c(-1, 1),
col=hcl.colors(20, "BluGrn", rev=TRUE),
xlab=NA, ylab=NA, asp=1, axes=FALSE)
axis(1, at=1:NROW(R), labels=dimnames(R)[[1]], las=2, line=FALSE, tick=FALSE)
axis(2, at=1:NCOL(R), labels=dimnames(R)[[2]], las=1, line=FALSE, tick=FALSE)
text(arrayInd(seq_along(R), dim(R)),
labels=sprintf("%.2f", R),
col=c("white", "black")[abs(R<0.8)+1],
cex=0.89)

Exercise 13.44 Check out the heatmap function, which uses hierarchical clustering to find an
aesthetic reordering of the matrix’s items.

Example 13.45 Figure 13.29 depicts a two-dimensional histogram. It approaches the idea of
reflecting the points’ density differently from the semi-transparent symbols in Figure 13.18.

histogram_2d <- function(x, y, k=25, ...)
{
breaksx <- seq(min(x), max(x), length.out=k)
fx <- cut(x, breaksx, include.lowest=TRUE)
(continues on next page)
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Figure 13.28. A correlation heatmap drawn using image.

(continued from previous page)
breaksy <- seq(min(y), max(y), length.out=k)
fy <- cut(y, breaksy, include.lowest=TRUE)
C <- table(fx, fy)
image(midpoints(breaksx), midpoints(breaksy), C,
xaxs="r", yaxs="r", ...)

}

par(mfrow=c(1, 2))
for (k in c(25, 50))
histogram_2d(nhanes[["height"]], nhanes[["weight"]], k=k,
xlab="Height", ylab="Weight",
col=c("#ffffffo0", hcl.colors(25, "Viridis", rev=TRUE))

Exercise 13.46 (*) Implement some two-dimensional kernel density estimator and plot it using
contour.

13.4 Exercises
Exercise 13.47 Answer the following questions.

« Can functions from the graphics package be used to adjust the plots generated by lattice
and ggplot2?
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Figure 13.29. Two-dimensional histograms with different numbers of bins, where the

bin

count is reflected by the colour.

What are the most common graphics primitives?

Can all high-level functions be implemented using low-level ones? As an example, discuss the
key ingredients used in barplot.

Some high-level functions discussed in this chapter carry the add parameter. What is its
purpose?

What are the admissible values of pch and Lty? Also, in the default palette, what is the mean-
ing of colours 1, 2, ..., 162 Can their meaning be changed?

Can all graphics parameters be changed?

What is the difference between passing xaxt="n"to plot. default vs setting it with par,
and then calling plot. default?

Which graphics parameters are set by plot. window?
What is the meaning of the usr parameter when using the logarithmic scale on the x-axis?

(*) How to place a plotting symbol exactly 1 centimetre from the top-left corner of the current
page (following the page’s diagonal)?

Semi-transparent polygons ave nice, right?

Can an ellipse be drawn using polygon?

What happens when we set the graphics parameter mfrow=c(2, 2)?
How to export the current plot to a PDF file?
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Exercise 13.48 Draw the 2022 BTC-to-USD close rates” time series. Then, add the 7- and
30-day moving averages. (*) Also, fit a local polynomial (moving) regression model using the
Savitzky-Golay filter (see loess).

Exercise 13.49 (*) Draw (from scratch) a candlestick plot for the 2022 BTC-to-USD rates®.

Exercise 13.50 (*) Create a function to draw a normal quantile-quantile (Q-Q) plot, i.e., for
inspecting whether a numeric sample might come from a normal distribution.

Exercise 13.51 (*) Draw a map of the world, where each country is filled with a colour whose
brightness or hue is linked to its Gini index of income inequality. You can easily find the data
on Wikipedia. Try to find an open dataset that gives the borders of each country as vertices of a
polygon (e.g., in the form of a (geo)]SON file).

Exercise 13.52 Next time you see a pleasant data visualisation somewhere, try to reproduce it
using base graphics.

For further information on graphics generation in R, see, e.g., Chapter 12 of [59], [49],
and [53]. Good introductory textbooks to data visualisation as an art include [57, 60].

In this chapter, we were only interested in static graphics, e.g., for use in printed pub-
lications or plain websites. Interactive plots that a user might tinker with in a web
browser are a different story.

And so the second part of our delightful course is ended.

7 https://github.com/gagolews/teaching-data/raw/master/marek/btcusd_close_2022.csv
8 https://github.com/gagolews/teaching-data/raw/master/marek/btcusd_ohlc_2022.csv


https://github.com/gagolews/teaching-data/raw/master/marek/btcusd_close_2022.csv
https://github.com/gagolews/teaching-data/raw/master/marek/btcusd_ohlc_2022.csv




Part II1

Deepest






14
Interfacing compiled code (**)

R is an effective glue language. It is suitable for composing whole data wrangling
pipelines: from data import through processing, analysis, and visualisation to export.
It makes using and connecting larger building blocks very convenient. R is also a com-
petent tool for developing usable implementations of standalone, general-purpose al-
gorithms, especially if they are of numerical nature. Nevertheless, for performance
reasons, we may consider rewriting computing-intensive tasks in C or C++'. Such a
move can be beneficial if we need a method that:

« has higher memory or time complexity when programmed using vectorised R
functions than its straightforward implementation,

« has an iterative or recursive nature, e.g., involving unvectorisable for or while loops,

- relies on complicated dynamic data structures (e.g., hash maps, linked lists, or
trees),

needs methods provided elsewhere and not available in R (e.g., other C or C++ lib-
raries).

In the current chapter, we will demonstrate that R works very well as a user-friendly
interface to compiled code.

As the topic is overall very technical, we will only cover the most important rudiments.
We will focus on writing or interfacing portable* function libraries that only rely on
simple® data structures (e.g., arrays of the type double and int). Thanks to this, we will
be able to reuse them in other environments such as Python (e.g., via Cython) or Julia
(remember that R is one of many languages out there). For those who are interested in
specifics, the definitive reference is the Writing R Extensions manual [66], but see also
Chapter 11 of [11]. Furthermore, R’s source code provides many working examples of
how to deal with R objects in C.

We assume some knowledge of the C language; see [39]. The reader can skip this

! Plain C and C++ are as fast as we can get without applying fancy CPU-specific optimisations or sim-
ilar hacks. Fortran is also supported but will not be covered in this book because of its smaller popularity.
Additionally, certain external packages are gateways to other languages, such as Java.

Nevertheless, D.E. Knuth once said: “The real problem is that programmers have spent far too much time
worrying about efficiency in the wrong places and at the wrong times; premature optimisation is the root
of all evil (or at least most of it) in programming” [40].

% Hence, we are not interested in the overall very convenient Repp or cpp11 packages. They define C++
classes that make interacting with R objects more pleasant for some users.

3 Thus, we will not discuss the ALTREP [56] representation of objects, ways to deal with environments
or pairlists, etc.
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chapter now and return to it later: the remaining material is not contingent on the
current one. Otherwise, from now on, we take for granted that our environment can
successfully build a source package with C code, as mentioned in Section 7.3.1. In par-
ticular, Win***s and m**OS users should install, respectively, RTools and Xcode.

Note To avoid ambiguity, in the main text, calls to C functions will be denoted by the
“C::” prefix, e.g., C: :spanish_inquisition().

14.1 Cand C++codeinR

14.1.1 Source files for compiled code in R packages

Perhaps the most versatile way to interact with portable C code is via standalone
R packages; compare Section 7.3.1 and Section 9.2.2. For the purpose of the cur-
rent chapter, we created a demo project available at https://github.com/gagolews/
cpackagedemo.

Exercise 14.1 Inspect the structure of cpackagedemo. Note that C source files are located in
the src/ subdirectory. Build and install the package using install. packages orthe “R CMD
INSTALL” command. Then, load the packagein R and callmy_ sum defined there on some numeric
vector.

The package provides an R interface to one C function, C: :my_c_sum, written in the
most portable fashion possible. Its declaration is included in the src/cfuns. h file:

#ifndef __ CFUNS_H
#define __CFUNS_H
#include <stddef.h>

double my_c_sum(const double* x, size_t n);

#endif

The function accepts a pointer to the start of a numeric sequence and its size, which
is a standard* way of representing an array of doubles. Its definition is given in src/
cfuns.c. We see that it is nothing more than a simple sum of all the elements in an
array:

#include "cfuns.h”

(continues on next page)

4 (*) A slightly more sophisticated representation (used, e.g., in GNU GSL and numpy) deals with a sliced
array, where we additionally store the so-called stride. Instead of inspecting elements one after another, we
advance the iterator by a given step size. This way, we could apply the same function on selected rows of a
matrix (if it is in the column-major order).
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(continued from previous page)

/* computes the sum of all elements in an array x of size n */
double my_c_sum(const double* x, size_t n)

{
double s = 0.0;
for (size_t 1 = 0; 1 < n; ++1) {
/* this code does not treat potential missing values specially
(they are kinds of NaNs); to fix this, add:
if (ISNA(x[1])) return NA_REAL; // #include <R.h> */
s += x[1];
}
return s;
}

To make C: :my_c_sum available in R, we have to introduce a wrapper around it that
works with the data structures from the first part of this jolly book. We know that an
R function accepts objects of any kind as input and yields anything as a result. In the
next section, we will explain that we get access to R objects via special pointers of the
type SEXP (S expressions). Thus, let us declare our R-callable wrapperin src/rfuns.h:

#ifndef _ RFUNS_H
#define __RFUNS_H
#include <R.h>
#include <Rinternals.h>
#include <Rmath.h>

SEXP my_c_sum_wrapper (SEXP x);

#endif

The actual definition is included in src/rfuns.c:

#include "rfuns.h"
#include "cfuns.h"

/* a wrapper around my_c_sum callable from R */
SEXP my_c_sum_wrapper (SEXP x)

{
double s;

if (!Rf_isReal(x)) {
/* the caller is expected to prepare the arguments
(doing it at the C level is tedious work) */
Rf_error(" x' should be a vector of the type 'double'");

s = my_c_sum(REAL(x), (size_t)XLENGTH(x));

(continues on next page)
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(continued from previous page)

return Rf_ScalarReal(s);

The arguments could be, technically speaking, prepared at the C level. For instance, if
x turned out to be an integer vector, we could have converted it to the double one (they
are two different types; see Section 6.4.1). Nevertheless, overall, it is very burdensome.
It is easier to use pure R code to ensure that the arguments are of the correct form
as well as to beautify the outputs. This explains why we only assert the enjoyment of
C::Rf_isReal(x). It guarantees thatthe C: :REAL and C: : XLENGTH functions correctly
return the pointer to the start of the sequence and its length, respectively.

Once C: :my_c_sumis called, we must convert it to an R object so that it can be returned
to our environment. Here, it is a newly allocated numeric vector of length one. We did
this by calling C: :Rf_ScalarReal.

Although optional (see Section 5.4 of [66]), we will register C::my_c_sum_wrapper
as a callable function explicitly. This way, R will not be struggling to find the spe-
cific entry point in the resulting dynamically linked library (DLL). We do this in src/
cpackagedemo.c:

#include <R_ext/Rdynload.h>
#include "rfuns.h”

/* the list of functions available in R via a call to .Call():
each entry is like {exported name, fun_pointer, number_of arguments} */
static const R_CallMethodDef cCallMethods[] = {
{"my_c_sum_wrapper", (DL_FUNC)&my_c_sum_wrapper, 1},
{NULL, NULL, 0} // the end of the list (sentinel)
13

/* registers the list of callable functions */
void R_1init_cpackagedemo(D1llInfo *dll)

{
R_registerRoutines(dll, NULL, cCallMethods, NULL, NULL);
R_useDynamicSymbols(dll, FALSE);

The function can be invoked from R using .Call. Here are the contents of R/my_sum.R:

my_sum <- function(x)

{

# prepare input data:
if (!is.double(x))
X <- as.double(x)

s <- .Call("my_c_sum wrapper", x, PACKAGE="cpackagedemo")
(continues on next page)
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# some rather random postprocessing:
attr(s, "what") <- deparse(substitute(x))
s

And, finally, here is the package NAMESPACE file responsible for registering the expor-
ted R names and indicating the DLL to use:

export(my_sum)
useDynLib(cpackagedemo)

Once the package is built and installed (e.g., by running “R CMD INSTALL <pkgdir>”
in the terminal or calling install.packages), we can test it by calling:

library("cpackagedemo")
my_sum(runif(100)/1600)
## [1] 0.49856

## attr(, "what")

## [1] "runif(100)/100"

Exercise 14.2. Extend the package by adding a function to compute the index of the greatest ele-
ment in a numeric vector. Notethat C uses o-based array indexing whereasin R, the first element
is at index 1. Compare its run time against which.max using proc. time.

14.1.2 R CMD SHLIB

The“R CMD SHLIB <files>”"shell command compiles one or more source files without
the need for turning them into standalone packages; see [66]. Then, dyn. load loads
the resulting DLL.

Exercise14.3 (*) Compile src/cfuns.c and src/rfuns.c from our demo package us-
ing ‘R CMD SHLIB”. Call dyn.load. Write an R function that uses .Call to invoke
C: :my_c_sum_wrapper from the second source file.

The direct SHLIB approach is convenient for learning C programming, including run-
ning simple examples. We will thus use it for didactic reasons in this chapter. The
inst/examples/csource.R file in our demo package includes the implementation of
an R function called csource. It compiles a given C source file, and loads the result-
ing DLL. It also extracts and executes a designated R code chunk preferably defining
a function that refers to .Call.

Here is an example source file, inst/examples/helloworld.c in the cpackagedemo
source code repository:
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// the necessary header files are automatically included by ‘csource’

SEXP C_hello()

{
Rprintf("The mill's closed. There's no more work. We're destitute.\n"
"I'm afraid I've no choice but to sell you all "
"for scilentific experiments.\n");
return R_NilValue;
}
/* R

# this chunk will be extracted and executed by ‘csource’.

hello <- function()
invisible(.Call("C_hello", PACKAGE="helloworld"))

R */
Let’s compile it and call the aforementioned R function.

source("~/R/cpackagedemo/inst/examples/csource.R") # defines csource
csource("~/R/cpackagedemo/inst/examples/helloworld.c")

hello()

## The mill's closed. There's no more work. We're destitute.

## I'm afraid I've no choice but to sell you all for scientific experiments.

Exercise 14.4 (*) C++, which can be thought of as a superset of the C language (but the devil is
in the detail), is also supported. Change the name of the aforementioned file to helloworld2.
cpp, add extern "C" before the function declaration, pass PACKAGE="helloworld2" to .
Call, and run csource on the new file.

Exercise 14.5 (*) Verify that C and C++ source files can coexist in R packages.

Example14.6 () It might be very educative to study the implementation of csource. We
should be able to author such functions ourselves now (a few hours’ worth of work), let alone read
with understanding.

# compiles a C or C++ source file using R CMD SHLIB,
# loads the resulting DLL, and executes the embedded R code

csource <- function(

fname,
libname=NULL, # defaults to the base name of fname' without extension
shlibargs=character(),
headers=pasted(

"#include <R.h>\n",

"#include <Rinternals.h>\n",

"#include <Rmath.h>\n"
Jo
R=ftle.path(R.home(), "bin/R")

(continues on next page)
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(continued from previous page)

stopifnot(file.exists(fname))
stopifnot(is.character(shlibargs))
stopifnot(is.character(headers))
stopifnot(is.character(R), length(R) == 1)

if (is.null(libname))
libname <- regmatches(basename(fname),

regexpr("[*.]*(?=\|..*)", basename(fname), perl=TRUE))

stopifnot(is.character(libname), length(libname) == 1)

# read the source file:
f <- paste(readLines(fname), collapse="|n")

# set up output file names:

tmpdir <- normalizePath(tempdir(), winslash="/") # tempdir on Win uses |

dynlib_ext <- .Platform[["dynlib.ext"]]

libpath <- file.path(tmpdir, sprintf("%s%s", libname, dynlib_ext))

cfname <- file.path(tmpdir, basename(fname))

rfname <- sub("\\..*?s", ".R", cfname, perl=TRUE) # .R extension

# separate the /* R ... <R code> ... R */ chunk from the source file:
rpart <- regexec("(?smi)*/\\* R\\s?(.*)R \\*/S", f, perl=TRUE)[[1]]

rpart_start <- rpart

rpart_len <- attr(rpart, "match.length")

if (rpart_start[1] < 0 || rpart_len[1] < 0)
stop("enclose R code between /* R ... and ... R */")

rcode <- substr(f, rpart_start[2], rpart_start[2]+rpart_len[2]-1)

cat(rcode, file=rfname, append=FALSE)

# write the C/C++ file:
ccode <- paste(
headers,
substr(f, 1, rpart_start[1]-1),
substr(f, rpart_start[1]+rpart_len[1], nchar(f)),
collapse="\n"
)
cat(ccode, file=cfname, append=FALSE)

# prepare the "R CMD SHLIB ..." command:
shlibargs <- c(

"CMD", "SHLIB",

sprintf("-o %s", libpath),

cfname,

shlibargs

(continues on next page)
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(continued from previous page)

)

# compile and load the DLL, run the extracted R script:
retval <- FALSE
oldwd <- setwd(tmpdir)
tryCatch({
if (libpath %in% sapply(getLoadedDLLs(), ‘[[*, "path"))
dyn.unload(libpath)
stopifnot(system2(R, shlibargs) == 0) # 0 == success
dyn. load(libpath)
source(rfname)
retval <- TRUE
}, error=function(e) {
cat(as.character(e), file=stderr())
P
setwd(oldwd)

if (!retval) stop("error compiling file or executing R code therein")
invisible(TRUE)

14.2 Handling basic types

14.2.1 SEXPTYPEs

All R objects are stored as instances of the C language structure SEXPREC. Usually, we
access them via pointers, which are of the type SEXP (S expression).

A C function referred to via .Call takes the very generic SEXPs as input. It outputs
another SEXP. Importantly, one of the said structure’s fields represents the actual R
object type (SEXPTYPE numbers); see Table 14.1 for a selection.

Table 14.1. Basic R types in C.



14 INTERFACING COMPILED CODE (**) 339

SEXPTYPE  TypeinR (typeof) TestinC

NILSXP NULL Rf_isNull(x) (true for R_NilValue
only)

RAWSXP raw TYPEOF(x) == RAWSXP

LGLSXP logical Rf_isLogical(x)

INTSXP integer Rf_isInteger(x)

REALSXP double Rf_isReal(x)

CPLXSXP complex Rf_isComplex(x)

STRSXP character Rf_isString(x)

VECSXP list Rf_isVectorList(x)

CHARSXP char (scalar string; internal) TYPEOF(x) == CHARSXP

EXTPTRSXP externalptr (internal) TYPEOF(x) == EXTPTRSXP

Example 14.7 To illustrate that any R object is available as a SEXP, consider the inst/
examples/sexptype. c file from cpackagedemo:

SEXP C_test_sexptype(SEXP x)

{

Rprintf("type of x: %s (SEXPTYPE=%d)\n",
Rf_type2char (TYPEOF(x)),
(int)TYPEOF(x)

X

return R_NilValue;

}
/* R

test_sexptype <- function(x)
invisible(.Call("C_test_sexptype", x, PACKAGE="sexptype"))
R */

Example calls:

csource("~/R/cpackagedemo/inst/examples/sexptype.c")
test_sexptype(1:10)

## type of x: integer (SEXPTYPE=13)
test_sexptype(NA)

## type of x: logical (SEXPTYPE=10)
test_sexptype("spam")

## type of x: character (SEXPTYPE=16)

We should refer to particular SEXPTYPEs via their descriptive names (constants; e.g., STRSXP),
not their numeric identifiers (e.g., 16); see Section 1.1 of [69] for the complete list®.

5 src/include/Rinternals.h in Rs source code repository; see, e.g., https://svn.r-project.org/R/
trunk.
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14.2.2 Accessing elements in simple atomic vectors

We have already seen an example function that processes a numeric vector; see
C::my_c_sum_wrapper above. Table 14.2 gives other important vector-like SEXPTYPEs
(atomic and generic), the C types of their elements, and the functions to access the
underlying array pointers. It is also worth knowing that as call to C: : XLENGTH returns
the length of a given sequence. Let’s stress that writing functions that accept int and
double array pointers and their lengths makes them easily reusable in other program-
ming environments. In many data analysis applications, we do not need much more.

Table 14.2. Basic array-like R types and their elements in C.

SEXPTYPE  Array elementtype Pointer access
RAWSXP typedef unsigned char Rbyte; RAW(X)
LGLSXP int (use the FALSE, TRUE, and NA_LOGICAL constants) LOGICAL(x)
INTSXP int INTEGER(X)
REALSXP double REAL(x)
CPLXSXP typedef struct { double r; double 1i; } COMPLEX(x)
Rcomplex;
STRSXP SEXP (array of SEXPs of the type CHARSXP) (not directly)
VECSXP SEXP (array of SEXPs of any SEXPTYPE) (not directly)
CHARSXP const char* (read-only; trailing o; check encoding) CHAR(x)

Important With raw, logical, integer, floating-point, and complex vectors, we get dir-
ect access to data that might be shared amongst many objects (compare Section 16.1.4).
SEXPRECs are simply passed by pointers (since SEXPs are exactly them). We must thus
refrain® from modifying objects passed as function arguments. Ways to create new
vectors, e.g., for storing auxiliary or return values, are discussed below.

Example 14.8 Consider inst/examples/sharedmen. c:

SEXP C_test_sharedmem(SEXP x)

{
if (!Rf_isReal(x) || XLENGTH(x) == 0)
Rf error("'x' should be a non-empty vector of the type 'double'");
REAL(x)[0] = REAL(x)[0]+1; // never do it; always make a copy;
// the underlying array ‘x' may be shared by many objects
return R_NilValue;
}
/* R

(continues on next page)

6 (*) Unless we know what we are doing, e.g., we are certain that we deal with a local variable in an R
function that invokes our .Call.
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(continued from previous page)
test_sharedmem <- function(x)
invisible(.Call("C_test_sharedmem", x, PACKAGE="sharedmem"))
R */

Calling the foregoing function on an example vector:

csource("~/R/cpackagedemo/inst/examples/sharedmem.c")
y<-1

z<-y

test_sharedmem(y)

print(c(y, z))

w [1] 2 2

modifies y and z in place. Hence, to maintain the compatibility with the classic R semantics, we
must always make a copy.

14.2.3 Representation of missing values

Most languages do not support the notion of missing values out of the box. Therefore,
in R, they have to be emulated. Table 14.3 lists the relevant constants and the conven-
tional ways for testing for missingness.

Table 14.3. Representation of missing values.

SEXPTYPE  Missingvalue Testing

RAWSXP (none) (none)

LGLSXP NA_LOGICAL (equal to INT_MIN) el == NA_LOGICAL
INTSXP NA_INTEGER (equal to INT_MIN) el == NA_INTEGER
REALSXP NA_REAL (a special NaN) ISNA(el)

CPLXSXP a pair of NA_REALSs ISNA(el.r)
STRSXP NA_STRING (a CHARSXP object) el == NA_STRING

Inlogical and integer vectors, NAs are represented as the smallest 32-bit signed integer.
Thus, we need to be careful when performing any operations on these types: testing
for missingness must be performed first.

The case of doubles is slightly less irksome, for a missing value is represented as a
special not-a-number. Many arithmetic operations on NaNs return NaNs as well, albeit
there is no guarantee’ that they will be of precisely the same type as NA_REAL. Thus,
manual testing for missingness is also advised.

7 (**) Namely, NAs are encoded as un-signalling NaNs 0x7ff00000000007A2 of the type double (the lower
32 payload bits are equal to 1954, decimally); see src/arithmetic.cin R’s source code. The payload propaga-
tion is not fully covered by the current IEEE 754 floating point standard; see [23] for discussion. Reliance on
such behaviour will thus make our code platform-dependent. R itself sometimes does that; theoretically,
this may cause NAs to be converted to (other) NaNs.
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Example14.9 The inst/examples/mean_naomit.c file defines a function to compute the
arithmetic mean of an int or a double vector:

SEXP C_mean_naomit(SEXP x)
{
double ret = 0.0;
size_t k = 0;

if (Rf_isInteger(x)) {
const int* xp = INTEGER(x);
size_t n = XLENGTH(x);
for (size_t 1=0; i<n; ++1)
if (xp[1] != NA_INTEGER) { // NOT: ISNA(xp[i])
ret += (double)xp[i];
k++;
}
7
else if (Rf_isReal(x)) {
const double* xp = REAL(x);
size_t n = XLENGTH(x);
for (size_t 1=0; i<n; ++1)
if (!ISNA(xp[i])) { // NOT: xp[i] == NA_REAL
ret += xp[i];
k++;

}

else
Rf_error("'x" should be a numeric vector");

return Rf_ScalarReal((k>0)?(ret/(double)k):NA_REAL);
}

/*R
mean_naomit <- function(x)
{
if (!is.numeric(x)) # neither integer nor double
X <- as.numeric(x) # convert to double (the same as as.double)
.Call("C_mean_naomit", x, PACKAGE="mean_naomit")
}
R */

There is some inherent code duplication but int and double are distinct types. Thus, they need
to be handled separately (we could have convert them to doub Les at the R level too). Some tests:

csource("~/R/cpackagedemo/inst/examples/mean_naomit.c")
mean_naomit(c(1L, NA_integer_, 3L, NA_integer_, 5L))

## [1] 3

mean_naomit(rep(NA_real_, 10))

## [1] NA

Exercise 14.10 Implement all and any in C. Add the na. rm argument.
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14.2.4 Memory allocation

To allocate a new vector of length one and set its only element, we can call
C::ScalarLogical, C::ScalarInteger, C::ScalarReal, etc. We have already used
these functions for returning R “scalars”. Vectors of arbitrary lengths can be created
using C: :Rf_allocVector (sexptype, size).Note thatthis function does notinitial-
ise the elements of logical and numeric sequences (amongst others). They will need to
be set manually after creation.

Important R implements a simple yet effective garbage collector that relies on refer-
ence counting. Occasionally®, memory blocks that can no longer be reached are either
freed or marked as reusable.

All allocated vectors must be manually protected from garbage collection. To guard
against premature annihilation, R maintains a stack® of objects. C: :PROTECT(sexp)
pushes a given object pointer onto the top of the list. C: :UNPROTECT(n) pops the last
n elements from it in the last-in-first-out manner. At the end of a .Call, R checks if
the number of protects matches that of unprotects and generates a warning if there is
a stack imbalance.

Protection is not needed:

- for arguments to functions referred to by .Call, as they are already in use and
hence protected,;

- forobjectsassigned aslist or charactervectors’ elements using C: : SET_VECTOR_ELT
and C::SET_STRING_ELT (see below); when the container is protected, so are its
components;

- when we return the allocated vector to R immediately after creating it (like in re-
turn Rf_ScalarReal(val) in a C function invoked by .Call).

Example14.11 Here is a function to compute the square of each element in a numeric vector.
Note that the new vector must be protected from garbage collection while data are being prepared.

SEXP C_squarel(SEXP x)

{
// no need to call PROTECT(x), it i1s already in use

if (IRf_isReal(x)) Rf_error("'x" should be of the type 'double’");

size_t n = XLENGTH(x);
const double* xp = REAL(x);

SEXP y = PROTECT(Rf_allocVector (REALSXP, n)); // won't be GC'd
(continues on next page)

8 A safe strategy is to assume that any call to a function from R's API may trigger the memory cleanup. On
a side note, we may call the gc function in R to enforce rubbish removal. It also reports the current memory
usage.

9 (**) C::R_PreserveObject protects an arbitrary SEXP until C: :R_ReleaseObject is called manually.
With this mechanism, objects are not automatically released at the end of a .Call.
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(continued from previous page)
double* yp = REAL(y);

for (size_t 1=0; i<n; ++1) {
if (ISNA(xp[1])) yp[i]
else yp[i]

xp[i]; // NA_REAL
xp[1]*xp[1];

}

UNPROTECT(1); // pops one object from the protect stack;
// does not trigger garbage collection, so we can return ‘y' now
return y; // R will retrieve and protect it

}

/* R

squarel <- function(x)

{
if (!is.double(x)) x <- as.double(x)
.Call("C_squarel”, x, PACKAGE="squarel")

}

R */

As an alternative, in this case, we may use C: :Rf_duplicate:

SEXP C_square2(SEXP x)

{
if (!Rf_isReal(x)) Rf error(" x" should be of the type 'double'");
X = PROTECT(Rf _duplicate(x)); // OK; just replaces the pointer (address)
size_t n = XLENGTH(x);
double* xp = REAL(x);
for (size_t i=0; i<n; ++1)
if (!ISNA(xp[1])) xp[i1] = xp[i]*xp[1];
UNPROTECT(1);
return x;
}
/* R
square2 <- function(x)
{
if (!is.double(x)) x <- as.double(x)
.Call("C_square2", x, PACKAGE="squarel")
}
R */
Some tests:

csource("~/R/cpackagedemo/inst/examples/squarel.c")

(continues on next page)
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(continued from previous page)
squarel(c(-2, -1, 0, 1, 2, 3, 4, NA_real_))
## [1] 4 1 0 1 4 9 16 NA
csource("~/R/cpackagedemo/inst/examples/square2.c")
square2(c(-2, -1, 0, 1, 2, 3, 4, NA_real_))
## [1] 4 1 0 1 4 9 16 NA

We can claim auxiliary memory from the heap during a function’s runtime using the
well-known C: :malloc (or new in C++). We are of course fully responsible for releasing
itviaC::free (or delete).

Example 14.12 Here is our version of the which function.

SEXP C_which1(SEXP x)

{
if (!Rf_isLogical(x)) Rf_error(" x" should be of the type 'logical'");

size_t n = XLENGTH(x), 1, k;
const int* xp = LOGICAL(x);

size_t* d = (size_t*)malloc(n*sizeof(size_t)); // conservative size
if (!d) Rf_error("memory allocation error");

for (i=0, k=0; i<n; ++1)
if (xp[i] != NA_LOGICAL && xp[i])
dfk++] = 1;

// Rf_allocVector can longjmp, memory leak possible...
SEXP y = PROTECT(Rf_allocVector(REALSXP, k));
double* yp = REAL(y); // yes, the type is double; ready for long vectors
for (i1=0; i<k; ++1)
yp[i] = (double)d[i]+1; // R uses 1-based indexing

free(d);
UNPROTECT(1);
return y;

}

/* R
which1l <- function(x)
{
if (!is.logical(x)) x <- as.logical(x)
.Call("C_which1", x, PACKAGE="which1")
}
R */

Some tests:
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csource("~/R/cpackagedemo/inst/examples/which1.c")
which1(c(TRUE, FALSE, TRUE, NA, TRUE))
## [1] 1 35

Exercise 14.13 R’s which returns either an int or a double vector, depending on the size of
the input vector (whether it is shorter than 231 — 1). Rewrite the above to take that into account:
integer arithmetic is slightly faster.

Note (") R’s exception handling uses a long jump'. Therefore, when calling
C::Rf_error (whether directly or not) normal stack unwinding will not occur. This
is particularly important when using C++ objects which deallocate memory in their
destructors as they might not be invoked whatsoever.

In the preceding example, a call to C: :Rf_allocVector may trigger a long jump, e.g.,
if we run out of available memory. In such a case, d will not be freed.

Thus, care should be taken to make sure there are no memory leaks. We can sometimes
switchto C: :R_alloc(n, size)whichallocates n*size bytes. The memory it requests
will automatically be garbage-collected at the end of a .Call.

Otherwise, we should ensure that blocks relying on manual memory allocation are
not mixed with the calls to R API functions. In our C: :which1, it would be better to
determine the desired size of y and allocate it before calling C: :malloc.

Example14.14 (*) Ifwedo notlike that we are potentially wasting memory in the case of sparse
logical vectors, we can rely on dynamically growable arrays. Below is a C++ rewrite of the forego-
ing function using deque (double-ended queue) from the language’s standard libvary.

#include <deque>

extern "C" SEXP C_which2(SEXP x)

{
if (!Rf_isLogical(x)) Rf_error("'x" should be of the type 'logical'");

size_t n = XLENGTH(x), i, k=0;
const int* xp = LOGICAL(x);

// precompute k, Rf allocVector can do a longjmp

for (1=0; i<n; ++1) if (xp[i] != NA_LOGICAL && xp[i]) k++;
SEXP y = PROTECT(Rf_allocVector (REALSXP, k));

double* yp = REAL(y); // ready for long vectors

std: :deque<size_t> d; // allocates memory
for (i=0; i<n; ++1)
if (xp[i] != NA_LOGICAL && xp[i])
d.push_back(1);
(continues on next page)

10 https://en.wikipedia.org/wiki/Setjmp.h
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i=0;
for (size_t e : d)
yp[i++] = (double)e+1; // R uses 1-based indexing

UNPROTECT(1);
return y; // d's destructor will be called automatically

}

/* R
which2 <- function(x)
{
if (!is.logical(x)) x <- as.logical(x)
.Call("C_which2", x, PACKAGE="which2")
}
R */

Example calls:

csource("~/R/cpackagedemo/inst/examples/which2.cpp")
x <- (runif(10) > 0.5)

stopifnot(which(x) == which1(x))

stopifnot(which(x) == which2(x))

Alternatively, we could have used C: : realloc to extend an initially small buffer created using
C: :malloc by, say, 50% whenever it is about to overflow.

14.2.5 Lists

For safety reasons, we do not get access to the underlying pointers in lists and char-
acter vectors. List items can be read by calling C: : VECTOR_ELT(x, index) and can be
set with C: :SET_VECTOR_ELT(x, index, newval). Note that lists (VECSXPs) are com-
prised of SEXPs of any type. Hence, after extracting an element, its SEXPTYPE needs to
be tested using one of the functions listed in Table 14.1. This can be tiresome.

Example 14.15 Here is a rather useless function that fetches the first and the last element in a
given numeric vector or a list. However, if the latter case, we apply the function recursively on all
its elements.

SEXP C_firstlast(SEXP x)
{
if (!Rf_isVector(x) || XLENGTH(x) == 0)
Rf_error(" x' must be a non-empty vector (atomic or generic)");
else if (Rf_isReal(x)) {
SEXP y = PROTECT(Rf_allocVector(REALSXP, 2));

(continues on next page)

11 To get the object reference counting right, C: : SET_VECTOR_ELT needs to unprotect the old element and
start protecting the new one.
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(continued from previous page)

REAL(y)[0] = REAL(x)[0]; // first
REAL(y)[1] = REAL(x)[XLENGTH(x)-1]; // last
UNPROTECT(1);

return y;

}

else if (Rf_isVectorList(x)) {
SEXP y = PROTECT(Rf_allocVector(VECSXP, 2));
// VECTOR_ELT(x, 1) is PROTECTed by the container;
// SET_VECTOR_ELT does not trigger GC; no need to call PROTECT
// on the result of C _firstlast(...) in this context
SET_VECTOR ELT(y, 0, C_firstlast(VECTOR ELT(x, 0)));
SET_VECTOR_ELT(y, 1, C_firstlast(VECTOR_ELT(x, XLENGTH(x)-1)));
UNPROTECT(1);
return y;

}

else
Rf_error("other cases left as an exercise");

return R_NilValue; // avoid compiler warning

}
/* R

firstlast <- function(x)
.Call("C_firstlast", x, PACKAGE="firstlast")
R */

Testing:

csource("~/R/cpackagedemo/inst/examples/firstlast.c")
firstlast(c(1, 2, 3))

## [1] 1 3

firstlast(list(c(1, 2, 3), c(4, 5), 6))

## [[1]]

## [1] 1 3

##

## [[2]]

# [1] 6 6

firstlast(list(c(1, 2, 3), 4, 5, list(6, c(7, 8), c(9, 10, 11))))
## [[1]]

## [1] 1 3

##

## [[2]]

## [[2]][[1]]

## [1] 6 6

##

## [[2]]1[[2]]

## [1] 9 11

Exercise 14.16 Implement a C function that returns the longest vector in a given list. Use
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C: :Rf_isVector to check whether a given object is an atomic or a generic vector, and hence
if C: : XLENGTH can be called thereon.

Exercise 14.17 Inscribe your version of unlist. Consider scanning the input list twice. First,
determine the size of the output vector. Second, fill the veturn object with the un-listed values.

Exercise 14.18 Write a C function that takes a list of numeric vectors of identical lengths. Re-
turn their elementwise sum: the first element of the output should be the sum of the first elements
in every input vector, and so forth.

14.2.6 Character vectors and individual strings ()

Character vectors (STRSXPs) are similar to VECSXPs except that they only carry
individual strings which are represented using a separate data type, CHARSXP.
C::STRING_ELT(x, 1index) and C::SET_STRING_ELT(x, index, newval) play the
role of the element getters and setters.

Important Ifwe are notinterested in text processing but rather in handling categorical
data or defining grouping variables, we should consider converting character vectors
to factors before issuing a . Call. Comparing small integers is much faster than strings;
see below for more details.

Because of R’s string cache, there are no duplicate strings in the memory. However,
this feature could only be guaranteed by making data in CHARSXPs read-only. We can
access the underlying const char* pointer by calling C: : CHAR(s). As typicalin C, a
string is terminated by byte o.

Note R strings may be of different encodings; compare Section 6.1.1. For portability
and peace of mind, it is best to preprocess the arguments to .Call using enc2utf8,
which converts all strings to UTF-82.

Despite being the most universal encoding, UTF-8 does not represent each code point
using a fixed number of bytes. For instance, computing the string length requires it-
erating over all its elements. For CHARSXPs, C: : XLENGTH returns the number of bytes,
not including the trailing o.

It is thus best to leave the processing of strings to the dedicated libraries, e.g., ICU*
or rely on functions from the stringi package [27] at the R level.

C strings can be converted to CHARSXPs by calling C::Rf_mkCharCE(stringbuf,
CE_UTF8) orC: :Rf_mkCharLenCE(stringbuf, buflen, CE_UTF8).Ifwearesurethat
a string is in ASCII (a subset of UTF-8), we can also call C: :Rf_mkChar (stringbuf).

12 Take care when calling C: :Rprintf, though. It should only be used to output messages in the native
encoding, which does not necessarily have to be UTF-8, although this landscape is slowly changing. Sticking
to ASCII is a safe choice.

3 https://icu.unicode.org/
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We should never return CHARSXPs as results to R. They are for internal use only. They
must be wrapped inside a character vector, e.g., using C: :Rf_ScalarString.

14.2.7 Calling R functions from C (**)

Section 5.11 of [66] discusses ways to call R functions in C. To understand them, we
will first need to study the material from the remaining chapters of our book, i.e., en-
vironments and the related evaluation model. They can be useful, e.g., when calling
optimisation algorithms implemented in C on objective functions written in R.

14.2.8 External pointers (**)

For storing arbitrary C pointers, there is a separate basic R type named externalptr
(SEXPTYPE of EXTPTRSXP); see Section 5.13 of [66] for more details. We can use them to
maintain dynamic data structures or resource handlers between calls to R functions.
The problem with these is that pointers are passed as... pointers. They can easily break
R’s pass-by-value-like semantics, where changes to the state of the referenced object
will be visible outside the call.

Example14.19 (**) inst/examples/stack.cpp provides a C++ implementation of the
stack data structure, being a last-in-first-out container of arbitrary R objects:

#include <deque>

class S : public std::deque<SEXP>

{
public: ~S()
{ // destructor: release all SEXPs so that they can be GC'd
while (!this->empty()) {
SEXP obj = this->front();
this->pop_front();
R_ReleaseObject(obj);
}
}
Fs

S* get_stack_pointer (SEXP s, bool check_zero=true) // internal function

{
if (TYPEOF(s) != EXTPTRSXP)
Rf_error("not an external pointer");

SEXP tag = R_ExternalPtrTag(s); // our convention, this can be anything
if (TYPEOF(tag) != CHARSXP || strcmp(CHAR(tag), "stack") != 0)
Rf_error("not a stack");

S* sp = (S*)R_ExternalPtrAddr(s);
if (check_zero && !sp)
Rf _error("address is 0");

(continues on next page)
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(continued from previous page)

return sp;
}
void stack_finaliser(SEXP s) // internal function
{
// called during garbage collection
S* sp = get_stack_pointer(s, false);
if (sp) {
delete sp; // destruct S, release SEXPs
R_ClearExternalPtr(s);
}
7
extern "C" SEXP C_stack_create()
{
S* sp = new S(); // stack pointer
SEXP s = PROTECT(
R_MakeExternalPtr((void*)sp, /*tag*/mkChar("stack"), R_NilValue)
)5
R_RegisterCFinalizerEx(s, stack_finaliser, TRUE); // auto-called on GC
UNPROTECT(1);
return s;
}
extern "C" SEXP C_stack_empty(SEXP s)
{
S* sp = get_stack_pointer(s);
return Rf_ScalarlLogical(sp->empty());
}
extern "C" SEXP C_stack_push(SEXP s, SEXP obj)
{
S* sp = get_stack_pointer(s);
R_PreserveObject(obj);
sp->push_front(obj);
return R_NilValue;
}

extern "C" SEXP C_stack_pop(SEXP s)
{
S* sp = get_stack_pointer(s);
if (sp->empty())
Rf error("stack is empty");
SEXP obj = sp->front();
sp->pop_front();
R_ReleaseObject(obj);
return obj;

(continues on next page)
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(continued from previous page)

}
/* R

stack_create <- function()
.Call("C_stack_create", PACKAGE="stack")

stack_empty <- function(s)
.Call("C_stack_empty", s, PACKAGE="stack")

stack_push <- function(s, obj)
.Call("C_stack_push", s, obj, PACKAGE="stack")

stack_pop <- function(s)
.Call("C_stack_pop", s, PACKAGE="stack")
R */

Note how we preserve R objects from garbage collection. Some tests:

csource("~/R/cpackagedemo/inst/examples/stack.cpp")

s <- stack_create()

print(s)

## <pointer: 0x561445630d90>

typeof(s)

## [1] "externalptr"

for (1 in c("one", "two", "Spanish Inquisition"))
stack_push(s, 1)

while (!stack_empty(s))
print(stack_pop(s))

## [1] "Spanish Inquisition”

## [1] "two"

## [1] "one"

Note that pointers are not serialisable. They cannot be saved for use in another R ses-
sion.

14.3 Dealing with compound types
14.3.1 Reading and setting attributes

From Chapter 10, we know that compound types such as matrices, factors, or data
frames are represented using basic data structures. Usually, they are atomic vectors
or lists organised in a predefined manner.

C::Rf_getAttrib(x, attrname)andC::Rf_setAttrib(x, attrname, newval) gets
and sets specific attributes of an object x. Their second argument, attrname, should
be a one-element STRSXP. For convenience, the R_ClassSymbol, R_DimNamesSymbol,



14 INTERFACING COMPILED CODE (**) 353

R_DimSymbol, R_NamesSymbol, R_RowNamesSymbol, and R_LevelsSymbol constants
can be used instead of the STRSXP versions of the "class", "dimnames", "dim",
"names", "row.names", and "levels" strings.

Example 14.20 Consider a function for testing whether an object is of a given class:

#include <string.h>

SEXP C_isofclass(SEXP x, SEXP class)

{
if (!Rf_isString(class) 8&& XLENGTH(class) != 1)
Rf_error("'class' must be a single string");

if (!0BJECT(x)) // is the class attribute set at all?
return Rf_ScalarLogical(FALSE);

SEXP xclass = Rf_getAttrib(x, R_ClassSymbol); // STRSXP (guaranteed)
const char* ¢ = CHAR(STRING_ELT(class, 0)); // class arg as a C string
size_t n = XLENGTH(xclass);
for (size_t i=0; i<n; ++1)
if (strecmp(CHAR(STRING_ELT(xclass, 1)), c) == 0)
return Rf_ScalarlLogical(TRUE);

return Rf_ScalarLogical(FALSE);
}

/* R
isofclass <- function(x, class)

.Call("C_isofclass”, x, class, PACKAGE="isofclass")
R */

Some tests:

csource("~/R/cpackagedemo/inst/examples/isofclass.c")
isofclass(Sys.time(), "POSIXct")

## [1] TRUE

isofclass(cbind(1:5, 11:15), "matrix")

## [1] FALSE

Notethata matrix has animplicit class (reported by the c Lass function), butitsc Lass attribute
does not have to be set. Hence the negative result.

Example 14.21 Write a function that feiches a particular named element in a list.

14.3.2 Factors

Factors (Section 10.3.2) are represented as integer vectors with elements in the set {1,
2, ..., k, NA_integer_} for some k. They are equipped with the levels attribute, being
a character vector of length k. Their class attribute is set to factor.
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Example 14.22 Anexampleimplementation ofa function to compute the number of occurrences
of each factor level is given below.

SEXP C_table1(SEXP x)

{
if (!Rf_isFactor(x)) Rf_error("'x' is not a 'factor' object");
size_t n = XLENGTH(x);
const int* xp = INTEGER(x); // 'x' 1s INTSXP
SEXP levels = Rf_getAttrib(x, R_LevelsSymbol); // ‘levels' is a STRSXP
size_t k = XLENGTH(levels);
SEXP y = PROTECT(Rf_allocVector (REALSXP, k));
double* yp = REAL(y);
for (size_t 1=0; i<k; ++1)
yp[i] = 0.0;
for (size_t j=0; j<n; ++j) {
if (xp[j] != NA_INTEGER) {
if (xp[j] <1 /] xp[i] > k)
Rf_error("malformed factor"); // better safe than sorry
yplxp[j]-1] += 1.0; // levels are 1..k, but C needs 0..k-1
}
}
Rf setAttrib(y, R_NamesSymbol, levels); // set names attribute
UNPROTECT(1);
return y;
}
/* R
tablel <- function(x)
{
if (!is.factor(x)) x <- as.factor(x)
.Call("C table1", x, PACKAGE="table1")
}
R */
Testing:

csource("~/R/cpackagedemo/inst/examples/tablel.c")

table1(c("spam", "bacon", NA, "spam", "eggs", "bacon", "spam", "spam"))
## bacon eggs spam

## 2 1 4

Exercise 14.23 Create a function to compute the most frequently occurring value (mode) in a
given factor. Return a charactervector. If a mode is ambiguous, return all the possible candidates.
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14.3.3 Matrices

Matrices (Chapter 11) are flat atomic vectors or lists with the dim attribute being an
integer vector of length two. The class attribute does not have to be set (but the
class function returns matrix and array). Matrices are so important in data ana-
lysis that they have been blessed with a few dedicated functions available at the C
level. C::Rf_isMatrix tests if a given object meets the criteria mentioned above.
C::Rf_allocMatrix(sexptype, nrows, ncols) allocates a new matrix.

R relies on the Fortran order of matrix elements, i.e., it uses the column-major align-
ment. Let A be a matrix with » rows and m columns (compare C: :Rf_nrows and
C::Rf_ncols). Then, the element in the i-th row and the j-th column is at A[1+n*j].
The dimnames attributes must be handled manually, though.

Example 14.24 Here is a function to compute the transpose of a numeric matrix:

SEXP C_transpose(SEXP x)

{
if (!Rf_isMatrix(x) || !Rf_isReal(x))
Rf_error("'x' must be a real matrix");
size_t n = Rf_nrows(x);
size_t m = Rf_ncols(x);
const double* xp = REAL(x);
SEXP y = PROTECT(Rf_allocMatrix(REALSXP, m, n));
double* yp = REAL(y);
for (size_t i1=0; i<n; ++1)
for (size_t j=0; j<m; ++j)
yp[j+m*i1] = xp[i+n*j];
SEXP dimnames = Rf_getAttrib(x, R_DimNamesSymbol);
if (!Rf_isNull(dimnames)) {
SEXP tdimnames = PROTECT(Rf_allocVector(VECSXP, 2));
SET_VECTOR_ELT(tdimnames, 0, VECTOR_ELT(dimnames, 1));
SET_VECTOR_ELT(tdimnames, 1, VECTOR_ELT(dimnames, 0));
Rf_setAttrib(y, R_DimNamesSymbol, tdimnames); // set dimnames
UNPROTECT(1);
// dimnames may have the names attribute too (left as an exercise)
}
UNPROTECT(1);
return y;
}
/* R
transpose <- function(x)
{

if (!is.matrix(x)) x <- as.matrix(x)
if (!is.double(x)) x[] <- as.double(x) # preserves attributes

(continues on next page)
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(continued from previous page)
.Call("C_transpose", x, PACKAGE="transpose")
}
R */
Testing:

csource("~/R/cpackagedemo/inst/examples/transpose.c")
transpose(cbind(c(1, 2, 3, 4), c(5, 6, 7, 8)))

## [,1] [,2] [,3] [,4]

## [1,] 1 2 3 4

## [2,] 5 6 7 8

transpose(Titanic[, "Male", "Adult", ])

## 1st 2nd 3rd Crew

## No 118 154 387 670

## Yes 57 14 75 192

Exercise 14.25 Author a C function named table2 that computes a two-way contingency
table.

14.3.4 Dataframes

Data frames (Chapter 12) are lists of the S3 class data. frame featuring, for some nand
m, m vectors of identical lengths n or matrices of n rows. The character vectors stored
in the row.names and names attributes give the n row and m column labels.

We process data frames as ordinary lists. However, assuming we only want to process
numeric data, we can extract the quantitative columns and put them inside a matrix
at the R level. If element grouping is required, they can be accompanied by a factor or
a list of factor variables. In many applications, this strategy is good enough.

14.4 Using existing function libraries
14.4.1 Checking for user interrupts

Long computations may lead to R’'s becoming unresponsive. The user may always re-
quest to cancel the evaluation of the current expression by pressing Ctr1+C. To allow
the processing of the event queue, we should call C: :R_CheckUserInterrupt() occa-
sionally, e.g., in every iteration of a complex for loop. Note that R might decide never
to return to our function. Thus, we have to prevent memory leaks, e.g., by preferring
C::R_allocoverC::malloc.
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14.4.2 Generating pseudorandom numbers

C::unif_rand returns a single pseudorandom deviate from the uniform distribution
on the unit interval. It is the basis for generating numbers from all other supported
distributions (Section 6.7.1 of [66]). It uses the same pseudorandom generator as we
described in Section 2.1.5. To read and memorise its seed (the * .Random. seed" object
in the global environment), we have to call C: : GetRNGstate() and C: : PutRNGstate()
at the beginning and the end of our function, respectively.

Example 14.26 Below is a function to generate a pseudorandom bit sequence:

SEXP C_randombits(SEXP n)

{
if (!Rf_isInteger(n) || XLENGTH(n) != 1)
Rf error("'n" should be a single integer");
int _n = INTEGER(n)[0O];
if (_n == NA_INTEGER || _n < 1)
Rf error("incorrect "n'");
SEXP y = PROTECT(Rf_allocVector (INTSXP, _n));
int* yp = INTEGER(y);
GetRNGstate();
for (int 1=0; i<_n; ++1)
yp[i] = (int)(unif_rand()>0.5); // not the best way to sample bits
PutRNGstate();
UNPROTECT(1);
return y;
}
/* R
randombits <- function(n)
{
if (!is.integer(n)) n <- as.integer(n)
.Call("C_randombits", n, PACKAGE="randombits")
}
R */
Let’s play around with it:

csource("~/R/cpackagedemo/inst/examples/randombits.c")
set.seed(123); randombits(10)

## [1] 01011601110

randombits(10)

## [1] 10110106060 1

set.seed(123); randombits(20)

#% [1] 01 011011101606110106000 1

(continues on next page)
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(continued from previous page)

set.seed(123); as.integer(runif(20)>0.5) # it's the same "algorithm"
# [1] 01 011011101606110106000 1

Exercise 14.27 Create a function to compute the most frequently occurring value (mode) in a
given factor object. In the case of ambiguity, return a vandomly chosen candidate.

14.4.3 Mathematical functions from the R API

Section 6.7 of [66] lists the available statistical distribution functions, mathematical
routines and constants, and other numerical utilities.

14.4.4 Header files from other R packages (*)

A package may use header files from another package. For this to be possible, it must
include the dependency name in the LinkingTo field of its DESCRIPTION file; see [66]
for discussion.

Exercise 14.28 The BH package on CRAN gives access to Boost, the header-only C++ librar-
ies that define many useful algorithms and data structures. Create an R package that calls
C++::boost: :math: : gcd after issuing the #include <boost/math/common_factor.
hpp> directive.

14.4.5 Specifying compiler and linker flags (**)

We can pass arbitrary flags to the compiler or linker, e.g., to use any library installed
on our system. Basic configuration can be tweaked via Makevars (or Makevars.win
on Win***s), e.g., by setting PKG_CFLAGS or PKG_LIBS variables. For maximum port-
ability across different platforms, which is overall challenging to ensure when we do
not wish to exclude Win***s users, we might be required to author custom config-
ure (and configure.win) scripts. For more information, see [66] which discusses,
amongst others, how to use OpenMP** in our projects.

14.5 Exercises
Exercise 14.29 Answer the following questions about the C language API for R.
« What are the most common SEXPTYPES?

4 Most R functions are single-threaded by design. It is up to the user to decide whether and how they
would like their code to be parallelised. More often than not, computations in the data science domain are
naively parallelisable (e.g., Monte Carlo simulations, exhaustive grid search, etc.). In such cases, the R pack-
age parallel might be helpful: it defines parallel versions of lapply and apply. However, for serious jobs,
running multiple single-threaded R instances via, e.g., the slurm workload manager might be a better idea
than starting a process that spawns many child threads.
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« How are missing values represented?
« How can we check ifan int is a missing value? What about a double?
« How to prevent SEXPs from being garbage-collected?

« How are character vectors represented? What is the difference between a CHARSXP and a
STRSXP?

« Why isit better to handle factor objects rather than raw character vectors if we merely would
like to define grouping variables?

« How are R matrices represented in C? Does R use the C or Fortran order of matrix elements?
« How are R data frames handled in C?

Exercise 14.30 Implement the C versions of the rep, seq, rle, match, findInterval,
sarple, order, unique, and split functions.

Exercise 14.31 (*) Read Writing R Extensions [66] in its entirety.

Exercise 14.32 (*) Download R’s source code from CRAN' or its Subversion'® (SVN) repos-
itory. Explore the header files in the src/inc lude subdirectory. They are part of the callable
API.

15 hteps://stat.ethz.ch/R/daily
16 https://svn.r-project.org/R/trunk
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Unevaluated expressions ()

In this and the remaining chapters, we will learn some hocus-pocus that should only
be of interest to the advanced-to-be' and open-minded R programmers who would
like to understand what is going on under our language’s bonnet. In particular, we
will inspect the mechanisms behind why certain functions act differently from what
we would expect them to do if a standard evaluation scheme was followed (compare
subset and transformmentioned in Section 12.3.9). Namely, in normal programming
languages, when we execute something like:

plot(x, exp(x))

the expression exp(x) is evaluated first. Then, and only then, its value® (in this case:
probably a numeric vector) is passed to the plot function as an actual parameter. Thus,
if x becomes seq(0, 10, length.out=1001), the above never means anything else
than:

plot(c(0.00, 0.01, 0.02, 0.03, ...), c(1.0000, 1.0101, 1.60202, 1.0305, ...))

But R was heavily inspired by the S language from which it has taken the notion of lazy
arguments (Chapter 17). Itis thus equipped with the ability to apply a set of techniques
referred to as metaprogramming (computing on the language, reflection). With it, we
can define functions that do not take their arguments for granted and clearly see the
code fragments passed to them. Having access to such unevaluated expressions, we can
do to them whatever we please: print, modify, evaluate on different data, or ignore
whatsoever.

In theory, this enables implementing many potentially helpful?, beginner-friendly fea-
tures and express certain requests in a more concise manner. For instance, that the
y-axis labels in Figure 2.2 could be generated automatically is precisely because plot
was able to see not only a vector like ¢(1.0000, 1.0101, 1.0202, 1.0305, ...)but
also the expression that generated it, exp(x).

! Remember that this book is supposed to be read from the beginning to the end. Also, if you have not
tested yourself against all the 300-0odd exercises suggested so far, please do it before proceeding with the
material presented here. Only practice makes perfect, and nothing is built in a day. Give yourself time: you
can always come back later.

2 Or a reference/pointer to an object that stores the said value.

3 The original authors of R (R. Thaka and R. Gentleman), in [38], mention: ‘A policy of lazy arguments is
very useful because it means that, in addition to the value of an argument, its symbolic form can be made
available in the function being called. This can be very useful for specifying functions or models in symbolic
form.”



362 Il DEEPEST

Nonetheless, as a form of untamed freedom of expression*, metaprogramming has the
endless potential to arouse chaos, confusion, and division in the user community. In
particular, we can introduce a dialect within our language that people outside our circle
will not be able to understand. Once it becomes a dominant one, other users will feel
excluded.

Cursed be us, for we are about to start eating from the tree of the knowledge of good
and evil. But remember: with great power comes great fun (and responsibility).

15.1 Expressions ata glance

At the most general level, expressions (statements) in a language like R can be classified
into two groups:

- simple expressions:

— constants (e.g., 3.14, 21, 42L,NA_real_, Inf, NaN, NA, FALSE, TRUE, "charac-
ter string",NULL, -1.3e-16, and 0x123abc),

N

— names (symbols, identifiers;e.g., x, iris, sum, data.frame, spam, *+°, "[<-",
and spanish_inquisition),

« compound expressions — combinations of n + 1 expressions (simple or compound)
of the form:

(f,eq,ep,...,6,).

As we will soon see, compound expressions represent a call to f (an operator) on a se-
quence of arguments eq, 5, ..., €,, (operands). It is why, equivalently, we denote them

byf(ey, ey, ... e,).

On the other hand, names have no meaning without an explicitly stated context, which
we will explore in Chapter 16. Prior to that, we treat them as meaning-less. Hence, for
the time being, we are only interested in the syntax or grammar of our language, not the
semantics. We are abstract in the sense that, in the expression mean(rates)+2, which
we know from Section 9.3.5 that we can equivalently articulate as "+' (mean(rates),
2), neither mean, x, nor even "+ has the usual sense. Therefore, we should consider it
the same as, say, f(g(x), 2) or nobody(expects(spanish_inquisition), 2).

4 Inthe current author’s opinion, R (as awhole, in the sense of R (GNU S) as a language and an environment)
would be better off if an ordinary programmer was not exposed so much to functions heavily relying on
metaprogramming. A healthy user can perfectly manage without (and thus refrain from using) them. The
fact that we call them advanced will not make us cool if we start horsing around with nonstandard evaluation.
Perverse is perhaps a better label.
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15.2 Language objects
There are three types of language objects in R:

- name (symbol) represents object names in the sense of simple expressions: names in
Section 15.1;

« call stores unevaluated function calls in the sense of compound expressions above;

. expression, quite confusingly, represents a sequence of simple or compound ex-
pressions (constants, names, or calls).

One way to create a simple or compound expression is by quoting, where the R inter-
preter is asked to refrain from evaluating a given command:

quote(spam) # name (symbol)
## spam

quote(f(x)) # call

## f(x)

quote(1+2+3*pi) # another call
## 1+ 2+ 3 * pi

None of the foregoing was executed. In particular, spam has no sense in the current
context (whichever that is). It is not the meaning that we are now after.

Single strings can be converted to names by calling:

as.name("spam")
## spam

Calls can be built programmatically by invoking:

call("sin", pi/2)
## sin(1.5707963267949)

Sometimes we would rather have the arguments quoted:

call("sin", quote(pi/2))

## sin(pi/2)

call("c", 1, exp(1), quote(exp(1)), pi, quote(pi))

## c(1, 2.71828182845905, exp(1), 3.14159265358979, pi)

Objects of the type expression can be thought of as list-like sequences that consist of
simple or compound expressions.

(exprs <- expression(1l, spam, mean(x)+2))
## expression(1, spam, mean(x) + 2)
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All arguments were quoted. We can select or subset the individual statements using
the extraction or index operators:

exprs[-1]

## expression(spam, mean(x) + 2)
exprs[[3]]

## mean(x) + 2

Exercise 15.1 Check the type of the object returned by a calltoc(1, "two", sd, list(3,
4:5), expression(3+3)).

There is also an option to parse a given text fragment or a whole source file:

parse(text="mean(x)+2")
## expression(mean(x) + 2)
parse(text=" # two code lines (comments are ignored by the parser)
X <- runif(5, -1, 1)
print(mean(x)+2)
")
## expression(x <- runif(5, -1, 1), print(mean(x) + 2))
parse(text="2+") # syntax error - unfinished business
## Error i1n parse(text = "2+"): <text>:2:0: unexpected end of input 1: 2+ "

Important The deparse function converts language objects to character vectors, e.g.:

deparse(quote(mean(x+2)))
#4 [1] "mean(x + 2)"

This function has the nice side effect of tidying up the code formatting:

exprs <- parse(text=
"+ (x, 2)->y; if(y>0) print(y**10[>log()) else { y<--y; print(y)}")

Let’s print them out:

for (e in exprs)
cat(deparse(e), sep="\n")
#y <- x + 2
## 1f (v > 0) print(log(y”10)) else {

## Yy <- -y
#H print(y)
)

Note Calling class on objects of the three aforementioned types yields name, call,
and expression, whereas typeof returns symbol, language, and expression, re-
spectively.
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15.3 Calls as combinations of expressions

We have mentioned that calls (compound expressions) are combinations of simple or
compound expressions of the form (f, ey, ..., e,,). The first expression on the list, de-
noted above by f, plays a special role. This is precisely seen in the following examples:

as.call(expression(f, x))

## f(x)

as.call(expression('+', 1, x)) # '+'(1, x)

#H 1+ X

as.call(expression(‘while', 1 < 10, 1 <- 1 + 1))

## while (1 < 10) 1 <- 1 + 1

as.call(expression(function(x) x**2, log(exp(1))))

## (function(x) x72)(log(exp(1)))

as.call(expression(1, x, y, z)) # utter nonsense, but syntactically valid
# 1(x, vy, z)

Recall from Section 9.3 that operators and language constructs such as if and while
are ordinary functions. Furthermore, keyword arguments to a call result in the under-
lying sequence’s being named:

expr <- quote(f(1+2, a=1, b=2))
length(expr) # three arguments -> length-4 sequence

## [1] 4
names(expr) # NULL if no arguments are named
## (1] """ g b

15.3.1 Browsing parse trees

Square brackets give us access to the individual expressions constituting an object of
the type call. For example:

expr <- quote(1+x)
expr[[1]]

## O+

exprlc(1, 3, 2)]
#ox + 1

expr[c(2, 3, 1, 3)]
# 1(x, "+, x)

A compound expression was defined recursively: it may consist of other compound
expressions. For instance, a statement:

expr <- quote(
while (1 < 10) {
cat("t =", i1, "\n", sep="")
(continues on next page)
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(continued from previous page)

1 <- i+l

can be rewritten® using the f (...) notation like:

quote(
‘while' (
‘<\(:L; 10):
{(cat("t =", 4, "\n", sep=""), “<-T(1, +'(1, 1))
)
)

We can dig into all the subexpressions using a series of extractions:

expr[[2]1[[1]] # expr[[c(2, 1)]]

# <’

expr[[311[[3110[31]1 # expr[[c(3, 3, 3)]]

# i+ 1

expr[[311[[311003110[21] # expr[[c(3, 3, 3, 1)]]
#Ht o+

Example 15.2 We can even compose a recursive function to traverse the whole parse tree:

recapply <- function(expr)

{
if (is.call(expr)) lapply(expr, recapply)
else expr

}

str(recapply(expr))
## List of 3

(continues on next page)

5 (*) Equivalently, in the fully parenthesised Polish notation (f, ...) (the prefix notation; traditionally
used in source code s-expressions in Lisp), we can express it like:

# (this is not valid R syntax)

(
‘while’,
(<7, 1, 10),
(
£,
(cat, "t =", i, "\n", sep=""),
(
oS,
i,
C+, 4L 1)
)
)
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-

(continued from previous page)
## S : symbol while
#4 S :List of 3

##  ..S : symbol <

##  ..S : symbol 1

# o ..S : num 10

## S :List of 3

##  ..S : symbol {

##  ..S :List of 5

#Hooo.. .S : symbol cat
## .S :chr "t ="
# .S : symbol 1
#wWoo.. ..S : chr "\n"
## .. $ : chr ""

## ..$ ;L1 of 3

## $ : symbol <-

## $ : symbol 1

# ..S :List of 3
#ooo.. ..$ : symbol +
## ee «. ..S : symbol 1
# ..S ¢ onum 1

15.3.2 Manipulating calls

The R language is homoiconic: it can treat code as data. This includes the ability to ma-
nipulate it on the fly. This is because, just like on lists, we can freely use the replace-
ment versions of "[* and “[[ on objects of the type call.

expr[[2]][[1]] <- as.name("<=") # was: ‘<’
expr[[3]] <- quote(i <- 1 * 2) # was: {...}
print(expr)

## while (1 <= 10) 1 <- 1 * 2

We are only limited by our imagination. We should spend some time and contemplate
how powerful this is, knowing that soon we will become able to evaluate any expres-
sion in different contexts.

15.4 Inspecting function definition and usage
15.4.1 Getting the body and formal arguments

Consider a function:

test <- function(x, y=1, z=f(x, y))
X+y+z # whatever
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We know from the first part of this book that calling print on a function reveals its
source code. But there is more. We can fetch its formal parameters in the form of a
named list®:

formals(test)
## Sx

##H

##

# Sy

#w# [1] 1

##

## Sz

## f(x, y)

Expressions corresponding to the default arguments are stored as ordinary list ele-
ments (for more details, see Section 17.2).

Furthermore, we can access the function’s body:

body(test)
X+ Yy + Z

Itis an object of the now well-known class call. Thus, we can customise it as we please:

body(test)[[1]] <- as.name("*") # change "+ to '*°
body(test) <- as.call(list(
as.name("{"), quote(cat("spam\n")), body(test)

))

print(test)

## function (x, y = 1, z = f(x, y))
#o{

# cat("spam\n")

## (x +y) *z

# ]

15.4.2 Getting the expression passed as an actual argument

A call to substitute reveals the expression passed as a function’s argument.

test <- function(x) substitute(x)

Some examples:

test(1)
## [1] 1
test(2+spam)
(continues on next page)

6 (*) Actually, a special internal datatype called pairlist, which is rarely seen at the R level; see [69] and
[66] for information on how to deal with them in C. In the current context, seeing pairlists as named lists is
perfectly fine.



15 UNEVALUATED EXPRESSIONS (¥) 369

(continued from previous page)
## 2 + spam
test(test(test(!!7)))
## test(test(!!7))
test() # it is not an error

Chapter 17 notes that arguments are evaluated only on demand (lazily): substitute
triggers no computations. This opens the possibility to author functions that interpret
their input whichever way they like; see Section 9.4.7, Section 12.3.9, and Section 17.5
for examples.

Example1s.3 library (see Section 7.3.1) specifies the name of the package to be loaded both
in the form of a chavacter string and a name:

library("gsl") # preferred
library(gsl) # discouraged; via as.character(substitute(package))

A user saves two keystrokes at the cost of not being able to prepare the package name program-
matically before the call:

which_package <- "gsl"

library(which_package) # library("which_package")

## Error in library(which_package): there is no package called
# 'which_package'

In order to make the above possible, we need to alter the function’s character. only argument
(which defaults to FAL SE):

library(which_package, character.only=TRUE) # OK

Exercise 15.4 In many functions, we can see a call like deparse(substitute(arg)) oras.
character(substitute(arg)). Study the source code of plot.default, hist.default,
prop. test, wilcox. test.default and the aforementioned library. Explain why they do
that. Propose a solution to achieve the same functionality without using reflection techniques.

15.4.3 Checking if an argument is missing
missing checks whether an argument was provided:

test <- function(x) missing(x)

test(1)
## [1] FALSE
test()
## [1] TRUE

Exercise 15.5 Study thesource codeof sample, seq. default,plot.default,matplot,and
t. test.default. Determine the role of a call to missing. Would introducing a default argu-
ment NULL and testing its value with is. null constitute a reasonable alternative?
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15.4.4 Determining how a function was called

Even though this somewhat touches on the topics discussed in the two coming
chapters, it is worth knowing that sys.call can look at the call stack and determine
how the current function was invoked. Moreover, match.call takes us a step further:
it returns a call with argument names matched to a function’s list of formal paramet-
ers. For instance:

test <- function(x, y, ..., a="yes", b="no"
{
print(sys.call()) # sys.call(0)
print(match.call())

X <- "maybe"

test("spam", "bacon", "eggs", u=("ham"<"jam"), b=x)

## test("spam", "bacon", "eggs", u = ("ham" < "jam"), b = x)

## test(x = "spam”, y = "bacon", "eggs", u = ("ham" < "jam"), b = x)

In both cases, the results are objects of the type call. We know how to manipulate
them already.

Another example where we see that we can dig into the call stack much more deeply:

f <- function(x)
{
g <- function(y)
{
cat("g:\n")
print(sys.call(0))
print(sys.call(-1)) # go back one frame
y

cat("f:\n")
print(sys.call(0))
g(x+1)

f(1)

# f:

## f(1)

## g:

## g(x + 1)
## f(1)

## [1] 2

Note Matching function parameters to the passed arguments is done in the following
order (see Section 4.3 of [70]):
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1. First, keyword arguments with names are matched exactly. Each name is matched
at most once.

2. Then, we take the remaining keyword arguments, but with the partial matching
of names listed before the ellipsis, *. .. . Each match must be unambiguous.

3. Third, we apply the positional matching to the remaining parameters.

4. Last, the ellipsis (if present) consumes all the remaining arguments (named or
not).

For instance:

test <- function(spam, jasmine, jam, ..., option=NULL)
print(match.call())

Example calls:

test(1, 2, 3, 4, option="yes")
## test(spam = 1, jasmine = 2, jam = 3, 4, option = "yes")
test(1, 2, jasmine="no", sp=4, ham=7)

## Warning in test(1, 2, jasmine = "no", sp = 4, ham = 7): partial argument
## match of 'sp' to 'spam'

## Warning in match.call(definition, call, expand.dots, envir): partial

#H argument match of 'sp' to 'spam'

"

## test(spam = 4, jasmine = "no", jam = 1, 2, ham = 7)

test(1, 2, ja=7) # ambiguous match

## Warning in test(1, 2, ja = 7): partial argument match of 'ja' to 'jasmine'
## Error in test(1, 2, ja = 7): argument 3 matches multiple formal arguments
test(o=7) # partial matching of ‘option" failed - ‘option' is after °

## test(o = 7)

Note again that our environment uses options(warnPartialMatchArgs=TRUE).

Exercise 15.6 A function can’ see how it was defined by its maker. Call sys. function inside
its body to reveal that.

Exercise15.7 Execute match.call(sys. function(-1), sys.call(-1)) intheaboveg
function.

15.5 Exercises
Exercise 15.8 Answer the following questions.
« What s a simple expression? What is a compound expression? Give a few examples.

« What is the difference between an object of the type call and that of the type expression?

7 Therefore, it is possible to have a function that returns a modified version of itself.
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« What do formals and body return when called on a function object?

« How to test if an argument to a function was given? Provide a use case for such a verification
step.

- Give a few ways to create an unevaluated call.

« What is the purpose of deparse(substitute(...))? Give a few examples of functions
that use this technique.

« What is the difference between sys. call and match. call?

« Why cannot we rely on partial matching in the call boxplot(x, horiz=TRUE) and have
to write the full argument name like boxplot(x, horizontal=TRUE) instead?

Exercise15.9 Write a function that takes the dot-dot-dot argument. Using match.call
(amongst others), determine the list of all the expressions passed via ". . . . Allow some of them
to be named (just like in one of the preceding examples). The solution will be given in Section 17.3.

Exercise 15.10 Write a function check_if calls(f, fun_list) that takes another func-
tion f as input. Then, it verifies if f calls any of the functions (veferred to by their names) from a
character vector fun_list.
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Environments and evaluation (¥)

In the first part of our book, we discussed the most crucial basic object types: numeric,
logical, and character vectors, lists (generic vectors), and functions. In this chapter, we
introduce another basic type: environments. Like lists, they can be classified as recursive
data structures; compare the diagram in Figure 17.2.

Important Each object of the type environment consists of:

« aframe* (Section 16.1), which stores a set of bindings that associate variable names
with their corresponding values; it can be thought of as a container of named R
objects of any type;

- areference to an enclosing environment* (Section 16.2.2), which might be inspected
(recursively!) when a requested named variable is not found in the current frame.

Even though we rarely interact with them directly (unless we need a hash table-like
data structure with a quick by-name element lookup), they are crucial for the R in-
terpreter itself. Namely, we shall soon see that they form the basis of the environment
model of evaluation, which governs how expressions are computed (Section 16.2).

16.1 Frames: Environments as object containers

To create a new, empty environment, we can call the new.env function:

el <- new.env()
typeof(el)
## [1] "environment"

In this section, we treat environments merely as containers for named objects of any
kind, i.e., we deal with the frame part thereof.

Let’s insert a few elements into e1:

! Not to be confused with a data frame, i.e., an object (list) of the S3 class data. frame; see Chapter 12.

%z Some also call it a parent environment, but we will not. We will try to follow the nomenclature estab-
lished in Section 3.2 of [1]. Note that there is a bit of a mess in the R documentation regarding how enclosing
environments are referred to.
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el[["x"]] <- "x in el"
el[["y"]] <- 1:3
el[["z"]] <- NULL # unlike in the case of lists, creates a new element

The “[[* operator provides us with a named list-like behaviour also in the case of ele-
ment extraction:

el[["x"]]

## [1] "x in el”

el[["spam"]] # does not exist

## NULL

(e1[["y"]] <- e1[["y"1]1*10) # replace with new content
## [1] 10 20 30

16.1.1 Printing

Printing an environment leads to an uncanny result:

print(el) # same with str(el)
## <environment: 0x55a8fb24d068>

It is the address where el is stored in the computer’s memory. It can serve as the en-
vironment’s unique identifier. As we have said, environments are of rather internal
interest. Thus, such an esoteric message was perhaps a good design choice; it wards
off novices. However, we can easily get the list of objects stored inside the container
by calling names:

names(el) # but attr(el, "names") is not set
## [1] "x" "y iz
Moreover, length gives the number of bindings in the frame:

length(el)
## [1] 3

16.1.2 Environments vs named lists

Environment frames, in some sense, can be thought of as named lists, but the set of ad-
missible operations is severely restricted. In particular, we cannot extract more than
one element at the same time using the index operator:

el[c("x", "y")] # but see the ‘mget’ function
## Error in el[c("x", "y")]: object of type 'environment' 1is not subsettable

nor can we refer to the elements by position:

el[[1]] <- "bad key"
## Error in el1[[1]] <- "bad key": wrong args for environment subassignment
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Exercise16.1 Check if Lapply and Map can be applied directly on environments. Also, can we
iterate over their elements using a for loop?

Still, named lists can be converted to environments and vice versa using as.list and
as.environment.

as.list(el)

## Sx

## [1] "x 1n el”

##

# Sy

## [1] 10 20 30

##

## Sz

## NULL

as.environment(list(u=42, whatever="1it's not going to be printed anyway"))
## <environment: 0x55a8fb71f620>

as.list(as.environment(list(x=1, y=2, x=3))) # no duplicates allowed
## Sy

## [1] 2

##

## Sx

## [1] 3

16.1.3 Hash maps: Fast element lookup by name

Environment frames are internally implemented using hash tables (hash maps; see,
e.g., [15, 42]) with character string keys.

Important A hash table is a data structure that implements a very quick lookup, inser-
tion and deletion of individual elements by name (in amortised O(1) time).

This comes at a price, including what we have already observed before:

« the elements are not ordered in any particular way: they cannot be referred to via
a numeric index;

- all element names must be unique.

Note Alistmay be considered a sequence, but an environment frame s only, in fact, a set
(a bag) of key-value pairs. In most numerical computing applications, we would rather
store, iterate over, and process all the elements in order, hence the greater prevalence of



376 Il DEEPEST

the former. Lists still implement the element lookup by name, even though it is slightly
slower?. However, they are much more universal.

Example 16.2 Anaturaluse case of manually-created environment frames deals with grouping
a series of objects identified by character string keys. Consider a simple pseudocode for counting
the number of occurrences of objects in a given container:

for (key in some_container) {
if (!is.null(counter[["key"]]))
counter[["key"]] <- counter[["key"]]+1
else
counter[["key"]] <- 1
}

Assumethat some_contatinerislarge, e.g., itis generated on the fly by reading a data stream of
size n. The runtime of the above algorithm will depend on the data structure used. Ifthe counter
is a list, then, theoretically, the worst-case performance will be O (n?) (ifall keys are unique). On
the other hand, for environments, it will be faster by one order of magnitude: down to amortised
O(n).

Exercise16.3 Implement a test function according to the above pseudocode and benchmark the
two data structures using proc. time on example data.

Exercise16.4 (*) Determine the number of unique text lines in a huge file (assuming that the
set of unique text lines fits into memory, but the file itself does not). Also, determine the five most
frequently occurring text lines.

16.1.4 Call by value, copy on demand: Not for environments

Given any object x, when we issue:

y <= X

its copy* is made so that y and x are independent. In other words, any change to the
state of x (or y) is not reflected in y (or x). For instance:

x <- list(a=1)
y <- X
y[["a"]] <- y[["a"]]+1
print(y)
## Sa
## [1] 2
print(x) # not affected: ‘x' and ‘y' are independent
(continues on next page)

3 Accessing elements by position (numeric index) in lists takes O(1) time. The worst-case runtime for
the element lookup by name is linear with respect to the container size (when the item is not found). Also,
inserting new elements at the end takes amortised O(1) time.

4 Delayed (on demand); see below.
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(continued from previous page)

## Sa
## [1] 1

The same happens with arguments that we pass to the functions:

mod <- function(y, key) # it is like: local_y <- passed_argument
{
yl[keyl] <- yl[[key]]l+1

y
}
mod(x, "a")[["a"]] # returns a modified copy of ‘x'
## [1] 2
x[["a"]] # not affected
## [1] 1

We can thus say that R imitates the pass-by-value strategy here.

Important Environments are the only® objects that follow the assign- and pass-by-
reference strategies.

In other words, if we perform:

X <- as.environment(x)
y <= X

then the names x and y are bound to the same object in the computer’s memory:

print(x)
## <environment: Ox55a8fb2aea70>

print(y)
## <environment: 0x55a8fb2aea76>

Therefore:

y[["a"]] <- y[["a"]1]+1

print(y[["a"1])

## [1] 2

print(x[["a"]]) # 'x' is ‘y', ‘y' is ‘x°
## [1] 2

The same happens when we pass an environment to a function:

5 We do not count all the tricks we can do at the C language level (Chapter 14). In R, the distinction
between pass-by-value and pass-by-reference is slightly more complicated because of the lazy evaluation of
arguments (the call-by-need strategy; Chapter 17). We have made an idealisation for didactic purposes.
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mod(y, "a")[["a"]] # pass-by-reference (‘'y' is ‘x°, remember?)
## [1] 3

x[["a"]] # ‘x' has changed

## [1] 3

Thus, any changes we make to an environment passed as an argument to a function
will be visible outside the call. This minimises time and memory use in certain situ-
ations.

Note (*) For efficiency reasons, when we write “y <- x”, a copy of x (unless it is an
environment) is created only if it is absolutely necessary.

Here is some benchmarking of the copy-on-demand mechanism.

n <- 100000000 # like, a lot

Creation of a new large numeric vector:
t0 <- proc.time(); x <- numeric(n); proc.time() - tO

## user system elapsed
## 0.853 1.993 2.852

Creation of a (delayed) copy is instant:

tO <- proc.time(); y <- x; proc.time() - tO
## user system elapsed
## 0 0 0

We definitely did not duplicate the n data cells.

Copy-on-demand is implemented using some simple reference counting; compare Sec-
tion14.2.4. We can inspect that x and y point to the same address in memory by calling:

.Internal(inspect(x)) # internal function - do not use it

## @7efba1134010 14 REALSXP gOc7 [REF(2)] (len=1000000000, tl=0) 0,0,0,0, ...
.Internal(inspect(y))

## @7efba1134010 14 REALSXP gOc7 [REF(2)] (len=1000000000, tl=0) 0,0,0,0,...

The actual copying is only triggered when we try to modify x or y. This is when they
need to be separated.

t0 <- proc.time(); y[1] <- 1; proc.time() - t0
## user system elapsed
## 1.227 1.910 3.142

Now x and y are different objects.

.Internal(inspect(x))
## @7efbal1134010 14 REALSXP gOc7 [MARK,REF(1)] (len=1000000000, tl=0) 0,0,...
(continues on next page)
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(continued from previous page)

.Internal(inspect(y))
## @7ef9c43ce010 14 REALSXP gOc7 [MARK,REF(1)] (len=1000000000, t1=0) 1,0,...

The elapsed time is similar to that needed to create x from scratch. Further modifica-
tions will already be quick:

t0 <- proc.time(); y[2] <- 2; proc.time() - t0
# user system elapsed
##  0.000 0.001 0.000

16.1.5 A note on reference classes (**)

In Section 10.5, we briefly mentioned the S4 system for object-orientated program-
ming. We also have access to its variant, called reference classes®, which was first intro-
duced in R version 2.12.0. Reference classes are implemented using S4 classes, with
the data part being of the type environment. They give a more typical OOP experience,
where methods can modify the data they act on in place.

Reference classes are a theoretically interesting concept on its own and may be quite
appealing to package developers with C++ or Java background. Nevertheless, in the
current author’s opinion, such classes are alien citizens of our environment, violating
its functional nature. Therefore, we will not be discussing them here. A curious reader is
referred to help("ReferenceClasses") and Chapters 9 and 11 of [12] for more details.

16.2 'The environment model of evaluation

In Chapter 15, we said that there are three types of expressions: constants (e.g., 1 and
"spam"), names (e.g., x, "+, and spam), and calls (like f(x, 1)).

Important Names (symbols) have no meaning by themselves. The meaning of a name
always depends on the context, which is specified by an environment.

Consider a simple expression that merely consists of the name x:

expr_x <- quote(x)

Let’s define two environments that bind the name x to two different constants.

6 Some call them Rs, but we will not.
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el <- as.environment(list(x=1))
e2 <- as.environment(list(x="spam"))

Important An expression is evaluated within a specific environment.

Let’s call eval on the above.

eval(expr_x, envir=el) # evaluate ‘x' within environment el

## [1] 1

eval(expr_x, envir=e2) # evaluate the same ‘x' within environment e2
## [1] "spam"

The very same expression has two different meanings, depending on the context. This
is quite like in the so-called real life: “I'm good” can mean “I don't need anything” but
also “My virtues are plentiful”. It all depends on who and when is asking, i.e., in which
environment we evaluate the said sentence.

We call this the environment model of evaluation, a notion that R authors have borrowed
from a Lisp-like language called Scheme” (see Section 3.2 of [1] and Section 6 of [70]).

16.2.1 Getting the current environment

By default, expressions are evaluated in the current environment, which can fetch by
calling:

sys.frame(sys.nframe()) # get the current environment
## <environment: R_GlobalEnv>

We are working on the R console. Hence, the current one is the global environment (user
workspace). We can access it from anywhere by calling globalenv or referring to the
*.GlobalEnv" object.

Example 16.5 Calling any operation, for instance®:

X <- "spammity spam"

means evaluating it within the current environment:

eval(quote(x <- "spammity spam"), envir=sys.frame(sys.nframe()))

Here, we bound the name x to the string "spammity spam" in the current environment’s frame:

7 That is why everyone serious about R programming should add the Structure and Interpretation of Computer
Programs [1] to their reading list. Also, R is not the only known marriage between statistics and Lisp-like
languages; see also LISP-STAT [55].

8 For now, let’s take for granted that “<-" is accessible from the current context and denotes the assign-
ment.
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sys. frame(sys.nframe())[["x"]] # yes, ‘x' is in the current environment now
## [1] "spammity spam"
globalenv()[["x"]] # because the global environment is the current one here
## [1] "spammity spam"

Therefore, when we now refer to x (from within the current environment):
x # eval(quote(x), envir=sys.frame(sys.nframe()))

## [1] "spammity spam"

precisely the foregoing named object is fetched.

Exercise 16.6 save.image saves the current workspace, i.e., the global environment, by de-
fault, to the file named . Rdata. Test this function in combination with load.

Note Names starting with a dot are hidden. 1s, a function to fetch all names registered
within a given environment, does not list them by default.

.test <- "spam"
1s() # list all names in the current environment, i.e., the global one
## [1] "e1” Y "expr_x" "mod" e o

Compare it with:

1s(all.names=TRUE)
## [1] ".Random.seed" ".test" "e1" "e2"
## [5] "expr x" "mod" e o

Onasidenote, " .Random. seed" stores the current pseudorandom number generator’s
seed; compare Section 2.1.5.

16.2.2 Enclosures, enclosures thereof, etc.

To show that there is much more to the environment model of evaluation than what
we have already mentioned, let’s try to evaluate an expression featuring two names:

e2 <- as.environment(list(x="spam")) # once again (a reminder)
expr_comp <- quote(x < "eggs")

eval(expr_comp, envir=e2) # "spam" < "eggs"

## Error in x < "eggs": could not find function "<"

The meaning of any constant (here, "spam") is context-independent. The environment
provided specifies the name x but does not define “<". Hence the error. Nonetheless,
we feel that we know the meaning of <. Itis a relational operator, obviously, isn't it? To
increase the confusion, let’s highlight that our experience-grounded intuition is true
in the following context:
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e3 <- new.env()

e3[["x"]] <- "bacon"

eval(expr_comp, envir=e3) # "bacon” < "eggs"
## [1] TRUE

So where does the name “<" come from? It is neither included in e2 nor e3:

e2[["<"]]
## NULL

e3[["<"]]
## NULL

Is “<" hardcoded somewhere? Or is it also dependent on the context? Why is it visible
when evaluating an expression within e3 but not in e2?

Studying help("[[") (see the Environments section), we discover that e3[["<"]] is
equivalent to a call to get("<", envir=e3, inherits=FALSE).In help("get"), we
read that if the inherits argument is set to TRUE (which is the default in get), then
the enclosing frames of the given environment are searched as well. Continuing the example
from the previous subsection:

get("<", envir=e2) # inherits=TRUE
## Error in get("<", envir = e2): object
get("<", envir=e3) # inherits=TRUE

## function (el, e2) .Primitive("<"

'

<' not found

Indeed, we see that "< is reachable from e3 but not from e2. It means that e3 points
to another environment where further information should be sought if the current
container is left empty-handed.

Important The reference (pointer) to the enclosing environment is integral to each envir-
onment (alongside a frame of objects). It can be fetched and set using the parent.env
function.

16.2.3 Missing names are sought in enclosing environments

To understand the idea of enclosing environments better, let’s create two new envir-
onments whose enclosures are explicitly set as follows:

(ed4 <- new.env(parent=e3))
## <environment: 0x55a8fbd4a268>
(e5 <- new.env(parent=e4))
## <environment: 0x55a8fbd871b8>

To verify that everything is in order, we can inspect the following:
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print(e3) # this is the address of e3

## <environment: Ox55a8faf044a0>

parent.env(ed4) # e3 is the enclosing environment of e4
## <environment: 0x55a8faf044a0>

parent.env(e5) # e4 is the enclosing environment of e5
## <environment: 0x55a8fbd4a268>

Also, let’s bind two different objects to the name y in e5 and e3.

e5[["y"]] <- "spam"
e3[["y"]] <- function() "a function 'y’ in e3"

The current state of matters is depicted in Figure 16.1.

® - ®-
O y="spam" f——> \ @ =

O x="bacon"
O y=function...

————> 7

Figure 16.1. Example environments and their enclosures (original setting).

Let’s evaluate the name y in the foregoing environments:

expr_y <- quote(y)
eval(expr_y, envir=e3)

## function ()

## "a function 'y in e3"
eval(expr_y, envir=e5)

## [1] "spam”

No surprises, yet. However, evaluating it in e4, which does not define y, yields:
eval(expr_y, envir=e4)

## function ()
## "a function 'y’ in e3"

Itreturned y from e4’s enclosure, e3. Let’s play about with the enclosures of e5 and e4
so that we obtain the setting depicted in Figure 16.2:

parent.env(e5) <- e3
parent.env(ed4) <- e5

Evaluating y again in the same e4 nourishes a very different result:

eval(expr_y, envir=e4)
#4 [1] "spam"
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®= k—®-
O y="spam" @ e3

> ???

\H O x="bacon"

O y = function...

Figure 16.2. Example environments and their enclosures (after the change made).

Important Names referred to in an expression but missing in the current environ-
ment will be sought in their enclosure(s) until successful.

Note Here are the functions related to searching within and modifying environments
that optionally allow for continuing explorations in their enclosures:

« inherits=TRUE by default: exists, get,

« inherits=FALSE by default: assign, * rm (remove).

16.2.4 Looking for functions

Interestingly, if a name is used instead of a function to be called, the object sought is
always® of the mode function. Consider an expression similar to the above, but this
time including the name y playing a different role:

expr_y2 <- quote(y()) # a call to something named 'y

eval(expr_y2, envir=e4)
## [1] "a function ‘y' in e3"

In other words, what we used here was not:

get("y", envir=e4)
## [1] "spam"

but:

get("y", envir=e4, mode="function")
## function ()
## "a function ‘y' in e3"

9 This is why we can write “c <- c(1, 2)” and then still be able to call c to create another vector.
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Note name(), "name"(),and "name" () are synonymous. However, the first expression
is acceptable only if name is syntactically valid.

16.2.5 Inspecting the search path

Going back to our expression involving a relational operator:

expr_comp
## x < "eggs"

Why does the following work as expected?

eval(expr_comp, envir=e3) # "bacon" < "eggs"
## [1] TRUE

Well, we have gathered all the bits to understand it now. Namely, "< is a function that
is looked up like:

get("<", envir=e3, inherits=TRUE, mode="function")
## function (el, e2) .Primitive("<"

It is reachable from e3, which means that e3 also has an enclosing environment.

parent.env(e3)
## <environment: R_GlobalEnv>

This is our global namespace, which was the current environment when e3 was cre-
ated. Still, we did not define “<" there. It means that the global environment also has
an enclosure.

We can explore the whole search path by starting at the global environment and follow-
ing the enclosures recursively.

ecur <- globalenv() # starting point
repeat {
cat(pasted(format(ecur), " (

n

, attr(ecur, "name"), ")")) # pretty-print
if (exists('"<", envir=ecur, inherits=FALSE)) # look for ‘<°

cat(strrep(" ", 25), "'<' found here!")
cat("\n")

ecur <- parent.env(ecur) # advance to its enclosure

## <environment: R_GlobalEnv> ()
## <environment: 0x55a8fb4ce798> (.marekstuff)
## <environment: package:stats> (package:stats)
## <environment: package:graphics> (package:graphics)
(continues on next page)
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(continued from previous page)
## <environment: package:grDevices> (package:grDevices)
## <environment: package:utils> (package:utils)
## <environment: package:datasets> (package:datasets)
## <environment: package:methods> (package:methods)
## <environment: 0x55a8f92f3658> (Autoloads)
## <environment: base> () ‘<’ found here!
## <environment: R_EmptyEnv> ()
## Error in parent.env(ecur): the empty environment has no parent

Underneath the global environment, there is a whole list of attached packages:

1. packages attached by the user (.marekstuff is used internally in the process of
evaluating code in this book),

2. default packages (Section 7.3.1),

3. (**)Autoloads (for the promises-to-load R packages; compare help("autoload");
it is a technicality we may safely ignore here),

4. thebase package, which we can access directly by calling baseenv; it is where most
of the fundamental functions from the previous chapters reside,

5. the empty environment (emptyenv), which is the only one followed by nil (the loop
would turn out endless otherwise).

It comes at no surprise that the “<" operator has been found in the base package.

Note On a side note, the reason why this operation failed:
e2 <- as.environment(list(x="spam")) # to recall

eval(expr_comp, envir=e2)
## Error in x < "eggs": could not find function "<"

is because as.environment sets the enclosing environment to:

parent.env(e2)
## <environment: R_EmptyEnv>

See also list2env which gives greater control over this (cf. its parent argument).

16.2.6 Attaching to and detaching from the search path

In Section 7.3.1, we mentioned that we can access the objects exported by a package
without attaching them to the search path by using the pkg: :object syntax, which
loads the package if necessary. For instance:

tools::toTitleCase(" tools' not attached to the search path")
## [1] "'tools' not Attached to the Search Path"
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However:

toTitleCase("nope")
## Error in toTitleCase("nope"): could not find function "toTitleCase"

It did not work because toTitleCase is not reachable from the current environment.

Let’s inspect the current search path:

search()

## [1] ".GlobalEnv" ".marekstuff" "package:stats”
## [4] "package:graphics" '"package:grDevices" "package:utils"
## [7] "package:datasets" "package:methods" "Autoloads"

## [10] "package:base"

Some might find writing “pkg: :” inconvenient. Thus, we can call library to attach
the package to the search path immediately below the global environment.

library("tools")

The search path becomes (see Figure 16.3 for an illustration):

search()

## [1] ".GlobalEnv" "package:tools" ".marekstuff"

## [4] "package:stats" "package:graphics"” "package:grDevices"
## [7] "package:utils" "package:datasets" "package:methods"
## [10] "Autoloads” "package:base"

Therefore, what follows, now works as expected:

toTitleCase("Nobody expects the Spanish Inguisition")
## [1] "Nobody Expects the Spanish Inquisition”

We can use detach' to remove an item from the search path.

head(search()) # before detach

## [1] ".GlobalEnv" "package:tools"” ".marekstuff"”

## [4] "package:stats" "package:graphics" "package:grDevices"
detach("package:tools")

head(search()) # not there anymore

## [1] ".GlobalEnv" ".marekstuff"” "package:stats"

## [4] "package:graphics" ‘"package:grDevices" "package:utils"

Note We can also plug arbitrary environments®™ and named lists into the search path.

1 Which does not unload the package from memory, though; see unload (possibly combined with
library.dynam.unload).

1 Or we should rather say, environment frames. When an environment is attached to the search path,
it is duplicated so that the changes made to the original environment are not reflected in the copy. Then,
its previous enclosure is discarded. After all, we want a series of recursive calls to parent.env to form the
whole search path.
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@ global default packages \

@ package:stats

@ package:tools
@ package:graphics

packages attached|by the user\
Y

Y

@ .marekstuff @ package:grDevices

[ v
@ package:utils

@ package:datasets

@ package:methods

Figure 16.3. The search path after attaching the tools package.

Recalling that data frames are built on the latter (Section 12.1.6), some users rely on
this technique save a few keystrokes.

attach(iris)
head(search(), 3)
## [1] ".GlobalEnv" "iris" ".marekstuff"”

The iris list was converted to an environment, and the necessary enclosures were set
accordingly:

str(parent.env(globalenv()))
## <environment: 0x55a8fafa2330>
## - attr(*, "name")= chr "iris"
str(parent.env(parent.env(globalenv())))
(continues on next page)
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(continued from previous page)
## <environment: 0x55a8fb4ce798>
#4 - attr(*, "name")= chr ".marekstuff"

We can now write:

head(Petal.Width/Sepal.Width) # iris[["Petal.Width"]]/iris[["Sepal.Width"]]
## [1] 0.057143 0.066667 0.062500 0.064516 0.055556 0.102564

Overall, attaching data frames is discouraged, especially outside the interactive mode.
Let’s not be too lazy.

detach(iris) # such a relief

16.2.7 Masking (shadowing) objects from down under

Anassignmentvia "<-" creates a binding in the current environment. Therefore, even if
the name to bind exists somewhere on the search path, it will not be modified. Instead,
a new name will be created.

eval(quote("spam" < "eggs"))
## [1] FALSE

Here, we rely on <" from the base environment. Withal, we can create an object of the
same name in the current (global) context:

‘<" <- function(el, e2)

{
warning("This is not the base '<', mate.")
NA

Now we have two different functions of the same name. When we evaluate an expres-
sion within the current environment or any of its descendants, the new name shadows
the base one:

"spam" < "eggs" # evaluate in the global environment

## Warning in "spam" < "eggs": This is not the base ‘<°, mate.

## [1] NA

eval(quote("spam" < "eggs"), envir=e5) # its enclosure's enclosure is global
## Warning in "spam" < "eggs": This is not the base ‘<°, mate.

## [1] NA

But we can still call the original function directly:

base:: <" ("spam", "eggs")
## [1] FALSE
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It is also reachable from within the current environment’s ancestors:

eval(quote("spam" < "eggs"), envir=parent.env(globalenv()))
## [1] FALSE

Before proceeding any further, we should clean up after ourselves. Otherwise, we will
be asking for trouble.

rm("<") # removes ‘<' from the global environment

An attached package may introduce some object names that are also available else-
where. For instance:

library("stringx")

## Attaching package: 'stringx'

## The following objects are masked from 'package:base': casefold, chartr,
# endsWith, gregexec, gregexpr, grep, grepl, gsub, ISOdate, ISOdatetime,

#H nchar, nzchar, paste, paste@, regexec, regexpr, sprintf, startsWith,
## strftime, strptime, strrep, strsplit, strtrim, strwrap, sub, substr,
## substr<-, substring, substring<-, Sys.time, tolower, toupper, trimws,

## xtfrm, xtfrm.default

Therefore, in the current context, we have what follows:

toupper("GroR") # stringx::toupper
## [1] "GROSS"

base: : toupper("GroR")

## [1] "GROR"

Sometimes', we can use assign(..., inherits=TRUE) or its synonym, "<<-", to
modify the existing binding. A new binding is only created if necessary.

Note Let’s attach the iris data frame (named list) to the search path again:

attach(iris)
Sepal.Length[1] <- 0

We did not modify the original iris nor its converted-to-an-environment copy that
we can find in the search path. Instead, a new vector named Sepal.Length was cre-
ated in the current environment:

12 We normally cannot modify package namespaces. As we will mention in Section 16.3.5, they are auto-
matically locked.
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exists("Sepal.Length", envir=globalenv(), inherits=FALSE) # it is in global
## [1] TRUE

Sepal.Length[1] # global

## [1] 0

We can verify the preceding statement as follows:

rm("Sepal.Length") # removes the one in the global environment
Sepal.Length[1] # ‘iris' from the search path

## [1] 5.1

iris[["Sepal.Length"]][1] # the original ‘iris’

## [1] 5.1

However, we can write:

Sepal.Length[1] <<- 0 # uses assign(..., inherits=TRUE)

We changed the state of the environment on the search path.

exists("Sepal.Length", envir=globalenv(), inherits=FALSE) # not in global
## [1] FALSE

Sepal.Length[1] # ‘iris' from the search path

## [1] 0

Yet, the original iris object is left untouched. There is no mechanism in place that
would synchronise the original data frame and its independent copy on the search path.

iris[["Sepal.Length"]][1] # the original ‘iris’
## [1] 5.1

It is best to avoid attach to avoid confusion.

16.3 Closures

So far, we have only covered the rules of evaluating standalone R expressions. In this
section, we look at what happens inside the invoked functions.

16.3.1 Local environment

When we call a function, a new temporary environment is created. It is where all ar-
gument values” and local variables are emplaced. This environment is the current one
while the function is being evaluated. After the call, it ceases to exist, and we return to
the previous environment from the call stack.

B Function arguments are initially unevaluated; see Chapter 17.
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Consider the following function:

test <- function(x)

{
print(ls()) # list object names in the current environment
y <- X2 # creates a new variable
print(sys.frame(sys.nframe())) # get the ID of the current environment
str(as.list(sys.frame(sys.nframe()))) # display its contents

}

First call:

test(2)

## [1] "x"

## <environment: 0x55a8fade3d98>

## List of 2

# S y: num 4
## S x: num 2

Second call:

test(3)

## [1] "x"

## <environment: 0x55a8fb195678>
## List of 2

#4 S y: num 9

## S x: num 3

Each time, the current environment is different. This is why we do not see the variable
y at the start of the second call. It is a brilliantly simple implementation of the storage
for local variables.

16.3.2 Lexical scope and function closures

We were able to access the print function (amongst others) in the preceding example.
This should make us wonder what the enclosing environment of that local environ-
ment is.

print_enclosure <- function()
print(parent.env(sys.frame(sys.nframe())))

print_enclosure()
## <environment: R_GlobalEnv>

It is the global environment. Let’s invoke the same function from another one:

call_print_enclosure <- function()
print_enclosure()

(continues on next page)
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(continued from previous page)

call_print_enclosure()
## <environment: R_GlobalEnv>

It is the global environment again. If R used the so-called dynamic scoping, we would
see the local environment of the function that invoked the one above. If this was true,
we would have access to the caller’s local variables from within the callee. But this is
not the case.

Important Objects of the type closure, i.e., user-defined™ functions, consist of three
components:

« alist of formal arguments (compare formals in Section 15.4.1);
. an expression (see body in Section 15.4.1);

- areference to the associated environment where the function might store data for
further use (see environment).

By default, the associated environment is set to the current environment where the
function was created.

Alocal environment created during a function’s call has this associated environment
asits closure.

Due to this, we say that R has lexical (static) scope.

Thence, in the foregoing example, we have:

environment(print_enclosure) # print the associated environment
## <environment: R_GlobalEnv>

Example16.7 Consider a function that prints out x defined outside of its scope:

test <- function() print(x)

Now:

x <- "x in global”
test()
#4 [1] "x in global”

It printed out x from the user workspace as it is precisely the environment associated with the
function. However, setting the associated environment to another one that also happens to define
x will give a different result:

14 There are two other types of functions: a special is an internal function that does not necessarily evalu-
ate its arguments (e.g., switch, if, or quote; compare also Chapter 17), whereas a builtin always evaluates
its actual parameters, e.g., sum.
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environment(test) <- e3 # defined some time ago
test()
## [1] "bacon"

Example16.8 Consider the following:

test <- function()

{
cat(sprintf("test: current env: %s\n", format(sys.frame(sys.nframe()))))
subtest <- function()
{
e <- sys.frame(sys.nframe())
cat(sprintf("subtest: enclosing env: %s\n", format(parent.env(e))))
cat(sprintf("x = %s\n", x))
}
x <- "spam"
subtest()
environment(subtest) <- globalenv()
subtest()
}

x <- "bacon"

test()

## test: current env: <environment: 0x55a8faf416a0>

## subtest: enclosing env: <environment: Ox55a8faf416a0>
## x = spam

## subtest: enclosing env: <environment: R_GlobalEnv>

## x = bacon

Here is what happened.

1. Acall to test creates a local function subtest, whose associated environment is set to the
local frame of the current call. It is precisely the current environment where subtest was
created (because R has lexical scope).

2. The above explains why subtest can access the local variable x inside its maker.
3. Then we change the environment associated with subtest to the global one.

4. Inthenext call to subtest, unsurprisingly, we gain access to x in the user workspace.

Note Inlexical (static) scoping, which variables a function refers to can be deduced by
reading the function’s body only and not how it is called in other contexts. This is the
theory. Nevertheless, the fact that we can freely modify the associated environment
anywhere can complicate the program analysis greatly.

If we find the rules of lexical scoping complicated, we should refrain from referring to
objects outside of the current scope (“global” or “non-local” variables”) except for the
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functions defined as top-level ones or imported from external packages. It is what we
have been doing most of the time anyway.

16.3.3 Application: Function factories

As closures are functions with associated environments, and the role of environments
is to store information, we can consider closures = functions + data. We have already
seen that in Section 9.4.3, where we mentioned approxfun. To recall:

X <- seq(0, 1, length.out=11)

f1 <- approxfun(x, x"2)

print(f1)

## function (v)

## .approxfun(x, y, v, method, yleft, yright, f, na.rm)
## <environment: 0x55a8fb45ecdd>

The variables x, y, etc., that f1’s source code refers to, are stored in its associated en-
vironment:

ls(envir=environment(f1))
## [1] "f" imethod” "na.rm"  "x" ny yleft" "yright"

Important Routines that return functions whose non-local variables are memorised
in their associated environments are referred to as function factories.

Example16.9 Consider a function factory:

gen_power <- function(p)
function(x) x"p # p references a non-local variable

A call to gen_power creates a local environment that defines one variable, p, where the argu-
ment’s value is stored. Then, we create a function whose associated environment (remember that
R uses lexical scoping) is that local one. It is where the reference to the non-local p in its body will
be resolved. This new function is returned by gen_power to the caller. Normally, the local envir-
onment would be destroyed, but it is still used after the call. Thus, it will not be garbage-collected.

Example calls:

(square <- gen_power(2))

## function (x)

## XD

## <environment: 0x55a8f9484640>
(cube <- gen_power(3))

## function (x)

## XD

## <environment: 0x55a8f9e6ce30>

(continues on next page)
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(continued from previous page)
square(2)
## [1] 4
cube(2)
## [1] 8

The underlying environment can, of course, be modified:

"n

assign("p", 7, envir=environment(cube))
cube(2) # so much for the cube
## [1] 128

Example16.10 Negate is another example of a function factory. The function it returns stores
f passed as an argument.

notall <- Negate(all)
notall(c(TRUE, TRUE, FALSE))
## [1] TRUE

Study its source code:

print(Negate)

## function (f)

##{

## f <- match. fun(f)

## function(...) !f(...)

## )

## <environment: namespace:base>

Example16.11 In [38], the following example is given:

account <- function(total)
list(
balance = function() total,
deposit = function(amount) total <<- total+amount,
withdraw = function(amount) total <<- total-amount

)

Robert <- account(1000)
Ross <- account(500)
RobertSdeposit(100)
RossSwithdraw(150)
Robertsbalance()

## [1] 1100
RossSbalance()

## [1] 350

We can now fully understand why this code does what it does. The return list consists of three
functions whose enclosing environment s the same. account somewhat resembles the definition
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of a class with three methods and one data field. No wonder why reference classes (Section 16.1.5)
were introduced at some point: they are based on the same concept.

Exercise 16.12 Write a function factory named gen_counter which implements a simple
counter that is increased by one on each call thereto.

gen_counter <- function() ...to.do...
cl <- gen_counter()
c2 <- gen_counter()

c(c1(), c1(), c2(), c1(), c2())
## [1] 121 3 2

Moreover, compose a function that resets a given counter to zero.

reset_counter <- function(counter_fun) ...to.do...
reset_counter(c1)

c1()
## [1] 1

16.3.4 Accessing the calling environment

We know that the environment associated with a function is not necessarily the same
as the environment from which the function was called, sometimes confusingly re-
ferred to as the parent frame.

R maintains a whole frame stack. The global environment is assigned the number o.
Each call to a function increases the stack by one frame, whereas returning from a call
decreases the counter. To get the current frame number, we call sys.nframe. This is
why sys.frame(sys.nframe()) returns the current environment.

We can fetch the calling environment by referring to parent.frame() or sys.
frame(sys.parent()), amongst others®. Thanks to parent.frame, we may evaluate
arbitrary expressions in (on behalf of) the calling environment. Normally, we should
never be doing that. However, a few functions rely on this feature, hence our avid in-
terest in this possibility.

16.3.5 Package namespaces @)
An R package pkg defines two environments:

- namespace:pkg is where all objects are defined (functions, vectors, etc.); it is the
enclosing environment of all closures in the package;

. package:pkg contains selected'® objects from namespace:pkg that can be ac-
cessed by the user; it can be attached to the search path.

5 In help("sys.parent"), we read that the parent frame number, as returned by sys.parent(), is not
necessarily equal to sys.nframe() - 1. It is certainly true if we are at the top (global) level.

16 Exported using the export or exportPattern directive in the package’s NAMESPACE file; see Section 1
of [66].
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As an illustration, we will use the example package discussed in Section 7.3.1.

library("rpackagedemo") # https://github.com/gagolews/rpackagedemo/
## Loading required package: tools

Here is its DESCRIPTION file:

Package: rpackagedemo

Type: Package

Title: Just a Demo R Package

Version: 1.0.2

Date: 1970-01-01

Author: Anonymous Llama

Maintainer: Unnamed Kangaroo <roo@inthebush.au>
Description: Provides a function named bamboo(), just give it a shot.
License: GPL (>= 2)

Imports: stringx

Depends: tools

The Import and Depends fields specify which packages (apart from base) ours depends
on. As we can see above, all items in the latter list are attached to the search path on a
call to library.

The NAMESPACE file specifies the names imported from other packages and those that
are expected to be visible to the user:

importFrom(stringx, sprintf)

importFrom(tools, toTitleCase)

S3method(print, koala)

S3method(print, kangaroo, .a_hidden_method_to_print_a_roo)
export(bamboo)

Thus, our package exports one object, a function named bamboo (we will discuss the
S3 methods in the next section). It is included in the package: rpackagedemo environ-
ment attached to the search path:

1s(envir=as.environment("package:rpackagedemo")) # ls("package:rpackagedemo")
## [1] "bamboo"

Let’s give it a shot:

bamboo("spanish inquisition") # rpackagedemo: :bamboo
## G'day, Spanish Inquisition!

We did not expect this at all, nor that its source code looks like:

print(bamboo)

## function (x = "world")

## cat(prepare_message(toTitleCase(x)))
## <environment: namespace:rpackagedemo>



16 ENVIRONMENTS AND EVALUATION (*) 399

We see a call to toTitleCase (most likely from tools, and this is indeed the case).
Also, prepare_message is invoked but it is not listed in the package’s imports (see the
NAMESPACE file). We definitely cannot access it directly:

prepare_message
## Error: object 'prepare_message' not found

Itisthe package’sinternal function, which is included in the namespace : rpackagedemo
environment.

(e <- environment(rpackagedemo: :bamboo)) # or getNamespace("rpackagedemo")
## <environment: namespace:rpackagedemo>
ls(envir=e)

## [1] "bamboo" "prepare_message

non

print.koala”

We can fetch it via the *: : :* operator:

print(rpackagedemo: : :prepare_message)

## function (x)

## sprintf("G'day, %s!\n", x)

## <environment: namespace:rpackagedemo>

All functions defined in a package have the corresponding namespace as their associ-
ated environment. As a consequence, bamboo can refer to prepare_message directly.

It will be educative to inspect the enclosure of namespace: rpackagedemo:

(e <- parent.env(e))

## <environment: 0x55a8fbO2ff50>
## attr(, "name")

## [1] "imports:rpackagedemo"
1s(envir=e)

## [1] "sprintf" "toTitleCase"

Itis the environment carrying the bindings to all the imported objects. This is why our
package can also refer to stringx: :sprintf and tools: : toTitleCase. Its enclosure
is the namespace of the base package (not to be confused with package:base):

(e <- parent.env(e))
## <environment: namespace:base>

The next enclosure is, interestingly, the global environment:

(e <- parent.env(e))
## <environment: R_GlobalEnv>

Then, of course, the whole search path follows; see Figure 16.4 for an illustration.

Note (**)All environments related to packages are locked, which means that we can-
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(user's) search path\

@global <—\

@ package:rpackagedemo

O bamboo

/
!
1

| ...and many more ...

\

@ namespace_rpackagedemo /

/ @ package:base
O bamboo K>~ }<>
O prepare_message

o ...
A
@ namespace:stringx @ imports:rpackagedemo @ namespace:tools
O sprintf <>— — - O sprintf P —< O toTitleCase
O toTitleCase -
\ \

@ imports:stringx @ imports:tools

@ namespace:base

O cat

Figure 16.4. A search path for an example package. Dashed lines represent envir-
onments associated with closures, whereas solid lines denote enclosing environ-
ments. References to objects within each package are resolved inside their respective
namespaces.
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not change any bindings inside their frames; compare help("lockEnvironment"). In
the extremely rare event of our needing to patch an existing function within an already
loaded package, we can call unlockBinding followed by assign to change its defini-
tion.

new_message <- function (x) sprintf("Nobody expects %s!\n", x)

e <- getNamespace("rpackagedemo")

environment(new_message) <- e # set enclosing environment (very important!)
unlockBinding("prepare_message", e)

assign("prepare_message", new_message, €)

rm("new_message")

bamboo("the spanish inquisition")

## Nobody expects The Spanish Inquisition!

Risindeed a quite hackable language (except in the cases where it is not).

Exercise 16.13 (**) A function orapackage mightregister certain functions (hooks) to be called
on various events, e.g., attaching a package to the search patch; see help("setHook") and
help(".onAttach").

1. Inspect the source code of plot. new and notice a reference to a hook named "before.plot.
new". Try setting such a hook yourself (e.g., one that changes some of the graphics paramet-
ers discussed in Section 13.2) and see what happens on each call to a plotting function.

2. Define the .onLoad, .onAttach, .onUnload, and . onDetach functions in your own R
package and take note of when they are invoked.

Exercise 16.14 (**) For the purpose of this book, we have registered a custom "before.plot.
new" hook that sets our favourite graphics parameters that we listed in Section 13.2.3. Moreover,
to obtain a white grid on a grey background, e.g., in Figure 13.13, we modified plot.window
slightly. Apply similar hacks to the graphics package so that its outputs suit your taste better.

16.3.6 S3 method lookup by UseMethod (*)

Inspecting the NAMESPACE file in rpackagedemo, we see that the package defines two
print methods for objects of the classes koala and kangaroo. As the package is still at-
tached to the search path, we can access these methods via a call to the corresponding
generic:

print(structure("Tiny Teddy", class="koala"))
## This is a cute koala, Tiny Teddy
print(structure("Moike", class="kangaroo"))
## This is a very naughty kangaroo, Moike

The package does not make the definitions of these S3 methods available to the user, at
least not directly. Itis not the first time when we have experienced such an obscuration.
In the first case, the method is simply hidden in the package namespace because it was
not marked for exportation in the NAMESPACE file. However, it is still available under
the expected name:
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rpackagedemo: : :print.koala

## function (x, ...)

## cat(sprintf("This is a cute koala, %s\n", x))
## <environment: namespace:rpackagedemo>

In the second case, the method appears under a very different identifier:

rpackagedemo: : :.a_hidden_method_to_print_a_roo

## function (x, ...)

## cat(sprintf("This is a very naughty kangaroo, %s\n", x))
## <environment: namespace:rpackagedemo>

Since the base UseMethod is still able to find them, we suspect that there must be a
global register of all S3 methods. And this is indeed the case. We can use getS3method
to get access to what is available via UseMethod:

getS3method("print", "kangaroo")

## function (x, ...)

## cat(sprintf("This is a very naughty kangaroo, %s\n", x))
## <environment: namespace:rpackagedemo>

Important Overall, the search for methods is performed in two places:

1. in the environment where the generic is called (the current environment); this is
why defining print.kangaroo in the current scope will use this method instead of
the one from the package:

print.kangaroo <- function(x, ...) cat("Nobody expects", x, "\n")
print(structure("the Spanish Inquisition", class="kangaroo"))
## Nobody expects the Spanish Inquisition

2. inthe internal S3 methods table (registration database).

See help("UseMethod") for more details. Also, recall that in Section 10.2.3, we said
that UseMethod is not the only way to perform method dispatching. There are also in-
ternal generics and group generic functions.

Exercise16.15 (¥) Study the source code of getS3method. Note the reference to the base: :*.
__S3MethodsTable__. " object which is for R’s internal use (we ought not to tinker with it dir-
ectly). Moreover, study the . S3method function with which we can define new S3 methods not
necessarily following the generic. classname convention.
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16.4 Exercises

Exercise 16.16 Asking too many questions is not very charismatic, but challenge yourself by
finding the answer to the following.

What is the role of a frame in an environment?

What is the role of an enclosing environment? How to read it or set it?

What is the difference between a named list and an environment?

What functions and operators work on named lists but cannot be applied on environments?
What do we mean by saying that environments are not passed by value to R functions?
What do we mean by saying that objects are sometimes copied on demand?

What happens if a name listed in an expression to be evaluated is not found in the current
environment?

How and what kind of objects can we attach to the search path?

What happens if we have two identical object names on the search path?

What do we mean by saying that package namespaces are locked when loaded?
What is the current environment when we evaluate an expression “on the console”?
What is the difference between “<-" and *<<-"?

Do packages have their own search paths?

What is a function closure?

What is the difference between the dynamic and the lexical scope?

When evaluating a function, how is the enclosure of the current (local) environment determ-
ined? Is it the same as the calling environment? How to get it/them programmatically?

How and why function factories work?
(*) What is the difference between the package : pkg and namespace : pkg environments?

How do we fetch the definition of an S3 method that does not seem to be available divectly via
the standard accessor generic.classname?

()base: :print.data. frame calls base: : format.data. frame (directly). Will the in-
troduction of print.data. frame in the current environment affect how data frames are
printed?

(*) On the other hand, base: : format.data. frame calls the generic base: : format on
all the input data frame’s columns. Will the overloading of the particular methods affect how
data frames are printed?

Exercise16.17 Calling:
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pkg <- available.packages()
pkg[, "Package"] # a list of the names of available packages
pkg[, "Depends"] # dependencies

gives the list of available packages and their dependencies. Convert the dependency lists to a list
of character vectors (preferably using reqular expressions; see Section 6.2.4).
Then, generate a list of reverse dependencies: what packages depend on each given package.

Use an object of the type environment (a hash table) to map the package names to numeric
IDs (indexes). It will significantly speed up the whole process (compare it to a named list-based
implementation).

Exercise 16.18 According to [70], compare also Section 9.3.6, a call to:

add(x, f(x)) <<- v

translates to:
‘*tmp** <- get(x, envir=parent.env(), inherits=TRUE)

X <<- ‘add<-‘(‘*tmp*', f(x), v) # note: not f( *tmp*")
rm( “*tmp*")

Given:

‘add<-" <- function(x, where=TRUE, value)

{

x[where] <- x[where] + value

X # the modified object that will replace the original one
}
y <- 1:5

f <- function() { y <- -(1:5); add(y, y==-3) <<- 1000; y }

explain why we get the following results:

o

## [1] -1 -2 -3 -4 -5

print(y)

## [1] 1 21003 4 5
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Lazy evaluation (**)

The ability to create, store, and manipulate unevaluated expressions so that they can
be computed later is not particularly special. Many languages enjoy such metapro-
gramming (computing on the language, reflection) capabilities, e.g., Lisp, Scheme,
Wolfram, Julia, amongst many others. However, R inherited from its predecessor, the
S language, a variation of lazy* (nonstrict, noneager, delayed) evaluation of function
arguments. They are only computed when their values are first needed. As we can take
the expressions used to generate them (via substitute; see Section 15.4.2), we shall
see that we can ignore their meaning in the original (caller’s) context and compute
them in a very different one.

17.1 Evaluation of function arguments

We know that calls such as “if (test, ifyes, ifno), *|| (mustbe, maybe), or
*&&" (mustbe, maybe) do not have to evaluate all their arguments.

{cat(" first "); FALSE} && {cat(" second "); FALSE}

##  first

## [1] FALSE

{cat(" first "); TRUE } && {cat(" Spanish Inquisition "); FALSE}
## first Spanish Inquisition

## [1] FALSE

We can compose such functions ourselves. For instance:

test <- function(a, b, c) a + ¢ # b is not used
test({cat("spam\n"); 1}, {cat('"eggs\n"); 10}, {cat("salt\n"); 100})
## spam

## salt

## [1] 101

The second argument was not referred to in the function’s body. Therefore, it was not
evaluated (no printing of eggs occurred).

! Call-by-need but without the memoisation of results generated by expressions which is available, e.g.,
in Haskell. In other words, in an expression like c(f(x), f(x)), the call f(x) will still be performed twice.
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Example17.1 Study the following very carefully.

test <- function(a, b, c)

{
cat("Arguments passed to “test' (expressions): |n")
cat("a = ", deparse(substitute(a)), "|\n")
cat("b = ", deparse(substitute(b)), "\n")
cat('c = ", deparse(substitute(c)), "|n")
subtest <- function(x, y, z)
{
cat("Arguments passed to ‘subtest' (expressions): |n")
cat("x = ", deparse(substitute(x)), "\n")
cat("y = ", deparse(substitute(y)), "|n")
cat("z = ", deparse(substitute(z)), "\n")
cat("Using x and z... ")
retval <- x + z # does not refer to 'y’
cat("Cheers!\n")
retval
}
cat("Using c... ")
¢ # force evaluation; we do not even have to be particularly creative
subtest(a, ~!~b*2 := headache ->> ha@xSy, c*10) # no evaluation yet!
}

environment(test) <- new.env() # to spice things up

test(
{testx <- "goulash"; cat("spam\n"); 1},
{testy <- "kabanos"; cat("eggs\n"); MeAn(egGs+whatever&!!weird[stuff])},
{testx <- "kransky"; cat("salt\n"); 100}

)

## Arguments passed to ‘test’ (expressions):

#a= A testx <- "goulash" cat("spam\n") 11}

# b= { testy <- "kabanos" cat("eggs\n") MeAn(egGs + whatever ..
##tc = { testx <- "kransky" cat("salt|n") 100 }

## Using c... salt

## Arguments passed to ‘subtest' (expressions):
# X = a

#y = ‘:="(~I~b * 2, ha@xSy <<- headache)
# z = c * 10

## Using x and z... spam

## Cheers!

## [1] 1001

print(testx)

## [1] "goulash"

print(testy)

## Error: object 'testy' not found
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N

Onaside note, the *~" (formula) operatorwill be discussed in Section 17.6. Furthermore, the " :=
operatorwas used in an ancient version of R for assignments. The parser still recognises it, yet now
it has no associated meaning.

Important We note what follows.

« Either the evaluation of an argument does not happen, or is triggered only once
(in which case the result is cached).

This is why, in our example, salt was printed once.

Evaluation is delayed until the very first request for the underlying value. We call it
lazy evaluation.

It can be delayed forever; eggs is never printed and testy is undefined.

Evaluation takes place in the calling environment (parent frame).
testx is equal to goulash after all.

« Merely passing arguments further to another function usually does not trigger the
evaluation.

We wrote usually because functions of the type builtin (e.g., ¢, list, sum, "+,
‘&', and :") always evaluate the arguments. There is no lazy evaluation in the
case of the arguments passed to group generics; see help("groupGeneric")
and Section 10.2.6. Furthermore, replacement functions’ values arguments (Sec-
tion 9.3.6) are computed eagerly.

Fetching the expression passed as an argument using substitute (Section 15.4.2)
or checking if an argument was provided with missing (Section 15.4.3) does not
trigger the evaluation.

We see spam printed much later.

Exercise 17.2 Study the source code of system. time and notice the use of delayed evaluation
to measure the duration of the execution of a given expression. Note that on. exit (Section17.4)
reacts to possible exceptions.

Example17.3 The role of substitute is broader than just getting the expression passed as
an argument. We can actually replace each occurrence of every name from a given dictionary
(a named list or an environment). For instance:

test <- function(x)
{
subtest <- function(y)
{
ex <- substitute(x, env=parent.frame()) # substitute(x) is just 'x'
ey <- substitute(y)
cat("ex =", deparse(ex), "\n")
cat("ey =", deparse(ey), "\n")
(continues on next page)
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(continued from previous page)
# not: eval(substitute(ey, list(x=ex)))
eval(as.call(list(substitute, ey, list(x=ex))))
}

subtest(spam(!x[x](x)))
}

test(eels@hovercraft)

## ex = eels@hovercraft

## ey = spam(!x[x](x))

## spam(!eels@hovercraft[eels@hovercraft](eels@hovercraft))

We fetched the expression passed as the x argument to the calling function. Then, we replaced
every occurrence of x in the expression ey. On a side note, as substitute does not evaluate its
firstargument, ifwe called substitute(ey, ...)inthelastexpressionof subtest, wewould
treat ey as a quoted name.

Exercise 17.4 Study the source code of replicate:

print(replicate)

## function (n, expr, simplify = "array")

## sapply(integer(n), eval.parent(substitute(function(...) expr)),
## simplify = simplify)

## <environment: namespace:base>

It creates a function that evaluates expr inside its local environment, which is new every time.
Note that eval. parent(expr) is a shorthand foreval (expr, parent.frame()).

Note (*) Internally, lazy evaluation of arguments is implemented using the so-called
promises, compare [70], which consist of:

- an expression (which we can access by calling substitute);

« an environment where the expression is to be evaluated (once this happens, it is
set to NULL);

« acached value (computed on demand, once).

This interface is not really visible from within R, but see help("delayedAssign").

Exercise 17.5 Inspect the definition of match. fun. Why is it called by, e.g., apply, Map, or
outer? Note that it uses eval.parent(substitute(substitute(FUN))) to fetch the ex-
pression vepresenting the argument passed by the calling function (but it is probably very rarely
needed there). Compare:

test <- function(x)

{
subtest <- function(y)

(continues on next page)
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(continued from previous page)

{
# NOT: substitute(y)
# NOT: eval.parent(substitute(y))
eval.parent(substitute(substitute(y)))
}
subtest(x*3)
}
test(1+2)

## (1 +2) * 3

Exercise17.6 (*) Implement your version of the bquote function.

17.2 Evaluation of default arguments

Aswe know from Section 9.4.4, default arguments are special expressions specified in
a function’s parameter list.

Important When a function’s body requires the value of an argument that the caller
did not provide, the default expression will be evaluated in the current (local) environment
of the function.

Itis thus different from the case of normally passed arguments, which are interpreted
in the context of the calling environment.

Example17.7 Study the following very carefully.

x <- "banana"

test <- function(y={cat("spam\n"); x})
{
cat(deparse(substitute(y)), "|n")
cat("bacon\n")
x <- "rotten potatoes”
cat(y, y, "In")
}

test({cat("spam\n"); x})

#o{ cat("spam\n") X }
## bacon

## spam

## banana banana
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As usual, the evaluation is triggered only once, where it was explicitly requested, and only when
needed. y was bound to the value of x from the calling environment (banana in the global one).

test()

#{ cat("spam\n") x }

## bacon

## spam

## rotten potatoes rotten potatoes

The expression for the default y was evaluated in the local environment. It happened after the
creation of the local x.

Example17.8 Consider the following example from [38]:

sumsq <- function(y, about=mean(y), na.rm=FALSE)

{
if (na.rm)
y <- y[!is.na(y)]
sum((y - about)”2)
}

y <- c(1, NA_real_, NA_real_, 2)
sumsq(y, na.rm=TRUE)
## [1] 0.5

In the case where we rely on the default argument, the computation of the mean may take into
account the request for missing value removal. Still, the following will not work as intended:

sumsq(y, mean(y), na.rm=TRUE) # we should rather pass mean(y, na.rm=TRUE)
## [1] NA

However, as the idea of lazy evaluation of arguments is alien to most programmers (especially
those coming from different languages), it might be better to vewrite the above using a call to
missing (Section15.4.3):

sumsq <- function(y, about, na.rm=FALSE)

{
if (na.rm)
y <- y[!is.na(y)]
if (missing(about))
about <- mean(y)
sum((y - about)”2)
}

sumsq(y, na.rm=TRUE)
## [1] 0.5

or better even:
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sumsq <- function(y, about=NULL, na.rm=FALSE)

{
if (na.rm)
y <- y[!is.na(y)]
if (is.null(about))
about <- mean
sum((y - about(y))"2)
7

sumsq(y, na.rm=TRUE)
## [1] 0.5

Exercise17.9 The default arqumentstodo.call, list2env, and new. env are setto parent.
frame. What does that mean?

Exercise 17.10 Study the source code of the local function:

print(local)

## function (expr, envir = new.env())

## eval.parent(substitute(eval(quote(expr), envir)))
## <environment: namespace:base>

17.3  Ellipsis revisited

If our function has the dot-dot-dot parameter, *...", whatever we pass through it is
packed into a pairlist of promise expressions. Thus, we can relish the benefits of lazy
evaluation. In particular, we can redirectall *. . . " -fed arguments to another call as-is.

test <- function(...)

{
subtest <- function(x, ...)
{
cat("x = "); str(x)
cat("... = "); str(list(...))
}
subtest(...)
}

test({cat("eggs! "); 13}, {cat("spam! "); 2}, z={cat('"rice! "); 31})
## X = eggs! num 1

## ... = spam! rice! List of 2

#4 S onum 2

## S z: num 3

Exercise 17.11 In the documentation of Lapply, we read that this function is called like lap-
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ply(X, FUN, ...), where" ... areoptional arguments to FUN. Verify that whatever is
passed via the ellipsis is evaluated only once and not on each application of FUN on the elements

of X.

Example 17.12 We know from Chapter 13 that many high-level graphics functions rely on mul-
tiple calls to more primitive routines that allow for setting a variety of parameters (e.g., via par).
A common scenario is for a high-level function to pass all the arguments down. Each underlying
procedure can then decide by itself which items it is interested in.

test <- function(...)

{
subtestl <- function(..., a=1) c(a=a)
subtest2 <- function(..., b=2) c(b=b)
subtest3 <- function(..., c=3) c(c=c)
c(subtesti(...), subtest2(...), subtest3(...))
7

test(a="A", b="8", d="D")
# a b
42 "qn vgn 3w

Here, for instance, subtest1 only consumes the value of a and ignores all other arguments what-
soever. plot. default (amongst others) relies on such a design pattern.

*...length" fetches the number of items passed via the ellipsis, " . . .names" retrieves
their names (in the case they are given as keyword arguments), and *. . .elt’ (1) gives
the value of the i-th element. Furthermore, *..1%,"..2", and so forth are synonymous
with *...elt (1), "...elt (2), etc.

test <- function(...)

{
cat("length:", ...length(), "\n")
cat("names: ", paste(...names(), collapse=", "), "\n")
for (1 in seq_len(...length()))
cat(i, ":", ...elt(i), "\n")
print(substitute(...elt(i)))
}

test(u={cat("honey! "); "a"}, {cat("gravy! "); "b"}, w={cat("bacon! "); "c"})
## length: 3

## names: u, ,
## honey! 1 : a
## gravy! 2 : b
## bacon! 3 : c
## ...elt(3L)

w

Note that *...elt (1) triggers the evaluation of the respective argument. Unfortu-
nately, we cannot use substitute to fetch the underlying expression. Instead, we can
rely on match.call discussed in Section 15.4.4:
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test <- function(a, b, ..., z=1)
{
e <- match.call()[-1]
as.list(e[!(names(e) %in% names(formals(sys.function())))])

str(test(1+1, 2+2, 3+3, 4+4, a=2, z=8, w=4))
## List of 4

## S : language 2 + 2

## S : language 3 + 3

## S : language 4 + 4

#4 S w: num 4

Note Objects passedvia ..., evenif they are specified as keyword arguments, can-
not be referred to by their name as if they were local variables:

test <- function(...) zzz

test(zzz=3)
## Error in test(zzz = 3): object 'zzz' not found

In other words, no assignment in the local environment is triggered.

Exercise 17.13 Implement your version of the switch function.

Exercise 17.14 Write your version of the stopifnot function.

17.4 on.exit (%)

on.exit registers an expression to be evaluated at the very end of a call, regardless
of whether the function exited due to an error or not. It might be used to reset the
temporarily modified graphics parameters (see par) and system options (options) or
clean up the allocated resources (e.g., close all open file connections). For instance:

test <- function(reset=FALSE, error=FALSE)

{
on.exit(cat("eggs\n"))
on.exit(cat("bacon\n")) # replace
on.exit(cat("spam\n"), add=TRUE) # add

cat("roti canai\n")

if (reset)
on.exit() # cancels all (replace by nothing)

(continues on next page)
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(continued from previous page)
if (error)
stop("aaarrgh!")

cat("end\n")
"return value"

}

test()

## roti canati

## end

## bacon

## spam

## [1] "return value"
test(reset=TRUE)

## roti canati

## end

## [1] "return value"
test(error=TRUE)

## roti canat

## Error in test(error = TRUE): aaarrgh!

We can always manage without on.extit, e.g., by applying exception handling tech-
niques; see Section 8.2.

Exercise 17.15 In the definition of scan, notice the call to:

on.exit(close(file))

Is its purpose to close the file on exit?

Exercise 17.16 Why does graphics: :barplot.default call the following expressions?

dev.hold()
opar <- if (horiz) par(xaxs="1", xpd=xpd) else par(yaxs="1", xpd=xpd)
on.exit({
dev. flush()
par(opar)
»

17.5 Metaprogramming and laziness in action: Examples ()

Due to lazy evaluation, we can define functions that permit any random yet syntactic-
ally valid gibberish to be fed as their arguments. Nothing but basic decency stops us
from interpreting them in any way we want. Each such function can become a micro-
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verse (a microlanguage?) by itself. This will surely confuse® our users, as they will have
to analyse every procedure’s behaviour separately.

In this section, we extend on our notes from Section 9.4.7 and Section 12.3.9. We look
at a few functions relying on metaprogramming and laziness, mostly because study-
ing them is a good exercise. It can help extend our programming skills and deepen
our understanding of the concepts discussed in this part of the book. By no means is
it an invitation to use them in practice. Nevertheless, R’'s computing on the language
capabilities might interest some advanced programmers (e.g., package developers).

17.5.1 match.arg

match.arg was mentioned in Section 9.4.7. When called normally, it matches a string
against a set of possible choices, similarly to pmatch:

choices <- c("spam", "bacon", "eggs")
match.arg("spam", choices)

## [1] "spam"
match.arg("s", cholces) # partial matching
## [1] "spam"

match.arg("eggplant", cholces) # no match

## Error in match.arg("eggplant”, choices): 'arg' should be one of "spam",
## "bacon", "eggs"

match.arg(choices, choices) # match first

## [1] "spam"”

However, skipping the second argument, this function will fetch the choices from the
default argument of the function it is enclosed in!

test <- function(x=c("spam", "bacon", "eggs"))
match.arg(x)

test("spam")

## [1] "spam”
test("s")
#4 [1] "spam"

test("eggplant")

## Error in match.arg(x): 'arg' should be one of "spam", "bacon", "eggs"
test()

## [1] "spam"”

Exercise 17.17 Inspect the source code of stats: : binom. test, which looks like:

function(..., alternative = c("two.sided", "less", "greater"))

{
#...

(continues on next page)

2 Novices are prone to overgeneralising when they learn new material that they are still far from com-
fortable with. Such exceptions go against this natural coping strategy of theirs.
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(continued from previous page)
alternative <- match.arg(alternative)
#...
}
Read the description of the al ternative argument in the documentation.
Exercise 17.18 Study the source code of match. arg. In particular, notice the following frag-

ment:

if (missing(choices)) {
formal.args <- formals(sys.function(sysP <- sys.parent()))

choices <- eval(
formal.args[[as.character(substitute(arg))]],

envir=sys. frame(sysP)

17.5.2 curve

The curve function can be called, e.g., like:

curve(sin(1/x”2), 1/pi, 3, 1001, 1lty=2)
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Figure 17.1. An example plot generated by calling curve.
It results in Figure 17.1. Wait a minute... We did not define x as a sequence ranging

between about 0.3 and 3!
Exercise17.19 Study the source code of curve. Take note of the following code fragment:
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function(expr, from=NULL, to=NULL, n=101, xlab="x", type="1", ...)
{

# ...

expr <- substitute(expr)

ylab <- deparse(expr)

x <- seq.int(from, to, length.out=n)

Il <- list(x=x)

y <- eval(expr, envir=1L1l, enclos=parent. frame())

plot(x=x, y=y, type=type, xlab=xlab, ylab=ylab, ...)

#o...

17.5.3 withandwithin

Environments and named lists (and hence data frames) are similar (Section 16.1.2).
Due to this, the envir argument to eval can be set to either. Therefore, for instance:

eval(quote(head(Sepal.Length)), envir=iris)
## [1] 5.1 4.9 4.7 4.6 5.0 5.4

It evaluates the given expression in something like 1ist2env(iris, parent=parent.
frame()). Thus, even though Sepal.Length is not a standalone variable, it is treated
as one inside the iris data frame.

Moreover, the enclosure is set to the calling frame. Hence, we can successfully refer to
the head function located somewhere on the search path. This is somewhat similar to
attach (Section 16.2.6) but without modifying the search path.

The with function does exactly the above:

print(with.default)

## function (data, expr, ...)

## eval(substitute(expr), data, enclos = parent. frame())
## <environment: namespace:base>

Example use:

with(irts, {

mean(Sepal.Length) # ‘Sepal.lLength’ is in ‘iris’
b
## [1] 5.8433

As we evaluate it in the local (temporary) environment, we cannot modify the existing
columns of the data frame this way. However, the within function includes a way to
detect and apply any changes made.

within(irtis, {
Sepal.Length <- Sepal.Length/1000
Spam <- "yum!"
(continues on next page)



418 Il DEEPEST

(continued from previous page)
}) -> iris2
head(iris2, 3)
##  Sepal.lLength Sepal.Width Petal.lLength Petal.Width Species Spam

## 1 0.0051 3.5 1.4 0.2 setosa yum!
## 2 0.0049 3.0 1.4 0.2 setosa yum!
## 3 0.0047 3.2 1.3 0.2 setosa yum!

Exercise 17.20 Study the source code of within:

print(within.data. frame)
## function (data, expr, ...)

## o{

## parent <- parent. frame()

# e <- evalq(environment(), data, parent)

#H eval(substitute(expr), e)

#H# l <- as.list(e, all.names = TRUE)

#t L <- Ul!vapply(l, is.null, NA, USE.NAMES = FALSE)]

## nl <- names(l)

#H del <- setdiff(names(data), nl)
#t data[nl] <- 1

## data[del] <- NULL

## data

## }

## <environment: namespace:base>

Note that evalq(expr, ...)isequivalenttoeval(quote(expr), ...).Also, vapply(X,
FUN, NA, ...)islikea callto sapply, but it guarantees that the result is a logical vector.

17.5.4 transform

We can call transform to modify/add columns in a data frame using vectorised func-
tions. For instance:

head(transform(mtcars, log_hp=log(hp), am=2*am-1, hp=NULL), 3)

#H mpg cyl disp drat wt gsec vs am gear carb log_hp
## Mazda RX4 21.0 6 160 3.90 2.620 16.46 0 1 4 4 4.7005
## Mazda RX4 Wag 21.0 6 160 3.90 2.875 17.02 0 1 4 4 4.7005
## Datsun 710 22.8 4 108 3.85 2.320 18.61 1 1 4 1 4.5326

If we suspect that this function evaluates all expressions passed as *..." within the
data frame, we are brilliantly right. Furthermore, there must be a mechanism to detect
newly created variables so that new columns can be added.

Exercise 17.21 Study the source code of transform:

print(transform.data. frame)
## function (' _data', ...)
##{

(continues on next page)
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(continued from previous page)

## e <- eval(substitute(list(...)), '_data', parent.frame())
# tags <- names(e)

#H inx <- match(tags, names( _data"))

## matched <- !is.na(inx)

# if (any(matched)) {

##t ‘_data[inx[matched]] <- e[matched]

## ' data’ <- data. frame('_data', check.names = FALSE)
## 7

## if (lall(matched)) {

## args <- e[!matched]

# args[["check.names"]] <- FALSE

#H do.call("data. frame", c(list('_data*), args))
## }

# else '_data’

## }

## <environment: namespace:base>

In particular, note that e is a named list.

17.5.5 subset

The subset function selects rows and columns of a data frame that meet certain cri-
teria. For instance:

subset(airquality, Temp>95 | Temp<57, -(Month:Day))

## Ozone Solar.R Wind Temp
## 5 NA NA 14.3 56
## 120 76 203 9.7 97

## 122 84 237 6.3 96

The second argument, the row selector, must definitely be evaluated within the data
frame. We expect it to reduce itself to a logical vector which can then be passed to the
index operator.

The “select all columns except those between the given ones” part can be implemented
by assigning each column a consecutive integer and then treating them as numeric
indexes.

Exercise 17.22 Study the source code of subset:

print(subset.data. frame)
## function (x, subset, select, drop = FALSE, ...)

#w#o{

# chkDots(...)

#H r <- if (missing(subset))
#H rep_len(TRUE, nrow(x))
# else {

#H e <- substitute(subset)

(continues on next page)
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(continued from previous page)

## r <- eval(e, x, parent.frame())

# if (!is.logical(r))

## stop("'subset' must be logical")
## r & !is.na(r)

## }

#H vars <- i1f (missing(select))

## rep_len(TRUE, ncol(x))

# else {

## nl <- as.list(seq_along(x))

## names(nl) <- names(x)

# eval(substitute(select), nl, parent.frame())
## }

## x[r, vars, drop = drop]

## )

## <environment: namespace:base>

17.5.6 Forward pipe operator

Section 10.4 mentioned the pipe operator, * | >". We can compose its simplified version
manually:

‘%>%" <- function(el, e2)

{
e2 <- as.list(substitute(e2))
e2 <- as.call(c(e2[[1]], substitute(el), e2[-1]))
eval(e2, envir=parent.frame())

}

This function imputes el as the first argument in a call e2 and then evaluates the new
expression.

Example calls:

x <- c(1, NA_real_, 2, 3, NA_real_, 5)

X %>% mean # mean(x)

## [1] NA

X %% ‘-'(1) # x-1

## [1] ONA 1 2 NA 4

X %>% na.omit %>% mean # mean(na.omit(x))
## [1] 2.75

X %>% mean(na.rm=TRUE) # mean(x, na.rm=TRUE)
## [1] 2.75

Moreover, we can memorise the value of el so that it can be referred to in the expres-
sion on the right side of the operator. This comes at a cost of forcing the evaluation of
the left-hand side argument and thus losing the potential benefits of laziness, includ-
ing access to the generating expression.
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‘%.>%" <- function(el, e2)

{
env <- list2env(list(.=el), parent=parent.frame())
e2 <- as.list(substitute(e2))
e2 <- as.call(c(e2[[1]], quote(.), e2[-1]))
eval(e2, envir=env)

}

This way, we can refer to the value of the left side multiple times in a single call. For
instance:

runif(5) %.>% '['(.>0.5) # x[x>0.5] with x=runif(5)
## [1] 0.78831 0.88302 0.94047

This is crazy, I know. I made this. Your author. One more then:

# x[x >= 0.5 & x <= 0.9] <- NA_real_ with x=round(runif(5), 2):
runif(5) %.>% round(2) %.>% ‘[<-'(.>=0.5 & .<=0.9, value=NA_real )
## [1] 0.29 NA 0.41 NA 0.94

I cannot wait for someone to put this operator into a new R package (it is a brilliant
idea, by the way, isn't it?) and then confuse thousands of users (“What is this thing?”).

17.5.7 Otherideas (**)

Why stop ourselves here? We can create way more invasive functions that read the local
variables in the calling functions (unless they are primitive; in R, there are often excep-
tions to general rules...). Here is an operator which helps select a range of columns in
a data frame between two given labels:

“%:%" <- function(el, e2)
{
# get the ‘x' argument in the caller (hoping its “[")
x <- get("x", envir=sys.frame(sys.nframe()-1))
n <- names(x)
from <- pmatch(substitute(el), n)
to <- pmatch(substitute(e2), n)
from:to

head(iris[, Sepal.W%:%Petal.W])
##  Sepal.Width Petal.lLength Petal.Width

## 1 3.5 1.4 0.2
## 2 3.0 1.4 0.2
## 3 3.2 ) 0.2
## 4 3.1 1.5 0.2
## 5 3.6 1.4 0.2
## 6 3.9 1.7 0.4
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This operator relies on the assumption that it is called in the expression passed as an
argument to a non-primitive function which also takes a named vector x as an actual
parameter. So ugly, but saves a few keystrokes. We will not be using it because it is not
good for us.

Exercise 17.23 Make the foregoing more foolproof:
o if '%:% isused outside of *[ " or *[<-", vaise a polite error,
o permit x to be a matrix (is it possible?),
« prepare better for the case of less expected inputs.
Exercise 17.24 Modify the definition of the aforementioned operator so that both:
irisf, -Sepal.W%:%Petal.W]
irisf, -(Sepal.w%:%Petal.W)]
mean “select everything except”.
Exercise 17.25 Define “%:%" for data frames so that:
o x[%:%3, ] means “select the first three rows”,
o x[3%:%, ] means “select from the third to the end”,
o x[-3%:%, ] means “select from the third last to the end”,
o xX[%:%-10, ] means “select all but the last nine”.
You can go one step further and redefine " [ entirely to support such kinds of indexers.

The ceiling is the limit. Please, do not use it in production.

17.6 Processing formulae, "~ (*)

Formulae were introduced to S in the early 1990s [14]. Their original raison d’étre was to
specify statistical models; compare Section 10.3.4. From the language perspective, they
are merely unevaluated calls to the “~" (tilde) operator. When creating them, we do
not even have to apply quote explicitly. For instance:

f<-(y~x1+x2) #or: ~'(y, x1+x2)
mode(f)

## [1] "call”

class(f)

## [1] "formula"

Hence, formulae are compound objects in the sense given in Chapter 10. Usually, they
are equipped with an additional attribute:
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attr(f, ".Environment") # environment active when the formula was created
## <environment: R_GlobalEnv>

Exercise 17.26 Write a function that generates a list of formulae of the form “y ~ x1+x2+. ..
+xk”, for all possible combinations x1, x2, ..., xk (of any cardinality) of elements in a given set of
xs. For instance:

formula_allcomb <- function(y, xs, env=parent.frame()) ...to.do..
str(formula_allcomb("len", c("supp"”, "dose")))
## List of 3
## S :Class 'formula' language len ~ supp + dose
#4 .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
## S :Class 'formula' language len ~ dose
## .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
## S :Class 'formula' language len ~ supp
## .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
str(formula_allcomb(
v,
c("x1", "x2", "x3"),
env=NULL
))
## List of 7
## S :Class 'formula' language y ~ x1 + x2 + x3
## S :Class 'formula' language y ~ x2 + x3
## S :Class 'formula' language y ~ x1 + x3
## S :Class 'formula' language y ~ x3
## S :Class 'formula' language y ~ x1 + x2
## S :Class 'formula' language y ~ x2
## S :Class 'formula' language y ~ x1

As they are unevaluated calls, functions can assign any fantastic meaning to formulae.
We cannot really do anything about this freedom of expression. However, many func-
tions, especially in the stats and graphics packages, relyonacall tomodel. frame and
related routines. Thanks to this, we can at least find a few behavioural patterns. In par-
ticular, help("formula") lists the typical meanings of operators that can be used in a
formula.

Example 17.27 Here are a few examples (executing these expressions is left as an exercise).
« Draw abox plotfor iris[["Sepal.width"]] splithy iris[["Species"]]:

boxplot(Sepal.Width~Species, data=iris)

« Draw a box plot for ToothGrowth[["len"]] split by a combination of levels in Tooth-
Growth[["supp"]] and ToothGrowth[["dose"]]:

boxplot(len~supp:dose, data=ToothGrowth)

« Split the given data frame by a combination of values in two specified columns therein:



424

Il DEEPEST

split(ToothGrowth, ~supp:dose)

Order a data frame with respect to one or more columns:

sort_by(mtcars, ~list(am, -mpg))

Fitalinearregression model oftheformy = a+bx, whereyisiris[["Sepal.Length"]]
andxisiris[["Petal.Length"]]:

Im(Sepal.Length~Petal.Length, data=iris)

Fit a linear regression model without the intercept term of the form z = ax + by, wherez is
iris[["Sepal.Length"]],xisiris[["Petal.Length"]],andyisiris[["Sepal.
width"]]:

Im(Sepal.Length~Petal.Length+Sepal.Width+0, data=iris)

Fita linear regression model of the formz = a+ bx + cy + dxy, wherezis iris[[ "Sepal.
Length"]]+e (with e fetched from the associated environment), and x and y are like above:

e <- rnorm(length(iris[["Sepal.Length"]]), 0, 0.05)
Im(I(Sepal.Length+e)~Petal.Length*Sepal.Width, data=iris)

Draw scatter plots of warpbreaks[ [ "breaks"] ] vs their indexes for data grouped by a
combination of warpbreaks([ [ "wool"] ] andwarpbreaks[["tension"]]:

Index <- seq_len(NROW(warpbreaks))
coplot(breaks ~ Index | wool * tension, data=warpbreaks)

From the perspective of this book, which focuses on more universal aspects of the R
language, formulae are not interesting enough to describe them in any more detail.
However, the tender-hearted reader is now equipped with all the necessary knowledge
to solve the following very educative exercises.

Exercise 17.28 Study the source code of graphics: : :boxplot. formula, stats: : Im, and
stats:::t.test. formulaandnotice how they prepare and process the callstomodel. frame,
model.matrix, model.response, model.weights, etc. Note that their main aim is to pre-
pare data to be passed to boxplot. default, Im. fit (itisjust a function with such a name, not
an S3 method), and t. test.default.

Exercise 17.29 Write a function similar to curve, but one that lets us specify the function to
plot using a formula.

17.7 Exercises

Exercise 17.30 Answer the following questions.
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« What is the role of promises?

« Why do we generally discourage the use of functions relying on metaprogramming?
« How are default arguments evaluated?

o Isthere anything special about formulae from the language perspective?

« Wesaid that R evaluates function arguments lazily. Doesit meanthat “y[c(length(y)+1,
length(y)+1, length(y)+1)] <- list(1, 2, 3)”extendsalisty by threeelements?
Or are there cases where evaluation is eager?

Exercise 17.31 Why the two following calls yield different results?

test <- function(x, y=deparse(substitute(x)), force first=FALSE)

{
if (force_first) y # just force the evaluation of 'y’ here

X <- X**2
print(y)
7
test(1:5)

## [1] "c(1, 4, 9, 16, 25)"
test(1:5, force first=TRUE)
## [1] "1:5"

17.8 Outro

Recall our first approximation to the classification of R data types that we presented
in the Preface. To summarise what we have covered in this book, let’s contemplate Fig-
ure 17.2, which gives a much broader picture.

If we omitted something, it was most likely on purpose: either we can now study it on
our own easily, it is not really worth our attention, or it violates our minimalist design
principles that we set forth in the Preface.

Now that we have reached the end of this course, we might be interested in reading:
« R Language Definition [70],
« RInternals [69],
« Writing R Extensions [66],
« R's source code available at https://cran.r-project.org/src/base.

What is more, the NEWS files available at https://cran.r-project.org/doc/manuals/
r-release will keep us updated with fresh features, bug fixes, and newly deprecated
functionality; see also the news function.


https://cran.r-project.org/src/base
https://cran.r-project.org/doc/manuals/r-release
https://cran.r-project.org/doc/manuals/r-release
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Figure 17.2. R data types.

Please spread the news about this book. Also, check out another open-access work by
yours truly, Minimalist Data Wrangling with Python® [28]. Thank you.

Good luck with your further projects!

3 https://datawranglingpy.gagolewski.com/
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Changelog

Important Any bug/typo reports/fixes* are appreciated. The most up-to-date version
of this book can be found at https://deepr.gagolewski.com/.

Below is the list of the most noteworthy changes:

- under development (v1.0.1.9xxX):

(..) todo (...) work in progress (...) more to come (...)

Sections on the QR and SVD decompositions of matrices (Section 11.4) and
permutations (Section 5.4.4) were expanded.

Minor extensions and bug fixes.

Updated to R 4.5.2.
* 2024-08-27 (V1.0.1):
- Updated to R 4.4.1.
- Minor extensions and bug fixes.
* 2023-06-28 (v1.0.0):
- Final proofreading and copyediting.
- Minor extensions.
* 2023-05-19 (v0.9.0):
- Chapter on interfacing compiled code drafted.
— Minor extensions.
e 2023-04-27 (vO.2.1):
- Chapter on graphics drafted.
*+ 2023-04-09 (vO.2.0):
- New HTML theme (with light and dark modes).

- Chapter on unevaluated expressions drafted.

4 https://github.com/gagolews/deepr
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- Chapter on environments and evaluation drafted.
- Chapter on lazy evaluation drafted.
« 2022-12-29 (VO.1.12):

- 'The first public release at https://deepr.gagolewski.com/.

Chapters 1-12 (basic and compound types, functions, control flow, etc.) draf-

ted.
Preface drafted.

ISBN 978-0-6455719-2-9 reserved.

— Cover.
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