
Deep R Programming

Marek Gagolewski

v1.0.1.9005

Prof.MarekGagolewski
Warsaw University of Technology, Poland
Systems Research Institute, Polish Academy of Sciences
https://www.gagolewski.com/

Copyright (C) 2022–2026 byMarek Gagolewski. Some rights reserved.

This open-access textbook is an independent, non-profit project. It is publishedunder
the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License (CC BY-NC-ND 4.0). Please spread the word about it.

This project received no funding, administrative, technical, or editorial support from
WarsawUniversity of Technology, Polish Academy of Sciences, DeakinUniversity, nor
any other source.

A little peculiar is the world some people decided to immerse themselves in, so here is
a message stating the obvious. Every effort has been made in the preparation of this
book to ensure the accuracy of the information presented. However, the information
contained in this book is provided without warranty, either express or implied. The
authorwill, of course, not beheld liable for anydamages causedor alleged tobe caused
directly or indirectly by this book.

Anybug reports/corrections/feature requests arewelcome.Tomake this textbookeven
better, please file them at https://github.com/gagolews/deepr.

Typeset with XeLATEX. Please be understanding: it was an algorithmic process. Hence,
the results are∈ [good enough, perfect).

Homepage: https://deepr.gagolewski.com/

Datasets: https://github.com/gagolews/teaching-data

Release: v1.0.1.9005 (2026-01-07T09:56:49UTC)

ISBN: 978-0-6455719-2-9 (v1.0; 2023; Melbourne: Marek Gagolewski)

DOI: 10.5281/zenodo.7490464

https://www.gagolewski.com/
https://github.com/gagolews/deepr
https://deepr.gagolewski.com/
https://github.com/gagolews/teaching-data
https://doi.org/10.5281/zenodo.7490464

Contents

Preface xiii
0.1 To R, or not to R . xiii
0.2 R (GNU S) as a language and an environment xiii
0.3 Aims, scope, and design philosophy xv
0.4 Classification of R data types and book structure xvi
0.5 About the author . xviii
0.6 Acknowledgements . xix
0.7 You canmake this book better xx

I Deep 1

1 Introduction 3
1.1 Hello, world! . 3
1.2 Setting up the development environment 4

1.2.1 Installing R . 4
1.2.2 Interactive mode . 4
1.2.3 Batch mode: Working with R scripts (**) 5
1.2.4 Weaving: Automatic report generation (**) 5
1.2.5 Semi-interactive modes (Jupyter Notebooks, sending code to

the associated R console, etc.) 6
1.3 Atomic vectors at a glance . 8
1.4 Getting help . 9
1.5 Exercises . 10

2 Numeric vectors 11
2.1 Creating numeric vectors . 11

2.1.1 Numeric constants . 11
2.1.2 Concatenating vectors with c 12
2.1.3 Repeating entries with rep 12
2.1.4 Generating arithmetic progressions with seq and `:` 14
2.1.5 Generating pseudorandom numbers 15
2.1.6 Reading data with scan 17

2.2 Creating named objects . 19
2.3 Vectorised mathematical functions 21

2.3.1 abs and sqrt . 21
2.3.2 Rounding . 22
2.3.3 Natural exponential function and logarithm 23

IV CONTENTS

2.3.4 Probability distributions (*) 23
2.3.5 Special functions (*) . 27

2.4 Arithmetic operations . 28
2.4.1 Vectorised arithmetic operators 28
2.4.2 Recycling rule . 29
2.4.3 Operator precedence . 30
2.4.4 Accumulating . 30
2.4.5 Aggregating . 32

2.5 Exercises . 34

3 Logical vectors 37
3.1 Creating logical vectors . 37
3.2 Comparing elements . 37

3.2.1 Vectorised relational operators 37
3.2.2 Testing for NA, NaN, and Inf 38
3.2.3 Dealing with round-off errors (*) 39

3.3 Logical operations . 41
3.3.1 Vectorised logical operators 41
3.3.2 Operator precedence revisited 42
3.3.3 Dealing with missingness 43
3.3.4 Aggregating with all, any, and sum 43
3.3.5 Simplifying predicates 44

3.4 Choosing elements with ifelse 45
3.5 Exercises . 47

4 Lists and attributes 49
4.1 Type hierarchy and conversion 49

4.1.1 Explicit type casting . 50
4.1.2 Implicit conversion (coercion) 50

4.2 Lists . 52
4.2.1 Creating lists . 52
4.2.2 Converting to and from lists 54

4.3 NULL . 55
4.4 Object attributes . 55

4.4.1 Developing perceptual indifference to most attributes 56
4.4.2 But there are a few use cases 56
4.4.3 Special attributes . 58
4.4.4 Labelling vector elements with the names attribute 59
4.4.5 Altering and removing attributes 61

4.5 Exercises . 63

5 Vector indexing 65
5.1 head and tail . 65
5.2 Subsetting and extracting from vectors 66

5.2.1 Nonnegative indexes . 66
5.2.2 Negative indexes . 68
5.2.3 Logical indexer . 69

CONTENTS V

5.2.4 Character indexer . 70
5.3 Replacing elements . 72

5.3.1 Modifying atomic vectors 72
5.3.2 Modifying lists . 73
5.3.3 Inserting new elements 75

5.4 Functions related to indexing . 76
5.4.1 Matching elements in another vector 76
5.4.2 Assigning numbers into intervals 77
5.4.3 Splitting vectors into subgroups 77
5.4.4 Ordering elements . 80
5.4.5 Identifying duplicates . 83
5.4.6 Counting index occurrences 83

5.5 Preserving and losing attributes 84
5.5.1 c . 84
5.5.2 as.something . 84
5.5.3 Subsetting . 85
5.5.4 Vectorised functions . 85

5.6 Exercises . 86

6 Character vectors 91
6.1 Creating character vectors . 91

6.1.1 Inputting individual strings 91
6.1.2 Many strings, one object 93
6.1.3 Concatenating character vectors 94
6.1.4 Formatting objects . 95
6.1.5 Reading text data from files 95

6.2 Pattern searching . 96
6.2.1 Comparing whole strings 96
6.2.2 Partial matching . 96
6.2.3 Matching anywhere within a string 97
6.2.4 Using regular expressions (*) 98
6.2.5 Locating pattern occurrences 98
6.2.6 Replacing pattern occurrences 101
6.2.7 Splitting strings into tokens 102

6.3 Other string operations . 102
6.3.1 Extracting substrings . 102
6.3.2 Translating characters . 103
6.3.3 Ordering strings . 103

6.4 Other atomic vector types (*) . 104
6.4.1 Integer vectors (*) . 104
6.4.2 Raw vectors (*) . 105
6.4.3 Complex vectors (*) . 106

6.5 Exercises . 106

7 Functions 109
7.1 Creating and invoking functions 110

7.1.1 Anonymous functions . 110

VI CONTENTS

7.1.2 Named functions . 111
7.1.3 Passing arguments to functions 112
7.1.4 Grouping expressions with curly braces, `{` 113

7.2 Functional programming . 115
7.2.1 Functions are objects . 115
7.2.2 Calling on precomputed arguments with do.call 117
7.2.3 Common higher-order functions 118
7.2.4 Vectorising functions with Map 118

7.3 Accessing third-party functions 121
7.3.1 Using R packages . 121

Default packages . 123
Source vs binary packages (*) 123
Managing dependencies (*) 124

7.3.2 Calling external programs 125
7.3.3 Interfacing C, C++, Fortran, Python, Java, etc. (**) 126

7.4 Exercises . 127

8 Flow of execution 131
8.1 Conditional evaluation . 131

8.1.1 Return value . 132
8.1.2 Nested ifs . 133
8.1.3 Condition: Either TRUE or FALSE 134
8.1.4 Short-circuit evaluation 135

8.2 Exception handling . 136
8.3 Repeated evaluation . 137

8.3.1 while . 138
8.3.2 for . 139
8.3.3 break and next . 141
8.3.4 return . 142
8.3.5 Time and space complexity of algorithms (*) 143

8.4 Exercises . 145

II Deeper 147

9 Designing functions 149
9.1 Managing data flow . 149

9.1.1 Checking input data integrity and argument handling 149
9.1.2 Putting outputs into context 153

9.2 Organising andmaintaining functions 155
9.2.1 Function libraries . 155
9.2.2 Writing R packages (*) . 155

Package structure (*) . 156
Building and installing (*) 156
Documenting (*) . 157

9.2.3 Writing standalone programs (**) 157
9.2.4 Assuring quality code . 159

Managing changes and working collaboratively 159

CONTENTS VII

Test-driven development and continuous integration 159
Debugging . 160
Profiling . 160

9.3 Special functions: Syntactic sugar 160
9.3.1 Backticks . 161
9.3.2 Dollar, `$` (*) . 161
9.3.3 Curly braces, `{` . 162
9.3.4 `if` . 163
9.3.5 Operators are functions 163

Calling built-in operators as functions 163
Defining binary operators 164

9.3.6 Replacement functions 164
Creating replacement functions 165
Substituting parts of vectors 166
Replacing attributes . 166
Compositions of replacement functions (*) 167

9.4 Arguments and local variables 170
9.4.1 Call by “value” . 170
9.4.2 Variable scope . 170
9.4.3 Closures (*) . 171
9.4.4 Default arguments . 172
9.4.5 Lazy vs eager evaluation 172
9.4.6 Ellipsis, `...` . 173
9.4.7 Metaprogramming (*) . 175

9.5 Principles of sustainable design (*) 177
9.5.1 To write or abstain . 177
9.5.2 To pamper or challenge 178
9.5.3 To build or reuse . 179
9.5.4 To revolt or evolve . 180

9.6 Exercises . 180

10 S3 classes 183
10.1 Object type vs class . 184
10.2 Generics andmethod dispatching 187

10.2.1 Generics, default, and custommethods 187
10.2.2 Creating generics . 189
10.2.3 Built-in generics . 191
10.2.4 First-argument dispatch and calling S3 methods directly . . 192
10.2.5 Multi-class-ness . 195
10.2.6 Operator overloading . 197

10.3 Common built-in S3 classes . 200
10.3.1 Date, time, etc. 200
10.3.2 Factors . 202
10.3.3 Ordered factors . 206
10.3.4 Formulae (*) . 206

10.4 (Over)using the forward pipe operator, `|>` (*) 207
10.5 S4 classes (*) . 210

VIII CONTENTS

10.5.1 Defining S4 classes . 211
10.5.2 Accessing slots . 212
10.5.3 Definingmethods . 212
10.5.4 Defining constructors . 214
10.5.5 Inheritance . 215

10.6 Exercises . 215

11 Matrices and other arrays 217
11.1 Creating arrays . 217

11.1.1 matrix and array . 217
11.1.2 Promoting and stacking vectors 219
11.1.3 Simplifying lists . 220
11.1.4 Beyond numeric arrays 222
11.1.5 Internal representation 222

11.2 Array indexing . 225
11.2.1 Arrays are built on basic vectors 225
11.2.2 Selecting individual elements 226
11.2.3 Selecting rows and columns 226
11.2.4 Dropping dimensions . 226
11.2.5 Selecting submatrices . 227
11.2.6 Selecting elements based on logical vectors 228
11.2.7 Selecting based on two-column numeric matrices 229
11.2.8 Higher-dimensional arrays 230
11.2.9 Replacing elements . 231

11.3 Common operations . 231
11.3.1 Matrix transpose . 231
11.3.2 Vectorised mathematical functions 232
11.3.3 Aggregating rows and columns 232
11.3.4 Binary operators . 233

11.4 Numerical matrix algebra (*) . 235
11.4.1 Matrix multiplication . 236
11.4.2 Solving systems of linear equations 237
11.4.3 Norms andmetrics . 237
11.4.4 Eigenvalues and eigenvectors 238
11.4.5 QR decomposition . 241
11.4.6 SVD decomposition . 243
11.4.7 A note on the Matrix package 243

11.5 Exercises . 244

12 Data frames 249
12.1 Creating data frames . 249

12.1.1 data.frame and as.data.frame 249
12.1.2 cbind.data.frame and rbind.data.frame 253
12.1.3 Reading data frames . 255
12.1.4 Interfacing relational databases and querying with SQL (*) . 256
12.1.5 Strings as factors? . 257
12.1.6 Internal representation 258

CONTENTS IX

12.2 Data frame subsetting . 260
12.2.1 Data frames are lists . 260
12.2.2 Data frames are matrix-like 263

12.3 Common operations . 266
12.3.1 Ordering rows . 267
12.3.2 Handling duplicated rows 269
12.3.3 Joining (merging) data frames 269
12.3.4 Aggregating and transforming columns 270
12.3.5 Handling missing values 272
12.3.6 Reshaping data frames 272
12.3.7 Aggregating data in groups 274
12.3.8 Transforming data in groups 283
12.3.9 Metaprogramming-based techniques (*) 285
12.3.10 A note on the dplyr (tidyverse) and data.table packages (*) 288

12.4 Exercises . 288

13 Graphics 295
13.1 Graphics primitives . 295

13.1.1 Symbols (points) . 297
13.1.2 Line segments . 298
13.1.3 Polygons . 300
13.1.4 Text . 301
13.1.5 Raster images (bitmaps) (*) 302

13.2 Graphics settings . 302
13.2.1 Colours . 303
13.2.2 Plot margins and clipping regions 305
13.2.3 User coordinates and axes 306
13.2.4 Plot dimensions (*) . 308
13.2.5 Many figures on one page (subplots) 310
13.2.6 Graphics devices . 311

13.3 Higher-level functions . 313
13.3.1 Scatter and function plots with plot.default and matplot . 313
13.3.2 Bar plots and histograms 317
13.3.3 Box-and-whisker plots 322
13.3.4 Contour plots and heat maps 323

13.4 Exercises . 325

III Deepest 329

14 Interfacing compiled code (**) 331
14.1 C and C++ code in R . 332

14.1.1 Source files for compiled code in R packages 332
14.1.2 R CMD SHLIB . 335

14.2 Handling basic types . 338
14.2.1 SEXPTYPEs . 338
14.2.2 Accessing elements in simple atomic vectors 340
14.2.3 Representation of missing values 341

X CONTENTS

14.2.4 Memory allocation . 343
14.2.5 Lists . 347
14.2.6 Character vectors and individual strings (*) 349
14.2.7 Calling R functions from C (**) 350
14.2.8 External pointers (**) . 350

14.3 Dealing with compound types 352
14.3.1 Reading and setting attributes 352
14.3.2 Factors . 353
14.3.3 Matrices . 355
14.3.4 Data frames . 356

14.4 Using existing function libraries 356
14.4.1 Checking for user interrupts 356
14.4.2 Generating pseudorandom numbers 357
14.4.3 Mathematical functions from the R API 358
14.4.4 Header files from other R packages (*) 358
14.4.5 Specifying compiler and linker flags (**) 358

14.5 Exercises . 358

15 Unevaluated expressions (*) 361
15.1 Expressions at a glance . 362
15.2 Language objects . 363
15.3 Calls as combinations of expressions 365

15.3.1 Browsing parse trees . 365
15.3.2 Manipulating calls . 367

15.4 Inspecting function definition and usage 367
15.4.1 Getting the body and formal arguments 367
15.4.2 Getting the expression passed as an actual argument 368
15.4.3 Checking if an argument is missing 369
15.4.4 Determining how a function was called 370

15.5 Exercises . 371

16 Environments and evaluation (*) 373
16.1 Frames: Environments as object containers 373

16.1.1 Printing . 374
16.1.2 Environments vs named lists 374
16.1.3 Hashmaps: Fast element lookup by name 375
16.1.4 Call by value, copy on demand: Not for environments 376
16.1.5 A note on reference classes (**) 379

16.2 The environment model of evaluation 379
16.2.1 Getting the current environment 380
16.2.2 Enclosures, enclosures thereof, etc. 381
16.2.3 Missing names are sought in enclosing environments 382
16.2.4 Looking for functions . 384
16.2.5 Inspecting the search path 385
16.2.6 Attaching to and detaching from the search path 386
16.2.7 Masking (shadowing) objects from down under 389

16.3 Closures . 391

CONTENTS XI

16.3.1 Local environment . 391
16.3.2 Lexical scope and function closures 392
16.3.3 Application: Function factories 395
16.3.4 Accessing the calling environment 397
16.3.5 Package namespaces (*) 397
16.3.6 S3 method lookup by UseMethod (*) 401

16.4 Exercises . 403

17 Lazy evaluation (**) 405
17.1 Evaluation of function arguments 405
17.2 Evaluation of default arguments 409
17.3 Ellipsis revisited . 411
17.4 on.exit (*) . 413
17.5 Metaprogramming and laziness in action: Examples (*) 414

17.5.1 match.arg . 415
17.5.2 curve . 416
17.5.3 with and within . 417
17.5.4 transform . 418
17.5.5 subset . 419
17.5.6 Forward pipe operator 420
17.5.7 Other ideas (**) . 421

17.6 Processing formulae, `~` (*) . 422
17.7 Exercises . 424
17.8 Outro . 425

Changelog 427

References 429

XII CONTENTS

Deep R Programming is a comprehensive and in-depth introductory course on one of
themost popular languages fordata science. It equips ambitious students, profession-
als, and researchers with the knowledge and skills to become independent users of
this potent environment so that they can tackleanyproblem related to datawrangling
and analytics, numerical computing, statistics, andmachine learning.

For many students around the world, educational resources are hardly affordable.
Therefore, I have decided that this book should remain an independent, non-profit,
open-access project (available both in PDF1 and HTML2 forms). Whilst, for some
people, the presence of a “designer tag” from a major publisher might still be a proxy
for quality, it is my hope that this publication will prove useful to those seeking know-
ledge for knowledge’s sake.

Any bug/typo reports/fixes are appreciated. Please submit them via this project’s Git-
Hub repository3. Thank you.

Citation: Gagolewski M. (2026), Deep R Programming, Melbourne, DOI: 10.5281/zen-
odo.74904644, ISBN: 978-0-6455719-2-9, URL: https://deepr.gagolewski.com/.

Make sure to check outMinimalist DataWrangling with Python5 [28], too.

1 https://deepr.gagolewski.com/deepr.pdf
2 https://deepr.gagolewski.com/
3 https://github.com/gagolews/deepr/issues
4 https://dx.doi.org/10.5281/zenodo.7490464
5 https://datawranglingpy.gagolewski.com/

https://deepr.gagolewski.com/deepr.pdf
https://deepr.gagolewski.com/
https://github.com/gagolews/deepr/issues
https://github.com/gagolews/deepr/issues
https://dx.doi.org/10.5281/zenodo.7490464
https://dx.doi.org/10.5281/zenodo.7490464
https://deepr.gagolewski.com/
https://datawranglingpy.gagolewski.com/

0
Preface

0.1 To R, or not to R
R has been named the eleventh most dreaded programming language in the 2022
StackOverflow Developer Survey6.

Also, it is a free app, so there must be something wrong with it, right?

But whatever, R is deprecated anyway; themodernway is to use tidyverse.

Or we should all just switch to Python7.

Yeah, nah.

0.2 R (GNUS) as a language and an environment
Let’s get one8 thing straight: R is not just a statistical package. It is a general-purpose,
high-level programming language that happens to be very powerful for numerical,
data-intense computing activities of any kind. It offers extensive support for statist-
ical, machine learning, data analysis, data wrangling, and data visualisation applica-
tions, but there is muchmore.

As we detail below, R has a long history. It is an open-source version of the S environ-
ment, which was written for statisticians, by statisticians. Therefore, it is a free, yet
often more capable alternative to other software (but without any strings attached).
Unlike in some of them, in R, a spreadsheet-like GUI is not the main gateway for per-
forming computations on data. Here, we must write code to get things done. Despite
the beginning of the learning curve’s being a little steeper for non-programmers, in
the long run, R empowers us more because we are not limited to tackling the most
common scenarios. If some functionality is missing or does not suit our needs, we
can easily (re)implement it ourselves.

6 https://survey.stackoverflow.co/2022
7 https://datawranglingpy.gagolewski.com/
8 Also, we must not confuse RStudio with R. The former is merely one of many development environ-

ments for our language.We program in R, not in RStudio.

https://survey.stackoverflow.co/2022
https://survey.stackoverflow.co/2022
https://datawranglingpy.gagolewski.com/

XIV PREFACE

R is thus very convenient for rapid prototyping. It helps turn our ideas into fully op-
erational code that can be battle-tested, extended, polished, run in production, and
otherwise enjoyed. As an interpreted language, it can be executed not only in an inter-
active read-eval-print loop (command–result, question–answer, …), but also in batch
mode (running standalone scripts).

Therefore, we would rather position R amongst such environments for numerical or
scientific computing as Pythonwith numpy and pandas, Julia, GNUOctave, Scilab, and
MATLAB.However, it ismore specialised in data science applications than any of them.
Hence, it provides a much smoother experience. This is why, over the years, R has be-
come the de facto standard in statistics and related fields.

Important R is a whole ecosystem. Apart from the R language interpreter, it features
advanced:

• graphics capabilities (see Chapter 13),

• a consistent, well-integrated help system (Section 1.4),

• ways for convenient interfacing with compiled code (Chapter 14),

• a package systemand centralised package repositories (such asCRANandBiocon-
ductor; Section 7.3.1),

• a lively community of users and developers – curious and passionate people, like
you and yours cordially.

Note R [71] is a dialect of the very popular S systemdesigned in themid-1970s by Rick
A. Becker, JohnM. Chambers, and Allan R.Wilks at Bell Labs. For historical notes, see
[3, 4, 5, 6]. For works on newer versions of S, refer to [7, 10, 14, 58]. Quoting from [4]:

The design goal for S is, most broadly stated, to enable and encourage good data
analysis, that is, to provide users with specific facilities and a general environ-
ment that helps them quickly and conveniently look atmany displays, summar-
ies, andmodels for their data, and to follow thekindof iterative, exploratorypath
thatmost often leads to a thorough analysis.The system is designed for interact-
ive use with simple but general expressions for the user to type, and immediate,
informative feedback from the system, including graphic output onany of a vari-
ety of graphical devices.

S became popular because it offered greater flexibility than the standalone statistical
packages. It was praised for its high interactivity and array-centrism that was taken

PREFACE XV

from APL, the familiar syntax of the C language involving {curly braces}, the ability
to treat code as data known from Lisp (Chapter 15), the notion of lazy arguments
(Chapter 17), and the ease of calling external C and Fortran routines (Chapter 14). Its
newer versions were also somewhat object-orientated (Chapter 10).

However, S was a proprietary and closed-source system. To address this, Robert Gen-
tlemanandRoss Ihakaof theStatisticsDepartment,University ofAucklanddeveloped
R in the 1990s9. They were later joined by many contributors10. It has been decided
that it will be distributed under the terms of the free GNUGeneral Public License, ver-
sion 2.

In essence, R was supposed to be backwards-compatible with S, but some design
choices led to their evaluation models’ being slightly different. In Chapter 16, we dis-
cuss that R’s design was inspired by the Scheme language [1].

0.3 Aims, scope, and design philosophy
Many users were introduced to R by means of some very advanced operations in-
volving data frames, formulae, and functions that rely on nonstandard evaluation
(metaprogramming), like:

lm(
Ozone~Solar.R+Temp,
data=subset(airquality, Temp>60, select=-(Month:Day))

) |> summary()

This is horrible.

Another cohort was isolated from base R through a thick layer of popular third-party
packages that introduce an overwhelming number of functions (every operation, re-
gardless of its complexity, has a unique name).They often duplicate the core function-
ality, andmight not be fully compatible with our traditional system.

Both user families ought to be fine, as long as they limit themselves to solving only the
most common data processing problems.

But we yearn for more. We do not want hundreds of prefabricated recipes for popular
dishes that we canmindlessly apply without much understanding.

Our aim is to learn the fundamentals of base R, which constitutes the lingua franca of

9 See [13, 38] for historical notes. R version 0.49 released inApril 1997 (the firstwhose source code is avail-
able on CRAN; see https://cloud.r-project.org/src/base/R-0), was already fairly feature-rich. In particular,
it implemented S3 methods, formulae, and data frames that were introduced in the 1991 version of S [14].

10The beauty of the employed open-source model is that all the contributors are real human beings,
not anonymous contractorsworking for soulless corporations; see https://www.r-project.org/contributors.
html.

https://cloud.r-project.org/src/base/R-0
https://www.r-project.org/contributors.html
https://www.r-project.org/contributors.html

XVI PREFACE

all R users. We want to be able to indite code that everybody should understand; code
that will work without modifications in the next decades, too.

We want to be able to tackle any data-intense problem. Furthermore, we want to de-
velop transferable skills so that learning new tools such as Python with numpy and pan-
das (e.g., [28, 48]) or Julia will be much easier later. After all, R is not the only notable
environment out there.

Anyway, enough preaching.This graduate11-level textbook is for readers who:

• would like to experience the joy of solving problems by programming,

• want to become independent users of the R environment,

• can appreciate a more cohesively and comprehensively12 organised material,

• do not mind a slightly steeper learning curve at the beginning,

• do not want to be made obsolete by artificial “intelligence” in the future.

Some readers will benefit from this book’s being their first introduction to R (yet,
without all the pampering). For others13, this will be a fine course from intermediate
to advanced (do not skip the first chapters, though).

Either way, we should not forget to solve all the prescribed exercises.

Good luck!

0.4 Classification of R data types and book structure
Themost commonly used R data types can be classified as follows; see also Figure 1.

1. Basic types are discussed in the first part of the book:

• atomic vectors represent whole sequences of values, where every element is of
the same type:

– logical (Chapter 3) includes items that are TRUE (“yes”, “present”),
FALSE (“no”, “absent”), or NA (“not available”, “missing”);

11The author taught similar courses for his wonderfully ambitious undergraduate data/computer sci-
ence and mathematics students at the Warsaw University of Technology, where our approach has proven
not difficult whatsoever.

12 Yours truly has not chosen to play a role of a historian, a stenographer, nor a grammarian.Thus, he has
made a few noninvasive idealisations for didactic purposes. Languages evolve over time, R is now different
from what it used to be, and we can shape it (slowly; we value its stable API) to become something even
better in the future.

13 Itmight also happen that for certain readers, this will not be an appropriate course at all, either at this
stage of their career (come back later) or in general (no dramas). This is a non-profit, open-access project,
but it does notmean it is ideal for everyone.We recommend giving other sources a try, e.g., [9, 11, 16, 46, 59,
62, 63, 70], etc. Some of them are freely available.

PREFACE XVII

NULL

logical

numeric

character
list

function

...

factor

matrix

array

data.frame

formula

Date

kmeans

...

Figure 1. An overview of the most prevalent R data types; see Figure 17.2 for a more
comprehensive list.

– numeric (Chapter 2) represents real numbers, such as 1, 3.14, -0.
0000001, etc.;

– character (Chapter 6) contains strings of characters, e.g., "groß",
"123", or “Добрий день”;

• function (Chapter 7) is used to group a series of expressions (code lines) so
that they can be applied on miscellaneous input data to generate the (hope-
fully) desired outcomes, for instance, cat, print, plot, sample, and sum;

• list (generic vector; Chapter 4) can store elements of mixed types.

The above will be complemented with a discussion on vector indexing (Chapter 5)
and ways to control the program flow (Chapter 8).

2. Compound types aremostly discussed in the secondpart.They arewrappers around
objects of basic types that might behave unlike the underlying primitives thanks
to the dedicated operations overloaded for them. For instance:

• factor (Section 10.3.2) is a vector-like object that represents qualitative data
(on a nominal or an ordered scale);

• matrix (Chapter 11) stores tabulardata, i.e., arranged into rowsandcolumns,
where each cell is usually of the same type;

• data.frame (Chapter 12) is also used for depositing tabular data, but this
time such that each column can be of a different type;

• formula (Section 17.6) is utilised by some functions to specify supervised
learning models or define operations to be performed within data sub-
groups, amongst others;

XVIII PREFACE

• and many more, which we can arbitrarily define using the principles of S3-
style object-orientated programming (Chapter 10).

In this part of the book, we also discuss the principles of sustainable coding
(Chapter 9) as well as introduce ways to prepare publication-quality graphics
(Chapter 13).

3. More advancedmaterial is discussed in the third part. Formost readers, it should
be of theoretical interest only.However, it canhelp gain a complete understanding
of and control over our environment.This includes the following data types:

• symbol (name), call, expression (Chapter 15) are objects representing un-
evaluated R expressions that can be freely manipulated and executed if
needed;

• environment (Chapter 16) store named objects in hash maps and provides
the basis for the environment model of evaluation;

• externalptr (Section 14.2.8) provides the ability to maintain any dynamic-
ally allocated C/C++ objects between function calls.

We should not be surprised thatwedid not list any data types definedby a few trendy14
third-party packages.Wewill later see thatwe canmost often dowithout them. If that
is not the case, we will become skilled enough to learn them quickly ourselves.

0.5 About the author
I, Marek Gagolewski15 (pronounced like Maa’rek (Mark) Gong-o-leaf-ski), am cur-
rently an Associate Professor in Data Science at the Faculty of Mathematics and In-
formation Science, Warsaw University of Technology.

My research interests are related to data science, in particular: modelling complex
phenomena, developing usable, general-purpose algorithms, studying their analyt-
ical properties, and finding out how people use, misuse, understand, and misunder-
stand methods of data analysis in research, commercial, and decision-making set-
tings. I am an author of ~100 publications, including journal papers in outlets such
as Proceedings of theNational Academy of Sciences (PNAS), Journal of Statistical Software,The
R Journal, Journal of Classification, Information Fusion, International Journal of Forecasting,
Statistical Modelling, Physica A: Statistical Mechanics and its Applications, Information Sci-
ences, Knowledge-Based Systems, IEEE Transactions on Fuzzy Systems, and Journal of Infor-
metrics.

In my “spare” time, I write books for my students: check out my Minimalist Data

14Which does not automatically mean good. For instance, sugar, salt, and some drugs are very popular,
but it does not make them healthy.

15 https://www.gagolewski.com/

https://www.gagolewski.com/
https://datawranglingpy.gagolewski.com/
https://datawranglingpy.gagolewski.com/
https://datawranglingpy.gagolewski.com/
https://datawranglingpy.gagolewski.com/

PREFACE XIX

Wrangling with Python16 [28]. I also develop17 open-source software for data analysis,
such as stringi18 (one of the most often downloaded R packages) and genieclust19

(a fast and robust clustering algorithm in both Python and R).

0.6 Acknowledgements
R, and its predecessor S, is the result of a collaborative effort of many program-
mers20. Without their generous intellectual contributions, the landscape of data ana-
lysiswould not be as beautiful as it is now.R is distributed under the terms of theGNU
General Public License version 2.We occasionally display fragments of its source code
for didactic purposes.

We describe and use R version 4.5.2 (2025-10-31). However, we expect 99.9% of the
material covered here to be valid in future releases (consider filing a bug report if you
discover this is not the case).

Deep R Programming is based on the author’s experience as an R user (since ~2003),
developer of open-source packages, tutor/lecturer (since ~2008), and an author of a
quite successful Polish textbook Programowanie w językuR [26] which was published by
PWN (1st ed. 2014, 2nd ed. 2016). Even though the current book is an entirely different
work, its predecessor served as an excellent test bed for many ideas conveyed here.

In particular, the teaching style exercised in this book has proven successful in many
similar courses that yours trulywas responsible for, including atWarsawUniversity of
Technology,DataScienceRetreat (Berlin), andDeakinUniversity (Melbourne). I thank
all my students and colleagues for the feedback given over the last 15-odd years.

This work received no funding, administrative, technical, or editorial support from
Deakin University, Warsaw University of Technology, Polish Academy of Sciences, or
any other source.

This book was prepared in a Markdown superset called MyST21, Sphinx22, and TeX
(XeLaTeX). Code chunks were processed with the R package knitr [65]. All fig-
ures were plotted with the low-level graphics package using the author’s own style
template. A little help from Makefiles, custom shell scripts, and Sphinx plugins
(sphinxcontrib-bibtex23, sphinxcontrib-proof24) dotted the j’s and crossed the f ’s.

16 https://datawranglingpy.gagolewski.com/
17 https://github.com/gagolews
18 https://stringi.gagolewski.com/
19 https://genieclust.gagolewski.com/
20 https://www.r-project.org/contributors.html
21 https://myst-parser.readthedocs.io/en/latest/index.html
22 https://www.sphinx-doc.org/
23 https://pypi.org/project/sphinxcontrib-bibtex
24 https://pypi.org/project/sphinxcontrib-proof

https://datawranglingpy.gagolewski.com/
https://datawranglingpy.gagolewski.com/
https://github.com/gagolews
https://stringi.gagolewski.com/
https://genieclust.gagolewski.com/
https://www.r-project.org/contributors.html
https://www.r-project.org/contributors.html
https://myst-parser.readthedocs.io/en/latest/index.html
https://www.sphinx-doc.org/
https://pypi.org/project/sphinxcontrib-bibtex
https://pypi.org/project/sphinxcontrib-proof

XX PREFACE

The Ubuntu Mono25 font is used for thedisplay of code.The typesetting of themain text
relies on the Alegreya26 typeface.

0.7 You canmake this book better
When it comes to quality assurance, open, non-profit projects have to resort to the
generosity of the readers’ community.

If you find a typo, a bug, or a passage that could be rewritten or extended for better
readability/clarity, do not hesitate to report it via the Issues tracker available at https:
//github.com/gagolews/deepr. New feature requests are welcome as well.

25 https://design.ubuntu.com/font
26 https://www.huertatipografica.com/en

https://design.ubuntu.com/font
https://www.huertatipografica.com/en
https://github.com/gagolews/deepr
https://github.com/gagolews/deepr

Part I

Deep

1
Introduction

1.1 Hello, world!
Traditionally, every programming journey starts by printing a “Hello, world”-like
greeting. Let’s then get it over with asap:

cat("My hovercraft is full of eels.\n") # `\n` == newline
My hovercraft is full of eels.

By calling (invoking) the cat function, we printed out a given character string that we
enclosed in double-quote characters.

Documenting code is a good development practice. It is thus worth knowing that any
text following a hash sign (that is not part of a string) is a comment. It is ignored by the
interpreter.

This is a comment.
This is another comment.
cat("I cannot wait", "till lunchtime.\n") # two arguments (another comment)
I cannot wait till lunchtime.
cat("# I will not buy this record.\n# It is scratched.\n")
I will not buy this record.
It is scratched.

By convention, in this book, R’s textual output is always preceded by two hashes.This
makes it easier to copy-paste all code chunks in case wewould like to experiment with
them (which is always highly encouraged).

Whenever a call to a function is to be made, the round brackets are obligatory. All objects
within the parentheses (they are separated by commas) constitute the input data to
be consumed by the operation.Thus, the syntax is: a_function_to_call(argument1,
argument2, etc.).

4 I DEEP

1.2 Setting up the development environment
1.2.1 Installing R
It is quite natural to pine for the ability to execute the foregoing code ourselves; to
learn programming without getting our hands dirty is impossible.

The official precompiled binary distributions of R can be downloaded from https://
cran.r-project.org/.

For serious programming work1, we recommend, sooner rather than later, switch-
ing to2 one of the UNIX-like operating systems. This includes the free, open-source
(== good) variants of GNU/Linux, amongst others, or the proprietary (== not so good)
m**OS. In such a case, we can employ our favourite package manager (e.g., apt, dnf,
pacman, or Homebrew) to install R.

Other users (e.g., of Win***s) might consider installing Anaconda or Miniconda, es-
pecially if they would like to work with Jupyter (Section 1.2.5) or Python as well.

Below we review several ways in which we can write and execute R code. It is up to
the benign readers to research, set up, and learn the development environment that
suits their needs. As usual in real life, there is no single universal approach that always
works best in all scenarios.

1.2.2 Interactivemode
Whenever we would like to compute something quickly, e.g., determine basic aggreg-
ates of a few numbers entered by hand or evaluate a mathematical expression like
“2+2”, R’s read-eval-print loop (REPL) can give us instant gratification.

How to start the R console varies from system to system. For instance, the users of
UNIX-like boxes can simply execute R from the terminal (shell, command line).Those
onWin***s can activate RGui from the Startmenu.

Important Whenworking interactively, the default3 command prompt, “>”, means: I
am awaiting orders. Moreover, “+” denotes: Please continue. In the latter case, we should
either complete the unfinished expression or cancel the operation by pressing ESC or
CTRL+C (depending on the operating system).

> cat("And now
+ for something

(continues on next page)

1 For instance, when interoperability with other programming languages/environments is required or
when we think about scheduling jobs on Linux-based computing/container clusters.

2 Or at least trying out – by installing a copy of GNU/Linux on a virtual machine (VM).
3 It can be changed; see help("options").

https://cran.r-project.org/
https://cran.r-project.org/

1 INTRODUCTION 5

(continued from previous page)

+ completely different
+
+
+ it is an unfinished expression...
+ awaiting another double quote character and then the closing bracket...
+
+ press ESC or CTRL+C to abort input
>

For readability, we never print out the command prompt characters in this book.

1.2.3 Batchmode:Workingwith R scripts (**)
The interactive mode of operation is unsuitable for more complicated tasks, though.
Theusers ofUNIX-like operating systemswill be interested in another extreme,which
involveswriting standaloneR scripts that can be executed line by linewithout any user
intervention. To do so, in the terminal, we can invoke:

Rscript file.R

where file.R is the path to a source file; see Section 9.2.3 for more details

Exercise 1.1 (**) In your favourite text editor (e.g., Kate, vi, Emacs, Notepad++, RStudio,
or VSCodium), create a file named test.R. Write a few calls to the cat function. Then, execute
this script from the terminal through Rscript.

1.2.4 Weaving: Automatic report generation (**)
Reproducible data analysis4 requiresus to keep the results (text, tables, plots, auxiliary
files) synchronised with the code and data that generate them.

utils::Sweave (the Sweave function from the utils package) and knitr [65] are two
example template processors that evaluate R code chunks within documents written
in LaTeX, HTML, or other markup languages.The chunks are replaced by the outputs
they yield.

This book is a showcase of such an approach: all the results, including Figure 2.3 and
the message about busy hovercrafts, were generated programmatically. Thanks to its
being written in the highly universal Markdown5 language, it could be converted to a
single PDF document6 as well as the whole website7. This was facilitated by tools like
pandoc and docutils.

4The idea dates back to Knuth’s literate programming concept; see [41].
5 https://daringfireball.net/projects/markdown
6 https://deepr.gagolewski.com/deepr.pdf
7 https://deepr.gagolewski.com/

https://daringfireball.net/projects/markdown
https://deepr.gagolewski.com/deepr.pdf
https://deepr.gagolewski.com/

6 I DEEP

Exercise 1.2 (**) Call install.packages("knitr") in R. Then, create a text file named
test.Rmdwith the following content:

Hello, Markdown!

This is my first automatically generated report,
where I print messages and stuff.

```{r}
print("G'day!")
print(2+2)
plot((1:10)^2)
```

Thank you for your attention.

Assuming that the file is located in the current working directory (compare Section 7.3.2), call
knitr::knit("test.Rmd") from the R console, or run in the terminal:

Rscript -e 'knitr::knit("test.Rmd")'

Inspect the generatedMarkdown file, test.md.

Furthermore, if you have the pandoc tool installed, to generate a standalone HTML file, execute
in the terminal:

pandoc test.md --standalone -o test.html

Alternatively, see Section 7.3.2 for ways to call external programs fromR.

1.2.5 Semi-interactivemodes (JupyterNotebooks, sending code to the asso-
ciated R console, etc.)

The nature of the most frequent use cases of R encourages a semi-interactive work-
flow, where we quickly progress with prototyping by trial and error. In this mode,
we compose a series of short code fragments inside a standalone R script. Each frag-
ment implements a simple, well-defined task, such as loading data files, data cleans-
ing, feature visualisation, computations of information aggregates, etc. Importantly,
any code chunk can be sent to the associated R console and executed there. This way,
we can inspect the result it generates. If we are not happy with the outcome, we can
apply the necessary corrections.

There are quite a few integrated development environments that enable such a work-
flow, including JupyterLab, Emacs, RStudio, and VSCodium. Some of them require
additional plugins for R.

Executing an individual code line or a whole text selection is usually done by pressing
(configurable) keyboard shortcuts such as Ctrl+Enter or Shift+Enter.

1 INTRODUCTION 7

Exercise 1.3 (*)JupyterLab8 is adevelopment environment that runs inawebbrowser. Itwas
programmed inPython, but supportsmanyprogramming languages.Thanks toIRkernel9, we
can use it with R.

1. InstallJupyterLabandIRkernel (for instance, if youuseAnaconda, runconda install
-c r r-essentials).

2. From the Filemenu, select Create a new R source file and save it as, e.g., test.R.

3. Click File and select Create a new console for the editor running the R kernel.

4. Input a few print “Hello, world”-like calls.

5. Press Shift+Enter (whilst working in the editor) to send different code fragments to the
console and execute them. Inspect the results.

SeeFigure 1.1 foran illustration.Note that issuingoptions(jupyter.rich_display=FALSE)
may be necessary to disable richHTML outputs andmake them lookmore like ones in this book.

Figure 1.1. JupyterLab: A source file editor and the associated R console, where we can
run arbitrary code fragments.

Example 1.4 (*) JupyterLab also handles dedicated Notebooks, where editable and execut-
able code chunks and results they generate can be kept together in a single .ipynb (JSON) file;
see Figure 1.2 for an illustration and Chapter 1 of [28] for a quick introduction (from the Python
language kernel perspective).

This environment is convenient for live coding (e.g., for teachers) or performing exploratory data
analyses.However, formore serious programmingwork, the code can getmessy. Luckily, there is
always an option to export a notebook to an executable, plain text R script.

8 https://jupyterlab.readthedocs.io/en/stable
9 https://irkernel.github.io/

https://jupyterlab.readthedocs.io/en/stable
https://irkernel.github.io/

8 I DEEP

Figure 1.2. An example Jupyter Notebook, where we can keep code and results to-
gether.

1.3 Atomic vectors at a glance
After printing “Hello, world”, a typical programming course would normally proceed
with thediscussiononbasic data types for storing individual numeric or logical values.
Next, we would be introduced to arithmetic and relational operations on such scalars,
followedby thedefinitionofwhole arraysor other collectionsof values, complemented
by the methods to iterate over them, one element after another.

In R, no separate types representing individual values have been defined. Instead,
what seems to be a single datum, is already a vector (sequence, array) of length one.

2.71828 # input a number; here: the same as print(2.71828)
[1] 2.7183
length(2.71828) # it is a vector with one element
[1] 1

To create a vector of any length, we can call the c function, which combines given ar-
guments into a single sequence:

c(1, 2, 3) # three values combined
[1] 1 2 3
length(c(1, 2, 3)) # indeed, it is a vector of length three
[1] 3

1 INTRODUCTION 9

In Chapter 2, Chapter 3, and Chapter 6, we will discuss the most prevalent types of
atomic vectors: numeric, logical, and character ones, respectively.

c(0, 1, -3.14159, 12345.6) # four numbers
[1] 0.0000 1.0000 -3.1416 12345.6000
c(TRUE, FALSE) # two logical values
[1] TRUE FALSE
c("spam", "bacon", "spam") # three character strings
[1] "spam" "bacon" "spam"

We call them atomic for they can only group together values of the same type. Lists,
whichwewill discuss inChapter 4, are, on theotherhand, referred to as generic vectors.
They can be used for storing items of mixed types: other lists as well.

Note Not having separate scalar types greatly simplifies the programming of numer-
ical computing tasks. Vectors are prevalent in our main areas of interest: statistics,
simulations, data science, machine learning, and all other data-orientated comput-
ing. For example, columns and rows in tables (characteristics of clients, ratings of
items given by users) or time series (stock market prices, readings from temperature
sensors) are all best represented by means of such sequences.

The fact that vectors are the core part of the R language makes their use very natural,
as opposed to the languages that require special add-ons for vector processing, e.g.,
numpy for Python [35]. By learning differentways to process them as awhole (instead of
one element at a time), we will ensure that our ideas can quickly be turned into opera-
tional code. For instance, computing summary statistics such as, say, the mean abso-
lute deviation of a sequence x, will be as effortless as writing mean(abs(x-mean(x))).
Such code is not only easy to read andmaintain, but it is also fast to run.

1.4 Getting help
Our aim is to become independent, advanced R programmers.

Independent, however, does not mean omniscient. The R help system is the authorit-
ative source of knowledge about specific functions or more general topics. To open a
help page, we call:

help("topic") # equivalently: ?"topic"

Exercise 1.5 Sight (without going into detail) the manual on the length function by calling
help("length"). Note that most help pages are structured as follows:

1. Header: package:basemeans that the function is a base one (see Section 7.3.1 for more
details on the R package system);

10 I DEEP

2. Title;

3. Description: a short description of what the function does;

4. Usage: the list of formal arguments (parameters) to the function;

5. Arguments: the meaning of each formal argument explained;

6. Details: technical information;

7. Value: return value explained;

8. References: further reading;

9. See Also: links to other help pages;

10. Examples: R code that is worth inspecting.

We can also search within all the installed help pages by calling:

help.search("vague topic") # equivalently: ??"vague topic"

This way, we will be able to find answers to our questions more reliably than when
asking DuckDuckGo or G**gle, which commonly returnmany low-quality, irrelevant,
or distracting results fromsplogs.Wedonotwant to lose the sacred codewriter’s flow!
It is a matter of personal hygiene and good self discipline.

Important All code chunks, including code comments and textual outputs, form an
integral part of this book’s text.They should not be skipped by the reader. On the con-
trary, they must become objects of our intense reflection and thorough investigation.

For instance, whenever we introduce a function, it may be a clever idea to look it up
in the help system. Moreover, playing with the presented code (running, modifying,
experimenting, etc.) is also very beneficial. We should develop the habit of asking
ourselves questions like “What would happen if…”, and then finding the answers on
our own.

We are now ready to discuss the most significant operations on numeric vectors,
which constitute the main theme of the next chapter. See you there.

1.5 Exercises
Exercise 1.6 What are the three most important types of atomic vectors?

Exercise 1.7 According to the classification of the R data types we introduced in the previous
chapter, are atomic vectors basic or compound types?

2
Numeric vectors

In this chapter, we discuss the uttermost common operations on numeric vectors.
They are so fundamental that we will also find them in other scientific computing
environments, including Python with numpy or tensorflow, Julia, MATLAB, GNU
Octave, or Scilab.

At first blush, the number of functions we are going to explore may seem quite large.
Still, the reader is kindly asked to place some trust (a rare thing these days) in yours
truly. It is because our selection is comprised only of themost representative and edu-
cational amongst the plethora of possible choices. More complex building blocks can
often be reduced to a creative combination of the former or be easily found in a num-
ber of additional packages or libraries (e.g., GNU GSL [29]).

A solid understanding of baseRprogramming is crucial for dealingwith popular pack-
ages (such as data.table, dplyr, or caret). Most importantly, base R’s API is stable.
Hence, the code we compose today will most likely work the same way in ten years. It
is often not the case when we rely on external add-ons.

In the sequel,wewill be advocatingaminimalist, keep-it-simple approach to the art of
programming data processing pipelines, one that is a healthy balance between “doing
it all byourselves”, “minimising the informationoverload”, “being lazy”, and “standing
on the shoulders of giants”.

Note The exercises that we suggest in the sequel are all self-contained, unless expli-
citly stated otherwise.The use of language constructs that are yet to be formally intro-
duced (in particular, if, for, and while explained in Chapter 8) is not just unneces-
sary: it is discouraged. Moreover, we recommend against taking shortcuts by looking
up partial solutions on the internet. Rather, to get the most out of this course, we
should be seeking relevant information within the current and preceding chapters as
well as the R help system.

2.1 Creating numeric vectors
2.1.1 Numeric constants
The simplest numeric vectors are those of length one:

12 I DEEP

-3.14
[1] -3.14
1.23e-4
[1] 0.000123

The latter is in what we call scientific notation, which is a convenient means of entering
numbers of very large or small orders ofmagnitude.Here, “e” stands for “… times 10 to
thepowerof…”.Therefore,1.23e-4 is equal to1.23×10−4 = 0.000123. In otherwords,
given 1.23, wemove the decimal separator by four digits towards the left, adding zer-
oes if necessary.

In real life, some information items may be inherently or temporarily missing, un-
known, or Not Available. As R is orientated towards data processing, it was equipped
with a special indicator:

NA_real_ # numeric NA (missing value)
[1] NA

It is similar to the Null marker in database query languages such as SQL. Note that
NA_real_ is displayed simply as “NA”, chiefly for readability.

Moreover, Inf denotes infinity,∞, i.e., an element that is larger than the largest rep-
resentable double-precision (64 bit) floating point value. Also, NaN stands for not-a-
number, which is returned as the result of some illegal operations, e.g., 0/0 or∞ − ∞.

Let’s provide a few ways to create numeric vectors with possibly more than one ele-
ment.

2.1.2 Concatenating vectorswith c
First, the c function can be used to combine (concatenate)manynumeric vectors, each
of any length. It results in a single object:

c(1, 2, 3) # three vectors of length one –> one vector of length three
[1] 1 2 3
c(1, c(2, NA_real_, 4), 5, c(6, c(7, Inf)))
[1] 1 2 NA 4 5 6 7 Inf

Note Running help("c"), we will see that its usage is like c(...). In the current
context, this means that the c function takes an arbitrary number of arguments. In
Section 9.4.6, we will study the dot-dot-dot (ellipsis) parameter in more detail.

2.1.3 Repeating entries with rep
Second, rep replicates the elements in a vector a given number of times.

2 NUMERIC VECTORS 13

rep(1, 5)
[1] 1 1 1 1 1
rep(c(1, 2, 3), 4)
[1] 1 2 3 1 2 3 1 2 3 1 2 3

In the second case, the whole vector (1, 2, 3) has been recycled (tiled) four times. Inter-
estingly, if the second argument is a vector of the same length as the first one, the
behaviour will be different:

rep(c(1, 2, 3), c(2, 1, 4))
[1] 1 1 2 3 3 3 3
rep(c(1, 2, 3), c(4, 4, 4))
[1] 1 1 1 1 2 2 2 2 3 3 3 3

Here, each element is repeated the corresponding number of times.

Calling help("rep"), wefind that the function’s usage is like rep(x, ...). It is rather
peculiar. However, reading further, we discover that the ellipsis (dot-dot-dot) may be
fed with one of the following parameters:

• times,

• length.out1,

• each.

So far, we have been playing with times, which is listed second in the parameter list
(after x, the vector whose elements are to be repeated).

Important The undermentioned function calls are all equivalent:

rep(c(1, 2, 3), 4) # positional matching of arguments: `x`, then `times`
rep(c(1, 2, 3), times=4) # `times` is the second argument
rep(x=c(1, 2, 3), times=4) # keyword arguments of the form name=value
rep(times=4, x=c(1, 2, 3)) # keyword arguments can be given in any order
rep(times=4, c(1, 2, 3)) # mixed positional and keyword arguments

We can also pass each or length.out, but their names must be mentioned explicitly:

rep(c(1, 2, 3), length.out=7)
[1] 1 2 3 1 2 3 1
rep(c(1, 2, 3), each=3)
[1] 1 1 1 2 2 2 3 3 3
rep(c(1, 2, 3), length.out=7, each=3)
[1] 1 1 1 2 2 2 3

Note Whether we consider a good programming practice the implementation of a

1 A dot has no special meaning in R; see Section 2.2.

14 I DEEP

range of varied behaviours inside a single function is a question of taste. On the one
hand, in all of the preceding examples, we do repeat the input elements somehow,
so remembering just one function name is really convenient. Nevertheless, a drastic
change in the repetition pattern depending, e.g., on the length of the times argument
can be bug-prone. Anyway, we have been warned2.

Zero-length vectors are possible too:

rep(c(1, 2, 3), 0)
numeric(0)

Even though their handling might be a little tricky, we will later see that they are in-
dispensable in contexts like “create an empty data framewith a specific column struc-
ture”.

Also, note that R often allows for partial matching of named arguments, but its use is
a bad programming practice; see Section 15.4.4 for more details.

rep(c(1, 2, 3), len=7) # not recommended (see later)
Warning in rep(c(1, 2, 3), len = 7): partial argument match of 'len' to
'length.out'
[1] 1 2 3 1 2 3 1

Wesee thewarning only becausewehave set options(warnPartialMatchArgs=TRUE)
in our environment. It is not used by default.

2.1.4 Generating arithmetic progressionswith seq and `:`
Third, we can call the seq function to create a sequence of equally-spaced numbers on
a linear scale, i.e., an arithmetic progression.

seq(1, 15, 2)
[1] 1 3 5 7 9 11 13 15

From the function’s help page, we discover that seq accepts the from, to, by, and
length.out arguments, amongst others.Thus, the preceding call is equivalent to:

seq(from=1, to=15, by=2)
[1] 1 3 5 7 9 11 13 15

Note that to actually means “up to”:

2 Some “caring” R users might be tempted to introduce two new functions now, one for generating (1,
2, 3, 1, 2, 3, …) only and the other outputting patterns like (1, 1, 1, 2, 2, 2, …). They would most likely wrap
them in a new package and announce that on social media. But this is nothing else than amultiplication of
entities without actual necessity. This way, we would end up with three functions. First is the original one,
rep, which everyone ought to know anyway because it is part of the standard library. Second and third are
the two redundant procedures whose user-friendliness is only illusory. See also Chapter 9 for a discussion
on the design of functions.

2 NUMERIC VECTORS 15

seq(from=1, to=16, by=2)
[1] 1 3 5 7 9 11 13 15

We can also pass length.out instead of by. In such a case, the increments or decre-
ments will be computed via the formula ((to - from)/(length.out - 1)). This
default value is reported in the Usage section of help("seq").

seq(1, 0, length.out=5)
[1] 1.00 0.75 0.50 0.25 0.00
seq(length.out=5) # default `from` is 1
[1] 1 2 3 4 5

Arithmetic progressions with steps equal to 1 or -1 can also be generated via the `:`
operator.

1:10 # seq(1, 10) or seq(1, 10, 1)
[1] 1 2 3 4 5 6 7 8 9 10
-1:10 # seq(-1, 10) or seq(-1, 10, 1)
[1] -1 0 1 2 3 4 5 6 7 8 9 10
-1:-10 # seq(-1, -10) or seq(-1, -10, -1)
[1] -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

Let’s highlight the order of precedence of this operator: -1:10 means (-1):10, and
not -(1:10); compare Section 2.4.3.

Exercise 2.1 Take a look at the manual page of seq_along and seq_len and determine
whether we can do without them, having seq3 at hand.

2.1.5 Generating pseudorandomnumbers
Wecan also generate sequences drawn independently froma range of univariate prob-
ability distributions.

runif(7) # uniform U(0, 1)
[1] 0.287578 0.788305 0.408977 0.883017 0.940467 0.045556 0.528105
rnorm(7) # normal N(0, 1)
[1] 1.23950 -0.10897 -0.11724 0.18308 1.28055 -1.72727 1.69018

These correspond to seven pseudorandom deviates from the uniform distribution on
the unit interval (i.e., (0, 1)) and the standard normal distribution (i.e., with expecta-
tion 0 and standard deviation 1), respectively; compare Figure 2.3.

For more named distribution classes frequently occur in various real-world statistical
modelling exercises, see Section 2.3.4.

Another worthwhile function picks items from a given vector, either with or without
replacement:

3 Certain configurations of seq and its variants might return vectors of the type integer instead of
double, some of them in a compact (ALTREP) form; see Section 6.4.1.

16 I DEEP

sample(1:10, 20, replace=TRUE) # 20 with replacement (allow repetitions)
[1] 3 3 10 2 6 5 4 6 9 10 5 3 9 9 9 3 8 10 7 10
sample(1:10, 5, replace=FALSE) # 5 without replacement (do not repeat)
[1] 9 3 4 6 1

Thedistributionof the sampledvaluesdoesnotneed tobeuniform; theprobargument
may be fed with a vector of the corresponding probabilities. For example, here are 20
independent realisations of the random variable 𝑋 such that Pr(𝑋 = 0) = 0.9 (the
probability that we obtain 0 is equal to 90%) and Pr(𝑋 = 1) = 0.1:

sample(0:1, 20, replace=TRUE, prob=c(0.9, 0.1))
[1] 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

Note If n is a single number (a numeric vector of length 1), then sample(n, ...)
is equivalent to sample(1:n, ...). Similarly, seq(n) is a synonym for seq(1, n)
or seq(1, length(n)), depending on the length of n. This is a dangerous behaviour
that can occasionally backfire and lead to bugs (check what happens when n is, e.g.,
0). Nonetheless, we have been warned. From now on, we are going to be extra careful
(but are we really?). Readmore at help("sample") and help("seq").

Let’s stress that thenumbersweobtain aremerely pseudorandombecause they are gen-
erated algorithmically. R uses the Mersenne-Twister MT19937 method [47] by default;
see help("RNG") and [22, 30, 43]. By setting the seed of the randomnumber generator,
i.e., resetting its state to a given one, we can obtain results that are reproducible.

set.seed(12345) # seeds are specified with integers
sample(1:10, 5, replace=TRUE) # a,b,c,d,e
[1] 3 10 8 10 8
sample(1:10, 5, replace=TRUE) # f,g,h,i,j
[1] 2 6 6 7 10

Setting the seed to the one used previously gives:

set.seed(12345)
sample(1:10, 5, replace=TRUE) # a,b,c,d,e
[1] 3 10 8 10 8

We did not(?) expect that! And now for something completely different:

set.seed(12345)
sample(1:10, 10, replace=TRUE) # a,b,c,d,e,f,g,h,i,j
[1] 3 10 8 10 8 2 6 6 7 10

Reproducibility is a crucial feature of each truly scientific experiment.The same initial
condition (here: the same seed) leads to exactly the same outcomes.

Note Some claim that the only unsuspicious seed is 42 but in matters of taste, there

2 NUMERIC VECTORS 17

canbenodisputes.Everyonecanuse their favouritepicks: yours truly savours 123, 1234,
and 12345 as well.

When performingmany runs ofMonte Carlo experiments, it may also be a clever idea
to call set.seed(i) in the 𝑖-th iteration of a simulation we are trying to program.
We should ensure that our seed settings are applied consistently across all our scripts.
Otherwise, wemight be accused of tampering with evidence. For instance, here is the
ultimate proof that we are very lucky today:

set.seed(1679619) # totally unsuspicious, right?
sample(0:1, 20, replace=TRUE) # so random
[1] 1

This is exactly why reproducible scripts and auxiliary data should be published along-
side all research reports or papers. Only open, transparent science can be fully trust-
worthy.

If set.seed is not called explicitly, and the random state is not restored from the pre-
viously savedRsession (seeChapter 16), then the randomgenerator is initialisedbased
on the current wall time and the identifier of the running R instance (PID). This may
justify the impression that the numbers we generate appear surprising.

To understand the “pseudo” part of the said randomness better, in Section 8.3, we will
build a very simple random generator ourselves.

2.1.6 Reading datawith scan
An example text file named euraud-20200101-20200630.csv4 gives the EUR to AUD
exchange rates (howmany Australian Dollars can we buy for 1 Euro) from 1 January to
30 June 2020 (remember COVID-19?). Let’s preview the first couple of lines:

EUR/AUD Exchange Rates
Source: Statistical Data Warehouse of the European Central Bank System
https://www.ecb.europa.eu/stats/policy_and_exchange_rates/
(provided free of charge)
NA
1.6006
1.6031
NA

The four header lines that begin with “#” merely serve as comments for us humans.
They should be ignored by the interpreter. The first “real” value, NA, corresponds to
1 January (Wednesday, New Year’s Day; Forex markets were closed, hence a missing
observation).

We can invoke the scan function to read all the inputs and convert them to a single
numeric vector:

4 https://github.com/gagolews/teaching-data/raw/master/marek/euraud-20200101-20200630.csv

https://github.com/gagolews/teaching-data/raw/master/marek/euraud-20200101-20200630.csv

18 I DEEP

scan(paste0("https://github.com/gagolews/teaching-data/raw/",
"master/marek/euraud-20200101-20200630.csv"), comment.char="#")

[1] NA 1.6006 1.6031 NA NA 1.6119 1.6251 1.6195 1.6193 1.6132
[11] NA NA 1.6117 1.6110 1.6188 1.6115 1.6122 NA NA 1.6154
[21] 1.6177 1.6184 1.6149 1.6127 NA NA 1.6291 1.6290 1.6299 1.6412
[31] 1.6494 NA NA 1.6521 1.6439 1.6299 1.6282 1.6417 NA NA
[41] 1.6373 1.6260 1.6175 1.6138 1.6151 NA NA 1.6129 1.6195 1.6142
[51] 1.6294 1.6363 NA NA 1.6384 1.6442 1.6565 1.6672 1.6875 NA
[61] NA 1.6998 1.6911 1.6794 1.6917 1.7103 NA NA 1.7330 1.7377
[71] 1.7389 1.7674 1.7684 NA NA 1.8198 1.8287 1.8568 1.8635 1.8226
[81] NA NA 1.8586 1.8315 1.7993 1.8162 1.8209 NA NA 1.8021
[91] 1.7967 1.8053 1.7970 1.8004 NA NA 1.7790 1.7578 1.7596
[reached 'max' / getOption("max.print") -- omitted 83 entries]

We used the paste0 function (Section 6.1.3) to concatenate two long strings (too long
to fit a single line of code) and form a single URL.

We can also read the files located on our computer. For example:

scan("~/Projects/teaching-data/marek/euraud-20200101-20200630.csv",
comment.char="#")

It used an absolute file path that starts at the user’s home directory, denoted “~”. Yours
truly’s case is /home/gagolews.

Note For portability reasons, we suggest slashes, “/”, as path separators; see also
help("file.path") and help(".Platform"). They are recognised by all UNIX-like
boxes as well as by other popular operating systems, including Win***s. Note that
URLs, such as https://deepr.gagolewski.com/, consist of slashes, too.

Paths can also be relative to the current working directory, denoted “.”, which can
be read via a call to getwd. Usually, it is the location wherefrom the R session
has been started. For instance, if the working directory was /home/gagolews/
Projects/teaching-data/marek, we could write the file path equivalently as ./
euraud-20200101-20200630.csv or even euraud-20200101-20200630.csv.

On as side note, “..” marks the parent directory of the current working directory.
In the above example, ../r/iris.csv is equivalent to /home/gagolews/Projects/
teaching-data/r/iris.csv.

Exercise 2.2 Read the help page about scan. Take note of the following formal arguments and
their meaning: dec, sep, what, comment.char, and na.strings.

Later we will discuss the read.table and read.csv functions. They are wrappers
around scan that reads structureddata. Also, write exports an atomic vector’s contents
to a text file.

Example 2.3 Figure 2.1 shows the graph of the aforementioned exchange rates, whichwas gen-
erated by calling:

https://deepr.gagolewski.com/

2 NUMERIC VECTORS 19

plot(scan(paste0("https://github.com/gagolews/teaching-data/raw/",
"master/marek/euraud-20200101-20200630.csv"), comment.char="#"),
xlab="Day", ylab="EUR/AUD")

0 50 100 150

1.6
0

1.6
5

1.7
0

1.7
5

1.8
0

1.8
5

Day

EU
R/

AU
D

Figure 2.1. EUR/AUD exchange rates from 2020-01-01 (day 1) to 2020-06-30 (day 182).

Somewhatmisleadingly (and for reasons that will become apparent later), the documentation of
plot can be accessed by calling help("plot.default"). Read about, and experiment with,
different values of the main, xlab, ylab, type, col, pch, cex, lty, and lwd arguments. More
plotting routines will be discussed in Chapter 13.

2.2 Creating named objects
Theobjectswe bring forthwill often need to bememorised so that they can be referred
to in further computations. The assignment operator, `<-`, can be used for this pur-
pose:

x <- 1:3 # creates a numeric vector and binds the name `x` to it

The now-named object can be recalled5 and dealt with as we please:

print(x) # or just `x` in the R console
[1] 1 2 3

(continues on next page)

5 Name bindings are part of environment frames; see Chapter 16.

20 I DEEP

(continued from previous page)

sum(x) # example operation: compute the sum of all elements in `x`
[1] 6

Important In R, all names are case-sensitive. Hence, x and X can coexist peacefully:
when set, they refer to two different objects. If we tried calling Print(x), print(X),
or PRINT(x), we would get an error.

Typically,wewill beusing syntacticnames. Inhelp("make.names"),we read:Asyntactic-
ally valid name consists of letters, numbers and the dot or underline characters and starts with
a letter or the dot not followed by a number. Names such as .2way are not valid, and neither are
the reserved words such as if, for, function, next, and TRUE, but see Section 9.3.1 for
an exception.

A fine name is self-explanatory and thus reader-friendly: patients, mean, and aver-
age_scores are way better (if they are what they claim they are) than xyz123, crap, or
spam. Also, it might not be such a bad idea to get used to denoting:

• vectors by x, y, z,

• matrices (andmatrix-like objects) by A, B, …, X, Y, Z,

• integer indexes by letters i, j, k, l,

• object sizes by n, m, d, p or nx, ny, etc.,

especially when they are only of temporary nature (for storing auxiliary results, iter-
ating over collections of objects, etc.).

There are numerous naming conventions that we can adopt, but most often they are
a matter of taste; snake_case, lowerCamelCase, UpperCamelCase, flatcase, or dot.
case are equally sound as long as they are used coherently (for instance, some use
snake_case for vectors and UpperCamelCase for functions). Occasionally, we have
little choice but to adhere to the naming conventions of the project we are about to
contribute to.

Note Generally, a dot, “.”, has no specialmeaning6; na.omit is as appropriate a name
as na_omit, naOmit, NAOMIT, naomit, and NaOmit. Readers who know other program-
ming languages will need to habituate themselves to this convention.

R, as a dynamic language, allows for introducing new variables at any time.Moreover,
existing names can be bound to new values. For instance:

(y <- "spam") # bracketed expression – printing not suppressed
[1] "spam"

(continues on next page)

6 See Section 10.2 and Section 16.2.1 for a few asterisks.

2 NUMERIC VECTORS 21

(continued from previous page)

x <- y # overwrites the previous `x`
print(x)
[1] "spam"

Now x refers to a verbatim copy of y.

Note Objects are automatically destroyed when we cannot access them anymore. By
now, the garbage collector is likely to have got rid of the foregoing 1:3 vector (to which
the name xwas bound previously).

2.3 Vectorisedmathematical functions
Mathematically, we will be denoting a given vector 𝒙 of length 𝑛 by (𝑥1, 𝑥2, … , 𝑥𝑛). In
other words, 𝑥𝑖 is its 𝑖-th element. Let’s review a few operations that are ubiquitous in
numerical computing.

2.3.1 abs and sqrt
R implements vectorised versions of the most popular mathematical functions, e.g.,
abs (absolute value, |𝑥|) and sqrt (square root,√𝑥).

abs(c(2, -1, 0, -3, NA_real_))
[1] 2 1 0 3 NA

Here, vectorisedmeans that instead of being defined to act on a single numeric value,
they are applied on each element in a vector. The 𝑖-th resulting item is a transformed
version of the 𝑖-th input:

|𝒙| = (|𝑥1|, |𝑥2|, … , |𝑥𝑛|).

Moreover, if an input is a missing value, the corresponding output will be marked as
unknown as well.

Another example:

x <- c(4, 2, -1)
(y <- sqrt(x))
Warning in sqrt(x): NaNs produced
[1] 2.0000 1.4142 NaN

Toattract our attention to the fact that computing the square root of a negative value is
a reckless act, R generated an informative warning. However, a warning is not an error:

22 I DEEP

the result is being produced as usual. In this case, the ill value is marked as not-a-
number.

Also, the fact that the irrational√2 is displayed7 as 1.4142 does notmean that it is such
a crude approximation to 1.414213562373095048801688724209698.... It was roun-
ded when printing purely for aesthetic reasons. In fact, in Section 3.2.3, we will point
out that the computer’s floating-point arithmetic has roughly 16 decimal digits preci-
sion (but we shall see that the devil is in the detail).

print(y, digits=16) # display more significant figures
[1] 2.000000000000000 1.414213562373095 NaN

2.3.2 Rounding
The following functions drop all or portions of fractional parts of numbers:

• floor(x) (rounds down to the nearest integer, denoted ⌊𝑥⌋),
• ceiling(x) (rounds up, denoted ⌈𝑥⌉ = −⌊−𝑥⌋),
• trunc(x) (rounds towards zero),

• round(x, digits=0) (rounds to the nearest number with digits decimal digits).

For instance:

x <- c(7.0001, 6.9999, -4.3149, -5.19999, 123.4567, -765.4321, 0.5, 1.5, 2.5)
floor(x)
[1] 7 6 -5 -6 123 -766 0 1 2
ceiling(x)
[1] 8 7 -4 -5 124 -765 1 2 3
trunc(x)
[1] 7 6 -4 -5 123 -765 0 1 2

Note When we write that a function’s usage is like round(x, digits=0), compare
help("round"), wemean that the digits parameter is equippedwith the default value
of 0. In other words, if rounding to 0 decimal digits is what we need, the second argu-
ment can be omitted.

round(x) # the same as round(x, 0); round half to even
[1] 7 7 -4 -5 123 -765 0 2 2
round(x, 1) # round to tenths (nearest 0.1s)
[1] 7.0 7.0 -4.3 -5.2 123.5 -765.4 0.5 1.5 2.5
round(x, -2) # round to hundreds (nearest 100s)
[1] 0 0 0 0 100 -800 0 0 0

7There are a couple of settings in place that control the default behaviour of the print function; see
width, digits, max.print, OutDec, scipen, etc. in help("options").

2 NUMERIC VECTORS 23

2.3.3 Natural exponential function and logarithm
Moreover:

• exp(x) outputs the natural exponential function, 𝑒𝑥, where Euler’s number 𝑒 ≃
2.718,

• log(x, base=exp(1)) computes, by default, the natural logarithm of 𝑥, log𝑒 𝑥
(which is most often denoted simply by log 𝑥).

Recall that if 𝑥 = 𝑒𝑦, then log𝑒 𝑥 = 𝑦, i.e., one is the inverse of the other.

log(c(0, 1, 2.7183, 7.3891, 20.0855)) # grows slowly
[1] -Inf 0 1 2 3
exp(c(0, 1, 2, 3)) # grows fast
[1] 1.0000 2.7183 7.3891 20.0855

These functions enjoy a number of very valuable identities and inequalities. In partic-
ular, we should know from school that log(𝑥 ⋅ 𝑦) = log 𝑥 + log 𝑦, log(𝑥𝑦) = 𝑦 log 𝑥,
and 𝑒𝑥+𝑦 = 𝑒𝑥 ⋅ 𝑒𝑦.

For the logarithm to a different base, say, log10 𝑥, we can call:

log(c(0, 1, 10, 100, 1000, 1e10), 10) # or log(..., base=10)
[1] -Inf 0 1 2 3 10

Recall that if log𝑏 𝑥 = 𝑦, then 𝑥 = 𝑏𝑦, for any 1 ≠ 𝑏 > 0.
Example 2.4 Commonly, a logarithmic scale is used for variables that grow rapidly when ex-
pressed as functions of each other; see Figure 2.2.

x <- seq(0, 10, length.out=1001)
par(mfrow=c(1, 2)) # two plots in one figure (one row, two columns)
plot(x, exp(x), type="l") # left subplot
plot(x, exp(x), type="l", log="y") # log-scale on the y-axis; right subplot

Let’s highlight that 𝑒𝑥 on the log-scale is nothing more than a straight line. Such a transforma-
tion of the axes can only be applied in the case of values strictly greater than 0.

2.3.4 Probability distributions (*)
It should comeasno surprise thatRoffers extensive support formanyunivariate prob-
ability distribution families, including:

• continuous distributions, i.e., those whose support is comprised of uncountably
many real numbers (e.g., some interval or the whole real line):

– *unif (uniform),

– *norm (normal),

– *exp (exponential),

24 I DEEP

0 2 4 6 8 10

0
5

0
0

0
10

0
0

0
15

0
0

0
2

0
0

0
0

x

ex
p

(x
)

0 2 4 6 8 10

1
10

10
0

10
0

0
10

0
0

0

x

ex
p

(x
)

Figure 2.2. Linear- vs log-scale on the y-axis.

– *gamma (gamma, Γ),
– *beta (beta, B),

– *lnorm (log-normal),

– *t (Student),

– *cauchy (Cauchy–Lorentz),

– *chisq (chi-squared, 𝜒2),

– *f (Snedecor–Fisher),

– *weibull (Weibull);

with the prefix “*” being one of:

– d (probability density function, PDF),

– p (cumulative distribution function, CDF; or survival function, SF),

– q (quantile function, being the inverse of the CDF),

– r (generation of random deviates; already mentioned above);

• discrete distributions, i.e., those whose possible outcomes can easily be enumer-
ated (e.g., some integers):

– *binom (binomial),

– *geom (geometric),

– *pois (Poisson),

2 NUMERIC VECTORS 25

– *hyper (hypergeometric),

– *nbinom (negative binomial);

prefixes “p” and “r” retain their meaning, however:

– d now gives the probabilitymass function (PMF),

– q brings about the quantile function, defined as a generalised inverse of the
CDF.

Each distribution is characterised by a set of underlying parameters. For instance, a
normal distribution N(𝜇, 𝜎) can be pinpointed by setting its expected value 𝜇 ∈ ℝ
and standard deviation 𝜎 > 0. In R, these two have been named mean and sd, re-
spectively; see help("dnorm").Therefore, e.g., dnorm(x, 1, 2) computes the PDF of
N(1, 2) at x.

Note The parametrisations assumed in R can be subtly different fromwhat we know
from statistical textbooks or probability courses. For example, the normal distribu-
tion can be identified based on either standard deviation or variance, and the expo-
nential distribution can be defined via expected value or its reciprocal.We thus advise
the reader to study carefully the documentation of help("dnorm"), help("dunif"),
help("dexp"), help("dbinom"), and the like.

It is also worth knowing the typical use cases of each of the distributions listed, e.g.,
a Poisson distribution can describe the probability of observing the number of in-
dependent events in a fixed time interval (e.g., the number of users downloading a
copy of R from CRAN per hour), and an exponential distribution can model the time
between such events; compare [24].

Exercise 2.5 A call to hist(x) draws a histogram, which can serve as an estimator of the un-
derlying continuous probability density function of a given sample; see Figure 2.3 for an illustra-
tion.

par(mfrow=c(1, 2)) # two plots in one figure
left subplot: uniform U(0, 1)
hist(runif(10000, 0, 1), col="white", probability=TRUE, main="")
x <- seq(0, 1, length.out=101)
lines(x, dunif(x, 0, 1), lwd=2) # draw the true density function (PDF)
right subplot: normal N(0, 1)
hist(rnorm(10000, 0, 1), col="white", probability=TRUE, main="")
x <- seq(-4, 4, length.out=101)
lines(x, dnorm(x, 0, 1), lwd=2) # draw the PDF

Draw a histogram of some random samples of different sizes n from the following distributions:

• rnorm(n, µ, σ) – normalN(𝜇, 𝜎) with expected values 𝜇 ∈ {−1, 0, 5} (i.e., 𝜇 being
equal to either−1, 0, or 5; read “∈” as “belongs to the given set” or “in”) and standard devi-
ations𝜎 ∈ {0.5, 1, 5};

26 I DEEP

runif(10000, 0, 1)

D
en

sit
y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.0

rnorm(10000, 0, 1)

D
en

sit
y

-4 -2 0 2 4
0.

0
0.

1
0.

2
0.

3
0.

4

Figure 2.3. Example histograms of some pseudorandom samples and the true under-
lying probability density functions: the uniform distribution on the unit interval (left)
and the standard normal distribution (right).

• runif(n, a, b) – uniformU(𝑎, 𝑏) on the interval (𝑎, 𝑏)with 𝑎 = 0 and 𝑏 = 1 as well
as 𝑎 = −1 and 𝑏 = 1;

• rbeta(n, α, β) – betaB(𝛼, 𝛽)with 𝛼, 𝛽 ∈ {0.5, 1, 2};
• rexp(n, λ) – exponentialE(𝜆)with rates𝜆 ∈ {0.5, 1, 10};

Moreover, read about and playwith the breaks, main, xlab, ylab, xlim, ylim, and col para-
meters; see help("hist").

Example 2.6 We roll a six-sided dice twelve times. Let 𝐶 be a random variable describing the
number of cases where the “1” face is thrown.𝐶 follows a binomial distribution Bin(𝑛, 𝑝)with
parameters 𝑛 = 12 (the number of Bernoulli trials) and 𝑝 = 1/6 (the probability of success
in a single roll).

Theprobabilitymass function,dbinom, represents theprobabilities that thenumberof “1”s rolled
is equal to 0, 1, …, or 12, i.e.,𝑃(𝐶 = 0),𝑃(𝐶 = 1), …, or𝑃(𝐶 = 12), respectively:

round(dbinom(0:12, 12, 1/6), 2) # PMF at 13 different points
[1] 0.11 0.27 0.30 0.20 0.09 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00

On the other hand, the probability that we throw no more than three “1”s, 𝑃(𝐶 ≤ 3), can be
determined bymeans of the cumulative distribution function, pbinom:

pbinom(3, 12, 1/6) # pbinom(3, 12, 1/6, lower.tail=FALSE)
[1] 0.87482

The smallest 𝑐 such that𝑃(𝐶 ≤ 𝑐) ≥ 0.95 can be computed based on the quantile function:

2 NUMERIC VECTORS 27

qbinom(0.95, 12, 1/6)
[1] 4
pbinom(3:4, 12, 1/6) # for comparison: 0.95 is in-between
[1] 0.87482 0.96365

In other words, at least 95% of the time, we will be observing nomore than four successes.

Also, here are 30 pseudorandom realisations (simulations) of the random variable𝐶:

rbinom(30, 12, 1/6) # how many successes in 12 trials, repeated 30 times
[1] 1 3 2 4 4 0 2 4 2 2 4 2 3 2 0 4 1 0 1 4 4 3 2 6 2 3 2 2 1 1

2.3.5 Special functions (*)
Within mathematical formulae and across assorted application areas, certain func-
tions appear more frequently than others. Hence, for the sake of notational brevity
and computational precision, many of them have been assigned special names. For
instance, the following functions are mentioned in the definitions related to a few
probability distributions:

• gamma(x) for 𝑥 > 0 computes Γ(𝑥) = ∫∞
0 𝑡𝑥−1𝑒−𝑡 𝑑𝑡,

• beta(a, b) for 𝑎, 𝑏 > 0 yields 𝐵(𝑎, 𝑏) = Γ(𝑎)Γ(𝑏)
Γ(𝑎+𝑏) = ∫1

0 𝑡𝑎−1(1 − 𝑡)𝑏−1 𝑑𝑡.

Why do we have beta if it is merely a mix of gammas? A specific, tailored function is
expected to be faster andmore precise than itsDIY version; its underlying implement-
ation does not have to involve any calls to gamma.

beta(0.25, 250) # okay
[1] 0.91213
gamma(0.25)*gamma(250)/gamma(250.25) # not okay
[1] NaN

The Γ function grows so rapidly that already gamma(172) gives rise to Inf. It is due to
the fact that a computer’s arithmetic is not infinitely precise; compare Section 3.2.3.

Special functions are plentiful; see the open-accessNISTDigital Library ofMathematical
Functions [52] for one of themost definitive references (and also [2] for its predecessor).
R package gsl [34] provides a vectorised interface to the GNU GSL [29] library, which
implements many of such routines.

Exercise 2.7 ThePochhammer symbol, (𝑎)𝑥 = Γ(𝑎 + 𝑥)/Γ(𝑎), can be computed via a call to
gsl::poch(a, x), i.e., the poch function from the gsl package:

call install.packages("gsl") first
library("gsl") # load the package
poch(10, 3:6) # calls gsl_sf_poch() from GNU GSL
[1] 1320 17160 240240 3603600

28 I DEEP

Read the documentation of the correspondinggsl_sf_poch function in theGNUGSLmanual8.
And when you are there, do not hesitate to go through the list of all functions, including those
related to statistics, permutations, combinations, and so forth.

Many functions also have their logarithm-of versions; see, e.g., lgamma and lbeta.
Also, for instance, dnorm and dbeta have the log parameter. Their classical use case
is the (numerical) maximum likelihood estimation, which involves the sums of the
logarithms of densities.

2.4 Arithmetic operations
2.4.1 Vectorised arithmetic operators
R features the following binary arithmetic operators:

• `+` (addition) and `-` (subtraction),

• `*` (multiplication) and `/` (division),

• `%/%` (integer division) and `%%` (modulo, division remainder),

• `^` (exponentiation; synonym: `**`).

They are all vectorised: they take two vectors as input and produce another vector as
output.

c(1, 2, 3) * c(10, 100, 1000)
[1] 10 200 3000

Theoperationwasperformed in an elementwise fashionon the correspondingpairs of ele-
ments from both vectors. The first element in the left sequence was multiplied by the
corresponding element in the right vector, and the result was stored in the first element
of the output.Then, the second element in the left… all right, we get it.

Other operators behave similarly:

0:10 + seq(0, 1, 0.1)
[1] 0.0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 11.0
0:7 / rep(3, length.out=8) # division by 3
[1] 0.00000 0.33333 0.66667 1.00000 1.33333 1.66667 2.00000 2.33333
0:7 %/% rep(3, length.out=8) # integer division
[1] 0 0 0 1 1 1 2 2
0:7 %% rep(3, length.out=8) # division remainder
[1] 0 1 2 0 1 2 0 1

Operations involving missing values also yield NAs:

8 https://www.gnu.org/software/gsl/doc/html

https://www.gnu.org/software/gsl/doc/html

2 NUMERIC VECTORS 29

c(1, NA_real_, 3, NA_real_) + c(NA_real_, 2, 3, NA_real_)
[1] NA NA 6 NA

2.4.2 Recycling rule
Some of the preceding statements can be writtenmore concisely.When the operands
are of different lengths, the shorter one is recycled as many times as necessary, as in
rep(y, length.out=length(x)). For example:

0:7 / 3
[1] 0.00000 0.33333 0.66667 1.00000 1.33333 1.66667 2.00000 2.33333
1:10 * c(-1, 1)
[1] -1 2 -3 4 -5 6 -7 8 -9 10
2 ^ (0:10)
[1] 1 2 4 8 16 32 64 128 256 512 1024

We call this the recycling rule.

If anoperandcannotbe recycled in its entirety, awarning9 is generated, but theoutput
is still available.

c(1, 10, 100) * 1:8
Warning in c(1, 10, 100) * 1:8: longer object length is not a multiple of
shorter object length
[1] 1 20 300 4 50 600 7 80

Vectorisation and the recycling rule are perhaps most fruitful when applying binary
operators on sequences of identical lengths or when performing vector-scalar (i.e., a
sequence vs a single value) operations. However, there is much more: schemes like
“every 𝑘-th element” appear in Taylor series expansions (multiply by c(-1, 1)), 𝑘-fold
cross-validation, etc.; see also Section 11.3.4 for use cases inmatrix/tensor processing.

Also, pmin and pmax return the parallelminimum andmaximumof the corresponding
elements of the input vectors.Their behaviour is the same as the arithmetic operators,
but we call them as ordinary functions:

pmin(c(1, 2, 3, 4), c(4, 2, 3, 1))
[1] 1 2 3 1
pmin(3, 1:5)
[1] 1 2 3 3 3
pmax(0, pmin(1, c(0.25, -2, 5, -0.5, 0, 1.3, 0.99))) # clipping to [0, 1]
[1] 0.25 0.00 1.00 0.00 0.00 1.00 0.99

Note Some functions can be very deeply vectorised, i.e., with respect to multiple ar-
guments. For example:

9 A few functions do not warn us whatsoever when they perform incomplete recycling (e.g., paste; see
Section 6.1.3) or can even give an error (e.g., as.data.frame.list; compare Section 12.1.1). Consider this
inconsistency as an annoying bug and hope it will be fixed, in the next decade or so.

30 I DEEP

runif(3, c(10, 20, 30), c(11, 22, 33))
[1] 10.288 21.577 31.227

generates three random numbers uniformly distributed over the intervals (10, 11),
(20, 22), and (30, 33), respectively.

2.4.3 Operator precedence
Expressions involving multiple operators need a set of rules governing the order
of computations (unless we enforce it using round brackets). We have said that
-1:10 means (-1):10 rather than -(1:10). But what about, say, 1+1+1+1+1*0 or
3*2^0:5+10?

Let’s list the operatorsmentioned so far in their order of precedence, from the least to the
most binding (see also help("Syntax")):

1. `<-` (right to left),

2. `+` and `-` (binary),

3. `*` and `/`,

4. `%%` and `%/%`,

5. `:`,

6. `+` and `-` (unary),

7. `^` (right to left).

Hence, -2^2/3+3*4means ((-(2^2))/3)+(3*4) and not, e.g., -((2^(2/(3+3)))*4).

Notice that `+` and `-`, `*` and `/`, as well as `%%` and `%/%` have the same priority.
Expressions involving a series of operations in the same group are evaluated left to
right, with the exception of `^` and `<-`, which are performed the other way around.
Therefore:

• 2*3/4*5 is equivalent to ((2*3)/4)*5,

• 2^3^4 is 2^(3^4) because, mathematically, we would write it as 234 = 281,

• “x <- y <- 4*3%%8/2” binds both y and x to 6, not x to the previous value of y
and then y to 6.

When in doubt, we can always bracket a subexpression to ensure it is executed in the
intended order. It can also increase the readability of our code.

2.4.4 Accumulating
The`+` and `*` operators, aswell as the pmin and pmax functions, implement element-
wise operations that are applied on the corresponding elements taken from two given

2 NUMERIC VECTORS 31

vectors. For instance:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥1
𝑥2
𝑥3
⋮

𝑥𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑦1
𝑦2
𝑦3
⋮

𝑦𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥1 + 𝑦1
𝑥2 + 𝑦2
𝑥3 + 𝑦3

⋮
𝑥𝑛 + 𝑦𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

However, we can also scan through all the values in a single vector and combine the
successive elements that we inspect using the corresponding operation:

• cumsum(x) gives the cumulative sum of the elements in a vector,

• cumprod(x) computes the cumulative product,

• cummin(x) yields the cumulative minimum,

• cummax(x) breeds the cumulative maximum.

The 𝑖-th element in the output vector will consist of the sum/product/min/max of the
first 𝑖 inputs. For example:

cumsum

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥1
𝑥2
𝑥3
⋮

𝑥𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥1
𝑥1 + 𝑥2
𝑥1 + 𝑥2 + 𝑥3
⋮ ⋱
𝑥1 + 𝑥2 + 𝑥3 + ⋯ + 𝑥𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

cumsum(1:8)
[1] 1 3 6 10 15 21 28 36
cumprod(1:8)
[1] 1 2 6 24 120 720 5040 40320
cummin(c(3, 2, 4, 5, 1, 6, 0))
[1] 3 2 2 2 1 1 0
cummax(c(3, 2, 4, 5, 1, 6, 0))
[1] 3 3 4 5 5 6 6

Example 2.8 On a side note, diff can be considered an inverse to cumsum. It computes the it-
erated difference: subtracts the first two elements, then the second from the third one, the third
from the fourth, and so on. In other words, diff(x) gives 𝒚 such that 𝑦𝑖 = 𝑥𝑖+1 − 𝑥𝑖.

x <- c(-2, 3, 6, 2, 15)
diff(x)
[1] 5 3 -4 13
cumsum(diff(x))
[1] 5 8 4 17
cumsum(c(-2, diff(x))) # recreates x
[1] -2 3 6 2 15

Thanks to diff, we can compute the daily changes to the EUR/AUD forex rates studied earlier;
see Figure 2.4.

32 I DEEP

aud <- scan(paste0("https://github.com/gagolews/teaching-data/raw/",
"master/marek/euraud-20200101-20200630.csv"), comment.char="#")

aud_all <- na.omit(aud) # remove all missing values
plot(diff(aud_all), type="s", ylab="Daily change [EUR/AUD]") # "steps"
abline(h=0, lty="dotted") # draw a horizontal line at y=0

0 20 40 60 80 100 120

-0
.0

4
-0

.0
2

0.
00

0.
02

0.
04

Index

D
ai

ly
 ch

an
ge

 [E
UR

/A
UD

]

Figure 2.4. Iterated differences of the exchange rates (non-missing values only).

2.4.5 Aggregating
If we are only concerned with the last cumulant, which summarises all the inputs, we
have the following10 functions at our disposal:

• sum(x) computes the sum of elements in a vector,∑𝑛
𝑖=1 𝑥𝑖 = 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛,

• prod(x) outputs the product of all elements,∏𝑛
𝑖=1 𝑥𝑖 = 𝑥1𝑥2 ⋯ 𝑥𝑛,

• min(x) determines the minimum,

• max(x) reckons the greatest value.

sum(1:8)
[1] 36
prod(1:8)
[1] 40320
min(c(3, 2, 4, 5, 1, 6, 0))
[1] 0

(continues on next page)

10 Chapter 7 will discuss the Reduce function, which generalises the above by allowing any binary opera-
tion to be propagated over a given vector.

2 NUMERIC VECTORS 33

(continued from previous page)

max(c(3, 2, 4, 5, 1, 6, 0))
[1] 6

The foregoing functions form the basis for the popular summary statistics11 (sample
aggregates) such as:

• mean(x) gives the arithmetic mean, sum(x)/length(x),

• var(x)yields the (unbiased) sample variance,sum((x-mean(x))^2)/(length(x)-1),

• sd(x) is the standard deviation, sqrt(var(x)).

Furthermore, median(x) computes the sample median, i.e., the middle value in the
sorted12 version of x.

For instance:

x <- runif(1000)
c(min(x), mean(x), median(x), max(x), sd(x))
[1] 0.00046535 0.49727780 0.48995025 0.99940453 0.28748391

Exercise 2.9 Let 𝒙 be any vector of length𝑛with positive elements. Compute its geometric and
harmonic mean, which are given by, respectively,

𝑛

√
√√
⎷

𝑛
∏
𝑖=1

𝑥𝑖 = 𝑒
1
𝑛 ∑𝑛

𝑖=1 log𝑥𝑖 and
𝑛

∑𝑛
𝑖=1

1
𝑥𝑖

.

When solving exercises like this one, it does not reallymatterwhat data you apply these functions
on.Weare being abstract in the sense that the𝒙 vector canbe anything: from the one that features
very accurate socioeconomic predictions that will help make this world less miserable, through
the data you have been collecting for the last ten years in relation to your super important PhD
research, whatever your company asked you to crunch today, to something related to the hobby
project that you enjoy doing after hours. But you can also just test the above on something like “x
<- runif(10)”, andmove on.

All aggregation functions return amissing value if any of the input elements is unavail-
able. Luckily, they are equipped with the na.rm parameter, on behalf of which we can
request the removal of NAs.

aud <- scan(paste0("https://github.com/gagolews/teaching-data/raw/",
"master/marek/euraud-20200101-20200630.csv"), comment.char="#")

c(min(aud), mean(aud), max(aud))
[1] NA NA NA
c(min(aud, na.rm=TRUE), mean(aud, na.rm=TRUE), max(aud, na.rm=TRUE))
[1] 1.6006 1.6775 1.8635

11 Actually, var and median, amongst others, are defined by the stats package. But this one is automat-
ically loaded by default, so let’s not make a fuss about it now.

12 min, median, and max are generalised by the quantile function. We will discuss it much later (Sec-
tion 4.4.3), because it returns a named vector.

34 I DEEP

Otherwise, we could have called, e.g., mean(na.omit(x)).

Note In the documentation, we read that the usage of sum, prod, min, and max is like
sum(..., na.rm=FALSE), etc. In this context, it means that they accept any number
of input vectors, and each of them can be of arbitrary length. Therefore, min(1, 2,
3), min(c(1, 2, 3)) as well as min(c(1, 2), 3) all return the same result.

However, we also read thatwe have mean(x, trim=0, na.rm=FALSE, ...).This time,
only one vector canbe aggregated, and any further arguments (except trim and na.rm)
are ignored.

Theextra flexibility (whichwedonot have to rely on, ever) of the former group is due to
their being associative operations.Wehave, e.g., (2+3)+4 = 2+(3+4).Hence, these
operations can be performed in any order, in any group.They are primitive operations:
it is mean that is based on sum, not vice versa.

2.5 Exercises
Exercise 2.10 Answer the following questions.

• What is the meaning of the dot-dot-dot parameter in the definition of the c function?

• We say that the round function is vectorised.What does that mean?

• What is wrong with a call to c(sqrt(1), sqrt(2), sqrt(3))?

• What do wemean by saying that multiplication operates element by element?

• How does the recycling rule work when applying `+`?

• How to (and why) set the seed of the pseudorandom number generator?

• What is the difference between NA_real_ and NaN?

• How are default arguments specified in the manual of, e.g., the round function?

• Is a call to rep(times=4, x=1:5) equivalent to rep(4, 1:5)?

• List a fewways to generate a sequence like (-1, -0.75, -0.5, …, 0.75, 1).

• Is -3:5 the same as -(3:5)?What about the precedence of operators in expressions such as
2^3/4*5^6, 5*6+4/17%%8, and 1+-2^3:4-1?

• If x is a numeric vector of length 𝑛 (for some 𝑛 ≥ 0), how many values will sample(x)
output?

• Does scan support reading directly from compressed archives, e.g., .csv.gz files?

When in doubt, refer back to the material discussed in this chapter or the Rmanual.

2 NUMERIC VECTORS 35

Exercise 2.11 Thanks to vectorisation, implementing an example graph of arcsine and ar-
ccosine is straightforward.

x <- seq(-1, 1, length.out=11) # increase length.out for a smoother curve
plot(x, asin(x), # asin() computed for 11 points

type="l", # lines
ylim=c(-pi/2, pi), # y axis limits like c(y_min, y_max)
ylab="asin(x), acos(x)") # y axis label

lines(x, acos(x), col="red", lty="dashed") # adds to the current plot
legend("topright", c("asin(x)", "acos(x)"),

lty=c("solid", "dashed"), col=c("black", "red"), bg="white")

Thusly inspired, plot the following functions: | sin 𝑥2|, |sin |𝑥||,√⌊𝑥⌋, and 1/(1 + 𝑒−𝑥). Recall
that the documentation of plot can be accessed by calling help("plot.default").

Exercise 2.12 The expression:

4
𝑛

∑
𝑖=1

(−1)𝑖+1

2𝑖 − 1 = 4 (1
1 − 1

3 + 1
5 − 1

7 + ⋯)

slowly converges to 𝜋 as 𝑛 approaches ∞. Calculate it for 𝑛 = 1 000 000 and 𝑛 =
1 000 000 000 using the vectorised functions and operators discussed in this chapter, making
use of the recycling rule as much as possible.

Exercise 2.13 Let x and y be two vectors of identical lengths 𝑛, say:

x <- rnorm(100)
y <- 2*x+10+rnorm(100, 0, 0.5)

Compute the Pearson linear correlation coefficient given by:

𝑟(𝐱, 𝐲) =
∑𝑛

𝑖=1 (𝑥𝑖 − 1
𝑛 ∑𝑛

𝑗=1 𝑥𝑗) (𝑦𝑖 − 1
𝑛 ∑𝑛

𝑗=1 𝑦𝑗)

√∑𝑛
𝑖=1 (𝑥𝑖 − 1

𝑛 ∑𝑛
𝑗=1 𝑥𝑗)

2 √∑𝑛
𝑖=1 (𝑦𝑖 − 1

𝑛 ∑𝑛
𝑗=1 𝑦𝑗)

2
.

To make sure you have come up with a correct implementation, compare your result to a call to
cor(x, y).

Exercise 2.14 (*) FindanRpackage providinga function to computemoving (rolling) averages
andmedians of a given vector. Apply themon theEUR/AUDcurrency exchange data.Draw thus
obtained smoothened versions of the time series.

Exercise 2.15 (**)Use a call to convolve(..., type="filter") to compute the 𝑘-moving
average of a numeric vector.

In the next chapter, we will study operations that involve logical values.

3
Logical vectors

3.1 Creating logical vectors
R defines three(!) logical constants: TRUE, FALSE, and NA representing, respectively,
“yes”, “no”, and “???”. When instantiated, each of them is an atomic vector of length
one. To generate logical vectors of arbitrary size, we can call some of the functions
introduced in the previous chapter, for instance:

c(TRUE, FALSE, FALSE, NA, TRUE, FALSE)
[1] TRUE FALSE FALSE NA TRUE FALSE
rep(c(TRUE, FALSE, NA), each=2)
[1] TRUE TRUE FALSE FALSE NA NA
sample(c(TRUE, FALSE), 10, replace=TRUE, prob=c(0.8, 0.2))
[1] TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE TRUE TRUE

Note By default, T is a synonym for TRUE and F stands for FALSE. However, these are
not reserved keywords and can be reassigned to any other values.Therefore, we advise
against relying on them: they are not used throughout the course of this course.

Also, notice that the logicalmissing value is spelled simply as NA, andnot NA_logical_.
Both the logical NA and thenumeric NA_real_ are, for the sake of ourwidely-conceived
wellbeing, both printed as “NA” on the R console.This, however, does notmean they are
identical; see Section 4.1 for discussion.

3.2 Comparing elements
3.2.1 Vectorised relational operators
Logical vectors frequently come into being as a result of various testing activities. In
particular, the binary operators:

• `<` (less than),

• `<=` (less than or equal),

38 I DEEP

• `>` (greater than),

• `>=` (greater than or equal)

• `==` (equal),

• `!=` (not equal),

compare the corresponding elements of two numeric vectors and output a logical vector.

1 < 3
[1] TRUE
c(1, 2, 3, 4) == c(2, 2, 3, 8)
[1] FALSE TRUE TRUE FALSE
1:10 <= 10:1
[1] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE

Thus, they operate in an elementwise manner. Moreover, the recycling rule is applied
if necessary:

3 < 1:5 # c(3, 3, 3, 3, 3) < c(1, 2, 3, 4, 5)
[1] FALSE FALSE FALSE TRUE TRUE
c(1, 4) == 1:4 # c(1, 4, 1, 4) == c(1, 2, 3, 4)
[1] TRUE FALSE FALSE TRUE

Therefore, we can say that they are vectorised in the same manner as the arithmetic
operators `+`, `*`, etc.; compare Section 2.4.1.

3.2.2 Testing for NA, NaN, and Inf
Comparisons against missing values and not-numbers yield NAs. Instead of the incor-
rect “x == NA_real_”, testing formissingness should rather be performed via a call to
the vectorised is.na function.

is.na(c(NA_real_, Inf, -Inf, NaN, -1, 0, 1))
[1] TRUE FALSE FALSE TRUE FALSE FALSE FALSE
is.na(c(TRUE, FALSE, NA, TRUE)) # works for logical vectors, too
[1] FALSE FALSE TRUE FALSE

Moreover, is.finite is noteworthy since it returns FALSE on Infs, NA_real_s and
NaNs.

is.finite(c(NA_real_, Inf, -Inf, NaN, -1, 0, 1))
[1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE

See also the more specific is.nan and is.infinite.

3 LOGICAL VECTORS 39

3.2.3 Dealingwith round-off errors (*)
In mathematics, real numbers are merely an idealisation. In practice, however, it is
impossible to store them with infinite precision (think 𝜋 = 3.141592653589793...):
computer memory is limited, and our time is precious.

Therefore, a consensus had to be reached. In R, we rely on the double-precision floating
point format.The floating point part means that the numbers can be both small (close to
zero like±2.23 × 10−308) and large (e.g.,±1.79 × 10308).

Note

2.23e-308 == 0.00
00
00
00
00
00
0000000223

1.79e308 == 179000000
00
00
00
00
00
00

These two are pretty distant.

Every numeric value takes 8 bytes (or, equivalently, 64 bits) of memory. We are, how-
ever, able to store only about 15–17 decimal digits:

print(0.12345678901234567890123456789012345678901234, digits=22) # 22 is max
[1] 0.1234567890123456773699

which limits the precision of our computations. We wrote about because, unfortu-
nately, the numbers are stored the computer-friendly binary base, not the human-
aligned decimal one.This can lead to counterintuitive outcomes. In particular:

• 0.1 cannot be represented exactly for it cannot be written as a finite series of re-
ciprocals of powers of 2 (we have 0.1 = 2−4 + 2−5 + 2−8 + 2−9 + …). This leads
to surprising results such as:

0.1 + 0.1 + 0.1 == 0.3
[1] FALSE

Quite strikingly, what follows does not show anything suspicious:

40 I DEEP

c(0.1, 0.1 + 0.1 + 0.1, 0.3)
[1] 0.1 0.3 0.3

Printing involves rounding. In the above context, it is misleading. Actually, we ex-
perience something more like:

print(c(0.1, 0.1 + 0.1 + 0.1, 0.3), digits=22)
[1] 0.1000000000000000055511 0.3000000000000000444089
[3] 0.2999999999999999888978

• All integers between−253 and 253 all stored exactly. This is good news. However,
the next integer is beyond the representable range:

2^53 + 1 == 2^53
[1] TRUE

• The order of operations may matter. In particular, the associativity property can
be violated when dealing with numbers of contrasting orders of magnitude:

2^53 + 2^-53 - 2^53 - 2^-53 # should be == 0.0
[1] -1.1102e-16

• Some numbers may just be too large, too small, or too close to zero to be repres-
ented exactly:

c(sum(2^((1023-52):1023)), sum(2^((1023-53):1023)))
[1] 1.7977e+308 Inf
c(2^(-1022-52), 2^(-1022-53))
[1] 4.9407e-324 0.0000e+00

Important The double-precision floating point format (IEEE 754) is not specific to
R. It is used by most other computing environments, including Python and C++. For
discussion, see [33, 36, 43], and the more statistically-orientated [31].

Can we do anything about these issues?

Firstly, dealing with integers of a reasonable order of magnitude (e.g., various resource
or case IDs in our datasets) is safe. Their comparison, addition, subtraction, andmul-
tiplication are always precise.

In all other cases (including applying other operations on integers, e.g., division or
sqrt), we need to be very careful with comparisons, especially involving testing for
equality via `==`. The sole fact that sin𝜋 = 0, mathematically speaking, does not
mean that we should expect that:

sin(pi) == 0
[1] FALSE

3 LOGICAL VECTORS 41

Instead, they are so close that we can treat the difference between them as negligible. Thus,
in practice, instead of testing if 𝑥 = 𝑦, we will be considering:
• |𝑥 − 𝑦| (absolute error), or

• |𝑥−𝑦|
|𝑦| (relative error; which takes the order of magnitude of the numbers into ac-
count but obviously cannot be applied if 𝑦 is very close to 0),

and determining if these are less than an assumed error margin, 𝜀 > 0, say, 10−8 or
2−26. For example:

abs(sin(pi) - 0) < 2^-26
[1] TRUE

Note Rounding can sometimes have a similar effect as testing for almost equality in
terms of the absolute error.

round(sin(pi), 8) == 0
[1] TRUE

Important The foregoing recommendations are valid for the most popular applic-
ations of R, i.e., statistical and, more generally, scientific computing1. Our datasets
usually do not represent accurate measurements. Bah, the world itself is far from
ideal! Therefore, we do not have to lose sleep over our not being able to precisely pin-
point the exact solutions.

3.3 Logical operations
3.3.1 Vectorised logical operators
The relational operators such as `==` and `>` accept only two arguments. Their chain-
ing is forbidden. A test that we would mathematically write as 0 ≤ 𝑥 ≤ 1 (or
𝑥 ∈ [0, 1]) cannot be expressed as “0 <= x <= 1” in R. Therefore, we need a way
to combine two logical conditions so as to be able to state that “𝑥 ≥ 0 and, at the same
time, 𝑥 ≤ 1”.
In such situations, the following logical operators and functions come in handy:

• `!` (not, negation; unary),

1 However, in financial applications, we had rather rely on base-10 numbers (compare the aforemen-
tioned issue with 0.1). There are some libraries implementing higher precision floating-point numbers or
even interval arithmetic that keeps track of error propagation in operation chains.

42 I DEEP

• `&` (and, conjunction; are both predicates true?),

• `|` (or, alternation; is at least one true?),

• xor (exclusive-or, exclusive disjunction, either-or; is one and only one of the pre-
dicates true?).

They again act elementwisely and implement the recycling rule if necessary (and ap-
plicable).

x <- c(-10, -1, -0.25, 0, 0.5, 1, 5, 100)
(x >= 0) & (x <= 1)
[1] FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE
(x < 0) | (x > 1)
[1] TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE
!((x < 0) | (x > 1))
[1] FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE
xor(x >= -1, x <= 1)
[1] TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE

Important The vectorised `&` and `|` operators should not be confused with their
scalar, short-circuit counterparts, `&&` and `||`; see Section 8.1.4.

3.3.2 Operator precedence revisited
The operators introduced in this chapter have lower precedence than the arithmetic
ones, including the binary `+` and `-`. Calling help("Syntax") reveals that we can
extend our listing from Section 2.4.3 as follows:

1. `<-` (right to left; least binding),

2. `|`,

3. `&`,

4. `!` (unary),

5. `<`, `>`, `<=`, `>=`, `==`, and `!=`,

6. `+` and `-` (binary),

7. `*` and `/`,

8. …

The order of precedence is intuitive, e.g., “x+1 <= y & y <= z-1 | x <= z” means
“(((x+1) <= y) & (y <= (z-1))) | (x <= z)”.

3 LOGICAL VECTORS 43

3.3.3 Dealingwithmissingness
Operations involving missing values follow the principles of Łukasiewicz’s three-
valued logic, which is based on common sense. For instance, “NA | TRUE” is TRUE
because the alternative (or) needs at least one argument to be TRUE to generate a posit-
ive result. On the other hand, “NA | FALSE” is NA since the outcomewould be different
depending on what we substituted NA for.

Let’s contemplate the logical operations’ truth tables for all the possible combinations
of inputs:

u <- c(TRUE, FALSE, NA, TRUE, FALSE, NA, TRUE, FALSE, NA)
v <- c(TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, NA, NA, NA)
!u
[1] FALSE TRUE NA FALSE TRUE NA FALSE TRUE NA
u & v
[1] TRUE FALSE NA FALSE FALSE FALSE NA FALSE NA
u | v
[1] TRUE TRUE TRUE TRUE FALSE NA TRUE NA NA
xor(u, v)
[1] FALSE TRUE NA TRUE FALSE NA NA NA NA

3.3.4 Aggregatingwith all, any, and sum
Just like in the case of numeric vectors, we can summarise the contents of logical se-
quences. all tests whether every element in a logical vector is equal to TRUE. any de-
termines if there exists an element that is TRUE.

x <- runif(10000)
all(x <= 0.2) # are all values in x <= 0.2?
[1] FALSE
any(x <= 0.2) # is there at least one element in x that is <= 0.2?
[1] TRUE
any(c(NA, FALSE, TRUE))
[1] TRUE
all(c(TRUE, TRUE, NA))
[1] NA

Note all will frequently be used in conjunction with `==` as the latter is itself vector-
ised: it does not test whether a vector as a whole is equal to another one.

z <- c(1, 2, 3)
z == 1:3 # elementwise equal
[1] TRUE TRUE TRUE
all(z == 1:3) # elementwise equal summarised
[1] TRUE

However, let’s keep inmind thewarning about the testing for exact equality of floating-

44 I DEEP

point numbers stated in Section 3.2.3. Sometimes, considering absolute or relative
errors might be more appropriate.

z <- sin((0:10)*pi) # sin(0), sin(pi), sin(2*pi), ..., sin(10*pi)
all(z == 0.0) # danger zone! please don't...
[1] FALSE
all(abs(z - 0.0) < 1e-8) # are the absolute errors negligible?
[1] TRUE

We can also call sum on a logical vector. Taking into account that it interprets TRUE as
numeric 1 and FALSE as 0 (more on this in Section 4.1), it will give us the number of
elements equal to TRUE.

sum(x <= 0.2) # how many elements in x are <= 0.2?
[1] 1998

Also, by computing sum(x)/length(x), we can obtain the proportion (fraction) of val-
ues equal to TRUE in x. Equivalently:

mean(x <= 0.2) # proportion of elements <= 0.2
[1] 0.1998

Naturally, we expect mean(runif(n) <= 0.2) to be equal to 0.2 (20%), but with ran-
domness, we can never be sure.

3.3.5 Simplifying predicates
Each aspiring programmer needs to become fluentwith the rules governing the trans-
formations of logical conditions, e.g., that the negation of “(x >= 0) & (x < 1)” is
equivalent to “(x < 0) | (x >= 1)”. Such rules are called tautologies. Here are a few
of them:

• !(!p) is equivalent to p (double negation),

• !(p & q) holds if and only if !p | !q (De Morgan’s law),

• !(p | q) is !p & !q (another DeMorgan’s law),

• all(p) is equivalent to !any(!p).

Various combinations thereof are, of course, possible. Further simplifications are en-
abled by other properties of the binary operations:

• commutativity (symmetry), e.g., 𝑎 + 𝑏 = 𝑏 + 𝑎, 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎,
• associativity, e.g., (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐), max(max(𝑎, 𝑏), 𝑐) =
max(𝑎,max(𝑏, 𝑐)),

• distributivity, e.g., 𝑎 ∗ 𝑏 + 𝑎 ∗ 𝑐 = 𝑎 ∗ (𝑏 + 𝑐), min(max(𝑎, 𝑏),max(𝑎, 𝑐)) =
max(𝑎,min(𝑏, 𝑐)),

3 LOGICAL VECTORS 45

and relations, including:

• transitivity, e.g., if 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑐, then surely 𝑎 ≤ 𝑐.
Exercise 3.1 Assuming that a, b, and c are numeric vectors, simplify the following expressions:

• !(b>a & b<c),

• !(a>=b & b>=c & a>=c),

• a>b & a<c | a<c & a>b,

• a>b | a<=b,

• a<=b & a>c | a>b & a<=c,

• a<=b & (a>c | a>b) & a<=c,

• !all(a > b & b < c).

3.4 Choosing elementswith ifelse
The ifelse function is a vectorised version of the scalar if…else conditional state-
ment, which we will forgo for as long as until Chapter 8. It permits us to select an
element from one of two vectors based on some logical condition. A call to ifelse(l,
t, f), where l is a logical vector, returns a vector y such that:

𝑦𝑖 = { 𝑡𝑖 if 𝑙𝑖 is TRUE ,
𝑓𝑖 if 𝑙𝑖 is FALSE .

In other words, the 𝑖-th element of the result vector is equal to 𝑡𝑖 if 𝑙𝑖 is TRUE and to 𝑓𝑖
otherwise. For example:

(z <- rnorm(6)) # example vector
[1] -0.560476 -0.230177 1.558708 0.070508 0.129288 1.715065
ifelse(z >= 0, z, -z) # like abs(z)
[1] 0.560476 0.230177 1.558708 0.070508 0.129288 1.715065

or:

(x <- rnorm(6)) # example vector
[1] 0.46092 -1.26506 -0.68685 -0.44566 1.22408 0.35981
(y <- rnorm(6)) # example vector
[1] 0.40077 0.11068 -0.55584 1.78691 0.49785 -1.96662
ifelse(x >= y, x, y) # like pmax(x, y)
[1] 0.46092 0.11068 -0.55584 1.78691 1.22408 0.35981

Weshould not be surprised anymore that the recycling rule is fired upwhennecessary:

46 I DEEP

ifelse(x > 0, x^2, 0) # squares of positive xs and 0 otherwise
[1] 0.21244 0.00000 0.00000 0.00000 1.49838 0.12947

Note All arguments are evaluated in their entirety before deciding onwhich elements
are selected.Therefore, the following call generates a warning:

ifelse(z >= 0, log(z), NA_real_)
Warning in log(z): NaNs produced
[1] NA NA 0.44386 -2.65202 -2.04571 0.53945

This is because, with log(z), we compute the logarithms of negative values anyway.
To fix this, we can write:

log(ifelse(z >= 0, z, NA_real_))
[1] NA NA 0.44386 -2.65202 -2.04571 0.53945

In case we yearn for an if…else if…else-type expression, the calls to ifelse can
naturally be nested.

Example 3.2 A version of pmax(pmax(x, y), z) can be written as:

ifelse(x >= y,
ifelse(z >= x, z, x),
ifelse(z >= y, z, y)

)
[1] 0.46092 0.11068 1.55871 1.78691 1.22408 1.71506

However, determining three intermediate logical vectors is not necessary.We can save one call to
`>=` by introducing an auxiliary variable:

xy <- ifelse(x >= y, x, y)
ifelse(z >= xy, z, xy)
[1] 0.46092 0.11068 1.55871 1.78691 1.22408 1.71506

Exercise 3.3 Figure 3.1 depicts a realisation of the mixture𝑍 = 0.2𝑋 + 0.8𝑌 of two normal
distributions𝑋 ∼ N(−2, 0.5) and𝑌 ∼ N(3, 1).

n <- 100000
z <- ifelse(runif(n) <= 0.2, rnorm(n, -2, 0.5), rnorm(n, 3, 1))
hist(z, breaks=101, probability=TRUE, main="", col="white")

In other words, we generated a variate from the normal distribution that has the expected value
of−2with probability20%, and from the onewith the expectation of3 otherwise.Thus inspired,
generate the Gaussianmixtures:

• 2
3𝑋 + 1

3𝑌, where𝑋 ∼ N(100, 16) and𝑌 ∼ N(116, 8),
• 0.3𝑋 + 0.4𝑌 + 0.3𝑍, where𝑋 ∼ N(−10, 2),𝑌 ∼ N(0, 2), and𝑍 ∼ N(10, 2).

3 LOGICAL VECTORS 47

z

D
en

sit
y

-4 -2 0 2 4 6 8

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Figure 3.1. A mixture of two Gaussians generated with ifelse.

(*) On a side note, knowing that if𝑋 followsN(0, 1), then the scaled-shifted𝜎𝑋 + 𝜇 is distrib-
utedN(𝜇, 𝜎), the above can be equivalently written as:

w <- (runif(n) <= 0.2)
z <- rnorm(n, 0, 1)*ifelse(w, 0.5, 1) + ifelse(w, -2, 3)

3.5 Exercises
Exercise 3.4 Answer the following questions.

• Why the statement “The Earth is flat or the smallpox vaccine is proven effective” is obviously
true?

• What is the difference between NA and NA_real_?

• Why is “FALSE & NA” equal to FALSE, but “TRUE & NA” is NA?

• Why has ifelse(x>=0, sqrt(x), NA_real_) a tendency to generate warnings and
how to rewrite it so as to prevent that from happening?

• What is the interpretation of mean(x >= 0 & x <= 1)?

• For some integer 𝑥 and 𝑦, how to verify whether 0 < 𝑥 < 100, 0 < 𝑦 < 100, and 𝑥 < 𝑦,
all at the same time?

• Mathematically, for all real 𝑥, 𝑦 > 0, we have log 𝑥𝑦 = log 𝑥 + log 𝑦. Why then
all(log(x*y) == log(x)+log(y)) can sometimes return FALSE? How to fix this?

48 I DEEP

• Is x/y/z always equal to x/(y/z)? How to fix this?

• What is the purpose of very specific functions such as log1p and expm1 (see their help page)
andmanyothers listed in, e.g., theGNUGSLlibrary [29]? Isour referring to themaviolation
of the beloved “do not multiply entities without necessity” rule?

• If we know that 𝑥may be subject to error, how to test whether 𝑥 > 0 in a robust manner?
• Is “y<-5” the same as “y <- 5” or rather “y < -5”?

Exercise 3.5 What is the difference between all and isTRUE?What about `==`, identical,
and all.equal? Is the last one properly vectorised?

Exercise 3.6 Compute the cross-entropy lossbetweenanumeric vector𝒑withvalues in the inter-
val (0, 1) and a logical vector 𝒚, both of length 𝑛 (you can generate them randomly or manually,
it does not matter, it is just an exercise):

ℒ(𝒑, 𝒚) = 1
𝑛

𝑛
∑
𝑖=1

ℓ𝑖,

where

ℓ𝑖 = { − log 𝑝𝑖 if 𝑦𝑖 is TRUE ,
− log(1 − 𝑝𝑖) if 𝑦𝑖 is FALSE .

Interpretation: in classification problems, 𝑦𝑖 ∈ {FALSE, TRUE} denotes the true class of the 𝑖-
th object (say, whether the 𝑖-th hospital patient is symptomatic) and 𝑝𝑖 ∈ (0, 1) is a machine
learningalgorithm’sconfidence that 𝑖 belongs to classTRUE (e.g., howsureadecision treemodel
is that the corresponding person is unwell). Ideally, if 𝑦𝑖 is TRUE, 𝑝𝑖 should be close to 1 and to 0
otherwise.The cross-entropy loss quantifies by howmuch a classifier differs from the omniscient
one.The use of the logarithm penalises strong beliefs in the wrong answer.

By the way, if we have solved any of the exercises encountered so far by referring to
if statements, for loops, vector indexing like x[...], or any external R package, we
recommend going back and rewrite our code. Let’s keep things simple (effective, read-
able) by only using base R’s vectorised operations that we have introduced.

4
Lists and attributes

After two brain-teasing chapters, it is time to cool it down a little. In this more tech-
nical part, we will introduce lists, which serve as universal containers for R objects of
any size and type. Moreover, we will also show that each R object can be equipped
with a number of optional attributes.Thanks to them, we will be able to label elements
in any vector, and, in Chapter 10, introduce new complex data types such as matrices
and data frames.

4.1 Type hierarchy and conversion
So far, we have been playing with three types of atomic vectors:

1. logical (Chapter 3),

2. numeric (Chapter 2),

3. character (whichwe have barely touched upon yet, but rest assured that theywill
be covered in detail very soon; see Chapter 6).

To determine the type of an object programmatically, we can call the typeof function.

typeof(c(1, 2, 3))
[1] "double"
typeof(c(TRUE, FALSE, TRUE, NA))
[1] "logical"
typeof(c("spam", "spam", "bacon", "eggs", "spam"))
[1] "character"

We can easily convert between these types, either on our explicit demand (type casting)
or on-the-fly (coercion, when we perform an operation that expects something differ-
ent from the kind of input it was fed with).

Note (*) Numeric vectors are reported as being either of the type double (double-
precision floating-point numbers) or integer (32-bit; it is a subset of double); see
Section 6.4.1. In most practical cases, this is a technical detail that we can risklessly
ignore; compare also the mode function.

50 I DEEP

4.1.1 Explicit type casting
We can use functions such as as.logical, as.numeric1, and as.character to convert
given objects to the corresponding types.

as.numeric(c(TRUE, FALSE, NA, TRUE, NA, FALSE)) # synonym: as.double
[1] 1 0 NA 1 NA 0
as.logical(c(-2, -1, 0, 1, 2, 3, NA_real_, -Inf, NaN))
[1] TRUE TRUE FALSE TRUE TRUE TRUE NA TRUE NA

Important The rules are:

• TRUE → 1,

• FALSE → 0,

• NA → NA_real_,

and:

• 0→ FALSE,

• NA_real_ and NaN → NA,

• anything else→ TRUE.

The distinction between zero and non-zero is commonly applied in other program-
ming languages as well.

Moreover, in the case of the conversion involving character strings, we have:

as.character(c(TRUE, FALSE, NA, TRUE, NA, FALSE))
[1] "TRUE" "FALSE" NA "TRUE" NA "FALSE"
as.character(c(-2, -1, 0, 1, 2, 3, NA_real_, -Inf, NaN))
[1] "-2" "-1" "0" "1" "2" "3" NA "-Inf" "NaN"
as.logical(c("TRUE", "True", "true", "T",

"FALSE", "False", "false", "F",
"anything other than these", NA_character_))

[1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE NA NA
as.numeric(c("0", "-1.23e4", "pi", "2+2", "NaN", "-Inf", NA_character_))
Warning: NAs introduced by coercion
[1] 0 -12300 NA NA NaN -Inf NA

4.1.2 Implicit conversion (coercion)
Recall that we referred to the three vector types as atomic ones. They can only be used
to store elements of the same type. If we make an attempt at composing an object of

1 (*) as.numeric is a built-in generic function identical to (synonymous with) as.double; see Sec-
tion 10.2.3. is.numeric is generic too, and is more universal than is.double, which only verifies whether
typeof returns "double". For instance, vectors of the type integer which we mention later are considered
numeric as well.

4 LISTS AND ATTRIBUTES 51

mixed types with c, the common type will be determined in such a way that data are
stored without information loss:

c(-1, FALSE, TRUE, 2, "three", NA)
[1] "-1" "FALSE" "TRUE" "2" "three" NA
c("zero", TRUE, NA)
[1] "zero" "TRUE" NA
c(-1, FALSE, TRUE, 2, NA)
[1] -1 0 1 2 NA

Hence, we see that logical is the most specialised of the tree, whereas character is
the most general.

Note The logical NA is converted to NA_real_ and NA_character_ in the preceding
examples. R users tend to rely on implicit type conversion when they write c(1, 2,
NA, 4) rather than c(1, 2, NA_real_, 4). In most cases, this is fine, but it might
make us less vigilant.

However, occasionally, it will be wiser to be more unequivocal. For instance,
rep(NA_real_, 1e9) preallocates a long numeric vector instead of a logical one.

Some functions that expect vectors of specific types can apply coercion by themselves
(or act as if they do so):

c(NA, FALSE, TRUE) + 10 # implicit conversion logical –> numeric
[1] NA 10 11
c(-1, 0, 1) & TRUE # implicit conversion numeric –> logical
[1] TRUE FALSE TRUE
sum(c(TRUE, TRUE, FALSE, TRUE, FALSE)) # same as sum(as.numeric(...))
[1] 3
cumsum(c(TRUE, TRUE, FALSE, TRUE, FALSE))
[1] 1 2 2 3 3
cummin(c(TRUE, TRUE, FALSE, TRUE, FALSE))
[1] 1 1 0 0 0

Exercise 4.1 In Exercise 3.6, we computed the cross-entropy loss between a logical vector 𝒚 ∈
{0, 1}𝑛 and a numeric vector 𝒑 ∈ (0, 1)𝑛.This measure can be equivalently defined as:

ℒ(𝒑, 𝒚) = − 1
𝑛

⎛⎜
⎝

𝑛
∑
𝑖=1

𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖) log(1 − 𝑝𝑖)⎞⎟
⎠

.

Implement this formula using vectorised operations, but not relying on ifelse this time.Then,
compute the cross-entropy loss between, for instance, “y <- sample(c(FALSE, TRUE), n,
replace=TRUE)” and “p <- runif(n)” for somen.Note how seamlesslywe translate between
FALSE/TRUEs and 0/1s in the above equation (in particular, where 1 − 𝑦𝑖 means the logical neg-
ation of 𝑦𝑖).

52 I DEEP

4.2 Lists
Lists are generalised vectors.They can be comprised of R objects of any kind, also other
lists. It is whywe classify themas recursive (and not atomic) objects.They are especially
useful wherever there is a need to handle somemultitude as a single entity.

4.2.1 Creating lists
Themost straightforward way to create a list is by means of the list function:

list(1, 2, 3)
[[1]]
[1] 1
##
[[2]]
[1] 2
##
[[3]]
[1] 3

Notice that it is not the same as c(1, 2, 3). We got a sequence that wraps three
numeric vectors, each of length one. More examples:

list(1:3, 4, c(TRUE, FALSE, NA, TRUE), "and so forth") # different types
[[1]]
[1] 1 2 3
##
[[2]]
[1] 4
##
[[3]]
[1] TRUE FALSE NA TRUE
##
[[4]]
[1] "and so forth"
list(list(c(TRUE, FALSE, NA, TRUE), letters), list(1:3)) # a list of lists
[[1]]
[[1]][[1]]
[1] TRUE FALSE NA TRUE
##
[[1]][[2]]
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q"
[18] "r" "s" "t" "u" "v" "w" "x" "y" "z"
##
##
[[2]]

(continues on next page)

4 LISTS AND ATTRIBUTES 53

(continued from previous page)

[[2]][[1]]
[1] 1 2 3

Thedisplay of lists is (un)pretty bloated.However, the str function prints any R object
in a more concise fashion:

str(list(list(c(TRUE, FALSE, NA, TRUE), letters), list(1:3)))
List of 2
$:List of 2
..$: logi [1:4] TRUE FALSE NA TRUE
..$: chr [1:26] "a" "b" "c" "d" ...
$:List of 1
..$: int [1:3] 1 2 3

Note In Section 4.1, we said that the c function, when fed with arguments of mixed
types, tries to determine the common type that retains the sense of data. If coercion
to an atomic vector is not possible, the result will be a list.

c(1, "two", identity) # `identity` is an object of the type "function"
[[1]]
[1] 1
##
[[2]]
[1] "two"
##
[[3]]
function (x)
x
<environment: namespace:base>

Thus, the c function can also be used to concatenate lists:

c(list(1), list(2), list(3)) # three lists –> one list
[[1]]
[1] 1
##
[[2]]
[1] 2
##
[[3]]
[1] 3

Lists can be repeated using rep:

rep(list(1:11, LETTERS), 2)
[[1]]

(continues on next page)

54 I DEEP

(continued from previous page)

[1] 1 2 3 4 5 6 7 8 9 10 11
##
[[2]]
[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q"
[18] "R" "S" "T" "U" "V" "W" "X" "Y" "Z"
##
[[3]]
[1] 1 2 3 4 5 6 7 8 9 10 11
##
[[4]]
[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q"
[18] "R" "S" "T" "U" "V" "W" "X" "Y" "Z"

4.2.2 Converting to and from lists
The conversion of an atomic vector to a list of vectors of length one can be done via a
call to as.list:

as.list(c(1, 2, 3)) # vector of length 3 –> list of 3 vectors of length 1
[[1]]
[1] 1
##
[[2]]
[1] 2
##
[[3]]
[1] 3

Unfortunately, calling, say, as.numeric on a list arouses an error, even if it is com-
prised of numeric vectors only. We can try flattening it to an atomic sequence by call-
ing unlist:

unlist(list(list(1, 2), list(3, list(4:8)), 9))
[1] 1 2 3 4 5 6 7 8 9
unlist(list(list(1, 2), list(3, list(4:8)), "spam"))
[1] "1" "2" "3" "4" "5" "6" "7" "8" "spam"

Note (*) Chapter 11 will mention the simplify2array function, which generalises
unlist in a way that can sometimes give rise to a matrix.

4 LISTS AND ATTRIBUTES 55

4.3 NULL

NULL, being the one and only instance of the eponymous type, can be used as a place-
holder for an R object or designate the absence of any entities whatsoever.

list(NULL, NULL, month.name)
[[1]]
NULL
##
[[2]]
NULL
##
[[3]]
[1] "January" "February" "March" "April" "May"
[6] "June" "July" "August" "September" "October"
[11] "November" "December"

NULL is different from a vector of length zero because the latter has a type. However,
NULL sometimes behaves like a zero-length vector. In particular, length(NULL) returns
0. Also, c called with no arguments returns NULL.

Testing for NULL-ness can be done with a call to is.null.

Important NULL is not the same as NA. The former cannot be emplaced in an atomic
vector.

c(1, NA, 3, NULL, 5) # here, NULL behaves like a zero-length vector
[1] 1 NA 3 5

They have very distinct semantics (no value vs a missing value).

Later we will see that some functions return NULL invisibly when they have nothing
interesting to report. This is the case of print or plot, which are called because of
their side effects (printing and plotting).

Furthermore, in certain contexts, replacing content with NULL will actually result in
its removal, e.g., when subsetting a list.

4.4 Object attributes
Lists can embrace many entities in the form of a single item sequence. Attributes, on
the other hand, give means to inject extra data into an object. They are unordered

56 I DEEP

key=value pairs, where key is a single string, and value is any R object except NULL.
We can introduce them by calling, amongst others2, the structure function:

x_simple <- 1:10
x <- structure(

x_simple, # the object to be equipped with attributes
attribute1="value1",
attribute2=c(6, 100, 324)

)

4.4.1 Developing perceptual indifference tomost attributes
Let’s see how the foregoing x is reported on the console:

print(x)
[1] 1 2 3 4 5 6 7 8 9 10
attr(,"attribute1")
[1] "value1"
attr(,"attribute2")
[1] 6 100 324

The object of concern, 1:10, was displayed first. We need to get used to that. Most of
the time, we suggest to treat the “attr…” parts of the display as if they were printed in
tiny font.

Equipping an object with attributes does not usually change its nature; see, however,
Chapter 10 for a few exceptions. The above x is still treated as an ordinary sequence
of numbers by most functions:

sum(x) # the same as sum(1:10); `sum` does not care about any attributes
[1] 55
typeof(x) # just a numeric vector, but with some perks
[1] "integer"

Important Attributes are generally ignored by most functions unless they have spe-
cifically been programmed to pay attention to them.

4.4.2 But there are a few use cases
Some R functions add attributes to the return value to sneak extra information that
might be useful, just in case. For instance, na.omit, whosemain aim is to removemiss-
ing values from an atomic vector, yields:

2 Other ways include the replacement versions of the attr and attributes functions; see Section 9.3.6.

4 LISTS AND ATTRIBUTES 57

y <- c(10, 20, NA, 40, 50, NA, 70)
(y_na_free <- na.omit(y))
[1] 10 20 40 50 70
attr(,"na.action")
[1] 3 6
attr(,"class")
[1] "omit"

We can enjoy the NA-free version of y in further computations:

mean(y_na_free)
[1] 38

Additionally, the na.action attribute indicates the former whereabouts of the miss-
ing observations:

attr(y_na_free, "na.action") # read the attribute value
[1] 3 6
attr(,"class")
[1] "omit"

We ignore the class part until Chapter 10.

As another example, gregexpr discussed in Chapter 6 searches for a given pattern in
a character vector:

needle <- "spam|durian" # pattern to search for: spam OR durian
haystack <- c("spam, bacon, and durian-flavoured spam", "spammer") # text
(pos <- gregexpr(needle, haystack, perl=TRUE))
[[1]]
[1] 1 18 35
attr(,"match.length")
[1] 4 6 4
attr(,"index.type")
[1] "chars"
attr(,"useBytes")
[1] TRUE
##
[[2]]
[1] 1
attr(,"match.length")
[1] 4
attr(,"index.type")
[1] "chars"
attr(,"useBytes")
[1] TRUE

Wesought all occurrences of thepatternwithin two character strings.As their number
may vary from string to string, wrapping the results in a list was a good design choice.
Each list element gives the starting positions where matches can be found: there are

58 I DEEP

three and onematch(es), respectively. Moreover, every vector of positions has a desig-
nated match.length attribute (amongst others), in case we need it.

Exercise 4.2 Create a list with EUR/AUD, EUR/GBP, and EUR/USD exchange rates read
from the euraud-*.csv, eurgbp-*.csv, and eurusd-*.csv files in our data repository3.
Eachof its three elements shouldbeanumeric vector storing the currency exchange rates.Further-
more, equip themwith currency_from, currency_to, date_from, and date_to attributes.
For example:

[1] NA 1.6006 1.6031 NA NA 1.6119 1.6251 1.6195 1.6193 1.6132
[11] NA NA 1.6117 1.6110 1.6188 1.6115 1.6122 NA
attr(,"currency_from")
[1] "EUR"
attr(,"currency_to")
[1] "AUD"
attr(,"date_from")
[1] "2020-01-01"
attr(,"date_to")
[1] "2020-06-30"

Suchanadditional piece of information could be stored in a few separate variables (other vectors),
but then it would not be as convenient to use as the above representation.

4.4.3 Special attributes
Attributes have great potential which is somewhat wasted, for R users rarely know:

• that attributes exist (pessimistic scenario), or

• how to handle them (realistic scenario).

But we know now.

What is more, certain attributes have been predestined to play a unique role in R.
Namely, the most prevalent amongst the special attributes are:

• names, row.names, and dimnames are used to label the elements of atomic andgen-
eric vectors (see below) as well as rows and columns in matrices (Chapter 11) and
data frames (Chapter 12),

• dim turns flat vectors into matrices and other tensors (Chapter 11),

• levels labels the underlying integer codes in factor objects (Section 10.3.2),

• class can beused to bring forth new complex data structures based onbasic types
(Chapter 10).

We call them special because:

• they cannot be assigned arbitrary values; for instance, we will soon see that names
can accept a character vector of a specific length,

3 https://github.com/gagolews/teaching-data/tree/master/marek

https://github.com/gagolews/teaching-data/tree/master/marek

4 LISTS AND ATTRIBUTES 59

• they can be accessed via designated functions, e.g., names, class, dim, dimnames,
levels, etc.,

• they are widely recognised by many other functions.

However, in spite of the above, special attributes can still bemanaged as ordinary ones.

Exercise 4.3 comment is perhaps the most rarely used special attribute. Create an object
(whatever) equippedwith the comment attribute. Verify that assigning to it anything other than
a character vector leads to an error. Read its value by calling the comment function. Display the
object equippedwith this attribute.Note that theprint function ignores its existencewhatsoever:
this is how special it is.

Important (*)Theaccessor functions suchasnamesorclassmight returnmeaningful
values, even if the corresponding attribute is not set explicitly; see, e.g., Section 11.1.5
for an example.

4.4.4 Labelling vector elementswith the names attribute
The special attribute names labels atomic vectors’ and lists’ elements.

(x <- structure(c(13, 2, 6), names=c("spam", "sausage", "celery")))
spam sausage celery
13 2 6

The labels may improve the expressivity and readability of our code and data.

Exercise 4.4 Verify that the above x is still an ordinary numeric vector by calling typeof and
sum on it.

Let’s stress that we can ignore the names attribute whatsoever. If we apply any oper-
ation discussed in Chapter 2, we will garner the same result regardless whether such
extra information is present or not.

It is just the print function that changed its behaviour slightly. After all, it is a special
attribute. Instead of reporting:

[1] 13 2 6
attr(,"names ")
[1] "spam" "sausage" "celery"

we got a nicely formatted table-like display. Non-special attributes are still printed in
the standard way:

structure(x, additional_attribute=1:10)
spam sausage celery
13 2 6
attr(,"additional_attribute")
[1] 1 2 3 4 5 6 7 8 9 10

60 I DEEP

Note Chapter 5 will alsomention that some operations (such as indexing) gain super-
powers in the presence of the names attribute.

This attribute can be read by calling:

attr(x, "names") # just like any other attribute
[1] "spam" "sausage" "celery"
names(x) # because it is so special
[1] "spam" "sausage" "celery"

Named vectors can be easily created with the c and list functions as well:

c(a=1, b=2)
a b
1 2
list(a=1, b=2)
$a
[1] 1
##
$b
[1] 2
c(a=c(x=1, y=2), b=3, c=c(z=4)) # this is smart
a.x a.y b c.z
1 2 3 4

Let’s contemplate how a named list is printed on the console. Again, it is still a list, but
with some extras.

Exercise 4.5 Awhole lot of functions return named vectors. Evaluate the following expressions
and read the corresponding pages in their documentation:

• quantile(runif(100)),

• hist(runif(100), plot=FALSE),

• options() (take note of digits, scipen, max.print, and width),

• capabilities().

Note (*) Most of the time, lists are used merely as containers for other R objects. This
is a dull yet essential role. However, let’s just mention here that every data frame is,
in fact, a generic vector (see Chapter 12). Each column corresponds to a named list
element:

(df <- head(iris)) # some data frame
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa

(continues on next page)

4 LISTS AND ATTRIBUTES 61

(continued from previous page)

4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
typeof(df) # it is just a list (with extras that will be discussed later)
[1] "list"
unclass(df) # how it is represented exactly (without the extras)
$Sepal.Length
[1] 5.1 4.9 4.7 4.6 5.0 5.4
##
$Sepal.Width
[1] 3.5 3.0 3.2 3.1 3.6 3.9
##
$Petal.Length
[1] 1.4 1.4 1.3 1.5 1.4 1.7
##
$Petal.Width
[1] 0.2 0.2 0.2 0.2 0.2 0.4
##
$Species
[1] setosa setosa setosa setosa setosa setosa
Levels: setosa versicolor virginica
##
attr(,"row.names")
[1] 1 2 3 4 5 6

Therefore, the functions we discuss in this chapter are of use in processing such struc-
tured data, too.

4.4.5 Altering and removing attributes
We know that a single attribute can be read by calling attr. Their whole list is gener-
ated with a call to attributes.

(x <- structure(c("some", "object"), names=c("X", "Y"),
attribute1="value1", attribute2="value2", attribute3="value3"))

X Y
"some" "object"
attr(,"attribute1")
[1] "value1"
attr(,"attribute2")
[1] "value2"
attr(,"attribute3")
[1] "value3"
attr(x, "attribute1") # reads a single attribute, returns NULL if unset
[1] "value1"
attributes(x) # returns a named list with all attributes of an object
$names

(continues on next page)

62 I DEEP

(continued from previous page)

[1] "X" "Y"
##
$attribute1
[1] "value1"
##
$attribute2
[1] "value2"
##
$attribute3
[1] "value3"

We can alter an attribute’s value or add further attributes by referring to the struc-
ture function once again. Moreover, setting an attribute’s value to NULL gets rid of it
completely.

structure(x, attribute1=NULL, attribute4="added", attribute3="modified")
X Y
"some" "object"
attr(,"attribute2")
[1] "value2"
attr(,"attribute3")
[1] "modified"
attr(,"attribute4")
[1] "added"

As far as the names attribute is concerned, we may generate an unnamed copy of an
object by calling:

unname(x)
[1] "some" "object"
attr(,"attribute1")
[1] "value1"
attr(,"attribute2")
[1] "value2"
attr(,"attribute3")
[1] "value3"

InSection9.3.6,wewill introduce replacement functions.Theywill enableus tomodifyor
remove an object’s attribute by calling “attr(x, "some_attribute") <- new_value”.

Moreover, Section 5.5 highlights that certain operations (such as vector indexing, ele-
mentwise arithmetic operations, and coercion)might not preserve all attributes of the
objects that were given as their inputs.

4 LISTS AND ATTRIBUTES 63

4.5 Exercises
Exercise 4.6 Provide an answer to the following questions.

• What is the meaning of c(TRUE, FALSE)*1:10?

• What does sum(as.logical(x)) compute when x is a numeric vector?

• We said that atomic vectors of the type character are the most general ones. Therefore, is
as.numeric(as.character(x)) the same as as.numeric(x), regardless of the type of
x?

• What is the meaning of as.logical(x+y) if x and y are logical vectors? What about as.
logical(x*y), as.logical(1-x), and as.logical(x!=y)?

• What is the meaning of the following when x is a logical vector?

– cummin(x) and cummin(!x),

– cummax(x) and cummax(!x),

– cumsum(x) and cumsum(!x),

– cumprod(x) and cumprod(!x).

• Let x be a named numeric vector, e.g., “x <- quantile(runif(100))”. What is the
result of 2*x, mean(x), and round(x, 2)?

• What is the meaning of x == NULL?

• Give two ways to create a named character vector.

• Give two ways (discussed above; there are more) to remove the names attribute from an ob-
ject.

Exercise 4.7 There are a few peculiarities when joining or coercing lists. Compare the results
generated by the following pairs of expressions:

1)
as.character(list(list(1, 2), list(3, list(4)), 5))
as.character(unlist(list(list(1, 2), list(3, list(4)), 5)))
2)
as.numeric(list(list(1, 2), list(3, list(4)), 5))
as.numeric(unlist(list(list(1, 2), list(3, list(4)), 5)))
3)
unlist(list(list(1, 2), sd))
list(1, 2, sd)
4)
c(list(c(1, 2), 3), 4, 5)
c(list(c(1, 2), 3), c(4, 5))

Exercise 4.8 Given numeric vectors x, y, z, and w, how to combine x, y, and list(z, w) so as
to obtain list(x, y, z, w)? More generally, given a set of atomic vectors and lists of atomic

64 I DEEP

vectors, how to combine them to obtain a single list of atomic vectors (not a list of atomic vectors
and lists, not atomic vectors unwound, etc.)?

Exercise 4.9 saveRDS serialises R objects andwrites their snapshots to disk so that they can be
restored via a call to readRDS at a later time. Verify that this function preserves object attributes.
Also, check out dput and dget which work with objects’ textual representations in the form of
executable R code.

Exercise 4.10 (*) Use jsonlite::fromJSON to read a JSONfile in the form of a named list.

In the extremely unlikely event of our finding the current chapter boring, let’s rejoice:
some of the exercises and remarks that we will encounter in the next part, which is
devoted to vector indexing, will definitely be mouthwatering.

5
Vector indexing

We now know plenty of ways to process vectors in their entirety, but how to extract and
replace their specific parts? We will be collectively referring to such activities as index-
ing. This is because they are often performed through the index operator, `[`.

5.1 head and tail
Let’s beginwith somethingmore lightweight, though.The head function fetches a few
elements from the beginning of a vector.

x <- 1:10
head(x) # head(x, 6)
[1] 1 2 3 4 5 6
head(x, 3) # get the first three
[1] 1 2 3
head(x, -3) # skip the last three
[1] 1 2 3 4 5 6 7

Similarly, tail extracts a couple of items from the end of a sequence.

tail(x) # tail(x, 6)
[1] 5 6 7 8 9 10
tail(x, 3) # get the last three
[1] 8 9 10
tail(x, -3) # skip the first three
[1] 4 5 6 7 8 9 10

Both functions work on lists too1.They are useful for previewing the contents of really
big objects. Also, they never complain about our trying to fetch supernumerary ele-
ments:

head(x, 100) # no more than the first 100 elements
[1] 1 2 3 4 5 6 7 8 9 10

1 head and tail are actually S3 generics defined in the utils package.We can call themonmatrices and
data frames, too; see Chapter 10.

66 I DEEP

5.2 Subsetting and extracting from vectors
Let x be a vector.Then x[i] returns its subset comprised of elements indicated by the
indexer i, which can be a single vector of:

• nonnegative integers (gives the positions of elements to retrieve),

• negative integers (gives the positions to omit),

• logical values (states which items should be fetched or skipped),

• character strings (locates the elements with specific names).

5.2.1 Nonnegative indexes
Consider example vectors:

(x <- seq(10, 100, 10))
[1] 10 20 30 40 50 60 70 80 90 100
(y <- list(1, 11:12, 21:23))
[[1]]
[1] 1
##
[[2]]
[1] 11 12
##
[[3]]
[1] 21 22 23

The first element in a vector is at index 1. Hence:

x[1] # the first element
[1] 10
x[length(x)] # the last element
[1] 100

Important We might have wondered why “[1]” is displayed each time we print out
an atomic vector on the console:

print((1:51)*10)
[1] 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
[18] 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340
[35] 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510

It is merely a visual hint indicating which vector element we output at the beginning
of each line.

5 VECTOR INDEXING 67

Vectorisation is a universal feature of R. It comes as no surprise that the indexer can
also be of length greater than one.

x[c(1, length(x))] # the first and the last
[1] 10 100
x[1:3] # the first three
[1] 10 20 30

Take note of the boundary cases:

x[c(1, 2, 1, 0, 3, NA_real_, 1, 11)] # repeated, 0, missing, out of bound
[1] 10 20 10 30 NA 10 NA
x[c()] # indexing by an empty vector
numeric(0)

When applied on lists, the index operator always returns a list as well, even if we ask
for a single element:

y[2] # a list that includes the second element
[[1]]
[1] 11 12
y[c(1, 3)] # not the same as x[1, 3] (a different story)
[[1]]
[1] 1
##
[[2]]
[1] 21 22 23

If we want to extract a component, i.e., to dig into what is inside a list at a specific
location, we can refer to `[[`:

y[[2]] # extract the second element
[1] 11 12

This is exactly why R displays “[[1]]”, “[[2]]”, etc. when lists are printed.

Ona sidenote, callingx[[i]]onan atomic vector,wherei is a single value, has almost2
the same effect as x[i]. However, `[[` generates an error if the subscript is out of
bounds.

Important Let’s reflect on the operators’ behaviour in the case of nonexistent items:

c(1, 2, 3)[4]
[1] NA
list(1, 2, 3)[4]
[[1]]
NULL

(continues on next page)

2 See also Section 5.5 for the discussion on the preservation of object attributes.

68 I DEEP

(continued from previous page)

c(1, 2, 3)[[4]]
Error in c(1, 2, 3)[[4]]: subscript out of bounds
list(1, 2, 3)[[4]]
Error in list(1, 2, 3)[[4]]: subscript out of bounds

Note (*) `[[` also supports multiple indexers.

y[[c(1, 3)]]
Error in y[[c(1, 3)]]: subscript out of bounds

Its meaning is different from y[c(1, 3)], though; we are about to extract a single
value, remember?Here, indexing is applied recursively.Namely, the above is equivalent
to y[[1]][[3]]. We got an error because y[[1]] is of a length smaller than three.

More examples:

y[[c(3, 1)]] # y[[3]][[1]]
[1] 21
list(list(7))[[c(1, 1)]] # 7, not list(7)
[1] 7

5.2.2 Negative indexes
The indexer can also be a vector of negative integers. This way, we can exclude the ele-
ments at given positions:

y[-1] # all but the first
[[1]]
[1] 11 12
##
[[2]]
[1] 21 22 23
x[-(1:3)] # all but the first three
[1] 40 50 60 70 80 90 100
x[-c(1, 0, 2, 1, 1, 8:100)] # 0, repeated, out of bound indexes
[1] 30 40 50 60 70

Note Negative and positive indexes cannot be mixed.

x[-1:3] # recall that -1:3 == (-1):3
Error in x[-1:3]: only 0's may be mixed with negative subscripts

Also, NA indexes cannot be mixed with negative ones.

5 VECTOR INDEXING 69

5.2.3 Logical indexer
A vector can also be subsetted bymeans of a logical vector. If they both are of identical
lengths, the consecutive elements in the latter indicate whether the corresponding
elements of the indexed vector are supposed to be selected (TRUE) or omitted (FALSE).

1*** 2 3 4 5*** 6*** 7 8*** 9? 10***
x[c(TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, NA, TRUE)]
[1] 10 50 60 80 NA 100

In other words, x[l], where l is a logical vector, returns all x[i]with i such that l[i]
is TRUE. We thus extracted the elements at indexes 1, 5, 6, 8, and 10.

Important Be careful: if the element selector is NA, we will get a missing value (for
atomic vectors) or NULL (for lists).

c("one", "two", "three")[c(NA, TRUE, FALSE)]
[1] NA "two"
list("one", "two", "three")[c(NA, TRUE, FALSE)]
[[1]]
NULL
##
[[2]]
[1] "two"

This, lamentably, comeswith nowarning, whichmight be problematic when indexers
are generated programmatically. As a remedy, we sometimes pass the logical indexer
to the which function first. It returns the indexes of the elements equal to TRUE, ignor-
ing the missing ones.

which(c(NA, TRUE, FALSE, TRUE, FALSE, NA, TRUE))
[1] 2 4 7
c("one", "two", "three")[which(c(NA, TRUE, FALSE))]
[1] "two"

Recall that in Chapter 3, we discussed ample vectorised operations that generate lo-
gical vectors. Anything that yields a logical vector of the same length as x can be passed
as an indexer.

x > 60 # yes, it is a perfect indexer candidate
[1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE
x[x > 60] # select elements in `x` that are greater than 60
[1] 70 80 90 100
x[x < 30 | 70 < x] # elements not between 30 and 70
[1] 10 20 80 90 100
x[x < mean(x)] # elements smaller than the mean
[1] 10 20 30 40 50
x[x^2 > 7777 | log10(x) <= 1.6] # indexing via a transformed version of `x`

(continues on next page)

70 I DEEP

(continued from previous page)

[1] 10 20 30 90 100
(z <- round(runif(length(x)), 2)) # ten pseudorandom numbers
[1] 0.29 0.79 0.41 0.88 0.94 0.05 0.53 0.89 0.55 0.46
x[z <= 0.5] # indexing based on `z`, not `x`: no problem
[1] 10 30 60 100

The indexer is always evaluated first and then passed to the subsetting operation.The
index operator does not care how an indexer is generated.

Furthermore, the recycling rule is applied when necessary:

x[c(FALSE, TRUE)] # every second element
[1] 20 40 60 80 100
y[c(TRUE, FALSE)] # interestingly, there is no warning here
[[1]]
[1] 1
##
[[2]]
[1] 21 22 23

Exercise 5.1 Consider a simple database about six people, their favourite dishes, and birth
years.

name <- c("Graham", "John", "Terry", "Eric", "Michael", "Terry")
food <- c("bacon", "spam", "spam", "eggs", "spam", "beans")
year <- c(1941, 1939, 1942, 1943, 1943, 1940)

The consecutive elements in different vectors correspond to each other, e.g., Grahamwas born in
1941, and his go-to food was bacon.

• List the names of people born in 1941 or 1942.

• List the names of those who like spam.

• List the names of those who like spam andwere born after 1940.

• Compute the average birth year of the lovers of spam.

• Give the average age, in 1969, of those who didn’t find spam utmostly delicious.

The answers must be provided programmatically, i.e., do not just write "Eric" and "Graham".
Make the code generic enough so that it works in the case of any other database of this kind, no
matter its size.

Exercise 5.2 Removemissing values from a given vector without referring to na.omit.

5.2.4 Character indexer
Let’s consider a vector equipped with the names attribute:

5 VECTOR INDEXING 71

x <- structure(x, names=letters[1:10]) # add names
print(x)
a b c d e f g h i j
10 20 30 40 50 60 70 80 90 100

These labels can be referred to when extracting the elements. To do this, we use an
indexer that is a character vector:

x[c("a", "f", "a", "g", "z")]
a f a g <NA>
10 60 10 70 NA

Important We have said that special object attributes add extra functionality on top
of the existing ones. Therefore, indexing by means of positive, negative, and logical
vectors is still available:

x[1:3]
a b c
10 20 30
x[-(1:5)]
f g h i j
60 70 80 90 100
x[x > 70]
h i j
80 90 100

Lists can also be subsetted this way.

(y <- structure(y, names=c("first", "second", "third")))
$first
[1] 1
##
$second
[1] 11 12
##
$third
[1] 21 22 23
y[c("first", "second")]
$first
[1] 1
##
$second
[1] 11 12
y["third"] # result is a list
$third
[1] 21 22 23

(continues on next page)

72 I DEEP

(continued from previous page)

y[["third"]] # result is the specific element unwrapped
[1] 21 22 23

Important Labels do not have to be unique. When we have repeated names, the first
matching element is extracted:

structure(c(1, 2, 3), names=c("a", "b", "a"))["a"]
a
1

There is no direct way to select all but given names, just like with negative integer in-
dexers. For a workaround, see Section 5.4.1.

Exercise 5.3 Rewrite the solution to Exercise 5.1 assuming that we now have three features
wrapped inside a list.

(people <- list(
Name=c("Graham", "John", "Terry", "Eric", "Michael", "Terry", "Steve"),
Food=c("bacon", "spam", "spam", "eggs", "spam", "beans", "spam"),
Year=c(1941, 1939, 1942, 1943, 1943, 1940, NA_real_)

))
$Name
[1] "Graham" "John" "Terry" "Eric" "Michael" "Terry" "Steve"
##
$Food
[1] "bacon" "spam" "spam" "eggs" "spam" "beans" "spam"
##
$Year
[1] 1941 1939 1942 1943 1943 1940 NA

Do not refer to name, food, and year directly. Instead, use the full people[["Name"]] etc. ac-
cessors.There is no need to pout: it is just a tiny bit of extrawork. Also, notice that Steve has joined
the group; hello, Steve.

5.3 Replacing elements
5.3.1 Modifying atomic vectors
There are also replacement versions of the aforementioned indexing schemes. They al-
low us to substitute some new content for the old one.

(x <- 1:12)
[1] 1 2 3 4 5 6 7 8 9 10 11 12

(continues on next page)

5 VECTOR INDEXING 73

(continued from previous page)

x[length(x)] <- 42 # modify the last element
print(x)
[1] 1 2 3 4 5 6 7 8 9 10 11 42

The principles of vectorisation, recycling rule, and implicit coercion are all in place:

x[c(TRUE, FALSE)] <- c("a", "b", "c")
print(x)
[1] "a" "2" "b" "4" "c" "6" "a" "8" "b" "10" "c" "42"

Long story long: first, to ensure that the new content can be poured into the old wine-
skin, R coerced the numeric vector to a character one. Then, every second element
therein, a total of six items, was replaced by a recycled version of the replacement se-
quence of length three. Finally, the name xwas rebound to such a brought-forth object
and the previous one became forgotten.

Note For more details on replacement functions in general, see Section 9.3.6. Such
operations alter the state of the object they are called on (quite rare a behaviour in
functional languages).

Exercise 5.4 Replace missing values in a given numeric vector with the arithmetic mean of its
well-defined observations.

5.3.2 Modifying lists
List contents can be altered as well. For modifying individual elements, the safest op-
tion is to use the replacement version of the `[[` operator:

y <- list(a=1, b=1:2, c=1:3)
y[[1]] <- 100:110
y[["c"]] <- -y[["c"]]
print(y)
$a
[1] 100 101 102 103 104 105 106 107 108 109 110
##
$b
[1] 1 2
##
$c
[1] -1 -2 -3

The replacement version of `[` modifies a whole sub-list:

y[1:3] <- list(1, c("a", "b", "c"), c(TRUE, FALSE))
print(y)
$a

(continues on next page)

74 I DEEP

(continued from previous page)

[1] 1
##
$b
[1] "a" "b" "c"
##
$c
[1] TRUE FALSE

Moreover:

y[1] <- list(1:10) # replace one element with one object
y[-1] <- 10:11 # replace two elements with two singletons
print(y)
$a
[1] 1 2 3 4 5 6 7 8 9 10
##
$b
[1] 10
##
$c
[1] 11

Note Let i be a vector of positive indexes of elements to bemodified. Overall, calling
“y[i] <- z” behaves as if we wrote:

1. y[[i[1]]] <- z[[1]],

2. y[[i[2]]] <- z[[2]],

3. y[[i[3]]] <- z[[3]],

and so forth.

Furthermore, z (but not i) will be recycledwhennecessary. In otherwords,we retrieve
z[[j %% length(z)]] for consecutive js from 1 to the length of i.

Exercise 5.5 Reflect on the results of the following expressions:

• y[1] <- c("a", "b", "c"),

• y[[1]] <- c("a", "b", "c"),

• y[[1]] <- list(c("a", "b", "c")),

• y[1:3] <- c("a", "b", "c"),

• y[1:3] <- list(c("a", "b", "c")),

• y[1:3] <- "a",

• y[1:3] <- list("a"),

5 VECTOR INDEXING 75

• y[c(1, 2, 1)] <- c("a", "b", "c").

Important Setting a list item to NULL removes it from the list completely.

y <- list(1, 2, 3, 4)
y[1] <- NULL # removes the first element (i.e., 1)
y[[1]] <- NULL # removes the first element (i.e., now 2)
y[1] <- list(NULL) # sets the first element (i.e., now 3) to NULL
print(y)
[[1]]
NULL
##
[[2]]
[1] 4

The same notation convention is used for dropping object attributes; see Section 9.3.6.

5.3.3 Inserting new elements
New elements can be pushed at the end of the vector easily3.

(x <- 1:5)
[1] 1 2 3 4 5
x[length(x)+1] <- 6 # insert at the end
print(x)
[1] 1 2 3 4 5 6
x[10] <- 10 # insert at the end but add more items
print(x)
[1] 1 2 3 4 5 6 NA NA NA 10

The elements to be inserted can be named as well:

x["a"] <- 11 # still inserts at the end
x["z"] <- 12
x["c"] <- 13
x["z"] <- 14 # z is already there; replace
print(x)
a z c
1 2 3 4 5 6 NA NA NA 10 11 14 13

Note that xwasnot equippedwith the names attribute before.Theunlabelled elements
were assigned blank labels (empty strings).

Note It is not possible to insert new elements at the beginning or in the middle of a
sequence, at least not with the index operator. By writing “x[3:4] <- 1:5” we do not

3 And often cheaply; see Section 8.3.5 for performance notes. Still, a warning can be generated on each
size extension if the "check.bounds" flag is set; see help("options").

76 I DEEP

replace two elements in the middle with five other ones. However, we can always use
the c function to slice parts of the vector and intertwine themwith some new content:

x <- seq(10, 100, 10)
x <- c(x[1:2], 1:5, x[5:7])
print(x)
[1] 10 20 1 2 3 4 5 50 60 70

5.4 Functions related to indexing
Let’s review a few operations which pinpoint interesting elements in a vector (or func-
tions based on these).

5.4.1 Matching elements in another vector
We know that the `==` operator acts in an elementwise manner. It compares each ele-
ment in a vector on its left side to the corresponding element in a vector on the right
side.Thus, missing values and the recycling rule aside, if “z <- (x == y)”, then z[i]
is TRUE if and only if x[i] is equal to y[i].

The `%in%` operator4 is vectorised differently. It checks whether each element on the
left-hand side matches one of the elements on the right. Given “z <- (x %in% y)”,
z[i] is TRUEwhenever x[i] is equal to y[j] for some j.

c("spam", "bacon", "spam", "eggs", "spam") %in% c("eggs", "spam", "ham")
[1] TRUE FALSE TRUE TRUE TRUE

Example 5.6 Here is how we can remove the elements of a vector that have been assigned spe-
cified labels.

(x <- structure(1:12, names=month.abb)) # example vector
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1 2 3 4 5 6 7 8 9 10 11 12
x[!(names(x) %in% c("Jan", "May", "Sep", "Oct"))] # get rid of some elements
Feb Mar Apr Jun Jul Aug Nov Dec
2 3 4 6 7 8 11 12

More generally, match(x, y) gives us the index of the element in y that matches each
x[i].

match(c("spam", "bacon", "spam", "eggs", "spam"), c("eggs", "spam", "ham"))
[1] 2 NA 2 1 2

(continues on next page)

4 A fantastic name; see Section 9.3.5.

5 VECTOR INDEXING 77

(continued from previous page)

match(month.abb, c("Jan", "May", "Sep", "Oct")) # is the month on the list?
[1] 1 NA NA NA 2 NA NA NA 3 4 NA NA
match(c("Jan", "May", "Sep", "Oct"), month.abb) # which month is it?
[1] 1 5 9 10

By default, a missing value denotes a no-match.

Exercise 5.7 Check out the documentation of `%in%` to see how this operator is reduced to a call
to match. Also, verify that it treats missing values as well-defined ones.

If the elements in y are not unique, the smallest index j such that x[i] == y[j] is
returned.Therefore, for example, match(TRUE, l) fetches the index of the first occur-
rence of a positive value in a logical vector l.

(x <- round(runif(10), 2)) # example vector
[1] 0.29 0.79 0.41 0.88 0.94 0.05 0.53 0.89 0.55 0.46
match(TRUE, x>0.8) # index of the first value > 0.8 (from the left)
[1] 4

5.4.2 Assigning numbers into intervals
findInterval can come in handy where the assigning of numeric values into real in-
tervals is needed. Namely, z <- findInterval(x, y) for increasing y gives z[i]
being the index j such that x[i] is between y[j] (by default, inclusive) and y[j+1]
(by default, exclusive).

For example, a sequence of five knots 𝒚 = (−∞, 0.25, 0.5, 0.75, ∞) splits the real line
into four intervals:

[−∞, 0.25) [0.25, 0.5) [0.5, 0.75) [0.75, ∞)
(1) (2) (3) (4)

Hence, for instance:

findInterval(c(0, 0.2, 0.25, 0.4, 0.66, 1), c(-Inf, 0.25, 0.5, 0.75, Inf))
[1] 1 1 2 2 3 4

Exercise 5.8 Refer to themanual of findInterval to verify the function’s behaviour whenwe
donot include±∞as endpoints andhow tomake∞ classifiedas amember of the fourth interval.

Exercise 5.9 Using a call to findInterval, compose a statement that generates a logical vec-
tor whose 𝑖-th element indicates whether x[i] is in the interval [0.25, 0.5]. Was this easier to
write than an expression involving `<=` and `>=`?

5.4.3 Splitting vectors into subgroups
split(x, z) can take the output of match or findInterval (and many other opera-
tions) and divide the elements in a vector x into subgroups corresponding to identical
zs.

78 I DEEP

For instance, we can assign people into groups determined by their favourite dish:

name <- c("Graham", "John", "Terry", "Eric", "Michael", "Terry")
food <- c("bacon", "spam", "spam", "eggs", "spam", "beans")
split(name, food) # group names with respect to food
$bacon
[1] "Graham"
##
$beans
[1] "Terry"
##
$eggs
[1] "Eric"
##
$spam
[1] "John" "Terry" "Michael"

The result is a named list with labels determined by the unique elements in the second
vector.

Here is another example,wherewepigeonhole somenumbers into the four previously
mentioned intervals:

x <- c(0, 0.2, 0.25, 0.4, 0.66, 1)
split(x, findInterval(x, c(-Inf, 0.25, 0.5, 0.75, Inf)))
$`1`
[1] 0.0 0.2
##
$`2`
[1] 0.25 0.40
##
$`3`
[1] 0.66
##
$`4`
[1] 1

Items in the first argument that correspond to missing values in the grouping vector
will be ignored. Also, unsurprisingly, the recycling rule is applied when necessary.

We can also split x into groups defined by a combination of levels of two or more vari-
ables z1, z2, etc., by calling split(x, list(z1, z2, ...)).

Example 5.10 The ToothGrowth dataset is a named list (more precisely, a data frame; see
Chapter 12) that represents the results of an experimental study involving 60 guinea pigs. The
experiment’s aim was to measure the effect of different vitamin C supplement types and doses
on the growth of the rodents’ teeth lengths:

ToothGrowth <- as.list(ToothGrowth) # it is a list, but with extra attribs
ToothGrowth[["supp"]] <- as.character(ToothGrowth[["supp"]]) # was: factor

(continues on next page)

5 VECTOR INDEXING 79

(continued from previous page)

print(ToothGrowth)
$len
[1] 4.2 11.5 7.3 5.8 6.4 10.0 11.2 11.2 5.2 7.0 16.5 16.5 15.2 17.3
[15] 22.5 17.3 13.6 14.5 18.8 15.5 23.6 18.5 33.9 25.5 26.4 32.5 26.7 21.5
[29] 23.3 29.5 15.2 21.5 17.6 9.7 14.5 10.0 8.2 9.4 16.5 9.7 19.7 23.3
[43] 23.6 26.4 20.0 25.2 25.8 21.2 14.5 27.3 25.5 26.4 22.4 24.5 24.8 30.9
[57] 26.4 27.3 29.4 23.0
##
$supp
[1] "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC"
[15] "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC" "VC"
[29] "VC" "VC" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ"
[43] "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ" "OJ"
[57] "OJ" "OJ" "OJ" "OJ"
##
$dose
[1] 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0
[18] 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 0.5 0.5 0.5 0.5
[35] 0.5 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0
[52] 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

We can split len with respect to the combinations of supp and dose (also called interactions)
by calling:

split(ToothGrowth[["len"]], ToothGrowth[c("supp", "dose")], sep="_")
$OJ_0.5
[1] 15.2 21.5 17.6 9.7 14.5 10.0 8.2 9.4 16.5 9.7
##
$VC_0.5
[1] 4.2 11.5 7.3 5.8 6.4 10.0 11.2 11.2 5.2 7.0
##
$OJ_1
[1] 19.7 23.3 23.6 26.4 20.0 25.2 25.8 21.2 14.5 27.3
##
$VC_1
[1] 16.5 16.5 15.2 17.3 22.5 17.3 13.6 14.5 18.8 15.5
##
$OJ_2
[1] 25.5 26.4 22.4 24.5 24.8 30.9 26.4 27.3 29.4 23.0
##
$VC_2
[1] 23.6 18.5 33.9 25.5 26.4 32.5 26.7 21.5 23.3 29.5

Other synonymsare, of course,possible, e.g.,split(ToothGrowth[[1]], ToothGrowth[-1])
and split(ToothGrowth[[1]], list(ToothGrowth[[2]], ToothGrowth[[3]])).
We recommendmeditating upon our conscious use of double vs single square brackets here.

Functions suchasMap (Section7.2)will soon enableus to computeany summary statisticswithin
groups, e.g., the group averages like those obtained by executing “SELECT AVG(len) FROM

80 I DEEP

ToothGrowth GROUP BY supp, dose” in SQL. As an appetiser, let’s pass a list of vectors to
the boxplot function; see Figure 5.1.

boxplot(split(ToothGrowth[["len"]], ToothGrowth[c("supp", "dose")], sep="_"))

OJ_0.5 VC_0.5 OJ_1 VC_1 OJ_2 VC_2

5
10

15
20

25
30

35

Figure 5.1. Box-and-whisker plots of len split by supp and dose in ToothGrowth.

Note unsplit revokes the effects of split. Later, we will get used to calling un-
split(Map(some_transformation, split(x, z)), z) to modify the values in x in-
dependently in each group defined by z (e.g., standardise the variables within each
class separately).

5.4.4 Ordering elements
The order function finds the ordering permutation of a given vector, i.e., a sequence
of indexes that leads to a sorted version thereof.

x <- c(1024, 7, 42, 666, 0, 32787)
(o <- order(x)) # the ordering permutation of x
[1] 5 2 3 4 1 6
x[o] # the ordered version of x
[1] 0 7 42 666 1024 32787

Note that o[1] is the index of the smallest element in x, o[2] is the position of the
second smallest, …, and o[length(o)] is the index of the greatest value. Hence, e.g.,
x[o[1]] is equivalent to min(x).

Another example:

5 VECTOR INDEXING 81

x <- c("b", "a", "abs", "bass", "aaargh", "aargh", "aaaargh")
(o <- order(x))
[1] 2 7 5 6 3 1 4
x[o]
[1] "a" "aaaargh" "aaargh" "aargh" "abs" "b" "bass"

Here, as x is a character vector, the ordering is lexicographical (like in a dictionary).
This is exactly how `<=` on strings works.

Note Theordering permutation that order returns is unique (that is whywe call it the
permutation), even for inputs containing duplicated elements. Owing to the use of a
stable sorting algorithm, ties (repeated elements) will be listed in the order of occur-
rence.

order(c(10, 20, 40, 10, 10, 30, 20, 10, 10))
[1] 1 4 5 8 9 2 7 6 3

We have, e.g., five 10s at positions 1, 4, 5, 8, and 9. These five indexes are guaranteed
to be listed in this very order.

Ordering can also be performed in a nonincreasing manner:

x[order(x, decreasing=TRUE)]
[1] "bass" "b" "abs" "aargh" "aaargh" "aaaargh" "a"

Note A call to sort(x) is equivalent to x[order(x)], but the former function can be
faster in certain scenarios. For instance, one of its arguments can induce a partially
sorted vector which can be helpful if we only seek a few order statistics (e.g., the seven
smallest values). Speed is rarely a bottleneck in the case of sorting (when it is, we have
a problem!).This iswhywewill not bother ourselveswith such topics until the last part
of this pleasant book. Currently, we aim at expanding our skill repertoire so that we
can implement anything we can think of.

Exercise 5.11 is.unsorted(x) determines if the elements in x are… not sorted with respect
to `<=`.Write an R expression that generates the same result by referring to the order function.
Also, assuming that x is numeric, do the same bymeans of a call to diff.

order also accepts one ormore arguments via the dot-dot-dot parameter, `...`.This
way, we can sort a vector with respect to many criteria. If there are ties in the first
variable, they will be resolved by the order of elements in the second variable. This is
most useful for rearranging rows of a data frame,whichwewill exercise in Chapter 12.

x <- c("a", "b", "a", "a", "b", "b")
y <- c(60, 40, 10, 30, 50, 20)
xy <- paste0(x, y) # elementwise concatenate; see next chapter

(continues on next page)

82 I DEEP

(continued from previous page)

xy[order(x)] # ordered by x
[1] "a60" "a10" "a30" "b40" "b50" "b20"
xy[order(y)] # ordered by y
[1] "a10" "b20" "a30" "b40" "b50" "a60"
xy[order(x, y)] # ordered by x (primary) and y (secondary key)
[1] "a10" "a30" "a60" "b20" "b40" "b50"

Note (*) We represent a permutation with a vector that is an arbitrary arrangement
of 𝑛 consecutive natural numbers. A composition (product) of two permutations can
be determined using simple vector indexing:

(o1 <- order(y))
[1] 3 6 4 2 5 1
(o2 <- order(x[o1]))
[1] 1 3 6 2 4 5
o1[o2] # permutation composition (not the same as o2[o1])
[1] 3 4 1 6 2 5
xy[o1[o2]] # same as (xy[o1])[o2]
[1] "a10" "a30" "a60" "b20" "b40" "b50"

Note (*) Calling order on a permutation determines its inverse.

z <- c(10, 30, 40, 20, 10, 10, 50, 30)
(o <- order(z))
[1] 1 5 6 4 2 8 3 7
order(o) # the inverse of the above permutation
[1] 1 5 7 4 2 3 8 6
o[order(o)] # the identity permutation
[1] 1 2 3 4 5 6 7 8
order(o)[o] # the identity permutation again
[1] 1 2 3 4 5 6 7 8
(z[o])[order(o)] # we get z again
[1] 10 30 40 20 10 10 50 30

Note that order(order(z)) can be considered as a way to rank all the elements in z.
For instance, the third value in z, 40, is assigned rank 7: it is the seventh smallest value
in this vector. This breaks the ties on a first-come, first-served basis. But we can also
write:

order(order(z, runif(length(z)))) # ranks with ties broken at random
[1] 2 5 7 4 3 1 8 6

For different variations of these, see the rank function.

Exercise 5.12 Recall that sample(x) returns a pseudorandom permutation of elements of a

5 VECTOR INDEXING 83

given vector unless x is a single positive number. Write an expression that always produces a
proper rearrangement, regardless of the size of x.

5.4.5 Identifying duplicates
Whether any element in a vectorwas already listed in thepreviouspart of the sequence
can be verified by calling:

x <- c(10, 20, 30, 20, 40, 50, 50, 50, 20, 20, 60)
duplicated(x)
[1] FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE FALSE

This function can be used to remove repeated observations; see also unique.This func-
tion returns a value that is not guaranteed to be sorted (unlike in some other lan-
guages/libraries).

Exercise 5.13 What can be the use case of a call to match(x, unique(x))?

Exercise 5.14 Given twonamed listsxandy, whichwe treat as key-value pairs, determine their
set-theoretic union (with respect to the keys). For example:

x <- list(a=1, b=2)
y <- list(c=3, a=4)
z <- ...to.do... # combine x and y
str(z)
List of 3
$ a: num 4
$ b: num 2
$ c: num 3

5.4.6 Counting index occurrences
tabulate takes a vector of values from a set of small positive integers (e.g., indexes)
and determines their number of occurrences:

x <- c(2, 4, 6, 2, 2, 2, 3, 6, 6, 3)
tabulate(x)
[1] 0 4 2 1 0 3

In other words, there are 0 ones, 4 twos, …, and 3 sixes.

Exercise 5.15 Using a call totabulate (amongst others), return anamed vectorwith the num-
ber of occurrences of each unique element in a character vector. For example:

y <- c("a", "b", "a", "c", "a", "d", "e", "e", "g", "g", "c", "c", "g")
result <- ...to.do...
print(result)
a b c d e g
3 1 3 1 2 3

84 I DEEP

5.5 Preserving and losing attributes
Attributes are conceived of as extra data. It is thus up to a function’s authors what they
will decide to dowith them.Generally, it is safe to assume thatmuch thought has been
put into thedesignof baseR functions.Oftentimes, they behave fairly reasonably.This
is why we are now going to spend some time now exploring their approaches to the
handling of attributes.

Namely, for functions and operators that aim at transforming vectors passed as their
inputs, the assumed strategy may be to:

• ignore the input attributes completely,

• equip the output object with the same set of attributes, or

• take care only of a few special attributes, such as names, if that makes sense.

Below we explore some common patterns; see also Section 1.3 of [69].

5.5.1 c

First, c drops5 all attributes except names:

(x <- structure(1:4, names=c("a", "b", "c", "d"), attrib1="<3"))
a b c d
1 2 3 4
attr(,"attrib1")
[1] "<3"
c(x) # only `names` are preserved
a b c d
1 2 3 4

Wecan therefore endupcalling this functionchiefly for thisnice side effect.Also, recall
that unname drops the labels.

unname(x)
[1] 1 2 3 4
attr(,"attrib1")
[1] "<3"

5.5.2 as.something

as.vector, as.numeric, and similar drop all attributes in the case where the output
is an atomic vector, but it might not necessarily do so in other cases (because they are
S3 generics; see Chapter 10).

5 To be precise, wemean the default S3 method of c here; compare Section 10.2.4.

5 VECTOR INDEXING 85

as.vector(x) # drops all attributes if x is atomic
[1] 1 2 3 4

5.5.3 Subsetting
Subsetting with `[` (except where the indexer is not given) drops all attributes but
names (as well as dim and dimnames; see Chapter 11), which is adjusted accordingly:

x[1] # subset of labels
a
1
x[[1]] # this always drops the labels (makes sense, right?)
[1] 1

Thereplacement versionof the indexoperatormodifies the values in an existing vector
whilst preserving all the attributes. In particular, skipping the indexer replaces all the
elements:

y <- x
y[] <- c("u", "v") # note that c("u", "v") has no attributes
print(y)
a b c d
"u" "v" "u" "v"
attr(,"attrib1")
[1] "<3"

5.5.4 Vectorised functions
Vectorised unary functions tend to copy all the attributes.

round(x)
a b c d
1 2 3 4
attr(,"attrib1")
[1] "<3"

Binary operations are expected to get the attributes from the longer input. If they are
of equal sizes, the first argument is preferred to the second.

y <- structure(c(1, 10), names=c("f", "g"), attrib1=":|", attrib2=":O")
y * x # x is longer
a b c d
1 20 3 40
attr(,"attrib1")
[1] "<3"
y[c("h", "i")] <- c(100, 1000) # add two new elements at the end
y * x

(continues on next page)

86 I DEEP

(continued from previous page)

f g h i
1 20 300 4000
attr(,"attrib1")
[1] ":|"
attr(,"attrib2")
[1] ":O"
x * y
a b c d
1 20 300 4000
attr(,"attrib1")
[1] "<3"
attr(,"attrib2")
[1] ":O"

Also, Section 9.3.6 mentions a way to copy all attributes from one object to another.

Important Even in base R, the foregoing rules are not enforced strictly. We con-
sider them inconsistencies that should be, for the time being, treated as features (with
which we need to learn to live as they have not been fixed for years, but hope springs
eternal).

As far as third-party extension packages are concerned, suffice it to say that a lot of R
programmers do not knowwhat attributes are whatsoever. It is always best to refer to
the documentation, perform a few experiments, and/or manually ensure the preser-
vation of the data we care about.

Exercise 5.16 Check what attributes are preserved by ifelse.

5.6 Exercises
Exercise 5.17 Answer the following questions (contemplate first, then use R to find the answer).

• What is the result of x[c()]? Is it the same as x[]?

• Is x[c(1, 1, 1)] equivalent to x[1]?

• Is x[1] equivalent to x["1"]?

• Is x[c(-1, -1, -1)] equivalent to x[-1]?

• What does x[c(0, 1, 2, NA)] do?

• What does x[0] return?

• What does x[1, 2, 3] do?

• What about x[c(0, -1, -2)] and x[c(-1, -2, NA)]?

5 VECTOR INDEXING 87

• Why x[NA] is so significantly different from x[c(1, NA)]?

• What is x[c(FALSE, TRUE, 2)]?

• What will we obtain by calling x[x<min(x)]?

• What about x[length(x)+1]?

• Why x[min(y)] is most probably amistake?What could it mean?How can it be fixed?

• Why cannot wemix indexes of different types and write x[c(1, "b", "c", 4)]? Or can
we?

• Whywould we call as.vector(na.omit(x)) instead of just na.omit(x)?

• What is the difference between sort and order?

• What is the type and the length of the object returned bya call tosplit(a, u)?What about
split(a, c(u, v))?

• How to get rid of the seventh element from a list of ten elements?

• How to get rid of the seventh, eight, and ninth elements from a list with ten elements?

• How to get rid of the seventh element from an atomic vector of ten elements?

• Ify isa list, byhowmanyelements “y[c(length(y)+1, length(y)+1, length(y)+1)]
<- list(1, 2, 3)” will extend it?

• What is the difference between x[x>0] and x[which(x>0)]?

Exercise 5.18 If x is an atomic vector of length n, x[5:n] obviously extracts everything from
the fifth element to the end. Does it, though? Check what happens when x is of length less than
five, including 0. List different ways to correct this expression so that itmakes (some) sense in the
case of shorter vectors.

Exercise 5.19 Similarly, x[length(x) + 1 - 5:1] is supposed to return the last five ele-
ments in x. Propose a few alternatives that are correct also for short xs.

Exercise 5.20 Given a numeric vector, fetch its five largest elements. Ensure the code works for
vectors of length less than five.

Exercise 5.21 We can compute a trimmed mean of some x by setting the trim argument to
themean function.Compute a similar robust estimator of location – the𝑝-winsorisedmean,𝑝 ∈
[0, 0.5] defined as the arithmetic mean of all elements in x clipped to the [𝑄𝑝, 𝑄1−𝑝] interval,
where𝑄𝑝 is the vector’s 𝑝-quantile; see quantile. For example, if x is (8, 5, 2, 9, 7, 4, 6, 1, 3),
we have𝑄0.25 = 3 and𝑄0.75 = 7 and hence the 0.25-winsorised mean will be equal to the
arithmetic mean of (7, 5, 3, 7, 7, 4, 6, 3, 3).

Exercise 5.22 Let x and y be two vectors of the same length, 𝑛, and no ties. Implement the for-
mula for the Spearman rank correlation coefficient:

𝜚(𝐱, 𝐲) = 1 −
6 ∑𝑛

𝑖=1 𝑑2
𝑖

𝑛(𝑛2 − 1)
,

88 I DEEP

where𝑑𝑖 = 𝑟𝑖 − 𝑠𝑖, 𝑖 = 1, … , 𝑛, and 𝑟𝑖 and 𝑠𝑖 denote the rank of 𝑥𝑖 and𝑦𝑖, respectively; see also
cor.

Exercise 5.23 (*) Given vectors x and y both of length𝑛, a call to approx(x, y, ...) can be
used to interpolate linearly between the points (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛).We canuse it to
generatenew𝑦s forpreviouslyunobserved𝑥s (somewhere “in-between” thedatawealreadyhave).
Moreover,spline(x, y, ...) canperforma cubic spline interpolation,which is smoother; see
Figure 5.2.

x <- c(1, 3, 5, 7, 10)
y <- c(1, 15, 25, 6, 0)
x_new <- seq(1, 10, by=0.25)
y_new1 <- approx(x, y, xout=x_new)[["y"]]
y_new2 <- spline(x, y, xout=x_new)[["y"]]
plot(x, y, ylim=c(-10, 30)) # the points to interpolate between
lines(x_new, y_new1, col="black", lty="solid") # linear interpolation
lines(x_new, y_new2, col="darkred", lty="dashed") # cubic interpolation
legend("topright", legend=c("linear", "cubic"),

lty=c("solid", "dashed"), col=c("black", "darkred"), bg="white")

2 4 6 8 10

-1
0

0
10

20
30

x

y

linear
cubic

Figure 5.2. Piecewise linear and cubic spline interpolation.

Using a call to one of the above, impute missing data in euraud-20200101-20200630.csv6,
e.g., the blanks in(0.60, 0.62, NA, 0.64, NA, NA, 0.58) should be filled so as to obtain
(0.60, 0.62, 0.63, 0.64, 0.62, 0.60, 0.58).

Exercise 5.24 Given some 1 ≤ from ≤ to ≤ n, use findInterval to generate a logical vector of
length nwith TRUE elements only at indexes between from and to, inclusive.

6 https://github.com/gagolews/teaching-data/raw/master/marek/euraud-20200101-20200630.csv

https://github.com/gagolews/teaching-data/raw/master/marek/euraud-20200101-20200630.csv

5 VECTOR INDEXING 89

Exercise 5.25 Implement expressions that give rise to the same results as calls to which,
which.min, which.max, and rev functions. What is the difference between x[x>y] and
x[which(x>y)]?What about which.min(x) vs which(x == min(x))?

Exercise 5.26 Given two equal-length vectors x and y, fetch the value from the former that cor-
responds to the smallest value in the latter.Write three versions of such an expression, each deal-
ing with potential ties in y differently. For example:

x <- c("a", "b", "c", "d", "e", "f")
y <- c(3, 1, 2, 1, 1, 4)

It should choose the first ("b"), last ("e"), or randomelement fromx fulfilling the above property
("b", "d", or "e" with equal probability). Make sure your code works for x being of the type
character or numeric as well as an empty vector.

Exercise 5.27 Implement an expression that yields the same result as duplicated(x) for a
numeric vector x, but using diff and order.

Exercise 5.28 Based on match and unique, implement your versions of union(x, y), in-
tersect(x, y), setdiff(x, y), is.element(x, y), and setequal(x, y) for x and y
being nonempty numeric vectors.

6
Character vectors

Text is a universal, portable, economical, and efficient means of interacting between
humans and computers as well as exchanging data between programs or APIs. This
book is 99%made of text. And, wow, howmuch valuable knowledge is in it, innit?

6.1 Creating character vectors
6.1.1 Inputting individual strings
Specific character strings are delimited by a pair of either double or single quotes (apo-
strophes).

"a string"
[1] "a string"
'another string' # and, of course, neither 'like this" nor "like this'
[1] "another string"

The only difference between these two is that we cannot directly include, e.g., an apo-
strophe in a single quote-delimited string.On the other hand, "'tis good ol' spam"
and 'I "love" bacon' are both okay.

To embrace characters whose inclusionmight otherwise be difficult or impossible, we
mayalways employ the so-called escape sequences. Ruses thebackslash, “\”, as the escape
character. In particular:

• \" inputs a double quote,

• \' generates a single quote,

• \\ includes a backslash,

• \n endows a new line.

(x <- "I \"love\" bacon\n\\\"/")
[1] "I \"love\" bacon\n\\\"/"

The print function (which was implicitly called to display the above object) does not
reveal the special meaning of the escape sequences. Instead, print outputs strings in

92 I DEEP

the same way that we ourselves would follow when inputting them. The number of
characters in x is 18, and not 23:

nchar(x)
[1] 18

To display the string as-it-really-is, we call cat:

cat(x, sep="\n")
I "love" bacon
\"/

In raw character constants, the backslash character’s special meaning is disabled.
They can be entered using the notation like r"(...)", r"{...}", or r"[...]";
see help("Quotes"). These can be useful when inputting regular expressions (Sec-
tion 6.2.4).

x <- r"(spam\n\\\"maps)" # also: r"-(...)-", r"--(...)--", etc.
print(x)
[1] "spam\\n\\\\\\\"maps"
cat(x, sep="\n")
spam\n\\\"maps

Furthermore, the string version of the missing value marker is NA_character_.

Note (*) The Unicode standard 15.1 (version dated September 2023) defines 149 813
characters, i.a., letters from different scripts, mathematical symbols, and emojis.
Each is assigned a unique numeric identifier; see theUnicodeCharacter CodeCharts1.
For example, the inverted exclamationmark (see the Latin-1 Supplement section therein)
has beenmapped to the hexadecimal code 0xA1 (or 161 decimally). Knowing thismagic
number permits us to specify a Unicode code point using one of the following escape
sequences:

• \uxxxx – codes using four hexadecimal digits,

• \Uxxxxxxxx – codes using eight hexadecimal digits.

For instance:

cat("!\u00a1!\U000000a1!", sep="\n")
!¡!¡!

All R installations allow for working with Unicode strings. More precisely, they sup-
port dealing with UTF-8, being a super-encoding that is native to most UNIX-like
boxes, including GNU/Linux and m**OS. Other operating systems may use some 8-
bit encoding as the system one (e.g., latin1 or cp1252), but they can be mixed with
Unicode seamlessly; see help("Encoding"), help("iconv"), and [27] for discussion.

1 https://www.unicode.org/charts

https://www.unicode.org/charts

6 CHARACTER VECTORS 93

Nevertheless, certain output devices (web browsers, LaTeX renderers, text terminals)
might fail to display some Unicode characters, e.g., because of missing fonts. How-
ever, as far as processing character data is concerned, this does not matter because R
does it with its eyes closed. For example:

cat("\U0001f642\u2665\u0bb8\U0001f923\U0001f60d\u2307", sep="\n")
������

In the PDF version2 of this adorable book, the Unicode glyphs are not rendered cor-
rectly for some reason. However, its HTML variant3, generated from the same source
files, should be displayed by most web browsers properly.

Note (*) Some output devices may support the following codes that control the posi-
tion of the caret (text cursor):

• \b inserts a backspace (moves cursor one column to the left),

• \t implants a tabulator (advances to the next tab stop, e.g., a multiply of four or
eight text columns),

• \r injects a carriage return (move to the beginning of the current line).

cat("abc\bd\tef\rg\nhij", sep="\n")
gbd ef
hij

These can be used on unbuffered outputs like stderr to display the status of the cur-
rent operation, for instance, an animated textual progress bar, the print-out of the
ETA, or the percentage of work completed.

Further, certain terminals can also understand the ECMA-48/ANSI-X3.64 escape se-
quences4 of the form \u001b[... to control the cursor’s position, text colour, and
even style. For example, \u001b[1;31m outputs red text in bold font and \u001b[0m
resets the settings to default.We recommend giving, e.g., cat("\u001b[1;31mspam\
u001b[0m") or cat("\u001b[5;36m\u001b[Abacon\u001b[Espam\u001b[0m") a try.

6.1.2 Many strings, one object
Less trivial character vectors (meaning, of length greater than one) can be constructed
by means of, e.g., c or rep5.

2 https://deepr.gagolewski.com/deepr.pdf
3 https://deepr.gagolewski.com/
4 https://en.wikipedia.org/wiki/ANSI_escape_code
5 Internally, there is a string cache (a hash table). Multiple clones of the same string do not occupymore

RAM than necessary.

https://deepr.gagolewski.com/deepr.pdf
https://deepr.gagolewski.com/
https://en.wikipedia.org/wiki/ANSI_escape_code
https://en.wikipedia.org/wiki/ANSI_escape_code

94 I DEEP

(x <- c(rep("spam", 3), "bacon", NA_character_, "spam"))
[1] "spam" "spam" "spam" "bacon" NA "spam"

Thus, a character vector is, in fact, a sequence of sequences of characters6. As usual,
the total number of strings can be fetched via the length function. However, the
length of each string may be read with the vectorised nchar.

length(x) # how many strings?
[1] 6
nchar(x) # the number of code points in each string
[1] 4 4 4 5 NA 4

6.1.3 Concatenating character vectors
paste can be used to concatenate (join) the corresponding elements of two or more
character vectors:

paste(c("a", "b", "c"), c("1", "2", "3")) # sep=" " by default
[1] "a 1" "b 2" "c 3"
paste(c("a", "b", "c"), c("1", "2", "3"), sep="") # see also paste0
[1] "a1" "b2" "c3"

The function is deeply vectorised (but note the lack of a warning about the partial re-
cycling):

paste(c("a", "b", "c"), 1:5, c("!", "?")) # coercion of numeric to character
[1] "a 1 !" "b 2 ?" "c 3 !" "a 4 ?" "b 5 !"

We can also collapse (flatten, aggregate) a sequence of strings into a single string:

paste(c("a", "b", "c", "d"), collapse=",")
[1] "a,b,c,d"
paste(c("a", "b", "c", "d"), 1:2, sep="", collapse="")
[1] "a1b2c1d2"

Perhaps for convenience, alas, paste treatsmissing values differently frommost other
vectorised functions:

paste(c("A", NA_character_, "B"), "!", sep="")
[1] "A!" "NA!" "B!"

6 (*) Chapter 14willmention that objects of the type character are internally represented as objectswith
SEXPTYPE of STRSXP. They are arrays with elements whose SEXPTYPE is CHARSXP, each of which is a string
of characters (char*).

6 CHARACTER VECTORS 95

6.1.4 Formatting objects
Strings can also arise by converting other-typed R objects into text. For example, the
quite customisable (see Chapter 10) format function prepares data for display in dy-
namically generated reports.

x <- c(123456.789, -pi, NaN)
format(x)
[1] "123456.7890" " -3.1416" " NaN"
cat(format(x, digits=8, scientific=FALSE, drop0trailing=TRUE), sep="\n")
123456.789
-3.1415927
NaN

Moreover, sprintf is a workhorse for turning possibly many atomic vectors into
strings. Its first argument is a format string. Special escape sequences starting with
the per cent sign, “%”, serve as placeholders for the actual values. For instance, “%s” is
replaced with a string and “%f” with a floating point value taken from further argu-
ments.

sprintf("%s%s", "a", c("X", "Y", "Z")) # like paste(...)
[1] "aX" "aY" "aZ"
sprintf("key=%s, value=%f", c("spam", "eggs"), c(100000, 0))
[1] "key=spam, value=100000.000000" "key=eggs, value=0.000000"

Thenumbers’ precision, strings’widths and justification, etc., canbe customised, e.g.,
“%6.2f” is a number that, when converted to text, will occupy six text columns7, with
two decimal digits of precision.

sprintf("%10s=%6.2f%%", "rate", 2/3*100) # "%%" renders the per cent sign
[1] " rate= 66.67%"
sprintf("%.*f", 1:5, pi) # variable precision
[1] "3.1" "3.14" "3.142" "3.1416" "3.14159"

Also, e.g., “%1$s”, “%2$s”, … inserts the first, second, … argument as text.

sprintf("%1$s, %2$s, %1$s, and %1$s", "spam", "bacon") # numbered argument
[1] "spam, bacon, spam, and spam"

Exercise 6.1 Read help("sprintf") (highly recommended!).

6.1.5 Reading text data fromfiles
Given a raw text file, readLines loads it into memory and represents it as a character
vector, with each line stored in a separate string.

7This is only true for 8-bit native encodings or ASCII; see also sprintf from the stringxpackage,which
takes the text width and not the number of bytes into account.

96 I DEEP

head(readLines(
"https://github.com/gagolews/teaching-data/raw/master/README.md"

))
[1] "# Prof. [Marek](https://www.gagolewski.com)'s Data for Teaching"
[2] ""
[3] "> *See the comment lines within the files themselves for"
[4] "> a detailed description of each dataset.*"
[5] ""
[6] "*Good* datasets are actually hard to find!"

writeLines is its counterpart. There is also an option to read or write parts of files at
a time using file connections which we mention in Section 8.3.5. Moreover, cat(...,
append=TRUE) can be used to create a text file incrementally.

6.2 Pattern searching
6.2.1 Comparingwhole strings
Wehave already reviewed a couple ofways to compare strings as awhole. For instance,
the `==` operator implements elementwise testing:

c("spam", "spam", "bacon", "eggs") == c("spam", "eggs") # recycling rule
[1] TRUE FALSE FALSE TRUE

In Section 5.4.1, we introduced the match function and its derivative, the `%in%` oper-
ator.They are vectorised in a different way:

match(c("spam", "spam", "bacon", "eggs"), c("spam", "eggs"))
[1] 1 1 NA 2
c("spam", "spam", "bacon", "eggs") %in% c("spam", "eggs")
[1] TRUE TRUE FALSE TRUE

Note (*) match relies on a simple, bytewise comparison of the corresponding code
points. It might not be valid in natural language processing activities, e.g., where
the German word groß should be equivalent to gross [19]. Moreover, in the rare situ-
ationswherewe readUnicode-unnormalised data, canonically equivalent stringsmay
be considered different; see [18].

6.2.2 Partialmatching
When only a consideration of the initial part of each string is required, we can call:

6 CHARACTER VECTORS 97

startsWith(c("s", "spam", "spamtastic", "spontaneous", "spoon"), "spam")
[1] FALSE TRUE TRUE FALSE FALSE

Ifweprovidemanyprefixes, the above functionwill be applied elementwisely, just like
the `==` operator.

On the other hand, charmatch performs a partial matching of strings. It is an each-vs-
all version of startsWith:

charmatch(c("s", "sp", "spam", "spams", "eggs", "bacon"), c("spam", "eggs"))
[1] 1 1 1 NA 2 NA
charmatch(c("s", "sp", "spam", "spoo", "spoof"), c("spam", "spoon"))
[1] 0 0 1 2 NA

Note that 0 designates that there was an ambiguous match.

Note (*) In Section 9.4.7,we discuss match.arg, which a fewR functions rely onwhen
theyneed to select a value froma range of possible choices. Furthermore, Section 9.3.2
and Section 15.4.4 mention the (discouraged) partial matching of list labels and func-
tion argument names.

6.2.3 Matching anywherewithin a string
Fixedpatterns canalso be searched for anywherewithin character stringsusinggrepl:

x <- c("spam", "y spammite spam", "yummy SPAM", "sram")
grepl("spam", x, fixed=TRUE) # fixed patterns, as opposed to regexes below
[1] TRUE TRUE FALSE FALSE

Important The order of arguments is like grepl(needle, haystack), not vice versa.
Also, this function is not vectorised with respect to the first argument.

Exercise 6.2 How the calls togrep(y, x, value=FALSE)andgrep(y, x, value=TRUE)
can be implemented based on grepl and other operations we are already familiar with?

Note (*) As a curiosity, agrepl performs approximate matching, which can account
for a smöll nmber of tpyos.

agrepl("spam", x)
[1] TRUE TRUE FALSE TRUE
agrepl("ham", x, ignore.case=TRUE)
[1] TRUE TRUE TRUE TRUE

98 I DEEP

It is based on Levenshtein’s edit distance that measures the number of character inser-
tions, deletions, or substitutions required to turn one string into another.

6.2.4 Using regular expressions (*)
Setting perl=TRUE allows for identifying occurrences of patterns specified by regular
expressions (regexes).

grepl("^spam", x, perl=TRUE) # strings that begin with `spam`
[1] TRUE FALSE FALSE FALSE
grepl("(?i)^spam|spam$", x, perl=TRUE) # begin or end; case ignored
[1] TRUE TRUE TRUE FALSE

Note For more details on regular expressions in general, see, e.g., [25]. The ultimate
reference on the PCRE2 pattern syntax is theUnix man page pcre2pattern(3)8. From
now on, we assume that the reader is familiar with it.

Apart from the Perl-compatible regexes, R also gives access to the TRE library (ERE-
like), which is the default one; see help("regex"). However, we discourage its use
because it is feature-poorer.

Exercise 6.3 The list.files function generates the list of file names in a given directory that
match a given regular expression. For instance, the following gives all CSV files in a folder:

list.files("~/Projects/teaching-data/r/", "\\.csv$")
[1] "air_quality_1973.csv" "anscombe.csv" "iris.csv"
[4] "titanic.csv" "tooth_growth.csv" "trees.csv"
[7] "world_phones.csv"

Write a single regular expression that matches file names ending with “.csv” or “.csv.gz”.
Also, scribble a regex that matches CSV files whose names do not begin with “eurusd”.

6.2.5 Locating pattern occurrences
regexpr finds the first occurrence of a pattern in each string:

regexpr("spam", x, fixed=TRUE)
[1] 1 3 -1 -1
attr(,"match.length")
[1] 4 4 -1 -1
attr(,"index.type")
[1] "chars"
attr(,"useBytes")
[1] TRUE

8 http://www.pcre.org/current/doc/html/pcre2pattern.html

http://www.pcre.org/current/doc/html/pcre2pattern.html

6 CHARACTER VECTORS 99

In particular, there is a pattern occurrence starting at the third code point of the
second string in x. Moreover, the last string has no pattern match, which is denoted
by -1.

The match.length attribute is generally more informative when searching with regu-
lar expressions.

To locate all the matches, i.e., globally, we use gregexpr:

`spam` followed by 0 or more letters, case insensitively
gregexpr("(?i)spam\\p{L}*", x, perl=TRUE)
[[1]]
[1] 1
attr(,"match.length")
[1] 4
attr(,"index.type")
[1] "chars"
attr(,"useBytes")
[1] TRUE
##
[[2]]
[1] 3 12
attr(,"match.length")
[1] 8 4
attr(,"index.type")
[1] "chars"
attr(,"useBytes")
[1] TRUE
##
[[3]]
[1] 7
attr(,"match.length")
[1] 4
attr(,"index.type")
[1] "chars"
attr(,"useBytes")
[1] TRUE
##
[[4]]
[1] -1
attr(,"match.length")
[1] -1
attr(,"index.type")
[1] "chars"
attr(,"useBytes")
[1] TRUE

As we noted in Section 4.4.2, wrapping the results in a list was a clever choice for the
number of matches can obviously vary between strings.

In Section 7.2, we will look at the Map function, which, along with substring intro-

100 I DEEP

duced below, can aid in getting the most out of such data. Meanwhile, let’s just men-
tion that regmatches extracts the matching substrings:

regmatches(x, gregexpr("(?i)spam\\p{L}*", x, perl=TRUE))
[[1]]
[1] "spam"
##
[[2]]
[1] "spammite" "spam"
##
[[3]]
[1] "SPAM"
##
[[4]]
character(0)

Note (*) Consider what happens when a regular expression contains parenthesised
subexpressions (capture groups).

r <- "(?<basename>[^.]+)\\.(?<extension>[^]*)"

This regex consists of two capture groups separated by a dot. The first one is labelled
“basename”. It comprises several arbitrary characters except for spaces and dots. The
second group, named “extension”, is a substring consisting of anything but spaces.

Such a pattern can be used for unpacking space-delimited lists of file names.

z <- "dataset.csv.gz something_else.txt spam"
regexpr(r, z, perl=TRUE)
[1] 1
attr(,"match.length")
[1] 14
attr(,"index.type")
[1] "chars"
attr(,"useBytes")
[1] TRUE
attr(,"capture.start")
basename extension
[1,] 1 9
attr(,"capture.length")
basename extension
[1,] 7 6
attr(,"capture.names")
[1] "basename" "extension"
gregexpr(r, z, perl=TRUE)
[[1]]
[1] 1 16
attr(,"match.length")
[1] 14 18

(continues on next page)

6 CHARACTER VECTORS 101

(continued from previous page)

attr(,"index.type")
[1] "chars"
attr(,"useBytes")
[1] TRUE
attr(,"capture.start")
basename extension
[1,] 1 9
[2,] 16 31
attr(,"capture.length")
basename extension
[1,] 7 6
[2,] 14 3
attr(,"capture.names")
[1] "basename" "extension"

The capture.* attributes give us access to the matches to the individual capture
groups, i.e., the basename and the extension.

Exercise 6.4 (*) Check out the difference between the results generated by regexec and reg-
expr as well as between the outputs of gregexec and gregexpr.

6.2.6 Replacing pattern occurrences
sub and gsub can replace the first and all, respectively, matches to a pattern:

x <- c("spam", "y spammite spam", "yummy SPAM", "sram")
sub("spam", "ham", x, fixed=TRUE)
[1] "ham" "y hammite spam" "yummy SPAM" "sram"
gsub("spam", "ham", x, fixed=TRUE)
[1] "ham" "y hammite ham" "yummy SPAM" "sram"

Note (*) If a regexdefines capture groups,matches thereto can bementionednot only
in the pattern itself but also in the replacement string:

gsub("(\\p{L})\\p{L}\\1", "\\1", "aha egg gag NaN spam", perl=TRUE)
[1] "a egg g N spam"

Matched are, in the following order: a letter (it is a capture group), another letter, and
the former letter again. Each such palindrome of length three is replacedwith just the
repeated letter.

Exercise 6.5 (*) Display the source code of glob2rx by calling print(glob2rx) and study
how this function converts wildcards such as file???.* or *.csv to regular expressions that
can be passed to, e.g., list.files.

102 I DEEP

6.2.7 Splitting strings into tokens
strsplit divides each string in a character vector into chunks.

strsplit(c("spam;spam;eggs;;bacon", "spam"), ";", fixed=TRUE)
[[1]]
[1] "spam" "spam" "eggs" "" "bacon"
##
[[2]]
[1] "spam"

Note that this time the search pattern specifying the token delimiter is given as the
second argument (an inconsistency).

6.3 Other string operations
6.3.1 Extracting substrings
substring extracts parts of strings between given character position ranges.

substring("spammity spam", 1, 4) # from the first to the fourth character
[1] "spam"
substring("spammity spam", 10) # from the tenth to end
[1] "spam"
substring("spammity spam", c(1, 10), c(4, 14)) # vectorisation
[1] "spam" "spam"
substring(c("spammity spam", "bacon and eggs"), 1, c(4, 5))
[1] "spam" "bacon"

Note There is also a replacement (compare Section 9.3.6) version of the foregoing:

x <- "spam, spam, bacon, and spam"
substring(x, 7, 11) <- "eggs"
print(x)
[1] "spam, eggs, bacon, and spam"

Unfortunately, the number of characters in the replacement string should not exceed
the lengthof thepart being substituted (try"chickpeas" insteadof "eggs").However,
substring replacement can be written as a composition of substring extraction and
concatenation:

paste(substring(x, 1, 6), "chickpeas", substring(x, 11), sep="")
[1] "spam, chickpeas, bacon, and spam"

6 CHARACTER VECTORS 103

Exercise 6.6 Take the output generated by regexpr and apply substring to extract the pat-
tern occurrences. If there is nomatch in a string, the corresponding output should be NA.

6.3.2 Translating characters
tolower and toupper converts between lower and upper case:

toupper("spam")
[1] "SPAM"

Note Like many other string operations in base R, these functions perform very
simple character substitutions.Theymightnotbe valid innatural languageprocessing
tasks. For instance, groß is not converted to GROSS, being the correct case folding in
German.

Moreover, chartr translates individual characters:

chartr("\\", "/", "c:\\windows\\system\\cmd.exe") # chartr(old, new, x)
[1] "c:/windows/system/cmd.exe"
chartr("([S", ")]*", ":(:S :[")
[1] ":) :* :]"

In the first line, we replace each backslash with a slash. The second example replaces
“(”, “[”, and “S” with “)”, “]”, and “*”, respectively.

6.3.3 Ordering strings
We have previously mentioned that operators and functions such as `<`, `>=`, sort,
order, rank, and xtfrm9 are based on the lexicographic ordering of strings.

sort(c("chłodny", "hardy", "chladný", "hladný"))
[1] "chladný" "chłodny" "hardy" "hladný"

It is worth noting that the ordering depends on the currently selected locale; see Sys.
getlocale("LC_COLLATE"). For instance, in the Slovak language setting, we would
obtain "hardy" < "hladný" < "chladný" < "chłodny".

Note Many “structured” data items can be displayed or transmitted as human-
readable strings. In particular, we know that as.numeric can convert a string to a
number. Moreover, Section 10.3.1 will discuss date-time objects such as "1970-01-01
00:00:00 GMT". We will be processing themwith specialised functions such as strp-
time and strftime.

9 See Section 12.3.1 for a use case.

104 I DEEP

Important (*) Many string operations in base R are not necessarily portable. The
stringx package defines drop-in, “fixed” replacements therefor. They are based on
the International Components for Unicode (ICU10) library, a de facto standard for pro-
cessing Unicode text, and the R package stringi; see [27].

call install.packages("stringx") first
suppressPackageStartupMessages(library("stringx")) # load the package
sort(c("chłodny", "hardy", "chladný", "hladný"), locale="sk_SK")
[1] "hardy" "hladný" "chladný" "chłodny"
toupper("gro\u00DF") # compare base::toupper("gro\u00DF")
[1] "GROSS"
detach("package:stringx") # remove the package from the search path

6.4 Other atomic vector types (*)
We have discussed four vector types: logical, double, character, and list. To get a
more complete picture of the sequence-like types in R, let’s briefly mention integer,
complex, and raw atomic types so that we are not surprised when we encounter them.

6.4.1 Integer vectors (*)
Integer scalars can be input manually by using the L suffix:

(x <- c(1L, 2L, -1L, NA_integer_)) # looks like numeric
[1] 1 2 -1 NA
typeof(x) # but is integer
[1] "integer"

Some functions return them in a few contexts11:

typeof(1:10) # seq(1, 10) as well, but not seq(1, 10, 1)
[1] "integer"
as.integer(c(-1.1, 0, 1.9, 2.1)) # truncate/round towards 0
[1] -1 0 1 2

In most expressions, integer vectors behave like numeric ones. They are silently co-

10 https://icu.unicode.org/
11 Actually, 1:10 returns an integer vector in a compact (ALTREP; see [56]) form; compare the results of

the call to .Internal(inspect(1:10)) and .Internal(inspect(seq(1, 10, 1))). This way, the whole
vector does not have to be allocated. This saves memory and time. At the R level, though, it behaves as any
other integer (numeric) sequence.

https://icu.unicode.org/

6 CHARACTER VECTORS 105

erced to double if need be. Usually, there is no practical12 reason to distinguish
between them. For example:

1L/2L # like 1/2 == 1.0/2.0
[1] 0.5

Note (*) R integers are 32-bit signed types. In the double type, we can storemore of
them.Themaximal contiguously representable integer is231−1 and253, respectively;
see Section 3.2.3:

as.integer(2^31-1) + 1L # 32-bit integer overflow
Warning in as.integer(2^31 - 1) + 1L: NAs produced by integer overflow
[1] NA
as.integer(2^31-1) + 1 == 2^31 # integer+double == double – OK
[1] TRUE
(2^53 - 1) + 1 == 2^53 # OK
[1] TRUE
(2^53 + 1) - 1 == 2^53 # lost due to FP rounding; left side equals 2^53 - 1
[1] FALSE

Note Since R 3.0, there is support for vectors longer than 231 − 1 elements. As there
are no 64-bit integers inR, long vectors are indexed by doubles (we have beendoing all
this time). In particular, x[1.9] is the same as x[1], and x[-1.9]means x[-1], i.e.,
the fractional part is truncated. It is why the notation like x[length(x)*0.2] works,
whether the length of x is a multiple of five or not.

6.4.2 Raw vectors (*)
Vectors of the type raw can store bytes, i.e., unsigned 8-bit integers, whose range is
0–255. For example:

as.raw(c(-1, 0, 1, 2, 0xc0, 254, 255, 256, NA))
Warning: out-of-range values treated as 0 in coercion to raw
[1] 00 00 01 02 c0 fe ff 00 00

They are displayed as two-digit hexadecimal (base-16) numbers.There are no raw NAs.

Only a few functions deal with such vectors: e.g., readBin, charToRaw, and raw-
ToChar.

Interestingly, themeaning of the logical operators differs for raw vectors; they denote
bitwise operations. See also bitwAnd, bitwOr etc. that work on integer vectors.

12They are of internal interest, e.g., when writing C/C++ extensions; see Chapter 14.

106 I DEEP

xor(as.raw(0xf0), as.raw(0x0f))
[1] ff
bitwXor(0x0fff0f00, 0x0f00f0ff)
[1] 16777215

Example 6.7 (*) One use case of bitwise operations is for representing a selection of items in a
small set of possible values.This can be useful for communicating with routines implemented in
C/C++. For instance, let’s define three flags:

HAS_SPAM <- 0x01 # binary 00000001
HAS_BACON <- 0x02 # binary 00000010
HAS_EGGS <- 0x04 # binary 00000100

Now a particular subset can be created using the bitwise OR:

dish <- bitwOr(HAS_SPAM, HAS_EGGS) # {spam, eggs}

Testing for inclusion is done via the bitwise AND:

as.logical(bitwAnd(dish, c(HAS_SPAM, HAS_BACON, HAS_EGGS)))
[1] TRUE FALSE TRUE

6.4.3 Complex vectors (*)
We can also play with vectors of the type complex, with “1i” representing the imagin-
ary unit, √−1. Complex numbers appear in quite a few engineering or scientific ap-
plications, e.g., in physics, electronics, or signal processing. They are (at least: ought
to be) part of introductory subjects or textbooks in university-level mathematics, in-
cluding the statistics- and machine learning-orientated ones because of their heavy
use of numerical computing; see e.g., [20, 32].

c(0, 1i, pi+pi*1i, NA_complex_)
[1] 0.0000+0.0000i 0.0000+1.0000i 3.1416+3.1416i NA

Apart from the basic operators, mathematical and aggregation functions, procedures
like fft, solve, qr, or svd can be fed with or produce such data. For more details, see
help("complex") and somematrix examples in Chapter 11.

6.5 Exercises
Exercises marked with (*) might require tinkering with regular expressions or third-
party R packages.

Exercise 6.8 Answer the following questions.

6 CHARACTER VECTORS 107

• How many characters are there in the string "ab\n\\\t\\\\\""? What about r"-{ab\
n\\\t\\\\\"-)}-"?

• What is the result of a call to paste(NA, 1:5, collapse="")?

• What is themeaning of the following sprintf format strings: “%s”, “%20s”, “%-20s”, “%f”,
“%g”, “%e”, “%5f”, “%5.2f%%”, “%.2f”, “%0+5f”, and “[%+-5.2f]”?

• What is thedifference betweenregexprandgregexpr?Whatdoes “g” in the latter function
name stand for?

• What is the result of a call to grepl(c("spam", "spammity spam", "aubergines"),
"spam")?

• Is it always the case that “"Aaron" < "Zorro"”?

• Why “x < "10"” and “x < 10” may return different results?

• If x is a character vector, is “x == x” always equal to TRUE?

• If x and y are character vectors of lengths 𝑛 and 𝑚, respectively, what is the length of the
output of match(x, y)?

• If x is a named vector, why is there a difference between x[NA] and x[NA_character_]?

• What is the difference between “x == y” and “x %in% y”?

Exercise 6.9 Let x, y, and z be atomic vectors and a and b be single strings. Generate the same
results as pastena(x, collapse=b), pastena(x, y, sep=a), pastena(x, y, sep=a,
collapse=b), pastena(x, y, z, sep=a), pastena(x, y, z, sep=a, collapse=b),
assuming that pastena is a version of paste (whichwe do not have) that handlesmissing data
in a way consistent withmost other functions.

Exercise 6.10 Based on list.files and glob2rx, generate the list of all PDFs on your com-
puter.Then, use file.size to filter out the files smaller than 10MiB.

Exercise 6.11 Read a text file that stores a long paragraph of some banal prose. Concatenate
all the lines to form a single, long string. Using strwrap and cat, output the paragraph on the
console, nicely formatted to fit a block of text of an aesthetic width, say, 60 columns.

Exercise 6.12 (*) Implement a simplified version of basename and dirname.

Exercise 6.13 (*) Implement an operation similar to trimws using the functions introduced in
this chapter.

Exercise 6.14 (*) Write a regex that extracts all words from each string in a given character
vector.

Exercise 6.15 (*)Write a regex that extracts, from each string in a character vector, all:

• integers numbers (signed or unsigned),

• floating-point numbers,

• numbers of any kind (including those in scientific notation),

• #hashtags,

108 I DEEP

• email@address.es,

• hyperlinks of the form http://… and https://….

Exercise 6.16 (*)What do 42i, 42L, and 0x42 stand for?

Exercise 6.17 (*) Check out stri_sort in the stringi package (or sort.character in
stringx) for a way to obtain an ordering like "a1" < "a2" < "a10" < "a11" < "a100".

Exercise 6.18 (*) Insprintf, the formatter"%20s"means that if a string is less than20bytes
long, the remainingbyteswill be replacedwith spaces.Only forASCII characters (English letters,
digits, somepunctuationmarks, etc.), it is true thatone character is representedbyonebyte.Other
Unicode code points can take up between two and four bytes.

cat(sprintf("..%6s..", c("abc", "1!<", "aßc", "ąß©")), sep="\n") # aligned?
.. abc..
.. 1!<..
.. aßc..
..ąß©..

Use the stri_pad function from the stringi package to align the strings aesthetically. Altern-
atively, check out sprintf from stringx.

Exercise 6.19 (*) Implement an operation similar to stri_pad from stringi using the func-
tions introduced in this chapter.

7
Functions

R is a functional language, i.e., one where functions play first fiddle. Each action we
perform reduces itself to a call to some function or a combination thereof.

So far, we have been tinkering with dozens of available functions which were mostly
part of base R. They constitute the essential vocabulary that everyone must be able to
speak fluently.

Any operation, be it sum, sqrt, or paste, when fed with a number of arguments, gen-
erates a (hopefully fruitful) return value.

sum(1:10) # invoking `sum` on a specific argument
[1] 55

From a user’s perspective, each function ismerely a tool. To achieve a goal at hand, we
do not have to care about what is going on under its bonnet, i.e., how the inputs are
being transformed so that, after a couple of nanoseconds or hours, we can relish what
has been bred. This is very convenient: all we need to know is the function’s specifica-
tion which can be stated, for example, informally, in plain Polish or Malay, on its help
page.

In this chapter, we will learn how to write our own functions. Using this skill is a good
development practice when we expect that the same operations will need to be executed
many times but perhaps on different data.

Also, some functions invoke other procedures, for instance, on every element in a list
or every section of a data frame grouped by a qualitative variable.Thus, it is advisable
to learn how we can specify a custom operation to be propagated thereover.

Example 7.1 Given some objects (whatever):

x1 <- runif(16)
x2 <- runif(32)
x3 <- runif(64)

assume we want to apply the same action on different data, say, compute the root mean square.
Then, instead of retyping almost identical expressions (or a bunch of them) over and over again:

sqrt(mean(x1^2)) # very fresh
[1] 0.6545
sqrt(mean(x2^2)) # the same second time; borderline okay

(continues on next page)

110 I DEEP

(continued from previous page)

[1] 0.56203
sqrt(mean(x3^2)) # third time the same; tedious, barbarous, and error-prone
[1] 0.57206

we can generalise the operation to any object like x:

rms <- # bind the name `rms` to...
function(x) # a function that takes one parameter, `x`

sqrt(mean(x^2)) # transforming the input to yield output this way

and then reuse it on different concrete data instances:

rms(x1)
[1] 0.6545
rms(x2)
[1] 0.56203
rms(x3)
[1] 0.57206

or even combine it with other function calls:

rms(sqrt(c(x1, x2, x3)))^2
[1] 0.50824

Thus, custom functions are very useful.

Important Does writing own functions equal reinventing the wheel? Can everything
be found online these days (including on Stack Overflow, GitHub, or CRAN)? Luckily,
it is not the case. Otherwise, data analysts’, researchers’, and developers’ lives would
bemonotonous, dreary, and uninspiring.What ismore, wemight be able to compose
a function from scratch much more quickly than to get through the whole garbage
dump called the internet from where, only occasionally, we can dig out some pearls.
Let’s remember that we advocate forminimalism in this book.Wewill reflect on such
issues in Chapter 9.There is also the personal growth side: we becomemore skilled pro-
grammers by crunching those exercises.

7.1 Creating and invoking functions
7.1.1 Anonymous functions
Functions are usually created through the following notation:

7 FUNCTIONS 111

function(args) body

First, args is a (possibly empty) list of comma-separated parameter names which act
as input variables. Second, body is a singleRexpression that is evaluatedwhen the func-
tion is called.The value this expression yields will constitute the function’s output.

For example, here is a definition of a function that takes no inputs and generates a
constant output:

function() 1
function ()
1

We thus created a function object. However, as we have not used it at all, it disappeared
immediately thereafter.

Any function f can be invoked, i.e., evaluated on concrete data, using the syntax f(arg1,
..., argn). Here, arg1, …, argn are expressions passed as arguments to f.

(function() 1)() # invoking f like f(); here, no arguments are expected
[1] 1

Only now have we obtained a return value.

Note (*) Calling typeofona function objectwill report "closure" (user-defined func-
tions),"builtin", or"primitive" (built-in, baseones) for the reasons thatweexplain
in more detail in Section 9.4.3 and Section 16.3.2. In our case:

typeof(function() 1)
[1] "closure"

7.1.2 Named functions
Names canbebound to functionobjects.Thisway,we can refer to themmultiple times:

one <- function() 1 # one <- (function() 1)

We created an object named one (we use bold font to indicate that it is of the type
function for functions are so crucial in R). We are very familiar with such a notation,
as not since yesterday we are used to writing “x <- 1”, etc.

Invoking one, which can be done by writing one(), will generate a return value:

one() # (function() 1)()
[1] 1

This output can be used in further computations. For instance:

112 I DEEP

0:2 - one() # 0:2 - (function() 1)(), i.e., 0:2 - 1
[1] -1 0 1

7.1.3 Passing arguments to functions
Functions with no arguments are kind of boring.Thus, let’s distil a more highbrowed
operation:

concat <- function(x, y) paste(x, y, sep="")

We created amappingwhose aim is to concatenate two objects using a specialised call
to paste. Yours faithfully pleads guilty tomultiplying entities needlessly: it should not
be a problem for anyone to write paste(x, y, sep="") each time. Yet, ‘tis merely an
illustration.

The concat function has two parameters, x and y. Hence, calling it will require the pro-
vision of two arguments, which we put within round brackets and separate from each
other by commas.

u <- 1:5
concat("spam", u) # i.e., concat(x="spam", y=1:5)
[1] "spam1" "spam2" "spam3" "spam4" "spam5"

Important Notice the distinction: parameters (formal arguments) are abstract, general,
or symbolic; “something, anything that will be put in place of x when the function is
invoked”. Contrastingly, arguments (actual parameters) are concrete, specific, and real.

During the above call, x in the function’s body is precisely "spam" and nothing else.
Also, the u object from the caller’s environment can be accessed via y in concat. Most
of the time (yet, see Section 16.3), it is best to think of the function as being fed not
with u per se but the value that u is bound to, i.e., 1:5.

Also:

x <- 1:5
y <- "spam"
concat(y, x) # concat(x="spam", y=1:5)
[1] "spam1" "spam2" "spam3" "spam4" "spam5"

This call is equivalent to concat(x=y, y=x). The argument x is assigned the value of
y from the calling environment, "spam". Let’s stress that one x is not the same as the
other x; which is which is unambiguously defined by the context.

Exercise 7.2 Write a functionstandardise that takes a numeric vectorx as argument and re-
turns its standardised version, i.e., from each element in x, subtract the sample arithmeticmean
and then divide it by the standard deviation.

7 FUNCTIONS 113

Note Section 2.1.3mentioned that, syntactically speaking, the following are perfectly
valid alternatives to the positionally-matched call concat("spam", u):

concat(x="spam", y=u)
concat(y=u, x="spam")
concat("spam", y=u)
concat(u, x="spam")
concat(x="spam", u)
concat(y=u, "spam")

However, we recommend avoiding the last two for the sake of the readers’ sanity. It is
best to provide positionally-matched arguments before the keyword-based ones; see
Section 15.4.4 for more details.

Also, Section 10.4 mentions the (overused) forward pipe operator, `|>`, which will en-
able us to rewrite the above as “"spam" |> concat(u)”.

7.1.4 Grouping expressionswith curly braces, `{`
Wehave been informed that a function’s body is a singleR expression whose evaluated
value is passed to the user as its output. This may sound restrictive and in contrast
with what we have experienced so far. Seldom are we faced with such simple com-
puting tasks, and we have already seen R functions performing quite sophisticated
operations.

Grammatically, a single R expression can be arbitrarily complex (Chapter 15). We can
use curly braces to group many calls that are to be evaluated one after another. For
instance:

{
cat("first expression\n")
cat("second expression\n")
...
cat("last expression\n")

}
first expression
second expression
last expression

We used four spaces to visually indent the constituents for greater readability (some
developers prefer tabs over spaces, others find two or three spaces more urbane, but
we do not).This single (compound) expression can now play a role of a function’s body.

Important The last expression evaluated in a curly-braces delimited blockwill be con-
sidered its output value.

114 I DEEP

x <- {
1
2
3 # <--- last expression: will be taken as the output value

}
print(x)
[1] 3

This code block can also be written more concisely by replacing newlines with semi-
colons, albeit with perhaps some loss in readability:

{1; 2; 3}
[1] 3

Section 9.3 will give a fewmore details about `{`.

Example 7.3 Here is a version of our concat function that guarantees a more Chapter 2-style
missing values’ propagation:

concat <- function(a, b)
{

z <- paste(a, b, sep="")
z[is.na(a) | is.na(b)] <- NA_character_
z # last expression in the block – return value

}

Example calls:

concat("a", 1:3)
[1] "a1" "a2" "a3"
concat(NA_character_, 1:3)
[1] NA NA NA
concat(1:6, c("a", NA_character_, "c"))
[1] "1a" NA "3c" "4a" NA "6c"

Let’s appreciate the fact that we could keep the code brief thanks to paste’s and `|`’s implement-
ing the recycling rule.

Exercise 7.4 Write a function normalise that takes a numeric vector x and returns its ver-
sion shifted and scaled to the [0, 1] interval. To do so, subtract the sample minimum from each
element, and then divide it by the range, i.e., the difference between the maximum and the min-
imum. Avoid computing min(x) twice.

Exercise 7.5 Write a function that applies the robust standardisation of a numeric vector: sub-
tract the median and divide it by the median absolute deviation, 1.4826 times the median of the
absolute differences between the values and their median.

Note R is an open-source (free, libre) project distributed under the terms of the GNU

7 FUNCTIONS 115

General Public License version 2. Therefore, we are not only encouraged to run the
software for whatever purpose, but also study and modify its source code without re-
strictions. To facilitate this, we can display all function definitions:

print(concat) # the code of the above procedure
function (a, b)
{
z <- paste(a, b, sep = "")
z[is.na(a) | is.na(b)] <- NA_character_
z
}
print(union) # a built-in function
function (x, y)
{
if (.set_ops_need_as_vector(x, y)) {
x <- as.vector(x)
y <- as.vector(y)
}
else if (!isa(x, class(y)))
x <- c(y[0L], x)
x <- unique(x)
names(x) <- NULL
y <- unique(y)
names(y) <- NULL
c(x, y[match(y, x, 0L) == 0L])
}
<environment: namespace:base>

Nevertheless, some functionality might be implemented in compiled programming
languages such as C, C++, or Fortran; notice a call to .Internal in the source code of
paste, .Primitive in list, or .Call in runif. Therefore, we will sometimes have to
dig a bit deeper to access the underlying definition; see Chapter 14 for more details.

7.2 Functional programming
R is a functional programming language. As such, it shares several features with other
languages that emphasise the role of functionmanipulation in software development
(e.g., Common Lisp, Scheme, OCaml, Haskell, Clojure, F#). Let’s explore these com-
monalities now.

7.2.1 Functions are objects
Rfunctionsweregiven the right toa fairgo; theyarewhatwerefer toasfirst-class citizens.
In other words, our interaction with them is not limited to their invocation; we treat
them as any other language object.

116 I DEEP

• They can be stored inside list objects, which can embrace R objects of any kind:

list(identity, NROW, sum) # a list storing three functions
[[1]]
function (x)
x
<environment: namespace:base>
##
[[2]]
function (x)
if (length(d <- dim(x))) d[1L] else length(x)
<environment: namespace:base>
##
[[3]]
function (..., na.rm = FALSE) .Primitive("sum")

• They can be created and then called inside another function’s body:

euclidean_distance <- function(x, y)
{

square <- function(z) z^2 # auxiliary/internal/helper function
sqrt(sum(square(x-y))) # square root of the sum of squares

}

euclidean_distance(c(0, 1), c(1, 0)) # example call
[1] 1.4142

This is why we tend to classify functions as representatives of recursive types (com-
pare is.recursive).

• They can be passed as arguments to other operations:

Replaces missing values with a given aggregate
of all non-missing elements:
fill_na <- function(x, filler_fun)
{

missing_ones <- is.na(x) # otherwise, we'd have to call is.na twice
replacement_value <- filler_fun(x[!missing_ones])
x[missing_ones] <- replacement_value
x

}

fill_na(c(0, NA_real_, NA_real_, 2, 3, 7, NA_real_), mean)
[1] 0 3 3 2 3 7 3
fill_na(c(0, NA_real_, NA_real_, 2, 3, 7, NA_real_), median)
[1] 0.0 2.5 2.5 2.0 3.0 7.0 2.5

Procedures like this are called higher-order functions.

7 FUNCTIONS 117

Note More advanced techniques, which we discuss in the third part of the book, will
let the functions be:

• returned as other functions’ outputs,

• equipped with auxiliary data,

• generated programmatically on the fly,

• modified at runtime.

Let’s review the most essential higher-order functions, including do.call and Map.

7.2.2 Calling on precomputed argumentswith do.call
Notation like f(arg1, ..., argn) has no monopoly over how we call a function on
a specific sequence of arguments. The list of actual parameters does not have to be
hardcoded.

Here is an alternative. We can first prepare a number of objects to be passed as f’s
inputs, wrap them in a list l, and then invoke do.call(f, l) to get the same result.

words <- list(
c("spam", "bacon", "eggs"),
c("buckwheat", "quinoa", "barley"),
c("ham", "spam", "spam")

)
do.call(paste, words) # paste(words[[1]], words[[2]], words[[3]])
[1] "spam buckwheat ham" "bacon quinoa spam" "eggs barley spam"
do.call(cbind, words) # column-bind; returns a matrix (explained later)
[,1] [,2] [,3]
[1,] "spam" "buckwheat" "ham"
[2,] "bacon" "quinoa" "spam"
[3,] "eggs" "barley" "spam"
do.call(rbind, words) # row-bind (explained later)
[,1] [,2] [,3]
[1,] "spam" "bacon" "eggs"
[2,] "buckwheat" "quinoa" "barley"
[3,] "ham" "spam" "spam"

The length and content of the list passed as the second argument of do.call can be
arbitrary (possibly unknown at the time of writing the code). See Section 12.1.2 for
more use cases, e.g., ways to concatenate a list of data frames (perhaps produced by
some complex chain of commands) into a single data frame.

If elements of the list are named, they will be matched to the corresponding keyword
arguments.

x <- 2^(seq(-2, 2, length.out=101))

(continues on next page)

118 I DEEP

(continued from previous page)

plot_opts <- list(col="red", lty="dashed", type="l")
do.call(plot, c(list(x, log2(x), xlab="x", ylab="log2(x)"), plot_opts))
(plot display suppressed)

Notice that our favourite plot_opts can now be reused in further calls to graphics
functions.This is very convenient as it avoids repetitions.

7.2.3 Common higher-order functions
There is an important class of higher-order functions that permit us to apply custom
operations on consecutive elements of sequences without relying on loop-like state-
ments, at least explicitly.They can be found in all functional programming languages
(e.g., Lisp,Haskell, Scala) andhavebeenported to various add-on libraries (functools
in Python, more recent versions of the C++ Standard Library, etc.) or frameworks
(Apache Spark and the like). Their presence reflects the obvious truth that certain op-
erations occur more frequently than others. In particular:

• Map calls a function on each element of a sequence in order to transform:

– their individual components (just like sqrt, round, or the unary `!` operator
in R), or

– the corresponding elements ofmany sequences so as to vectorise a given op-
eration elementwisely (compare the binary `+` or paste),

• Reduce (also called accumulate) applies a binary operation to combine consecutive
elements in a sequence, e.g., to generate the aggregates, like, totally (compare sum,
prod, all, max) or cumulatively (compare cumsum, cummin),

• Filter creates a subset of a sequence that is comprised of elements that enjoy a
given property (which we typically achieve in R bymeans of the `[` operator),

• Find locates the first element that fulfils some logical condition (compare which).

Below we will only focus on the Map function. The inspection of the remaining ones
is left as an exercise.This is because, oftentimes, we can be better off with their more
R-ish versions (e.g., using the subsetting operator, `[`).

7.2.4 Vectorising functionswith Map
In data-centric computing, we are frequently faced with tasks that involve processing
each vector element independently, one after another. Suchuse cases canbenefit from
vectorised operations like those discussed in Chapter 2, Chapter 3, and Chapter 6.

Unfortunately, most of the functions that we introduced so far cannot be applied on
lists. For instance, if we try calling sqrt on a generic vector, we will get an error, even
if it is a list of numeric sequences only. One way to compute the square root of all
elements would be to invoke sqrt(unlist(...)). It is a go-to approach if we want to

7 FUNCTIONS 119

treat all the list’s elements as one sequence. However, this comes at the price of losing
the list’s structure.

Wehave also discussed a fewoperations that are not vectorisedwith respect to all their
arguments, even though they could have been designed this way, e.g., grepl.

The Map function1 applies an operation on each element in a vector or the correspond-
ing elements in a number of vectors. In many situations, it may be used as a more
elegant alternative to for loops that we will introduce in the next chapter.

First2, a call to Map(f, x) yields a list whose 𝑖-th element is equal to f(x[[i]]). For
example:

x <- list(# an example named list
x1=1:3,
x2=seq(0, 1, by=0.25),
x3=c(1, 0, NA_real_, 0, 0, 1, NA_real_)

)
Map(sqrt, x) # x is named, hence the result will be named as well
$x1
[1] 1.0000 1.4142 1.7321
##
$x2
[1] 0.00000 0.50000 0.70711 0.86603 1.00000
##
$x3
[1] 1 0 NA 0 0 1 NA
Map(length, x)
$x1
[1] 3
##
$x2
[1] 5
##
$x3
[1] 7
unlist(Map(mean, x)) # compute three aggregates, convert to an atomic vector
x1 x2 x3
2.0 0.5 NA

Exercise 7.6 Given a list of numeric vectors, fetch their last elements in the form of an atomic
vector.

Recall that `[[` works on atomic vectors, too.Thus, we can call, e.g.:

1 Yes, the author is aware that Map was implemented using the slightly more primitive mapply but we
are not fond of the latter function’s having the SIMPLIFY argument set to TRUE by default.

2This use case scenario can also be programmed using lapply; lapply(x, f, ...) is equivalent to
Map(f, x, MoreArgs=list(...)).

120 I DEEP

x <- c(2, 4, 6)
Map(function(n) round(runif(n, -1, 1), 1), x)
[[1]]
[1] 0.4 0.8
##
[[2]]
[1] 0.5 0.8 -0.1 -0.7
##
[[3]]
[1] -0.3 0.0 0.5 1.0 -0.9 -0.7

Next, we can vectorise a given function over several parameters. A call to, e.g., Map(f,
x, y, z) breeds a list whose 𝑖-th element is equal to f(x[[i]], y[[i]], z[[i]]).
Like in the case of, e.g., paste, the recycling rule will be applied if necessary.

For example, the followinggenerates list(seq(1, 6), seq(11, 13), seq(21, 29)):

Map(seq, c(1, 11, 21), c(6, 13, 29))
[[1]]
[1] 1 2 3 4 5 6
##
[[2]]
[1] 11 12 13
##
[[3]]
[1] 21 22 23 24 25 26 27 28 29

Moreover, we can get list(seq(1, 40, length.out=10), seq(11, 40, length.
out=5), seq(21, 40, length.out=10), seq(31, 40, length.out=5)) by calling:

Map(seq, c(1, 11, 21, 31), 40, length.out=c(10, 5))
[[1]]
[1] 1.0000 5.3333 9.6667 14.0000 18.3333 22.6667 27.0000 31.3333
[9] 35.6667 40.0000
##
[[2]]
[1] 11.00 18.25 25.50 32.75 40.00
##
[[3]]
[1] 21.000 23.111 25.222 27.333 29.444 31.556 33.667 35.778 37.889 40.000
##
[[4]]
[1] 31.00 33.25 35.50 37.75 40.00

Note If we have some additional arguments to be passed to the function applied
(which it does not have to be vectorised over), we can wrap them inside a separate
list and toss it via the MoreArgs argument (à la do.call).

7 FUNCTIONS 121

unlist(Map(mean, x, MoreArgs=list(na.rm=TRUE))) # mean(..., na.rm=TRUE)
[1] 2 4 6

Alternatively, we can always construct a custom anonymous function:

unlist(Map(function(xi) mean(xi, na.rm=TRUE), x))
[1] 2 4 6

Exercise 7.7 Here is an example list of files (see our teaching data repository3) with daily Forex
rates:

file_names <- c(
"euraud-20200101-20200630.csv",
"eurgbp-20200101-20200630.csv",
"eurusd-20200101-20200630.csv"

)

Call Map to read themwith scan. Determine each series’ minimal, mean, andmaximal value.

Exercise 7.8 Implement your version of the Filter function based on a call to Map.

7.3 Accessing third-party functions
Whenwe indulge in the writing of a software piece, a few questions naturally arise. Is
the problem we are facing fairly complex? Has it already been successfully addressed
in its entirety? If not, can it, or its parts, be split into manageable chunks? Can it be
constructed based on some readily available nontrivial components?

A smart developer is independent but knowswhen to stand on the shoulders to cry on.
Let’s explore a few ways to reuse the existing function libraries.

7.3.1 Using R packages
Most contributedR extensions come in the formof add-onpackages, which can include:

• reusable code (e.g., new functions),

• data (which we can exercise on),

• documentation (manuals, vignettes, etc.);

see Section 9.2.2 for more andWriting R Extensions [66] for all the details.

Most packages are published in the moderated repository that is part of the Compre-

3 https://github.com/gagolews/teaching-data/tree/master/marek

https://github.com/gagolews/teaching-data/tree/master/marek

122 I DEEP

hensive R ArchiveNetwork (CRAN4). However, there are also other popular sources such
as Bioconductor5 which specialises in bioinformatics.

We call install.packages("pkg") to fetch a package pkg froma repository (CRANby
default; see, however, the repos argument).

A call to library("pkg") loads an indicated package and makes the exported objects
available to the user (i.e., attaches it to the search path; see Section 16.2.6).

For instance, in one of the previous chapters, we have mentioned the gsl package:

call install.packages("gsl") first
library("gsl") # load the package
poch(10, 3:6) # calls gsl_sf_poch() from GNU GSL
[1] 1320 17160 240240 3603600

Here, poch is an object exported by package gsl. If we did not call library("gsl"),
trying to access the former would raise an error.

We could have also accessed the preceding function without attaching it to the search
path using the pkg::fun syntax, namely, gsl::poch.

Note For more information about any R extension, call help(package="pkg"). Also,
it is advisable to visit the package’s CRAN entry at an address like https://CRAN.R-
project.org/package=pkg to access additional information, e.g., vignettes. Why waste
our time and energy by querying aweb search engine that will likely lead us to a dodgy
middleman when we can acquire authoritative knowledge directly from the source?

Moreover, it is worth exploring various CRAN Task Views6 that group the packages
into topics such as Genetics, Graphics, and Optimisation. They are curated by experts in
their relevant fields.

Important Frequently, R packages are written in their respective authors’ free time,
many of whom are volunteers. Neither get they paid for this, nor do it as part of the
so-called their job. Yes, not everyone is driven by money or fame.

Someday, when we come up with something valuable for the community, we will be-
come one of them. Before this happens, we can show appreciation for their generosity
by, e.g., spreading the word about their software by citing it in publications (see cita-
tion(package="pkg")), talkingabout themduring lunchtime,ormentioning themin
(un)social media. We can also help them improve the existing code base by reporting
bugs, polishing documentation, proposing new features, or cleaning up the redund-
ant fragments of their APIs.

4 https://cloud.r-project.org/
5 https://bioconductor.org/
6 https://cloud.r-project.org/web/views

https://cloud.r-project.org/
https://bioconductor.org/
https://cloud.r-project.org/web/views

7 FUNCTIONS 123

Default packages

The base package is omnipresent. It provides us with themost crucial functions such
as the vector addition, c, Map, and library. Certain other extensions are also loaded
by default:

getOption("defaultPackages")
[1] "datasets" "utils" "grDevices" "graphics" "stats"
[6] "methods"

In this book, we assume that they are always attached (even though this list can, the-
oretically, be changed7). Due to this, in Section 2.4.5, there was no need to call, for
example, library("stats") before referring to the var and sd functions.

On a side note, grDevices and graphicswill be discussed in Chapter 13. methodswill
be mentioned in Section 10.5. datasets brings a few example R objects on which we
can exercise our skills. The functions from utils, graphics, and stats already ap-
peared here and there.

Exercise 7.9 Use the find function to determine which packages define mean, var, find, and
Map. Recall fromSection 1.4where such information can be found in these objects’manual pages.

Source vs binary packages (*)

R is an open environment. Therefore, its packages are published primarily in the
source form. This way, anyone can study how they work and improve them or reuse
parts thereof in different projects.

If we call install.packages("path", repos=NULL, type="source"), we should
be able to install a package from sources: path can be pinpointing either a direct-
ory or a source tarball (most often as a compressed pkg_version.tar.gz file; see
help("untar")).

Note that type="source" is the default unless one is on a Win***s or m**OS box;
see getOption("pkgType"). This is because these two operating systems require ad-
ditional build tools, especially if a package relies on C or C++ code; see Chapter 14 and
Section C.3 of [68]:

• RTools8 onWin***s,

• Xcode Command Line Tools9 onm**OS.

These systems are less developer-orientated.Thus, as a courtesy to their users, CRAN
alsodistributes theplatform-specificbinary versionsof thepackages (.zipor .tgzfiles).
install.packageswill try to fetch them by default.

Example 7.10 It is very easy to retrieve a package’s source directly from GitLab and GitHub,
which are popular hosting platforms.The relevant links are, respectively:

7 (*)R is greatly configurable:wecanhave custom~/.Renvironand~/.Rprofilefiles that areprocessed
on R’s startup; see help("Startup").

8 https://cran.r-project.org/bin/windows/Rtools
9 https://developer.apple.com/xcode/resources

https://cran.r-project.org/bin/windows/Rtools
https://developer.apple.com/xcode/resources

124 I DEEP

• https://gitlab.com/user/repo/-/archive/branch/repo-branch.zip,

• https://github.com/user/repo/archive/branch.zip.

For example, to download the contents of themaster branch in the GitHub repository rpack-
agedemo owned by gagolews, we can call:

f <- tempfile() # download destination: a temporary file name
download.file("https://github.com/gagolews/rpackagedemo/archive/master.zip",

destfile=f)

Next, the contents can be extracted with unzip:

t <- tempdir() # temporary directory for extracted files
(d <- unzip(f, exdir=t)) # returns extracted file paths

The path where the files were extracted can be passed to install.packages:

install.packages(dirname(d)[1], repos=NULL, type="source")
file.remove(c(f, d)) # clean up

Exercise 7.11 Use thegit2r package to clone thegit repository located at https://github.com/
gagolews/rpackagedemo.git and install the package published therein.

Managing dependencies (*)

By calling update.packages, all installed add-on packages may be upgraded to their
most recent versions available on CRAN or other indicated repository.

As a general rule, the more experienced we become, the less excited we get about the
new. Sure, bug fixes and well-thought-out additional features are usually welcome.
Still, just we wait until someone updates a package’s API for the 𝑛-th time, 𝑛 ≥ 2,
breaking our so-far flawless program.

Hence, when designing software projects (see Chapter 9 for more details), we must
ask ourselves the ultimate question: do we really need to import that package with
lots of dependencies from which we will just use only about 3–5 functions? Wouldn’t
it be better to write our own version of some functionality (and learn something new,
exercise our brain, etc.), or call a mature terminal-based tool?

Otherwise, as all the historical versions of the packages are archived on CRAN10,
simple software dependency management can be conducted by storing different re-
leases of packages in different directories. This way, we can create an isolated envir-
onment for the add-ons. To fetch the locationswhere packages are sought (in this very
order), we call:

.libPaths()
[1] "/home/gagolews/R/x86_64-suse-linux-gnu-library/4.5"
[2] "/usr/lib64/R/library"

10 https://cran.r-project.org/src/contrib/Archive

https://github.com/gagolews/rpackagedemo.git
https://github.com/gagolews/rpackagedemo.git
https://cran.r-project.org/src/contrib/Archive

7 FUNCTIONS 125

The same function can add new folders to the search path; see also the environment
variable R_LIBS_USER that we can set using Sys.setenv.The install.packages func-
tion will honour them as target directories; see its lib parameter for more details.
Note that only one version of a package can be loaded at a time, though.

Moreover, the packages may deposit auxiliary data on the user’s machine. Therefore,
itmight beworthwhile to set the following directories (via the corresponding environ-
ment variables) relative to the current project:

tools::R_user_dir("pkg", "data") # R_USER_DATA_DIR
[1] "/home/gagolews/.local/share/R/pkg"
tools::R_user_dir("pkg", "config") # R_USER_CONFIG_DIR
[1] "/home/gagolews/.config/R/pkg"
tools::R_user_dir("pkg", "cache") # R_USER_CACHE_DIR
[1] "/home/gagolews/.cache/R/pkg"

7.3.2 Calling external programs
Many tasks can be accomplished by calling external programs. Such an approach is
particularly natural on UNIX-like systems, which classically follow modular, minim-
alist design patterns. There are many tools at a developer’s hand and each of them is
specialised at solving a single, well-defined problem. Apart from the many standard
UNIX commands11, we may consider:

• pandoc12 converts documents between markup formats, e.g., Markdown, HTML,
reStructuredText, and LaTeX and can generate LibreOffice Writer documents,
EPUB or PDF files, or slides;

• jupyter-nbconvert converts Jupyter13 notebooks (see Section 1.2.5) to other
formats such as LaTeX, HTML, Markdown, etc.;

• convert (from ImageMagick14) applies various operations on bitmap graphics
(scaling, cropping, conversion between formats);

• graphviz15 and PlantUML16 draws graphs and diagrams;

• python, perl, … can be called to perform tasks that can be expressed more easily
in languages other than R.

The good news is that we are not limited to calling R from the system shell in the in-
teractive or batch mode; see Section 1.2. Our environment serves particularly well as
a glue language, too.

The system2 function invokes an external command.Thecommunicationbetweendif-
ferent programsmay be done using, e.g., intermediate text, JSON, CSV, XML, or any

11 https://en.wikipedia.org/wiki/List_of_Unix_commands
12 https://pandoc.org/
13 https://jupyter.org/
14 https://imagemagick.org/
15 https://graphviz.org/
16 https://plantuml.com/

https://en.wikipedia.org/wiki/List_of_Unix_commands
https://en.wikipedia.org/wiki/List_of_Unix_commands
https://pandoc.org/
https://jupyter.org/
https://imagemagick.org/
https://graphviz.org/
https://plantuml.com/

126 I DEEP

other files. The stdin, stdout, and stderr arguments control the redirection of the
standard I/O streams.

system2("pandoc", "-s input.md -o output.html")
system2("bash", "-c 'for i in `seq 1 2 10`; do echo $i; done'", stdout=TRUE)
[1] "1" "3" "5" "7" "9"
system2("python3", "-", stdout=TRUE,

input=c(
"import numpy as np",
"print(repr(np.arange(5)))"
))

[1] "array([0, 1, 2, 3, 4])"

On a side note, the current working directory can be read and changed through a call
to getwd and setwd, respectively. By default, it is the directory where the current R
session was started.

Important Relying on system2 assumes that the commands referred to are available
on the target platform.Hence, itmight not be portable unless additional assumptions
aremade, e.g., that a user runs a UNIX-like system and that certain libraries are avail-
able.We strongly recommendGNU/Linux or FreeBSD for both software development
and production use, as they are free, open, developer-friendly, user-loving, reliable,
ethical, and sustainable. Users of other operating systems aremissing out on somany
good features.

7.3.3 Interfacing C, C++, Fortran, Python, Java, etc. (**)
Most standalone data processing algorithms are implemented in compiled, slightly
lower-level programming languages. This usually makes them faster and more re-
usable in other environments. For instance, an industry-standard library might be
written in very portable C, C++, or Fortran and define bindings for easier access from
within R, Python, Julia, etc. It is the case with FFTW, LIBSVM, mlpack, OpenBLAS,
ICU, and GNU GSL, amongst many others. Chapter 14 explains basic ways to refer to
such compiled code.

Also, the rJavapackage can dynamically create JVMobjects and access their fields and
methods. Similarly, reticulate canbeused to access Pythonobjects, including numpy
arrays and pandas data frames (but see also the rpy2 package for Python).

Important Weshouldnot feel obliged touseR inall parts of adataprocessingpipeline.
Some activities can be expressed more naturally in other languages or environments
(e.g., parse raw data and create a SQL database in Python but visualise it in R).

7 FUNCTIONS 127

7.4 Exercises
Exercise 7.12 Answer the following questions.

• What is the result of “{x <- "x"; x <- function(x) x; x(x)}”?

• How to compose a function that returns two objects?

• What is a higher-order function?

• What are the use cases of do.call?

• Why a call to Map is redundant in the expression Map(paste, x, y, z)?

• What is the difference between Map(mean, x, na.rm=TRUE) and Map(mean, x, More-
Args=list(na.rm=TRUE))?

• What do wemean when we write stringx::sprintf?

• How to get access to the vignettes (tutorials, FAQs, etc.) of the data.table and dplyr pack-
ages? Why perhaps 95% of R users would just googleit, and what is suboptimal about this
strategy?

• What is the difference between a source and a binary package?

• How to update the base package?

• How to ensure that we will always run an R session with only specific versions of a set of
packages?

Exercise 7.13 Write a function that computes the Gini index of a vector of positive integers x,
which, assuming 𝑥1 ≤ 𝑥2 ≤ … ≤ 𝑥𝑛, is equal to:

𝐺(𝑥1, … , 𝑥𝑛) =
∑𝑛

𝑖=1(𝑛 − 2𝑖 + 1)𝑥𝑖

(𝑛 − 1) ∑𝑛
𝑖=1 𝑥𝑖

.

Exercise 7.14 Implement a function between(x, a, b) that verifies whether each element
in x is in the [a, b] interval. Return a logical vector of the same length as x. Ensure the function
is correctly vectorised with respect to all the arguments and handles missing data correctly.

Exercise 7.15 Write your version of the strrep function called dup.

dup <- ...to.do...
dup(c("a", "b", "c"), c(1, 3, 5))
[1] "a" "bbb" "ccccc"
dup("a", 1:3)
[1] "a" "aa" "aaa"
dup(c("a", "b", "c"), 4)
[1] "aaaa" "bbbb" "cccc"

Exercise 7.16 Given a list x, generate its sublist with all the elements equal to NULL removed.

128 I DEEP

Exercise 7.17 Implement your version of the sequence function.

Exercise 7.18 Using Map, how can we generate window indexes like below?

[[1]]
[1] 1 2 3
##
[[2]]
[1] 2 3 4
##
[[3]]
[1] 3 4 5
##
[[4]]
[1] 4 5 6

Write a function windows(k, n) that yields index windows of length 𝑘 with elements between
1 and 𝑛 (the above example is for 𝑘 = 3 and 𝑘 = 6).
Exercise 7.19 Write a function to extract all 𝑞-grams, 𝑞 ≥ 1, from a given character vector.
Return a list of character vectors. For example, bigrams (2-grams) in "abcd" are: "ab", "bc",
“cd”`.

Exercise 7.20 Implement a function movstat(f, x, k) that computes, using Map, a given
aggregate f of each 𝑘 consecutive elements in x. For instance:

movstat <- ...to.do...
x <- c(1, 3, 5, 10, 25, -25) # example data
movstat(mean, x, 3) # 3-moving mean
[1] 3.0000 6.0000 13.3333 3.3333
movstat(median, x, 3) # 3-moving median
[1] 3.0000 6.0000 13.3333 3.3333

Exercise 7.21 Recode a character vectorwith a small number of distinct values to a vectorwhere
each unique code is assigned a positive integer from 1 to 𝑘. Here are example calls and the corres-
ponding expected results:

recode <- ...to.do...
recode(c("a", "a", "a", "b", "b"))
[1] 1 1 1 2 2
recode(c("x", "z", "y", "x", "y", "x"))
[1] 1 3 2 1 2 1

Exercise 7.22 Implement a function that returns the number of occurrences of each unique ele-
ment in a given atomic vector. The return value should be a numeric vector equipped with the
names attribute. Hint: use match and tabulate.

count <- ...to.do...
count(c(5, 5, 5, 5, 42, 42, 954))
5 42 954

(continues on next page)

7 FUNCTIONS 129

(continued from previous page)

4 2 1
count(c("x", "z", "y", "x", "y", "x", "w", "x", "x", "y", NA_character_))
w x y z <NA>
1 5 3 1 1

Exercise 7.23 Extend the built-in duplicated function. For each vector element, indicate
which occurrence of a repeated value is it (starting from the beginning of the vector).

duplicatedn <- ...to.do...
duplicatedn(c("a", "a", "a", "b", "b"))
[1] 1 2 3 1 2
duplicatedn(c("x", "z", "y", "x", "y", "x", "w", "x", "x", "y", "z"))
[1] 1 1 1 2 2 3 1 4 5 3 2

Exercise 7.24 Based on a call to Map, implement your version of split that takes two atomic
vectors as arguments. Then, extend it to handle the second argument being a list of the form
list(y1, y2, ...) representing the product of many levels. If the 𝑦s are of different lengths,
apply the recycling rule.

Exercise 7.25 Implement my_unsplit being your version of unsplit. For any x and g of the
same lengths, ensure that my_unsplit(split(x, g), g) is equal to x.

Exercise 7.26 Write a function that takes as arguments: (a) an integer 𝑛, (b) a numeric vector
x of length 𝑘 and no duplicated elements, (c) a vector of probabilities p of length 𝑘. Verify that
𝑝𝑖 ≥ 0 for all 𝑖 and ∑𝑘

𝑖=1 𝑝𝑖 ≃ 1. Based on a random number generator from the uniform
distribution on the unit interval, generate 𝑛 independent realisations of a random variable 𝑋
such that Pr(𝑋 = 𝑥𝑖) = 𝑝𝑖 for 𝑖 = 1, … , 𝑘. To obtain a single value:
1. generate 𝑢 ∈ [0, 1],

2. find𝑚 ∈ {1, … , 𝑘} such that 𝑢 ∈ (∑𝑚−1
𝑗=1 𝑝𝑗, ∑

𝑚
𝑗=1 𝑝𝑗],

3. the result is then 𝑥𝑚.

Exercise 7.27 Write a function that takes as arguments: (a) an increasingly sorted vector x of
length𝑛, (b) any vector y of length𝑛, (c) a vector z of length 𝑘 and elements in [𝑥1, 𝑥𝑛). Let 𝑓 be
the piecewise linear spline that interpolates the points (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛). Return a vector w
of length 𝑘 such that𝑤𝑖 = 𝑓 (𝑧𝑖).
Exercise 7.28 (*) Write functions dpareto, ppareto, qpareto, and rpareto that imple-
ment the functions related to the Pareto distribution; compare Section 2.3.4.

8
Flow of execution

The ifelse and Map functions are potent. However, they allow us to process only the
consecutive elements in a vector. Below we will (finally!) discuss different ways to alter
a program’s control flowmanually, based on some criterion, and to evaluate the same
expression many times, but perhaps on different data. Nevertheless, before proceed-
ing any further, let’s meditate on the fact that we havemanagedwithout them for such
a long time, even though the data processing exercises we solved were far from trivial.

8.1 Conditional evaluation
Life is full of surprises, so it would be nice if we were able to adapt to any future chal-
lenges.The following evaluates a given expression if and only if a logical condition is
true.

if (condition) expression

When performing some other_expression is preferred rather than doing nothing in
the case of the condition’s being false, we can write:

if (condition) expression else other_expression

For instance:

(x <- runif(1)) # to spice things up
[1] 0.28758
if (x > 0.5) cat("head\n") else cat("tail\n")
tail

Many expressions can, of course, be grouped with curly braces, `{`.

if (x > 0.5) {
cat("head\n")
x <- 1

} else { # do not put newline before else!
cat("tail\n")
x <- 0

}
(continues on next page)

132 I DEEP

(continued from previous page)

tail
print(x)
[1] 0

Important At the top level, we should not put a new line before else. Otherwise, we
will get an error like Error: unexpected 'else' in "else". This is because the
interpreter enthusiastically executes the statements read line by line as soon as it re-
gards them as standalone expressions. In this case, we first get an if without else,
and then, separately, a dangling elsewithout the preceding if.

This is not an issuewhen a conditional statement is part of an expression group as the
latter is read in its entirety.

function (x)
{ # opening bracket – start

if (x > 0.5)
cat("head\n")

else # not dandling because {...} is read as a whole
cat("tail\n")

} # closing bracket – expression ends

As an exercise, try removing the curly braces and see what happens.

8.1.1 Return value
`if` is a function (compare Section 9.3). Hence, it has a return value: the result of eval-
uating the conditional expression.

(x <- runif(1))
[1] 0.28758
y <- if (x > 0.5) "head" # no else
print(y)
NULL
y <- if (x > 0.5) "head" else "tail"
print(y)
[1] "tail"

This is particularly useful when a call to `if` is the last expression in a curly brace-
delimited code block that constitutes a function’s body.

mint <- function(x)
{

cond <- (x > 0.5) # could be something more sophisticated
if (cond) # the last expression in the code block

"head" # this can be the return value...
else

(continues on next page)

8 FLOW OF EXECUTION 133

(continued from previous page)

"tail" # or this one, depending on the condition
}

mint(x)
[1] "tail"
unlist(Map(mint, runif(5)))
[1] "tail" "head" "tail" "head" "head"

Example 8.1 Add-on packages can be loaded using requireNamespace. Contrary to lib-
rary, the former does not fail when a package is not available. Also, it does not attach it to the
search path; see Section 16.2.6. Instead, it returns a logical value indicating if the package is
available for use.This can be helpful in situationswhere the availability of some features depends
on the user environment’s configuration:

process_data <- function(x)
{

if (requireNamespace("some_extension_package", quietly=TRUE))
some_extension_package::very_fast_method(x)

else
normal_method(x)

}

8.1.2 Nested ifs
If more than two test cases are possible, i.e., when we need to go beyond either con-
dition or !condition, then we can use the following construct:

if (a) {
expression_a

} else if (b) {
expression_b

} else if (c) {
expression_c

} else {
expression_else

}

This evaluates all conditions a, b, … (in this order) until the first positive case is found
and thenexecutes the correspondingexpression. It isworth stressing that the forego-
ing isnothingelse thanaseriesofnestedif statementsbutwritten inamore readable1
manner:

if (a) {
expression_a

(continues on next page)

1 (*) Somewhat related is the switch function which relies on the lazy evaluation of its arguments
(Chapter 17). However, it can always be replaced by a series of ifs.

134 I DEEP

(continued from previous page)

} else {
if (b) {
expression_b
} else {

if (c) {
expression_c

} else {
expression_else

}
}

}

Exercise 8.2 Write a function named sign that determines if a given numeric value is "pos-
itive", "negative", or "zero".

8.1.3 Condition: Either TRUE or FALSE
if expects acondition that is a single,well-defined logical value, eitherTRUEorFALSE.
Thence, problemsmay arise when this is not the case. First, if the condition is not of
length one, we get an error:

if (c(TRUE, FALSE)) cat("spam\n")
Error in if (c(TRUE, FALSE)) cat("spam\n"): the condition has length > 1
if (logical(0)) cat("bacon\n")
Error in if (logical(0)) cat("bacon\n"): argument is of length zero

We cannot pass a missing value either:

if (NA) cat("ham\n")
Error in if (NA) cat("ham\n"): missing value where TRUE/FALSE needed

Important If we think that we are immune to writing code violating the preceding
constraints, just we wait until the condition becomes a function of data for which
there is no sanity-checking in place.

mint <- function(x)
if (x > 0.5) "head" else "tail"

mint(0.25)
[1] "tail"
mint(runif(5))
Error in if (x > 0.5) "head" else "tail": the condition has length > 1
mint(log(rnorm(1))) # not obvious, error raised occasionally
Warning in log(rnorm(1)): NaNs produced
Error in if (x > 0.5) "head" else "tail": missing value where TRUE/FALSE
needed

8 FLOW OF EXECUTION 135

Chapter 9 will be concerned with ensuring input data integrity so that such cases will
either fail gracefully or succeed bombastically. In the above example, we should prob-
ably verify that x is a single finite numeric value. Alternatively, wemight need to apply
ifelse, all, or any.

Interestingly, conditions other that logical are coerced:

x <- 1:5
if (length(x)) # i.e., length(x) != 0, but way less readable

cat("length is not zero\n")
length is not zero

Recall that coercion of numeric to logical yields FALSE if and only if the original value
is zero.

8.1.4 Short-circuit evaluation
Especially for formulating logical conditions in if and while (see below), we have the
scalar `||` (alternative) and `&&` (conjunction) operators.

FALSE || TRUE
[1] TRUE
NA || TRUE
[1] TRUE

Contrary to their vectorised counterparts (`|` and `&`), the scalar operators are lazy
(Chapter 17) in the sense that they evaluate the first operand and then determine if the
computing of the secondone is necessary (because, e.g., FALSE && whatever is always
FALSE anyway).Therefore,

if (a && b)
expression

is equivalent to:

if (a) {
if (b) { # compute b only if a is TRUE

expression
}

}

and

if (a || b)
expression

corresponds to:

136 I DEEP

if (a) {
expression

} else if (b) { # compute b only if a is FALSE
expression

}

For instance, “is.vector(x) && length(x) > 0 && x[[1]] > 0” is a risk-free
test. It takes into account that x[[1]] has the desired meaning only for objects that
are nonempty vectors.

Somemore examples:

{cat("spam"); FALSE} || {cat("ham"); TRUE} || {cat("cherries"); FALSE}
spamham
[1] TRUE
{cat("spam"); TRUE} && {cat("ham"); FALSE} && {cat("cherries"); TRUE}
spamham
[1] FALSE

Recall that the expressionswithin the curly braces are evaluated one after another and
that the result is determined by the last value in the series.

Exercise 8.3 Study the source code of isTRUE and isFALSE and determine if these functions
could be useful in formulating the conditions within the if expressions.

8.2 Exception handling
Exceptions are exceptional, but theymay happen and break stuff. For instance, we are
in deep skit when the internet connection drops while we try to download a file, an
optimisation algorithm fails to converge, or:

read.csv("/path/to/a/file/that/does/not/exist")
Warning in file(file, "rt"): cannot open file '/path/to/a/file/that/does/
not/exist': No such file or directory
Error in file(file, "rt"): cannot open the connection

Three types of conditions are frequently observed:

• errors stop the flow of execution,

• warnings are not critical, but can be turned into errors (see warn in option),

• messages transmit diagnostic information.

They can be manually triggered using the stop, warning, and message functions.

Errors (butwarnings too) canbehandled bymeans of the tryCatch function, amongst
others.

8 FLOW OF EXECUTION 137

tryCatch({ # block of expressions to execute, until an error occurs
cat("a...\n")
stop("b!") # error – breaks the linear control flow
cat("c?\n")

},
error = function(e) { # executed immediately on an error

cat(sprintf("[error] %s\n", e[["message"]]))
},
finally = { # always executed at the end, regardless of error occurrence

cat("d.\n")
}

)
a...
[error] b!
d.

The two other conditions can be ignored by calling suppressWarnings and suppress-
Messages.

log(-1)
Warning in log(-1): NaNs produced
[1] NaN
suppressWarnings(log(-1)) # yeah, yeah, we know what we're doing
[1] NaN

Exercise 8.4 At the time of writing this book, when the data.table package is attached, it
emits a message. Call suppressMessages to silence it. Note that consecutive calls to library
do not reload an already loaded package.Therefore, the message will only be seen once per R ses-
sion.

Related functions include stopifnot discussed in Section 9.1 and on.exitmentioned
in Section 17.4; see Section 9.2.4 for some code debugging tips.

8.3 Repeated evaluation
And now for something completely different… time for the elephant in the room!

We have been able to manage without loops so far (and will be quite all right in the
second part of the book too). This is because many data processing tasks can be writ-
ten in terms of vectorised operations such as `+`, sqrt, sum, `[`, Map, and Reduce. Of-
tentimes, compared to their loop-based counterparts, they are more readable and ef-
ficient. We will explore this in the coming exercises.

However, at times, using an explicit while or for loop might be the only natural way

138 I DEEP

to solve a problem, for instance, when processing chunks of data streams. Also, an ex-
plicitly “looped” algorithmmay occasionally have better2 time or memory complexity.

8.3.1 while

if considers a logical condition provided and determines whether to execute a given
statement. On the other hand:

while (condition) # single TRUE or FALSE, as in `if`
expression

evaluates a given expression as long as the logical condition is true. Therefore, it is
advisable to make the condition dependent on some variable that the expression
canmodify.

i <- 1
while (i <= 3) {

cat(sprintf("%d, ", i))
i <- i + 1

}
1, 2, 3,

Nested loops are possible too:

i <- 1
while (i <= 2) {

j <- 1
while (j <= 3) {

cat(sprintf("%d %d, ", i, j))
j <- j + 1

}
cat("\n")
i <- i + 1

}
1 1, 1 2, 1 3,
2 1, 2 2, 2 3,

Exercise 8.5 Implement a simple linear congruential pseudorandom number generator that,
given some seed𝑋0 ∈ [0, 𝑚), outputs a sequence (𝑋1, 𝑋2, …) defined by:

𝑋𝑖 = (𝑎𝑋𝑖−1 + 𝑐) mod 𝑚,

with, e.g., 𝑎 = 75, 𝑐 = 74, and𝑚 = 216 + 1 (here,mod is the division remainder, `%%`).This
generator has poor statistical properties and its use in practice is discouraged. In particular, after
a rather small number of iterations 𝑘, we will find a cycle such that𝑋𝑘 = 𝑋1, 𝑋𝑘+1 = 𝑋2, ….

2 In such a case, rewriting it in C or C++might be beneficial; see Chapter 14.

8 FLOW OF EXECUTION 139

8.3.2 for

The for-each loop:

for (name in vector)
expression

takes each element, from the beginning to the end, in a given vector, assigns it some
name, and evaluates the expression. For example:

fridge <- c("spam", "spam", "bacon", "eggs")
for (food in fridge)

cat(sprintf("%s, ", food))
spam, spam, bacon, eggs,

Another example:

for (i in 1:length(fridge)) # better: seq_along(fridge); see below
cat(sprintf("%s, ", fridge[i]))

spam, spam, bacon, eggs,

Onemore:

for (i in 1:2) {
for (j in 1:3)

cat(sprintf("%d %d, ", i, j))
cat("\n")

}
1 1, 1 2, 1 3,
2 1, 2 2, 2 3,

The iterator still exists after the loop’s watch has ended:

print(i)
[1] 2
print(j)
[1] 3

Important Writing:

for (i in 1:length(x))
print(x[i])

is reckless. If x is an empty vector, then we will observe undesired behaviour because
we ask to iterate over 1:0:

x <- logical(0)
for (i in 1:length(x))

print(x[i])

(continues on next page)

140 I DEEP

(continued from previous page)

[1] NA
logical(0)

Recall from Chapter 5 that x[1] tries to access an out-of-bounds element here, and
x[0] returnsnothing.Wegenerally suggest replacing1:length(x)withseq_along(x)
or seq_len(length(x))wherever possible.

Note The precedingmodel for loop is roughly equivalent to:

name <- NULL
tmp_vector <- vector
tmp_iter <- 1
while (tmp_iter <= length(tmp_vector)) {

name <- tmp_vector[[tmp_iter]]
expression
tmp_iter <- tmp_iter + 1

}

Note that the tmp_vector is determined before the loop itself. Hence, any changes to
the vectorwill not influence the execution flow. Furthermore, due to the use of `[[`,
the loop can also be applied on lists.

Example 8.6 Let x be a list and f be a function.The following code generates the same result as
Map(f, x):

n <- length(x)
ret <- vector("list", n) # a new list of length `n`
for (i in seq_len(n))

ret[[i]] <- f(x[[i]])

Example 8.7 Let x and y be two lists and f be a function. Here is the most basic version of
Map(f, x, y).

nx <- length(x)
ny <- length(y)
n <- max(nx, ny)
ret <- vector("list", n)
for (i in seq_len(n))

ret[[i]] <- f(x[[((i-1)%%nx)+1]], y[[((i-1)%%ny)+1]])

Note thatxandymight be of different lengths. Feel free to upgrade this code by adding awarning
like the longer argument is not a multiple of the length of the shorter one. Also, rewrite
it without using themodulo operator, `%%`.

8 FLOW OF EXECUTION 141

8.3.3 break and next
break can be used to escape the current loop. next skips the remaining expressions
and advances to the next iteration (where the testing of the logical condition occurs).
Here is a rather random example:

x <- c(10, 0.03, 0.04, 1, 0.001, 0.05)
s <- 0
for (e in x) {

if (e > 0.1) # skip the current element if it is greater than 0.1
next

print(e)
if (e < 0.01) # stop at the first element less than 0.01

break

s <- s + e
}
[1] 0.03
[1] 0.04
[1] 0.001
print(s)
[1] 0.07

We have used a frequently occurring design pattern:

for (e in x) {
if (condition)

next

many_statements...
}

which is equivalent to:

for (e in x) {
if (!condition) {

many_statements...
}

}

but which avoids introducing a nested block of expressions.

Note (*) There is a third loop type,

repeat
expression

which is a shorthand for:

142 I DEEP

while (TRUE)
expression

i.e., it is a possibly infinite loop. Such constructs are invaluable when expressing situ-
ations like repeat-something-until-success, e.g., whenwewant to execute a command
at least once.

i <- 1
repeat { # while (TRUE)

simulate dice casting until we throw "1"
if (runif(1) < 1/6) break # repeat until this
i <- i+1 # how many times until success

}
print(i)
[1] 6

Exercise 8.8 What is wrong with the following code?

j <- 1
while (j <= 10) {

if (j %% 2 == 0) next
print(j)
j <- j + 1

}

Exercise 8.9 What about this one?

j <- 1
while (j <= 10);

j <- j + 1

8.3.4 return

return, when called fromwithin a function, immediately yields a specified value and
goes back to the caller. For example, here is a simple recursive function that flattens a
given list:

my_unlist <- function(x)
{

if (is.atomic(x))
return(x)

so if we are here, x is definitely not atomic
out <- NULL
for (e in x)

out <- c(out, my_unlist(e))

(continues on next page)

8 FLOW OF EXECUTION 143

(continued from previous page)

out # or return(out); not necessary as it's the last expression
}

my_unlist(list(list(list(1, 2), 3), list(4, list(5, list(6, 7:10)))))
[1] 1 2 3 4 5 6 7 8 9 10

return is a function: the round brackets are obligatory.

8.3.5 Time and space complexity of algorithms (*)
Analysis of algorithms can give us a rough estimate of their run time or memory con-
sumption as a function of the input problem size, especially for big data (e.g., [15, 44]).
In scientific computing and data science, we often deal with vectors (sequences) or
matrices/data frames (tabular data). Therefore, we might be interested in determin-
ing howmany primitive operations need to be performed as a function of their length 𝑛
or the number of rows 𝑛 and columns𝑚, respectively.
The𝑂 (Big-Oh)notation canexpress theupperbounds for time/resource consumption
in asymptotic cases. For instance,we say that the time complexity is𝑂(𝑛2), if for large
𝑛, the number of operations to perform ormemory cells to use will be proportional to
at most the square of the vector size (more precisely, there exists 𝑚 and 𝐶 > 0 such
that for all 𝑛 > 𝑚, the number of operations is≤ 𝐶𝑛2).

Therefore, if we have two algorithms that solve the same task, one that has𝑂(𝑛2) time
complexity, and other of 𝑂(𝑛3), it is better to choose the former. For large problem
sizes, we expect it to be faster. Moreover, whether time grows proportionally to log 𝑛,
√𝑛, 𝑛, 𝑛 log𝑛, 𝑛2, 𝑛3, or 2𝑛, can be informative in predicting how big the data can be
if we have a fixed deadline or not enough space left on the disk.

Exercise 8.10 The hclust function determines a hierarchical clustering of a dataset. It is fed
with an object that stores the distance between all the pairs of input points.There are𝑛(𝑛−1)/2
(i.e.,𝑂(𝑛2)) unique point pairs for any given𝑛.Onenumeric scalar (double type) takes 8 bytes
of storage. If you have 16 GiB of RAM, what is the largest dataset that you can process on your
machine using this function?

Oftentimes, we can learn about the time or memory complexity of the functions we
use from their documentation; see, e.g., help("findInterval").

Example 8.11 Acourse indata structures inalgorithms,which this one isnot,will giveusplenty
of opportunities to implementmany algorithms ourselves.This way, we can gain a lot of insights
and intuitions. For instance, here is an𝑂(𝑛)-time algorithm:

for (i in seq_len(n))
expression

and this one runs in𝑂(𝑛2) time:

for (i in seq_len(n))

(continues on next page)

144 I DEEP

(continued from previous page)

for (j in seq_len(n))
expression

as long as, of course, the expression is rather primitive (e.g., operations on scalar variables).

R is a very expressive language.Hence, complex and lengthy operations can look pretty innocent.
After all, it is a glue language for rapid prototyping. For example:

for (i in seq_len(n))
for (j in seq_len(n))

z <- z + x[[i]] + y[[j]]

can be seen as running in𝑂(𝑛3) time if each element in the lists x and y as well as z itself are
atomic vectors of length 𝑛. Similarly,

Map(mean, x)

is𝑂(𝑛2) if x is a list of 𝑛 atomic vectors, each of length 𝑛.

Note A quite common statistical scenario involves generating a data buffer of a fixed
size:

ret <- c() # start with an empty vector
for (i in seq_len(n))

ret[[i]] <- generate_data(i) # here: ret[[length(ret)+1]] <- ...

Thisnotation, however, involves growing the ret array in each iteration. Luckily, since
R version 3.4.0, each such size extension has amortised 𝑂(1) time as some more
memory is internally reserved for its prospective growth (dynamic arrays; see, e.g.,
Chapter 17 of [15]).

However, it is better to preallocate the output vector of the desired final size. We can
construct vectors of specific lengths and types in an efficient way (more efficient than
with rep) by calling:

numeric(3)
[1] 0 0 0
numeric(0)
numeric(0)
logical(5)
[1] FALSE FALSE FALSE FALSE FALSE
character(2)
[1] "" ""
vector("numeric", 8)
[1] 0 0 0 0 0 0 0 0
vector("list", 2)
[[1]]
NULL

(continues on next page)

8 FLOW OF EXECUTION 145

(continued from previous page)

##
[[2]]
NULL

Note Not all data fit intomemory, but it does notmean thatwe should start installing
Apache Hadoop and Spark immediately. Some datasets can be processed chunk by
chunk. R enables data stream handling (some can be of infinite length) through file
connections. For example:

f <- file("https://github.com/gagolews/teaching-data/raw/master/README.md",
open="r") # a big file, the biggest file ever

i <- 0
while (TRUE) {

few_lines <- readLines(f, n=4) # reads only four lines at a time
if (length(few_lines) == 0) break
i <- i + length(few_lines)

}
close(f)
print(i) # the number of lines
[1] 90

Many functions support reading from/writing to already established connections
of different types, e.g., file, gzfile, textConnection, batch by batch. A common
scenario involves reading a very large CSV, JSON, or XML file only by thousands of
lines/records at a time, parsing and cleansing them, and exporting them to SQL data-
bases (which we will exercise in Chapter 12).

8.4 Exercises
From now on, we must stay alert. Many, if not all, of the undermentioned tasks, can
still be implemented without the explicit use of the R loops but based only on the op-
erations covered in the previous chapters. If this is the case, try composing both the
looped and loop-free versions. Use proc.time to compare their run times3.

Exercise 8.12 Answer the following questions.

• Let x be a numeric vector.When does “if(x > 0) ...” yield awarning?When does it give
an error? How to guard ourselves against them?

• What is a dangling else?

3 It might be the case that a for-based solution is faster (e.g., for larger objects) because of the use of a
more efficient algorithm. Such cases will benefit from a rewrite in C or C++ (Chapter 14).

146 I DEEP

• What happens if you put if as the last expression in a curly braces block within a function’s
body?

• Why do we say that `&&` and `||` are lazy?What are their use cases?

• What is the difference between `&&` and `&`?

• Can while always be replaced with for?What about the other way around?

• What is wrong with “return (1+2)*3”?

Exercise 8.13 Verify which of the following can be safely used as logical conditions in if state-
ments. If that is not the case for all x, y, …, determine the additional conditions that must be
imposed to make them valid.

• x == 0,

• x[y] > 0,

• any(x>0),

• match(x, y),

• any(x %in% y).

Exercise 8.14 What can gowrong in the following code chunk, depending on the type and form
of x? Consider as many scenarios as possible.

count <- 0
for (i in 1:length(x))

if (x[i] > 0)
count <- count + 1

Exercise 8.15 Implement shift_left(x, n) and shift_right(x, n). The former func-
tion gets rid of the first 𝑛 observations in x and adds 𝑛missing values at the end of the resulting
vector, e.g., shift_left(c(1, 2, 3, 4, 5), 2) is c(3, 4, 5, NA, NA). On the other
hand, shift_right(c(1, 2, 3, 4, 5), 2) is c(NA, NA, 1, 2, 3).

Exercise 8.16 Implement your version of diff.

Exercise 8.17 Write a function that determines the longest ascending trend in a given numeric
vector, i.e., the length of the longest subsequence of consecutive increasing elements. For example,
the input c(1, 2, 3, 2, 1, 2, 3, 4, 3) should yield 4.

Exercise 8.18 Implement the functions that round down and round up each element in a nu-
meric vector to a number of decimal digits.

This concludes the first part of this magnificent book.

Part II

Deeper

9
Designing functions

InChapter 7,we learnt how to compose simple functions.This skill is vital to enforcing
the good development practice of avoiding code repetition: running the same com-
mand sequence on different data.

The current chapter is devoted to designing reusable methods so that they are easier
to use, test, and maintain. We also provide more technical details about functions.
Theywere not of the highest importance during our first exposure to this topic but are
crucial to our better understanding of how R works.

9.1 Managing data flow
A function, most of the time, can and should be treated as a black box. Its callers do
not have to care what it hides inside. After all, they are supposed to use it. Given some
inputs, they expect well-defined outputs that are explained in detail in the function’s
manual.

9.1.1 Checking input data integrity and argument handling
A function takes R objects of any kind as arguments, but it does not mean feeding it
with everything is healthy for its guts. When designing functions, it is best to handle
the inputs in a manner similar to base R’s behaviour. This will make our contribu-
tions easier to work with. Lamentably, base functions frequently do not process ar-
guments of a similar kind fully consistently. Such variability might be due to many
reasons and, in essence, is not necessarily bad. Usually, theremight bemany possible
behaviours and choosing one over another would make a few users unhappy anyway.
Somechoicesmight not be optimal, but they are for historical compatibility (e.g.,with
S). Of course, itmight also happen that something is poorly designed or there is a bug
(but the likelihood is low).This is whywe should rather keep our vocabulary restricted.
Even if there are exceptions to the general rules, with fewer functions, they are easier
to remember. We advocate for suchminimalism in this book.

Consider the following case study, illustrating that even the extremely simple scenario
dealing with a single positive integer is not necessarily straightforward.

Exercise 9.1 Inmathematical notation, we usually denote the number of objects in a collection
by the famous “𝑛”. It is implicitly assumed that such𝑛 is a single natural number (albeitwhether

150 II DEEPER

this includes 0 or not should be specified at some point).The functions runif, sample, seq, rep,
strrep, and class::knn take it as arguments. Nonetheless, nothing stops us from trying to
challenge them by passing:

• 2.5, -1, 0, 1-1e-16 (non-positive numbers, non-integers);

• NA_real_, Inf (not finite);

• 1:5 (not of length 1; after all, there are no scalars in R);

• numeric(0) (an empty vector);

• TRUE, NA, c(TRUE, FALSE, NA), "1", c("1", "2", "3") (non-numeric, but coercible
to);

• list(1), list(1, 2, 3), list(1:3, 4) (non-atomic);

• "Spanish Inquisition" (unexpected nonsense);

• as.matrix(1), factor(7), factor(c(3, 4, 2, 3)), etc. (compound types;
Chapter 10).

Read the aforementioned functions’ reference manuals and call them on different inputs. Notice
how differently they handle such atypical arguments.

Sometimes we will rely on other functions to check data integrity for us.

Example 9.2 Consider a function that generates 𝑛 pseudorandom numbers from the unit in-
terval rounded to 𝑑 decimal digits.We strongly believe, or at least hope (the good faith and high
competence assumption), that its author knewwhat he was doing when he wrote:

round_rand <- function(n, d)
{

x <- runif(n) # runif will check if `n` makes sense
round(x, d) # round will determine the appropriateness of `d`

}

What constitutes correct 𝑛 and 𝑑 and how the function behaves when not provided with positive
integers is determined by the two underlying functions, runif and round:

round_rand(4, 1) # the expected use case
[1] 0.3 0.8 0.4 0.9
round_rand(4.8, 1.9) # 4, 2
[1] 0.94 0.05 0.53 0.89
round_rand(4, NA)
[1] NA NA NA NA
round_rand(0, 1)
numeric(0)

Some design choices can be defended if they are well thought out and adequately doc-
umented. Certain programmers will opt for high uniformity/compatibility across nu-
merous tools, as there are cases where diversity does more good than harm.

9 DESIGNING FUNCTIONS 151

Our functionsmight become part of amore complicated data flow pipeline. Let’s con-
sider what happens when another procedure generates a value that we did not expect
(due to a bug or because we did not study its manual). The problem arises when this
unthinkable value is passed to our function. In our case, this would correspond to the
said 𝑛’s or 𝑑’s being determined programmatically.
Example 9.3 Continuing the previous example, the followingmight be somewhat challenging
with regard to our being flexible and open-minded:

round_rand(c(100, 42, 63, 30), 1) # n=length(c(...))
[1] 0.7 0.6 0.1 0.9
round_rand("4", 1) # n=as.numeric("4")
[1] 0.2 0.0 0.3 1.0

Sure, it is convenient. Nevertheless, it might lead to problems that are hard to diagnose.

Also, note the not so informative error messages in cases like:

round_rand(NA, 1)
Error in runif(n): invalid arguments
round_rand(4, "1")
Error in round(x, d): non-numeric argument to mathematical function

Defensive design strategies are always welcome, especially if they lead to constructive
error messages.

Important stopifnot gives a convenient means to assert the enjoyment of our ex-
pectations about a function’s arguments (or intermediate values). A call to stopi-
fnot(cond1, cond2, ...) is more or less equivalent to:

if (!(is.logical(cond1) && !any(is.na(cond1)) && all(cond1)))
stop("`cond1` are not all TRUE")

if (!(is.logical(cond2) && !any(is.na(cond2)) && all(cond2)))
stop("`cond2` are not all TRUE")

...

Thus, if all the elements in the given logical vectors are TRUE, nothing happens.We can
move on with certainty.

Example 9.4 We can rewrite the preceding function as:

round_rand2 <- function(n, d)
{

stopifnot(
is.numeric(n), length(n) == 1,
is.finite(n), n > 0, n == floor(n),
is.numeric(d), length(d) == 1,
is.finite(d), d > 0, d == floor(d)

(continues on next page)

152 II DEEPER

(continued from previous page)

)
x <- runif(n)
round(x, d)

}

round_rand2(5, 1)
[1] 0.7 0.7 0.5 0.6 0.3
round_rand2(5.4, 1)
Error in round_rand2(5.4, 1): n == floor(n) is not TRUE
round_rand2(5, "1")
Error in round_rand2(5, "1"): is.numeric(d) is not TRUE

It is the strictest test for “a single positive integer” possible. In the case of any violation of the un-
derlying condition, we get a very informative error message.

Example 9.5 Atother times,wemightbe interested inamore liberal yet still foolproof argument
checking like:

if (!is.numeric(n))
n <- as.numeric(n)

if (length(n) > 1) {
warning("only the first element will be used")
n <- n[1]

}
n <- floor(n)
stopifnot(is.finite(n), n > 0)

This way, "4" and c(4.9, 100)will all be accepted as 41.

We see that there is always a tension between being generous/flexible and pre-
cise/restrictive. Also, because of their particular use cases, for certain functions, it will
be better to behave differently from the others. Excessive uniformity is as bad as chaos.
We are always expected to rely on common sense. Let’s not be boring bureaucrats.

Still, it is our duty to be explicit about all the assumptions we make or exceptions we
tolerate (by writing comprehensive documentation; see Section 9.2.2).

Note (*) Example exercises related to improving the consistency of base R’s argument
handling in different domains include the vctrs and stringx packages. Can these
contributions be justified?

Exercise 9.6 Reflect on how you would respond to miscellaneous boundary cases in the follow-
ing scenarios (and how base R and other packages or languages you know deal with them):

• a vectorisedmathematical function (empty vector? non-numeric input?what if it is equipped
with the names attribute? what if it has other ones?);

1We rely on the S3 generics is.numeric and as.numeric here; see Section 10.2.3.

9 DESIGNING FUNCTIONS 153

• an aggregation function (what about missing values? empty vector?);

• a function vectorised with regard to two arguments (elementwise vectorisation? recycling
rule? only scalar vs vector, or vector vs vector of the same length allowed? what if one argu-
ment is a row vector and the other is a column vector?);

• a function vectorised with respect to all arguments (really all? maybe some exceptions are
necessary?);

• a function vectorisedwith respect to the first argument but not the second (why such a restric-
tion? when?).

Find a few functions that match each case.

9.1.2 Putting outputs into context
Our functions do not exist in a vacuum. We should put them into a much broader
context: how can they be combined with other tools? As a general rule, we ought to
generate outputs of a predictable kind.Thisway,we can easily deducewhatwill happen
in the code chunks that utilise them.

Example 9.7 Some base R functions do not adhere to this rule for the sake of (questionable)
users’ convenience.Wewill meet a few of them in Chapter 11 and Chapter 12. In particular, sap-
ply and the underlying simplify2array, can return a list, an atomic vector, or amatrix.

simplify2array(list(1, 3:4)) # list
[[1]]
[1] 1
##
[[2]]
[1] 3 4
simplify2array(list(1, 3)) # vector
[1] 1 3
simplify2array(list(1:2, 3:4)) # matrix
[,1] [,2]
[1,] 1 3
[2,] 2 4

Further, the index operator with drop=TRUE, which is the default, may output an atomic vector.
However, it may as well yield amatrix or a data frame.

(A <- matrix(1:6, nrow=3)) # an example matrix
[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
A[1,] # vector
[1] 1 4
A[1:2,] # matrix
[,1] [,2]

(continues on next page)

154 II DEEPER

(continued from previous page)

[1,] 1 4
[2,] 2 5
A[1, , drop=FALSE] # matrix with 1 row
[,1] [,2]
[1,] 1 4

Weproclaim that, if there aremany options, the default behaviour should be to return
an object of the most generic kind possible, even when it is not the most convenient
form.Then, either:

• we equip the function with a further argument which must be explicitly set if we
reallywant to simplify the output, or

• we ask the user to call a simplifier explicitly after the function call; in this case, if
the simplifier cannot neaten the object, it should probably fail by issuing an error
or at least try to apply somebrute force solution (e.g., “fill thegaps” somehow itself,
preferably with a warning).

For instance:

as.numeric(A[1:2,]) # always returns a vector
[1] 1 2 4 5
stringi::stri_list2matrix(list(1, 3:4)) # fills the gaps with NAs
[,1] [,2]
[1,] "1" "3"
[2,] NA "4"

Ideally, a function is expected to perform one (and only one) well-defined task. If it
tends to generate objects of different kinds, depending on the arguments provided, it
might be better to compose two or more separate procedures instead.

Exercise 9.8 Functions suchasrep,seq, andsampledonot performa single task.Ordo they?

Note (*) In a purely functional programming language, we can assume the so-called
referential transparency: a call to a pure function can always be replaced with the value it
generates. If this is true, then for the same set of argument values, the output is always
the same. Furthermore, there are no side effects. In R, it is not exactly the case:

• a call can introduce/modify/delete variables inother environments (seeChapter 16),
e.g., the state of the random number generator,

• due to lazy evaluation, functions are free to interpret the argument forms (passed
expressions, i.e., not only: values) however they like; see Section 9.4.7, Section 12.3.9,
and Section 17.5,

• printing, plotting, file writing, and database access have apparent consequences
with regard to the state of certain external devices or resources.

9 DESIGNING FUNCTIONS 155

Important Each function must return a value. However, in several instances (e.g.,
plotting, printing) this does not necessarily make sense. In such a case, we may con-
sider returning invisible(NULL), a NULL whose first printing will be suppressed.
Compare the following:

f <- function() invisible(NULL)
f() # printing suppressed
x <- f() # by the way, assignment also returns an invisible value
print(x) # no longer invisible
NULL

9.2 Organising andmaintaining functions
9.2.1 Function libraries
Definitions of frequently-used functions or datasets can be emplaced in separate
source files (.R extension) for further reference. Such code banks can be executed by
calling:

source("path_to_file.R")

Exercise 9.9 Create a source file (script) named mylib.R, where you define a function called
nlargest which returns a few largest elements in a given atomic vector. From within another
script, call source("mylib.R"); note that relative paths refer to the current working directory
(Section 2.1.6).Then, write a few lines of code where you test nlargest on some example inputs.

9.2.2 Writing R packages (*)
When a function library grows substantially, there is a need for equipping its contents
with the relevant help pages, or we wish to rely on compiled code, turning it into an R
package might be worth considering.

Important Packages can be written only for ourselves or a small team’s purpose. We
do not have to publish themonCRAN2. Havemercy on the busy CRANmaintainers and
donot contribute to the information overloadunlesswehave comeupwith something

2 Always consult the CRANRepository Policy at https://cran.r-project.org/web/packages/policies.html.

https://cran.r-project.org/web/packages/policies.html

156 II DEEPER

potentially of service3 forotherRusers.Packages canalwaysbehostedonand installed
from GitLab or GitHub.

Package structure (*)

A source package is a directory containing the following special files and subdirectories:

• DESCRIPTION – a text file that gives the name of the project, its version, authors,
dependencies on other packages, license, etc.;

• NAMESPACE – a text file containing directives stating which objects are available to
the package users and which names are imported from other packages;

• R–adirectorywithR scripts (.Rfiles),whichdefine, e.g., functions, example data-
sets, etc.;

• man – a directory with R documentation files (.Rd), describing at least all the ex-
ported objects (Section 9.2.2);

• src – optional; compiled code (Chapter 14);

• tests – optional; tests to run on the package check (Section 9.2.4).

See Section 1 of Writing R Extensions [66] for more details and other options. We do
not need to repeat the information from the official manual as all readers can read it
themselves.

Exercise 9.10 Inspect the source code of the examplepackageavailable for download fromhttps:
//github.com/gagolews/rpackagedemo.

Building and installing (*)

Recall from Section 7.3.1 that a source package can be built and installed by calling:

install.packages("pkg_directory", repos=NULL, type="source")

Then it canbeusedas anyotherRpackage (Section 7.3.1). Inparticular, it canbe loaded
and attached to the search path (Section 16.2.6) via a call to:

library("pkg")

All the exported objects mentioned in its NAMESPACE file are now available to the user;
see also Section 16.3.5.

Exercise 9.11 Create a package mypkgwith the solutions to the exercises listed in the previous
chapter.When in doubt, refer to the official manual [66].

3 Let’smake it less about ourselves andmore about the community.Developing expertise in any complex
area takes years of hard work. In the meantime, we can help open-source projects by spreading the good
word about them, submitting bug fixes, extending documentation, supporting other users through their
journey, etc.

https://github.com/gagolews/rpackagedemo
https://github.com/gagolews/rpackagedemo

9 DESIGNING FUNCTIONS 157

Note (*)The building and installing of packages also be done from the command line:

R CMD build pkg_directory # creates a distributable source tarball (.tar.gz)
R CMD INSTALL pkg-version.tar.gz
R CMD INSTALL --build pkg_directory

Also, some users may benefit from authoring Makefiles that help automate the pro-
cesses of building, testing, checking, etc.

Documenting (*)

Documenting functions and commenting code thoroughly is critical, even if we just
write for ourselves.Most programmers sooner or laterwill notice that theyfind it hard
to determine what a piece of code is doing after they took a break from it. In some
sense, we always communicate with external audiences, which includes our future
selves.

The help system is one of the stronger assets of the R environment. By far, we most
likely have interacted withmany documentation pages and got a general idea of what
constitutes an informative documentation piece.

From the technical side, documentation (.Rd) files are located in the man subdirectory
of a source package. All exported objects (e.g., functions) should be described clearly.
Additional topics can be covered, too. Documentation files use a LaTeX-like syntax,
which looks obscure to anuntrained eye.The relevant commands are explained in very
detail in Section 2 of [66]. During the package installation, the .Rd files are converted
to various output formats, e.g., HTML or plain text, and displayed on a call to thewell-
known help function.

Note The process of writing .Rd files by hand might be tedious, especially keeping
track of the changes to the \usage and \arguments commands. Rarely do we recom-
mendusing external packages for baseR facilities are usually sufficient. But roxygen2
might beworth a try because itmakes the developers’ lives easier.Most importantly, it
allows the documentation to be specified alongside the functions’ definitions, which
is muchmore natural.

Exercise 9.12 Add a fewmanual pages to your example R package.

9.2.3 Writing standalone programs (**)
Section 7.3.2 mentioned how to call external programs using system2. On UNIX-like
operating systems, it is easy to turn our R scripts into standalone tools that can be
run from the terminal: we have already touched upon this topic in Section 1.2.3. As
an addition, the commandArgs function returns the list of arguments passed from the
command line to our script in the form of a character vector. What we do with them

158 II DEEPER

is up to us. Moreover, q can terminate a script, yielding any integer return code. By
convention, anything other than 0 indicates an error.

Example 9.13 Say we have the following script named testfile in the current directory:

#!/bin/env -S Rscript --vanilla

argv <- commandArgs(trailingOnly=TRUE)
cat("commandArgs:\n")
print(argv)

if (length(argv) == 0) {
cat("Usage: testfiles file1 file2 ...\n")
q(save="no", status=1) # exit with code 1

}

if (!all(file.exists(argv))) {
cat("Some files do not exist.\n")
q(save="no", status=2) # exit with code 2

}

cat("All files exist.\n")

exits with code 0 (success)

Example interactions with this program from aUNIX-like shell (bash):

chmod u+x testfiles # add permission to execute
./testfiles
commandArgs:
character(0)
Usage: testfiles file1 file2 ...
./testfiles spanish_inquisition
commandArgs:
[1] "spanish_inquisition"
Some files do not exist.
./testfiles spam bacon eggs spam
commandArgs:
[1] "spam" "bacon" "eggs" "spam"
All files exist.

stdin, stdout, and stderr represent the always-open connections mapped to the
standard input (“keyboard”), as well as the normal and error output.They can be read
from or written to using functions such as scan or cat.

During run time, we can redirect stdout and stderr to different files or even strings
using sink.

9 DESIGNING FUNCTIONS 159

9.2.4 Assuring quality code
Below we mention some good development practices related to maintaining quality
code.This is an important topic, but writing about them is tedious to the same extent
that reading about them is dull. It is the more artistic part of software engineering
as such heuristics are learnt best by observing and mimicking what more skilled pro-
grammers are doing (the coming exercises aim tomake up for our not having them at
hand at the moment).

Managing changes andworking collaboratively

We recommend employing a source code version control system, such as git, to keep
track of the changes made to the software.

Note It is worth investing time and effort to learn how to use git from the command
line; see https://git-scm.com/doc.

There are a few hosting providers for git repositories, with GitLab and GitHub being
particularly popular among open-source software developers. They support working
collaboratively on the projects and are equipped with additional tools for reporting
bugs, suggesting feature requests, etc.

Exercise 9.14 Find source code of your favouriteRpackages or other projects.Explore the corres-
ponding repositories, feature trackers, wikis, discussion boards, etc. Each community is different
and is governed by varied, sometimes contrasting guidelines; after all, we come from all corners
of the world.

Test-driven development and continuous integration

It is often hygienic to include some principles of test-driven development.

Exercise 9.15 Assume that, for some reason,wewere asked to compose a function to compute the
root mean square (quadratic mean) of a given numeric vector. Before implementing the actual
routine, we need to reflect upon what we want to achieve, especially howwe want our function to
behave in certain boundary cases.

stopifnot gives simple means to ensure that a given assertion is fulfilled. If that is the case, it
will move forward without fuss. Say we have come up with the following set of expectations:

stopifnot(all.equal(rms(1), 1))
stopifnot(all.equal(rms(1:100), 58.16786054171151931769))
stopifnot(all.equal(rms(rep(pi, 10)), pi))
stopifnot(all.equal(rms(numeric(0)), 0))

Write a function rms that fulfils these assertions.

Exercise 9.16 Implement your version of thesample function (assumingreplace=TRUE), us-
ing calls to runif. Start by writing a few unit tests.

A couple of R packages support writing and executing unit tests, including testthat,

https://git-scm.com/doc

160 II DEEPER

tinytest, RUnit, or realtest. However, in the most typical use cases, relying on
stopifnot is powerful enough.

Exercise 9.17 (*) Consult theWriting R Extensions manual [66] about where and how to
include unit tests in your example package.

Note (*) R can check a couple of code quality areas: running R CMD check
pkg_directory from the command line (preferably using the most recent version of
the environment) will suggest several improvements. Also, it is possible to use vari-
ous continuous integration techniques that are automatically triggered when push-
ing changes to our software repositories; see GitLab CI or GitHub Actions. For in-
stance, we can run a package build, install, and check process on every git commit.
Also, CRAN deploys continuous integration services, including checking the package
on various platforms.

Debugging

Rhas an interactive debugger; see the browser function and Section 9 of [70] formore
details. Some IDEs (e.g., RStudio) also support this feature; see their corresponding
documentation.

However, for all his life, the current author has been debugging his programs primar-
ily by manually printing the state of the suspicious variables (printf and the like) in
different code areas.This is old-school but uncannily efficient.

Profiling

Typically, a program spends relatively long time executing only a small portion of code.
The Rprof function canbe ahelpful tool to identifywhich chunksmight need a rewrite,
for instance, using a compiled language (Chapter 14). Please remember, though, that
bottlenecks are not only formed by using algorithms with high computational com-
plexity, but also data input and output (such as reading files from disk, printing mes-
sages on the console, queryingWeb APIs, etc.).

9.3 Special functions: Syntactic sugar
Some functions, such as `*`, are somewhat special.They can be referred to using infix
syntax which, for obvious reasons, most of us accepted as the default one. However,
we will later reveal, amongst others, that “5 * 9” reduces to an ordinary function call:

`*`(5, 9) # a call to `*` with two arguments, equivalent to 5 * 9
[1] 45

9 DESIGNING FUNCTIONS 161

9.3.1 Backticks
In Section 2.2, we mentioned that via `<-` we can assign syntactically valid names to
our objects.Most identifiers comprised of letters, digits, dots, andunderscores can be
used directly in R code. Nevertheless, it is possible to label our objects howeverwe like.
Not syntactically valid (nonstandard) identifiers just need to be enclosed in backticks
(back quotes, grave accents):

`42 a quite peculiar name :O` <- c(a=1, `b c`=2, `42`=3, `!`=4)
1/(1+exp(-`42 a quite peculiar name :O`))
a b c 42 !
0.73106 0.88080 0.95257 0.98201

Such names are less convenient but backticks allow us to refer to them in any setting.

9.3.2 Dollar, `$` (*)
The dollar operator, `$`, can be an alternative accessor to a single element in a named
list4. If a label is a syntactically valid name, then x$label does the same job as
x[["label"]] (saving five keystrokes: such a burden!).

x <- list(spam="a", eggs="b", `eggs and spam`="c", best.spam.ever="d")
x$eggs
[1] "b"
x$best.spam.ever # recall that a dot has no special meaning in most contexts
[1] "d"

Nonstandard names must still be enclosed in backticks (or quotes):

x$`eggs and spam` # x[["eggs and spam"]] is okay as usual
[1] "c"

We are minimalist by design here. Thence, we will avoid this operator for it does not
increase the expressive power of our function repertoire. Also, it does not work on
atomic vectors nor matrices. Furthermore, it does not support names that are gener-
ated programmatically:

what <- "spam"
x$what # the same as x[["what"]]; we do not want this
NULL
x[[what]] # works fine
[1] "a"

Thesupport for the partialmatching of element names has been added to provide users
working in interactive programming sessions with some relief in the case where they
find typing the whole label daunting:

4 And hence also in data frames.

162 II DEEPER

x$s
Warning in x$s: partial match of 's' to 'spam'
[1] "a"

Compare:

x[["s"]] # no warning here...
NULL
x[["s", exact=FALSE]]
[1] "a"

Partialmatching is generally a rubbishy programmingpractice.The result depends on
the names of other items in x (which might change later) and can decrease code read-
ability. The only reason why we obtained a warning message was because this book
enforces the options(warnPartialMatchDollar=TRUE) setting, which, sadly, is not
the default.

Note the behaviour on an ambiguous partial match:

x$egg # ambiguous resolution
NULL

as well as on an element assignment:

x$s <- "e"
str(x)
List of 5
$ spam : chr "a"
$ eggs : chr "b"
$ eggs and spam : chr "c"
$ best.spam.ever: chr "d"
$ s : chr "e"

It did not modify spam but added a new element, s. Confusing? Just let’s not use the
dollar operator and we will have one less thing to worry about.

9.3.3 Curly braces, `{`
A block of statements grouped with curly braces, `{`, corresponds to a function call.
When we write:

{
print(TRUE)
cat("two")
3

}
[1] TRUE
two
[1] 3

9 DESIGNING FUNCTIONS 163

The parser translates it to a call to:

`{`(print(TRUE), cat("two"), 3)
[1] TRUE
two
[1] 3

When it is executed, every argument to `{` is evaluated one by one.Then, the last value
is returned as the result of that call.

9.3.4 `if`
if is a function too. As mentioned in Section 8.1, it returns the value corresponding
to the expression that is evaluated conditionally. Hence, wemay write:

if (runif(1) < 0.5) "head" else "tail"
[1] "head"

but also:

`if`(runif(1) < 0.5, "head", "tail")
[1] "head"

Note A call like `if`(test, what_if_true, what_if_false) can onlywork correctly
because of the lazy evaluation of function arguments; see Chapter 17.

On a side note, while, for, repeat can also be called that way, but they return invis-
ible(NULL).

9.3.5 Operators are functions
Calling built-in operators as functions

Every arithmetic, logical, and relational operator is translated to a call to the corres-
ponding function. For instance:

`<`(`+`(`*`(`-`(3), 4)), 5) # 2+(-3)*4 < 5
[1] TRUE

Also, x[i] is equivalent to `[`(x, i) and x[[i]]maps to `[[`(x, i).

Knowing the above will not only enable us to manipulate unevaluated R code
(Chapter 15) or access the correspondingmanual pages (see, e.g., help("[")), but also
verbalise certain operations more concisely. For instance:

x <- list(1:5, 11:17, 21:23)
unlist(Map(`[`, x, 1)) # 1 is a further argument passed to `[`
[1] 1 11 21

164 II DEEPER

is equivalent to a call to Map(function(e) e[1], x).

Note Unsurprisingly, the assignment operator, `<-`, is also a function. It returns the
assigned value invisibly. `<-` binds right to left (compare help("Syntax")).Thus, the
expression “a <- b <- 1” assigns 1 to both b and a. It is equivalent to `<-`("a",
`<-`("b", 1)) and `<-`("b", 1) returns 1.

Owing to the pass-by-value-like semantics (Section 9.4.1), we can also expect that we
will be assigning a copy5 of the value on the right side of the operator (with the excep-
tion of environments; Chapter 16).

x <- 1:6
y <- x # makes a copy (but delayed, on demand, for performance reasons)
y[c(TRUE, FALSE)] <- NA_real_ # modify every second element
print(y)
[1] NA 2 NA 4 NA 6
print(x) # state of x has not changed; x and y are different objects
[1] 1 2 3 4 5 6

However, with no harm to the semantics, the copying of x is postponed until abso-
lutely necessary (Section 16.1.4). This is efficient both time- andmemory-wisely.

Defining binary operators

We can also introduce custom binary operators named like `%myopname%`:

`%:)%` <- function(e1, e2) (e1+e2)/2
5 %:)% 1:10
[1] 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

Recall that `%%`, `%/%`, and `%in%` are built-in operators denoting division remainder,
integer division, and testing for set inclusion. Also, in Chapter 11, we will learn about
`%*%`, which implements matrix multiplication.

Note Chapter 10 notes that most existing operators can be overloaded for objects of
custom types.

9.3.6 Replacement functions
Functions generally do not change the state of their arguments. However, there is
some syntactic sugar that permits us to replace objects or their parts with new con-
tent. We call them replacement functions.

For instance, three of the following calls replace the input xwith its modified version:
5This is especially worth pointing out to Python (amongst others) programmers, where the example

assignmentbelowwouldmean thatxandyboth refer to the same (shared) object in the computer’smemory.

9 DESIGNING FUNCTIONS 165

x <- 1:5 # example input
x[3] <- 0 # replace the third element with 0
length(x) <- 7 # "replace" length
names(x) <- LETTERS[seq_along(x)] # replace the names attribute
print(x) # `x` is now different
A B C D E F G
1 2 0 4 5 NA NA

Creating replacement functions

A replacement function is a mapping named like `f<-` with at least two parameters:

• x (the object to be modified),

• ... (possible further arguments),

• value (as the last parameter; the object on the right-hand side of the `<-` oper-
ator).

We will most often interact with existing replacement functions, not create our own
ones. But knowing how to do the latter is vital to understanding this language feature.
For example:

`add<-` <- function(x, where=TRUE, value)
{

x[where] <- x[where] + value
x # the modified object that will replace the original one

}

This function aims to add a value to a subset of the input vector x (by default, to each
element therein).Then, it returns its altered version.

y <- 1:5 # example vector
add(y) <- 10 # calls y <- `add<-`(y, value=10)
print(y) # y has changed
[1] 11 12 13 14 15
add(y, 3) <- 1000 # calls y <- `add<-`(y, 3, value=1000)
print(y) # y has changed again
[1] 11 12 1013 14 15

Thus, invoking “add(y, w) <- v” is equivalent to “y <- `add<-`(y, w, value=v)”.

Note (*) According to [70], a call “add(y, 3) <- 1000” is a syntactic sugar precisely
for:

`*tmp*` <- y # temporary substitution
y <- `add<-`(`*tmp*`, 3, value=1000)
rm("*tmp*") # remove the named object from the current scope

This has at least two implications. First, in the unlikely event that a variable `*tmp*`

166 II DEEPER

existed before the call to the replacement function, itwill be nomore, itwill cease to be.
It will be an ex-variable. Second, the temporary substitution guarantees that ymust
exist before the call (due to lazy evaluation, a function’s body does not have to refer to
all the arguments passed).

Substituting parts of vectors

The replacement versions of the index-like operators are named as follows:

• `[<-` is used in substitutions like “x[i] <- value”,

• `[[<-` is called when we perform “x[[i]] <- value”,

• `$<-` is used whilst calling “x$i <- value”.

x <- 1:5
`[<-`(x, c(3, 5), NA_real_) # returns a new object
[1] 1 2 NA 4 NA
print(x) # does not change the original input
[1] 1 2 3 4 5

Exercise 9.18 Write a function `extend<-`, which pushes new elements at the end of a given
vector, modifying it in place.

`extend<-` <- function(x, value) ...to.do...

Example use:

x <- 1
extend(x) <- 2 # push 2 at the back
extend(x) <- 3:10 # add 3, 4, ..., 10
print(x)
[1] 1 2 3 4 5 6 7 8 9 10

Replacing attributes

Therearemany replacement functions to reset object attributes (Section4.4). Inpartic-
ular, each special attribute has its replacement procedure, e.g., `names<-`, `class<-`,
`dim<-`, `levels<-`, etc.

x <- 1:3
names(x) <- c("a", "b", "c") # change the `names` attribute
print(x) # x has been altered
a b c
1 2 3

Individual (arbitrary, includingnon-special ones) attributes canbe setusing `attr<-`,
and all of them can be established via a single call to `attributes<-`.

9 DESIGNING FUNCTIONS 167

x <- "spam"
attributes(x) <- list(shape="oval", smell="meaty")
attributes(x) <- c(attributes(x), taste="umami")
attr(x, "colour") <- "rose"
print(x)
[1] "spam"
attr(,"shape")
[1] "oval"
attr(,"smell")
[1] "meaty"
attr(,"taste")
[1] "umami"
attr(,"colour")
[1] "rose"

Also, setting an attribute to NULL results, by convention, in its removal:

attr(x, "taste") <- NULL # it is tasteless now
print(x)
[1] "spam"
attr(,"shape")
[1] "oval"
attr(,"smell")
[1] "meaty"
attr(,"colour")
[1] "rose"
attributes(x) <- NULL # remove all
print(x)
[1] "spam"

Which can be worthwhile in contexts such as:

x <- structure(c(a=1, b=2, c=3), some_attrib="value")
y <- `attributes<-`(x, NULL)

y is a version of xwith metadata removed.The latter remains unchanged.

Compositions of replacement functions (*)

Updating only selected names like:

x <- c(a=1, b=2, c=3)
names(x)[2] <- "spam"
print(x)
a spam c
1 2 3

is possible due to the fact that “names(x)[i] <- v” is equivalent to:

168 II DEEPER

old_names <- names(x)
new_names <- `[<-`(old_names, i, value=v)
x <- `names<-`(x, value=new_names)

Important More generally, a composition of replacement calls “g(f(x, a), b)
<- y” yields a result equivalent to “x <- `f<-`(x, a, value=`g<-`(f(x, a), b,
value=y))”. Both f and `f<-` need to be defined, but having g is not necessary.

Exercise 9.19 (*)What is “h(g(f(x, a), b), c) <- y” equivalent to?

Exercise 9.20 Write a (convenient!) function `recode<-` which replaces specific elements in
a character vector with other ones, allowing the following interface:

`recode<-` <- function(x, value) ...to.do...
x <- c("spam", "bacon", "eggs", "spam", "eggs")
recode(x) <- c(eggs="best spam", bacon="yummy spam")
print(x)
[1] "spam" "yummy spam" "best spam" "spam" "best spam"

We see that the named character vector gives a few from="to" pairs, e.g., all eggs are to be
replaced by best spam. Determine which calls are equivalent to the following:

x <- c(a=1, b=2, c=3)
recode(names(x)) <- c(c="z", b="y") # or equivalently = ... ?
print(x)
a y z
1 2 3
y <- list(c("spam", "bacon", "spam"), c("spam", "eggs", "cauliflower"))
recode(y[[2]]) <- c(cauliflower="broccoli") # or = ... ?
print(y)
[[1]]
[1] "spam" "bacon" "spam"
##
[[2]]
[1] "spam" "eggs" "broccoli"

Exercise 9.21 (*) Consider an example matrix with the dimnames attribute whose names at-
tribute is set (more details in Chapter 11):

(x <- Titanic["Crew", , "Adult",])
Survived
Sex No Yes
Male 670 192
Female 3 20

Applying the `recode<-` function fromExercise 9.20, we can change the x object in place:

9 DESIGNING FUNCTIONS 169

recode(names(dimnames(x))) <- c(Sex="sex", Survived="survived")
print(x)
survived
sex No Yes
Male 670 192
Female 3 20

Compose a single call that alters names(dimnames(x)) without modifying x in place but re-
turning a recoded copy of the following:

• names(dimnames(x)),

• dimnames(x),

• x.

Exercise 9.22 (*) Consider the `recode<-` function again but now let an example object be a
list with an element of the factor class:

x <- as.list(iris[c(1, 2, 51, 101), c(1, 5)])
recode(levels(x[["Species"]])) <- c(

setosa="SET", versicolor="VER", virginica="VIR"
)
print(x)
$Sepal.Length
[1] 5.1 4.9 7.0 6.3
##
$Species
[1] SET SET VER VIR
Levels: SET VER VIR

How to change levels(x[["Species"]]) and return an altered copy of:

• levels(x[["Species"]]),

• x[["Species"]],

• x

without modifying x in place?

170 II DEEPER

9.4 Arguments and local variables
9.4.1 Call by “value”
As a general rule, functions cannot change the state of their arguments6.We can think
of them as being passed by value, i.e., as if their copy was made.

test_change <- function(y)
{

y[1] <- 7
y

}

x <- 1:5
test_change(x)
[1] 7 2 3 4 5
print(x) # same
[1] 1 2 3 4 5

If the preceding statement was not true, the state of xwould change after the call.

9.4.2 Variable scope
Function arguments and any other variables we create inside a function’s body are
relative to each call to that function.

test_change <- function(x)
{

x <- x+1
z <- -x
z

}

x <- 1:5
test_change(x*10)
[1] -11 -21 -31 -41 -51
print(x) # x in the function's body was a different x
[1] 1 2 3 4 5
print(z) # z was local
Error: object 'z' not found

Both x and z are local variables. They only live whilst our function is being executed.
The former temporarilymasks7 the object of the same name from the caller’s context.

6With the exception of objects of the type environment, which are passed by reference; see Chapter 16.
Also, the fact that we have access to unevaluated R expressions can cause further deviations to this rule
because, actually, R implements the call-by-need strategy; see Chapter 17.

7 Chapter 16 discusses this topic in-depth: names are bound to objects within environment frames.

9 DESIGNING FUNCTIONS 171

Important It is a good development practice to refrain from referring to objects not
created within the current function, especially to “global” variables. We can always
pass an object as an argument explicitly.

Note It is a function call as such, not curly braces per se that form a local scope.When
we run “x <- { y <- 1; y + 1 }”, y is not a temporary variable. It is an ordinary
named object created alongside x.

On the other hand, in “x <- (function() { z <- 1; z + 1 })()”, z will not be
available thereafter.

9.4.3 Closures (*)
Most user-defined functions are, in fact, instances of the so-called closures; see Sec-
tion 16.3.2 and [1]. They not only consist of an R expression to evaluate but also can
carry auxiliary data.

For instance, given two numeric vectors x and y of the same length, a call to approx-
fun(x, y) returns a function that linearly interpolates between the consecutive points
(𝑥1, 𝑦1), (𝑥2, 𝑦2), etc., so that a corresponding 𝑦 can be determined for any 𝑥.

x <- seq(0, 1, length.out=11)
f1 <- approxfun(x, x^2)
f2 <- approxfun(x, x^3)
f1(0.75) # check that it is close to the true 0.75^2
[1] 0.565
f2(0.75) # compare with 0.75^3
[1] 0.4275

Let’s inspect the source code of the above functions:

print(f1)
function (v)
.approxfun(x, y, v, method, yleft, yright, f, na.rm)
<environment: 0x55adfb9f5b08>
print(f2)
function (v)
.approxfun(x, y, v, method, yleft, yright, f, na.rm)
<environment: 0x55adfb8dd4d0>

We might wonder why they produce different results: after all, they are identical. It
turns out, however, that they internally store additional data that are referred towhen
they are called:

Moreover, R uses lexical (static) scoping, which is not necessarily intuitive, especially taking into account
that a function’s environment can always be changed.

172 II DEEPER

environment(f1)[["y"]]
[1] 0.00 0.01 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81 1.00
environment(f2)[["y"]]
[1] 0.000 0.001 0.008 0.027 0.064 0.125 0.216 0.343 0.512 0.729 1.000

Wewill explore these concepts in detail in the third part of this book.

9.4.4 Default arguments
We often need to find a sweet spot between being generous, mindful of the diverse
needs of our users, andmaking the API neither overwhelming nor oversimplistic.We
have established that it is best if a functionperformsa single,well-specified task.How-
ever, we are always delighted when it also lets us tweak its behaviour should we wish
to do so.The use of default arguments can facilitate this principle.

For instance, log computes logarithms, by default, the natural ones.

log(2.718) # the same as log(2.718, base=exp(1)), i.e., default base, e
[1] 0.9999
log(4, base=2) # different base
[1] 2

Exercise 9.23 Study the documentation of the following functions and note the default values
they define: round, hist, grep, and download.file.

Let’s create a function equipped with such recommended settings:

test_default <- function(x=1) x

test_default() # use default
[1] 1
test_default(2) # use something else
[1] 2

Most often, default arguments are just constants, e.g., 1. Generally, though, they can
be any R expressions, also ones that include a reference to other arguments passed to
the same function; see Section 17.2.

Default argumentsusually appearat theendof theparameter list, but seeSection9.3.6
(on replacement functions) for a well-justified exception.

9.4.5 Lazy vs eager evaluation
In some languages, function arguments are always evaluated prior to a call. In R,
though, they are only computed when actually needed.We call it lazy or delayed evalu-
ation.Recall that inSection8.1.4,we introduced the short-circuit evaluationoperators
`||` (or) and `&&` (and).They can do their job precisely thanks to this mechanism.

Example 9.24 In the following example, we do not use the function’s argument at all:

9 DESIGNING FUNCTIONS 173

lazy_test1 <- function(x) 1 # x is not used

lazy_test1({cat("and now for something completely different!"); 7})
[1] 1

Otherwise, we would see amessage being printed out on the console.

Example 9.25 Next, let’s use x amidst other expressions in a function’s body:

lazy_test2 <- function(x)
{

cat("it's... ")
y <- x+x # using x twice
cat(" a man with two noses")
y

}

lazy_test2({cat("and now for something completely different!"); 7})
it's... and now for something completely different! a man with two noses
[1] 14

An argument is evaluated once, and its value is stored for further reference. If that was not the
case, we would see twomessages like “and now...”.Wewill elaborate on this in Chapter 17.

9.4.6 Ellipsis, `...`
Wewill start with an exercise.

Exercise 9.26 Notice thepresence of `...` in theparameter list ofc,list,structure,cbind,
rbind, cat, Map (and the underlying mapply), lapply (a specialised version of Map), optim-
ise, optim, uniroot, integrate, outer, aggregate.What purpose does it serve, according
to these functions’ documentation pages?

We can create a variadic function by including `...` (dot-dot-dot, ellipsis; see
help("dots")) somewhere in its parameter list. The ellipsis serves as a placeholder
for all objects passed to the function but notmatched by any formal (named) paramet-
ers.

The easiestway to process arguments passed via `...` programmatically (see also Sec-
tion 17.3) is by redirecting them to list.

test_dots <- function(...)
list(...)

test_dots(1, a=2)
[[1]]
[1] 1
##
$a
[1] 2

174 II DEEPER

Such a list can be processed just like… any other generic vector. What we can do
with these arguments is only limited by our creativity (in particular, recall from Sec-
tion 7.2.2 the very powerful do.call function).There are two primary use cases of the
ellipsis8:

• create a new object by combining an arbitrary number of other objects:

c(1, 2, 3) # three arguments
[1] 1 2 3
c(1:5, 6:7) # two arguments
[1] 1 2 3 4 5 6 7
structure("spam") # no additional arguments
[1] "spam"
structure("spam", color="rose", taste="umami") # two further arguments
[1] "spam"
attr(,"color")
[1] "rose"
attr(,"taste")
[1] "umami"
cbind(1:2, 3:4) # two
[,1] [,2]
[1,] 1 3
[2,] 2 4
cbind(1:2, 3:4, 5:6, 7:8) # four
[,1] [,2] [,3] [,4]
[1,] 1 3 5 7
[2,] 2 4 6 8
sum(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 42) # twelve
[1] 108

• pass further arguments (as-is) to other methods:

lapply(list(c(1, NA, 3), 4:9), mean, na.rm=TRUE) # mean(x, na.rm=TRUE)
[[1]]
[1] 2
##
[[2]]
[1] 6.5
integrate(dbeta, 0, 1,

shape1=2.5, shape2=0.5) # dbeta(x, shape1=2.5, shape2=0.5)
1 with absolute error < 1.2e-05

Example 9.27 Thedocumentationoflapply states that this function is defined likelapply(X,
FUN, ...). Here, the ellipsis is a placeholder for a number of optional arguments that can be
passed to FUN. Hence, if we denote the 𝑖-th element of a vector X by X[[i]], calling lapply(X,
FUN, ...)will return a list whose 𝑖-th element will be equal to FUN(X[[i]], ...).

Exercise 9.28 Using a single call to lapply, generate a list with three numeric vectors of

8Which is somewhat similar to Python’s *args and **kwargs in a function’s parameter list.

9 DESIGNING FUNCTIONS 175

lengths 3, 9, and 7, respectively, drawn from the uniform distribution on the unit interval.Then,
upgrade your code to get numbers sampled from the interval [−1, 1].
Example 9.29 Chapter 4 mentioned that concatenating a mix of lists and atomic vectors with
c, unfortunately, unrolls the latter:

str(c(u=list(1:2), v=list(a=3:4, b=5:6), w=7:8))
List of 5
$ u : int [1:2] 1 2
$ v.a: int [1:2] 3 4
$ v.b: int [1:2] 5 6
$ w1 : int 7
$ w2 : int 8

Let’s implement a fix:

as.list2 <- function(x) if (is.list(x)) x else list(x)
clist <- function(...) do.call(c, lapply(list(...), as.list2))
str(clist(u=list(1:2), v=list(a=3:4, b=5:6), w=7:8))
List of 4
$ u : int [1:2] 1 2
$ v.a: int [1:2] 3 4
$ v.b: int [1:2] 5 6
$ w : int [1:2] 7 8

9.4.7 Metaprogramming (*)
We can access expressions passed as a function’s arguments without evaluating them. In
particular, a call to the composition of deparse and substitute converts them to a
character vector.

test_deparse_substitute <- function(x)
deparse(substitute(x)) # does not evaluate whatever is behind `x`

test_deparse_substitute(testing+1+2+3)
[1] "testing + 1 + 2 + 3"
test_deparse_substitute(spam & spam^2 & bacon | grilled(spam))
[1] "spam & spam^2 & bacon | grilled(spam)"

Exercise 9.30 Check out the y-axis label generated by plot.default((1:100)^2). Inspect
its source code. Notice a call to the two aforementioned functions. Similarly, call shapiro.
test(log(rlnorm(100))) and take note of the “data:” field.

A function is free to do with such an expression whatever it likes. For instance, it can
modify the expression and then evaluate it in a very different context. Such a language
feature allows certainoperations tobe expressedmuchmore compactly. In theory, it is
apotent tool.Alas, it is easy tofindmanypractical exampleswhere itwasover/misused
andmade learning or using R confusing.

176 II DEEPER

Example 9.31 (*) In Section 12.3.9 and Section 17.5, we explain that subset and transform
use metaprogramming techniques to specify basic data frame transformations. For instance:

transform(
subset(

iris,
Sepal.Length>=7.7 & Sepal.Width >= 3.0, # huh?
select=c(Species, Sepal.Length:Sepal.Width) # le what?

),
Sepal.Length.mm=Sepal.Length/10 # pardon my French, but pardon?

)
Species Sepal.Length Sepal.Width Sepal.Length.mm
118 virginica 7.7 3.8 0.77
132 virginica 7.9 3.8 0.79
136 virginica 7.7 3.0 0.77

None of the arguments (except iris) makes sense outside of the function’s call. In particular,
neither Sepal.Length nor Sepal.Width exists as a standalone variable.

The authors of the two functions took the liberty to interpret the arguments passed how they
wanted.They created virtual realities within our well-definedworld.The readermust refer to the
documentation to understand themeaning of the new syntax.

Note (*) Some functions have rather bizarre default arguments. For instance, in
the manual page of prop.test, we read that the alternative parameter defaults to
c("two.sided", "less", "greater").However, if a user does not set this argument
explicitly, alternative="two.sided" (the first element in the above vector), will ac-
tually be assumed.

If we call print(prop.test), we will find the code line responsible for this odd beha-
viour: “alternative <- match.arg(alternative)”. Consider the following example:

test_match_arg <- function(x=c("a", "b", "c")) match.arg(x)

test_match_arg() # missing argument; choose first
[1] "a"
test_match_arg("c") # one of the predefined options
[1] "c"
test_match_arg("d") # unexpected setting
Error in match.arg(x): 'arg' should be one of "a", "b", "c"

In the current context, match.arg only allows an actual parameter from a given set of
choices. However, if the argument is missing, it selects the first option.

Unfortunately,wehave to learn this behaviour by heart, because the above source code
is far from self-explanatory. If such an expression was normally evaluated, we would
use either the default argument or whatever the user passed as x (but then the func-
tion would not know the range of possible choices). A call to match.arg(x, c("a",
"b", "c")) could guarantee the desired functionality and would bemuchmore read-

9 DESIGNING FUNCTIONS 177

able. Instead, metaprogramming techniques enabled match.arg to access the enclos-
ing function’s default argument list without explicitly referring to them.

Onemay ask:why is it so?Theonly sensible answer to thiswill be “because its program-
mer decided itmust be thisway”. Let’s contemplate this for awhile. In cases like these,
we are not dealing with some base R language design choice that wemight like or dis-
like, butwhichwe should just accept as an inherent feature. Instead,we are struggling
intellectually because of some programmers’ (mis)use (in good faith…) of R’s flexibility
itself.They have introduced a slang/dialect on top of ourmother tongue, whosemean-
ing is valid only within this function. Blame the middleman, not the environment,
please.

This is why we generally advocate for avoiding metaprogramming-based techniques
wherever possible. We shall elaborate on this topic in the third part of this book.

9.5 Principles of sustainable design (*)
Fine design is more art than science. As usual in real life, we will need to make many
compromises. This is because improving things with regard to one criterion some-
times makes them worse with respect to other aspects9 (also those that we are not
aware of). Moreover, not everything that counts can nor will be counted.

Wedonotwant to be considered heedless enablerswho say that if anything is possible,
it should be done.Therefore, belowwe serve some food for thought.However, as there
is no accounting for taste, the kind readersmight aswell decide to skip this spicymeal.

9.5.1 Towrite or abstain
Our functions can often be considered merely creative combinations of the building
blocks available in base R or a few high-quality add-on packages. Some are simpler
than others. Thus, there is a question if a new operation should be introduced at all:
whether we are faced with the case of multiplying entities without necessity.

On the one hand, the DRY (don’t repeat yourself) principle tells us that the most fre-
quently used code chunks (say, called at least thrice) should be generalised in the form
of a new function. As far as complex operations are concerned, this is definitely a cor-
rect approach.

On the other hand, not every generalisation is necessarily welcome. Let’s say we are
tired of writing g(f(x)) for the 𝑛-th time, 𝑛 ≥ 2. Why not introduce h defined as
a combination of g and f? This might seem like a clever idea, but let’s not take it for
granted. Being tiredmight be an indication thatweneed a rest. Being lazy canbe a call

9 Compare the notion of Pareto efficiency.

178 II DEEPER

formore self-discipline (not an overly popular word these days, but still, an endearing
trait).

Example 9.32 paste0 is a specialised version of paste, but has the sep argument hardcoded
to an empty string.

• Even if this might be the most often applied use case, is the introduction of a new function
justifiable? Is it so hard to write sep="" each time?

• Would changingpaste’s default argument be better?That, of course,would harmbackward
compatibility, but what strategies could we apply to make the transition as smooth as pos-
sible?

• What about introducing a new version of pastewith sep defaulting to "", and informing
the users that the old version is deprecated andwill be removed in, say, two years? (ormaybe
onemonth is preferable? or five?)

Example 9.33 R 4.0 defined a new function called deparse1. It is nothing but a combination
of deparse and paste:

print(deparse1)
function (expr, collapse = " ", width.cutoff = 500L, ...)
paste(deparse(expr, width.cutoff, ...), collapse = collapse)
<environment: namespace:base>

Let’s say this covers 90% of use cases: was introducing it a justified idea then?What if that num-
ber was 99%? Might it lead to new users’ not knowing that the more primitive operations are
available?

Overall,more functions contribute to information overload.Wedonotwant our users
to be overwhelmed by unreasonably many choices. Luckily, nothing is cemented once
and for all. Had we made bad design choices resulting in our API’s being bloated, we
could always cancel those that no longer spark joy.

9.5.2 To pamper or challenge
We should think about the kind of audience we would like to serve: is it our team
only, students, professionals, certain client groups, etc.? Do they have mathematical,
programming, engineering, or scientific background?Not everything appropriate for
one cohort will be valuable for another. Not everything pleasing some nowwill benefit
them in the long run: people (their skills, attitudes, etc.) change.

Example 9.34 Assumewearewritinga friendly package for noviceswhowould like to grasp the
rudiments of data analysis as quickly as possible. Without much effort, it could enable them to
solve 80–95% of the most common, easy problems.

Thinkof introducing the students to a function that returns thefive largest observations inagiven
vector. Let’s call it nlargest. So pleasant. Itmakes the students feel empowered and improves
their retention10.

10 Brought to the extreme, this strategy is employedby certain companies (anddrugdealers):make the in-

9 DESIGNING FUNCTIONS 179

However, when faced with the remaining 5–20% of tasks, they will have to learn another, more
advanced, generic, and capable tool anyway (in our case, the base R itself). Are they determined
and skilled enough to do that? Somemight, unfortunately, say: “it is notmyproblem, Imade sure
everyone was happy at that time”. Due to this shortsightedness, it is our problem now.

Recall that it took us some time to arrive atorder and subsetting via `[`. Assuming thatwe read
this book from the beginning to the end and solve all the exercises, which we should, we are now
able to author the said nlargest (and lots of other functions) ourselves, using a single line of
code. This will also pay off in many scenarios that we will be facing in the future, e.g., when we
consider matrices and data frames.

Yes, everyone will be reinventing their own nlargest this way. But this constitutes a great ex-
ercise: by our being immoderately nice (spoonfeeding), some might have lost an opportunity to
learn a new, more universal skill.

Although most users would love to minimise the effort put into all their activities, ul-
timately, they sometimes need to learn new things. Let’s thus not be afraid to teach
them stuff.

Furthermore, we do not want to discourage experts (or experts to-be) by presenting
themwithoverly simplified solutions that keep theirhands tiedwhensomethingmore
ambitious needs to be done.

9.5.3 To build or reuse
The fail-fast philosophy encourages us to build applications using prefabricated com-
ponents. This is fantastic at the early stage of their life cycles. Nonetheless, if we con-
struct something uncomplicated or whose only purpose is to illustrate an idea, edu-
cate, or show off, let’s be explicit about it so that other users do not feel obliged to
treat our product (exercise) seriously.

In the (not so likely, probabilistically speaking) event of its becoming successful, we
are expected to start thinkingabout theproject’s long-termstability and sustainability.
After all, relying on third-party functions, packages, or programsmakes our software
projects less… independent.This may be problematic because:

• the dependencies might not be available on every platform or may behave differ-
ently across various system configurations,

• they may be huge (and can depend on other external software too),

• their APIs may be altered, which can cause our code to break,

• their functionality can change, which can lead to unexpected behaviour.

Hence, it might be better to rewrite some parts from scratch on our own.

Exercise 9.35 Identifya fewRpackages onCRANwithmanydependencies.Seewhat functions
they import from other packages. How often do they only borrow a few lines of code?

troductory experience smooth and fun. At the same time, do not permit your users to become independent
too easily. Instead, make them rely on your product lines/proprietary solutions/payable services, etc.

180 II DEEPER

TheUNIXphilosophyemphasisesbuildingandusingminimalist yetnontrivial, single-
purpose, high-quality pieces of software that can work as parts of more complex
pipelines. R serves as a glue language very well.

In the long run, our software project might mature to become such a tool. Thus, at
somepoint,wemight have to standardise its API (e.g.,make it available from the com-
mand line; Section 1.2) so that the users of other languages can benefit from our work.

Important If our project is merely a modified interface/front-end to a standalone
program developed by others, we should be humble about it. We should strive to en-
sure we are not the ones who get all the credit for other people’s work. Also, we must
clearly state how the original tools can be used to achieve the same goals, e.g., when
working from the command line. In other words, let’s not be selfish jerks.

9.5.4 To revolt or evolve
The wise, gradual improving of things is generally welcome. It gives everyone time
to adjust. Some projects, however, are developed in a compulsive way, reinforced by
neurotic thinking that “stakeholders need to be kept engaged or we’re going to lose
popularity”. It is not a sustainable strategy. Less is better, even though slightly more
challenging. Put good engineering first.

Someday we might realise that “everything so far was wrong and we need a global
reset”. But if we become very successful, we will cause a divide in the community. Es-
pecially when we decide to duplicate the existing, base functionality, we should note
that some userswill be introduced to the system through the supplementary interface
and they will not be familiar with the classic one. Others will have to learn the added
syntax to be able to communicatewith the former group.This gives rise to awhole new
set of issues (how to make all the functions interoperable with each other seamlessly,
etc.). Suchmoves are sometimes necessary, but let’s not treat them lightly; it is a great
responsibility.

9.6 Exercises
Exercise 9.36 Answer the following questions.

• Will stopifnot(1) stop? What about stopifnot(NA), stopifnot(TRUE, FALSE),
and stopifnot(c(TRUE, TRUE, NA))?

• What does the `if` function return?

• Does `attributes<-`(x, NULL)modify x?

• When can we be interested in calling `[` and `[<-` as functions (and not as operators) dir-
ectly?

9 DESIGNING FUNCTIONS 181

• How to define a new binary operator? Can it be equipped with default arguments?

• What are the main use cases of the ellipsis?

• What is wrong with transform, subset, and match.arg?

• When a call like f(-1, do_something_that_takes_a_million_years()) does not
necessarily have to be a regrettable action?

• What is the difference between “names(x)[1] <- new_name” and “names(x[1]) <-
new_name”?

• Whatmight be the form of x if it is legit to call it like x[[c(1, 2)]]()()()[[1]]()()?

Exercise 9.37 Consider a function:

f <- function(x)
for (e in x)

print(e)

What is the return value of a call to f(list(1, 2, 3))? Is it NULL, invisible(NULL),
x[[length(x)]], or invisible(x[[length(x)]])? Does it change relative to whether x is
empty or not?

Exercise 9.38 Thesplit function also has its replacement version. Study its documentation to
learn how it works.

Exercise 9.39 A call to ls(envir=baseenv()) returns all objects defined in the base pack-
age (see Chapter 16). List the names corresponding to replacement functions.

Important Apply the principle of test-driven development when solving the remain-
ing exercises.

Exercise 9.40 Implement your version of the Position and Find functions. Evaluation
should stop as soon as the first element fulfilling a given predicate has been found.

Exercise 9.41 Implement your version of the Reduce function.

Exercise 9.42 Write a function slide(f, x, k, ...) which returns a list y with
length(x)-k+1 elements such that y[[i]] = f(x[i:(i+k-1)], ...)

unlist(slide(sum, 1:5, 1))
[1] 1 2 3 4 5
unlist(slide(sum, 1:5, 3))
[1] 6 9 12
unlist(slide(sum, 1:5, 5))
[1] 15

Exercise 9.43 Using slide defined above, write another function that counts how many in-
creasing pairs of numbers are in a given numeric vector. For instance, in (0, 2, 1, 1, 0, 1, 6, 0),
there are three such pairs: (0, 2), (0, 1), (1, 6).

182 II DEEPER

Exercise 9.44 (*)Writeyourversionoftools::package_dependencieswithreverse=TRUE
based on information extracted by calling utils::available.packages.

Exercise 9.45 (**) Write a standalone program which can be run from the system shell and
which computes the total size of all the files in directories given as the script’s arguments (via
commandArgs).

10
S3 classes

Let x be a randomly generated matrix with 1 000 000 rows and 1 000 columns, y be
a data frame with results from the latest survey indicating that things are way more
complicated than what most people think, and z be another matrix, this time with
many zeroes.

The human brain is not capable of dealing with excessive amounts of data that are im-
moderately specific.This is why we have a natural tendency to group different entities
based on their similarities.This way, we formmore abstract classes of objects.

Also,many of us are inherently lazy. Oftentimeswe take shortcuts tominimise energy
(at a price to be paid later).

Printing out a matrix, a data frame, and a time series are all instances of the display-
ing of things, although they undoubtedly differ in detail. By now, we have probably
forgottenwhich objects are hidden behind the aforementioned x, y, and z. Being able
to simply call print(y) without having to recall that, yes, y is a data frame, seems
pretty appealing.

This chapter introduces S3 classes [14]. They provide a lightweight object-orientated
programming (OOP) approach for automated dispatching calls to generics of the type
print(y) to concretemethods such as print.data.frame(y), based on the class of the
object they are invoked on.

We shall see that S3 classes in their essence are beautifully simple1. Ultimately, gener-
ics andmethods are ordinary R functions (Chapter 7) and classes are merely additional
object attributes (Section 4.4).

Of course, this does not mean that wrapping our heads around them will be effort-
less. However, unlike other “class systems”2, S3 is ubiquitous inmost R programming
projects. Suffice it to say that factors,matrices, and data frames discussed in the com-
ing chapters are straightforward, S3-based extensions of the concepts we are about to
introduce.

1They were built on top of the ordinary (“old R”) S so they have inherent limitations that we discuss in
the sequel: classes cannot be formally defined (often we will use named lists for representing objects, and
we know we cannot be any more flexible than this), andmethod dispatching can only be based on the class
of one of the arguments (usually the first one, but, e.g., binary operators take both types into account).

2 Other class systems may give an impression that they are alien implants which were forcefully added
to our language to solve a specific, rather narrow class of problems; e.g., S4 (Section 10.5), reference classes
(Section 16.1.5), and other ones proposed by third-party packages.

184 II DEEPER

10.1 Object type vs class
Recall that typeof (introduced in Section 4.1) returns the internal type of an object. So
far, we were mostly focused on atomic and generic vectors; compare Figure 1 in the
Preface.

typeof(NULL)
[1] "NULL"
typeof(c(TRUE, FALSE, NA))
[1] "logical"
typeof(c(1, 2, 3, NA_real_))
[1] "double"
typeof(c("a", "b", NA_character_))
[1] "character"
typeof(list(list(1, 2, 3), LETTERS))
[1] "list"
typeof(function(x) x)
[1] "closure"

The number of admissible types is small3, but they open the world of endless possibil-
ities4.They provide a basis formore complex data structures.This is thanks to the fact
that they can be equipped with arbitrary attributes (Section 4.4).

Most compound types constructed using themechanisms discussed in this chapter only
pretend they are something different from what they actually are. Still, they often do
their job very well. By looking under their bonnet, we will be able to manipulate their
state outside of the prescribed use cases.

Important Setting the class attribute might make some objects behave differently
in certain scenarios.

Example 10.1 Let’s equip two identical objects with different class attributes.

xt <- structure(123, class="POSIXct") # POSIX calendar time
xd <- structure(123, class="Date")

Both objects are represented using numeric vectors:

c(typeof(xt), typeof(xd))
[1] "double" "double"

However, when printed, they are decoded differently:
3Their list is hardcoded at the C language level; see the list of SEXPTYPEs in Table 14.1 and [69].
4 In particular, Section 14.2.8mentions externalptrs which are simple pointers tomemory blocks that

can be instances of any C structs or C++ classes.This makes R a very extensible language.

10 S3 CLASSES 185

print(xt)
[1] "1970-01-01 01:02:03 CET"
print(xd)
[1] "1970-05-04"

In the former case, 123 is understood as the number of seconds since theUNIX epoch, 1970-01-
01T00:00:00+0000. The latter is deciphered as the number of days since the said timestamp.
Therefore, we expect that there must exist a mechanism that calls a version of print dependent
on an object’s virtual class. That it only relies on the class attribute, which might be set, unset,
or reset freely, is emphasised below.

attr(xt, "class") <- "Date" # change class from POSIXct to Date
print(xt) # same 123, but now interpreted as Date
[1] "1970-05-04"
as.numeric(xt) # drops all attributes
[1] 123
unclass(xd) # drops the class attribute; `attr<-`(xd, "class", NULL)
[1] 123

We are having so much fun that one more illustration can only grow our joy.

Example 10.2 Consider an example data frame:

x <- iris[1:3, 1:2] # a subset of an example data frame
print(x)
Sepal.Length Sepal.Width
1 5.1 3.5
2 4.9 3.0
3 4.7 3.2

It is an object of the class (an object whose class attribute is set to):

attr(x, "class")
[1] "data.frame"

Somemay say, and they are absolutely right, that we have not covered data frames yet. After all,
they are the topic of Chapter 12, which is still ahead of us. However, from the current perspective,
we should know that R data frames are nothing but lists of vectors of the same lengths equipped
with the names and row.names attributes.

typeof(x)
[1] "list"
`attr<-`(x, "class", NULL) # or unclass(x)
$Sepal.Length
[1] 5.1 4.9 4.7
##
$Sepal.Width
[1] 3.5 3.0 3.2
##

(continues on next page)

186 II DEEPER

(continued from previous page)

attr(,"row.names")
[1] 1 2 3
print(x)
Sepal.Length Sepal.Width
1 5.1 3.5
2 4.9 3.0
3 4.7 3.2

Important Revealing how x is actually represented enables us to process it using the
extensive skill set that we have already5 developed by studying the material covered
in the previous part of our book (including all the exercises). This fact is noteworthy
because some built-in and third-party data types are not particularly well-designed.

Let’s underline again that attributes are simple additions to R objects. However, as
we said in Section 4.4.3, certain attributes are special, and class is one of them. In
particular, we can only set class to be a character vector (possibly of length greater
than one; see Section 10.2.5).

x <- 12345
attr(x, "class") <- 1 # character vectors only
Error in attr(x, "class") <- 1: attempt to set invalid 'class' attribute

Furthermore, the class function can read the value of the class attribute. Its replace-
ment version is also available.

class(x) <- "Date" # set; the same as attr(x, "class") <- "Date"
class(x) # get; here, it is the same as attr(x, "class")
[1] "Date"

Important The class function always yields a value, even if the corresponding attrib-
ute is not set. We call it an implicit class. Compare the following results:

class(NULL) # no `class` set because NULL cannot have any attributes
[1] "NULL"
class(c(TRUE, FALSE, NA)) # no attributes so class is implicit (= typeof)
[1] "logical"
class(c(1, 2, 3, NA_real_)) # typeof returns "double"
[1] "numeric"
class(c("a", "b", NA_character_))
[1] "character"
class(list(list(1, 2, 3), LETTERS))
[1] "list"

(continues on next page)

5 For instance, consider once again the example from Section 5.4.3 that applies the split function on a
data frame reduced to a list.

10 S3 CLASSES 187

(continued from previous page)

class(function(x) x) # typeof gives "closure"
[1] "function"

Also, Chapter 11 will explain that any object equipped with the dim attribute also has
an implicit class:

(x <- as.matrix(c(1, 2, 3)))
[,1]
[1,] 1
[2,] 2
[3,] 3
attributes(x) # `class` is not amongst the attributes
$dim
[1] 3 1
class(x) # implicit class
[1] "matrix" "array"
typeof(x) # it is still a numeric vector (under the bonnet)
[1] "double"

10.2 Generics andmethod dispatching
10.2.1 Generics, default, and custommethods
Let’s inspect the source code of the print function:

print(print) # sic!
function (x, ...)
UseMethod("print")
<environment: namespace:base>

Any function like the above6 we will call from now on a generic (an S3 generic, from S
version 3 [14]). Its only job is to invoke UseMethod("print"). It dispatches the control
flow to another function, referred to as a method, based on the class of the first argu-
ment.

6 Some functions can have a version of UseMethod hidden at the C language level (internally); see Sec-
tion 10.2.3.

188 II DEEPER

Important All arguments passed to the generic will also be available7 in the method
dispatched to.

For example, let’s define an object of the class categorical (a name that we have just
come up with; we could have called it cat, CATEGORICAL, or SpanishInquisition as
well). It will be our version of the factor type that we discuss later.

x <- structure(
c(1, 3, 2, 1, 1, 1, 3),
levels=c("a", "b", "c"),
class="categorical"

)

We assume that such an object is a sequence of small positive integers (codes). It is
equippedwith the levels attribute, which is a character vector of length not less than
themaximum of the said integers. In particular, the first level deciphers themeaning
of the code 1. Hence, the above vector represents a sequence a, c, b, a, a, a, c.

There is no special method for displaying objects of the categorical class. Hence,
when we call print, the default (fallback) method is invoked:

print(x)
[1] 1 3 2 1 1 1 3
attr(,"levels")
[1] "a" "b" "c"
attr(,"class")
[1] "categorical"

This is the standard function for displaying numeric vectors.We arewell familiarwith
it. Its name is print.default, and we can always call it directly:

print.default(x) # the default print method
[1] 1 3 2 1 1 1 3
attr(,"levels")
[1] "a" "b" "c"
attr(,"class")
[1] "categorical"

However,we can introduce adesignatedmethod for printing categoricalobjects. Its
namemust precisely be print.categorical:

print.categorical <- function(x, ...)
{

(continues on next page)

7 However, it cannot be implied by reading the preceding source code. UseMethod heavily relies on some
obscure hacks. Wemay only call it inside a function’s body. Once invoked, it does not return to the generic.
Before dispatching to a particularmethod, it creates a couple of hidden variables which givemore detail on
the operation conveyed, e.g., `.Generic` or `.Class`; see help("UseMethod") and Section 5 of [70].

10 S3 CLASSES 189

(continued from previous page)

x_character <- attr(x, "levels")[unclass(x)]
print(x_character) # calls `print.default`
cat(sprintf("Categories: %s\n",

paste(attr(x, "levels"), collapse=", ")))
invisible(x) # this is what all print methods do; see help("print")

}

Calling print automatically dispatches the control flow to this method:

print(x)
[1] "a" "c" "b" "a" "a" "a" "c"
Categories: a, b, c

Of course, the default method can still be called. Referring to print.default(x) dir-
ectly will output the same result as the one a few chunks above.

Note print.categoricalhas been equippedwith the dot-dot-dot attribute since the
generic print had one too8.

10.2.2 Creating generics
IntroducingnewS3generics is as straightforwardasdefininga function that callsUse-
Method. For instance, here is a dispatcher which creates new objects of the categor-
ical class based on other objects:

as.categorical <- function(x, ...)
UseMethod("as.categorical") # synonym: UseMethod("as.categorical", x)

We always need to define the default method:

as.categorical.default <- function(x, ...)
{

if (!is.character(x))
x <- as.character(x)

xu <- unique(sort(x)) # drops NAs
structure(

match(x, xu),
class="categorical",
levels=xu

)
}

Testing:

8 (*) Ensuring S3 generic/method consistency is part of R package check.

190 II DEEPER

as.categorical(c("a", "c", "a", "a", "d", "c"))
[1] "a" "c" "a" "a" "d" "c"
Categories: a, c, d
as.categorical(c(3, 6, 4, NA, 9, 9, 6, NA, 3))
[1] "3" "6" "4" NA "9" "9" "6" NA "3"
Categories: 3, 4, 6, 9

Thismethod is already quite flexible. It handles a wide variety of data types because it
relies on the built-in generic as.character (Section 10.2.3).

Example 10.3 Wemight want to forbid the conversion from lists because it does not necessarily
make sense:

as.categorical.list <- function(x, ...)
stop("conversion of lists to categorical is not supported")

The users can always be instructed in the method’s documentation that they are responsible for
converting lists to another type prior to a call to as.categorical.

Example 10.4 The default method deals with logical vectors perfectly fine:

as.categorical(c(TRUE, FALSE, NA, NA, FALSE)) # as.categorical.default
[1] "TRUE" "FALSE" NA NA "FALSE"
Categories: FALSE, TRUE

However, we might still want to introduce its specialised version. This is because we know a
slightlymore efficient algorithm (andwe have nothing better to do) based on the fact that FALSE
and TRUE converted to numeric yield 0 and 1, respectively:

as.categorical.logical <- function(x, ...)
{

if (!is.logical(x))
x <- as.logical(x) # or maybe stopifnot(is.logical(x))?

structure(
x + 1, # only 1, 2, and NAs will be generated
class="categorical",
levels=c("FALSE", "TRUE")

)
}

It spawns the same result as the default method but is slightly faster.

as.categorical(c(TRUE, FALSE, NA, NA, FALSE)) # as.categorical.logical
[1] "TRUE" "FALSE" NA NA "FALSE"
Categories: FALSE, TRUE

Weperformed some argument consolidation at the beginning because a user is always able to call
a method directly on an R object of any kind (which is a good thing; see Section 10.2.4). In other
words, there is no guarantee that the argument xmust be of type logical.

10 S3 CLASSES 191

10.2.3 Built-in generics
Many9 functions and operators we have introduced so far are, in fact, S3 generics:
print, head, `[`, `[[`, `[<-`, `[[<-`, length, `+`, `<=`, is.numeric, as.numeric, is.
character, as.character, as.list, round, log, sum, rep, c, and na.omit, to name a
few.

Example 10.5 Let’s overload the as.charactermethod.The default one does not makemuch
sense for the objects of our custom type:

as.character(x)
[1] "1" "3" "2" "1" "1" "1" "3"

So:

as.character.categorical <- function(x, ...)
attr(x, "levels")[unclass(x)]

And now:

as.character(x)
[1] "a" "c" "b" "a" "a" "a" "c"

Exercise 10.6 Overload the unique and repmethods for objects of the class categorical.

Example 10.7 New types ought to be designed carefully. For instance, if we forget to overload
the to-numeric converter, some users might be puzzled10 when they see:

(x <- as.categorical(c(4, 9, 100, 9, 9, 100, 42, 666, 4)))
[1] "4" "9" "100" "9" "9" "100" "42" "666" "4"
Categories: 100, 4, 42, 666, 9
as.double(x) # synonym: as.numeric(x); here, it calls as.double.default(x)
[1] 2 5 1 5 5 1 3 4 2

Hence, wemight want to introduce a newmethod:

9 Generating the list of all S3 generics is somewhat tricky, but at least the internal ones are enumer-
ated in help("InternalMethods") and help("groupGeneric"); compare `.S3PrimitiveGenerics`, `.
internalGenerics`, `.knownS3Generics`, and `.S3_methods_table`. Some of themdo not even call Use-
Method explicitly; they dispatch at the C language level.This is unfortunate as it decreases transparency. In-
stead of simply inspecting a function’s source code (compare, e.g., cbind), we need to look this information
up in the documentation. Also, methods may be hardcoded internally, and thus be unoverloadable. How-
ever, sometimes these design choices can be defended because they improve execution speed or memory
consumption.

10 It is a different story if we really want this behaviour. Provided that we document it thoroughly (see
how help("factor") discusses the behaviour of a to-numeric conversion), we can start holding the users
responsible for their feeling confused (those who have experience in teaching others will certainly agree
how complex this matter is). Remember that we can never make an API fully foolproof and that there will
always be someone to challenge/stress-test our ideas. Bad design is alwayswrong, but being overprotective
or too defensive also has its cons. We should maintain our audience wisely. Users of open-source software
are not our clients. We do not work for them.We are in this together.

192 II DEEPER

as.double.categorical <- function(x, ...) # not: as.numeric.categorical
{

actually: as.double.default(as.character.categorical(x))
as.double(as.character(x))

}

It now yields:

as.double(x) # or as.numeric(x); calls as.double.categorical(x)
[1] 4 9 100 9 9 100 42 666 4

Note We can still use unclass to fetch the codes:

unclass(x)
[1] 2 5 1 5 5 1 3 4 2
attr(,"levels")
[1] "100" "4" "42" "666" "9"

It is because the foregoing returns a class-free object, which is now guaranteed to be
processed by the default methods (print, subsetting, as.character, etc.).

Exercise 10.8 What would happen if we used as.numeric instead of unclass in print.
categorical and as.character.categorical?

Exercise 10.9 Update the preceding methods so that we can also create named objects of the
class categorical (i.e., equipped with the names attribute).

Exercise 10.10 The levels of x are sorted lexicographically, not numerically. Introduce a single
method that would let the above code (when rerun without any alterations) generate a more nat-
ural result.

10.2.4 First-argument dispatch and calling S3methods directly
With S3, dispatching is most often done based on the class of only one11 argument: by
default, the first one from the parameter list.

For example, the c function is a generic that dispatches on the first argument’s class.
Let’s overload it for categorical objects. In other words, we will create a function to
be called by the generic when it is invoked on a series of objects whose first element is
of the said class.

11There are many exceptions to this rule. They were made for the (debatable) sake of the R users’ con-
venience. In particular, in Section 12.1.2 wemention that cbind and rbindwill dispatch to the data.frame
method if at least one argument is a data frame (and others are unclassed). Binary operators consider the
type of both operands; see Section 10.2.6. Furthermore, it is worth noting that the S4 class system (Sec-
tion 10.5) allows for dispatching based on the classes many arguments.

10 S3 CLASSES 193

c.categorical <- function(...)
as.categorical(

unlist(
lapply(list(...), as.character)

)
)

It converts each argument to a character vector, relying on the generic as.character
to take care of the details. It works because unlist converts a list of such atomic vec-
tors to a single sequence of strings.

Calling c with the first argument of the class categorical dispatches to the above
method:

x <- c(9, 5, 7, 7, 2)
xc <- as.categorical(x)
c(xc, x) # c.categorical
[1] "9" "5" "7" "7" "2" "9" "5" "7" "7" "2"
Categories: 2, 5, 7, 9

However, if the first argument is, say, unclassed, the defaultmethodwill be consulted:

c(x, xc) # default c
[1] 9 5 7 7 2 4 2 3 3 1

It ignored the class attribute and saw xc as it is, a bareboned numeric vector:

`attributes<-`(xc, NULL) # the underlying codes
[1] 4 2 3 3 1

It is not a bug. It is a well-documented (and now explained) behaviour. After all, com-
pound types (classed objects) are emulated through the basic ones.

Important In most cases, S3 methods can be called directly to get the desired out-
come:

c.categorical(x, xc) # force a call to the specific method
[1] "9" "5" "7" "7" "2" "9" "5" "7" "7" "2"
Categories: 2, 5, 7, 9

We said in most cases because methods can be:

• hardcoded at the C language level (e.g., there is no c.default defined at all12),

• hidden (defined in a package’s namespace but not exported; Section 16.3.6),

12 Dispatching to internal methods can also be done… internally. For instance, overloading `<.
character` (or Compare.character; see below) will have no effect unless the base `<` is replaced with a
custom one that makes an explicit call to UseMethod. Most often, we can expect that the built-in types (e.g.,
atomic vectors), factors, data frames, andmatrices and other arrays might be treated specially.

194 II DEEPER

• overloaded as a group; see Section 10.2.6 and help("groupGeneric").

Example 10.11 Purely for jollity, let’s find a partition of the iris dataset into three clusters us-
ing the 𝑘-means algorithm:

res <- kmeans(iris[-5], centers=3, nstart=10)
print(res)
K-means clustering with 3 clusters of sizes 50, 62, 38
##
Cluster means:
Sepal.Length Sepal.Width Petal.Length Petal.Width
1 5.0060 3.4280 1.4620 0.2460
2 5.9016 2.7484 4.3935 1.4339
3 6.8500 3.0737 5.7421 2.0711
##
Clustering vector:
[1] 1
[36] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[71] 2 2 2 2 2 2 2 3 2
[reached 'max' / getOption("max.print") -- omitted 51 entries]
##
Within cluster sum of squares by cluster:
[1] 15.151 39.821 23.879
(between_SS / total_SS = 88.4 %)
##
Available components:
##
[1] "cluster" "centers" "totss" "withinss"
[5] "tot.withinss" "betweenss" "size" "iter"
[9] "ifault"

It is an object of the class:

class(res)
[1] "kmeans"

which, in fact, is a:

typeof(res)
[1] "list"

The underlying list looks like:

unclass(res)
$cluster
[1] 1
[36] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[71] 2 2 2 2 2 2 2 3 2
[reached 'max' / getOption("max.print") -- omitted 51 entries]

(continues on next page)

10 S3 CLASSES 195

(continued from previous page)

##
$centers
Sepal.Length Sepal.Width Petal.Length Petal.Width
1 5.0060 3.4280 1.4620 0.2460
2 5.9016 2.7484 4.3935 1.4339
3 6.8500 3.0737 5.7421 2.0711
##
$totss
[1] 681.37
##
$withinss
[1] 15.151 39.821 23.879
##
$tot.withinss
[1] 78.851
##
$betweenss
[1] 602.52
##
$size
[1] 50 62 38
##
$iter
[1] 2
##
$ifault
[1] 0

We already know that res was displayed in a fancy way only because there is a printmethod
overloaded for objects of the kmeans class.

But is there?

print.kmeans
Error: object 'print.kmeans' not found

Even though the method is hidden (internal) in the stats package’s namespace, from Sec-
tion 16.3.6wewill learn that it canbeaccessedby callinggetS3method("print", "kmeans")
or referring to stats:::print.kmeans (note the triple colon).

10.2.5 Multi-class-ness
The class attribute can be instantiated as a character vector of any length. For ex-
ample:

(t1 <- Sys.time())
[1] "2026-01-07 10:42:02 CET"

(continues on next page)

196 II DEEPER

(continued from previous page)

(t2 <- strptime("2021-08-15T12:59:59+1000", "%Y-%m-%dT%H:%M:%S%z"))
[1] "2021-08-15 04:59:59"

Let’s inspect the classes of these two objects:

class(t1)
[1] "POSIXct" "POSIXt"
class(t2)
[1] "POSIXlt" "POSIXt"

Section 10.3.1 will discuss date-time classes in more detail. It will highlight that the
former is represented as a numeric vector, while the latter is a list. Thus, these two
should primarily be seen as instances of two distinct types. However, as both of them
have a lot in common, it was a wise design choice to allow them to be seen also as the
representatives of the same generic category of POSIX time objects.

Important When calling a generic function13 f on an object x of the classes14 class1,
class2, …, classK (in this order), UseMethod(f, x)dispatches to themethoddeterm-
ined as follows:

1. if f.class1 is available15, call it;

2. otherwise, if f.class2 is available, call this one;

3. …;

4. otherwise, if f.classK is available, invoke it;

5. otherwise, refer to the fallback f.default.

Example 10.12 There is amethod diff for objects of the class POSIXt that carries a statement:

r <- if (inherits(x, "POSIXlt")) as.POSIXct(x) else x

This way, we can process both POSIXct and POSIXlt instances using the same procedure.

We should see no magic in this simple scheme. It is nothing more than a way to de-
termine the method to be called for a particular R object. It can be used as a mech-
anism tomimic the idea of inheritance in object-orientated programming languages.
However, the S3 system does not allow for defining classes in any formal manner.

For example, we cannot say that objects of the class POSIXct inherit from POSIXt.
Neither can we say that each object of the class POSIXct is also an instance of POSIXt.
The class attribute can still be set arbitrarily on a per-object basis. We can create

13The case of binary operators is handled differently; see Section 10.2.6.
14 UseMethod dispatches on the implicit class as determined by the class function. Note that the class

attribute does not necessarily have to be set in order for class to return a sensible answer.
15 For more details on S3 method lookup, see Section 16.3.6.

10 S3 CLASSES 197

ones whose class is simply POSIXct (without the POSIXt part) or even c("POSIXt",
"POSIXct") (in this order).

Note In any method, it is possible to call the method corresponding to the next class
by calling NextMethod.

For instance, ifwe are in f.class1, a call to NextMethod(f)will try invoking f.class2.
If such a method does not exist, further methods in the search chain will be probed,
falling back to the default method if necessary. We will give an illustration later.

10.2.6 Operator overloading
Operators are ordinary functions (Section 9.3.5). Even though what follows can par-
tially be implied by what we have already said, as usual in R, some oddities are to be
expected.

For example, let’s overload the index operator for objects of the class categorical.
Looking at help("["), we see that the default method has two arguments: x (the cat-
egorical object being sliced) and i (the indexer). Ours will have the same interface
then:

`[.categorical` <- function(x, i)
{

structure(
unclass(x)[i], # `[`(unclass(x), i)
class="categorical",
levels=attr(x, "levels") # the same levels as input

)
}

Thedefault S3method, `[.default`, is hardcoded at the C language level andwe can-
not refer to it directly.This is whywe called unclass instead. Alternatively, we can also
invoke NextMethod:

`[.categorical` <- function(x, i)
{

structure(
NextMethod("["), # call default method, passing `x` and `i`
class="categorical",
levels=attr(x, "levels") # the same levels as input

)
}

We can also introduce the replacement version of this operator:

`[<-.categorical` <- function(x, i, value)
{

(continues on next page)

198 II DEEPER

(continued from previous page)

levels <- attr(x, "levels")
value <- match(value, levels) # integer codes corresponding to levels
structure(

NextMethod("[<-"), # call default method, passing `x`, `i`, `values`
class="categorical",
levels=levels # same levels as input

)

or, equivalently:
structure(
`[<-`(unclass(x), i, value=match(value, attr(x, "levels"))),
class="categorical",
levels=attr(x, "levels")
)

}

Testing:

x <- as.categorical(c(3, 6, 4, NA, 9, 9, 6, NA, 3))
x[1:4]
[1] "3" "6" "4" NA
Categories: 3, 4, 6, 9
x[1:4] <- c("6", "7")
print(x)
[1] "6" NA "6" NA "9" "9" "6" NA "3"
Categories: 3, 4, 6, 9

Notice how we handled the case of nonexistent levels and that the recycling rule has
been automagically inherited (amongst other features) from the default index oper-
ator.

Exercise 10.13 Do these two operators preserve the names attribute of x? Is indexing with neg-
ative integers or logical vectors supported as well?Why is that/is that not the case?

Furthermore, let’s overload the `==` operator. Assume16 that we would like two cat-
egoricalobjects tobe comparedbasedon theactual labels they encode, in anelement-
wise manner:

`==.categorical` <- function(e1, e2)
as.character(e1) == as.character(e2)

We are feeling lucky: by not performing any type checking, we rely on the particular
as.charactermethods corresponding to the types of e1 and e2. Also, assuming that

16There are, of course, many possible ways to implement the `==` operator for the discussed objects. For
instance, it may return either a single TRUE or FALSE depending on if two objects are identical (although
probably overloading all.equalwould be a better idea). We could also compare the corresponding under-
lying integer codes instead of the labels, etc.

10 S3 CLASSES 199

as.character always17 returns a character object, we dispatch to the defaultmethod
for `==` (which handles atomic vectors).

Some examples:

as.categorical(c(1, 3, 5, 1)) == as.categorical(c(1, 3, 1, 1))
[1] TRUE TRUE FALSE TRUE
as.categorical(c(1, 3, 5, 1)) == c(1, 3, 1, 1)
[1] TRUE TRUE FALSE TRUE
c(1, 3, 5, 1) == as.categorical(c(1, 3, 1, 1))
[1] TRUE TRUE FALSE TRUE

Important In the case of binary operators, dispatching is done based on the classes
of both arguments. In all three preceding calls, we call `==.categorical`, regardless
of whether the classed object is the first or the second operand.

If two operands are classed, and differentmethods are overloaded for both, awarning
will be generated, and the default internal method will be called.

`==.A` <- function(e1, e2) "A"
`==.B` <- function(e1, e2) "B"
structure(c(1, 2, 3), class="A") == structure(c(2, NA, 3), class="B")
Warning: Incompatible methods ("==.A", "==.B") for "=="
[1] FALSE NA TRUE

Note (*) By creating a single Ops method, we can define the meaning of all binary
operators at once.

Ops.categorical <- function(e1, e2)
{

if (!(.Generic %in% c("<", ">", "<=", ">=", "==", "!=")))
stop(sprintf("%s not defined for 'categorical' objects", .Generic))

e1 <- as.character(e1)
e2 <- as.character(e2)
NextMethod(.Generic) # dispatch to the default method (for character)

}

as.categorical(c(1, 3, 5, 1)) > c(1, 2, 4, 2)
[1] FALSE TRUE TRUE FALSE

Here, `.Generic` is a variable representing the name of the operator (generic) being
invoked; see Section 16.3.6.

Other group generics are: Summary (including functions such as min, sum, and all),

17Which, of course, does not have to be the case; it is merely an assumption based on our belief in the
common sense of other developers.

200 II DEEPER

Math (abs, log, round, etc.), matrixOps (`%*%`), and Complex (e.g., Re, Im); see
help("groupGeneric") for more details.

Sometimes we must rely on the `.S3method` function to let R recognise a custom
method related to such generics.

10.3 Common built-in S3 classes
Below we discuss a few noteworthy classes, including those representing date-time
information and factors (ordered or not). Note that classes representing tabular data
will be dealt with in separate parts, owing to their importance and ubiquity. Namely,
matrices and other arrays are covered in Chapter 11, and data frames are discussed in
Chapter 12. Inspecting other18 interesting compound types is left as a simple exercise
for the studious reader.

10.3.1 Date, time, etc.
The Date class represents… dates (calendar ones, not fruits).

(x <- c(Sys.Date(), as.Date(c("1969-12-31", "1970-01-01", "2023-02-29"))))
[1] "2026-01-07" "1969-12-31" "1970-01-01" NA
class(x)
[1] "Date"

Complex types are built on basic ones. Underneath, what we deal with here is:

typeof(x)
[1] "double"
unclass(x)
[1] 20460 -1 0 NA

which is the number of days since the UNIX epoch, 1970-01-01T00:00:00+0000 (mid-
night GMT/UTC).

The POSIXct (calendar time) class represents date-time objects:

(x <- Sys.time())
[1] "2026-01-07 10:42:02 CET"
class(x)
[1] "POSIXct" "POSIXt"
typeof(x)
[1] "double"

(continues on next page)

18 unique(.S3_methods_table[, 2]) approximates the list of available classes.

10 S3 CLASSES 201

(continued from previous page)

unclass(x)
[1] 1767778923

Underneath, it is the number of seconds since the UNIX epoch. By default, whilst
printing, the current default timezone is used (see Sys.timezone). However, such ob-
jects can be equipped with the tzone attribute.

structure(1, class=c("POSIXct", "POSIXt")) # using current default timezone
[1] "1970-01-01 01:00:01 CET"
structure(1, class=c("POSIXct", "POSIXt"), tzone="UTC")
[1] "1970-01-01 00:00:01 UTC"

In both cases, the time is 1 second after the beginning of the UNIX epoch. On the au-
thor’s PC, the former is displayed in the current local timezone, though.

Exercise 10.14 UseISOdatetime to inspecthowmidnightsaredisplayed indifferent timezones.

The POSIXlt (local time) class is represented using a list of atomic vectors19.

(x <- as.POSIXlt(c(a="1970-01-01 00:00:00", b="2030-12-31 23:59:59")))
a b
"1970-01-01 00:00:00 CET" "2030-12-31 23:59:59 CET"
class(x)
[1] "POSIXlt" "POSIXt"
typeof(x)
[1] "list"
str(unclass(x)) # calling str instead of print to make display more compact
List of 11
$ sec : num [1:2] 0 59
$ min : int [1:2] 0 59
$ hour : int [1:2] 0 23
$ mday : int [1:2] 1 31
$ mon : int [1:2] 0 11
$ year : Named int [1:2] 70 130
..- attr(*, "names")= chr [1:2] "a" "b"
$ wday : int [1:2] 4 2
$ yday : int [1:2] 0 364
$ isdst : int [1:2] 0 0
$ zone : chr [1:2] "CET" "CET"
$ gmtoff: int [1:2] NA NA
- attr(*, "tzone")= chr [1:3] "" "CET" "CEST"
- attr(*, "balanced")= logi TRUE

Exercise 10.15 Read about the meaning of each named element, especially mon and year; see
help("DateTimeClasses").

The manual states that POSIXlt is supposedly closer to human-readable forms than

19Which was inspired by struct tm in C’s <time.h>.

202 II DEEPER

POSIXct, but it is a matter of taste. Some R functions return the former, and other
output the latter type.

Exercise 10.16 The twomain functions for date formatting and parsing, strftime and strp-
time, use specialfield formatters (similar tosprintf).Readabout them in theRmanual.What
type of inputs do they accept?What outputs do they produce?

There are several methods overloaded for objects of the said classes. In fact, the first
call in this section already involved the use of c.Date.

Exercise 10.17 Play around with the overloaded versions of seq, rep, and as.character.

Aspecificnumber of days or seconds canbe added to or subtracted fromadate or time,
respectively.However, `-` (see also diff) can also be applied on two date-time objects,
which yields an object of the class difftime.

Sys.Date() - (Sys.Date() - 1)
Time difference of 1 days
Sys.time() - (Sys.time() - 1)
Time difference of 1 secs

Exercise 10.18 Check out how objects of the class difftime are internally represented.

Applying other arithmetic operations on date-time objects raises an error. Because
date-time objects are just numbers, they can be compared to each other using binary
operators20. Also, methods such as sort and order21 could be applied on them.

Exercise 10.19 Checkout thestringxpackage,which replaces thebaseRdate-timeprocessing
functions with their more portable counterparts.

Exercise 10.20 proc.time can be used to measure the time to execute a given expression:

t0 <- proc.time() # timer start
... to do - something time-consuming ...
sum(runif(1e7)) # whatever, just testing
[1] 4999488
print(proc.time() - t0) # elapsed time
user system elapsed
0.120 0.005 0.124

The function returns an object of the class proc_time. Inspect how it is represented internally.

10.3.2 Factors
Thefactor class is oftenused to representqualitativedata, e.g., species, groups, types.
In fact, categorical (our example class) was inspired by the built-in factor.

20The overloaded group generic Ops prevents us from adding or multiplying two dates and defines the
meaning of the relational operators. As an exercise, check out its source code.

21 See an exercise below on the use of xtfrm.

10 S3 CLASSES 203

(x <- c("spam", "spam", "bacon", "sausage", "spam", "bacon"))
[1] "spam" "spam" "bacon" "sausage" "spam" "bacon"
(f <- factor(x))
[1] spam spam bacon sausage spam bacon
Levels: bacon sausage spam

Note how factors are printed.There are no double quote characters around the labels.
The list of levels is given at the end.

Internally, such objects are represented as integer vectors (Section 6.4.1) with ele-
ments between 1 and 𝑘.They are equippedwith the special (as in Section 4.4.3) levels
attribute, which is a character vector of length 𝑘22.

class(f)
[1] "factor"
typeof(f)
[1] "integer"
unclass(f)
[1] 3 3 1 2 3 1
attr(,"levels")
[1] "bacon" "sausage" "spam"
attr(f, "levels") # also: levels(f)
[1] "bacon" "sausage" "spam"

Factors are often used instead of character vectors defined over a small number of
unique labels23, where there is a need to manipulate their levels conveniently.

attr(f, "levels") <- c("a", "b", "c") # also levels(f) <- c(....new...)
print(f)
[1] c c a b c a
Levels: a b c

The underlying integer codes remain the same.

Certain operations on vectors of small integers are relatively easy to express, espe-
cially those concerning element grouping: splitting, counting, and plotting (e.g., Fig-
ure 13.17). It is because the integer codes can naturally be used whilst indexing other
vectors. Section 5.4 mentioned a few functions related to this, such as match, split,
findInterval, and tabulate. Specifically, the latter can be implemented like “for
each i, increase count[factor_codes[i]] by one”.

Exercise 10.21 Study the source code of the factor function. Note the use of as.character,
unique, order, and match.

22 [70] states: Factors are currently implementedusing an integer array to specify the actual levels anda secondarray
of names that are mapped to the integers. Rather unfortunately users often make use of the implementation in order to
make some calculations easier.This, however, is an implementation issue and is not guaranteed to hold in all implement-
ations of R. Still, fortunately, this has been a de facto standard for factors for a very long time.

23 Recall that there is a global (internal) string cache. Hence, having many duplicated strings is not a
burden on the computer’s memory.

204 II DEEPER

Exercise 10.22 Implement a simplified version of table based on tabulate. It should work
for objects of the class factor and return a named numeric vector.

Exercise 10.23 Implement a version of cut based on findInterval.

Important The as.numeric method has not been overloaded for factors. Therefore,
whenwe call the generic, the defaultmethod is used: it returns the underlying integer
codes as-is.This can surprise unaware users when they play with factors representing
integer numbers:

(g <- factor(c(11, 15, 16, 11, 13, 4, 15))) # converts numbers to strings
[1] 11 15 16 11 13 4 15
Levels: 4 11 13 15 16
as.numeric(g) # the underlying codes
[1] 2 4 5 2 3 1 4
as.numeric(as.character(g)) # to get the numbers encoded
[1] 11 15 16 11 13 4 15

Alas, support for factors is often hardcoded at the C language level. From the end user
perspective, itmakes this class behave less predictably. In particular, themanual over-
loading of certain methods for factor objects might have no effect.

Important If f is a factor, thenx[f]doesnot behave likex[as.character(f)], i.e., it
is not indexingby labels using thenames attribute. Instead,wegetx[as.numeric(f)];
the underlying codes determine the positions.

h <- factor(c("a", "b", "a", "c", "a", "c"))
levels(h)[h] # the same as c("a", "b", "c")[c(1, 2, 1, 3, 1, 3)]
[1] "a" "b" "a" "c" "a" "c"
c(b="x", c="y", a="z")[h] # names are not used whilst indexing
b c b a b a
"x" "y" "x" "z" "x" "z"
c(b="x", c="y", a="z")[as.character(h)] # names are used now
a b a c a c
"z" "x" "z" "y" "z" "y"

More often than not, indexing by factors will happen “accidentally”24, leaving us
slightly puzzled. In particular, factors lookmuch like character vectors when they are
carried in data frames:

(df <- data.frame(A=c("x", "y", "z"), B=factor(c("x", "y", "z"))))
A B

(continues on next page)

24 (*) Up until R 4.0, many functions (including data.frame and read.csv) had the stringsAsFactors
option set to TRUE; see help("options"). It resulted in all character vectors’ being automatically conver-
ted to factors, e.g., when creating data frames (compare Section 12.1.5). Luckily, this is no longer the case.
However, factor objects can still be encountered; for instance, check the class of iris[["Species"]].

10 S3 CLASSES 205

(continued from previous page)

1 x x
2 y y
3 z z
class(df[["A"]])
[1] "character"
class(df[["B"]])
[1] "factor"

Important Be careful when combining factors and not-factors:

x <- factor(c("A", "B", "A"))
c(x, "C")
[1] "1" "2" "1" "C"
c(x, factor("C"))
[1] A B A C
Levels: A B C

Exercise 10.24 When subsetting a factor object, the result will inherit the levels attribute in
its entirety:

f[c(1, 2)] # drop=FALSE
[1] c c
Levels: a b c

However:

f[c(1, 2), drop=TRUE]
[1] c c
Levels: c

Implement your version of the droplevels function, which removes the unused attributes.

Exercise 10.25 The replacement version of the index operator does not automatically add new
levels to the modified object:

x <- factor(c("A", "B", "A"))
`[<-`(x, 4, value="C") # like in x[4] <- "C"
Warning in `[<-.factor`(x, 4, value = "C"): invalid factor level, NA
generated
[1] A B A <NA>
Levels: A B

Implement a version of `[<-.factor` that has such a capability.

206 II DEEPER

10.3.3 Ordered factors
When creating factors, we can enforce a particular ordering and the number of levels:

x <- c("spam", "spam", "bacon", "sausage", "spam", "bacon")
factor(x, levels=c("eggs", "bacon", "sausage", "spam"))
[1] spam spam bacon sausage spam bacon
Levels: eggs bacon sausage spam

If we want the arrangement of the levels to define a linear ordering relation over the
set of labels, we can call:

(f <- factor(x, levels=c("eggs", "bacon", "sausage", "spam"), ordered=TRUE))
[1] spam spam bacon sausage spam bacon
Levels: eggs < bacon < sausage < spam
class(f)
[1] "ordered" "factor"

It yields an ordered factor, which enables comparisons like:

f[f >= "bacon"] # what's not worse than bacon?
[1] spam spam bacon sausage spam bacon
Levels: eggs < bacon < sausage < spam

How is that possible?Well, based on information provided in this chapter, it will come
as no surprise that it is because… someone has created a relational operator for objects
of the class ordered.

10.3.4 Formulae (*)
Formulae are created using the `~` operator. Some R users employ them to specify
widely-conceived statisticalmodels in functions such as lm (e.g., linear regression), glm
(generalised linear models like logistic regression etc.), aov (analysis of variance),
wilcox.test (the two-sample Mann–Whitney–Wilcoxon test), aggregate (comput-
ing aggregates within data groups), boxplot (box-and-whisker plots for a variable
split by a combination of factors), or plot (scatter plots); see also Chapter 11 of [59].
For instance, formulae can be used to describe symbolic relationships such as:

• “y as a linear combination of x1, x2, and x3”,

• “y grouped/split by a combination of x1 and x2”,

where y, x1, etc., are, for example, column names in a data frame.

Formulae are interpreted by the corresponding functions, and not the R language it-
self.Thus, programmers are free to assign them anymeaning. As their syntax is quite
esoteric, beginners might find them confusing. Hence, we will postpone discussing
them until Section 17.6. Luckily, the use of formulae can usually easily be avoided25.

25 For example, lm.fit can be used instead of lm. It is slightlymore difficult to learn, but it has the added

10 S3 CLASSES 207

10.4 (Over)using the forward pipe operator, `|>` (*)
The OOP paradigm is utile when we wish to define a new data type, perhaps even a
hierarchy of types.Many development teams find it an efficient tool to organise larger
pieces of software. However, in the data science and numerical computing domains,
more often than not, we are the consumers of object orientation rather than class de-
signers.

Thanks to theS3methoddispatchmechanism,our language is easily extensible. Some-
thing that mimics a new data type can easily be introduced. Most importantly, meth-
ods can be added26 or removed during runtime, e.g., when importing external pack-
ages.

However, R is still a functional programming language, where functions are not just
first-class citizens: they are privileged. In functional programming, the emphasis is
on operations (verbs), not data (nouns). It leads to a very readable syntax. For example,
assuming that square, x, and y are sensibly defined, themean squared difference can
be written as:

mean(square(x-y)) # read: mean of squares of differences

Example 10.26 Base R is extremely flexible.We can introduce new vocabulary aswe please. In
Section 12.3.7, we will study an example where we define:

• group_by (a function that splits a data framewith respect to a combination of levels in given
named columns and returns a list of data frames with class list_dfs),

• aggregate.list_dfs (which applies an aggregation function on every column of all data
frames in a given list), and

• mean.list_dfs (a specialised version of the former that calls mean).

The specifics do not matter now. Let’s just consider the notation we use when the operations are
chained:

select a few rows and columns from the `iris` data frame:
iris_subset <- iris[51:150, c("Sepal.Width", "Petal.Length", "Species")]
compute the averages of all variables grouped by Species:
mean(group_by(iris_subset, "Species"))
Species x Mean

(continues on next page)

benefit of ensuring the user knows that the emergence of all model variables is not magical (especially the
nonlinear/mixed effect terms).

26 (*) In more traditional object-orientated programming languages, the method list is often sealed in-
side the class’ definition (like in C++) or cumbersome patches must be applied to inject a method (like in
Python; see also the concept of extensionmethods in C# or Kotlin and, to some extent, of class inheritance).
When methods are parts of particular classes, there can be a lot of duplicated code. Functional OOP can
be more developer-friendly as we can provide all methods related to roughly the same functionality in one
spot.

208 II DEEPER

(continued from previous page)

1 versicolor Sepal.Width 2.770
2 versicolor Petal.Length 4.260
3 virginica Sepal.Width 2.974
4 virginica Petal.Length 5.552

The functional syntax is very reader-centric (by the way, self-explanatory variable names and
rich comments are priceless).We compute themean in groups defined by Species in a subset of
the iris data frame. All verbs appear on the left side of the expression, with the final (the most
important?) operation being listed first.

Nonetheless, when implementing more complex data processing pipelines, program-
mers think in different categories: “first, we need to do this, then we need to do that,
and afterwards…”.When they write their ideas down, they have to press Home and End
or arrow keys a few times to move the caret to the right places:

finally(thereafter(then(first(x))))

As people are inherently lazy, they might want to “optimise” their workflow to save a
bit of energy. Thus, many popular languages rely on message-passing syntax, where
operations are propagated (and written) left-to-right instead of inside-out. For in-
stance, object.method1().method2()might mean “call method1 on the object and
then call method2 on the result”. Here, the object is toldwhat to do.

Since R 4.1.0, we have the pipe operator27, `|>`. It ismerely syntactic sugar for translat-
ing between the message-passing and function-centric notion. In a nutshell, instead
of writing:

h(g(f(x), y))
mean(square(x-y))
mean(group_by(iris_subset, "Species"))

we have the following equivalent forms:

x |> f() |> g(y) |> h()
(x-y) |> square() |> mean()
iris_subset |> group_by("Species") |> mean()

Such syntax is developer-centric. It might be faster to write. It emphasises the order
in which the operations are executed. However, we must stress that there is nothing
that cannot be achieved through the function-centric form and perhaps a few auxili-
ary variables. As this book is minimalist by design, we refrain ourselves from using it.
Those unconvinced should take note of the following.

First, expressions on the right side of the pipe operator must always be proper calls.
Therefore, the use of round brackets is obligatory. Thus, when passing anonymous
functions, wemust write:

27 It was inspired by `|` in Bash and `|>@` in F# and Julia (which are part of the language specification).
Also, there is a `%>%` operator (and related ones) in the R package magrittr.

10 S3 CLASSES 209

runif(10) |> (function(x) mean((x-mean(x))^2))() # note the "()" at the end
[1] 0.078184

Peculiarly, in R 4.1.0, a “shorthand” notation for creating functions was introduced.
We can save seven keystrokes and scribble “\(...) expr” instead of “function(...)
expr”.

runif(10) |> (\(x) mean((x-mean(x))^2))() # again: "()" at the end
[1] 0.078184

Also, the placeholder `_` can be used on the right side of the pipe operator (only once)
to indicate that the left side must be matched with a specific named argument of the
function to be called. Otherwise, the left side is always passed as the first argument.
Therefore, the two following expressions are equivalent:

x |> median() |> `-`(e1=x, e2=_) |> abs() |> median()
median(abs(x-median(x)))

Note When writing code interactively, we may sometimes benefit from using the
rightward `->` operator. Suffice it to say that “name <- value” and “value -> name”
are synonymous.This way, we can type some lengthy code, store the result in an inter-
mediate variable, and then continue in the next line (possibly referring to that auxili-
ary value more than once). For instance:

runif(10) -> .
mean((.-mean(.))^2)
[1] 0.078184

Recall that `.` is as valid a variable name as any other one. Another example:

iris[, c("Sepal.Width", "Petal.Length", "Species")] -> .
.[.[, "Species"] %in% c("versicolor", "virginica"),] -> .
mean(group_by(., "Species"))
Species x Mean
1 versicolor Sepal.Width 2.770
2 versicolor Petal.Length 4.260
3 virginica Sepal.Width 2.974
4 virginica Petal.Length 5.552

210 II DEEPER

10.5 S4 classes (*)
TheS3-styleOOP is basedonabrilliantly simple idea: calling agenericf(x)dispatches
automatically to a method f.class_of_x(x) or f.default(x) in the case where the
former does not exist. Naturally, S3 has some inherent limitations:

• classes cannot be formally defined; the class attributemaybe assigned arbitrarily
to any object28,

• argument dispatch is performed only29 with regard to one data type30.

In most cases, and with an appropriate level of mindfulness, they are not a problem
at all. However, it is a typical condition of programmers who come to our world from
moremainstream languages (e.g., C++ or Java; yours truly included) until they appre-
ciate the true beauty of R’s being somewhat different. Before they fully develop such
an acquired taste, though, they grow restless as “R is has no real OOP because it lacks
polymorphism, encapsulation, formal inheritance, and so on, and somethingmust be
done about it!”. The truth is that it had not had to, but with high probability, it would
have anyway in one way or another.

And so the fourth versionof theS languagewas introduced in 1998 (see [10]). It brought
a new object-orientated system, which we are used to referring to as S4. Its R version
is defined by the methods package. Below we discuss it briefly. For more details, see
help("Classes_Details") and help("Methods_Details") as well as [11] and [12].

Note (*) S4 was loosely inspired by the Common Lisp Object System (with its def-
class, defmethod, etc.; see, e.g., [21]). In the current author’s opinion, the S4 system
is somewhat of an afterthought.Due to appendages like this, R seems like apatchwork
language. Suffice it to say that it was not the last attempt to introduce a “real” OOP in
the overall functional R: the story will resume in Section 16.1.5.

The main issue with all the supplementary OOP approaches is that each of them is
parallel to S3which never lost its popularity and is still in the very core of our language.
We are thus covering them only for the sake of completeness for the readers might
come across such objects. In particular, we shall explain the meaning of a notation
like x@slot.Moreover, in Section 11.4.7 wemention the Matrix class which is perhaps
the most prominent showcase of S4.

Nonetheless, the current author advises taking with a pinch of salt statements such

28 A partial solution to this could involve defining a method like validate.class_name, which is called
frequently and which checks whether a given object enjoys a few desirable constraints.

29 Certain functions implement ad hoc workarounds (see, e.g., cbind, which dispatches to cbind.data.
frame if one argument is a data frame and the remaining ones are vectors ormatrices). Also, we said in the
previous chapter that binary operators consider the classes of both operands.

30 Hypothetically, we can imagine an OOP system relying onmethods named like method.class_name1.
class_name2 where dispatching is based on two argument types. This would be beautiful, but it is not the
case in R.

10 S3 CLASSES 211

as “for new projects, it is recommended to use themore flexible and robust S4 scheme
provided in the methods package” mentioned in help("UseMethod").

10.5.1 Defining S4 classes
An S4 class can be formally registered through a call to setClass. For instance:

library("methods") # in the case where it is not auto-loaded
setClass("qualitative", slots=c(data="integer", levels="character"))

We defined a class named qualitative (similarity to our own categorical and the
built-in factor S3 classes is intended). It has two slots: data and levels being integer
and character vectors, respectively. This notation is already outlandish. There is no
assignment suggesting that we have introduced something novel.

An object of the above class can be instantiated by calling new:

z <- new("qualitative", data=c(1L, 2L, 2L, 1L, 1L), levels=c("a", "b"))
print(z)
An object of class "qualitative"
Slot "data":
[1] 1 2 2 1 1
##
Slot "levels":
[1] "a" "b"

That z is of this class can be verified by calling is.

is(z, "qualitative")
[1] TRUE
class(z) # also: attr(z, "class")
[1] "qualitative"
attr(,"package")
[1] ".GlobalEnv"

Important A fewRpackages import the methods package only to get access the handy
is function. It does not mean they are defining new S4 classes.

Note S4 objects are marked as being of the following basic type:

typeof(z)
[1] "S4"

See Section 1.12 of [69] for technical details on how they are internally represented. In
particular, in our case, all the slots are simply stored as object attributes:

212 II DEEPER

attributes(z)
$data
[1] 1 2 2 1 1
##
$levels
[1] "a" "b"
##
$class
[1] "qualitative"
attr(,"package")
[1] ".GlobalEnv"

10.5.2 Accessing slots
Readingorwriting slot contents canbedonevia the `@` operator and theslot function
or their replacement versions.

z@data # or slot(z, "data")
[1] 1 2 2 1 1
z@levels <- c("A", "B")

Note The `@` operator can only be used on S4 objects, and some sanity checks are
automatically performed:

z@unknown <- "spam"
Error in (function (cl, name, valueClass) : 'unknown' is not a slot in
class "qualitative"
z@data <- "spam"
Error in (function (cl, name, valueClass) : assignment of an object of
class "character" is not valid for @'data' in an object of class
"qualitative"; is(value, "integer") is not TRUE

10.5.3 Definingmethods
For the S4 counterparts of the S3 generics (Section 10.2), see help("setGeneric").
Luckily, there is a reasonable degree of interoperability between the S3 andS4 systems.

Let’s introduce a new method for the well-known as.character generic. Instead of
defining as.character.qualitative, we need to register a new routine with set-
Method.

setMethod(
"as.character", # name of the generic
"qualitative", # class of 1st arg; or: signature=c(x="qualitative")

(continues on next page)

10 S3 CLASSES 213

(continued from previous page)

function(x, ...) # method definition
x@levels[x@data]

)

Testing:

as.character(z)
[1] "A" "B" "B" "A" "A"

show is the S4 counterpart of print:

setMethod(
"show",
"qualitative",
function(object)
{

x <- as.character(object)
print(x) # calls `print.default`
cat(sprintf("Categories: %s\n",

paste(object@levels, collapse=", ")))
}

)

Interestingly, it is involved automatically on a call to print:

print(z) # calls `show` for `qualitative`
[1] "A" "B" "B" "A" "A"
Categories: A, B

Methods that dispatch on the type of multiple arguments are also possible. For ex-
ample:

setMethod(
"split",
c(x="ANY", f="qualitative"),
function (x, f, drop=FALSE, ...)

split(x, as.character(f), drop=drop, ...)
)

It permits the first argument to be of any type (like a default method). Moreover, here
is its version tailored for matrices (see Chapter 11).

setMethod(
"split",
c(x="matrix", f="qualitative"),
function (x, f, drop=FALSE, ...)

lapply(
split(seq_len(NROW(x)), f, drop=drop, ...), # calls the above

(continues on next page)

214 II DEEPER

(continued from previous page)

function(i) x[i, , drop=FALSE])
)

Some tests:

A <- matrix(1:35, nrow=5) # whatever
split(A, z) # matrix, qualitative
$A
[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 1 6 11 16 21 26 31
[2,] 4 9 14 19 24 29 34
[3,] 5 10 15 20 25 30 35
##
$B
[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 2 7 12 17 22 27 32
[2,] 3 8 13 18 23 28 33
split(1:5, z) # ANY, qualitative
$A
[1] 1 4 5
##
$B
[1] 2 3

Exercise 10.27 Overload the `[` operator for the qualitative class.

10.5.4 Defining constructors
We can also overload the initializemethod, which is automatically called by new:

setMethod(
"initialize", # note the American spelling
"qualitative",
function(.Object, x)
{ # the method itself

if (!is.character(x))
x <- as.character(x) # see above

xu <- unique(sort(x)) # drops NAs

.Object@data <- match(x, xu)

.Object@levels <- xu

.Object # return value - a modified object
}

)

This constructor yields instances of the classqualitativebasedonanobject coercible
to a character vector. For example:

10 S3 CLASSES 215

w <- new("qualitative", c("a", "c", "a", "a", "d", "c"))
print(w)
[1] "a" "c" "a" "a" "d" "c"
Categories: a, c, d

Exercise 10.28 Set up a validatingmethod for our class; see help("setValidity").

10.5.5 Inheritance
New S4 classes can be derived from existing ones. For instance:

setClass("binary", contains="qualitative")

It is a child class that inherits all slots from its parent.Wecanoverload its initialisation
method:

setMethod(
"initialize",
"binary",
function(.Object, x)
{

if (!is.logical(x))
x <- as.logical(x)

x <- as.character(as.integer(x))
xu <- c("0", "1")
.Object@data <- match(x, xu)
.Object@levels <- xu
.Object

}
)

Testing:

new("binary", c(TRUE, FALSE, TRUE, FALSE, NA, TRUE))
[1] "1" "0" "1" "0" NA "1"
Categories: 0, 1

We can still use the showmethod of the parent class.

10.6 Exercises
Exercise 10.29 Answer the following questions.

• How to display the source code of the default methods for head and tail?

• Can there be, at the same time, one object of the class c("A", "B") and another one of the
class c("B", "A")?

216 II DEEPER

• If f is a factor, what are the relationships between as.character(f), as.numeric(f),
as.character(as.numeric(f)), and as.numeric(as.character(f))?

• Ifx isanamedvectorandf isa factor, isx[f] equivalent tox[as.character(f)]or rather
x[as.numeric(f)]?

Exercise 10.30 A user calls:

plot(x, y, col="red", ylim=c(1, max(x)), log="y")

wherexandyarenumeric vectors.Consulthelp("plot") for themeaning of theylimandlog
arguments.Was that straightforward?

Exercise 10.31 Explain why the two following calls return significantly different results.

c(Sys.Date(), "1970-01-01")
[1] "2026-01-07" "1970-01-01"
c("1970-01-01", Sys.Date())
[1] "1970-01-01" "20460"

Propose a workaround.

Exercise 10.32 Write methods head and tail for our example categorical class.

Exercise 10.33 (*)Write anRpackage that defines S3 classcategorical. Add a fewmethods
for this class. Note the need to use the S3method directive in the NAMESPACE file; see [66].

Exercise 10.34 Inspect the result of a call tobinom.test(79, 100) and torle(c(1, 1, 1,
4, 3, 3, 3, 3, 3, 2, 2)). Find themethods responsible for such objects’ pretty-printing.

Exercise 10.35 Readmore about the connection class. In particular, see theValue section of
help("connections").

Exercise 10.36 Read about the subsetting operators overloaded for the package_version
class; see help("numeric_version").

Exercise 10.37 There are xtfrm methods overloaded for classes such as numeric_version,
difftime, Date, and factor. Find out how they work and where they might be of service (es-
pecially in relation to order and sort; see also Section 12.3.1).

Exercise 10.38 Give an examplewheresplit(x, list(y1, y2)) (with default arguments)
will fail to generate the correct result.

Exercise 10.39 Write a function that determines the mode, i.e., the most frequently occurring
value in a given object of the class factor. If the mode is not unique, return a randomly chosen
one (each with the same probability).

Exercise 10.40 Implement your version of the gl function.

11
Matrices and other arrays

When we equip an atomic or generic vector with the dim attribute, it automatically
becomes an object of the S3 class array. In particular, two-dimensional arrays (of the
primary S3 class matrix) allow us to represent tabular data where items are aligned
into rows and columns:

structure(1:6, dim=c(2, 3)) # a matrix with two rows and three columns
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

Combinedwith the fact that there aremany functions overloaded for the matrix class,
we have just opened up a whole world of new possibilities, which we explore in this
chapter.Namely, wewill discuss how to perform the algebraic operations such asmat-
rix multiplication, transpose, finding eigenvalues, and performing various decom-
positions. We will also cover data wrangling operations such as array subsetting and
column- and rowwise aggregation. Furthermore, the next chapter will present data
frames: matrix-like objects whose columns can be of any (not necessarily the same)
type.

Important Oftentimes, a numeric matrix with 𝑛 rows and𝑚 columns is used to rep-
resent 𝑛 points (samples, observations) in an 𝑚-dimensional space (with 𝑚 numeric
features or variables),ℝ𝑚.

11.1 Creating arrays
11.1.1 matrix and array
Amatrix can be conveniently created using the following function.

(A <- matrix(1:6, byrow=TRUE, nrow=2))
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6

It converted an atomic vector of length six to a matrix with two rows. The number of

218 II DEEPER

columns was determined automatically (ncol=3 could have been passed, additionally
or instead, to get the same result).

Important By default, the elements of the input vector are read column by column:

matrix(1:6, ncol=3) # byrow=FALSE
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

Amatrix can be equippedwith an attribute that defines dimension names, being a list
of two character vectors of appropriate sizes which label each row and column:

matrix(1:6, byrow=TRUE, nrow=2, dimnames=list(c("x", "y"), c("a", "b", "c")))
a b c
x 1 2 3
y 4 5 6

Alternatively, to create amatrix,we canuse thearray function. It requires thenumber
of rows and columns to be specified explicitly.

array(1:6, dim=c(2, 3))
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

The elements were consumed in the column-major order.

Arrays of other dimensionalities are also possible. Here is a one-dimensional array:

array(1:6, dim=6)
[1] 1 2 3 4 5 6

Whenprinted, it is indistinguishable froman atomic vector (but the class attribute is
still set to array). And now for something completely different: a three-dimensional
array of size 3 × 4 × 2:

array(1:24, dim=c(3, 4, 2))
, , 1
##
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
##
, , 2
##
[,1] [,2] [,3] [,4]

(continues on next page)

11 MATRICES AND OTHER ARRAYS 219

(continued from previous page)

[1,] 13 16 19 22
[2,] 14 17 20 23
[3,] 15 18 21 24

It can be thought of as twomatrices of size 3 × 4 (because how else can we print out a
3D object on a 2D console?).

The array function can be fed with the dimnames argument, too. For instance, the
above three-dimensional hypertable would require a list of three character vectors of
sizes 3, 4, and 2, respectively.

Exercise 11.1 Verify that 5-dimensional arrays can also be created.

11.1.2 Promoting and stacking vectors
We can promote an ordinary vector to a column vector, i.e., a matrix with one column,
by calling:

as.matrix(1:2)
[,1]
[1,] 1
[2,] 2
cbind(1:2)
[,1]
[1,] 1
[2,] 2

and to a row vector:

t(1:3) # transpose
[,1] [,2] [,3]
[1,] 1 2 3
rbind(1:3)
[,1] [,2] [,3]
[1,] 1 2 3

Actually, cbind and rbind stand for column- and row-bind.They permit multiple vec-
tors andmatrices to be stacked one after/below another:

rbind(1:4, 5:8, 9:10, 11) # row-bind
[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 9 10
[4,] 11 11 11 11
cbind(1:4, 5:8, 9:10, 11) # column-bind
[,1] [,2] [,3] [,4]
[1,] 1 5 9 11

(continues on next page)

220 II DEEPER

(continued from previous page)

[2,] 2 6 10 11
[3,] 3 7 9 11
[4,] 4 8 10 11
cbind(1:2, 3:4, rbind(11:13, 21:23)) # vector, vector, 2x3 matrix
[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 11 12 13
[2,] 2 4 21 22 23

and so forth. Unfortunately, the generalised recycling rule is not implemented in full:

cbind(1:4, 5:8, cbind(9:10, 11)) # different from cbind(1:4, 5:8, 9:10, 11)
Warning in cbind(1:4, 5:8, cbind(9:10, 11)): number of rows of result is
not a multiple of vector length (arg 1)
[,1] [,2] [,3] [,4]
[1,] 1 5 9 11
[2,] 2 6 10 11

Note that the first two arguments were of length four.

11.1.3 Simplifying lists
simplify2array is an extension of the unlist function. Given a list of atomic vectors,
each of length one, it will return a flat atomic vector. However, if longer vectors of the
same lengths are given, they will be converted to a matrix.

simplify2array(list(1, 11, 21)) # each of length one
[1] 1 11 21
simplify2array(list(1:3, 11:13, 21:23, 31:33)) # each of length three
[,1] [,2] [,3] [,4]
[1,] 1 11 21 31
[2,] 2 12 22 32
[3,] 3 13 23 33
simplify2array(list(1, 11:12, 21:23)) # no can do (without warning!)
[[1]]
[1] 1
##
[[2]]
[1] 11 12
##
[[3]]
[1] 21 22 23

In the second example, each vector becomes a separate columnof the resultingmatrix,
which can easily be justified by the fact that matrix elements are stored in a column-
wise order.

Example 11.2 Quite a few functions call the foregoing automatically; compare the simplify
argument toapply,sapply,tapply, orreplicate, and theSIMPLIFY (sic!) argument tomap-
ply. For instance, sapply combines lapplywith simplify2array:

11 MATRICES AND OTHER ARRAYS 221

min_mean_max <- function(x) c(Min=min(x), Mean=mean(x), Max=max(x))
sapply(split(iris[["Sepal.Length"]], iris[["Species"]]), min_mean_max)
setosa versicolor virginica
Min 4.300 4.900 4.900
Mean 5.006 5.936 6.588
Max 5.800 7.000 7.900

Take note of what constitutes the columns of the returnmatrix.

Exercise 11.3 Inspect the behaviour of as.matrix on list arguments. Write your version of
simplify2array named as.matrix.list that always returns a matrix. If a list of non-
equisized vectors is given, fill the missing cells with NAs and generate a warning.

Important Sometimes a call to do.call(cbind, x) might be a better idea than a
referral to simplify2array. Provided that x is a list of atomic vectors, it always returns
a matrix: shorter vectors are recycled (which might be welcome, but not necessarily).

do.call(cbind, list(a=c(u=1), b=c(v=2, w=3), c=c(i=4, j=5, k=6)))
Warning in (function (..., deparse.level = 1) : number of rows of result
is not a multiple of vector length (arg 2)
a b c
i 1 2 4
j 1 3 5
k 1 2 6

Example 11.4 Consider a toy named list of numeric vectors:

x <- list(a=runif(10), b=rnorm(15))

Compare the results generated by sapply (which calls simplify2array):

sapply(x, function(e) c(Mean=mean(e)))
a.Mean b.Mean
0.57825 0.12431
sapply(x, function(e) c(Min=min(e), Max=max(e)))
a b
Min 0.045556 -1.9666
Max 0.940467 1.7869

with its version based on do.call and cbind:

sapply2 <- function(...)
do.call(cbind, lapply(...))

sapply2(x, function(e) c(Mean=mean(e)))
a b
Mean 0.57825 0.12431

(continues on next page)

222 II DEEPER

(continued from previous page)

sapply2(x, function(e) c(Min=min(e), Max=max(e)))
a b
Min 0.045556 -1.9666
Max 0.940467 1.7869

Notice that sapplymay return an atomic vector with somewhat surprising names.

More examples appear in Section 12.3.7.

11.1.4 Beyond numeric arrays
Arrays based on non-numeric vectors are also possible. For instance, we will later
stress that matrix comparisons are performed elementwisely. They spawn logical
matrices:

A >= 3
[,1] [,2] [,3]
[1,] FALSE FALSE TRUE
[2,] TRUE TRUE TRUE

Matrices of character strings can be useful too:

matrix(strrep(LETTERS[1:6], 1:6), ncol=3)
[,1] [,2] [,3]
[1,] "A" "CCC" "EEEEE"
[2,] "BB" "DDDD" "FFFFFF"

And, of course, complex matrices:

A + 1i
[,1] [,2] [,3]
[1,] 1+1i 2+1i 3+1i
[2,] 4+1i 5+1i 6+1i

We are not limited to atomic vectors. Lists can be a basis for arrays as well:

matrix(list(1, 11:21, "A", list(1, 2, 3)), nrow=2)
[,1] [,2]
[1,] 1 "A"
[2,] integer,11 list,3

Certain elements are not displayed correctly, but they are still there.

11.1.5 Internal representation
An object of the S3 class array is an atomic vector or a list equipped with the dim at-
tribute being a vector of nonnegative integers. Interestingly, we do not have to set the

11 MATRICES AND OTHER ARRAYS 223

class attribute explicitly: the accessor function class will return an implicit1 class
anyway.

class(1) # atomic vector
[1] "numeric"
class(structure(1, dim=rep(1, 1))) # 1D array (vector)
[1] "array"
class(structure(1, dim=rep(1, 2))) # 2D array (matrix)
[1] "matrix" "array"
class(structure(1, dim=rep(1, 3))) # 3D array
[1] "array"

Note that a two-dimensional array is additionally of the matrix class.

Optionaldimensionnamesare representedbymeansof thedimnamesattribute,which
is a list of 𝑑 character vectors, where 𝑑 is the array’s dimensionality.

(A <- structure(1:6, dim=c(2, 3), dimnames=list(letters[1:2], LETTERS[1:3])))
A B C
a 1 3 5
b 2 4 6
dim(A) # or attr(A, "dim")
[1] 2 3
dimnames(A) # or attr(A, "dimnames")
[[1]]
[1] "a" "b"
##
[[2]]
[1] "A" "B" "C"

Important Internally, elements in an array are stored in the column-major (Fortran)
order:

as.numeric(A) # drop all attributes to reveal the underlying numeric vector
[1] 1 2 3 4 5 6

Setting byrow=TRUE in a call to the matrix function only affects the order inwhich this
constructor reads a given source vector, not the resulting column/row-majorness.

(B <- matrix(1:6, ncol=3, byrow=TRUE))
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
as.numeric(B)
[1] 1 4 2 5 3 6

The two said special attributes can be modified through the replacement functions

1 See Section 10.1. Interestingly, calling unclass on amatrix has no effect.

224 II DEEPER

`dim<-` and `dimnames<-` (and, of course, `attr<-` as well). In particular, changing
dimdoes not alter the underlying atomic vector. It only affects howother functions, in-
cluding the corresponding printmethod, interpret their placement on a virtual grid:

`dim<-`(A, c(3, 2)) # not the same as the transpose of `A`
[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

We obtained a different view of the same flat data vector. Also, the dimnames attribute
was dropped because its size became incompatible with the newly requested dimen-
sionality.

Exercise 11.5 Study the source code of the nrow, NROW, ncol, NCOL, rownames, row.names,
and colnames functions.

Interestingly, for one-dimensional arrays, the names function returns a reasonable
value (based on the dimnames attribute, which is a list with one character vector), des-
pite the names attribute’s not being set.

What is more, the dimnames attribute itself can be named:

names(dimnames(A)) <- c("ROWS", "COLUMNS")
print(A)
COLUMNS
ROWS A B C
a 1 3 5
b 2 4 6

It is still a numeric matrix, but its presentation has been slightly prettified.

Exercise 11.6 outerappliesanelementwiselyvectorised functiononeachpair of elements from
two vectors, forming a two-dimensional result grid. Implement it yourself based on two calls to
rep. Some examples:

outer(c(x=1, y=10, z=100), c(a=1, b=2, c=3, d=4), "*") # multiplication
a b c d
x 1 2 3 4
y 10 20 30 40
z 100 200 300 400
outer(c("A", "B"), 1:8, paste, sep="-") # concatenate strings
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] "A-1" "A-2" "A-3" "A-4" "A-5" "A-6" "A-7" "A-8"
[2,] "B-1" "B-2" "B-3" "B-4" "B-5" "B-6" "B-7" "B-8"

Exercise 11.7 Show how match(y, z) can be implemented using outer. Is its time and
memory complexity optimal, though?

Exercise 11.8 table creates a contingencymatrix/array that counts the number of unique ele-
ments or unique pairs of corresponding items from one ormore vectors of equal lengths.Write its
one- and two-argument version based on tabulate. For example:

11 MATRICES AND OTHER ARRAYS 225

tips <- read.csv(paste0("https://github.com/gagolews/teaching-data/raw/",
"master/other/tips.csv"), comment.char="#") # a data.frame (list)

table(tips[["day"]])
##
Fri Sat Sun Thur
19 87 76 62
table(tips[["smoker"]], tips[["day"]])
##
Fri Sat Sun Thur
No 4 45 57 45
Yes 15 42 19 17

11.2 Array indexing
Array subsetting can be performed bymeans of the overloaded2 `[` method.

11.2.1 Arrays are built on basic vectors
Consider two example matrices:

(A <- matrix(1:12, byrow=TRUE, nrow=3))
[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12
(B <- `dimnames<-`(A, list(# copy of `A` with `dimnames` set

c("a", "b", "c"), # row labels
c("x", "y", "z", "w") # column labels

)))
x y z w
a 1 2 3 4
b 5 6 7 8
c 9 10 11 12

Subsettingbasedonone indexer (as inChapter 5)will refer to theunderlying flat vector.
For instance:

A[6]
[1] 10

It is the element in the third row, second column. Recall that values are stored in the
column-major order.

2 Hidden deeply at the C language level; see help("[").

226 II DEEPER

11.2.2 Selecting individual elements
Our example 3 × 4 real matrix𝐀 ∈ ℝ3×4 is like:

𝐀 = ⎡⎢⎢
⎣

𝑎1,1 𝑎1,2 𝑎1,3 𝑎1,4
𝑎2,1 𝑎2,2 𝑎2,3 𝑎2,4
𝑎3,1 𝑎3,2 𝑎3,3 𝑎3,4

⎤⎥⎥
⎦

= ⎡⎢⎢
⎣

1 2 3 4
5 6 7 8
9 10 11 12

⎤⎥⎥
⎦

.

Matrix elements are aligned in a two-dimensional grid. Hence, we can pinpoint a cell
using two indexes. In mathematical notation, 𝑎𝑖,𝑗 refers to the 𝑖-th row and the 𝑗-th
column. Similarly in R:

A[3, 2] # the third row, the second column
[1] 10
B["c", "y"] # using dimnames == B[3, 2]
[1] 10

11.2.3 Selecting rows and columns
Some textbooks, and we are fond of this notation here as well, mark with 𝐚𝑖,⋅ a vector
that consists of all the elements in the 𝑖-th rowandwith𝐚⋅,𝑗 all items in the 𝑗-th column.
In R, this corresponds to one of the indexers being left out.

A[3,] # the third row
[1] 9 10 11 12
A[, 2] # the second column
[1] 2 6 10
B["c",] # or B[3,]
x y z w
9 10 11 12
B[, "y"] # or B[, 2]
a b c
2 6 10

Let’s stress that A[1], A[1,], and A[, 1] have different meanings. Also, we see that
the results’ dimnames are adjusted accordingly; see also unname, which can take care of
them once and for all.

Exercise 11.9 Use duplicated to remove repeating rows in a given numeric matrix (see also
unique).

11.2.4 Dropping dimensions
Extracting an individual element or a single row/column from a matrix brings about
an atomic vector. If the resulting object’s dim attribute consists of 1s only, it will be
removed whatsoever; see also the drop function which removes the dimensions with
only one level.

In order to obtain proper row and column vectors, we can request the preservation of

11 MATRICES AND OTHER ARRAYS 227

the dimensionality of the output object (and, more precisely, the length of dim). This
can be done by passing drop=FALSE to `[`.

A[1, 2, drop=FALSE] # the first row, second column
[,1]
[1,] 2
A[1, , drop=FALSE] # the first row
[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
A[, 2, drop=FALSE] # the second column
[,1]
[1,] 2
[2,] 6
[3,] 10

Important Unfortunately, the drop argument defaults to TRUE. Many bugs could be
avoided otherwise, primarily when the indexers are generated programmatically.

Note For list-based matrices, we can also use a multi-argument version of `[[` to
extract the individual elements.

C <- matrix(list(1, 11:12, 21:23, 31:34), nrow=2)
C[1, 2] # for `[`, input type is the same as the output type, hence a list
[[1]]
[1] 21 22 23
C[1, 2, drop=FALSE]
[,1]
[1,] integer,3
C[[1, 2]] # extract
[1] 21 22 23

11.2.5 Selecting submatrices
Indexing based on two vectors, both of length two or more, extracts a sub-block of a
givenmatrix.

A[1:2, c(1, 2, 4)] # rows 1 and 2, columns 1, 2, and 4
[,1] [,2] [,3]
[1,] 1 2 4
[2,] 5 6 8
B[c("a", "b"), -3] # some rows, omit the third column
x y w
a 1 2 4
b 5 6 8

228 II DEEPER

Note again that we have drop=TRUE by default, which affects the operator’s behaviour
if one of the indexers is a scalar.

A[c(1, 3), 3]
[1] 3 11
A[c(1, 3), 3, drop=FALSE]
[,1]
[1,] 3
[2,] 11

Exercise 11.10 Define the splitmethod for the matrix class that returns a list of 𝑛matrices
when given a matrix with 𝑛 rows and an object of the class factor of length 𝑛 (or a list of such
objects). For example:

split.matrix <- ...to.do...
A <- matrix(1:12, nrow=3) # matrix whose rows are to be split
s <- factor(c("a", "b", "a")) # determines a grouping of rows
split(A, s)
$a
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 3 6 9 12
##
$b
[,1] [,2] [,3] [,4]
[1,] 2 5 8 11

11.2.6 Selecting elements based on logical vectors
Logical vectors can also be used as indexers, with consequences that are not hard to
guess:

A[c(TRUE, FALSE, TRUE), -1] # select 1st and 3rd row, omit 1st column
[,1] [,2] [,3]
[1,] 4 7 10
[2,] 6 9 12
B[B[, "x"]>1 & B[, "x"]<=9,] # all rows where x's contents are in (1, 9]
x y z w
b 5 6 7 8
c 9 10 11 12
A[2, colMeans(A)>6, drop=FALSE] # 2nd row and the columns whose means > 6
[,1] [,2]
[1,] 8 11

Note Section 11.3 notes that comparisons involvingmatrices are performed in an ele-
mentwise manner. For example:

11 MATRICES AND OTHER ARRAYS 229

A>7
[,1] [,2] [,3] [,4]
[1,] FALSE FALSE FALSE TRUE
[2,] FALSE FALSE TRUE TRUE
[3,] FALSE FALSE TRUE TRUE

Such logical matrices can be used to subset other matrices of the same size.This kind
of indexing always gives rise to a (flat) vector:

A[A>7]
[1] 8 9 10 11 12

It is nothing else than the single-indexer subsetting involving two flat vectors (a nu-
meric and a logical one).The dim attributes are not considered here.

Exercise 11.11 Implement your versions of max.col, lower.tri, and upper.tri.

11.2.7 Selecting based on two-columnnumericmatrices
We can also index a matrix A by a two-column matrix of positive integers I. For in-
stance:

(I <- cbind(
c(1, 3, 2, 1, 2),
c(2, 3, 2, 2, 4)

))
[,1] [,2]
[1,] 1 2
[2,] 3 3
[3,] 2 2
[4,] 1 2
[5,] 2 4

Now A[I] gives easy access to:

• A[I[1, 1], I[1, 2]],

• A[I[2, 1], I[2, 2]],

• A[I[3, 1], I[3, 2]],

• …

and so forth. In other words, each row of I gives the coordinates of the elements to
extract.The result is always a flat vector.

A[I]
[1] 4 9 5 4 11

This is exactly A[1, 2], A[3, 3], A[2, 2], A[1, 2], A[2, 4].

230 II DEEPER

Note which can also return a list of index matrices:

which(A>7, arr.ind=TRUE)
row col
[1,] 2 3
[2,] 3 3
[3,] 1 4
[4,] 2 4
[5,] 3 4

Moreover, arrayInd converts flat indexes to multidimensional ones.

Exercise 11.12 Implement your version of arrayInd and a function performing the inverse op-
eration.

Exercise 11.13 Write your version of diag.

11.2.8 Higher-dimensional arrays
For 𝑑-dimensional arrays, indexing can involve up to 𝑑 indexes. It is particularly valu-
able for arrays with the dimnames attribute set representing contingency tables over a
Cartesian product ofmultiple factors.The datasets::Titanic object is an exemplary
four-dimensional table:

str(dimnames(Titanic)) # for reference (note that dimnames are named)
List of 4
$ Class : chr [1:4] "1st" "2nd" "3rd" "Crew"
$ Sex : chr [1:2] "Male" "Female"
$ Age : chr [1:2] "Child" "Adult"
$ Survived: chr [1:2] "No" "Yes"

Here is the number of adult male crewmembers who survived the accident:

Titanic["Crew", "Male", "Adult", "Yes"]
[1] 192

Moreover, let’s fetch a slice corresponding to adults travelling in the first class:

Titanic["1st", , "Adult",]
Survived
Sex No Yes
Male 118 57
Female 4 140

Exercise 11.14 Check if the above four-dimensional array can be indexed using matrices with
four columns.

11 MATRICES AND OTHER ARRAYS 231

11.2.9 Replacing elements
Generally, subsetting drops all attributes except names, dim, and dimnames (unless it
does not make sense otherwise).The replacement variant of the index operator modi-
fies vector values but generally preserves all the attributes.This enables transforming
matrix elements like:

B[B<10] <- A[B<10]^2 # `A` has no `dimnames` set
print(B)
x y z w
a 1 16 49 100
b 4 25 64 121
c 9 10 11 12
B[] <- rep(seq_len(NROW(B)), NCOL(B)) # NOT the same as B <- ...
print(B) # `dim` and `dimnames` were preserved
x y z w
a 1 1 1 1
b 2 2 2 2
c 3 3 3 3

Exercise 11.15 Given a character matrix with entities that can be interpreted as numbers like:

(X <- rbind(x=c(a="1", b="2"), y=c("3", "4")))
a b
x "1" "2"
y "3" "4"

convert it to a numeric matrix with a single line of code. Preserve all attributes.

11.3 Common operations
11.3.1 Matrix transpose
Thematrix transpose, mathematically denoted by𝐀𝑇, is available via a call to t:

(A <- matrix(1:6, byrow=TRUE, nrow=2))
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
t(A)
[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

Hence, if 𝐁 = 𝐀𝑇, then it is a matrix such that 𝑏𝑖,𝑗 = 𝑎𝑗,𝑖. In other words, in the
transposedmatrix, rows become columns, and columns become rows.

232 II DEEPER

For higher-dimensional arrays, a generalised transpose can be obtained through
aperm (try permuting the dimensions of Titanic). Also, the conjugate transpose of
a complex matrix𝐀 is done via Conj(t(A)).

11.3.2 Vectorisedmathematical functions
Vectorised functions suchassqrt,abs,round,log,exp,cos,sin, etc., operateoneach
array element3.

A <- matrix(1/(1:6), nrow=2)
round(A, 2) # rounds every element in A
[,1] [,2] [,3]
[1,] 1.0 0.33 0.20
[2,] 0.5 0.25 0.17

Exercise 11.16 Using a single call to matplot, which allows the y argument to be a matrix,
draw a plot of sin(𝑥), cos(𝑥), | sin(𝑥)|, and | cos(𝑥)| for 𝑥 ∈ [−2𝜋, 6𝜋]; see Section 13.3 for
more details.

11.3.3 Aggregating rows and columns
Whenwe call an aggregation function on an array, itwill reduce all elements to a single
number:

(A <- matrix(1:12, byrow=TRUE, nrow=3))
[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12
mean(A)
[1] 6.5

The apply functionmay be used to summarise individual rows or columns in amatrix:

• apply(A, 1, f) applies a given function f on each row of amatrix A (over the first
axis),

• apply(A, 2, f) applies f on each column of A (over the second axis).

For instance:

apply(A, 1, mean) # synonym: rowMeans(A)
[1] 2.5 6.5 10.5
apply(A, 2, mean) # synonym: colMeans(A)
[1] 5 6 7 8

The function being applied does not have to return a single number:

3Theyare simply applied on each element of theunderlying flat vector. Section 5.5mentioned that unary
functions preserve all attributes of their inputs, hence also dim and dimnames.

11 MATRICES AND OTHER ARRAYS 233

apply(A, 2, range) # min and max
[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 9 10 11 12
apply(A, 1, function(row) c(Min=min(row), Mean=mean(row), Max=max(row)))
[,1] [,2] [,3]
Min 1.0 5.0 9.0
Mean 2.5 6.5 10.5
Max 4.0 8.0 12.0

Take note of the columnwise order of the output values. Moreover, apply also works
on higher-dimensional arrays:

apply(Titanic, 1, mean) # over the first axis, "Class" (dimnames works too)
1st 2nd 3rd Crew
40.625 35.625 88.250 110.625
apply(Titanic, c(1, 3), mean) # over c("Class", "Age")
Age
Class Child Adult
1st 1.50 79.75
2nd 6.00 65.25
3rd 19.75 156.75
Crew 0.00 221.25

11.3.4 Binary operators
In Section 5.5, we stated that binary elementwise operations, such as addition ormul-
tiplication, preserve the attributes of the longer input or both (with the first argument
preferred to the second) if they are of equal sizes. Taking into account that:

• an array is simply a flat vector equipped with the dim attribute, and

• we refer to the respective defaultmethods when applying binary operators,

we can deduce how `+`, `<=`, `&`, etc. behave in several different contexts.

Array-array. First, let’s note what happenswhenwe operate on two arrays of identical
dimensionalities.

(A <- rbind(c(1, 10, 100), c(-1, -10, -100)))
[,1] [,2] [,3]
[1,] 1 10 100
[2,] -1 -10 -100
(B <- matrix(1:6, byrow=TRUE, nrow=2))
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
A + B # elementwise addition
[,1] [,2] [,3]

(continues on next page)

234 II DEEPER

(continued from previous page)

[1,] 2 12 103
[2,] 3 -5 -94
A * B # elementwise multiplication (not: algebraic matrix multiply)
[,1] [,2] [,3]
[1,] 1 20 300
[2,] -4 -50 -600

They are simply the addition andmultiplication of the corresponding elements of two
givenmatrices.

Array-scalar. Second, we can apply matrix-scalar operations:

(-1)*B
[,1] [,2] [,3]
[1,] -1 -2 -3
[2,] -4 -5 -6
A^2
[,1] [,2] [,3]
[1,] 1 100 10000
[2,] 1 100 10000

They multiplied each element in B by -1 and squared every element in A, respectively.
The behaviour of relational operators is of course similar:

A >= 1 & A <= 100
[,1] [,2] [,3]
[1,] TRUE TRUE TRUE
[2,] FALSE FALSE FALSE

Array-vector. Next, based on the recycling rule and the fact that matrix elements are
ordered columnwisely, we have that:

B * c(10, 100)
[,1] [,2] [,3]
[1,] 10 20 30
[2,] 400 500 600

It multiplied every element in the first row by 10 and each element in the second row
by 100. If we wish to multiply each element in the first, second, …, etc. column by the
first, second, …, etc. value in a vector, we should not call:

B * c(1, 100, 1000)
[,1] [,2] [,3]
[1,] 1 2000 300
[2,] 400 5 6000

but rather:

11 MATRICES AND OTHER ARRAYS 235

t(t(B) * c(1, 100, 1000))
[,1] [,2] [,3]
[1,] 1 200 3000
[2,] 4 500 6000

or:

t(apply(B, 1, `*`, c(1, 100, 1000)))
[,1] [,2] [,3]
[1,] 1 200 3000
[2,] 4 500 6000

Exercise 11.17 Write a function that standardises the values in each column of a given matrix:
for all elements in each column, subtract their mean and then divide them by the standard devi-
ation. Try to implement it in a few different ways, including via a call to apply, sweep, scale,
or based solely on arithmetic operators.

Note Some sanity checks are done on the dim attributes, so not every configuration
is possible. Notice some peculiarities:

A + t(B) # `dim` equal to c(2, 3) vs c(3, 2)
Error in A + t(B): non-conformable arrays
A * cbind(1, 10, 100) # this is too good to be true
Error in A * cbind(1, 10, 100): non-conformable arrays
A * rbind(1, 10) # but A * c(1, 10) works...
Error in A * rbind(1, 10): non-conformable arrays
A + 1:12 # `A` has six elements
Error: dims [product 6] do not match the length of object [12]
A + 1:5 # partial recycling is okay
Warning in A + 1:5: longer object length is not a multiple of shorter
object length
[,1] [,2] [,3]
[1,] 2 13 105
[2,] 1 -6 -99

11.4 Numericalmatrix algebra (*)
Many data analysis andmachine learning algorithms, in their essence, involve rather
straightforwardmatrix algebra and numericalmathematics. Suffice it to say that any-
one serious about data science and scientific computing should learn the necessary
theory; see, for example, [32] and [31].

R is a convenient interface to the stable and well-tested algorithms from, amongst

236 II DEEPER

others, BLAS4 and LAPACK. Belowwemention a few of them. External packages imple-
ment hundreds of algorithms tackling differential equations, constrained and uncon-
strained optimisation, etc.; CRAN Task Views5 provide a good overview.

11.4.1 Matrixmultiplication
`*` performs elementwise multiplication. For what we call the (algebraic) matrix mul-
tiplication, we use the `%*%` operator. It can only be performed on two matrices of
compatible sizes: the number of columns in the left matrix must match the number of
rows in the right operand. Given 𝐀 ∈ ℝ𝑛×𝑝 and 𝐁 ∈ ℝ𝑝×𝑚, their multiply is a mat-
rix𝐂 = 𝐀𝐁 ∈ ℝ𝑛×𝑚 such that 𝑐𝑖,𝑗 is the dot product of the 𝑖-th row in𝐀 and the 𝑗-th
column in𝐁:

𝑐𝑖,𝑗 = 𝐚𝑖,⋅ ⋅ 𝐛⋅,𝑗 =
𝑝

∑
𝑘=1

𝑎𝑖,𝑘𝑏𝑘,𝑗,

for 𝑖 = 1, … , 𝑛 and 𝑗 = 1, … , 𝑚. For instance:

(A <- rbind(c(0, 1, 3), c(-1, 1, -2)))
[,1] [,2] [,3]
[1,] 0 1 3
[2,] -1 1 -2
(B <- rbind(c(3, -1), c(1, 2), c(6, 1)))
[,1] [,2]
[1,] 3 -1
[2,] 1 2
[3,] 6 1
A %*% B
[,1] [,2]
[1,] 19 5
[2,] -14 1

Note When applying `%*%` on one or more flat vectors, their dimensionality will be
promoted automatically tomake the operation possible. However, c(a, b) %*% c(c,
d) gives a scalar 𝑎𝑐 + 𝑏𝑑, and not a 2 × 2matrix.

Further, crossprod(A, B) yields𝐀𝑇𝐁 and tcrossprod(A, B) determines𝐀𝐁𝑇 more
efficiently than relying on `%*%`. We can omit the second argument and get𝐀𝑇𝐀 and
𝐀𝐀𝑇, respectively.

crossprod(c(2, 1)) # Euclidean norm squared
[,1]
[1,] 5

(continues on next page)

4 (*) We can select the underlying implementation of BLAS at R’s compile time; see Section A.3 of [68].
Some of them are faster than others.

5 https://cran.r-project.org/web/views

https://cran.r-project.org/web/views

11 MATRICES AND OTHER ARRAYS 237

(continued from previous page)

crossprod(c(2, 1), c(-1, 2)) # dot product of two vectors
[,1]
[1,] 0
crossprod(A) # same as t(A) %*% A, i.e., dot products of all column pairs
[,1] [,2] [,3]
[1,] 1 -1 2
[2,] -1 2 1
[3,] 2 1 13

Recall that if the dot product of two vectors equals 0, we say that they are orthogonal
(perpendicular).

Exercise 11.18 (*)Write your versions ofcov andcor: functions to compute the covariance and
correlation matrices. Make use of the fact that the former can be determined with crossprod
based on a centred version of an input matrix.

11.4.2 Solving systems of linear equations
The solve function can be used to determine the solution to 𝑚 systems of 𝑛 linear
equations of the form 𝐀𝐗 = 𝐁, where 𝐀 ∈ ℝ𝑛×𝑛 and 𝐗,𝐁 ∈ ℝ𝑛×𝑚 (via the LU
decomposition with partial pivoting and row interchanges).

11.4.3 Norms andmetrics
Given an 𝑛 × 𝑚matrix 𝐀, calling norm(A, "1"), norm(A, "2"), and norm(A, "I"),
we can compute the operator norms:

‖𝐀‖1 = max𝑗=1,…,𝑚 ∑𝑛
𝑖=1 |𝑎𝑖,𝑗|,

‖𝐀‖2 = 𝜎1(𝐀) = sup𝟎≠𝐱∈ℝ𝑚
‖𝐀𝐱‖2
‖𝐱‖2

‖𝐀‖𝐼 = max𝑖=1,…,𝑛 ∑𝑚
𝑗=1 |𝑎𝑖,𝑗|,

where 𝜎1 gives the largest singular value (see below). Also, passing "F" as the second

argument yields the Frobenius norm, ‖𝐀‖𝐹 = √∑𝑛
𝑖=1 ∑𝑚

𝑗=1 𝑎2
𝑖,𝑗, and "M" computes

the maximum norm, ‖𝐀‖𝑀 = max 𝑖=1,…,𝑛
𝑗=1,…,𝑚

|𝑎𝑖,𝑗|.

If 𝐀 is a column vector, then ‖𝐀‖𝐹 and ‖𝐀‖2 are equivalent. They are referred to as
the Euclidean norm. Moreover, ‖𝐀‖𝑀 = ‖𝐀‖𝐼 gives the supremum norm and ‖𝐀‖1
outputs the Manhattan (taxicab) one.

Exercise 11.19 Givenan𝑛×𝑚matrix𝐀, normalise each columnso that it becomesaunit vector,
i.e., whose Euclidean norm equals 1.

Further, distdetermines all pairwise distances between a set of𝑛 vectors inℝ𝑚, writ-
ten as an 𝑛 × 𝑚matrix. For example, let’s consider three vectors inℝ2:

(X <- rbind(c(1, 1), c(1, -2), c(0, 0)))

(continues on next page)

238 II DEEPER

(continued from previous page)

[,1] [,2]
[1,] 1 1
[2,] 1 -2
[3,] 0 0
as.matrix(dist(X, "euclidean"))
1 2 3
1 0.0000 3.0000 1.4142
2 3.0000 0.0000 2.2361
3 1.4142 2.2361 0.0000

Thus, the Euclidean distance between the first and the third vector, ‖𝐱1,⋅ − 𝐱3,⋅‖2 =
√(𝑥1,1 − 𝑥3,1)2 + (𝑥1,2 − 𝑥3,2)2, is roughly 1.4142. The maximum, Manhattan, and
Canberra distances/metrics are also available, amongst others.

Exercise 11.20 dist returns an object of the S3 class dist. Inspect how it is represented.

Example 11.21 adist implements a couple of stringmetrics. For example:

x <- c("spam", "bacon", "eggs", "spa", "spams", "legs")
names(x) <- x
(d <- adist(x))
spam bacon eggs spa spams legs
spam 0 5 4 1 1 4
bacon 5 0 5 5 5 5
eggs 4 5 0 4 4 2
spa 1 5 4 0 2 4
spams 1 5 4 2 0 4
legs 4 5 2 4 4 0

It gave the Levenshtein distances between each pair of strings. In particular, we need two edit
operations (character insertions, deletions, or replacements) to turn "eggs" into "legs" (add l
and remove g).

Example 11.22 Objects of the class dist can be used to find a hierarchical clustering of a data-
set. For example:

h <- hclust(as.dist(d), method="average") # see also: plot(h, labels=x)
cutree(h, 3)
spam bacon eggs spa spams legs
1 2 3 1 1 3

It determined three clusters using the average linkage strategy ("legs"and"eggs"are grouped
together, "spam", "spa", "spams" form another cluster, and "bacon" is a singleton).

11.4.4 Eigenvalues and eigenvectors
eigen returns a sequence of eigenvalues (𝜆1, … , 𝜆𝑛) ordered nondecreasingly
w.r.t. |𝜆𝑖|, and a matrix 𝐕 whose columns define the corresponding eigenvectors

11 MATRICES AND OTHER ARRAYS 239

(scaled to the unit length) of a given matrix𝐗. By definition, for all 𝑗, we have𝐗𝐯⋅,𝑗 =
𝜆𝑗𝐯⋅,𝑗.

Example 11.23 (*) Here are the eigenvalues and the corresponding eigenvectors of the matrix
defining the rotation in the xy-plane about the origin (0, 0) by the counterclockwise angle𝜋/6:

(R <- rbind(c(cos(pi/6), sin(pi/6)),
c(-sin(pi/6), cos(pi/6))))

[,1] [,2]
[1,] 0.86603 0.50000
[2,] -0.50000 0.86603
eigen(R)
eigen() decomposition
$values
[1] 0.86603+0.5i 0.86603-0.5i
##
$vectors
[,1] [,2]
[1,] 0.70711+0.00000i 0.70711+0.00000i
[2,] 0.00000+0.70711i 0.00000-0.70711i

The complex eigenvalues are 𝑒−𝜋/6𝑖 and 𝑒𝜋/6𝑖 and we have |𝑒−𝜋/6𝑖| = |𝑒𝜋/6𝑖| = 1.
Example 11.24 (*) Consider a pseudorandom sample that we depict in Figure 11.1:

S <- rbind(c(sqrt(5), 0),
c(0 , sqrt(2)))

mu <- c(10, -3)
Z <- matrix(rnorm(2000), ncol=2) # each row is a standard normal 2-vector
X <- t(t(Z %*% S %*% R)+mu) # scale, rotate, shift
plot(X, asp=1) # scatter plot
draw principal axes:
A <- t(t(matrix(c(0,0, 1,0, 0,1), ncol=2, byrow=TRUE) %*% S %*% R)+mu)
arrows(A[1, 1], A[1, 2], A[-1, 1], A[-1, 2], col="red", lwd=1, length=0.1)

𝐗was created by generating a realisation of a two-dimensional standard normal vector𝐙, scal-
ing it by (√5, √2), rotating by the counterclockwise angle 𝜋/6, and shifting by (10, −3),
which we denote by 𝐗 = 𝐙𝐒𝐑 + 𝝁𝑇. It follows a bivariate6 normal distribution centred at
𝝁 = (10, −3) and with the covariance matrix𝜮 = (𝐒𝐑)𝑇(𝐒𝐑):

crossprod(S %*% R) # covariance matrix
[,1] [,2]
[1,] 4.250 1.299
[2,] 1.299 2.750
cov(X) # compare: sample covariance matrix (estimator)
[,1] [,2]

(continues on next page)

6 For drawing random samples from any multivariate distribution, refer to the theory of copulas, e.g.,
[50].There are a few R packages on CRAN that implement the most popular models.

240 II DEEPER

0 5 10 15 20

-8
-6

-4
-2

0
2

X[,1]

X[
,2

]

Figure 11.1. A sample from a bivariate normal distribution and its principal axes.

(continued from previous page)

[1,] 4.1965 1.2386
[2,] 1.2386 2.7973

It is known that eigenvectors of the covariance matrix correspond to the principal components of
the original dataset. Furthermore, its eigenvalues give the variances explained by each of them.

eigen(cov(X))
eigen() decomposition
$values
[1] 4.9195 2.0744
##
$vectors
[,1] [,2]
[1,] -0.86366 0.50408
[2,] -0.50408 -0.86366

It roughly corresponds to the principal directions (cos𝜋/6, sin𝜋/6) ≃ (0.866, 0.5) and
the thereto-orthogonal (− sin𝜋/6, cos𝜋/6) ≃ (−0.5, 0.866) (up to an orientation inverse)
with the correspondingvariances of 5 and2, respectively (i.e., standarddeviations of√5and√2).
Note that this method of performing principal component analysis, i.e., recreating the scale and
rotation transformation applied on𝐙 based only on𝐗, is not particularly numerically stable; see
Exercise 11.26 for an alternative.

11 MATRICES AND OTHER ARRAYS 241

11.4.5 QR decomposition
Let𝑛 ≥ 𝑚.We say that a real𝑛×𝑚matrix𝐐 is orthogonal,whenever𝐐𝑇𝐐 = 𝐈 (identity
matrix). This is equivalent to𝐐’s columns’ being orthogonal unit vectors. Also, if𝐐 is
a square matrix, then𝐐𝑇 = 𝐐−1 if and only if𝐐𝑇𝐐 = 𝐐𝐐𝑇 = 𝐈.
Let𝐀 be a real7 𝑛 × 𝑚matrix with 𝑛 ≥ 𝑚.Then𝐀 = 𝐐𝐑 is its QR decomposition, if𝐐
is an orthogonal𝑛×𝑚matrix and𝐑 is an upper triangular𝑚×𝑚 one.Note that such a
decomposition is not necessarily unique (without imposing additional requirements),
and that we speak here of a QR factorisation in the so-called narrow form.

The qr function returns an object of the S3 class qr fromwhich we can extract the two
components of interest; see the qr.Q and qr.R functions.

Example 11.25 Let 𝐗 be an 𝑛 × 𝑚 data matrix, representing 𝑛 points in ℝ𝑚, and a vector
𝐲 ∈ ℝ𝑛, where 𝑦𝑖 gives the desired output corresponding to the input 𝐱𝑖,⋅.

Let𝜽 be a vector of𝑚 parameters. For fitting a linear model 𝑦 = 𝐱𝑇𝜽 = 𝜃1𝑥1 + ⋯ + 𝜃𝑚𝑥𝑚,
we can use the method of least squares, whichminimises the quadratic loss function:

ℒ(𝜽) =
𝑛

∑
𝑖=1

(𝐱𝑇
𝑖,⋅𝜽 − 𝑦𝑖)

2
= ‖𝐗𝜽 − 𝐲‖2

2.

It might be shown that if we have the QR factorisation𝐗 = 𝐐𝐑, then the optimal𝜽 is given by:

𝜽 = (𝐗𝑇𝐗)−1 𝐗𝑇𝐲 = 𝐑−1𝐐𝑇𝐲,

which can conveniently be determined via a call to qr.coef.

In particular, we can fit a simple linear regression model 𝑦 = 𝑎𝑥 + 𝑏 = 𝐱𝑇𝜽 by considering
𝐱 = (𝑥, 1) and𝜽 = (𝑎, 𝑏). For instance:

x <- cars[["speed"]]
y <- cars[["dist"]]
X1 <- cbind(x, 1) # the model is theta[1]*x + theta[2]*1
qrX1 <- qr(X1)
(theta <- qr.coef(qrX1, y))
x
3.9324 -17.5791
plot(x, y, xlab="speed", ylab="dist") # scatter plot
abline(theta[2], theta[1], lty=2) # add the regression line

Thus, the fittedmodel is 𝑦 = 3.9324𝑥 − 17.5791, see Figure 11.2.
The same approach is used by lm.fit, the workhorse behind the lmmethod that allows for spe-
cifying regression models using an R formula (which some readers might be familiar with; com-
pare Section 17.6).

7 If𝐀 is a complex matrix, its QR decomposition spawns𝐐 that is a unitary matrix.

242 II DEEPER

5 10 15 20 25

0
20

40
60

80
10

0
12

0

speed

di
st

Figure 11.2.The cars dataset and the fitted regression line.

lm.fit(cbind(x, 1), y)[["coefficients"]] # also: lm(dist~speed, data=cars)
x
3.9324 -17.5791

As an exercise, let us compute𝜽 = 𝐑−1𝐐𝑇𝐲manually.We note that the one-argument version
of solve determines the inverse of a givenmatrix.Thus:

Q <- qr.Q(qrX1)
R <- qr.R(qrX1)
solve(R) %*% t(Q) %*% y # or solve(R) %*% crossprod(Q, y)
[,1]
x 3.9324
-17.5791

However, from the perspective of numerical stability, computing amatrix inverse is rarely a good
idea. Multiplying both sides of the equation𝜽 = 𝐑−1𝐐𝑇𝐲 by𝐑, we get that it holds𝐑𝜽 = 𝐛
with 𝐛 = 𝐐𝑇𝐲. This is a triangular system of linear equations, which can be efficiently solved
using a designated routine:

backsolve(R, crossprod(Q, y))
[,1]
[1,] 3.9324
[2,] -17.5791

11 MATRICES AND OTHER ARRAYS 243

11.4.6 SVD decomposition
Given a real 𝑛 × 𝑚 matrix 𝐗, its singular value decomposition (SVD) is given by
𝐗 = 𝐔𝐃𝐕𝑇, where𝐔 and𝐕 are orthogonal matrices of dimensions 𝑛 × 𝑝 and𝑚 × 𝑝,
respectively, and𝐃 is a 𝑝×𝑝 diagonalmatrixwith the singular values of𝐗. It is usually
assumed that 𝑑1,1 ≥ … ≥ 𝑑𝑝,𝑝 ≥ 0, 𝑝 = min{𝑛, 𝑚}, and then the SVD factorisation
is unique.

The corresponding svd functionmay be used to perform the principal component ana-
lysis8. Namely, if 𝐗 = 𝐔𝐃𝐕𝑇, then the columns of 𝐕 give the eigenvectors of 𝐗𝑇𝐗.
The latter is precisely its scaled covariance matrix if we assume that𝐗 is centred at 0,
Example 11.26 (*) Continuing Exercise 11.24 that features a rotated bivariate normal sample,
we can determine the principal directions by referring to the𝐕 component of the SVD decompos-
ition of a centred version of the datamatrix:

Xc <- t(t(X)-colMeans(X)) # centred version of X
svd(Xc)[["v"]]
[,1] [,2]
[1,] -0.86366 -0.50408
[2,] -0.50408 0.86366

TheSVD factorisation can also aid in determining the solution to linear regression. In
the previous section, we mentioned that the parameter vector 𝜽 minimising ‖𝐗𝜽 −
𝐲‖2

2 is given by 𝜽 = (𝐗𝑇𝐗)−1 𝐗𝑇𝐲. The component 𝐗+ = (𝐗𝑇𝐗)−1 𝐗𝑇 is called
the pseudoinverse of 𝐗 for it holds that 𝐗+𝐗 = 𝐈. If the SVD decomposition is 𝐗 =
𝐔𝐃𝐕𝑇, then 𝐗+ = 𝐕𝐃+𝐔𝑇, where 𝐃+ is the transposed version of 𝐃 carrying the
reciprocals of its non-zero elements.

Example 11.27 Let us go back to the simple linear regressionmodel discussed in Exercise 11.25.
The same solution can be obtained by computing:

svdX1 <- svd(X1)
V <- svdX1[["v"]]
d <- svdX1[["d"]] # only the elements on the diagonal
U <- svdX1[["u"]]
V %*% diag(1/d) %*% t(U) %*% y
[,1]
[1,] 3.9324
[2,] -17.5791

The book [8] gives manymore applications of the SVD factorisation in data science.

11.4.7 A note on the Matrix package
The Matrix package is perhaps the most widely known showcase of the S4 object ori-
entation (Section 10.5). It defines classes andmethods for dense and sparse matrices,
including rectangular, symmetric, triangular, band, and diagonal ones. In particular,

8 See the source code of getS3method("prcomp", "default").

244 II DEEPER

large graph (e.g., in network sciences) or preference (e.g., in recommender systems)
data can be represented using sparse matrices, i.e., those with many zeroes. After all,
it is muchmore likely for two vertices in a network not to be joined by an edge than to
be connected. For example:

library("Matrix")
(D <- Diagonal(x=1:5))
5 x 5 diagonal matrix of class "ddiMatrix"
[,1] [,2] [,3] [,4] [,5]
[1,] 1
[2,] . 2 . . .
[3,] . . 3 . .
[4,] . . . 4 .
[5,] 5

We created a real diagonal matrix of size 5 × 5; 20 elements equal to zero are specially
marked. Moreover:

S <- as(D, "sparseMatrix")
S[1, 2] <- 7
S[4, 1] <- 42
print(S)
5 x 5 sparse Matrix of class "dgCMatrix"
##
[1,] 1 7 . . .
[2,] . 2 . . .
[3,] . . 3 . .
[4,] 42 . . 4 .
[5,] 5

It yielded a general sparse real matrix in the CSC (compressed, sparse, column-
orientated) format.

For more information on this package, see vignette(package="Matrix").

11.5 Exercises
Exercise 11.28 Let X be amatrix with dimnames set. For instance:

X <- matrix(1:12, byrow=TRUE, nrow=3) # example matrix
dimnames(X)[[2]] <- c("a", "b", "c", "d") # set column names
print(X)
a b c d
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12

11 MATRICES AND OTHER ARRAYS 245

Explain the meaning of the following expressions involving matrix subsetting. Note that a few
of them are invalid.

• X[1,],

• X[, 3],

• X[, 3, drop=FALSE],

• X[3],

• X[, "a"],

• X[, c("a", "b", "c")],

• X[, -2],

• X[X[,1] > 5,],

• X[X[,1]>5, c("a", "b", "c")],

• X[X[,1]>=5 & X[,1]<=10,],

• X[X[,1]>=5 & X[,1]<=10, c("a", "b", "c")],

• X[, c(1, "b", "d")].

Exercise 11.29 Assuming that X is an array, what is the difference between the following oper-
ations involving indexing?

• X["1",] vs X[1,],

• X[, "a", "b", "c"] vsX["a", "b", "c"] vsX[, c("a", "b", "c")] vsX[c("a",
"b", "c")],

• X[1] vs X[, 1] vs X[1,],

• X[X>0] vs X[X>0,] vs X[, X>0],

• X[X[, 1]>0] vs X[X[, 1]>0,] vs X[,X[,1]>0],

• X[X[, 1]>5, X[1,]<10] vs X[X[1,]>5, X[, 1]<10].

Exercise 11.30 Give a fewways to create amatrix like:

[,1] [,2]
[1,] 1 1
[2,] 1 2
[3,] 1 3
[4,] 2 1
[5,] 2 2
[6,] 2 3

and one like:

246 II DEEPER

[,1] [,2] [,3]
[1,] 1 1 1
[2,] 1 1 2
[3,] 1 2 1
[4,] 1 2 2
[5,] 1 3 1
[6,] 1 3 2
[7,] 2 1 1
[8,] 2 1 2
[9,] 2 2 1
[10,] 2 2 2
[11,] 2 3 1
[12,] 2 3 2

Exercise 11.31 For a given real𝑛 × 𝑚matrix𝐗, encoding𝑛 input points in an𝑚-dimensional
space, determine their bounding hyperrectangle, i.e., return a 2 × 𝑚 matrix 𝐁 with 𝑏1,𝑗 =
min𝑖 𝑥𝑖,𝑗 and 𝑏2,𝑗 = max𝑖 𝑥𝑖,𝑗.

Exercise 11.32 Let 𝐭 be a vector of 𝑛 integers in {1, … , 𝑘}. Write a function to one-hot encode
each 𝑡𝑖, i.e., return a 0–1 matrix𝐑 of size 𝑛 × 𝑘 such that 𝑟𝑖,𝑗 = 1 if and only if 𝑗 = 𝑡𝑖 (such a
representation is beneficial when solving, e.g., amulticlass classification problem bymeans of 𝑘
binary classifiers). For example, if 𝐭 = [1, 2, 3, 2, 4] and 𝑘 = 4, then:

𝐑 =
⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

.

Then, compose another function, but this time setting 𝑟𝑖,𝑗 = 1 if and only if 𝑗 ≥ 𝑡𝑖, e.g.:

𝑅 =
⎡
⎢
⎢
⎢
⎢
⎣

1 1 1 1
0 1 1 1
0 0 1 1
0 1 1 1
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

.

Important As usual, try to solve all the exerciseswithout using explicit for and while
loops (provided that it is possible).

Exercise 11.33 Given an 𝑛 × 𝑘 real matrix, apply the softmax function on each row, i.e., map
𝑥𝑖,𝑗 to

exp(𝑥𝑖,𝑗)

∑𝑘
𝑙=1 exp(𝑥𝑖,𝑙)

. Then, one-hot decode the values in each row, i.e., find the column number

with the greatest value. Return a vector of size 𝑛with elements in {1, … , 𝑘}.
Exercise 11.34 Assume that an 𝑛 × 𝑚 real matrix𝐗 represents 𝑛 points inℝ𝑚.Write a func-
tion (but do not refer to dist) that determines the pairwise Euclidean distances between all the
𝑛 points and a given 𝐲 ∈ ℝ𝑚. Return a vector 𝐝 of length 𝑛with 𝑑𝑖 = ‖𝐱𝑖,⋅ − 𝐲‖2.

11 MATRICES AND OTHER ARRAYS 247

Exercise 11.35 Let𝐗 and𝐘 be two real-valuedmatrices of sizes𝑛 × 𝑚 and 𝑘 × 𝑚, respectively,
representing two sets of points inℝ𝑚.Returnan integer vector𝐫 of length𝑘 such that 𝑟𝑖 indicates
the index of the point in𝐗with the least distance to (the closest to) the 𝑖-th point in𝐘, i.e., 𝑟𝑖 =
argmin𝑗 ‖𝐱𝑗,⋅ − 𝐲𝑖,⋅‖2.

Exercise 11.36 Write your version of utils::combn.

Exercise 11.37 Time series are vectors or matrices of the class ts equipped with the tsp attrib-
ute, amongst others. Refer to help("ts") for more information about how they are represented
and what S3methods have been overloaded for them.

Exercise 11.38 (*) Numeric matrices can be stored in a CSV file, amongst others. Usually, we
will be loading them via read.csv, which returns a data frame (see Chapter 12). For example:

X <- as.matrix(read.csv(
paste0(

"https://github.com/gagolews/teaching-data/",
"raw/master/marek/eurxxx-20200101-20200630.csv"

),
comment.char="#",
sep=","

))

Write a function read_numeric_matrix(file_name, comment, sep) which is based on
a few calls to scan instead. Use file to establish a file connection so that you can ignore the
comment lines and fetch the column names before reading the actual numeric values.

Exercise 11.39 (*)UsingreadBin, read thet10k-images-idx3-ubyte.gz fromtheMNIST
database homepage9.The output object should be a three-dimensional, 10000 × 28 × 28 array
with real elements between 0 and 255. Refer to the File Formats section therein for more details.

Exercise 11.40 (**) Circular convolution of discrete-valued multidimensional signals can be
performed by means of fft and matrix multiplication, whereas affine transformations require
only the latter. Apply various image transformations such as sharpening, shearing, and rotating
on theMNIST digits and plot the results using the image function.

Exercise 11.41 (*) Using constrOptim, find the minimum of the Constrained Betts Function
𝑓 (𝑥1, 𝑥2) = 0.01𝑥2

1 +𝑥2
2 −100with linear constraints2 ≤ 𝑥1 ≤ 50,−50 ≤ 𝑥2 ≤ 50, and

10𝑥1 ≥ 10 + 𝑥2. (**) Also, use solve.QP from the quadprog package to find theminimum.

9 https://web.archive.org/web/20211107114045/http://yann.lecun.com/exdb/mnist

https://web.archive.org/web/20211107114045/http://yann.lecun.com/exdb/mnist
https://web.archive.org/web/20211107114045/http://yann.lecun.com/exdb/mnist

12
Data frames

Most matrices are built on top of atomic vectors. Hence, only items of the same type
can be arranged into rows and columns. On the other hand, data frames (objects of
the S3 class data.frame, first introduced in [14]) are collections of vectors of the same
lengths ormatrices with identical row counts. Hence, they represent structured1 data
of possibly heterogeneous types. For instance:

class(iris) # `iris` is an example data frame
[1] "data.frame"
iris[c(1, 51, 101),] # three chosen rows from `iris`
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
51 7.0 3.2 4.7 1.4 versicolor
101 6.3 3.3 6.0 2.5 virginica

It is a mix of numeric and factor-type data.

The good news is that not only are data frames built on named lists (e.g., to extract a
column, we can refer to `[[`), but alsomany functions consider themmatrix-like (e.g.,
to select specific rows and columns, two indexes can be passed to `[` like in the preced-
ing example).Hence, it will soon turn out thatwe already knowa lot about performing
basic data wrangling activities, even if we do not fully realise it now.

12.1 Creating data frames
12.1.1 data.frame and as.data.frame
Most frequently, we create data frames based on a series of logical, numeric, or char-
acter vectors of identical lengths. In such a scenario, the data.frame function is par-
ticularly worthwhile.

(x <- data.frame(
a=c(TRUE, FALSE),

(continues on next page)

1We are already highly skilled in dealing with unstructured data and turning them into something that
is much more regular. The numerous functions, which we have covered in the first part of this book, allow
us to extract meaningful data from text, handle missing values, engineer features, and so forth.

250 II DEEPER

(continued from previous page)

b=1:6,
c=runif(6),
d=c("spam", "spam", "eggs")

))
a b c d
1 TRUE 1 0.77437 spam
2 FALSE 2 0.19722 spam
3 TRUE 3 0.97801 eggs
4 FALSE 4 0.20133 spam
5 TRUE 5 0.36124 spam
6 FALSE 6 0.74261 eggs

The shorter vectors were recycled. We can verify that the diverse column types were
retained and no coercion was made by calling:

str(x)
'data.frame': 6 obs. of 4 variables:
$ a: logi TRUE FALSE TRUE FALSE TRUE FALSE
$ b: int 1 2 3 4 5 6
$ c: num 0.774 0.197 0.978 0.201 0.361 ...
$ d: chr "spam" "spam" "eggs" "spam" ...

Important For many reasons (see, e.g., Section 12.1.5 and Section 12.1.6), we recom-
mend having the type of each column always checked, e.g., by calling the str function.

Many objects, such as matrices, can easily be coerced to data frames using particular
as.data.framemethods. Here is an example matrix:

(A <- matrix(1:6, nrow=3,
dimnames=list(

NULL, # no row labels
c("u", "v") # some column labels

)))
u v
[1,] 1 4
[2,] 2 5
[3,] 3 6

Let’s convert it to a data frame:

as.data.frame(A) # as.data.frame.matrix
u v
1 1 4
2 2 5
3 3 6

12 DATA FRAMES 251

Note that a matrix with no row labels is printed slightly differently than a data frame
with (as it will soon turn out) the default row.names.

Named lists are amongst other aspirants to ameaningful conversion. Consider an ex-
ample list where all elements are vectors of the same length:

(l <- Map(
function(x) {

c(Min=min(x), Median=median(x), Mean=mean(x), Max=max(x))
},
split(iris[["Sepal.Length"]], iris[["Species"]])

))
$setosa
Min Median Mean Max
4.300 5.000 5.006 5.800
##
$versicolor
Min Median Mean Max
4.900 5.900 5.936 7.000
##
$virginica
Min Median Mean Max
4.900 6.500 6.588 7.900

Each list element will be turned into a separate column:

as.data.frame(l) # as.data.frame.list
setosa versicolor virginica
Min 4.300 4.900 4.900
Median 5.000 5.900 6.500
Mean 5.006 5.936 6.588
Max 5.800 7.000 7.900

Sadly, as.data.frame is not particularly fond of lists of vectors of incompatible
lengths:

as.data.frame(list(a=1, b=11:12, c=21:23))
Error in (function (..., row.names = NULL, check.rows = FALSE, check.names
= TRUE, : arguments imply differing number of rows: 1, 2, 3

These vectors could have been recycled with a warning. But they were not.

as.data.frame(list(a=1:4, b=11:12, c=21)) # recycling rule okay
a b c
1 1 11 21
2 2 12 21
3 3 11 21
4 4 12 21

The method for the S3 class table (mentioned in Chapter 11) can be helpful as well.
Here is an example contingency table together with its unstacked (wide) version.

252 II DEEPER

(t <- table(mtcars[["vs"]], mtcars[["cyl"]]))
##
4 6 8
0 1 3 14
1 10 4 0
as.data.frame(t) # as.data.frame.table; see the stringsAsFactors note below!
Var1 Var2 Freq
1 0 4 1
2 1 4 10
3 0 6 3
4 1 6 4
5 0 8 14
6 1 8 0

as.data.frame.table is so handy that we might want to call it directly on any array.
Thisway,wecanconvert it fromthewide format to the long (tall) one; seeSection 12.3.6
for more details.

Note The aforementioned method is based on expand.grid, which determines all
combinations of a given series of vectors.

expand.grid(1:2, c("a", "b", "c")) # see the stringsAsFactors note below!
Var1 Var2
1 1 a
2 2 a
3 1 b
4 2 b
5 1 c
6 2 c

Overall, many classes of objects can be included2 in a data frame.The popular choices
include Date, POSIXct, and factor.

Example 12.1 It is worth noting that format is used whilst printing the columns. Here is its
custommethod for what we would like to call from now on the S3 class spam:

format.spam <- function(x, ...)
paste0("<", x, ">")

Testing data frame printing:

data.frame(
a=structure(c("lovely", "yummy", "delicious"), class="spam"),
b=factor(c("spam", "bacon", "spam")),
c=Sys.Date()+1:3

(continues on next page)

2The attributes of objects stored as columns will generally be preserved (even if they are not displayed
by print; see str though).

12 DATA FRAMES 253

(continued from previous page)

)
a b c
1 <lovely> spam 2026-01-08
2 <yummy> bacon 2026-01-09
3 <delicious> spam 2026-01-10

12.1.2 cbind.data.frame and rbind.data.frame
There are data frame-specific versions of cbind or rbind (which we discussed
in the context of stacking matrices; Section 11.1.2). They are used quite eagerly:
help("cbind") states that they will be referred to if at least3 one of its arguments is a
data frame, and the other arguments are atomic vectors or lists (possibly with the dim
attribute). For example:

x <- iris[c(1, 51, 101), c("Sepal.Length", "Species")] # whatever
cbind(Yummy=c(TRUE, FALSE, TRUE), x)
Yummy Sepal.Length Species
1 TRUE 5.1 setosa
51 FALSE 7.0 versicolor
101 TRUE 6.3 virginica

It added a new column to a data frame x. Moreover:

rbind(x, list(42, "virginica"))
Sepal.Length Species
1 5.1 setosa
51 7.0 versicolor
101 6.3 virginica
11 42.0 virginica

It added a new row.Note that columns are of different types.Hence, the values to row-
bind had to be provided as a list.

The generic vector used as a new row specifier can also be named. It can consist of
sequences of length greater than one that are given in any order:

rbind(x, list(
Species=c("virginica", "setosa"),
Sepal.Length=c(42, 7)

))
Sepal.Length Species
1 5.1 setosa
51 7.0 versicolor
101 6.3 virginica

(continues on next page)

3This is a clear violation of the rule that an S3 generic dispatches on the type of only one argument
(usually: the first). It is an exception made for the sake of the questionable user convenience. Also, note that
there is no cbind.defaultmethod available: it is hardcoded at the C language level.

254 II DEEPER

(continued from previous page)

11 42.0 virginica
2 7.0 setosa

A direct referral to cbind.data.frame and rbind.data.frame will sometimes be ne-
cessary. Consider an example list of atomic vectors:

x <- list(a=1:3, b=11:13, c=21:23)

First, we call the generic, which dispatches to the default method:

do.call(cbind, x)
a b c
[1,] 1 11 21
[2,] 2 12 22
[3,] 3 13 23

It created a matrix. If we want to ensure we garner a data frame, we need to write:

do.call(cbind.data.frame, x)
a b c
1 1 11 21
2 2 12 22
3 3 13 23

This is useful for fetching outputs from Map et al., as they are wrapped inside a list.
Here is a fancy way to obtain an illustrative list:

l <- unname(Map(
function(x) list(# objects are of different types, hence a list

Sepal.Length=mean(x[["Sepal.Length"]]),
Sepal.Width=mean(x[["Sepal.Width"]]),
Species=x[["Species"]][1] # all are the same, so the first will do

),
split(iris, iris[["Species"]]) # split.data.frame; see below

))
str(l)
List of 3
$:List of 3
..$ Sepal.Length: num 5.01
..$ Sepal.Width : num 3.43
..$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1
$:List of 3
..$ Sepal.Length: num 5.94
..$ Sepal.Width : num 2.77
..$ Species : Factor w/ 3 levels "setosa","versicolor",..: 2
$:List of 3
..$ Sepal.Length: num 6.59
..$ Sepal.Width : num 2.97
..$ Species : Factor w/ 3 levels "setosa","versicolor",..: 3

12 DATA FRAMES 255

Wemay now turn it into a data frame by calling:

do.call(rbind.data.frame, l)
Sepal.Length Sepal.Width Species
1 5.006 3.428 setosa
2 5.936 2.770 versicolor
3 6.588 2.974 virginica

On the other hand, do.call(rbind, l) does not return an amiable object type:

do.call(rbind, l)
Sepal.Length Sepal.Width Species
[1,] 5.006 3.428 setosa
[2,] 5.936 2.77 versicolor
[3,] 6.588 2.974 virginica

Despite the pretty face, it is a matrix… over a list:

str(do.call(rbind, l))
List of 9
$: num 5.01
$: num 5.94
$: num 6.59
$: num 3.43
$: num 2.77
$: num 2.97
$: Factor w/ 3 levels "setosa","versicolor",..: 1
$: Factor w/ 3 levels "setosa","versicolor",..: 2
$: Factor w/ 3 levels "setosa","versicolor",..: 3
- attr(*, "dim")= int [1:2] 3 3
- attr(*, "dimnames")=List of 2
..$: NULL
..$: chr [1:3] "Sepal.Length" "Sepal.Width" "Species"

12.1.3 Reading data frames
Structureddata canbe imported fromexternal sources, suchasCSV/TSV (comma/tab-
separated values) or HDF5 files, relational databases supporting SQL (see Sec-
tion 12.1.4), web APIs (e.g., through the curl and jsonlite packages), spreadsheets
[67], and so on. In particular, read.csv and the like fetch data from plain text files
consisting of records, where commas, semicolons, tabs, etc. separate the fields. For
instance:

x <- data.frame(a=runif(3), b=c(TRUE, FALSE, TRUE)) # example data frame
f <- tempfile() # temporary file name
write.csv(x, f, row.names=FALSE) # export

It created a CSV file that looks like:

256 II DEEPER

cat(readLines(f), sep="\n") # print file contents
"a","b"
0.287577520124614,TRUE
0.788305135443807,FALSE
0.4089769218117,TRUE

which can be read by calling:

read.csv(f)
a b
1 0.28758 TRUE
2 0.78831 FALSE
3 0.40898 TRUE

Exercise 12.2 Check out help("read.table") for a long list of tunable parameters, espe-
cially: sep, dec, quote, header, comment.char, and row.names. Further, note that reading
from compressed files and interned URLs is supported directly.

Important CSV is themost portable and user-friendly format for exchangingmatrix-
like objects between different programs and computing languages (Python, Julia, Lib-
reOffice Calc, etc.). Such files can be opened in any text editor.

Also, asmentioned inSection8.3.5,wecanprocessdata frameschunkbychunk.This is
beneficial especially when data do not fit into memory (compare the nrows argument
to read.csv).

12.1.4 Interfacing relational databases and queryingwith SQL (*)
The DBI package provides a universal interface for many database management sys-
tems whose drivers are implemented in add-ons such as RSQLite, RMariaDB, RPost-
greSQL, etc., or, more generally, RODBC or odbc. For more details, see Section 4 of [67].

Example 12.3 Let’s play with an in-memory (volatile) instance of an SQLite database.

library("DBI")
con <- dbConnect(RSQLite::SQLite(), ":memory:")

It returned an object representing a database connectionwhichwe can refer to in further commu-
nication. An easy way to create a database table is to call:

dbWriteTable(con, "mtcars", mtcars) # `mtcars` is a toy data frame

Alternatively, we could have called dbExecute to send SQL statements such as “CREATE TABLE
...” followed by a series of “INSERT INTO ...”.We can now retrieve some data:

dbGetQuery(con, "
SELECT cyl, vs, AVG(mpg) AS mpg_ave, AVG(hp) AS hp_ave

(continues on next page)

12 DATA FRAMES 257

(continued from previous page)

FROM mtcars
GROUP BY cyl, vs

")
cyl vs mpg_ave hp_ave
1 4 0 26.000 91.00
2 4 1 26.730 81.80
3 6 0 20.567 131.67
4 6 1 19.125 115.25
5 8 0 15.100 209.21

It gave us an ordinary R data frame.We can process it in the same fashion as any other object of
this kind.

At the end, the database connectionmust be closed.

dbDisconnect(con)

Exercise 12.4 Database passwordsmust never be stored in plain text files, let alone in R scripts
in version-controlled repositories. Consider a fewways to fetch credentials programmatically:

• using environment variables (see help("Sys.getenv")),

• using the keyring package,

• calling system2 (Section 7.3.2) to retrieve it from the system keyring (e.g., the keyring
package for Python provides a platform-independent command-line utility).

12.1.5 Strings as factors?
Some functions related to data frames automatically convert character vectors to
factors. This behaviour is frequently controlled by an argument named stringsAs-
Factors. It can be particularly problematic because, when printed, factor and charac-
ter columns look identical:

(x <- data.frame(a=factor(c("U", "V")), b=c("U", "V")))
a b
1 U U
2 V V

We recall fromSection 10.3.2 that factors can be nasty. For example, passing factors as
indexers in `[` or converting them with as.numericmight give counterintuitive res-
ults. Also, when we want to extend factors by previously unobserved data, new levels
must be addedmanually.This can cause unexpected behaviour in contexts such as:

rbind(x, c("W", "W"))
Warning in `[<-.factor`(`*tmp*`, ri, value = "W"): invalid factor level,
NA generated
a b
1 U U

(continues on next page)

258 II DEEPER

(continued from previous page)

2 V V
3 <NA> W

Therefore, always having the data types checked is a praiseworthy habit. For instance:

str(x)
'data.frame': 2 obs. of 2 variables:
$ a: Factor w/ 2 levels "U","V": 1 2
$ b: chr "U" "V"

Before R 4.0, certain functions, including data.frame and read.csv had the string-
sAsFactors argument defaulting to TRUE. It is no longer the case. However, excep-
tions to this rule still exist, e.g., including as.data.frame.table and expand.grid.
Besides, some example data frames continue to enjoy factor-typed columns, e.g.:

class(iris[["Species"]])
[1] "factor"

In particular, adding a new flower variety might be oblique:

iris2 <- iris[c(1, 101),] # example subset
rbind(iris2, c(6, 3, 3, 2, "croatica"))
Warning in `[<-.factor`(`*tmp*`, ri, value = "croatica"): invalid factor
level, NA generated
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
101 6.3 3.3 6 2.5 virginica
3 6 3 3 2 <NA>

Compare it to:

levels(iris2[["Species"]])[nlevels(iris2[["Species"]])+1] <- "croatica"
rbind(iris2, c(6, 3, 3, 2, "croatica"))
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
101 6.3 3.3 6 2.5 virginica
3 6 3 3 2 croatica

12.1.6 Internal representation
Objects of the S3 class data.frame are erected on lists of vectors of the same length
or matrices with identical row counts. Each list element defines a column or column
group. Apart from class, data frames must be equipped with the following special
attributes:

• names–a character vector (as usual in any named list) that gives the column labels,

• row.names – a character or integer vector with no duplicates nor missing values,
doing what is advertised.

12 DATA FRAMES 259

Therefore, a data frame can be created from scratch by calling, for example:

structure(
list(a=11:13, b=21:23), # sets the `names` attribute
row.names=1:3,
class="data.frame"

)
a b
1 11 21
2 12 22
3 13 23

Here is a data frame based on a list of length five, a matrix with five rows, and a nu-
meric vector with five items.We added some fancy row names on top:

structure(
list(

a=list(1, 1:2, 1:3, numeric(0), -(4:1)),
b=cbind(u=11:15, v=21:25),
c=runif(5)

),
row.names=c("spam", "bacon", "eggs", "ham", "aubergine"),
class="data.frame"

)
a b.u b.v c
spam 1 11 21 0.28758
bacon 1, 2 12 22 0.78831
eggs 1, 2, 3 13 23 0.40898
ham 14 24 0.88302
aubergine -4, -3, -2, -1 15 25 0.94047

In general, the columns of the type list can contain anything, e.g., other lists or R
functions. Including atomic vectors of varying lengths, just like above, permits us to
create something à la ragged arrays.

The issue with matrix entries, on the other hand, is that they appear as if they were
many columns. Still, as it will turn out in the sequel, they are often treated as a single
complex column, e.g., by the index operator (see Section 12.2). Therefore, from this
perspective, the aforementioned data frame has three columns, not four. Such com-
pound columns can be output by aggregate (see Section 12.3), amongst others. They
are valuable in certain contexts: the columngroups can be easily accessed as awhole and
batch-processed in the same way.

Important Alas, data frames with list or matrix columns cannot be created with the
data.frame nor cbind functions. This might explain why they are less popular. This
behaviour is dictated by the underlying as.data.framemethods,which they both call.
As a curiosity, see help("I"), though.

260 II DEEPER

Exercise 12.5 Verify that if a data frame carries a matrix column, this matrix does not need to
have any column names (the second element of dimnames).

The names and row.names attributes are special in the sense of Section 4.4.3. In partic-
ular, they can be accessed or modified via the dedicated functions.

It is worth noting that row.names(df) always returns a character vector, even when
attr(df, "row.names") is integer. Further, calling “row.names(df) <- NULL” will re-
set4 this attribute to themost commonly desired case of consecutive natural numbers.
For example:

(x <- iris[c(1, 51, 101),]) # comes with some sad row names
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
51 7.0 3.2 4.7 1.4 versicolor
101 6.3 3.3 6.0 2.5 virginica
`row.names<-`(x, NULL) # reset to seq_len(NROW(x))
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 7.0 3.2 4.7 1.4 versicolor
3 6.3 3.3 6.0 2.5 virginica

Exercise 12.6 Implement your version of expand.grid.

Exercise 12.7 Write a version of xtabs that does not rely on a formula interface (compare Sec-
tion 10.3.4). Allow three parameters: a data frame, the name of the “counts” column, and the
names of the cross-classifying factors.Hence,my_xtabs(x, "Freq", c("Var1", "Var2"))
should be equivalent to xtabs(Freq~Var1+Var2, x).

12.2 Data frame subsetting
12.2.1 Data frames are lists
Adata frame is a named listwhose elements represent individual columns.Therefore5,
length yields the number of columns and names gives their respective labels.

Let’s play around with this data frame:

(x <- data.frame(
a=runif(6),

(continues on next page)

4 `attr<-`(df, "row.names", value) does not run the same sanity checks as `row.names<-`(df,
value). For instance, it is easy to corrupt a data frame by setting too short a row.names attribute.

5This is a strong word. This implication relies on an implicit assumption that the primitive functions
length and nameshavenot been contaminatedby treatingdata framesdifferently fromnamed lists. Luckily,
that is indeednot the case.Even thoughwehave the indexoperators specially overloaded for thedata.frame
class, they behave reasonably. As we will see, they support a mix of list- andmatrix-like behaviours.

12 DATA FRAMES 261

(continued from previous page)

b=rnorm(6),
c=LETTERS[1:6],
d1=c(FALSE, TRUE, FALSE, NA, FALSE, NA),
d2=c(FALSE, TRUE, FALSE, TRUE, FALSE, TRUE)

))
a b c d1 d2
1 0.287578 0.070508 A FALSE FALSE
2 0.788305 0.129288 B TRUE TRUE
3 0.408977 1.715065 C FALSE FALSE
4 0.883017 0.460916 D NA TRUE
5 0.940467 -1.265061 E FALSE FALSE
6 0.045556 -0.686853 F NA TRUE
typeof(x) # each data frame is a list
[1] "list"
length(x) # the number of columns
[1] 5
names(x) # column labels
[1] "a" "b" "c" "d1" "d2"

The one-argument versions of extract and index operators behave as expected. `[[`
fetches (looks inside) the contents of a given column:

x[["a"]] # or x[[1]]
[1] 0.287578 0.788305 0.408977 0.883017 0.940467 0.045556

`[` returns a data frame (a list with extras):

x["a"] # or x[1]; a data frame with one column
a
1 0.287578
2 0.788305
3 0.408977
4 0.883017
5 0.940467
6 0.045556
x[c(TRUE, TRUE, FALSE, TRUE, FALSE)]
a b d1
1 0.287578 0.070508 FALSE
2 0.788305 0.129288 TRUE
3 0.408977 1.715065 FALSE
4 0.883017 0.460916 NA
5 0.940467 -1.265061 FALSE
6 0.045556 -0.686853 NA

Just like with lists, the replacement versions of these operators can add new columns
or modify existing ones.

262 II DEEPER

(y <- head(x, 1)) # example data frame
a b c d1 d2
1 0.28758 0.070508 A FALSE FALSE
y[["a"]] <- round(y[["a"]], 1) # replaces the column with new content
y[["b"]] <- NULL # removes the column, like, totally
y[["e"]] <- 10*y[["a"]]^2 # adds a new column at the end
print(y)
a c d1 d2 e
1 0.3 A FALSE FALSE 0.9

Example 12.8 Some spam for thought to showhowmuchwe already know.Here are a few com-
mon scenarios involving indexing.

(y <- head(x, 1)) # example data frame
a b c d1 d2
1 0.28758 0.070508 A FALSE FALSE

Move the column a to the end:

y[unique(c(names(y), "a"), fromLast=TRUE)]
b c d1 d2 a
1 0.070508 A FALSE FALSE 0.28758

Remove the columns a and c:

y[-match(c("a", "c"), names(y))] # or y[setdiff(names(y), c("a", "c"))]
b d1 d2
1 0.070508 FALSE FALSE

Select all columns between a and c:

y[match("a", names(y)):match("c", names(y))]
a b c
1 0.28758 0.070508 A

Fetch the columns with names starting with d:

y[grep("^d", names(y), perl=TRUE)]
d1 d2
1 FALSE FALSE

Change the name of column c to z:

names(y)[names(y) == "c"] <- "z"
print(y) # `names<-`(y, `[<-`(names(y), names(y) == "c", "z"))
a b z d1 d2
1 0.28758 0.070508 A FALSE FALSE

Change names: d2 to u and d1 to v:

12 DATA FRAMES 263

names(y)[match(c("d2", "d1"), names(y))] <- c("v", "u")
print(y)
a b z u v
1 0.28758 0.070508 A FALSE FALSE

Note Some users prefer the `$` operator over `[[`, but we do not. By default, the
former supports partial matching of column names which might be appealing when
R is used interactively. Nonetheless, it does not work on matrices nor it allows for
programmatically generated names. It is also trickier to use on not syntactically valid
labels; compare Section 9.3.1.

Exercise 12.9 Write a function rename that changes the names of columns based on a transla-
tion table given in a from=to fashion (we have already solved a similar exercise in Chapter 9).
For instance:

rename <- function(x, ...) ...to.do...
rename(head(x, 1), c="new_c", a="new_a")
new_a b new_c d1 d2
1 0.28758 0.070508 A FALSE FALSE

12.2.2 Data frames arematrix-like
Data frames can be considered “generalised” matrices. They store data of any kind
(possiblymixed) organised in a tabular fashion. A few functionsmentioned in the pre-
vious chapter are overloaded for the data frame case. They include: dim (despite the
lack of the dim attribute), NROW, NCOL, and dimnames (which is, of course, based on
row.names and names). For example:

(x <- data.frame(
a=runif(6),
b=rnorm(6),
c=LETTERS[1:6],
d1=c(FALSE, TRUE, FALSE, NA, FALSE, NA),
d2=c(FALSE, TRUE, FALSE, TRUE, FALSE, TRUE)

))
a b c d1 d2
1 0.287578 0.070508 A FALSE FALSE
2 0.788305 0.129288 B TRUE TRUE
3 0.408977 1.715065 C FALSE FALSE
4 0.883017 0.460916 D NA TRUE
5 0.940467 -1.265061 E FALSE FALSE
6 0.045556 -0.686853 F NA TRUE
dim(x) # the number of rows and columns
[1] 6 5
dimnames(x) # row and column labels
[[1]]

(continues on next page)

264 II DEEPER

(continued from previous page)

[1] "1" "2" "3" "4" "5" "6"
##
[[2]]
[1] "a" "b" "c" "d1" "d2"

In addition to the list-like behaviour, which only allows for dealing with particular
columns or their groups, the `[` operator can also take two indexers:

x[1:2,] # first two rows
a b c d1 d2
1 0.28758 0.070508 A FALSE FALSE
2 0.78831 0.129288 B TRUE TRUE
x[x[["a"]] >= 0.3 & x[["a"]] <= 0.8, -2] # or use x[, "a"]
a c d1 d2
2 0.78831 B TRUE TRUE
3 0.40898 C FALSE FALSE

Recall the drop argument to `[` and its effects on matrix indexing (Section 11.2.4). In
the current case, its behaviour will be similar with regard to the operations on indi-
vidual columns:

x[, 1] # synonym: x[[1]] because drop=TRUE
[1] 0.287578 0.788305 0.408977 0.883017 0.940467 0.045556
x[, 1, drop=FALSE] # synonym: x[1]
a
1 0.287578
2 0.788305
3 0.408977
4 0.883017
5 0.940467
6 0.045556

When we extract a single row and more than one column, drop does not apply. It is
because columns (unlike in matrices) can potentially be of different types:

x[1, 1:2] # two numeric columns but the result is still a numeric
a b
1 0.28758 0.070508

However:

x[1, 1] # a single value
[1] 0.28758
x[1, 1, drop=FALSE] # a data frame with one row and one column
a
1 0.28758

12 DATA FRAMES 265

Note Once again, let’s take note of logical indexing in the presence of missing values:

x[x[["d1"]],] # `d1` is of the type logical
a b c d1 d2
2 0.78831 0.12929 B TRUE TRUE
NA NA NA <NA> NA NA
NA.1 NA NA <NA> NA NA
x[which(x[["d1"]]),] # `which` drops missing values
a b c d1 d2
2 0.78831 0.12929 B TRUE TRUE

The default behaviour is consistent with many other R functions. It explicitly indic-
ates that something is missing. After all, when we select a “don’t know”, the result is
unknown as well. Regretfully, this comes with no warning. As we seldom check miss-
ing values in the outputs manually, our absent-mindedness can lead to code bugs.

By far, we might have already noted that the index operator adjusts (not: resets) the
row.names attribute. For instance:

(xs <- x[order(x[["a"]], decreasing=TRUE)[1:3],])
a b c d1 d2
5 0.94047 -1.26506 E FALSE FALSE
4 0.88302 0.46092 D NA TRUE
2 0.78831 0.12929 B TRUE TRUE

It is a version of x comprised of the top three values in the a column. Indexing by
means of character vectors will refer to row.names and names:

xs["5", c("a", "b")]
a b
5 0.94047 -1.2651

It is not the same as xs[5, c("a", "b")], even though row.names is formally an
integer vector here.

Regarding the replacement version of the two-indexer variant of the `[` operator, it is
a flexible tool. It permits the new content to be a vector, a data frame, a list, or even a
matrix. Verifying this is left as an exercise.

Note If a data frame carries amatrix, to access a specific sub-column, we need to use
the index/extract operator twice:

(x <- aggregate(iris[1], iris[5], function(x) c(Min=min(x), Max=max(x))))
Species Sepal.Length.Min Sepal.Length.Max
1 setosa 4.3 5.8
2 versicolor 4.9 7.0
3 virginica 4.9 7.9

(continues on next page)

266 II DEEPER

(continued from previous page)

x[["Sepal.Length"]][, "Min"]
[1] 4.3 4.9 4.9

In other words, neither x[["Sepal.Length.Min"]] nor x[, "Sepal.Length.Min"]
works.

Exercise 12.10 Write two replacement functions6. First, author set_row_names which re-
places the row.names of a data frame with the contents of a specific column. For example:

(x <- aggregate(iris[1], iris[5], mean)) # an example data frame
Species Sepal.Length
1 setosa 5.006
2 versicolor 5.936
3 virginica 6.588
set_row_names(x) <- "Species"
print(x)
Sepal.Length
setosa 5.006
versicolor 5.936
virginica 6.588

Second, implement reset_row_nameswhich converts row.names to a standalone column of a
given name. For instance:

reset_row_names(x) <- "Type"
print(x)
Sepal.Length Type
1 5.006 setosa
2 5.936 versicolor
3 6.588 virginica

These two functions may be handy for they enable writing x[something,] instead of
x[x[["column"]] %in% something,].

12.3 Common operations
Below we review the most commonly applied operations related to data frame
wrangling. We have a few dedicated functions or methods overloaded for the data.
frame class. However, we have already mastered most skills to deal with such objects
effectively. Let’s repeat: data frames are just lists exhibiting matrix-like behaviour.

6 (*) Compare pandas.DataFrame.set_index and pandas.DataFrame.reset_index in Python.

12 DATA FRAMES 267

12.3.1 Ordering rows
Ordering rows in a data framewith respect to different criteria can be easily achieved
through the order function and the two-indexer version of `[`. For instance, here are
the six fastest cars from mtcars in terms of the time (in seconds) to complete a 402-
metre race:

mtcars6 <- mtcars[order(mtcars[["qsec"]])[1:6], c("qsec", "cyl", "gear")]
(mtcars6 <- `row.names<-`(cbind(model=row.names(mtcars6), mtcars6), NULL))
model qsec cyl gear
1 Ford Pantera L 14.50 8 5
2 Maserati Bora 14.60 8 5
3 Camaro Z28 15.41 8 3
4 Ferrari Dino 15.50 6 5
5 Duster 360 15.84 8 3
6 Mazda RX4 16.46 6 4

order uses a stable sorting algorithm. Therefore, any sorting with respect to a differ-
ent criterion will not break the relative ordering of qsec in row groups with ties:

mtcars6[order(mtcars6[["cyl"]]),]
model qsec cyl gear
4 Ferrari Dino 15.50 6 5
6 Mazda RX4 16.46 6 4
1 Ford Pantera L 14.50 8 5
2 Maserati Bora 14.60 8 5
3 Camaro Z28 15.41 8 3
5 Duster 360 15.84 8 3

qsec is still increasing in each of the two cyl groups.

Example 12.11 Notice the difference between ordering by cyl and gear:

mtcars6[order(mtcars6[["cyl"]], mtcars6[["gear"]]),]
model qsec cyl gear
6 Mazda RX4 16.46 6 4
4 Ferrari Dino 15.50 6 5
3 Camaro Z28 15.41 8 3
5 Duster 360 15.84 8 3
1 Ford Pantera L 14.50 8 5
2 Maserati Bora 14.60 8 5

vs gear and cyl:

mtcars6[order(mtcars6[["gear"]], mtcars6[["cyl"]]),]
model qsec cyl gear
3 Camaro Z28 15.41 8 3
5 Duster 360 15.84 8 3
6 Mazda RX4 16.46 6 4
4 Ferrari Dino 15.50 6 5

(continues on next page)

268 II DEEPER

(continued from previous page)

1 Ford Pantera L 14.50 8 5
2 Maserati Bora 14.60 8 5

Note Mixing increasing and decreasing ordering is tricky as the decreasing argu-
ment to order currently does not acceptmultiple flags in all the contexts. Perhaps the
easiest way to change the ordering direction is to use the unaryminus operator on the
column(s) to be sorted decreasingly.

mtcars6[order(mtcars6[["gear"]], -mtcars6[["cyl"]]),]
model qsec cyl gear
3 Camaro Z28 15.41 8 3
5 Duster 360 15.84 8 3
6 Mazda RX4 16.46 6 4
1 Ford Pantera L 14.50 8 5
2 Maserati Bora 14.60 8 5
4 Ferrari Dino 15.50 6 5

For factor and character columns, xtfrm can convert them to sort keys first.

mtcars6[order(mtcars6[["cyl"]], -xtfrm(mtcars6[["model"]])),]
model qsec cyl gear
6 Mazda RX4 16.46 6 4
4 Ferrari Dino 15.50 6 5
2 Maserati Bora 14.60 8 5
1 Ford Pantera L 14.50 8 5
5 Duster 360 15.84 8 3
3 Camaro Z28 15.41 8 3

Both statements act like the unsupported decreasing=c(FALSE, TRUE).

Exercise 12.12 Write a method sort.data.frame that orders a data frame with respect to a
given set of columns.

sort.data.frame <- function(x, decreasing=FALSE, cols) ...to.do...
sort(mtcars6, cols=c("cyl", "model"))
model qsec cyl gear
4 Ferrari Dino 15.50 6 5
6 Mazda RX4 16.46 6 4
3 Camaro Z28 15.41 8 3
5 Duster 360 15.84 8 3
1 Ford Pantera L 14.50 8 5
2 Maserati Bora 14.60 8 5

Unfortunately, that decreasingmust be of length one and be placed as the second argument is
imposed by the sort S3 generic.

12 DATA FRAMES 269

12.3.2 Handling duplicated rows
duplicated, anyDuplicated, and unique have methods overloaded for the data.
frame class.They can be used to indicate, get rid of, or replace the repeating rows.

sum(duplicated(iris)) # how many duplicated rows are there?
[1] 1
iris[duplicated(iris),] # show the duplicated rows
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
143 5.8 2.7 5.1 1.9 virginica

12.3.3 Joining (merging) data frames
Themerge function canperformthe joinoperation that some readersmight knowfrom
SQL7. Itmatches the items in the columns that twogivendata frames somewhat share.
Then, it returns the combination of the corresponding rows.

Example 12.13 Two calls to merge could be used to match data on programmers (each identi-
fied by developer_id and giving such details as their name, location, main skill, etc.) with
the information about the open-source projects (each identified by project_id and informing
us about its title, scope, website, and so forth) they are engaged in (based on a third data frame
defining developer_id and project_id pairs).

As a simple illustration, consider two objects:

A <- data.frame(
u=c("b0", "b1", "b2", "b3"),
v=c("a0", "a1", "a2", "a3")

)

B <- data.frame(
v=c("a0", "a2", "a2", "a4"),
w=c("c0", "c1", "c2", "c3")

)

The two common columns, i.e., storing data of similar nature (a-something strings),
are both named v.

First is the inner (natural) join, where we list only the matching pairs:

merge(A, B) # x=A, y=B, by="v", all.x=FALSE, all.y=FALSE
v u w
1 a0 b0 c0
2 a2 b2 c1
3 a2 b2 c2

7 Join is the reverse operation to data normalisation from relational database theory. It reduces data re-
dundancy and increases their integrity. What data scientists need in data analysis, visualisation, and pro-
cessing activities is sometimes the opposite of what the art of data management focuses on, i.e., efficient
collection and storage of information. The readers are encouraged to learn about various normalisation
forms from, e.g., [17] or any other course covering this topic.

270 II DEEPER

The common column is included in the result only once. Next, the left join guarantees
that all elements in the first data frame will be included in the result:

merge(A, B, all.x=TRUE) # by="v", all.y=FALSE
v u w
1 a0 b0 c0
2 a1 b1 <NA>
3 a2 b2 c1
4 a2 b2 c2
5 a3 b3 <NA>

The right join includes all records in the second argument:

merge(A, B, all.y=TRUE) # by="v", all.x=FALSE
v u w
1 a0 b0 c0
2 a2 b2 c1
3 a2 b2 c2
4 a4 <NA> c3

Lastly, the full outer join is their set-theoretic union:

merge(A, B, all.x=TRUE, all.y=TRUE) # by="v"
v u w
1 a0 b0 c0
2 a1 b1 <NA>
3 a2 b2 c1
4 a2 b2 c2
5 a3 b3 <NA>
6 a4 <NA> c3

Joining onmore than one common column is also supported.

Exercise 12.14 Show how match (Section 5.4.1) can help author a very basic version of merge.

Exercise 12.15 Implement a version of match that allows the x and table arguments to be
data frames with the same number of columns so that also the matching of pairs, triples, etc. is
possible.

12.3.4 Aggregating and transforming columns
It might be tempting to try aggregating data frames with apply. Sadly, currently, this
function coerces its argument to a matrix. Hence, we should refrain from applying it
on data frames whose columns are of mixed types. However, taking into account that
data frames are special lists, we can always call Map and its relatives.

Example 12.16 Consider an example data frame:

(iris_sample <- iris[sample(NROW(iris), 6),])
Sepal.Length Sepal.Width Petal.Length Petal.Width Species

(continues on next page)

12 DATA FRAMES 271

(continued from previous page)

28 5.2 3.5 1.5 0.2 setosa
80 5.7 2.6 3.5 1.0 versicolor
101 6.3 3.3 6.0 2.5 virginica
111 6.5 3.2 5.1 2.0 virginica
137 6.3 3.4 5.6 2.4 virginica
133 6.4 2.8 5.6 2.2 virginica

To get the class of each column, we can call:

sapply(iris_sample, class) # or unlist(Map(class, iris))
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
"numeric" "numeric" "numeric" "numeric" "factor"

Next, here is a way to compute some aggregates of the numeric columns:

unlist(Map(mean, Filter(is.numeric, iris_sample)))
Sepal.Length Sepal.Width Petal.Length Petal.Width
6.0667 3.1333 4.5500 1.7167

or:

sapply(iris_sample[sapply(iris_sample, is.numeric)], mean)
Sepal.Length Sepal.Width Petal.Length Petal.Width
6.0667 3.1333 4.5500 1.7167

We can also fetchmore than a single summary of each column:

as.data.frame(Map(
function(x) c(Min=min(x), Max=max(x)),
Filter(is.numeric, iris_sample)

))
Sepal.Length Sepal.Width Petal.Length Petal.Width
Min 5.2 2.6 1.5 0.2
Max 6.5 3.5 6.0 2.5

or:

sapply(iris_sample[sapply(iris_sample, is.numeric)], quantile, c(0, 1))
Sepal.Length Sepal.Width Petal.Length Petal.Width
0% 5.2 2.6 1.5 0.2
100% 6.5 3.5 6.0 2.5

The latter called simplify2array automatically.Thus, the result is a matrix.

On the other hand, the standardisation of all numeric features can be performed, e.g., via a call:

iris_sample[] <- Map(function(x) {
if (!is.numeric(x)) x else (x-mean(x))/sd(x)

}, iris_sample)

(continues on next page)

272 II DEEPER

(continued from previous page)

print(iris_sample)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
28 -1.70405 1.03024 -1.76004 -1.65318 setosa
80 -0.72094 -1.49854 -0.60591 -0.78117 versicolor
101 0.45878 0.46829 0.83674 0.85384 virginica
111 0.85202 0.18732 0.31738 0.30884 virginica
137 0.45878 0.74927 0.60591 0.74484 virginica
133 0.65540 -0.93659 0.60591 0.52684 virginica

12.3.5 Handlingmissing values
The is.namethod for objects of the class data.frame returns a logical matrix of the
same dimensionality8, indicating whether the corresponding items are missing or
not. Of course, the default method can still be called on individual columns. Further,
na.omit gets rid of rowswith missing values.

Exercise 12.17 Given a data frame, use is.na and other functions like apply or approx to:

1. remove all rows that bear at least onemissing value,

2. remove all rows that only consist of missing values,

3. remove all columns that carry at least onemissing value,

4. for each column, replace all missing values with the column averages,

5. for each column, replace all missing values with values that linearly interpolate between
the preceding and succeeding well-defined observations (which is of use in time series pro-
cessing), e.g., the blanks in c(0.60, 0.62, NA, 0.64, NA, NA, 0.58) should be
filled to obtain c(0.60, 0.62, 0.63, 0.64, 0.62, 0.60, 0.58).

12.3.6 Reshaping data frames
Consider an example matrix:

A <- matrix(round(runif(6), 2), nrow=3,
dimnames=list(

c("X", "Y", "Z"), # row labels
c("u", "v") # column labels

))
names(dimnames(A)) <- c("Row", "Col")
print(A)
Col
Row u v
X 0.29 0.88
Y 0.79 0.94
Z 0.41 0.05

8 Provided that a data frame does not carry a matrix column.

12 DATA FRAMES 273

The as.data.framemethod for the table class can be called directly on any array-like
object:

as.data.frame.table(A, responseName="Val", stringsAsFactors=FALSE)
Row Col Val
1 X u 0.29
2 Y u 0.79
3 Z u 0.41
4 X v 0.88
5 Y v 0.94
6 Z v 0.05

It is an instance of array reshaping. More precisely, we call it stacking. We converted
from awide (okay, in this example, not so wide, as we only have two columns) to a long
(tall) format.

Theabove canalsobeachievedbymeansof thereshape functionwhich ismore flexible
and operates directly on data frames (but is harder to use):

(df <- `names<-`(
data.frame(row.names(A), A, row.names=NULL),
c("Row", "Col.u", "Col.v")))

Row Col.u Col.v
1 X 0.29 0.88
2 Y 0.79 0.94
3 Z 0.41 0.05
(stacked <- reshape(df, varying=2:3, direction="long"))
Row time Col id
1.u X u 0.29 1
2.u Y u 0.79 2
3.u Z u 0.41 3
1.v X v 0.88 1
2.v Y v 0.94 2
3.v Z v 0.05 3

Maybe the default column names are not superb, but we can adjust them manually
afterwards.The reverse operation is called unstacking:

reshape(stacked, idvar="Row", timevar="time", drop="id", direction="wide")
Row Col.u Col.v
1.u X 0.29 0.88
2.u Y 0.79 0.94
3.u Z 0.41 0.05

Exercise 12.18 Given a named numeric vector, convert it to a data framewith two columns. For
instance:

convert <- function(x) ...to.do...
x <- c(spam=42, eggs=7, bacon=3)
convert(x)

(continues on next page)

274 II DEEPER

(continued from previous page)

key value
1 spam 42
2 eggs 7
3 bacon 3

Exercise 12.19 Stack the WorldPhones dataset. Then, unstack it back. Furthermore, unstack
the stacked set after removing9 five randomrows from it and randomly permuting all the remain-
ing rows. Fill in the missing entries with NAs.

Exercise 12.20 Implement a basic version of as.data.frame.table manually (using rep
etc.). Also, write a function as.table.data.frame that computes its reverse. Make sure both
functions are compatible with each other.

Exercise 12.21 Titanic is a four-dimensional array. Convert it to a long data frame.

Exercise 12.22 Performwhat follows on the undermentioned data frame:

1. convert the second column to a list of character vectors (split at ",");

2. extract the first elements from each of such vectors;

3. extract the last elements;

4. (*) unstack the split data frame;

5. (*) stack it back to a data frame that carries a list;

6. convert the list back to a character column (concatenate with "," as separator).

(x <- data.frame(
name=c("Kat", "Ron", "Jo", "Mary"),
food=c("buckwheat", "spam,bacon,spam", "", "eggs,spam,spam,lollipops")

))
name food
1 Kat buckwheat
2 Ron spam,bacon,spam
3 Jo
4 Mary eggs,spam,spam,lollipops

Exercise 12.23 Write a function that converts all matrix-based columns in a given data frame
to separate atomic columns. Furthermore, author a function that does the opposite, i.e., groups
all columns with similar prefixes and turns them intomatrices.

12.3.7 Aggregating data in groups
We can straightforwardly apply various transforms on data groups determined by a
factor-like variable or their combination thanks to the split.data.frame method,
which returns a list of data frames. For example:

9The original dataset can be thought of as representing a fully crossed design experiment (all combina-
tions of two grouping variables are present). Its truncated version is like an incomplete crossed design.

12 DATA FRAMES 275

x <- data.frame(
a=c(10, 20, 30, 40, 50),
u=c("spam", "spam", "eggs", "spam", "eggs"),
v=c(1, 2, 1, 1, 1)

)
split(x, x["u"]) # i.e., split.data.frame(x, x["u"]) or x[["u"]]
$eggs
a u v
3 30 eggs 1
5 50 eggs 1
##
$spam
a u v
1 10 spam 1
2 20 spam 2
4 40 spam 1

It split x with respect to the u column, which served as the grouping variable. On the
other hand:

split(x, x[c("u", "v")]) # sep="."
$eggs.1
a u v
3 30 eggs 1
5 50 eggs 1
##
$spam.1
a u v
1 10 spam 1
4 40 spam 1
##
$eggs.2
[1] a u v
<0 rows> (or 0-length row.names)
##
$spam.2
a u v
2 20 spam 2

It partitioned with respect to a combination of two factor-like sequences. A nonexist-
ent level pair (eggs, 2) resulted in an empty data frame.

Exercise 12.24 split.data.frame (when called directly) can also be used to break amatrix
into a list of matrices (rowwisely). Given amatrix, perform its train-test split: allocate, say, 70%
of the rows at random into onematrix and the remaining 30% into another.

sapply is convenient if we need to aggregate grouped numeric data. To recall, it
is a combination of lapply (one-vector version of Map) and simplify2array (Sec-
tion 11.1.3).

276 II DEEPER

sapply(split(iris[1:2], iris[5]), sapply, mean)
setosa versicolor virginica
Sepal.Length 5.006 5.936 6.588
Sepal.Width 3.428 2.770 2.974

If the function to apply returns more than a single value, sapply will not return too
informative a result. The list of matrices converted to a matrix will not have the row.
names argument set:

MinMax <- function(x) c(Min=min(x), Max=max(x))
sapply(split(iris[1:2], iris[5]), sapply, MinMax)
setosa versicolor virginica
[1,] 4.3 4.9 4.9
[2,] 5.8 7.0 7.9
[3,] 2.3 2.0 2.2
[4,] 4.4 3.4 3.8

As aworkaround,we either call simplify2array explicitly, or pass simplify="array"
to sapply:

(res <- sapply(
split(iris[1:2], iris[5]),
sapply,
MinMax,
simplify="array"

)) # or simplify2array(lapply(...) or Map(...) etc.)
, , setosa
##
Sepal.Length Sepal.Width
Min 4.3 2.3
Max 5.8 4.4
##
, , versicolor
##
Sepal.Length Sepal.Width
Min 4.9 2.0
Max 7.0 3.4
##
, , virginica
##
Sepal.Length Sepal.Width
Min 4.9 2.2
Max 7.9 3.8

It produced a three-dimensional array, which is particularly handy if we now wish to
access specific results by name:

res[, "Sepal.Length", "setosa"]

(continues on next page)

12 DATA FRAMES 277

(continued from previous page)

Min Max
4.3 5.8

Thepreviously mentioned as.data.frame.tablemethod will work on it like a charm
(up to the column names, which we can change):

as.data.frame.table(res, stringsAsFactors=FALSE)
Var1 Var2 Var3 Freq
1 Min Sepal.Length setosa 4.3
2 Max Sepal.Length setosa 5.8
3 Min Sepal.Width setosa 2.3
4 Max Sepal.Width setosa 4.4
5 Min Sepal.Length versicolor 4.9
6 Max Sepal.Length versicolor 7.0
7 Min Sepal.Width versicolor 2.0
8 Max Sepal.Width versicolor 3.4
9 Min Sepal.Length virginica 4.9
10 Max Sepal.Length virginica 7.9
11 Min Sepal.Width virginica 2.2
12 Max Sepal.Width virginica 3.8

Note If the grouping (by) variable is a list of two or more factors, the combined
levels will be concatenated to a single string.This behaviour yields a result thatmay be
deemed convenient in some contexts but not necessarily so in other ones.

as.data.frame.table(as.array(sapply(
split(ToothGrowth["len"], ToothGrowth[c("supp", "dose")], sep="_"),
sapply, # but check also: function(...) as.matrix(sapply(...)),
mean

)), stringsAsFactors=FALSE)
Var1 Freq
1 OJ_0.5.len 13.23
2 VC_0.5.len 7.98
3 OJ_1.len 22.70
4 VC_1.len 16.77
5 OJ_2.len 26.06
6 VC_2.len 26.14

The name of the aggregated column (len) has been included, because sapply simpli-
fies the result to a flat vector too eagerly.

aggregate can assist uswhen a single function is to be applied on all columns in a data
frame:

aggregate(iris[-5], iris[5], mean) # neither iris[[5]] nor iris[, 5]
Species Sepal.Length Sepal.Width Petal.Length Petal.Width

(continues on next page)

278 II DEEPER

(continued from previous page)

1 setosa 5.006 3.428 1.462 0.246
2 versicolor 5.936 2.770 4.260 1.326
3 virginica 6.588 2.974 5.552 2.026
aggregate(ToothGrowth["len"], ToothGrowth[c("supp", "dose")], mean)
supp dose len
1 OJ 0.5 13.23
2 VC 0.5 7.98
3 OJ 1.0 22.70
4 VC 1.0 16.77
5 OJ 2.0 26.06
6 VC 2.0 26.14

Thesecondargument,by,must be list-like (this includesdata frames).Neither a factor
nor an atomic vector is acceptable. Also, if the function being applied returns many
values, they will be wrapped into a matrix column:

(x <- aggregate(iris[2], iris[5], function(x) c(Min=min(x), Max=max(x))))
Species Sepal.Width.Min Sepal.Width.Max
1 setosa 2.3 4.4
2 versicolor 2.0 3.4
3 virginica 2.2 3.8
class(x[["Sepal.Width"]])
[1] "matrix" "array"
x[["Sepal.Width"]] # not: Sepal.Width.Max, etc.
Min Max
[1,] 2.3 4.4
[2,] 2.0 3.4
[3,] 2.2 3.8

It is actually handy: by referring to x[["Sepal.Width"]], we access all the stats for
this column. Further, if many columns are being aggregated simultaneously, we can
process all the summaries in the same way.

Exercise 12.25 Check out the by function, which supports basic split-apply-bind use cases.
Note the particularly odd behaviour of the printmethod for the by class.

The most flexible scenario involves applying a custom function returning any set of
aggregates in the formof a list and then row-binding the results to obtain adata frame.

Example 12.26 The following implements an R version of what we would express in SQL as:

SELECT supp, dose, AVG(len) AS ave_len, COUNT(*) AS count
FROM ToothGrowth
GROUP BY supp, dose

Ad rem:

do.call(rbind.data.frame, lapply(
split(ToothGrowth, ToothGrowth[c("supp", "dose")]),

(continues on next page)

12 DATA FRAMES 279

(continued from previous page)

function(df) list(
supp=df[1, "supp"],
dose=df[1, "dose"],
ave_len=mean(df[["len"]]),
count=NROW(df)

)
))
supp dose ave_len count
OJ.0.5 OJ 0.5 13.23 10
VC.0.5 VC 0.5 7.98 10
OJ.1 OJ 1.0 22.70 10
VC.1 VC 1.0 16.77 10
OJ.2 OJ 2.0 26.06 10
VC.2 VC 2.0 26.14 10

Exercise 12.27 Many aggregation functions are idempotent, which means that when they are
fed with a vector with all the elements being identical, the result is exactly that unique element:
min, mean, median, and max behave thisway.Overload the mean and medianmethods for char-
acter vectors and factors. They should return NA and give a warning for sequences where not all
elements are the same. Otherwise, they are expected to output the unique value.

mean.character <- function(x, na.rm=FALSE, ...) ...to.do...
mean.factor <- function(x, na.rm=FALSE, ...) ...to.do...

This way, we can also aggregate the grouping variables conveniently:

do.call(rbind.data.frame,
lapply(split(ToothGrowth, ToothGrowth[c("supp", "dose")]), lapply, mean))

len supp dose
OJ.0.5 13.23 OJ 0.5
VC.0.5 7.98 VC 0.5
OJ.1 22.70 OJ 1.0
VC.1 16.77 VC 1.0
OJ.2 26.06 OJ 2.0
VC.2 26.14 VC 2.0

Example 12.28 Let’s study a function that takes a named list x (can be a data frame) and a
sequence of col=f pairs, and applies the function f (or each function from a list of functions f)
on the element named col in x:

napply <- function(x, ...)
{

fs <- list(...)
cols <- names(fs)
stopifnot(is.list(x), !is.null(names(x)))
stopifnot(all(cols %in% names(x)))
do.call(

c, # concatenates lists

(continues on next page)

280 II DEEPER

(continued from previous page)

lapply(
structure(seq_along(fs), names=cols),
function(i)
{ # always returns a list

y <- x[[cols[i]]]
if (is.function(fs[[i]]))

list(fs[[i]](y))
else

lapply(fs[[i]], function(f) f(y))
}

)
)

}

For example:

first <- function(x, ...) head(x, n=1L, ...) # helper function
napply(ToothGrowth,

supp=first, dose=first, len=list(ave=mean, count=length)
)
$supp
[1] VC
Levels: OJ VC
##
$dose
[1] 0.5
##
$len.ave
[1] 18.813
##
$len.count
[1] 60

It applied first on both ToothGrowth[["supp"]] and ToothGrowth[["dose"]] as well
asmean andlength onToothGrowth[["len"]].We included list names for amore dramatic
effect. And now:

do.call(
rbind.data.frame,
lapply(

split(ToothGrowth, ToothGrowth[c("supp", "dose")]),
napply,
supp=first, dose=first, len=list(ave=mean, count=length)

)
)
supp dose len.ave len.count
OJ.0.5 OJ 0.5 13.23 10
VC.0.5 VC 0.5 7.98 10

(continues on next page)

12 DATA FRAMES 281

(continued from previous page)

OJ.1 OJ 1.0 22.70 10
VC.1 VC 1.0 16.77 10
OJ.2 OJ 2.0 26.06 10
VC.2 VC 2.0 26.14 10

or even:

gapply <- function(x, by, ...)
do.call(rbind.data.frame, lapply(

split(x, x[by]),
function(x, ...)

do.call(napply, c(# add all by=first calls
x=list(x),
`names<-`(rep(list(first), length(by)), by),
list(...)

)),
...

))

And now:

gapply(iris, "Species", Sepal.Length=mean, Sepal.Width=list(min, max))
Species Sepal.Length Sepal.Width1 Sepal.Width2
setosa setosa 5.006 2.3 4.4
versicolor versicolor 5.936 2.0 3.4
virginica virginica 6.588 2.2 3.8
gapply(ToothGrowth, c("supp", "dose"), len=list(ave=mean, count=length))
supp dose len.ave len.count
OJ.0.5 OJ 0.5 13.23 10
VC.0.5 VC 0.5 7.98 10
OJ.1 OJ 1.0 22.70 10
VC.1 VC 1.0 16.77 10
OJ.2 OJ 2.0 26.06 10
VC.2 VC 2.0 26.14 10

This brings fun back to R programming in the sad times when many things are given to us on a
plate (the thorough testing of the above is left as an exercise).

Example 12.29 In Section 10.4, we mentioned (without giving the implementation) the
group_by function returning a list of the class list_dfs. It splits a data frame into a list of
data frames with respect to a combination of levels in given named columns:

group_by <- function(df, by)
{

stopifnot(is.character(by), is.data.frame(df))
df <- droplevels(df) # factors may have unused levels
structure(

split(df, df[names(df) %in% by]),
class="list_dfs",

(continues on next page)

282 II DEEPER

(continued from previous page)

by=by
)

}

The next function applies a set of aggregates on every column of each data frame in a given list
(two nested lapplys plus cosmetic additions):

aggregate.list_dfs <- function(x, FUN, ...)
{

aggregates <- lapply(x, function(df) {
is_by <- names(df) %in% attr(x, "by")
res <- lapply(df[!is_by], FUN, ...)
res_mat <- do.call(rbind, res)
if (is.null(dimnames(res_mat)[[2]]))

dimnames(res_mat)[[2]] <- paste0("f", seq_len(NCOL(res_mat)))
cbind(

`row.names<-`(df[1, is_by, drop=FALSE], NULL),
x=row.names(res_mat),
`row.names<-`(res_mat, NULL)

)
})
combined_aggregates <- do.call(rbind.data.frame, aggregates)
`row.names<-`(combined_aggregates, NULL)

}
aggregate(group_by(ToothGrowth, c("supp", "dose")), range)
supp dose x f1 f2
1 OJ 0.5 len 8.2 21.5
2 VC 0.5 len 4.2 11.5
3 OJ 1.0 len 14.5 27.3
4 VC 1.0 len 13.6 22.5
5 OJ 2.0 len 22.4 30.9
6 VC 2.0 len 18.5 33.9

We really want our API to be bloated, so let’s introduce a convenience function, which is a spe-
cialised version of the above:

mean.list_dfs <- function(x, ...)
aggregate.list_dfs(x, function(y) c(Mean=mean(y, ...)))

mean(group_by(iris[51:150, c(2, 3, 5)], "Species"))
Species x Mean
1 versicolor Sepal.Width 2.770
2 versicolor Petal.Length 4.260
3 virginica Sepal.Width 2.974
4 virginica Petal.Length 5.552

12 DATA FRAMES 283

12.3.8 Transforming data in groups
Variables will sometimes need to be transformed relative to what is happening in a
dataset’s subsets.This is the case, e.g., where we decide thatmissing values should be
replaced by the corresponding within-group averages or want to compute the relative
ranks or z-scores.

If the loss of theoriginal orderingof rows isnot an issue, the standard split-apply-bind
will suffice. Here is an example data frame:

(x <- data.frame(
a=c(10, 1, NA, NA, NA, 4),
b=c(-1, 10, 40, 30, 1, 20),
c=runif(6),
d=c("v", "u", "u", "u", "v", "u")

))
a b c d
1 10 -1 0.52811 v
2 1 10 0.89242 u
3 NA 40 0.55144 u
4 NA 30 0.45661 u
5 NA 1 0.95683 v
6 4 20 0.45333 u

Some operations:

fill_na <- function(x) `[<-`(x, is.na(x), value=mean(x[!is.na(x)]))
standardise <- function(x) (x-mean(x))/sd(x)

And now:

x_groups <- lapply(
split(x, x["d"]),
function(df) {

df[["a"]] <- fill_na(df[["a"]])
df[["b"]] <- rank(df[["b"]])
df[["c"]] <- standardise(df[["c"]])
df

}
)
do.call(rbind.data.frame, x_groups)
a b c d
u.2 1.0 1 1.46357 u
u.3 2.5 4 -0.17823 u
u.4 2.5 3 -0.63478 u
u.6 4.0 2 -0.65057 u
v.1 10.0 1 -0.70711 v
v.5 10.0 2 0.70711 v

Only the relative ordering of rows within groups has been retained. Overall, the rows
are in a different order. If this is an issue, we can use the unsplit function:

284 II DEEPER

unsplit(x_groups, x["d"])
a b c d
1 10.0 1 -0.70711 v
2 1.0 1 1.46357 u
3 2.5 4 -0.17823 u
4 2.5 3 -0.63478 u
5 10.0 2 0.70711 v
6 4.0 2 -0.65057 u

Exercise 12.30 Show howwe can perform the above also via the replacement version of split.

Example 12.31 (*) Recreating the previous ordering can be done manually, too. It is because
the split operation behaves as if we first ordered the data framewith respect to the grouping vari-
able(s) (using a stable sorting algorithm). Here is a transformation of an example data frame
split by a combination of two factors:

(x <- `row.names<-`(ToothGrowth[sample(NROW(ToothGrowth), 10),], NULL))
len supp dose
1 23.0 OJ 2.0
2 23.3 OJ 1.0
3 29.4 OJ 2.0
4 14.5 OJ 1.0
5 11.2 VC 0.5
6 20.0 OJ 1.0
7 24.5 OJ 2.0
8 10.0 OJ 0.5
9 9.4 OJ 0.5
10 7.0 VC 0.5
(y <- do.call(rbind.data.frame, lapply(

split(x, x[c("dose", "supp")]), # two grouping variables
function(df) {

df[["len"]] <- df[["len"]] * 100^df[["dose"]] * # whatever
ifelse(df[["supp"]] == "OJ", -1, 1) # do not overthink it

df
}

)))
len supp dose
0.5.OJ.8 -100 OJ 0.5
0.5.OJ.9 -94 OJ 0.5
1.OJ.2 -2330 OJ 1.0
1.OJ.4 -1450 OJ 1.0
1.OJ.6 -2000 OJ 1.0
2.OJ.1 -230000 OJ 2.0
2.OJ.3 -294000 OJ 2.0
2.OJ.7 -245000 OJ 2.0
0.5.VC.5 112 VC 0.5
0.5.VC.10 70 VC 0.5

Section 5.4.4mentioned that by calling order, we can determine the inverse of a given permuta-
tion. Hence, we can call:

12 DATA FRAMES 285

y[order(order(x[["supp"]], x[["dose"]])),] # not: dose, supp
len supp dose
2.OJ.1 -230000 OJ 2.0
1.OJ.2 -2330 OJ 1.0
2.OJ.3 -294000 OJ 2.0
1.OJ.4 -1450 OJ 1.0
0.5.VC.5 112 VC 0.5
1.OJ.6 -2000 OJ 1.0
2.OJ.7 -245000 OJ 2.0
0.5.OJ.8 -100 OJ 0.5
0.5.OJ.9 -94 OJ 0.5
0.5.VC.10 70 VC 0.5

Additionally, we canmanually restore the original row.names, et voilà.

12.3.9 Metaprogramming-based techniques (*)
Section 9.4.7 mentioned a few functions that provide convenient interfaces to some
common data frame operations. These include transform, subset, with, and basic-
ally every procedure accepting a formula. The popular data.table and dplyr pack-
ages also belong to this class (Section 12.3.10).

Unfortunately, eachmethod relying onmetaprogrammingmust be studied separately
because it is free to interpret the form of the passed arguments arbitrarily, without
taking into account their realmeaning. As we are concerned with developing a more
universal skill set, we avoid10 them in this course. They do not offer anything more
than what we have learnt so far.

Withal, they are thought-provoking on their own. Furthermore, they are popular in
other users’ code.Thus, after all, they deserve the honourable mention.

Example 12.32 Consider an example call to the subset function:

subset(iris, Sepal.Length<4.5, -(Sepal.Width:Petal.Width))
Sepal.Length Species
9 4.4 setosa
14 4.3 setosa
39 4.4 setosa
43 4.4 setosa

Neither the second nor the third argument makes sense as a standalone R expression. We have
not defined the named variables used there:

10We are not alone in our calling to refrain from using them. help("subset") (and help("transform")
similarly) warns:This is a convenience function intended for use interactively. For programming, it is better to use the
standard subsetting functions like `[`, and in particular the nonstandard evaluation of argument subset can have
unanticipated consequences.The same in help("with"): For interactive use, this is very effective and nice to read.
For programming however, i.e., in one’s functions,more care is needed, and typically one should refrain fromusing with,
as, e.g., variables in datamay accidentally override local variables.

286 II DEEPER

Sepal.Length<4.5 # utter nonsense
Error: object 'Sepal.Length' not found
-(Sepal.Width:Petal.Width) # gibberish
Error: object 'Sepal.Width' not found

Only from help("subset")we can learn that this tool assumes that the expression passed as
the second argument plays the role of a row selector. Moreover, the third one is meant to remove
all the columns between the two given ones.

In our course,wepayattention to developing transferable skills.Webelieve thatR is not the only
language we will learn during our long and happy lives. It is much more likely that in the next
environment, we will become used to writing something of the more basic form:

between <- function(x, from, to) match(from, x):match(to, x)
iris[iris[["Sepal.Length"]]<4.5,

-between(names(iris), "Sepal.Width", "Petal.Width")]
Sepal.Length Species
9 4.4 setosa
14 4.3 setosa
39 4.4 setosa
43 4.4 setosa

Example 12.33 With transform, we can add, modify, and remove columns in a data frame.
Existing features can be referred to as if they were ordinary variables:

(mtcars4 <- mtcars[sample(seq_len(NROW(mtcars)), 4), c("hp", "am", "mpg")])
hp am mpg
Maserati Bora 335 1 15.0
Cadillac Fleetwood 205 0 10.4
Honda Civic 52 1 30.4
Merc 450SLC 180 0 15.2
transform(mtcars4, log_hp=log(hp), am=2*am-1, hp=NULL, fcon=235/mpg)
am mpg log_hp fcon
Maserati Bora 1 15.0 5.8141 15.6667
Cadillac Fleetwood -1 10.4 5.3230 22.5962
Honda Civic 1 30.4 3.9512 7.7303
Merc 450SLC -1 15.2 5.1930 15.4605

Similarly, attach adds any named list to the search path (see Section 16.2.6) but it does not
support altering their contents. As an alternative, withinmay be called:

within(mtcars4, {
log_hp <- log(hp)
fcon <- 235/mpg
am <- factor(am, levels=c(0, 1), labels=c("no", "yes"))
hp <- NULL

})
am mpg fcon log_hp
Maserati Bora yes 15.0 15.6667 5.8141

(continues on next page)

12 DATA FRAMES 287

(continued from previous page)

Cadillac Fleetwood no 10.4 22.5962 5.3230
Honda Civic yes 30.4 7.7303 3.9512
Merc 450SLC no 15.2 15.4605 5.1930

Those who find writing mtcars4[["name"]] instead of name too exhausting, can save a few
keystrokes.

Example 12.34 Asmentioned in Section 10.3.4 (see Section 17.6 formore details), formulae are
special objects that consist of two unevaluated expressions separated by a tilde, `~`. Functions
can support formulae and do what they please with them. However, a popular approach is to
allow them to express “something grouped by something else” or “one thing as a function of other
things”.

do.call(rbind.data.frame, lapply(split(ToothGrowth, ~supp+dose), head, 1))
len supp dose
OJ.0.5 15.2 OJ 0.5
VC.0.5 4.2 VC 0.5
OJ.1 19.7 OJ 1.0
VC.1 16.5 VC 1.0
OJ.2 25.5 OJ 2.0
VC.2 23.6 VC 2.0
aggregate(cbind(mpg, log_hp=log(hp))~am:cyl, mtcars, mean)
am cyl mpg log_hp
1 0 4 22.900 4.4186
2 1 4 28.075 4.3709
3 0 6 19.125 4.7447
4 1 6 20.567 4.8552
5 0 8 15.050 5.2553
6 1 8 15.400 5.6950
head(model.frame(mpg+hp~log(hp)+I(1/qsec), mtcars))
mpg + hp log(hp) I(1/qsec)
Mazda RX4 131.0 4.7005 0.060753....
Mazda RX4 Wag 131.0 4.7005 0.058754....
Datsun 710 115.8 4.5326 0.053734....
Hornet 4 Drive 131.4 4.7005 0.051440....
Hornet Sportabout 193.7 5.1648 0.058754....
Valiant 123.1 4.6540 0.049455....

If these examples seem esoteric, it is because it is precisely the case.We need to consult the corres-
ponding functions’ manuals to discover what they do. And, as we do not recommend their use to
beginner programmers, we will not explain them here. Don’t trip.

Exercise 12.35 In the last example, the peculiar printing of the last column is due to which
method’s being overloaded?

In the third part of this book, wewill return to these functions for they will serve as an
amusing illustration of how to indite our own procedures that rely on metaprogram-
ming techniques.

288 II DEEPER

12.3.10 A note on the dplyr (tidyverse) and data.table packages (*)
data.table anddplyr are verypopular packages that implement commondata frame
transformations. In particular, the latter is part of an immerse systemof interdepend-
ent extensions called tidyverse which became quite invasive over the last few years.
They both heavily rely on metaprogramming and introduce entirely new APIs featur-
ing hundreds of functions for the operations we already know well how to perform
(the calamity of superabundance).

Still, their users must remember that they will need to rely on base functions when
the processing of other prominent data structures is required, e.g., of fancy lists and
matrices. Base R (and its predecessor, S) has long ago proven to be a versatile tool for
rapid prototyping, calling specialised procedures written in C or Java, and wrangling
data that fit intomemory. Even though some operations from thementioned packages
may bemuch faster for larger datasets, the speed is less often an issue in practice than
what most users might think.

For larger problems, techniques for working with batches of data, samplingmethods,
or aggregating data stored elsewhere are often theway to go, especially when building
machine learning models or visualisation11 is required. Usually, the most recent data
will be stored in external, normalised databases, and we will need to join a few tables
to fetch something valuable from the perspective of the current task’s context.

Thus, we cannot stress enough that, in many situations, SQL, not the other tools, is
the most powerful interface to more considerable amounts of data. Learning it will
give us the skills we can use later in other programming environments.

Note Of course, certain functions from tidyverse and related packages we will find
very helpful after all. Quite annoyingly, they tend to return objects of the class tibble
(tbl_df) (e.g., haven::read.xpt that reads SASdatafiles). Luckily, they are subclasses
of data.frame; we can always use as.data.frame to get our favourite objects back.

12.4 Exercises
Exercise 12.36 Answer the following questions.

• What attributes a data frame is equipped with?

• If row.names is an integer vector, how to access rows labelled 1, 7, and 42?

• How to create a data frame that carries a column that is a list of character vectors of different
lengths?

11 For example, drawing scatter plots of billions of pointsmakes little sense as theymay result in unread-
able images of large file sizes. The points need to be sampled or summarised somehow (e.g., binned); see
Chapter 13.

12 DATA FRAMES 289

• How to create a data frame that includes amatrix column?

• How to convert all numeric columns in a data frame to a numeric matrix?

• Assuming thatx is anatomic vector,what is thedifferencebetweenas.data.frame(x),as.
data.frame(as.list(x)), as.data.frame(list(a=x)), and data.frame(a=x)?

Exercise 12.37 Assuming that x is a data frame, what is themeaning of/difference between the
following:

• x["u"] vs x[["u"]] vs x[, "u"]?

• x["u"][1] vs x[["u"]][1] vs x[1, "u"] vs x[1, "u", drop=FALSE]?

• x[which(x[[1]] > 0),] vs x[x[[1]] > 0,]?

• x[grep("^foo", names(x))]?

Exercise 12.38 We have a data frame with columns named like: ID (character), checked
(logical, possibly with missing values), category (factor), x0, …, x9 (ten separate numeric
columns),y0, …,y9 (ten separate numeric columns),coords (numericmatrixwith two columns
named lat and long), and features (list of character vectors of different lengths).

• How to extract the rows where checked is TRUE?

• Howtoextract the rows forwhichID is like three lettersand thenfivedigits (e.g.,XYZ12345)?

• How to select all the numeric columns in one go?

• How to extract a subset comprised only of the ID and x-something columns?

• How to get rid of all the columns between x3 and y7?

• Assuming that theIDs are like three letters and thenfive digits, how to add two columns:ID3
(the letters) and ID5 (the five digits)?

• How to check whether both lat and long in coords are negative?

• How to add the column indicating the number of features?

• How to extract the rows where "spam" is amongst the features?

• How to convert it to a long data frame with two columns: ID and feature (individual
strings)?

• How to change the name of the ID column to id?

• How tomake the y-foo columns appear before the x-bar ones?

• How to order the rows with respect to checked (FALSE first, then TRUE) and IDs (decreas-
ingly)?

• How to remove rows with duplicate IDs?

• How to determine howmany entries correspond to each category?

• How to compute the average lat and long in each category?

• How to compute the average lat and long for each category and checked combined?

290 II DEEPER

Exercise 12.39 Consider the flights12 dataset. Give some ways to select all rows between
March andOctober (regardless of the year).

Exercise 12.40 In this task, youwill be workingwith a version of a dataset on 70k+Melbourne
trees (urban_forest13).

1. Load the downloaded dataset by calling the read.csv function.

2. Fetch the IDs (CoM.ID) and trunk diameters (Diameter.Breast.Height) of the horse
chestnutswithfive smallest diameters at breast height.Theoutput data framemust be sorted
with respect to Diameter.Breast.Height, decreasingly.

3. Create a new data frame that gives the number of trees planted in each year.

4. Compute the average age (in years, based on Year.Planted) of the trees of genera (each
genus separately): Eucalyptus, Platanus, Ficus, Acer, and Quercus.

Exercise 12.41 (*) Consider the historic data dumps of Stack Exchange14 available here15. Ex-
port these CSV files to an SQLite database. Then, write some R code that corresponds to the fol-
lowing SQL queries. Use dbGetQuery to verify your results.

First:

SELECT
Users.DisplayName,
Users.Age,
Users.Location,
SUM(Posts.FavoriteCount) AS FavoriteTotal,
Posts.Title AS MostFavoriteQuestion,
MAX(Posts.FavoriteCount) AS MostFavoriteQuestionLikes

FROM Posts
JOIN Users ON Users.Id=Posts.OwnerUserId
WHERE Posts.PostTypeId=1
GROUP BY OwnerUserId
ORDER BY FavoriteTotal DESC
LIMIT 10

Second:

SELECT
Posts.ID,
Posts.Title,
Posts2.PositiveAnswerCount

FROM Posts
JOIN (

SELECT
Posts.ParentID,

(continues on next page)

12 https://github.com/gagolews/teaching-data/blob/master/other/flights.csv
13 https://github.com/gagolews/teaching-data/raw/master/marek/urban_forest.csv.gz
14 https://travel.stackexchange.com/
15 https://github.com/gagolews/teaching-data/tree/master/travel_stackexchange_com_2017

https://github.com/gagolews/teaching-data/blob/master/other/flights.csv
https://github.com/gagolews/teaching-data/raw/master/marek/urban_forest.csv.gz
https://travel.stackexchange.com/
https://github.com/gagolews/teaching-data/tree/master/travel_stackexchange_com_2017

12 DATA FRAMES 291

(continued from previous page)

COUNT(*) AS PositiveAnswerCount
FROM Posts
WHERE Posts.PostTypeID=2 AND Posts.Score>0
GROUP BY Posts.ParentID

) AS Posts2
ON Posts.ID=Posts2.ParentID

ORDER BY Posts2.PositiveAnswerCount DESC
LIMIT 10

Third:

SELECT
Posts.Title,
UpVotesPerYear.Year,
MAX(UpVotesPerYear.Count) AS Count

FROM (
SELECT

PostId,
COUNT(*) AS Count,
STRFTIME('%Y', Votes.CreationDate) AS Year

FROM Votes
WHERE VoteTypeId=2
GROUP BY PostId, Year

) AS UpVotesPerYear
JOIN Posts ON Posts.Id=UpVotesPerYear.PostId
WHERE Posts.PostTypeId=1
GROUP BY Year

Fourth:

SELECT
Questions.Id,
Questions.Title,
BestAnswers.MaxScore,
Posts.Score AS AcceptedScore,
BestAnswers.MaxScore-Posts.Score AS Difference

FROM (
SELECT Id, ParentId, MAX(Score) AS MaxScore
FROM Posts
WHERE PostTypeId==2
GROUP BY ParentId

) AS BestAnswers
JOIN (

SELECT * FROM Posts
WHERE PostTypeId==1

) AS Questions
ON Questions.Id=BestAnswers.ParentId

JOIN Posts ON Questions.AcceptedAnswerId=Posts.Id

(continues on next page)

292 II DEEPER

(continued from previous page)

WHERE Difference>50
ORDER BY Difference DESC

Fifth:

SELECT
Posts.Title,
CmtTotScr.CommentsTotalScore

FROM (
SELECT

PostID,
UserID,
SUM(Score) AS CommentsTotalScore

FROM Comments
GROUP BY PostID, UserID

) AS CmtTotScr
JOIN Posts ON Posts.ID=CmtTotScr.PostID

AND Posts.OwnerUserId=CmtTotScr.UserID
WHERE Posts.PostTypeId=1
ORDER BY CmtTotScr.CommentsTotalScore DESC
LIMIT 10

Sixth:

SELECT DISTINCT
Users.Id,
Users.DisplayName,
Users.Reputation,
Users.Age,
Users.Location

FROM (
SELECT

Name, UserID
FROM Badges
WHERE Name IN (

SELECT
Name

FROM Badges
WHERE Class=1
GROUP BY Name
HAVING COUNT(*) BETWEEN 2 AND 10

)
AND Class=1

) AS ValuableBadges
JOIN Users ON ValuableBadges.UserId=Users.Id

Seventh:

12 DATA FRAMES 293

SELECT
Posts.Title,
VotesByAge2.OldVotes

FROM Posts
JOIN (

SELECT
PostId,
MAX(CASE WHEN VoteDate = 'new' THEN Total ELSE 0 END) NewVotes,
MAX(CASE WHEN VoteDate = 'old' THEN Total ELSE 0 END) OldVotes,
SUM(Total) AS Votes

FROM (
SELECT

PostId,
CASE STRFTIME('%Y', CreationDate)

WHEN '2017' THEN 'new'
WHEN '2016' THEN 'new'
ELSE 'old'
END VoteDate,

COUNT(*) AS Total
FROM Votes
WHERE VoteTypeId=2
GROUP BY PostId, VoteDate

) AS VotesByAge
GROUP BY VotesByAge.PostId
HAVING NewVotes=0

) AS VotesByAge2 ON VotesByAge2.PostId=Posts.ID
WHERE Posts.PostTypeId=1
ORDER BY VotesByAge2.OldVotes DESC
LIMIT 10

Exercise 12.42 (*)GenerateaCSVfile that stores somerandomdataarranged ina fewcolumns
of a size at least two times larger thanyouravailableRAM.Then, export theCSVfile to anSQLite
database. Use file connections (Section 8.3.5) and the nrow argument to read.table to process
it chunk by chunk. Determine whether setting colClasses in read.table speeds up the read-
ing of large CSV files significantly or not.

Exercise 12.43 (*) Export the whole XML data dump of StackOverflow16 published at https:
//archive.org/details/stackexchange (see also https://data.stackexchange.com/) to an SQLite
database.

16 https://stackoverflow.com/

https://stackoverflow.com/
https://archive.org/details/stackexchange
https://archive.org/details/stackexchange
https://data.stackexchange.com/

13
Graphics

The R project homepage advertises our free software as an environment for statistical
computing and graphics. Hence, had we not dealt with the latter use case, our course
would have been incomplete.

R is nowadays equippedwith two independent (incompatible, yet coexisting) systems
for graphics generation; see Figure 13.1.

1. The (historically) newer one, grid (e.g., [49]), is very flexible but might seem com-
plicated. Some readers might have come across the lattice [54] and ggplot2 [61,
64] packages before: they are built on top of grid.

2. On the other hand, its traditional (S-style) counterpart, base graphics (e.g., [7]), is
much easier to master. It still gives their users complete control over the drawing
process. It is simple, fast, andminimalist, whichmakes it very attractive from the
perspective of this course’s philosophy.

This is why we only cover the second system here. Most importantly, all figures in this
bookweregeneratedusinggraphicsand itsdependants.Theyare sufficientlyaesthetic,
aren’t they? Form precedes essence (but see [57, 60]).

13.1 Graphics primitives
In graphics, we do not choose from a superfluity of virtual objects to be placed on an
abstract canvas, letting some algorithm decide how and when to delineate them. We
just draw. We do so by calling functions that plot the following graphics primitives (see,
e.g., [37, 45]):

• symbols (e.g., pixels, circles, stars) of different shapes and colours,

• line segments of different styles (e.g., solid, dashed, dotted),

• polygons (optionally filled),

• text (using available fonts),

• raster images (bitmaps).

That’s it. It will turn out that all other shapes (smooth curves, circles) may be easily
approximated using the above.

296 II DEEPER

higher-level functions (graphics)

higher-level functions (grid)

graphics subsystems

graphics devices
(abstraction layer)

particular devices

graphics

plot.default
boxplot
hist
barplot
image
...

stats

plot.ecdf
plot.hclust
qqplot
...

lattice

...

ggplot2

...

graphics

plot.new
plot.window
plot.xy
polygon
text.default
rasterImage
...

grid

...

grDevices

dev.new
dev.o�f
par
...

grDevices::cairo_pdf

grDevices::svggrDevices::pngtikzDevice::tikz

grDevices::x11

Figure 13.1. Relation between the graphics subsystems.

13 GRAPHICS 297

Of course, in practice, we do not always have to be so low-level. There are many func-
tions that provide the most popular chart types: histograms, bar plots, dendrograms,
etc.They will suit our basic needs. We will review them in Section 13.3.

Themore primitive routines we discuss next will still be of service for fine-tuning our
figures and adding further details. However, if the prefabricated components are not
what we are after, we will be able to create any drawing from scratch.

Important In graphics, most of the function calls have immediate effects. Objects
are drawn on the active plot one by one, and their state cannot be modified later.

Example 13.1 Figure 13.2 depicts some graphics primitives, which we plotted using the follow-
ing program.Wewill detail themeaning of all the functions in the next sections, but they should
be self-explanatory enough for us to be able to find the corresponding shapes in the plot.

par(mar=rep(0.5, 4)) # small plot margins (bottom, left, top, right)
plot.new() # start a new plot
plot.window(c(0, 6), c(0, 2), asp=1) # x range: 0–6, y: 0–2; proportional
x <- c(0, 0, NA, 1, 2, 3, 4, 4, 5, 6)
y <- c(0, 2, NA, 2, 1, 2, 2, 1, 0.25, 0)
points(x[-(1:6)], y[-(1:6)]) # symbols
lines(x, y) # line segments
text(c(0, 6), c(0, 2), c("(0, 0)", "(6, 2)"), col="red") # two text labels
rasterImage(

matrix(c(1, 0, # 2x3 pixel "image"; 0=black, 1=white
0, 1,
0, 0), byrow=TRUE, ncol=2),

5, 0.5, 6, 2, # position: xleft, ybottom, xright, ytop
interpolate=FALSE

)
polygon(

c(4, 5, 5.5, 4), # x coordinates of the vertices
c(0, 0, 1, 0.75), # y coordinates
lty="dotted", # border style
col="#ffff0044" # fill colour: semi-transparent yellow

)

13.1.1 Symbols (points)
The points function can draw a series of symbols (by default, circles) on the two-
dimensional plot region, relative to the user coordinate system.We specify the points’
coordinates using the x and y arguments (two vectors of equal lengths; no recycling).
Alternatively, wemay give amatrix or a data framewith two columns: its first column
(regardless of how and if it is named) defines the abscissae, and the second column
determines the ordinates.

This function permits us to plot each point differently if this is whatwe desire.Thus, it
is ideal for drawing scatter plots, possibly for grouped data (see Figure 13.17 below). It

298 II DEEPER

(0, 0)

(6, 2)

Figure 13.2. Graphics primitives: plotting symbols, line segments, polygons, text la-
bels, and bitmaps. Objects are added one after another, with newer ones drawn over
the already existing shapes.

is vectorised with respect to, amongst others, the col (colour; see Section 13.2.1), cex
(scale, defaults to 1), and pch (plotting character or symbol, defaults to 1, i.e., a circle)
arguments.

Example 13.2 Figure 13.3 gives an overview of the plotting symbols available. The most often
used ones are:

• NA_integer_ – no symbol,

• 0, …, 14 and 15, …, 18 – unfilled and filled symbols, respectively;

• 19, …, 25 – filled symbols with a border of width lwd; for codes 21, …, 25, the fill colour is
controlled separately by the bg parameter,

• "." – a tiny point (a “pixel”),

• "a", "1", etc. – a single character (not all Unicode characters can be drawn); strings longer
than one will be truncated.

par(mar=rep(0.5, 4)); plot.new(); plot.window(c(0.9, 9.1), c(0.9, 4.1))
points(

cbind(1:9, 1), # or x=1:9, y=rep(1, 9); bottom row
col="red",
pch=c("A", "B", "a", "b", "Spanish Inquisition", "*", "!", ".", "9")

)
xy <- expand.grid(1:9, 4:2)
text(xy, labels=0:(NROW(xy)-1), pos=1, cex=0.89, offset=0.75, col="darkgray")
points(xy, pch=0:(NROW(xy)-1), bg="yellow")
Warning in plot.xy(xy.coords(x, y), type = type, ...): unimplemented pch
value '26'

13.1.2 Line segments
lines can draw connected line segments whose mid- and endpoints are given in a
similar manner as in the points function. A series of segments can be interrupted by
defining an endpoint whose coordinate is a missing value; compare Figure 13.2.

Actually, points and lines are wrappers around the same function, plot.xy, which

13 GRAPHICS 299

A B a b S * ! 9

0 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25 26

Figure 13.3. Plotting characters and symbols (pch).

we usually do not call directly.Their type arguments determine the object to draw; the
only difference is that by default the former uses type="p" whilst the latter relies on
type="l" . Changing these to type="b" (both) or type="o" (overplot) will give their
combination. Moreover, type="s" and type="S" creates step functions (with post-
andpre-increments, respectively), and type="h"draws bar plot-like vertical lines. For
an illustration, see Figure 13.4 (implement something similar yourself as an exercise).

type="h"

type="p"

type="l"

type="b"

type="o"

type="s"

type="S"

Figure 13.4. Different type argument settings in lines or points.

The col argument controls the line colour (see Section 13.2.1), and lwd determines the
line width (1 by default). Six named line types (lty) are available, which can also be
specified via their respective numeric identifiers, lty=1, …, lty=6; see Figure 13.5 (im-
plementing a similar plot is left as an exercise). Additionally, custom dashes can be
defined using strings of up to eight hexadecimal digits. Consecutive digits give the
lengths of the dashes and blanks (alternating). For instance, lty="1343" yields a dash
of length 1, followed by a space of length 3, then a dash of length 4, followed by a blank
of length 3.The whole sequence will be recycled for as long as necessary.

Example 13.3 lines can be used for plotting empirical cumulative distribution functions (we
will suggest it asan exercise later), regressionmodels (e.g., lines, splines of differentdegrees), time
series, and any othermathematical functions, even when they are smooth and curvy.The naked
eye cannot tell the difference between a densely sampled piecewise linear approximation of an
object and its original version.The code below illustrates this (sad for the high-hearted idealists)
truth using the sine function; see Figure 13.6.

300 II DEEPER

"solid" or 1 "dashed", "44", or 2

"dotted", "13", or 3 "dotdash", "1343", or 4

"longdash", "73", or 5 "twodash", "2262", or 6

"5515" "9515"

"19" "4484C4"

Figure 13.5. Line types (lty).

ns <- c(seq(3, 25, by=2), 50, 100)
par(mar=rep(0.5, 4)); plot.new(); plot.window(c(0, length(ns)*pi), c(-1, 1))
for (i in seq_along(ns)) {

x <- seq((i-1)*pi, i*pi, length.out=ns[i])
lines(x, sin(x))
text((i-0.5)*pi, 0, ns[i], cex=0.89)

}

3 5 7 9 11 13 15 17 19 21 23 25 50 100

Figure 13.6. The sine function approximated with line segments. Sampling more
densely gives the illusion of smoothness.

Exercise 13.4 Implement your version of the segments function using a call to lines.

Exercise 13.5 (*) Implement a simplified version of the arrows function, where the length
of edges of the arrowhead is given in user coordinates (and not inches; you will be equipped
with skills to achieve this later; see Section 13.2.4). Use the ljoin and lend arguments (see
help("par") for admissible values) to change the line endand join styles (from thedefault roun-
ded caps).

13.1.3 Polygons
polygon draws a polygon with a border of specified colour and line type (border, lty,
lwd). If the col argument is notmissing, the polygon is filled (or hatched; cf. the dens-
ity and angle arguments).

Example 13.6 Let’s drawa few regular (equilateral and equiangular) polygons; see Figure 13.7.
By increasing the number of sides, we can obtain an approximation to a circle.

regular_poly <- function(x0, y0, r, n=101, ...)
{

(continues on next page)

13 GRAPHICS 301

(continued from previous page)

theta <- seq(0, 2*pi, length.out=n+1)[-1]
polygon(x0+r*cos(theta), y0+r*sin(theta), ...)

}

par(mar=rep(0.5, 4)); plot.new(); plot.window(c(0, 9.5), c(-1, 1), asp=1)
regular_poly(1, 0, 1, n=3)
regular_poly(3.5, 0, 1, n=7, density=15, angle=45, col="tan", border="red")
regular_poly(6, 0, 1, n=10, density=8, angle=-60, lty=3, lwd=2)
regular_poly(8.5, 0, 1, n=100, border="brown", col="lightyellow")

Figure 13.7. Regular polygons drawn using polygon.

Note theasp=1argument to theplot.window function (whichwedetail below) that guarantees
the same scaling of the x- and y-axes.This way, the circle looks like one and not an oval.

Notice that the last vertex adjoins the first one. Also, if we are absent-minded (or par-
ticularly creative), we can produce self-intersecting or otherwise degenerate shapes.

Exercise 13.7 Implement your version of the rect function using a call to polygon.

13.1.4 Text
A call to text draws arbitrary strings (newlines and tabs are supported) centred at the
specified points. Moreover, by setting the pos argument, the labels may be placed be-
low, to the left of, etc., the pivots. Some further position adjustments are also possible
(adj, offset); see Figure 13.8.

default

pos=1

pos=2
pos=3

pos=4

pos=1

offset=1.5

srt
=45

srt
=45

adj=
0

Figure 13.8.The positioning of text with text (plotting symbols added for reference).

col specifies the colour, cex affects the size, and srt changes the rotation of the text.

On many graphics devices, we have little but crude control over the font face used:
family chooses a generic font family ("sans", "serif", "mono"), and font selects
between the normal variant (1), bold (2), italic (3), or bold italic (4). See, however, Sec-
tion 13.2.6 for some workarounds.

302 II DEEPER

Note (*) There is limited support for mathematical symbols and formulae. It
relies on some quirky syntax that we enter using unevaluated R expressions
(Chapter 15). Still, it should be enough to meet our most basic needs. For instance,
passing quote(beta[i]^j) as the labels argument to text will output “𝛽𝑗

𝑖”. See
help("plotmath") for more details.

Formore sophisticatedmathematical typesetting, see the tikzDevicegraphics device
mentioned in Section 13.2.6. It outputs plot specifications that can be rendered by the
LaTeX typesetting system.

13.1.5 Raster images (bitmaps) (*)
Raster images are encoded in the form of bitmaps, i.e., matrices whose elements rep-
resent pixels (see Figure 13.2 for an example).They can be used for drawing heatmaps
or backgrounds of contour plots; see Section 13.3.4.

Example 13.8 Optionally, bilinear interpolation can be applied if the drawing area is larger
than the true bitmap size, and we would like to smoothen the colour transitions out. Figure 13.9
presents a very stretched 4 × 3 pixel image, with and without interpolation.

par(mar=rep(0.5, 4)); plot.new(); plot.window(c(0, 9), c(0, 1))
I <- matrix(nrow=4, byrow=TRUE,

c("red", "yellow", "white",
"yellow", "yellow", "orange",
"yellow", "orange", "orange",
"white", "orange", "red")

)
rasterImage(I, 0, 0, 4, 1) # interpolate=TRUE; left subplot
rasterImage(I, 5, 0, 9, 1, interpolate=FALSE) # right subplot

Figure 13.9. Example bitmaps drawnwith rasterImage, with (left) andwithout (right)
colour interpolation.

13.2 Graphics settings
par can be used to query and modify (as long as they are not read-only) many graph-
ics options. For instance, we have several parameters related to the current page or

13 GRAPHICS 303

device settings, e.g., the plot’s margins (see Section 13.2.2) or user coordinates (see
Section 13.2.3).The reference list of available parameters is given in help("par"). Be-
low we discuss the most noteworthy ones.

Moreover, some functions source1 the values of their default arguments by querying
par. This is the case of, e.g., col, pch, lty in the points and lines function.

Exercise 13.9 Study the following pseudocode.

lines(x, y) # use the default `lty`, i.e., par("lty") == "solid"
old_settings <- par(lty="dashed") # change setting, save old for reference
lines(x, y) # use the new default `lty`, i.e., par("lty") == "dashed"
lines(x, y, lty=3) # use the given `lty`, but only for this call
lines(x, y) # default lty="dashed" again
par(old_settings) # restore the previous settings
lines(x, y) # lty="solid" now

13.2.1 Colours
Many functionsallow for customisingcoloursof theplottedobjects or theirparts; com-
pare, e.g., col and border arguments to polygon, or col and bg to points. There are
a few ways to specify colours (see the Colour Specification section of help("par") for
more details).

• We can use a "colour name" string, being one of the 657 predefined tags known
to the colours function:

sample(colours(), 8) # this is just a sample
[1] "grey23" "darksalmon" "tan3" "violetred4"
[5] "lightblue1" "darkorchid3" "darkseagreen1" "slategray3"

• Wecanpass a"#rrggbb" string,which specifies aposition in theRGBcolour space:
three series of hexadecimal numbers of two digits each, i.e., between 00hex = 0
(off) and FFhex = 255 (full on), giving the intensity of the red, green, and blue
channels2.

In practice, the col2rgb and rgb functions can convert between the decimal and
hexadecimal representations:

C <- c("black", "red", "green", "blue", "cyan", "magenta",
"yellow", "grey", "lightgrey", "pink") # example colours

(M <- structure(col2rgb(C), dimnames=list(c("R", "G", "B"), C)))

(continues on next page)

1 Alas, it is not as straightforward as that. For instance, polygon is unaffected by the col setting, axis
uses col.axis instead, etc. We should always consult the documentation.

2 From school, we probably know the subtractive CMY (cyan, magenta, yellow) model, where we obtain,
e.g., a green colour by using blue-ish and yellow crayons (subtracting certainwavelengths fromwhite light).
The RGBmodel, on the other hand, corresponds to the three photoreceptor/cone cells in the retinas of the
human eyes. Nonetheless, it is additive and, therefore, less intuitive: total darkness emerges when we emit
no light, yellow emerges whenmixing red and green beams, etc.

304 II DEEPER

(continued from previous page)

black red green blue cyan magenta yellow grey lightgrey pink
R 0 255 0 0 0 255 255 190 211 255
G 0 0 255 0 255 0 255 190 211 192
B 0 0 0 255 255 255 0 190 211 203
structure(rgb(M[1,], M[2,], M[3,], maxColorValue=255), names=C)
black red green blue cyan magenta yellow
"#000000" "#FF0000" "#00FF00" "#0000FF" "#00FFFF" "#FF00FF" "#FFFF00"
grey lightgrey pink
"#BEBEBE" "#D3D3D3" "#FFC0CB"

• An "#rrggbbaa" string is similar, but has the added alpha channel (two additional
hexadecimal digits): from 00hex = 0 denoting fully transparent, to FFhex = 255
indicating fully visible (lit) colour; see Figure 13.2 for an example.

Semi-transparency (translucency) can significantly enhance the expressivity of
our data visualisations; see Figure 13.18 and Figure 13.19.

• We can rely on an integer index to select an item from the current palette (with re-
cycling), which we can get or set by a call to palette. Moreover, 0 identifies the
background colour, par("bg").

Integer colour specifiers are particularly valuable when plotting data in groups
definedby factor objects.Theunderlying integer level codes canbemapped to con-
secutive colours from any palette; see Figure 13.17 below for an example.

Example 13.10 We recommendmemorising the colours in the default palette:

palette() # get current palette
[1] "black" "#DF536B" "#61D04F" "#2297E6" "#28E2E5" "#CD0BBC" "#F5C710"
[8] "gray62"

These are3, in order: black, red, green, blue, cyan, magenta, yellow, and grey; see4 Figure 13.10.

k <- length(palette())
par(mar=rep(0.5, 4)); plot.new(); plot.window(c(0, k+1), c(0, 1))
points(1:k, rep(0.5, k), col=1:k, pch=16, cex=3)
text(1:k, 0.5, palette(), pos=rep(c(1, 3), length.out=k), col=1:k, offset=1)
text(1:k, 0.5, 1:k, pos=rep(c(3, 1), length.out=k), col=1:k, offset=1)

Choosing usable colours requires talents that most programmers lack. Therefore, we
will find ourselves relying on the built-in colour sets. palette.pals and hcl.pals re-
turn the names of the available discrete (qualitative) palettes. Then, palette.colors
and hcl.colors (note the American spelling) can generate a given number of colours
from a particular named set.

3 Actually, red-ish, green-ish, etc.The choice ismore aesthetic thanwhen pure red, green, etc. was used
(before R 4.0.0). It is also expected to be more friendly to people who have colour vision deficiencies. We
know that roughly every 1 in 12 men (8%) and 1 in 200 women (0.5%), especially in the red-green or blue-
yellow spectrum; see [51] for more details.

4The readers of the printed version of this book should know that its online version displays this figure
(and all others) in full colour. See you there.

13 GRAPHICS 305

black

#DF536B

#61D04F

#2297E6

#28E2E5

#CD0BBC

#F5C710

gray621

2

3

4

5

6

7

8

Figure 13.10.The default colour palette.

Continuous (quantitative) palettes are also available, see rainbow, heat.colors,
terrain.colors,topo.colors,cm.colors, andgray.colors.They transitionsmoothly
between predefined pivot colours, e.g., from blue through green to brown (like in a
topographic map with elevation colouring). They may be of use, e.g., when drawing
contour plots; compare Figure 13.27.

Exercise 13.11 Create a demo of the aforementioned palettes in a similar (or nicer) style to that
in Figure 13.11.

Alphabet

Polychrome 36

Classic Tableau

Tableau 10

Set 3

Set 2

Set 1

Pastel 2

Pastel 1

Paired

Dark 2

Accent

Okabe-Ito

ggplot2

R4

R3

Figure 13.11. Qualitative colour palettes in palette.pals;R4 is the default one, as seen
in Figure 13.10.

13.2.2 Plotmargins and clipping regions
A device (page) region represents a single plot window, one raster image file, or a page
in a PDF document (see Section 13.2.6 for more information on graphics devices). As
we will learn from Section 13.2.5, it is capable of holding many figures.

306 II DEEPER

Usually, however,wedraw onefigureperpage. In sucha case, thedevice region isdivided
into the following parts:

1) outer margins, which can be set via, e.g., the oma graphics parameter (in text lines,
based on the height of the default font); by default, they are equal to 0;

2) figure region:

a) inner (plot) margins, by default mar=c(5.1, 4.1, 4.1, 2.1) text lines (bottom,
left, top, right, respectively); this is where we usually emplace the figure title, axes
labels, etc.

b) plot region, where we draw graphics primitives positioned relative to the user
coordinates.

Note Typically, all drawings are clipped to the plot region, but this can be changedwith
the xpd parameter; see also the more flexible clip function.

Example 13.12 Figure 13.12 shows the default page layout. In the code chunk below, note the
use of mtext to print a text line in the inner margins, box to draw a rectangle around the plot or
figure region,axis to add the twoaxes (labels and tickmarks), andtitle to print the descriptive
labels.

plot.new(); plot.window(c(-2, 2), c(-1, 1)) # whatever
for (i in 1:4) { # some text lines on the inner margins

for (j in seq_len(par("mar")[i]))
mtext(sprintf("Text line %d on inner margin %d", j, i),

side=i, line=j-1, col="lightgray")
}

title(main="Main", sub="sub", xlab="xlab", ylab="ylab")
box("figure", lty="dashed") # a box around the figure region
box("plot") # a box around the plot region
axis(1) # horizontal axis (bottom)
axis(2) # vertical axis (left)

rect(-10, -10, 10, 10, col="lightgray") # rectangle (clipped to plot region)
text(0, 0, "Plot region")
lines(c(-3, 0, 3), c(-2, 2, -2)) # standard clipping (plot region)
lines(c(-3, 0, 3), c(-2, 1.25, -2), xpd=TRUE, lty=3) # clip to figure region

13.2.3 User coordinates and axes
plot.window sets the user coordinates. It accepts the following parameters:

• xlim, ylim– vectors of length two giving theminimal andmaximal ranges on the
respective axes; by default, they are extended by 4% in each direction for aesthetic
reasons (see, e.g., Figure 13.12) but we can disable this behaviour by setting the
xaxs and yaxs graphics parameters;

13 GRAPHICS 307

Text line 1 on inner margin 1

Text line 2 on inner margin 1

Text line 3 on inner margin 1

Text line 4 on inner margin 1

Text line 5 on inner margin 1

T
e

xt
 li

n
e

 1
 o

n
 in

n
e

r
m

a
rg

in
 2

T
e

xt
 li

n
e

 2
 o

n
 in

n
e

r
m

a
rg

in
 2

T
e

xt
 li

n
e

 3
 o

n
 in

n
e

r
m

a
rg

in
 2

T
e

xt
 li

n
e

 4
 o

n
 in

n
e

r
m

a
rg

in
 2 Text line 1 on inner margin 3

Text line 2 on inner margin 3

Text line 3 on inner margin 3

Text line 4 on inner margin 3

T
e

xt
 li

n
e

 1
 o

n
 in

n
e

r
m

a
rg

in
 4

T
e

xt
 li

n
e

 2
 o

n
 in

n
e

r
m

a
rg

in
 4

Main

sub

xlab

yl
a

b

-2 -1 0 1 2

-1
.0

0
.0

0
.5

1.
0

Plot region

Figure 13.12. Figure layout with default inner and outer margins (mar=c(5.1, 4.1,
4.1, 2.1) and oma=c(0, 0, 0, 0) text lines, respectively).We see that a lot of space
is wasted and hence some tweakingmight be necessary to suit our needs better. Note
the clipping of the solid line to the grey plot region.

• asp – aspect ratio (𝑦/𝑥); defaults to NA, i.e., no adjustment; use asp=1 for circles
to look like ones, and not ovals;

• log – logarithmic scaling on particular axes: "" (none; default), "x", "y", or "xy".

Example 13.13 The graphics parameter usr can be used to read (and set) the extremes of the
user coordinates in the form (𝑥1, 𝑥2, 𝑦1, 𝑦2).

plot.new()
plot.window(c(-1, 1), c(1, 1000), log="y", yaxs="i")
par("usr")
[1] -1.08 1.08 0.00 3.00

Indeed, the x-axis rangewas extended by 4% in each direction (xaxs="r").We have turned this
behaviour off for the y-axis (yaxs="i"), which uses the base-10 logarithmic scale. In this case,
its actual range is 10^par("usr")[3:4] because log10 1 = 0 and log10 1000 = 3.
Exercise 13.14 Implement your version of the abline function using lines.

Even though axes (labels and tick marks) can be drawnmanually using the aforemen-
tioned graphics primitives, it is usually too tedious a work.This is why we tend to rely
on the axis function, which draws the object on one of the plot sides (as usual, 1=bot-
tom, …, 4=right).

Once plot.window is called, axTicks can be called to guesstimate the tasteful (round)

308 II DEEPER

locations for the tickmarks relative to the current plot size. By default, they are based
on the xaxp and yaxp graphics parameters,which give the axis ranges and the number
of intervals between the tick marks.

plot.new(); plot.window(c(-0.9, 1.05), c(1, 11))
par("usr") # (x1, x2, y1, y2)
[1] -0.978 1.128 0.600 11.400
par("yaxp") # (y1, y2, n)
[1] 2 10 4
axTicks(2) # left y-axis
[1] 2 4 6 8 10
par("xaxp") # (x1, x2, n)
[1] -0.5 1.0 3.0
axTicks(1) # bottom x-axis
[1] -0.5 0.0 0.5 1.0
par(xaxp=c(-0.9, 1.0, 5)) # change
axTicks(1)
[1] -0.90 -0.52 -0.14 0.24 0.62 1.00

axis relies on the same algorithm as axTicks. Alternatively, we can provide custom
tick locations and labels.

Example 13.15 Most of the plots in this book use the following graphics settings (except las=1
to axis(2)); see Figure 13.13. Check out help("par"), help("axis"), etc. and tune themup
to suit your needs.

par(mar=c(2.2, 2.2, 1.2, 0.6))
par(tcl=0.25) # the length of the tick marks (fraction of text line height)
par(mgp=c(1.1, 0.2, 0)) # axis title, axis labels, and axis line location
par(cex.main=1, font.main=2) # bold, normal size - main in title
par(cex.axis=0.8889)
par(cex.lab=1, font.lab=3) # bold italic, normal size
plot.new(); plot.window(c(0, 1), c(0, 1))
a "grid":
rect(par("usr")[1], par("usr")[3], par("usr")[2], par("usr")[4],

col="#00000010")
abline(v=axTicks(2), col="white", lwd=1.5, lty=1)
abline(h=seq(0, 1, length.out=4), col="white", lwd=1.5, lty=1)
set up axes:
axis(2, at=seq(0, 1, length.out=4), c("0", "1/3", "2/3", "1"), las=1)
axis(1)
title(xlab="xlab", ylab="ylab", main="main (use sparingly)")
box()

13.2.4 Plot dimensions (*)
Certain sizes can be read or specified in inches (1” is exactly 25.4 mm):

• pin – plot dimensions (width, height),

• fin – figure region dimensions,

13 GRAPHICS 309

0

1/3

2/3

1

0.0 0.2 0.4 0.6 0.8 1.0

main (use sparingly)

xlab

yl
ab

Figure 13.13. Custom axes and other settings.

• din – page (device) dimensions,

• mai – plot (inner) margin size,

• omi – outer margins,

• cin – the size of the “default” character (width, height).

If thefigure is scaled, the virtual inch (theone reportedbyR)will notmatch thephysical
one (e.g., the actual size in the printed version of this book or on the computer screen).

Important Most objects’ positions are specified in virtualuser coordinates, as givenby
usr. They are automatically mapped to the physical device region, taking into account
the page size, outer and inner margins, etc.

Knowing the above, some scaling can be used to convert between the user and
physical sizes (in inches). It is based on the ratios (usr[2]-usr[1])/pin[1] and
(usr[4]-usr[3])/pin[2]; compare the xinch and yinch functions.

Example 13.16 (*) Figure 13.14 shows how we can pinpoint the edges of the figure and device
region in user coordinates.

Exercise 13.17 (*)We cannot use mtext to print text on the right inner margin rotated by 180
degrees compared to what we see in Figure 13.12. Write your version of this function that will
allow you to do so. Hint: use text, the cin graphics parameter, and what you can read from
Figure 13.14.

310 II DEEPER

(usr[1], usr[3])=(-2.00, -1.00)

(usr[1]-mai[2]*xinch, usr[3]-mai[1]*yinch)=(-2.20, -1.20)

(usr[1]-(mai[2]+omi[2])*xinch, usr[3]-(mai[1]+omi[1])*yinch)=(-2.36, -1.35)

(usr[2], usr[4])=(2.00, 1.00)

(usr[2]+mai[4]*xinch, usr[4]+mai[3]*yinch)=(2.20, 1.20)

(usr[2]+(mai[4]+omi[4])*xinch, usr[4]+(mai[3]+omi[3])*yinch)=(2.36, 1.35)

page (device) width, din[1]=5.94"

figure width, fin[1]=5.54"

plot width, usr[2]-usr[1]=4, pin[1]=5.04"

xinch = (usr[2]-usr[1])/pin[1] = 0.79 p
ag

e
(d

ev
ic

e)
 h

ei
g

h
t,

 d
in

[2
]=

3.
4

6
"

fi
g

u
re

 h
ei

g
h

t,
 f

in
[2

]=
3.

0
6

"

p
lo

t
h

ei
g

h
t,

 u
sr

[4
]-

u
sr

[3
]=

2,
 p

in
[2

]=
2.

56
"

yi
n

ch
 =

 (u
sr

[4
]-

u
sr

[3
])

/p
in

[2
] =

 0
.7

8

usr=(-2, 2, -1, 1)

mai=(0.25, 0.25, 0.25, 0.25)

omi=(0.2, 0.2, 0.2, 0.2)

Figure 13.14.User vsdevice coordinates.Note that the virtual inchdoesnot correspond
to the physical one, as some scaling was applied.

13.2.5 Many figures on one page (subplots)
It is possible to create many figures on one page. In such a case, each subplot has its
own inner margins and plot region.

A call to par(mfrow=c(nr, nc)) or par(mfcol=c(nr, nc)) splits the page into a regu-
lar gridwith nr rows and nc columns. Each invocation of plot.new starts a newfigure.
Consecutive figures are either placed rowwisely (mfrow) or in the column-major order
(mfcol). Alternatively, any subplot can be activated by referring to the mfg parameter.

Example 13.18 Figure 13.15 depicts an example page with four figures aligned on a 2 × 2 grid.

par(oma=rep(1.2, 4)) # outer margins (default 0)
par(mfrow=c(2, 2)) # a 2x2 plot grid

for (i in 1:4) {
plot.new()
par(mar=c(3, 3, 2, 2)) # each subplot will have the same inner margins
plot.window(c(i-1, i+1), c(-1, 1)) # separate user coordinates for each

text(i, 0, sprintf("Plot region (plot %d)\n(%d, %d)", i,
par("mfg")[1], par("mfg")[2]))

box("figure", lty="dashed") # a box around the figure region
box("plot") # a box around the plot region
axis(1) # horizontal axis (bottom)
axis(2) # vertical axis (left)

(continues on next page)

13 GRAPHICS 311

(continued from previous page)

}

box("outer", lty="dotdash") # a box around the whole page
for (i in 1:4)

mtext(sprintf("Outer margin %d", i), side=i, outer=TRUE)

Plot region (plot 1)

(1, 1)

0.0 0.5 1.0 1.5 2.0

-1
.0

0
.0

1.
0

Plot region (plot 2)

(1, 2)

1.0 1.5 2.0 2.5 3.0
-1

.0
0

.0
1.

0

Plot region (plot 3)

(2, 1)

2.0 2.5 3.0 3.5 4.0

-1
.0

0
.0

1.
0

Plot region (plot 4)

(2, 2)

3.0 3.5 4.0 4.5 5.0

-1
.0

0
.0

1.
0

Outer margin 1

O
u

te
r

m
a

rg
in

 2

Outer margin 3

O
u

te
r

m
a

rg
in

 4
Figure 13.15. A page with four figures created using par(mfrow=c(2, 2)).

Thanks to mfrow and mfcol, we can create, e.g., a scatter plot matrix or different trel-
lis plots. If an irregular grid is required, we can call the slightly more sophisticated
layout function (which is incompatible with mfrow and mfcol). Examples will follow
later; see Figure 13.24 and Figure 13.26. Also, the fig parameter (with new=TRUE to sup-
press the creation of a new figure) creates a subplot in an arbitrary rectangular region
of the current page.

Certain grid sizesmight affect the mex and cex parameters and hence the default font
sizes (amongst others). Refer to the documentation of par for more details.

13.2.6 Graphics devices
Where our plots are displayed depends on our development environment (Section 1.2).
Users of JupyterLab see the plots embedded into the current notebook, consumers
of RStudio display them in a dedicated Plots pane, working from the console opens a
newgraphicswindow (unlesswework ina text-only environment),whereas compiling
utils::Sweave or knitrmarkup files brings about an image file that will be included
in the output document.

312 II DEEPER

In practice, wemight be interested in exercising our creative endeavours on different
devices. For instance, to draw something in a PDF file, we can call:

Cairo::CairoPDF("figure.pdf", width=6, height=3.5) # open "device"
... calls to plotting functions...
dev.off() # save file, close device

Similarly, a call to CairoPNG or CairoSVG creates a PNG or a SVG file. In both
cases, as we rely on the Cairo library, we can customise the font family by calling
Cairo::CairoFonts.

Note Typically, web browsers can display PNG, JPEG, and SVG files. On the other
hand, PDF is a popular choice in printed publications (e.g., articles or books).

It is worth knowing that PNG and JPEG are raster graphics formats, i.e., they store
figures as bitmaps (pixel matrices). They are fast to render, but the file sizes might
become immense ifwewant decent image quality (high resolution).Most importantly,
they should not be scaled: it is best to display themat their originalwidths andheights.
However, JPEGuses lossy compression.Therefore, it is not a particularly fortunate file
format for data visualisations. It does not support transparency either.

On the other hand, SVG and PDF files store vector graphics, where all primitives are
described geometrically.This way, the image can be redrawn at any size and is always
expected to be aesthetic.Unfortunately, scatter plotswithmillions of pointswill result
in considerable files size and relatively slow rendition times (but there are tricks to
remedy this).

Users of TeX should take note of tikzDevice::tikz, which creates TikZ files that can
be rendered as standalone PDF files or embedded in LaTeX documents (and its vari-
ants). It allows for typesetting beautiful equations using the standard "$...$" syntax
within any R string.

Many other devices are listed in help("Devices").

Note (*)The opened graphics devices form a stack. Calling dev.offwill return to the
last opened device (if any). See dev.list and other functions listed in its help page for
more information.

Each device has separate graphics parameters. When opening a new device, we start
with default settings in place.

Also, dev.hold and dev.flush can suppress the immediate display of the plotted ob-
jects, which might increase the drawing speed on certain interactive devices.

The current plot can be copied to another device (e.g., a PDF file) using dev.print.

Exercise 13.19 (*) Create an animated PNG displaying a large point sliding along the sine
curve. Generate a series of video frames like in Figure 13.16. Store each frame in a separate PNG

13 GRAPHICS 313

file. Then, use ImageMagick5 (compare Section 7.3.2 or rely on another tool) to combine these
files as a single animated PNG.

frame 1 frame 11 frame 21 frame 31

Figure 13.16. Selected frames of an example animation.They can be stored in separate
files and then combined as a single animated PNG.

13.3 Higher-level functions
Higher-level plotting commands call plot.new, plot.window, axis, box, title, etc.,
and draw graphics primitives on our behalf. They provide ready-to-use implementa-
tions of themost common data visualisation tools, e.g., box-and-whisker plots, histo-
grams, pairs plots, etc. Belowwe review a few of them.We also show how they can be
customised or even rewritten from scratch if we are not completely happy with them.
They will inspire us to practice lower-level graphics programming.

Exercise 13.20 Check out the meaning of the ask, new, xaxt, yaxt, and ann graphics para-
meters and how they affect plot.new, axis, title, and so forth.

13.3.1 Scatter and function plots with plot.default and matplot
The default method for the S3 generic plot is a convenient wrapper around points
and lines.

Example 13.21 plot.default candrawascatter plot of a set of points inℝ2 possibly grouped
by another categorical variable. From Section 10.3.2 we know that a factor is represented as a
vector of small natural numbers.Therefore, its underlying level codes can be used directly as col
or pch specifiers; see Figure 13.17 for a demonstration. Take note of a call to the legend function.

plot(
jitter(iris[["Sepal.Length"]]), # x (it is a numeric vector)
jitter(iris[["Petal.Width"]]), # y (it is a numeric vector)
col=as.numeric(iris[["Species"]]), # colours (integer codes)
pch=as.numeric(iris[["Species"]]), # plotting symbols (integer codes)
xlab="Sepal length", ylab="Petal width",
asp=1 # y/x aspect ratio

)
legend(

(continues on next page)

5 https://imagemagick.org/

https://imagemagick.org/

314 II DEEPER

(continued from previous page)

"bottomright",
legend=levels(iris[["Species"]]),
col=seq_along(levels(iris[["Species"]])),
pch=seq_along(levels(iris[["Species"]])),
bg="white"

)

4 5 6 7 8

0.
0

0.
5

1.0
1.5

2.
0

2.
5

Sepal length

Pe
ta

l w
id

th

setosa
versicolor
virginica

Figure 13.17. as.numeric can define different plotting styles for each factor level.

Exercise 13.22 Passann=FALSEandaxes=FALSE toplot to suppress theadditionofaxesand
labels.Then, draw themmanually using the functions discussed in the previous section.

Exercise 13.23 Draw a plot of the 𝑦 = sin 𝑥 function using plot. Then, call lines to add
𝑦 = cos 𝑥. Later, do the same using a single reference to matplot. Include a legend.
Example 13.24 Semi-transparency may convey additional information. Figure 13.18 shows
two scatter plots of adult females’ weights vs heights. If the points are fully opaque, we cannot
judge the density around them. On the other hand, translucent symbols somewhat imitate the
two-dimensional histograms that we will later depict in Figure 13.29.

nhanes <- read.csv(paste0("https://raw.githubusercontent.com/gagolews/",
"teaching-data/master/marek/nhanes_adult_female_bmx_2020.csv"),

comment.char="#", col.names=c("weight", "height", "armlen", "leglen",
"armcirc", "hipcirc", "waistcirc"))

par(mfrow=c(1, 2))
for (col in c("black", "#00000010"))

plot(nhanes[["height"]], nhanes[["weight"]], col=col,
pch=16, xlab="Height", ylab="Weight")

Example 13.25 Figure 13.19depicts theaveragemonthly temperatures inyournextholidaydes-

13 GRAPHICS 315

Figure 13.18. Semi-transparent symbols can reflect the points’ distribution density.

tination:Warsaw, Poland (a time series). Note that the translucent ribbon representing the low-
high average temperature intervals was added using a call to polygon.

Warsaw monthly temperatures; source: https://en.wikipedia.org/wiki/Warsaw
high <- c(0.6, 1.9, 6.6, 13.6, 19.5, 21.9,

24.4, 23.9, 18.4, 12.7, 5.9, 1.6)
mean <- c(-1.8, -0.6, 2.8, 8.7, 14.2, 17.0,

19.2, 18.3, 13.5, 8.5, 3.3, -0.7)
low <- c(-4.2, -3.6, -0.6, 3.9, 8.9, 11.8,

13.9, 13.1, 9.1, 4.8, 0.6, -3.0)
matplot(1:12, cbind(high, mean, low), type="o", col=c(2, 1, 4), lty=1,

xlab="month", ylab="temperature [°C]", xaxt="n", pch=16, cex=0.5)
axis(1, at=1:12, labels=month.abb, line=-0.25, lwd=0, lwd.ticks=1)
polygon(c(1:12, rev(1:12)), c(high, rev(low)), border=NA, col="#ffff0033")
legend("bottom", c("average high", "mean", "average low"),

lty=1, col=c(2, 1, 4), bg="white")

Example 13.26 Figure 13.20 depicts a scatter plot similar to Figure 13.18, but now with the
points’ hue being a function of a third variable.

midpoints <- function(x) 0.5*(x[-1]+x[-length(x)])
z <- nhanes[["waistcirc"]]
breaks <- seq(min(z), max(z), length.out=10)
zf <- cut(z, breaks, include.lowest=TRUE)
col <- hcl.colors(nlevels(zf), "Viridis", alpha=0.5)
layout(matrix(c(1, 2), nrow=1), # two plots in one page

widths=c(1, lcm(3))) # second one is of width "3cm" (scaled)
first subplot:

(continues on next page)

316 II DEEPER

-5
0

5
10

15
20

25

month

te
m

pe
ra

tu
re

 [°
C]

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

average high
mean
average low

Figure 13.19. Example time series. A semi-transparent ribbon was added by calling
polygon to highlight the area between the low-high ranges (intervals).

(continued from previous page)

plot(nhanes[["height"]], nhanes[["weight"]], col=col[as.numeric(zf)],
pch=16, xlab="Height", ylab="Weight")

second subplot:
par(mar=c(2.2, 0.6, 2.2, 0.6))
plot.new(); plot.window(c(0, 1), c(0, nlevels(zf)))
rasterImage(as.matrix(rev(col)), 0, 0, 1, nlevels(zf), interpolate=FALSE)
text(0.5, 1:nlevels(zf)-0.5, sprintf("%3.0f", midpoints(breaks)))
mtext("Waist Ø", side=3)

Exercise 13.27 Implement your version ofpairs, being the function to drawa scatter plotmat-
rix (a pairs plot).

Exercise 13.28 ecdf returns an object of the S3 classes ecdf and stepfun. There are plot
methods overloaded for them. Inspect their source code. Then, inspired by this, create a function
to compute and display the empirical cumulative distribution function corresponding to a given
numeric vector.

Exercise 13.29 spline performs cubic spline interpolation, whereas smooth.spline de-
termines a smoothing spline of a given two-dimensional dataset. Plot different splines for
cars[["dist"]] as a function of cars[["speed"]]. Which of these two functions is more
appropriate for depicting this dataset?

13 GRAPHICS 317

Figure 13.20. A 2D scatter plot with a third variable represented by colours.

13.3.2 Bar plots and histograms
A bar plot is drawn using a series of rectangles (i.e., certain polygons) of different
heights (or widths, if we request horizontal alignment).

Example 13.30 Let’s visualise the dataset6 listing themost frequent causes ofmedication errors
(data are fabricated):

cat_med = c(
"Unauthorised drug", "Wrong IV rate", "Wrong patient", "Dose missed",
"Underdose", "Wrong calculation","Wrong route", "Wrong drug",
"Wrong time", "Technique error", "Duplicated drugs", "Overdose"

)
counts_med = c(1, 4, 53, 92, 7, 16, 27, 76, 83, 3, 9, 59)

A Pareto chart combines a bar plot featuring bars of decreasing heights with a cumulative per-
centage curve; see Figure 13.21.

o <- order(counts_med)
cato_med <- cat_med[o]
pcto_med <- counts_med[o]/sum(counts_med)*100
cumpcto_med <- rev(cumsum(rev(pcto_med)))
bar plot of percentages
par(mar=c(2.2, 0.6, 2.2, 6.6)) # wide left margin
midp <- barplot(pcto_med, horiz=TRUE, xlab="%",

col="white", xlim=c(0, 25), xaxs="r", yaxs="r", yaxt="n",

(continues on next page)

6 https://www.cec.health.nsw.gov.au/CEC-Academy/quality-improvement-tools/pareto-charts

https://www.cec.health.nsw.gov.au/CEC-Academy/quality-improvement-tools/pareto-charts

318 II DEEPER

(continued from previous page)

width=3/4, space=1/3)
text(pcto_med, midp, sprintf("%.1f%%", pcto_med), pos=4, cex=0.89)
axis(4, at=midp, labels=cato_med, las=1)
box()
cumulative percentage curve in a new coordinate system
par(usr=c(-4, 104, par("usr")[3], par("usr")[4])) # 0-100 with 4% addition
lines(cumpcto_med, midp, type="o", col=4, pch=18)
axis(3, col=4)
mtext("cumulative %", side=3, line=1.2, col=4)
text(cumpcto_med, midp, sprintf("%.1f%%", cumpcto_med), cex=0.89, col=4,

pos=c(4, 2)[(cumpcto_med>80)+1], offset=0.5)

%
0 5 10 15 20 25

0.2%
0.7%
0.9%

1.6%
2.1%

3.7%
6.3%

12.3%
13.7%

17.7%
19.3%

21.4%

Unauthorised drug
Technique error
Wrong IV rate
Underdose
Duplicated drugs
Wrong calculation
Wrong route
Wrong patient
Overdose
Wrong drug
Wrong time
Dose missed

0 20 40 60 80 100
cumulative %

100.0%
99.8%
99.1%

98.1%
96.5%

94.4%
90.7%

84.4%
72.1%

58.4%
40.7%

21.4%

Figure 13.21. An example Pareto chart (a fancy bar plot). Double axes have a general
tendency to confuse the reader.

Note that barplot returned the midpoints of the bars, which we put in good use. By default, it
sets the xaxs="i" graphics parameter and thus does not extend the x-axis range by 4% on both
sides.This would not make us happy here, therefore we needed to change it manually.

Exercise 13.31 Draw a bar plot summarising, for each passenger class and sex, the number of
adults who did not survive the sinking of the deadliest 1912 cruise; see Figure 13.22 and the Ti-
tanic dataset.

Exercise 13.32 Implement your version of barplot, but where the bars are placed precisely at
the positions specified by the user, e.g., allowing the barmidpoints to be consecutive integers.

We will definitely not cover the (in)famous pie charts in our book. The human brain
is not very skilled at judging the relative differences between the areas of geometric
objects. Also, they are ugly (pie charts, not geometric objects in general).

13 GRAPHICS 319

Male Female
Sex

N
on

-s
ur

vi
vo

rs
0

10
0

20
0

30
0

40
0

50
0

60
0

Class
1st
2nd
3rd
Crew

Figure 13.22. An example bar plot representing a two-way contingency table.

Moving on: a histogram is a simple density estimator for continuous data. It can be
thought of as a bar plot with bars of heights proportional to the number of observa-
tions falling into the corresponding disjoint intervals. Most often, there is no space
between the bars to emphasise that the intervals cover the whole data range.

A histogram can be computed and drawn using the high-level function hist; see Fig-
ure 13.23.

par(mfrow=c(1, 2))
for (breaks in list("Sturges", 25)) {

Sturges (a heuristic) is the default; any value is merely a suggestion
hist(iris[["Sepal.Length"]], probability=TRUE, xlab="Sepal length",

main=NA, breaks=breaks, col="white")
box() # oddly, we need to add it manually

}

Exercise 13.33 Study the source code of hist.default. Note the invisibly-returned list of the
S3 class histogram. Then, study graphics:::plot.histogram. Implement similar func-
tions yourself.

Exercise 13.34 Modifyyour function todrawascatterplotmatrix so that it gives thehistograms
of the marginal distributions on its diagonal.

Example 13.35 Using layout mentioned in Section 13.2.5, we can draw a scatter plot with
marginal histograms; see Figure 13.24.Note thatwe split the page into four plots of unequal sizes,
but theupper right part of the grid is unused.Weusehist for binning only (plot=FALSE).Then,
barplot is utilised for drawing as it gives greater control over the process (e.g., supports vertical
layout).

320 II DEEPER

Sepal length

D
en

sit
y

4 5 6 7 8

0.
0

0.
1

0.
2

0.
3

0.
4

Sepal length

D
en

sit
y

5 6 7 8
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

Figure 13.23. Example histograms for the same dataset.

layout(matrix(
c(1, 1, 1, 0, # the first row: the first plot of width 3 and nothing
3, 3, 3, 2, # the third plot (square) and the second (tall) in 3 rows
3, 3, 3, 2,
3, 3, 3, 2), nrow=4, byrow=TRUE))

par(mex=1, cex=1) # the layout function changed this!
x <- jitter(iris[["Sepal.Length"]])
y <- jitter(iris[["Sepal.Width"]])
the first subplot (top)
par(mar=c(0.2, 2.2, 0.6, 0.2), ann=FALSE)
hx <- hist(x, plot=FALSE, breaks=seq(min(x), max(x), length.out=20))
barplot(hx[["density"]], space=0, axes=FALSE, col="#00000011")
the second subplot (right)
par(mar=c(2.2, 0.2, 0.2, 0.6), ann=FALSE)
hy <- hist(y, plot=FALSE, breaks=seq(min(y), max(y), length.out=20))
barplot(hy[["density"]], space=0, axes=FALSE, horiz=TRUE, col="#00000011")
the third subplot (square)
par(mar=c(2.2, 2.2, 0.2, 0.2), ann=TRUE)
plot(x, y, xlab="Sepal length", ylab="Sepal width",

xlim=range(x), ylim=range(y)) # default xlim, ylim

Example 13.36 (*) Kernel density estimators (KDEs) are another way to guesstimate the data
distribution.The density function, for a given numeric vector, returns a list with, amongst oth-
ers, the x and y coordinates of the points that we can pass directly to the lines function. Below
we depict the KDEs of data split into three groups; see Figure 13.25.

13 GRAPHICS 321

5 6 7 8

2.
0

2.
5

3.
0

3.
5

4.
0

Sepal length

Se
pa

l w
id

th

Figure 13.24. A scatter plot with marginal histograms: three (four) plots on one page,
but on a nonuniform grid created using layout.

adjust_transparency <- function(col, alpha)
rgb(t(col2rgb(col)/255), alpha=alpha) # alpha in [0, 1]

pal <- adjust_transparency(palette(), 0.2)
kdes <- lapply(split(iris[["Sepal.Length"]], iris[["Species"]]), density)
matplot(sapply(kdes, `[[`, "x"), sapply(kdes, `[[`, "y"),

type="l", xlab="Sepal length", ylab="density", lwd=1.5)
for (i in seq_along(kdes))

polygon(kdes[[i]][["x"]], kdes[[i]][["y"]], col=pal[i], border=NA)
legend("topright", legend=levels(iris[["Species"]]), bg="white", lwd=1.5,

col=seq_along(levels(iris[["Species"]])),
lty=seq_along(levels(iris[["Species"]])))

322 II DEEPER

4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.0
1.2

Sepal length

de
ns

ity

setosa
versicolor
virginica

Figure 13.25. Kernel density estimators of sepal length split by species in the irisdata-
set. Note the semi-transparent polygons (again).

Exercise 13.37 (*) Implement a function that draws kernel density estimators for a given nu-
meric variable split by a combination of three factor levels; see Figure 13.26 for an example.

grid_kde <- function(data, values, x, y, hue) ...to.do...

tips <- read.csv(paste0("https://raw.githubusercontent.com/gagolews/",
"teaching-data/master/other/tips.csv"),

comment.char="#", stringsAsFactors=TRUE)
head(tips, 3) # preview this example dataset
total_bill tip sex smoker day time size
1 16.99 1.01 Female No Sun Dinner 2
2 10.34 1.66 Male No Sun Dinner 3
3 21.01 3.50 Male No Sun Dinner 3
grid_kde(tips, values="tip", x="smoker", y="time", hue="sex")

13.3.3 Box-and-whisker plots
We have already seen a chart generated by the boxplot function in Figure 5.1. Tinker-
ing with it will give us robust practice, which in turn shall make us perfect.

Exercise 13.38 Modify the code generating Figure 5.1 so that:

1. same doses are grouped together (more space between different doses added; also, on the
x-axis, only unique doses are printed),

2. different supps have different colours (add a legend explaining them).

Exercise 13.39 Write a function for drawing box plots using graphics primitives.

13 GRAPHICS 323

0.
0

0.
2

0.
4

tim
e

=
D

in
ne

r

0.
0

0.
2

0.
4

0.
0

0.
2

0.
4

tim
e

=
Lu

nc
h

0 2 4 6 8 10 12
smoker = No

0.
0

0.
2

0.
4

0 2 4 6 8 10 12
smoker = Yes

sex
Female
Male

Figure 13.26. An example grid plot (also known as a trellis, panel, conditioning, or lat-
tice plot) with kernel density estimators for a numeric variable (amount of tip in a US
restaurant) split by a combination of three factor levels (smoker, time, sex).

Exercise 13.40 (*) Write a function for drawing violin plots. They are similar to box plots but
use kernel density estimators.

Exercise 13.41 (*) Implement a bag plot, which is a two-dimensional version of a box plot. Use
chull to compute the convex hull of a point set.

13.3.4 Contour plots and heatmaps
image is a convenient wrapper around rasterImage, which can draw contour plots,
two-dimensional histograms, heatmaps, etc. In particular, when plotting a function
of two variables like 𝑧 = 𝑓 (𝑥, 𝑦), the magnitude of the 𝑧 component can be expressed
using colour brightness or hue.

Example 13.42 Figure 13.27 presents a filled contour plot ofHimmelblau’s function, 𝑓 (𝑥, 𝑦) =
(𝑥2 + 𝑦 − 11)2 + (𝑥 + 𝑦2 − 7)2, for 𝑥 ∈ [−5, 5] and 𝑦 ∈ [−4, 4]. A call to contour adds
labelled contour lines (which is actually a nontrivial operation).

x <- seq(-5, 5, length.out=250)
y <- seq(-4, 4, length.out=200)
z <- outer(x, y, function(xg, yg) (xg^2 + yg - 11)^2 + (xg + yg^2 - 7)^2)
image(x, y, z, col=grey(seq(1, 0, length.out=16)))
contour(x, y, z, nlevels=16, add=TRUE)

In image, the number of rows in z matches the length of x, whereas the number of
columns is equal to the size of y. This might be counterintuitive; when z is printed,
the image is its 90-degree rotated version.

324 II DEEPER

-4 -2 0 2 4

-
4

-
2

0
2

4

x

y

 150 200
 300

Figure 13.27. A filled contour plot with labelled contour lines.

Example 13.43 Figure 13.28 presents an example heatmap depicting Pearson’s correlations
between all pairs of variables in the nhanes data frame which we loaded some time ago.

o <- c(6, 5, 1, 7, 4, 2, 3) # order of rows/cols (by similarity)
R <- cor(nhanes[o, o])
par(mar=c(2.8, 7.6, 1.2, 7.6), ann=FALSE)
image(1:NROW(R), 1:NCOL(R), R,

ylim=c(NROW(R)+0.5, 0.5),
zlim=c(-1, 1),
col=hcl.colors(20, "BluGrn", rev=TRUE),
xlab=NA, ylab=NA, asp=1, axes=FALSE)

axis(1, at=1:NROW(R), labels=dimnames(R)[[1]], las=2, line=FALSE, tick=FALSE)
axis(2, at=1:NCOL(R), labels=dimnames(R)[[2]], las=1, line=FALSE, tick=FALSE)
text(arrayInd(seq_along(R), dim(R)),

labels=sprintf("%.2f", R),
col=c("white", "black")[abs(R<0.8)+1],
cex=0.89)

Exercise 13.44 Check out the heatmap function, which uses hierarchical clustering to find an
aesthetic reordering of the matrix’s items.

Example 13.45 Figure 13.29 depicts a two-dimensional histogram. It approaches the idea of
reflecting the points’ density differently from the semi-transparent symbols in Figure 13.18.

histogram_2d <- function(x, y, k=25, ...)
{

breaksx <- seq(min(x), max(x), length.out=k)
fx <- cut(x, breaksx, include.lowest=TRUE)

(continues on next page)

13 GRAPHICS 325

h
ip

ci
rc

a
rm

ci
rc

w
e

ig
h

t

w
a

is
tc

ir
c

le
g

le
n

h
e

ig
h

t

a
rm

le
n

armlen

height

leglen

waistcirc

weight

armcirc

hipcirc 1.00 0.88 0.94 0.83 0.24 -0.15 -0.44

0.88 1.00 0.94 0.82 0.21 0.12 -0.29

0.94 0.94 1.00 0.92 0.45 0.16 -0.24

0.83 0.82 0.92 1.00 0.63 0.35 -0.00

0.24 0.21 0.45 0.63 1.00 0.66 0.36

-0.15 0.12 0.16 0.35 0.66 1.00 0.80

-0.44 -0.29 -0.24 -0.00 0.36 0.80 1.00

Figure 13.28. A correlation heatmap drawn using image.

(continued from previous page)

breaksy <- seq(min(y), max(y), length.out=k)
fy <- cut(y, breaksy, include.lowest=TRUE)
C <- table(fx, fy)
image(midpoints(breaksx), midpoints(breaksy), C,

xaxs="r", yaxs="r", ...)
}

par(mfrow=c(1, 2))
for (k in c(25, 50))

histogram_2d(nhanes[["height"]], nhanes[["weight"]], k=k,
xlab="Height", ylab="Weight",
col=c("#ffffff00", hcl.colors(25, "Viridis", rev=TRUE))

)

Exercise 13.46 (*) Implement some two-dimensional kernel density estimator andplot it using
contour.

13.4 Exercises
Exercise 13.47 Answer the following questions.

• Can functions from thegraphics package be used to adjust the plots generated bylattice
and ggplot2?

326 II DEEPER

130 140 150 160 170 180 190

50
10

0
15

0

Height

W
eig

ht

130 140 150 160 170 180 190
50

10
0

15
0

Height

W
eig

ht

Figure 13.29. Two-dimensional histograms with different numbers of bins, where the
bin count is reflected by the colour.

• What are the most common graphics primitives?

• Canall high-level functions be implementedusing low-level ones?Asan example, discuss the
key ingredients used in barplot.

• Some high-level functions discussed in this chapter carry the add parameter. What is its
purpose?

• Whatare theadmissible values ofpchandlty?Also, in thedefault palette,what is themean-
ing of colours 1, 2, …, 16? Can their meaning be changed?

• Can all graphics parameters be changed?

• What is the difference between passing xaxt="n" to plot.default vs setting it with par,
and then calling plot.default?

• Which graphics parameters are set by plot.window?

• What is the meaning of the usr parameter when using the logarithmic scale on the x-axis?

• (*)How to place a plotting symbol exactly 1 centimetre from the top-left corner of the current
page (following the page’s diagonal)?

• Semi-transparent polygons are nice, right?

• Can an ellipse be drawn using polygon?

• What happens when we set the graphics parameter mfrow=c(2, 2)?

• How to export the current plot to a PDF file?

13 GRAPHICS 327

Exercise 13.48 Draw the 2022 BTC-to-USD close rates7 time series. Then, add the 7- and
30-day moving averages. (*) Also, fit a local polynomial (moving) regression model using the
Savitzky–Golay filter (see loess).

Exercise 13.49 (*) Draw (from scratch) a candlestick plot for the 2022 BTC-to-USD rates8.

Exercise 13.50 (*) Create a function to draw a normal quantile-quantile (Q-Q) plot, i.e., for
inspecting whether a numeric sample might come from a normal distribution.

Exercise 13.51 (*) Draw a map of the world, where each country is filled with a colour whose
brightness or hue is linked to its Gini index of income inequality. You can easily find the data
onWikipedia. Try to find an open dataset that gives the borders of each country as vertices of a
polygon (e.g., in the form of a (geo)JSONfile).

Exercise 13.52 Next time you see a pleasant data visualisation somewhere, try to reproduce it
using base graphics.

For further information on graphics generation in R, see, e.g., Chapter 12 of [59], [49],
and [53]. Good introductory textbooks to data visualisation as an art include [57, 60].

In this chapter, we were only interested in static graphics, e.g., for use in printed pub-
lications or plain websites. Interactive plots that a user might tinker with in a web
browser are a different story.

And so the second part of our delightful course is ended.

7 https://github.com/gagolews/teaching-data/raw/master/marek/btcusd_close_2022.csv
8 https://github.com/gagolews/teaching-data/raw/master/marek/btcusd_ohlc_2022.csv

https://github.com/gagolews/teaching-data/raw/master/marek/btcusd_close_2022.csv
https://github.com/gagolews/teaching-data/raw/master/marek/btcusd_ohlc_2022.csv

Part III

Deepest

14
Interfacing compiled code (**)

R is an effective glue language. It is suitable for composing whole data wrangling
pipelines: from data import through processing, analysis, and visualisation to export.
It makes using and connecting larger building blocks very convenient. R is also a com-
petent tool for developing usable implementations of standalone, general-purpose al-
gorithms, especially if they are of numerical nature. Nevertheless, for performance
reasons, we may consider rewriting computing-intensive tasks in C or C++1. Such a
move can be beneficial if we need a method that:

• has higher memory or time complexity when programmed using vectorised R
functions than its straightforward implementation,

• has an iterative or recursive nature, e.g., involving unvectorisable for or while loops,

• relies on complicated dynamic data structures (e.g., hash maps, linked lists, or
trees),

• needsmethods provided elsewhere and not available in R (e.g., other C or C++ lib-
raries).

In the current chapter, we will demonstrate that R works very well as a user-friendly
interface to compiled code.

As the topic is overall very technical, wewill only cover themost important rudiments.
We will focus on writing or interfacing portable2 function libraries that only rely on
simple3 data structures (e.g., arrays of the type double and int).Thanks to this, wewill
be able to reuse them in other environments such as Python (e.g., via Cython) or Julia
(remember that R is one ofmany languages out there). For those who are interested in
specifics, the definitive reference is theWriting R Extensionsmanual [66], but see also
Chapter 11 of [11]. Furthermore, R’s source code provides many working examples of
how to deal with R objects in C.

We assume some knowledge of the C language; see [39]. The reader can skip this

1 Plain C and C++ are as fast as we can get without applying fancy CPU-specific optimisations or sim-
ilar hacks. Fortran is also supported but will not be covered in this book because of its smaller popularity.
Additionally, certain external packages are gateways to other languages, such as Java.
Nevertheless, D.E. Knuth once said: “The real problem is that programmers have spent far toomuch time

worrying about efficiency in the wrong places and at the wrong times; premature optimisation is the root
of all evil (or at least most of it) in programming” [40].

2 Hence, we are not interested in the overall very convenient Rcpp or cpp11 packages. They define C++
classes that make interacting with R objects more pleasant for some users.

3Thus, we will not discuss the ALTREP [56] representation of objects, ways to deal with environments
or pairlists, etc.

332 III DEEPEST

chapter now and return to it later: the remaining material is not contingent on the
current one. Otherwise, from now on, we take for granted that our environment can
successfully build a source package with C code, asmentioned in Section 7.3.1. In par-
ticular, Win***s andm**OS users should install, respectively, RTools and Xcode.

Note To avoid ambiguity, in the main text, calls to C functions will be denoted by the
“C::” prefix, e.g., C::spanish_inquisition().

14.1 C and C++ code in R
14.1.1 Source files for compiled code in R packages
Perhaps the most versatile way to interact with portable C code is via standalone
R packages; compare Section 7.3.1 and Section 9.2.2. For the purpose of the cur-
rent chapter, we created a demo project available at https://github.com/gagolews/
cpackagedemo.

Exercise 14.1 Inspect the structure of cpackagedemo. Note that C source files are located in
the src/ subdirectory. Build and install the package using install.packages or the “R CMD
INSTALL” command.Then, load thepackage inRandcallmy_sumdefined thereon somenumeric
vector.

The package provides an R interface to one C function, C::my_c_sum, written in the
most portable fashion possible. Its declaration is included in the src/cfuns.h file:

#ifndef __CFUNS_H
#define __CFUNS_H
#include <stddef.h>

double my_c_sum(const double* x, size_t n);

#endif

The function accepts a pointer to the start of a numeric sequence and its size, which
is a standard4 way of representing an array of doubles. Its definition is given in src/
cfuns.c. We see that it is nothing more than a simple sum of all the elements in an
array:

#include "cfuns.h"

(continues on next page)

4 (*) A slightly more sophisticated representation (used, e.g., in GNUGSL and numpy) deals with a sliced
array, where we additionally store the so-called stride. Instead of inspecting elements one after another, we
advance the iterator by a given step size. This way, we could apply the same function on selected rows of a
matrix (if it is in the column-major order).

https://github.com/gagolews/cpackagedemo
https://github.com/gagolews/cpackagedemo

14 INTERFACING COMPILED CODE (**) 333

(continued from previous page)

/* computes the sum of all elements in an array x of size n */
double my_c_sum(const double* x, size_t n)
{

double s = 0.0;
for (size_t i = 0; i < n; ++i) {

/* this code does not treat potential missing values specially
(they are kinds of NaNs); to fix this, add:

if (ISNA(x[i])) return NA_REAL; // #include <R.h> */
s += x[i];

}
return s;

}

To make C::my_c_sum available in R, we have to introduce a wrapper around it that
works with the data structures from the first part of this jolly book. We know that an
R function accepts objects of any kind as input and yields anything as a result. In the
next section, we will explain that we get access to R objects via special pointers of the
type SEXP (S expressions).Thus, let us declare our R-callable wrapper in src/rfuns.h:

#ifndef __RFUNS_H
#define __RFUNS_H
#include <R.h>
#include <Rinternals.h>
#include <Rmath.h>

SEXP my_c_sum_wrapper(SEXP x);

#endif

The actual definition is included in src/rfuns.c:

#include "rfuns.h"
#include "cfuns.h"

/* a wrapper around my_c_sum callable from R */
SEXP my_c_sum_wrapper(SEXP x)
{

double s;

if (!Rf_isReal(x)) {
/* the caller is expected to prepare the arguments

(doing it at the C level is tedious work) */
Rf_error("`x` should be a vector of the type 'double'");

}

s = my_c_sum(REAL(x), (size_t)XLENGTH(x));

(continues on next page)

334 III DEEPEST

(continued from previous page)

return Rf_ScalarReal(s);
}

The arguments could be, technically speaking, prepared at the C level. For instance, if
x turned out to be an integer vector, we could have converted it to the double one (they
are two different types; see Section 6.4.1). Nevertheless, overall, it is very burdensome.
It is easier to use pure R code to ensure that the arguments are of the correct form
as well as to beautify the outputs. This explains why we only assert the enjoyment of
C::Rf_isReal(x). It guarantees that theC::REAL andC::XLENGTH functions correctly
return the pointer to the start of the sequence and its length, respectively.

Once C::my_c_sum is called,wemust convert it to anRobject so that it can be returned
to our environment. Here, it is a newly allocated numeric vector of length one.We did
this by calling C::Rf_ScalarReal.

Although optional (see Section 5.4 of [66]), we will register C::my_c_sum_wrapper
as a callable function explicitly. This way, R will not be struggling to find the spe-
cific entry point in the resulting dynamically linked library (DLL). We do this in src/
cpackagedemo.c:

#include <R_ext/Rdynload.h>
#include "rfuns.h"

/* the list of functions available in R via a call to .Call():
each entry is like {exported_name, fun_pointer, number_of_arguments} */

static const R_CallMethodDef cCallMethods[] = {
{"my_c_sum_wrapper", (DL_FUNC)&my_c_sum_wrapper, 1},
{NULL, NULL, 0} // the end of the list (sentinel)

};

/* registers the list of callable functions */
void R_init_cpackagedemo(DllInfo *dll)
{

R_registerRoutines(dll, NULL, cCallMethods, NULL, NULL);
R_useDynamicSymbols(dll, FALSE);

}

Thefunction canbe invoked fromRusing .Call.Here are the contents of R/my_sum.R:

my_sum <- function(x)
{

prepare input data:
if (!is.double(x))

x <- as.double(x)

s <- .Call("my_c_sum_wrapper", x, PACKAGE="cpackagedemo")

(continues on next page)

14 INTERFACING COMPILED CODE (**) 335

(continued from previous page)

some rather random postprocessing:
attr(s, "what") <- deparse(substitute(x))
s

}

And, finally, here is the package NAMESPACE file responsible for registering the expor-
ted R names and indicating the DLL to use:

export(my_sum)
useDynLib(cpackagedemo)

Once the package is built and installed (e.g., by running “R CMD INSTALL <pkgdir>”
in the terminal or calling install.packages), we can test it by calling:

library("cpackagedemo")
my_sum(runif(100)/100)
[1] 0.49856
attr(,"what")
[1] "runif(100)/100"

Exercise 14.2 Extend the package by adding a function to compute the index of the greatest ele-
ment in anumeric vector.Note thatCuses 0-based array indexingwhereas inR, thefirst element
is at index 1. Compare its run time against which.max using proc.time.

14.1.2 R CMD SHLIB

The“R CMD SHLIB <files>” shell command compiles one ormore sourcefileswithout
the need for turning them into standalone packages; see [66]. Then, dyn.load loads
the resulting DLL.

Exercise 14.3 (*) Compile src/cfuns.c and src/rfuns.c from our demo package us-
ing “R CMD SHLIB”. Call dyn.load. Write an R function that uses .Call to invoke
C::my_c_sum_wrapper from the second source file.

The direct SHLIB approach is convenient for learning C programming, including run-
ning simple examples. We will thus use it for didactic reasons in this chapter. The
inst/examples/csource.R file in our demo package includes the implementation of
an R function called csource. It compiles a given C source file, and loads the result-
ing DLL. It also extracts and executes a designated R code chunk preferably defining
a function that refers to .Call.

Here is an example source file, inst/examples/helloworld.c in the cpackagedemo
source code repository:

336 III DEEPEST

// the necessary header files are automatically included by `csource`

SEXP C_hello()
{

Rprintf("The mill's closed. There's no more work. We're destitute.\n"
"I'm afraid I've no choice but to sell you all "
"for scientific experiments.\n");

return R_NilValue;
}

/* R
this chunk will be extracted and executed by `csource`.

hello <- function()
invisible(.Call("C_hello", PACKAGE="helloworld"))

R */

Let’s compile it and call the aforementioned R function.

source("~/R/cpackagedemo/inst/examples/csource.R") # defines csource
csource("~/R/cpackagedemo/inst/examples/helloworld.c")
hello()
The mill's closed. There's no more work. We're destitute.
I'm afraid I've no choice but to sell you all for scientific experiments.

Exercise 14.4 (*) C++, which can be thought of as a superset of the C language (but the devil is
in the detail), is also supported. Change the name of the aforementioned file to helloworld2.
cpp, add extern "C" before the function declaration, pass PACKAGE="helloworld2" to .
Call, and run csource on the new file.

Exercise 14.5 (*) Verify that C and C++ source files can coexist in R packages.

Example 14.6 (*) It might be very educative to study the implementation of csource. We
should be able to author such functions ourselves now (a few hours’ worth of work), let alone read
with understanding.

compiles a C or C++ source file using R CMD SHLIB,
loads the resulting DLL, and executes the embedded R code

csource <- function(
fname,
libname=NULL, # defaults to the base name of `fname` without extension
shlibargs=character(),
headers=paste0(

"#include <R.h>\n",
"#include <Rinternals.h>\n",
"#include <Rmath.h>\n"

),
R=file.path(R.home(), "bin/R")

(continues on next page)

14 INTERFACING COMPILED CODE (**) 337

(continued from previous page)

)
{

stopifnot(file.exists(fname))
stopifnot(is.character(shlibargs))
stopifnot(is.character(headers))
stopifnot(is.character(R), length(R) == 1)

if (is.null(libname))
libname <- regmatches(basename(fname),

regexpr("[^.]*(?=\\..*)", basename(fname), perl=TRUE))

stopifnot(is.character(libname), length(libname) == 1)

read the source file:
f <- paste(readLines(fname), collapse="\n")

set up output file names:
tmpdir <- normalizePath(tempdir(), winslash="/") # tempdir on Win uses \
dynlib_ext <- .Platform[["dynlib.ext"]]
libpath <- file.path(tmpdir, sprintf("%s%s", libname, dynlib_ext))
cfname <- file.path(tmpdir, basename(fname))
rfname <- sub("\\..*?$", ".R", cfname, perl=TRUE) # .R extension

separate the /* R ... <R code> ... R */ chunk from the source file:
rpart <- regexec("(?smi)^/* R\\s?(.*)R */$", f, perl=TRUE)[[1]]
rpart_start <- rpart
rpart_len <- attr(rpart, "match.length")
if (rpart_start[1] < 0 || rpart_len[1] < 0)

stop("enclose R code between /* R ... and ... R */")

rcode <- substr(f, rpart_start[2], rpart_start[2]+rpart_len[2]-1)
cat(rcode, file=rfname, append=FALSE)

write the C/C++ file:
ccode <- paste(

headers,
substr(f, 1, rpart_start[1]-1),
substr(f, rpart_start[1]+rpart_len[1], nchar(f)),
collapse="\n"

)
cat(ccode, file=cfname, append=FALSE)

prepare the "R CMD SHLIB ..." command:
shlibargs <- c(

"CMD", "SHLIB",
sprintf("-o %s", libpath),
cfname,
shlibargs

(continues on next page)

338 III DEEPEST

(continued from previous page)

)

compile and load the DLL, run the extracted R script:
retval <- FALSE
oldwd <- setwd(tmpdir)
tryCatch({

if (libpath %in% sapply(getLoadedDLLs(), `[[`, "path"))
dyn.unload(libpath)

stopifnot(system2(R, shlibargs) == 0) # 0 == success
dyn.load(libpath)
source(rfname)
retval <- TRUE

}, error=function(e) {
cat(as.character(e), file=stderr())

})
setwd(oldwd)

if (!retval) stop("error compiling file or executing R code therein")
invisible(TRUE)

}

14.2 Handling basic types
14.2.1 SEXPTYPEs
All R objects are stored as instances of the C language structure SEXPREC. Usually, we
access them via pointers, which are of the type SEXP (S expression).

A C function referred to via .Call takes the very generic SEXPs as input. It outputs
another SEXP. Importantly, one of the said structure’s fields represents the actual R
object type (SEXPTYPE numbers); see Table 14.1 for a selection.

Table 14.1. Basic R types in C.

14 INTERFACING COMPILED CODE (**) 339

SEXPTYPE Type in R (typeof) Test in C

NILSXP NULL Rf_isNull(x) (true for R_NilValue
only)

RAWSXP raw TYPEOF(x) == RAWSXP
LGLSXP logical Rf_isLogical(x)
INTSXP integer Rf_isInteger(x)
REALSXP double Rf_isReal(x)
CPLXSXP complex Rf_isComplex(x)
STRSXP character Rf_isString(x)
VECSXP list Rf_isVectorList(x)
CHARSXP char (scalar string; internal) TYPEOF(x) == CHARSXP
EXTPTRSXP externalptr (internal) TYPEOF(x) == EXTPTRSXP

Example 14.7 To illustrate that any R object is available as a SEXP, consider the inst/
examples/sexptype.c file from cpackagedemo:

SEXP C_test_sexptype(SEXP x)
{

Rprintf("type of x: %s (SEXPTYPE=%d)\n",
Rf_type2char(TYPEOF(x)),
(int)TYPEOF(x)

);
return R_NilValue;

}

/* R
test_sexptype <- function(x)

invisible(.Call("C_test_sexptype", x, PACKAGE="sexptype"))
R */

Example calls:

csource("~/R/cpackagedemo/inst/examples/sexptype.c")
test_sexptype(1:10)
type of x: integer (SEXPTYPE=13)
test_sexptype(NA)
type of x: logical (SEXPTYPE=10)
test_sexptype("spam")
type of x: character (SEXPTYPE=16)

We should refer to particular SEXPTYPEs via their descriptive names (constants; e.g., STRSXP),
not their numeric identifiers (e.g., 16); see Section 1.1 of [69] for the complete list5.

5 src/include/Rinternals.h in R’s source code repository; see, e.g., https://svn.r-project.org/R/
trunk.

https://svn.r-project.org/R/trunk
https://svn.r-project.org/R/trunk

340 III DEEPEST

14.2.2 Accessing elements in simple atomic vectors
We have already seen an example function that processes a numeric vector; see
C::my_c_sum_wrapper above. Table 14.2 gives other important vector-like SEXPTYPEs
(atomic and generic), the C types of their elements, and the functions to access the
underlying array pointers. It is also worth knowing that as call to C::XLENGTH returns
the length of a given sequence. Let’s stress that writing functions that accept int and
double array pointers and their lengthsmakes them easily reusable in other program-
ming environments. In many data analysis applications, we do not needmuchmore.

Table 14.2. Basic array-like R types and their elements in C.

SEXPTYPE Array element type Pointer access

RAWSXP typedef unsigned char Rbyte; RAW(x)
LGLSXP int (use the FALSE, TRUE, and NA_LOGICAL constants) LOGICAL(x)
INTSXP int INTEGER(x)
REALSXP double REAL(x)
CPLXSXP typedef struct { double r; double i; }

Rcomplex;
COMPLEX(x)

STRSXP SEXP (array of SEXPs of the type CHARSXP) (not directly)
VECSXP SEXP (array of SEXPs of any SEXPTYPE) (not directly)
CHARSXP const char* (read-only; trailing 0; check encoding) CHAR(x)

Important With raw, logical, integer, floating-point, and complex vectors, we get dir-
ect access to data thatmight be shared amongstmany objects (compare Section 16.1.4).
SEXPRECs are simply passed by pointers (since SEXPs are exactly them). Wemust thus
refrain6 from modifying objects passed as function arguments. Ways to create new
vectors, e.g., for storing auxiliary or return values, are discussed below.

Example 14.8 Consider inst/examples/sharedmem.c:

SEXP C_test_sharedmem(SEXP x)
{

if (!Rf_isReal(x) || XLENGTH(x) == 0)
Rf_error("`x` should be a non-empty vector of the type 'double'");

REAL(x)[0] = REAL(x)[0]+1; // never do it; always make a copy;
// the underlying array `x` may be shared by many objects

return R_NilValue;
}

/* R

(continues on next page)

6 (*) Unless we know what we are doing, e.g., we are certain that we deal with a local variable in an R
function that invokes our .Call.

14 INTERFACING COMPILED CODE (**) 341

(continued from previous page)

test_sharedmem <- function(x)
invisible(.Call("C_test_sharedmem", x, PACKAGE="sharedmem"))

R */

Calling the foregoing function on an example vector:

csource("~/R/cpackagedemo/inst/examples/sharedmem.c")
y <- 1
z <- y
test_sharedmem(y)
print(c(y, z))
[1] 2 2

modifies y and z in place. Hence, to maintain the compatibility with the classic R semantics, we
must alwaysmake a copy.

14.2.3 Representation ofmissing values
Most languages do not support the notion of missing values out of the box.Therefore,
in R, they have to be emulated. Table 14.3 lists the relevant constants and the conven-
tional ways for testing for missingness.

Table 14.3. Representation of missing values.

SEXPTYPE Missing value Testing

RAWSXP (none) (none)
LGLSXP NA_LOGICAL (equal to INT_MIN) el == NA_LOGICAL
INTSXP NA_INTEGER (equal to INT_MIN) el == NA_INTEGER
REALSXP NA_REAL (a special NaN) ISNA(el)
CPLXSXP a pair of NA_REALs ISNA(el.r)
STRSXP NA_STRING (a CHARSXP object) el == NA_STRING

In logical and integer vectors, NAs are represented as the smallest 32-bit signed integer.
Thus, we need to be careful when performing any operations on these types: testing
for missingness must be performed first.

The case of doubles is slightly less irksome, for a missing value is represented as a
special not-a-number.Many arithmetic operations on NaNs return NaNs as well, albeit
there is no guarantee7 that they will be of precisely the same type as NA_REAL. Thus,
manual testing for missingness is also advised.

7 (**) Namely, NAs are encoded as un-signalling NaNs 0x7ff00000000007A2 of the type double (the lower
32 payload bits are equal to 1954, decimally); see src/arithmetic.c in R’s source code.Thepayload propaga-
tion is not fully covered by the current IEEE 754 floating point standard; see [23] for discussion. Reliance on
such behaviour will thus make our code platform-dependent. R itself sometimes does that; theoretically,
this may cause NAs to be converted to (other) NaNs.

342 III DEEPEST

Example 14.9 The inst/examples/mean_naomit.c file defines a function to compute the
arithmetic mean of an int or a double vector:

SEXP C_mean_naomit(SEXP x)
{

double ret = 0.0;
size_t k = 0;

if (Rf_isInteger(x)) {
const int* xp = INTEGER(x);
size_t n = XLENGTH(x);
for (size_t i=0; i<n; ++i)

if (xp[i] != NA_INTEGER) { // NOT: ISNA(xp[i])
ret += (double)xp[i];
k++;

}
}
else if (Rf_isReal(x)) {

const double* xp = REAL(x);
size_t n = XLENGTH(x);
for (size_t i=0; i<n; ++i)

if (!ISNA(xp[i])) { // NOT: xp[i] == NA_REAL
ret += xp[i];
k++;

}
}
else

Rf_error("`x` should be a numeric vector");

return Rf_ScalarReal((k>0)?(ret/(double)k):NA_REAL);
}

/* R
mean_naomit <- function(x)
{

if (!is.numeric(x)) # neither integer nor double
x <- as.numeric(x) # convert to double (the same as as.double)

.Call("C_mean_naomit", x, PACKAGE="mean_naomit")
}
R */

There is some inherent code duplication but int and double are distinct types. Thus, they need
to be handled separately (we could have convert them to doubles at the R level too). Some tests:

csource("~/R/cpackagedemo/inst/examples/mean_naomit.c")
mean_naomit(c(1L, NA_integer_, 3L, NA_integer_, 5L))
[1] 3
mean_naomit(rep(NA_real_, 10))
[1] NA

Exercise 14.10 Implement all and any in C. Add the na.rm argument.

14 INTERFACING COMPILED CODE (**) 343

14.2.4 Memory allocation
To allocate a new vector of length one and set its only element, we can call
C::ScalarLogical, C::ScalarInteger, C::ScalarReal, etc. We have already used
these functions for returning R “scalars”. Vectors of arbitrary lengths can be created
using C::Rf_allocVector(sexptype, size).Note that this functiondoes not initial-
ise the elements of logical and numeric sequences (amongst others).Theywill need to
be set manually after creation.

Important R implements a simple yet effective garbage collector that relies on refer-
ence counting. Occasionally8, memory blocks that can no longer be reached are either
freed or marked as reusable.

All allocated vectors must be manually protected from garbage collection. To guard
against premature annihilation, R maintains a stack9 of objects. C::PROTECT(sexp)
pushes a given object pointer onto the top of the list. C::UNPROTECT(n) pops the last
n elements from it in the last-in-first-out manner. At the end of a .Call, R checks if
the number of protectsmatches that of unprotects and generates a warning if there is
a stack imbalance.

Protection is not needed:

• for arguments to functions referred to by .Call, as they are already in use and
hence protected;

• forobjects assignedas list or character vectors’ elementsusingC::SET_VECTOR_ELT
and C::SET_STRING_ELT (see below); when the container is protected, so are its
components;

• when we return the allocated vector to R immediately after creating it (like in re-
turn Rf_ScalarReal(val) in a C function invoked by .Call).

Example 14.11 Here is a function to compute the square of each element in a numeric vector.
Note that the new vectormust be protected fromgarbage collectionwhile data are being prepared.

SEXP C_square1(SEXP x)
{

// no need to call PROTECT(x), it is already in use
if (!Rf_isReal(x)) Rf_error("`x` should be of the type 'double'");

size_t n = XLENGTH(x);
const double* xp = REAL(x);

SEXP y = PROTECT(Rf_allocVector(REALSXP, n)); // won't be GC'd
(continues on next page)

8 A safe strategy is to assume that any call to a function fromR’s APImay trigger thememory cleanup.On
a side note, wemay call the gc function in R to enforce rubbish removal. It also reports the currentmemory
usage.

9 (**) C::R_PreserveObject protects an arbitrary SEXP until C::R_ReleaseObject is called manually.
With this mechanism, objects are not automatically released at the end of a .Call.

344 III DEEPEST

(continued from previous page)

double* yp = REAL(y);

for (size_t i=0; i<n; ++i) {
if (ISNA(xp[i])) yp[i] = xp[i]; // NA_REAL
else yp[i] = xp[i]*xp[i];

}

UNPROTECT(1); // pops one object from the protect stack;
// does not trigger garbage collection, so we can return `y` now

return y; // R will retrieve and protect it
}

/* R
square1 <- function(x)
{

if (!is.double(x)) x <- as.double(x)
.Call("C_square1", x, PACKAGE="square1")

}
R */

As an alternative, in this case, wemay use C::Rf_duplicate:

SEXP C_square2(SEXP x)
{

if (!Rf_isReal(x)) Rf_error("`x` should be of the type 'double'");

x = PROTECT(Rf_duplicate(x)); // OK; just replaces the pointer (address)

size_t n = XLENGTH(x);
double* xp = REAL(x);
for (size_t i=0; i<n; ++i)

if (!ISNA(xp[i])) xp[i] = xp[i]*xp[i];

UNPROTECT(1);
return x;

}

/* R
square2 <- function(x)
{

if (!is.double(x)) x <- as.double(x)
.Call("C_square2", x, PACKAGE="square2")

}
R */

Some tests:

csource("~/R/cpackagedemo/inst/examples/square1.c")

(continues on next page)

14 INTERFACING COMPILED CODE (**) 345

(continued from previous page)

square1(c(-2, -1, 0, 1, 2, 3, 4, NA_real_))
[1] 4 1 0 1 4 9 16 NA
csource("~/R/cpackagedemo/inst/examples/square2.c")
square2(c(-2, -1, 0, 1, 2, 3, 4, NA_real_))
[1] 4 1 0 1 4 9 16 NA

We can claim auxiliary memory from the heap during a function’s runtime using the
well-known C::malloc (or new in C++).We are of course fully responsible for releasing
it via C::free (or delete).

Example 14.12 Here is our version of the which function.

SEXP C_which1(SEXP x)
{

if (!Rf_isLogical(x)) Rf_error("`x` should be of the type 'logical'");

size_t n = XLENGTH(x), i, k;
const int* xp = LOGICAL(x);

size_t* d = (size_t*)malloc(n*sizeof(size_t)); // conservative size
if (!d) Rf_error("memory allocation error");

for (i=0, k=0; i<n; ++i)
if (xp[i] != NA_LOGICAL && xp[i])

d[k++] = i;

// Rf_allocVector can longjmp, memory leak possible...
SEXP y = PROTECT(Rf_allocVector(REALSXP, k));
double* yp = REAL(y); // yes, the type is double; ready for long vectors
for (i=0; i<k; ++i)

yp[i] = (double)d[i]+1; // R uses 1-based indexing

free(d);
UNPROTECT(1);
return y;

}

/* R
which1 <- function(x)
{

if (!is.logical(x)) x <- as.logical(x)
.Call("C_which1", x, PACKAGE="which1")

}
R */

Some tests:

346 III DEEPEST

csource("~/R/cpackagedemo/inst/examples/which1.c")
which1(c(TRUE, FALSE, TRUE, NA, TRUE))
[1] 1 3 5

Exercise 14.13 R’s which returns either an int or a double vector, depending on the size of
the input vector (whether it is shorter than 231 − 1). Rewrite the above to take that into account:
integer arithmetic is slightly faster.

Note (*) R’s exception handling uses a long jump10. Therefore, when calling
C::Rf_error (whether directly or not) normal stack unwinding will not occur. This
is particularly important when using C++ objects which deallocate memory in their
destructors as they might not be invoked whatsoever.

In the preceding example, a call to C::Rf_allocVectormay trigger a long jump, e.g.,
if we run out of available memory. In such a case, dwill not be freed.

Thus, care shouldbe taken tomake sure there arenomemory leaks.Wecan sometimes
switch toC::R_alloc(n, size)whichallocatesn*sizebytes.Thememory it requests
will automatically be garbage-collected at the end of a .Call.

Otherwise, we should ensure that blocks relying on manual memory allocation are
not mixed with the calls to R API functions. In our C::which1, it would be better to
determine the desired size of y and allocate it before calling C::malloc.

Example 14.14 (*) Ifwe donot like thatwe are potentiallywastingmemory in the case of sparse
logical vectors, we can rely on dynamically growable arrays. Below is a C++ rewrite of the forego-
ing function using deque (double-ended queue) from the language’s standard library.

#include <deque>

extern "C" SEXP C_which2(SEXP x)
{

if (!Rf_isLogical(x)) Rf_error("`x` should be of the type 'logical'");

size_t n = XLENGTH(x), i, k=0;
const int* xp = LOGICAL(x);

// precompute k, Rf_allocVector can do a longjmp
for (i=0; i<n; ++i) if (xp[i] != NA_LOGICAL && xp[i]) k++;
SEXP y = PROTECT(Rf_allocVector(REALSXP, k));
double* yp = REAL(y); // ready for long vectors

std::deque<size_t> d; // allocates memory
for (i=0; i<n; ++i)

if (xp[i] != NA_LOGICAL && xp[i])
d.push_back(i);

(continues on next page)

10 https://en.wikipedia.org/wiki/Setjmp.h

https://en.wikipedia.org/wiki/Setjmp.h

14 INTERFACING COMPILED CODE (**) 347

(continued from previous page)

i=0;
for (size_t e : d)

yp[i++] = (double)e+1; // R uses 1-based indexing

UNPROTECT(1);
return y; // d's destructor will be called automatically

}

/* R
which2 <- function(x)
{

if (!is.logical(x)) x <- as.logical(x)
.Call("C_which2", x, PACKAGE="which2")

}
R */

Example calls:

csource("~/R/cpackagedemo/inst/examples/which2.cpp")
x <- (runif(10) > 0.5)
stopifnot(which(x) == which1(x))
stopifnot(which(x) == which2(x))

Alternatively, we could have used C::realloc to extend an initially small buffer created using
C::malloc by, say, 50%whenever it is about to overflow.

14.2.5 Lists
For safety reasons11, we do not get access to the underlying pointers in lists and char-
acter vectors. List items can be read by calling C::VECTOR_ELT(x, index) and can be
set with C::SET_VECTOR_ELT(x, index, newval). Note that lists (VECSXPs) are com-
prised of SEXPs of any type. Hence, after extracting an element, its SEXPTYPE needs to
be tested using one of the functions listed in Table 14.1. This can be tiresome.

Example 14.15 Here is a rather useless function that fetches the first and the last element in a
given numeric vector or a list. However, if the latter case, we apply the function recursively on all
its elements.

SEXP C_firstlast(SEXP x)
{

if (!Rf_isVector(x) || XLENGTH(x) == 0)
Rf_error("`x` must be a non-empty vector (atomic or generic)");

else if (Rf_isReal(x)) {
SEXP y = PROTECT(Rf_allocVector(REALSXP, 2));

(continues on next page)

11 Toget the object reference counting right, C::SET_VECTOR_ELTneeds to unprotect the old element and
start protecting the new one.

348 III DEEPEST

(continued from previous page)

REAL(y)[0] = REAL(x)[0]; // first
REAL(y)[1] = REAL(x)[XLENGTH(x)-1]; // last
UNPROTECT(1);
return y;

}
else if (Rf_isVectorList(x)) {

SEXP y = PROTECT(Rf_allocVector(VECSXP, 2));
// VECTOR_ELT(x, i) is PROTECTed by the container;
// SET_VECTOR_ELT does not trigger GC; no need to call PROTECT
// on the result of C_firstlast(...) in this context
SET_VECTOR_ELT(y, 0, C_firstlast(VECTOR_ELT(x, 0)));
SET_VECTOR_ELT(y, 1, C_firstlast(VECTOR_ELT(x, XLENGTH(x)-1)));
UNPROTECT(1);
return y;

}
else

Rf_error("other cases left as an exercise");

return R_NilValue; // avoid compiler warning
}

/* R
firstlast <- function(x)

.Call("C_firstlast", x, PACKAGE="firstlast")
R */

Testing:

csource("~/R/cpackagedemo/inst/examples/firstlast.c")
firstlast(c(1, 2, 3))
[1] 1 3
firstlast(list(c(1, 2, 3), c(4, 5), 6))
[[1]]
[1] 1 3
##
[[2]]
[1] 6 6
firstlast(list(c(1, 2, 3), 4, 5, list(6, c(7, 8), c(9, 10, 11))))
[[1]]
[1] 1 3
##
[[2]]
[[2]][[1]]
[1] 6 6
##
[[2]][[2]]
[1] 9 11

Exercise 14.16 Implement a C function that returns the longest vector in a given list. Use

14 INTERFACING COMPILED CODE (**) 349

C::Rf_isVector to check whether a given object is an atomic or a generic vector, and hence
if C::XLENGTH can be called thereon.

Exercise 14.17 Inscribe your version of unlist. Consider scanning the input list twice. First,
determine the size of the output vector. Second, fill the return object with the un-listed values.

Exercise 14.18 Write a C function that takes a list of numeric vectors of identical lengths. Re-
turn their elementwise sum: the first element of the output should be the sum of the first elements
in every input vector, and so forth.

14.2.6 Character vectors and individual strings (*)
Character vectors (STRSXPs) are similar to VECSXPs except that they only carry
individual strings which are represented using a separate data type, CHARSXP.
C::STRING_ELT(x, index) and C::SET_STRING_ELT(x, index, newval) play the
role of the element getters and setters.

Important Ifwe arenot interested in text processing but rather in handling categorical
data or defining grouping variables, we should consider converting character vectors
to factorsbefore issuing a .Call. Comparing small integers ismuch faster than strings;
see below for more details.

Because of R’s string cache, there are no duplicate strings in the memory. However,
this feature could only be guaranteed by making data in CHARSXPs read-only. We can
access the underlying const char* pointer by calling C::CHAR(s). As typical in C, a
string is terminated by byte 0.

Note R strings may be of different encodings; compare Section 6.1.1. For portability
and peace of mind, it is best to preprocess the arguments to .Call using enc2utf8,
which converts all strings to UTF-812.

Despite being themost universal encoding, UTF-8 does not represent each code point
using a fixed number of bytes. For instance, computing the string length requires it-
erating over all its elements. For CHARSXPs, C::XLENGTH returns the number of bytes,
not including the trailing 0.

It is thus best to leave the processing of strings to the dedicated libraries, e.g., ICU13
or rely on functions from the stringi package [27] at the R level.

C strings can be converted to CHARSXPs by calling C::Rf_mkCharCE(stringbuf,
CE_UTF8)or C::Rf_mkCharLenCE(stringbuf, buflen, CE_UTF8). Ifwe are sure that
a string is in ASCII (a subset of UTF-8), we can also call C::Rf_mkChar(stringbuf).

12 Take care when calling C::Rprintf, though. It should only be used to output messages in the native
encoding,whichdoesnotnecessarily have to beUTF-8, although this landscape is slowly changing. Sticking
to ASCII is a safe choice.

13 https://icu.unicode.org/

https://icu.unicode.org/

350 III DEEPEST

We should never return CHARSXPs as results to R. They are for internal use only. They
must be wrapped inside a character vector, e.g., using C::Rf_ScalarString.

14.2.7 Calling R functions fromC (**)
Section 5.11 of [66] discusses ways to call R functions in C. To understand them, we
will first need to study the material from the remaining chapters of our book, i.e., en-
vironments and the related evaluation model. They can be useful, e.g., when calling
optimisation algorithms implemented in C on objective functions written in R.

14.2.8 External pointers (**)
For storing arbitrary C pointers, there is a separate basic R type named externalptr
(SEXPTYPE of EXTPTRSXP); see Section 5.13 of [66] formore details.We can use them to
maintain dynamic data structures or resource handlers between calls to R functions.
The problemwith these is that pointers are passed as… pointers.They can easily break
R’s pass-by-value-like semantics, where changes to the state of the referenced object
will be visible outside the call.

Example 14.19 (**) inst/examples/stack.cpp provides a C++ implementation of the
stack data structure, being a last-in-first-out container of arbitrary R objects:

#include <deque>

class S : public std::deque<SEXP>
{

public: ~S()
{ // destructor: release all SEXPs so that they can be GC'd

while (!this->empty()) {
SEXP obj = this->front();
this->pop_front();
R_ReleaseObject(obj);

}
}

};

S* get_stack_pointer(SEXP s, bool check_zero=true) // internal function
{

if (TYPEOF(s) != EXTPTRSXP)
Rf_error("not an external pointer");

SEXP tag = R_ExternalPtrTag(s); // our convention, this can be anything
if (TYPEOF(tag) != CHARSXP || strcmp(CHAR(tag), "stack") != 0)

Rf_error("not a stack");

S* sp = (S*)R_ExternalPtrAddr(s);
if (check_zero && !sp)

Rf_error("address is 0");

(continues on next page)

14 INTERFACING COMPILED CODE (**) 351

(continued from previous page)

return sp;
}

void stack_finaliser(SEXP s) // internal function
{

// called during garbage collection
S* sp = get_stack_pointer(s, false);
if (sp) {

delete sp; // destruct S, release SEXPs
R_ClearExternalPtr(s);

}
}

extern "C" SEXP C_stack_create()
{

S* sp = new S(); // stack pointer
SEXP s = PROTECT(

R_MakeExternalPtr((void*)sp, /*tag*/mkChar("stack"), R_NilValue)
);
R_RegisterCFinalizerEx(s, stack_finaliser, TRUE); // auto-called on GC
UNPROTECT(1);
return s;

}

extern "C" SEXP C_stack_empty(SEXP s)
{

S* sp = get_stack_pointer(s);
return Rf_ScalarLogical(sp->empty());

}

extern "C" SEXP C_stack_push(SEXP s, SEXP obj)
{

S* sp = get_stack_pointer(s);
R_PreserveObject(obj);
sp->push_front(obj);
return R_NilValue;

}

extern "C" SEXP C_stack_pop(SEXP s)
{

S* sp = get_stack_pointer(s);
if (sp->empty())

Rf_error("stack is empty");
SEXP obj = sp->front();
sp->pop_front();
R_ReleaseObject(obj);
return obj;

(continues on next page)

352 III DEEPEST

(continued from previous page)

}

/* R
stack_create <- function()

.Call("C_stack_create", PACKAGE="stack")

stack_empty <- function(s)
.Call("C_stack_empty", s, PACKAGE="stack")

stack_push <- function(s, obj)
.Call("C_stack_push", s, obj, PACKAGE="stack")

stack_pop <- function(s)
.Call("C_stack_pop", s, PACKAGE="stack")

R */

Note howwe preserve R objects from garbage collection. Some tests:

csource("~/R/cpackagedemo/inst/examples/stack.cpp")
s <- stack_create()
print(s)
<pointer: 0x561445630d90>
typeof(s)
[1] "externalptr"
for (i in c("one", "two", "Spanish Inquisition"))

stack_push(s, i)
while (!stack_empty(s))

print(stack_pop(s))
[1] "Spanish Inquisition"
[1] "two"
[1] "one"

Note that pointers are not serialisable. They cannot be saved for use in another R ses-
sion.

14.3 Dealingwith compound types
14.3.1 Reading and setting attributes
From Chapter 10, we know that compound types such as matrices, factors, or data
frames are represented using basic data structures. Usually, they are atomic vectors
or lists organised in a predefinedmanner.

C::Rf_getAttrib(x, attrname)andC::Rf_setAttrib(x, attrname, newval)gets
and sets specific attributes of an object x. Their second argument, attrname, should
be a one-element STRSXP. For convenience, the R_ClassSymbol, R_DimNamesSymbol,

14 INTERFACING COMPILED CODE (**) 353

R_DimSymbol, R_NamesSymbol, R_RowNamesSymbol, and R_LevelsSymbol constants
can be used instead of the STRSXP versions of the "class", "dimnames", "dim",
"names", "row.names", and "levels" strings.

Example 14.20 Consider a function for testing whether an object is of a given class:

#include <string.h>

SEXP C_isofclass(SEXP x, SEXP class)
{

if (!Rf_isString(class) && XLENGTH(class) != 1)
Rf_error("`class` must be a single string");

if (!OBJECT(x)) // is the class attribute set at all?
return Rf_ScalarLogical(FALSE);

SEXP xclass = Rf_getAttrib(x, R_ClassSymbol); // STRSXP (guaranteed)
const char* c = CHAR(STRING_ELT(class, 0)); // class arg as a C string
size_t n = XLENGTH(xclass);
for (size_t i=0; i<n; ++i)

if (strcmp(CHAR(STRING_ELT(xclass, i)), c) == 0)
return Rf_ScalarLogical(TRUE);

return Rf_ScalarLogical(FALSE);
}

/* R
isofclass <- function(x, class)

.Call("C_isofclass", x, class, PACKAGE="isofclass")
R */

Some tests:

csource("~/R/cpackagedemo/inst/examples/isofclass.c")
isofclass(Sys.time(), "POSIXct")
[1] TRUE
isofclass(cbind(1:5, 11:15), "matrix")
[1] FALSE

Note thatamatrixhasan implicit class (reportedby theclass function), but itsclassattribute
does not have to be set. Hence the negative result.

Example 14.21 Write a function that fetches a particular named element in a list.

14.3.2 Factors
Factors (Section 10.3.2) are represented as integer vectors with elements in the set {1,
2, …, k, NA_integer_} for some k. They are equipped with the levels attribute, being
a character vector of length k. Their class attribute is set to factor.

354 III DEEPEST

Example 14.22 Anexample implementationofa function to compute thenumberof occurrences
of each factor level is given below.

SEXP C_table1(SEXP x)
{

if (!Rf_isFactor(x)) Rf_error("`x` is not a 'factor' object");

size_t n = XLENGTH(x);
const int* xp = INTEGER(x); // `x` is INTSXP

SEXP levels = Rf_getAttrib(x, R_LevelsSymbol); // `levels` is a STRSXP
size_t k = XLENGTH(levels);

SEXP y = PROTECT(Rf_allocVector(REALSXP, k));
double* yp = REAL(y);
for (size_t i=0; i<k; ++i)

yp[i] = 0.0;
for (size_t j=0; j<n; ++j) {

if (xp[j] != NA_INTEGER) {
if (xp[j] < 1 || xp[j] > k)

Rf_error("malformed factor"); // better safe than sorry
yp[xp[j]-1] += 1.0; // levels are 1..k, but C needs 0..k-1

}
}

Rf_setAttrib(y, R_NamesSymbol, levels); // set names attribute
UNPROTECT(1);
return y;

}

/* R
table1 <- function(x)
{

if (!is.factor(x)) x <- as.factor(x)
.Call("C_table1", x, PACKAGE="table1")

}
R */

Testing:

csource("~/R/cpackagedemo/inst/examples/table1.c")
table1(c("spam", "bacon", NA, "spam", "eggs", "bacon", "spam", "spam"))
bacon eggs spam
2 1 4

Exercise 14.23 Create a function to compute the most frequently occurring value (mode) in a
given factor. Return a character vector. If amode is ambiguous, return all the possible candidates.

14 INTERFACING COMPILED CODE (**) 355

14.3.3 Matrices
Matrices (Chapter 11) are flat atomic vectors or lists with the dim attribute being an
integer vector of length two. The class attribute does not have to be set (but the
class function returns matrix and array). Matrices are so important in data ana-
lysis that they have been blessed with a few dedicated functions available at the C
level. C::Rf_isMatrix tests if a given object meets the criteria mentioned above.
C::Rf_allocMatrix(sexptype, nrows, ncols) allocates a newmatrix.

R relies on the Fortran order of matrix elements, i.e., it uses the column-major align-
ment. Let A be a matrix with n rows and m columns (compare C::Rf_nrows and
C::Rf_ncols). Then, the element in the i-th row and the j-th column is at A[i+n*j].
The dimnames attributes must be handled manually, though.

Example 14.24 Here is a function to compute the transpose of a numeric matrix:

SEXP C_transpose(SEXP x)
{

if (!Rf_isMatrix(x) || !Rf_isReal(x))
Rf_error("`x` must be a real matrix");

size_t n = Rf_nrows(x);
size_t m = Rf_ncols(x);
const double* xp = REAL(x);

SEXP y = PROTECT(Rf_allocMatrix(REALSXP, m, n));
double* yp = REAL(y);
for (size_t i=0; i<n; ++i)

for (size_t j=0; j<m; ++j)
yp[j+m*i] = xp[i+n*j];

SEXP dimnames = Rf_getAttrib(x, R_DimNamesSymbol);
if (!Rf_isNull(dimnames)) {

SEXP tdimnames = PROTECT(Rf_allocVector(VECSXP, 2));
SET_VECTOR_ELT(tdimnames, 0, VECTOR_ELT(dimnames, 1));
SET_VECTOR_ELT(tdimnames, 1, VECTOR_ELT(dimnames, 0));
Rf_setAttrib(y, R_DimNamesSymbol, tdimnames); // set dimnames
UNPROTECT(1);
// dimnames may have the names attribute too (left as an exercise)

}

UNPROTECT(1);
return y;

}

/* R
transpose <- function(x)
{

if (!is.matrix(x)) x <- as.matrix(x)
if (!is.double(x)) x[] <- as.double(x) # preserves attributes

(continues on next page)

356 III DEEPEST

(continued from previous page)

.Call("C_transpose", x, PACKAGE="transpose")
}
R */

Testing:

csource("~/R/cpackagedemo/inst/examples/transpose.c")
transpose(cbind(c(1, 2, 3, 4), c(5, 6, 7, 8)))
[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
transpose(Titanic[, "Male", "Adult",])
1st 2nd 3rd Crew
No 118 154 387 670
Yes 57 14 75 192

Exercise 14.25 Author a C function named table2 that computes a two-way contingency
table.

14.3.4 Data frames
Data frames (Chapter 12) are lists of the S3 class data.frame featuring, for some n and
m,m vectors of identical lengths n or matrices of n rows.The character vectors stored
in the row.names and names attributes give the n row andm column labels.

We process data frames as ordinary lists. However, assuming we only want to process
numeric data, we can extract the quantitative columns and put them inside a matrix
at the R level. If element grouping is required, they can be accompanied by a factor or
a list of factor variables. In many applications, this strategy is good enough.

14.4 Using existing function libraries
14.4.1 Checking for user interrupts
Long computations may lead to R’s becoming unresponsive. The user may always re-
quest to cancel the evaluation of the current expression by pressing Ctrl+C. To allow
the processing of the event queue, we should call C::R_CheckUserInterrupt() occa-
sionally, e.g., in every iteration of a complex for loop. Note that Rmight decide never
to return to our function. Thus, we have to prevent memory leaks, e.g., by preferring
C::R_alloc over C::malloc.

14 INTERFACING COMPILED CODE (**) 357

14.4.2 Generating pseudorandomnumbers
C::unif_rand returns a single pseudorandom deviate from the uniform distribution
on the unit interval. It is the basis for generating numbers from all other supported
distributions (Section 6.7.1 of [66]). It uses the same pseudorandom generator as we
described in Section 2.1.5. To read andmemorise its seed (the `.Random.seed` object
in the global environment), we have to call C::GetRNGstate() and C::PutRNGstate()
at the beginning and the end of our function, respectively.

Example 14.26 Below is a function to generate a pseudorandom bit sequence:

SEXP C_randombits(SEXP n)
{

if (!Rf_isInteger(n) || XLENGTH(n) != 1)
Rf_error("`n` should be a single integer");

int _n = INTEGER(n)[0];
if (_n == NA_INTEGER || _n < 1)

Rf_error("incorrect `n`");

SEXP y = PROTECT(Rf_allocVector(INTSXP, _n));
int* yp = INTEGER(y);

GetRNGstate();
for (int i=0; i<_n; ++i)

yp[i] = (int)(unif_rand()>0.5); // not the best way to sample bits
PutRNGstate();

UNPROTECT(1);

return y;
}

/* R
randombits <- function(n)
{

if (!is.integer(n)) n <- as.integer(n)
.Call("C_randombits", n, PACKAGE="randombits")

}
R */

Let’s play around with it:

csource("~/R/cpackagedemo/inst/examples/randombits.c")
set.seed(123); randombits(10)
[1] 0 1 0 1 1 0 1 1 1 0
randombits(10)
[1] 1 0 1 1 0 1 0 0 0 1
set.seed(123); randombits(20)
[1] 0 1 0 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0 0 1

(continues on next page)

358 III DEEPEST

(continued from previous page)

set.seed(123); as.integer(runif(20)>0.5) # it's the same "algorithm"
[1] 0 1 0 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0 0 1

Exercise 14.27 Create a function to compute the most frequently occurring value (mode) in a
given factor object. In the case of ambiguity, return a randomly chosen candidate.

14.4.3 Mathematical functions from the RAPI
Section 6.7 of [66] lists the available statistical distribution functions, mathematical
routines and constants, and other numerical utilities.

14.4.4 Header files fromother R packages (*)
A package may use header files from another package. For this to be possible, it must
include the dependency name in the LinkingTo field of its DESCRIPTION file; see [66]
for discussion.

Exercise 14.28 The BH package on CRAN gives access to Boost, the header-only C++ librar-
ies that define many useful algorithms and data structures. Create an R package that calls
C++::boost::math::gcd after issuing the #include <boost/math/common_factor.
hpp> directive.

14.4.5 Specifying compiler and linker flags (**)
We can pass arbitrary flags to the compiler or linker, e.g., to use any library installed
on our system. Basic configuration can be tweaked via Makevars (or Makevars.win
on Win***s), e.g., by setting PKG_CFLAGS or PKG_LIBS variables. For maximum port-
ability across different platforms, which is overall challenging to ensure when we do
not wish to exclude Win***s users, we might be required to author custom config-
ure (and configure.win) scripts. For more information, see [66] which discusses,
amongst others, how to use OpenMP14 in our projects.

14.5 Exercises
Exercise 14.29 Answer the following questions about the C language API for R.

• What are the most common SEXPTYPEs?
14 Most R functions are single-threaded by design. It is up to the user to decide whether and how they

would like their code to be parallelised. More often than not, computations in the data science domain are
naïvely parallelisable (e.g.,MonteCarlo simulations, exhaustive grid search, etc.). In such cases, theR pack-
age parallelmight be helpful: it defines parallel versions of lapply and apply. However, for serious jobs,
runningmultiple single-threaded R instances via, e.g., the slurmworkloadmanager might be a better idea
than starting a process that spawnsmany child threads.

14 INTERFACING COMPILED CODE (**) 359

• How aremissing values represented?

• How can we check if an int is a missing value?What about a double?

• How to prevent SEXPs from being garbage-collected?

• How are character vectors represented? What is the difference between a CHARSXP and a
STRSXP?

• Why is it better to handle factor objects rather than raw character vectors if wemerelywould
like to define grouping variables?

• How are Rmatrices represented in C? Does R use the C or Fortran order of matrix elements?

• How are R data frames handled in C?

Exercise 14.30 Implement the C versions of the rep, seq, rle, match, findInterval,
sample, order, unique, and split functions.

Exercise 14.31 (*) ReadWriting R Extensions [66] in its entirety.

Exercise 14.32 (*) Download R’s source code from CRAN15 or its Subversion16 (SVN) repos-
itory. Explore the header files in the src/include subdirectory. They are part of the callable
API.

15 https://stat.ethz.ch/R/daily
16 https://svn.r-project.org/R/trunk

https://stat.ethz.ch/R/daily
https://svn.r-project.org/R/trunk

15
Unevaluated expressions (*)

In this and the remaining chapters, we will learn some hocus-pocus that should only
be of interest to the advanced-to-be1 and open-minded R programmers who would
like to understand what is going on under our language’s bonnet. In particular, we
will inspect the mechanisms behind why certain functions act differently from what
we would expect them to do if a standard evaluation scheme was followed (compare
subset and transformmentioned in Section 12.3.9). Namely, in normal programming
languages, when we execute something like:

plot(x, exp(x))

the expression exp(x) is evaluated first. Then, and only then, its value2 (in this case:
probably a numeric vector) is passed to the plot function as an actual parameter.Thus,
if x becomes seq(0, 10, length.out=1001), the above never means anything else
than:

plot(c(0.00, 0.01, 0.02, 0.03, ...), c(1.0000, 1.0101, 1.0202, 1.0305, ...))

ButRwas heavily inspired by the S language fromwhich it has taken the notion of lazy
arguments (Chapter 17). It is thus equippedwith the ability to apply a set of techniques
referred to as metaprogramming (computing on the language, reflection). With it, we
can define functions that do not take their arguments for granted and clearly see the
code fragments passed to them. Having access to such unevaluated expressions, we can
do to them whatever we please: print, modify, evaluate on different data, or ignore
whatsoever.

In theory, this enables implementing many potentially helpful3, beginner-friendly fea-
tures and express certain requests in a more concise manner. For instance, that the
y-axis labels in Figure 2.2 could be generated automatically is precisely because plot
was able to see not only a vector like c(1.0000, 1.0101, 1.0202, 1.0305, ...) but
also the expression that generated it, exp(x).

1 Remember that this book is supposed to be read from the beginning to the end. Also, if you have not
tested yourself against all the 300-odd exercises suggested so far, please do it before proceeding with the
material presented here. Only practice makes perfect, and nothing is built in a day. Give yourself time: you
can always come back later.

2 Or a reference/pointer to an object that stores the said value.
3The original authors of R (R. Ihaka and R. Gentleman), in [38], mention: “A policy of lazy arguments is

very useful because it means that, in addition to the value of an argument, its symbolic form can be made
available in the function being called.This can be very useful for specifying functions ormodels in symbolic
form.”

362 III DEEPEST

Nonetheless, as a form of untamed freedom of expression4, metaprogramming has the
endless potential to arouse chaos, confusion, and division in the user community. In
particular,wecan introduceadialectwithinour language thatpeopleoutsideour circle
will not be able to understand. Once it becomes a dominant one, other users will feel
excluded.

Cursed be us, for we are about to start eating from the tree of the knowledge of good
and evil. But remember: with great power comes great fun (and responsibility).

15.1 Expressions at a glance
At themost general level, expressions (statements) in a language like R can be classified
into two groups:

• simple expressions:

– constants (e.g., 3.14, 2i, 42L, NA_real_, Inf, NaN, NA, FALSE, TRUE, "charac-
ter string", NULL, -1.3e-16, and 0x123abc),

– names (symbols, identifiers; e.g., x, iris, sum, data.frame, spam, `+`, `[<-`,
and spanish_inquisition),

• compound expressions – combinations of 𝑛 + 1 expressions (simple or compound)
of the form:

(𝑓 , 𝑒1, 𝑒2, … , 𝑒𝑛).

As we will soon see, compound expressions represent a call to 𝑓 (an operator) on a se-
quence of arguments 𝑒1, 𝑒2, … , 𝑒𝑛 (operands). It is why, equivalently, we denote them
by 𝑓 (𝑒1, 𝑒2, … , 𝑒𝑛).
On the other hand, nameshave nomeaningwithout an explicitly stated context, which
we will explore in Chapter 16. Prior to that, we treat them as meaning-less. Hence, for
the timebeing,weare only interested in the syntax or grammar of our language, not the
semantics. We are abstract in the sense that, in the expression mean(rates)+2, which
we know from Section 9.3.5 that we can equivalently articulate as `+`(mean(rates),
2), neither mean, x, nor even `+` has the usual sense.Therefore, we should consider it
the same as, say, f(g(x), 2) or nobody(expects(spanish_inquisition), 2).

4 In the current author’s opinion, R (as awhole, in the sense ofR (GNUS)as a language andan environment)
would be better off if an ordinary programmer was not exposed so much to functions heavily relying on
metaprogramming. A healthy user can perfectly manage without (and thus refrain from using) them.The
fact that we call them advancedwill notmake us cool if we start horsing aroundwith nonstandard evaluation.
Perverse is perhaps a better label.

15 UNEVALUATED EXPRESSIONS (*) 363

15.2 Language objects
There are three types of language objects in R:

• name (symbol) represents object names in the sense of simple expressions: names in
Section 15.1;

• call stores unevaluated function calls in the sense of compound expressions above;

• expression, quite confusingly, represents a sequence of simple or compound ex-
pressions (constants, names, or calls).

One way to create a simple or compound expression is by quoting, where the R inter-
preter is asked to refrain from evaluating a given command:

quote(spam) # name (symbol)
spam
quote(f(x)) # call
f(x)
quote(1+2+3*pi) # another call
1 + 2 + 3 * pi

None of the foregoing was executed. In particular, spam has no sense in the current
context (whichever that is). It is not the meaning that we are now after.

Single strings can be converted to names by calling:

as.name("spam")
spam

Calls can be built programmatically by invoking:

call("sin", pi/2)
sin(1.5707963267949)

Sometimes we would rather have the arguments quoted:

call("sin", quote(pi/2))
sin(pi/2)
call("c", 1, exp(1), quote(exp(1)), pi, quote(pi))
c(1, 2.71828182845905, exp(1), 3.14159265358979, pi)

Objects of the type expression can be thought of as list-like sequences that consist of
simple or compound expressions.

(exprs <- expression(1, spam, mean(x)+2))
expression(1, spam, mean(x) + 2)

364 III DEEPEST

All arguments were quoted. We can select or subset the individual statements using
the extraction or index operators:

exprs[-1]
expression(spam, mean(x) + 2)
exprs[[3]]
mean(x) + 2

Exercise 15.1 Check the type of the object returned by a call to c(1, "two", sd, list(3,
4:5), expression(3+3)).

There is also an option to parse a given text fragment or a whole source file:

parse(text="mean(x)+2")
expression(mean(x) + 2)
parse(text=" # two code lines (comments are ignored by the parser)

x <- runif(5, -1, 1)
print(mean(x)+2)

")
expression(x <- runif(5, -1, 1), print(mean(x) + 2))
parse(text="2+") # syntax error - unfinished business
Error in parse(text = "2+"): <text>:2:0: unexpected end of input 1: 2+ ^

Important The deparse function converts language objects to character vectors, e.g.:

deparse(quote(mean(x+2)))
[1] "mean(x + 2)"

This function has the nice side effect of tidying up the code formatting:

exprs <- parse(text=
"`+`(x, 2)->y; if(y>0) print(y**10|>log()) else { y<--y; print(y)}")

Let’s print them out:

for (e in exprs)
cat(deparse(e), sep="\n")

y <- x + 2
if (y > 0) print(log(y^10)) else {
y <- -y
print(y)
}

Note Calling class on objects of the three aforementioned types yields name, call,
and expression, whereas typeof returns symbol, language, and expression, re-
spectively.

15 UNEVALUATED EXPRESSIONS (*) 365

15.3 Calls as combinations of expressions
We have mentioned that calls (compound expressions) are combinations of simple or
compound expressions of the form (𝑓 , 𝑒1, … , 𝑒𝑛). The first expression on the list, de-
noted above by 𝑓 , plays a special role.This is precisely seen in the following examples:

as.call(expression(f, x))
f(x)
as.call(expression(`+`, 1, x)) # `+`(1, x)
1 + x
as.call(expression(`while`, i < 10, i <- i + 1))
while (i < 10) i <- i + 1
as.call(expression(function(x) x**2, log(exp(1))))
(function(x) x^2)(log(exp(1)))
as.call(expression(1, x, y, z)) # utter nonsense, but syntactically valid
1(x, y, z)

Recall from Section 9.3 that operators and language constructs such as if and while
are ordinary functions. Furthermore, keyword arguments to a call result in the under-
lying sequence’s being named:

expr <- quote(f(1+2, a=1, b=2))
length(expr) # three arguments –> length-4 sequence
[1] 4
names(expr) # NULL if no arguments are named
[1] "" "" "a" "b"

15.3.1 Browsing parse trees
Square brackets give us access to the individual expressions constituting an object of
the type call. For example:

expr <- quote(1+x)
expr[[1]]
`+`
expr[c(1, 3, 2)]
x + 1
expr[c(2, 3, 1, 3)]
1(x, `+`, x)

A compound expression was defined recursively: it may consist of other compound
expressions. For instance, a statement:

expr <- quote(
while (i < 10) {

cat("i = ", i, "\n", sep="")

(continues on next page)

366 III DEEPEST

(continued from previous page)

i <- i+1
}

)

can be rewritten5 using the 𝑓 (...) notation like:

quote(
`while`(

`<`(i, 10),
`{`(cat("i = " , i, "\n", sep=""), `<-`(i, `+`(i, 1)))

)
)

We can dig into all the subexpressions using a series of extractions:

expr[[2]][[1]] # expr[[c(2, 1)]]
`<`
expr[[3]][[3]][[3]] # expr[[c(3, 3, 3)]]
i + 1
expr[[3]][[3]][[3]][[1]] # expr[[c(3, 3, 3, 1)]]
`+`

Example 15.2 We can even compose a recursive function to traverse the whole parse tree:

recapply <- function(expr)
{

if (is.call(expr)) lapply(expr, recapply)
else expr

}

str(recapply(expr))
List of 3

(continues on next page)

5 (*) Equivalently, in the fully parenthesised Polish notation (𝑓 , ...) (the prefix notation; traditionally
used in source code s-expressions in Lisp), we can express it like:

(this is not valid R syntax)
(

`while`,
(`<`, i, 10),
(

`{`,
(cat, "i = ", i, "\n", sep=""),
(

`<-`,
i,
(`+`, i, 1)

)
)

)

15 UNEVALUATED EXPRESSIONS (*) 367

(continued from previous page)

$: symbol while
$:List of 3
..$: symbol <
..$: symbol i
..$: num 10
$:List of 3
..$: symbol {
..$:List of 5
.. ..$: symbol cat
.. ..$: chr "i = "
.. ..$: symbol i
.. ..$: chr "\n"
.. ..$ sep: chr ""
..$:List of 3
.. ..$: symbol <-
.. ..$: symbol i
.. ..$:List of 3
..$: symbol +
..$: symbol i
..$: num 1

15.3.2 Manipulating calls
The R language is homoiconic: it can treat code as data. This includes the ability to ma-
nipulate it on the fly. This is because, just like on lists, we can freely use the replace-
ment versions of `[` and `[[` on objects of the type call.

expr[[2]][[1]] <- as.name("<=") # was: `<`
expr[[3]] <- quote(i <- i * 2) # was: {...}
print(expr)
while (i <= 10) i <- i * 2

Weare only limited by our imagination.We should spend some time and contemplate
how powerful this is, knowing that soon we will become able to evaluate any expres-
sion in different contexts.

15.4 Inspecting function definition and usage
15.4.1 Getting the body and formal arguments
Consider a function:

test <- function(x, y=1, z=f(x, y))
x+y+z # whatever

368 III DEEPEST

We know from the first part of this book that calling print on a function reveals its
source code. But there is more. We can fetch its formal parameters in the form of a
named list6:

formals(test)
$x
##
##
$y
[1] 1
##
$z
f(x, y)

Expressions corresponding to the default arguments are stored as ordinary list ele-
ments (for more details, see Section 17.2).

Furthermore, we can access the function’s body:

body(test)
x + y + z

It is anobject of thenowwell-knownclasscall.Thus,we can customise it asweplease:

body(test)[[1]] <- as.name("*") # change `+` to `*`
body(test) <- as.call(list(

as.name("{"), quote(cat("spam\n")), body(test)
))
print(test)
function (x, y = 1, z = f(x, y))
{
cat("spam\n")
(x + y) * z
}

15.4.2 Getting the expression passed as an actual argument
A call to substitute reveals the expression passed as a function’s argument.

test <- function(x) substitute(x)

Some examples:

test(1)
[1] 1
test(2+spam)

(continues on next page)

6 (*) Actually, a special internal datatype called pairlist, which is rarely seen at the R level; see [69] and
[66] for information on how to deal with them in C. In the current context, seeing pairlists as named lists is
perfectly fine.

15 UNEVALUATED EXPRESSIONS (*) 369

(continued from previous page)

2 + spam
test(test(test(!!7)))
test(test(!!7))
test() # it is not an error

Chapter 17 notes that arguments are evaluated only on demand (lazily): substitute
triggers no computations.This opens the possibility to author functions that interpret
their input whichever way they like; see Section 9.4.7, Section 12.3.9, and Section 17.5
for examples.

Example 15.3 library (see Section 7.3.1) specifies the name of the package to be loaded both
in the form of a character string and a name:

library("gsl") # preferred
library(gsl) # discouraged; via as.character(substitute(package))

A user saves two keystrokes at the cost of not being able to prepare the package name program-
matically before the call:

which_package <- "gsl"
library(which_package) # library("which_package")
Error in library(which_package): there is no package called
'which_package'

In order to make the above possible, we need to alter the function’s character.only argument
(which defaults to FALSE):

library(which_package, character.only=TRUE) # OK

Exercise 15.4 In many functions, we can see a call like deparse(substitute(arg)) or as.
character(substitute(arg)). Study the source code of plot.default, hist.default,
prop.test, wilcox.test.default and the aforementioned library. Explain why they do
that. Propose a solution to achieve the same functionality without using reflection techniques.

15.4.3 Checking if an argument ismissing
missing checks whether an argument was provided:

test <- function(x) missing(x)

test(1)
[1] FALSE
test()
[1] TRUE

Exercise 15.5 Study the source codeofsample,seq.default,plot.default,matplot, and
t.test.default. Determine the role of a call to missing. Would introducing a default argu-
ment NULL and testing its value with is.null constitute a reasonable alternative?

370 III DEEPEST

15.4.4 Determining how a functionwas called
Even though this somewhat touches on the topics discussed in the two coming
chapters, it is worth knowing that sys.call can look at the call stack and determine
how the current function was invoked. Moreover, match.call takes us a step further:
it returns a call with argument names matched to a function’s list of formal paramet-
ers. For instance:

test <- function(x, y, ..., a="yes", b="no")
{

print(sys.call()) # sys.call(0)
print(match.call())

}

x <- "maybe"
test("spam", "bacon", "eggs", u=("ham"<"jam"), b=x)
test("spam", "bacon", "eggs", u = ("ham" < "jam"), b = x)
test(x = "spam", y = "bacon", "eggs", u = ("ham" < "jam"), b = x)

In both cases, the results are objects of the type call. We know how to manipulate
them already.

Another example where we see that we can dig into the call stack muchmore deeply:

f <- function(x)
{

g <- function(y)
{

cat("g:\n")
print(sys.call(0))
print(sys.call(-1)) # go back one frame
y

}

cat("f:\n")
print(sys.call(0))
g(x+1)

}

f(1)
f:
f(1)
g:
g(x + 1)
f(1)
[1] 2

Note Matching function parameters to the passed arguments is done in the following
order (see Section 4.3 of [70]):

15 UNEVALUATED EXPRESSIONS (*) 371

1. First, keyword argumentswithnames arematched exactly. Eachname ismatched
at most once.

2. Then, we take the remaining keyword arguments, but with the partial matching
of names listed before the ellipsis, `...`. Eachmatch must be unambiguous.

3. Third, we apply the positional matching to the remaining parameters.

4. Last, the ellipsis (if present) consumes all the remaining arguments (named or
not).

For instance:

test <- function(spam, jasmine, jam, ..., option=NULL)
print(match.call())

Example calls:

test(1, 2, 3, 4, option="yes")
test(spam = 1, jasmine = 2, jam = 3, 4, option = "yes")
test(1, 2, jasmine="no", sp=4, ham=7)
Warning in test(1, 2, jasmine = "no", sp = 4, ham = 7): partial argument
match of 'sp' to 'spam'
Warning in match.call(definition, call, expand.dots, envir): partial
argument match of 'sp' to 'spam'
test(spam = 4, jasmine = "no", jam = 1, 2, ham = 7)
test(1, 2, ja=7) # ambiguous match
Warning in test(1, 2, ja = 7): partial argument match of 'ja' to 'jasmine'
Error in test(1, 2, ja = 7): argument 3 matches multiple formal arguments
test(o=7) # partial matching of `option` failed - `option` is after `...`
test(o = 7)

Note again that our environment uses options(warnPartialMatchArgs=TRUE).

Exercise 15.6 A function can7 see how it was defined by its maker. Call sys.function inside
its body to reveal that.

Exercise 15.7 Execute match.call(sys.function(-1), sys.call(-1)) in the above g
function.

15.5 Exercises
Exercise 15.8 Answer the following questions.

• What is a simple expression?What is a compound expression? Give a few examples.

• What is the difference between an object of the type call and that of the type expression?

7Therefore, it is possible to have a function that returns a modified version of itself.

372 III DEEPEST

• What do formals and body return when called on a function object?

• How to test if an argument to a function was given? Provide a use case for such a verification
step.

• Give a fewways to create an unevaluated call.

• What is the purpose of deparse(substitute(...))? Give a few examples of functions
that use this technique.

• What is the difference between sys.call and match.call?

• Why cannot we rely on partial matching in the call boxplot(x, horiz=TRUE) and have
to write the full argument name like boxplot(x, horizontal=TRUE) instead?

Exercise 15.9 Write a function that takes the dot-dot-dot argument. Using match.call
(amongst others), determine the list of all the expressions passed via `...`. Allow some of them
to be named (just like in one of the preceding examples).The solutionwill be given in Section 17.3.

Exercise 15.10 Write a function check_if_calls(f, fun_list) that takes another func-
tion f as input. Then, it verifies if f calls any of the functions (referred to by their names) from a
character vector fun_list.

16
Environments and evaluation (*)

In the first part of our book, we discussed themost crucial basic object types: numeric,
logical, and character vectors, lists (generic vectors), and functions. In this chapter,we
introduceanotherbasic type: environments. Like lists, they canbe classifiedas recursive
data structures; compare the diagram in Figure 17.2.

Important Each object of the type environment consists of:

• a frame1 (Section 16.1), which stores a set of bindings that associate variable names
with their corresponding values; it can be thought of as a container of named R
objects of any type;

• a reference to an enclosing environment2 (Section 16.2.2), whichmight be inspected
(recursively!) when a requested named variable is not found in the current frame.

Even though we rarely interact with them directly (unless we need a hash table-like
data structure with a quick by-name element lookup), they are crucial for the R in-
terpreter itself. Namely, we shall soon see that they form the basis of the environment
model of evaluation, which governs how expressions are computed (Section 16.2).

16.1 Frames: Environments as object containers
To create a new, empty environment, we can call the new.env function:

e1 <- new.env()
typeof(e1)
[1] "environment"

In this section, we treat environments merely as containers for named objects of any
kind, i.e., we deal with the frame part thereof.

Let’s insert a few elements into e1:

1 Not to be confused with a data frame, i.e., an object (list) of the S3 class data.frame; see Chapter 12.
2 Some also call it a parent environment, but we will not. We will try to follow the nomenclature estab-

lished in Section 3.2 of [1].Note that there is a bit of amess in theRdocumentation regarding howenclosing
environments are referred to.

374 III DEEPEST

e1[["x"]] <- "x in e1"
e1[["y"]] <- 1:3
e1[["z"]] <- NULL # unlike in the case of lists, creates a new element

The `[[` operator provides us with a named list-like behaviour also in the case of ele-
ment extraction:

e1[["x"]]
[1] "x in e1"
e1[["spam"]] # does not exist
NULL
(e1[["y"]] <- e1[["y"]]*10) # replace with new content
[1] 10 20 30

16.1.1 Printing
Printing an environment leads to an uncanny result:

print(e1) # same with str(e1)
<environment: 0x55a8fb24d068>

It is the address where e1 is stored in the computer’s memory. It can serve as the en-
vironment’s unique identifier. As we have said, environments are of rather internal
interest. Thus, such an esoteric message was perhaps a good design choice; it wards
off novices. However, we can easily get the list of objects stored inside the container
by calling names:

names(e1) # but attr(e1, "names") is not set
[1] "x" "y" "z"

Moreover, length gives the number of bindings in the frame:

length(e1)
[1] 3

16.1.2 Environments vs named lists
Environment frames, in some sense, canbe thought of asnamed lists, but the set of ad-
missible operations is severely restricted. In particular, we cannot extract more than
one element at the same time using the index operator:

e1[c("x", "y")] # but see the `mget` function
Error in e1[c("x", "y")]: object of type 'environment' is not subsettable

nor can we refer to the elements by position:

e1[[1]] <- "bad key"
Error in e1[[1]] <- "bad key": wrong args for environment subassignment

16 ENVIRONMENTS AND EVALUATION (*) 375

Exercise 16.1 Check if lapply and Map can be applied directly on environments. Also, can we
iterate over their elements using a for loop?

Still, named lists can be converted to environments and vice versa using as.list and
as.environment.

as.list(e1)
$x
[1] "x in e1"
##
$y
[1] 10 20 30
##
$z
NULL
as.environment(list(u=42, whatever="it's not going to be printed anyway"))
<environment: 0x55a8fb71f620>
as.list(as.environment(list(x=1, y=2, x=3))) # no duplicates allowed
$y
[1] 2
##
$x
[1] 3

16.1.3 Hashmaps: Fast element lookup by name
Environment frames are internally implemented using hash tables (hash maps; see,
e.g., [15, 42]) with character string keys.

Important A hash table is a data structure that implements a very quick lookup, inser-
tion and deletion of individual elements by name (in amortised𝑂(1) time).

This comes at a price, including what we have already observed before:

• the elements are not ordered in any particular way: they cannot be referred to via
a numeric index;

• all element names must be unique.

Note A listmaybeconsidereda sequence, but anenvironment frame isonly, in fact, a set
(a bag) of key-value pairs. In most numerical computing applications, we would rather
store, iterate over, andprocess all the elements in order, hence the greater prevalence of

376 III DEEPEST

the former. Lists still implement the element lookupbyname, even though it is slightly
slower3. However, they are muchmore universal.

Example 16.2 Anatural use case ofmanually-created environment framesdealswithgrouping
a series of objects identified by character string keys. Consider a simple pseudocode for counting
the number of occurrences of objects in a given container:

for (key in some_container) {
if (!is.null(counter[["key"]]))

counter[["key"]] <- counter[["key"]]+1
else

counter[["key"]] <- 1
}

Assume thatsome_container is large, e.g., it is generated on the fly by readingadata streamof
size𝑛.The runtime of the above algorithmwill depend on the data structure used. If thecounter
is a list, then, theoretically, theworst-case performancewill be𝑂(𝑛2) (if all keys are unique).On
the other hand, for environments, it will be faster by one order of magnitude: down to amortised
𝑂(𝑛).
Exercise 16.3 Implement a test function according to the above pseudocode and benchmark the
two data structures using proc.time on example data.

Exercise 16.4 (*) Determine the number of unique text lines in a huge file (assuming that the
set of unique text lines fits into memory, but the file itself does not). Also, determine the five most
frequently occurring text lines.

16.1.4 Call by value, copy on demand: Not for environments
Given any object x, when we issue:

y <- x

its copy4 is made so that y and x are independent. In other words, any change to the
state of x (or y) is not reflected in y (or x). For instance:

x <- list(a=1)
y <- x
y[["a"]] <- y[["a"]]+1
print(y)
$a
[1] 2
print(x) # not affected: `x` and `y` are independent

(continues on next page)

3 Accessing elements by position (numeric index) in lists takes𝑂(1) time. The worst-case runtime for
the element lookup by name is linear with respect to the container size (when the item is not found). Also,
inserting new elements at the end takes amortised𝑂(1) time.

4 Delayed (on demand); see below.

16 ENVIRONMENTS AND EVALUATION (*) 377

(continued from previous page)

$a
[1] 1

The same happens with arguments that we pass to the functions:

mod <- function(y, key) # it is like: local_y <- passed_argument
{

y[[key]] <- y[[key]]+1
y

}

mod(x, "a")[["a"]] # returns a modified copy of `x`
[1] 2
x[["a"]] # not affected
[1] 1

We can thus say that R imitates the pass-by-value strategy here.

Important Environments are the only5 objects that follow the assign- and pass-by-
reference strategies.

In other words, if we perform:

x <- as.environment(x)
y <- x

then the names x and y are bound to the same object in the computer’s memory:

print(x)
<environment: 0x55a8fb2aea70>
print(y)
<environment: 0x55a8fb2aea70>

Therefore:

y[["a"]] <- y[["a"]]+1
print(y[["a"]])
[1] 2
print(x[["a"]]) # `x` is `y`, `y` is `x`
[1] 2

The same happens when we pass an environment to a function:

5We do not count all the tricks we can do at the C language level (Chapter 14). In R, the distinction
between pass-by-value and pass-by-reference is slightlymore complicated because of the lazy evaluation of
arguments (the call-by-need strategy; Chapter 17). We have made an idealisation for didactic purposes.

378 III DEEPEST

mod(y, "a")[["a"]] # pass-by-reference (`y` is `x`, remember?)
[1] 3
x[["a"]] # `x` has changed
[1] 3

Thus, any changes we make to an environment passed as an argument to a function
will be visible outside the call. This minimises time and memory use in certain situ-
ations.

Note (*) For efficiency reasons, when we write “y <- x” , a copy of x (unless it is an
environment) is created only if it is absolutely necessary.

Here is some benchmarking of the copy-on-demandmechanism.

n <- 100000000 # like, a lot

Creation of a new large numeric vector:

t0 <- proc.time(); x <- numeric(n); proc.time() - t0
user system elapsed
0.853 1.993 2.852

Creation of a (delayed) copy is instant:

t0 <- proc.time(); y <- x; proc.time() - t0
user system elapsed
0 0 0

We definitely did not duplicate the n data cells.

Copy-on-demand is implemented using some simple reference counting; compare Sec-
tion 14.2.4.Wecan inspect thatx andypoint to the sameaddress inmemoryby calling:

.Internal(inspect(x)) # internal function - do not use it
@7efba1134010 14 REALSXP g0c7 [REF(2)] (len=1000000000, tl=0) 0,0,0,0,...
.Internal(inspect(y))
@7efba1134010 14 REALSXP g0c7 [REF(2)] (len=1000000000, tl=0) 0,0,0,0,...

The actual copying is only triggered when we try to modify x or y. This is when they
need to be separated.

t0 <- proc.time(); y[1] <- 1; proc.time() - t0
user system elapsed
1.227 1.910 3.142

Now x and y are different objects.

.Internal(inspect(x))
@7efba1134010 14 REALSXP g0c7 [MARK,REF(1)] (len=1000000000, tl=0) 0,0,...

(continues on next page)

16 ENVIRONMENTS AND EVALUATION (*) 379

(continued from previous page)

.Internal(inspect(y))
@7ef9c43ce010 14 REALSXP g0c7 [MARK,REF(1)] (len=1000000000, tl=0) 1,0,...

The elapsed time is similar to that needed to create x from scratch. Further modifica-
tions will already be quick:

t0 <- proc.time(); y[2] <- 2; proc.time() - t0
user system elapsed
0.000 0.001 0.000

16.1.5 A note on reference classes (**)
In Section 10.5, we briefly mentioned the S4 system for object-orientated program-
ming. We also have access to its variant, called reference classes6, which was first intro-
duced in R version 2.12.0. Reference classes are implemented using S4 classes, with
the data part being of the type environment.They give amore typical OOP experience,
where methods canmodify the data they act on in place.

Reference classes are a theoretically interesting concept on its own and may be quite
appealing to package developers with C++ or Java background. Nevertheless, in the
current author’s opinion, such classes are alien citizens of our environment, violating
its functionalnature.Therefore,wewill not bediscussing themhere.A curious reader is
referred to help("ReferenceClasses") and Chapters 9 and 11 of [12] formore details.

16.2 The environmentmodel of evaluation
In Chapter 15, we said that there are three types of expressions: constants (e.g., 1 and
"spam"), names (e.g., x, `+`, and spam), and calls (like f(x, 1)).

Important Names (symbols) have nomeaning by themselves.Themeaning of a name
always depends on the context, which is specified by an environment.

Consider a simple expression that merely consists of the name x:

expr_x <- quote(x)

Let’s define two environments that bind the name x to two different constants.

6 Some call them R5, but we will not.

380 III DEEPEST

e1 <- as.environment(list(x=1))
e2 <- as.environment(list(x="spam"))

Important An expression is evaluated within a specific environment.

Let’s call eval on the above.

eval(expr_x, envir=e1) # evaluate `x` within environment e1
[1] 1
eval(expr_x, envir=e2) # evaluate the same `x` within environment e2
[1] "spam"

The very same expression has two different meanings, depending on the context. This
is quite like in the so-called real life: “I’m good” can mean “I don’t need anything” but
also “My virtues are plentiful”. It all depends onwho andwhen is asking, i.e., inwhich
environment we evaluate the said sentence.

We call this the environment model of evaluation, a notion that R authors have borrowed
from a Lisp-like language called Scheme7 (see Section 3.2 of [1] and Section 6 of [70]).

16.2.1 Getting the current environment
By default, expressions are evaluated in the current environment, which can fetch by
calling:

sys.frame(sys.nframe()) # get the current environment
<environment: R_GlobalEnv>

We are working on the R console. Hence, the current one is the global environment (user
workspace). We can access it from anywhere by calling globalenv or referring to the
`.GlobalEnv` object.

Example 16.5 Calling any operation, for instance8:

x <- "spammity spam"

means evaluating itwithin the current environment:

eval(quote(x <- "spammity spam"), envir=sys.frame(sys.nframe()))

Here, we bound the name x to the string "spammity spam" in the current environment’s frame:
7That iswhyeveryone seriousaboutRprogrammingshouldadd theStructureandInterpretationofComputer

Programs [1] to their reading list. Also, R is not the only known marriage between statistics and Lisp-like
languages; see also LISP-STAT [55].

8 For now, let’s take for granted that `<-` is accessible from the current context and denotes the assign-
ment.

16 ENVIRONMENTS AND EVALUATION (*) 381

sys.frame(sys.nframe())[["x"]] # yes, `x` is in the current environment now
[1] "spammity spam"
globalenv()[["x"]] # because the global environment is the current one here
[1] "spammity spam"

Therefore, when we now refer to x (fromwithin the current environment):

x # eval(quote(x), envir=sys.frame(sys.nframe()))
[1] "spammity spam"

precisely the foregoing named object is fetched.

Exercise 16.6 save.image saves the current workspace, i.e., the global environment, by de-
fault, to the file named .Rdata. Test this function in combination with load.

Note Names startingwith adot are hidden. ls, a function to fetch all names registered
within a given environment, does not list them by default.

.test <- "spam"
ls() # list all names in the current environment, i.e., the global one
[1] "e1" "e2" "expr_x" "mod" "x" "y"

Compare it with:

ls(all.names=TRUE)
[1] ".Random.seed" ".test" "e1" "e2"
[5] "expr_x" "mod" "x" "y"

Onasidenote, `.Random.seed` stores the currentpseudorandomnumbergenerator’s
seed; compare Section 2.1.5.

16.2.2 Enclosures, enclosures thereof, etc.
To show that there is much more to the environment model of evaluation than what
we have already mentioned, let’s try to evaluate an expression featuring two names:

e2 <- as.environment(list(x="spam")) # once again (a reminder)
expr_comp <- quote(x < "eggs")
eval(expr_comp, envir=e2) # "spam" < "eggs"
Error in x < "eggs": could not find function "<"

Themeaning of any constant (here, "spam") is context-independent.The environment
provided specifies the name x but does not define `<`. Hence the error. Nonetheless,
we feel thatweknow themeaningof `<`. It is a relational operator, obviously, isn’t it? To
increase the confusion, let’s highlight that our experience-grounded intuition is true
in the following context:

382 III DEEPEST

e3 <- new.env()
e3[["x"]] <- "bacon"
eval(expr_comp, envir=e3) # "bacon" < "eggs"
[1] TRUE

So where does the name `<` come from? It is neither included in e2 nor e3:

e2[["<"]]
NULL
e3[["<"]]
NULL

Is `<` hardcoded somewhere? Or is it also dependent on the context? Why is it visible
when evaluating an expression within e3 but not in e2?

Studying help("[[") (see the Environments section), we discover that e3[["<"]] is
equivalent to a call to get("<", envir=e3, inherits=FALSE). In help("get"), we
read that if the inherits argument is set to TRUE (which is the default in get), then
the enclosing frames of the given environment are searched as well. Continuing the example
from the previous subsection:

get("<", envir=e2) # inherits=TRUE
Error in get("<", envir = e2): object '<' not found
get("<", envir=e3) # inherits=TRUE
function (e1, e2) .Primitive("<")

Indeed, we see that `<` is reachable from e3 but not from e2. It means that e3 points
to another environment where further information should be sought if the current
container is left empty-handed.

Important Thereference (pointer) to the enclosing environment is integral to each envir-
onment (alongside a frame of objects). It can be fetched and set using the parent.env
function.

16.2.3 Missing names are sought in enclosing environments
To understand the idea of enclosing environments better, let’s create two new envir-
onments whose enclosures are explicitly set as follows:

(e4 <- new.env(parent=e3))
<environment: 0x55a8fbd4a268>
(e5 <- new.env(parent=e4))
<environment: 0x55a8fbd871b8>

To verify that everything is in order, we can inspect the following:

16 ENVIRONMENTS AND EVALUATION (*) 383

print(e3) # this is the address of e3
<environment: 0x55a8faf044a0>
parent.env(e4) # e3 is the enclosing environment of e4
<environment: 0x55a8faf044a0>
parent.env(e5) # e4 is the enclosing environment of e5
<environment: 0x55a8fbd4a268>

Also, let’s bind two different objects to the name y in e5 and e3.

e5[["y"]] <- "spam"
e3[["y"]] <- function() "a function `y` in e3"

The current state of matters is depicted in Figure 16.1.

e5

y = "spam"

e4

e3

x = "bacon"
y = function...

???

Figure 16.1. Example environments and their enclosures (original setting).

Let’s evaluate the name y in the foregoing environments:

expr_y <- quote(y)
eval(expr_y, envir=e3)
function ()
"a function `y` in e3"
eval(expr_y, envir=e5)
[1] "spam"

No surprises, yet. However, evaluating it in e4, which does not define y, yields:

eval(expr_y, envir=e4)
function ()
"a function `y` in e3"

It returned y from e4’s enclosure, e3. Let’s play aboutwith the enclosures of e5 and e4
so that we obtain the setting depicted in Figure 16.2:

parent.env(e5) <- e3
parent.env(e4) <- e5

Evaluating y again in the same e4 nourishes a very different result:

eval(expr_y, envir=e4)
[1] "spam"

384 III DEEPEST

e5

y = "spam"

e4

e3

x = "bacon"
y = function...

???

Figure 16.2. Example environments and their enclosures (after the change made).

Important Names referred to in an expression but missing in the current environ-
ment will be sought in their enclosure(s) until successful.

Note Here are the functions related to searchingwithin andmodifying environments
that optionally allow for continuing explorations in their enclosures:

• inherits=TRUE by default: exists, get,

• inherits=FALSE by default: assign, * rm (remove).

16.2.4 Looking for functions
Interestingly, if a name is used instead of a function to be called, the object sought is
always9 of the mode function. Consider an expression similar to the above, but this
time including the name y playing a different role:

expr_y2 <- quote(y()) # a call to something named `y`
eval(expr_y2, envir=e4)
[1] "a function `y` in e3"

In other words, what we used here was not:

get("y", envir=e4)
[1] "spam"

but:

get("y", envir=e4, mode="function")
function ()
"a function `y` in e3"

9This is why we can write “c <- c(1, 2)” and then still be able to call c to create another vector.

16 ENVIRONMENTS AND EVALUATION (*) 385

Note name(),"name"(), and `name`() are synonymous.However, thefirst expression
is acceptable only if name is syntactically valid.

16.2.5 Inspecting the search path
Going back to our expression involving a relational operator:

expr_comp
x < "eggs"

Why does the following work as expected?

eval(expr_comp, envir=e3) # "bacon" < "eggs"
[1] TRUE

Well, we have gathered all the bits to understand it now.Namely, `<` is a function that
is looked up like:

get("<", envir=e3, inherits=TRUE, mode="function")
function (e1, e2) .Primitive("<")

It is reachable from e3, which means that e3 also has an enclosing environment.

parent.env(e3)
<environment: R_GlobalEnv>

This is our global namespace, which was the current environment when e3 was cre-
ated. Still, we did not define `<` there. It means that the global environment also has
an enclosure.

We can explore the whole search path by starting at the global environment and follow-
ing the enclosures recursively.

ecur <- globalenv() # starting point
repeat {

cat(paste0(format(ecur), " (", attr(ecur, "name"), ")")) # pretty-print

if (exists("<", envir=ecur, inherits=FALSE)) # look for `<`
cat(strrep(" ", 25), "`<` found here!")

cat("\n")

ecur <- parent.env(ecur) # advance to its enclosure
}
<environment: R_GlobalEnv> ()
<environment: 0x55a8fb4ce798> (.marekstuff)
<environment: package:stats> (package:stats)
<environment: package:graphics> (package:graphics)

(continues on next page)

386 III DEEPEST

(continued from previous page)

<environment: package:grDevices> (package:grDevices)
<environment: package:utils> (package:utils)
<environment: package:datasets> (package:datasets)
<environment: package:methods> (package:methods)
<environment: 0x55a8f92f3658> (Autoloads)
<environment: base> () `<` found here!
<environment: R_EmptyEnv> ()
Error in parent.env(ecur): the empty environment has no parent

Underneath the global environment, there is a whole list of attached packages:

1. packages attached by the user (.marekstuff is used internally in the process of
evaluating code in this book),

2. default packages (Section 7.3.1),

3. (**)Autoloads (for thepromises-to-loadRpackages; comparehelp("autoload");
it is a technicality wemay safely ignore here),

4. the basepackage,whichwe can access directly by calling baseenv; it iswheremost
of the fundamental functions from the previous chapters reside,

5. the empty environment (emptyenv), which is the only one followed by nil (the loop
would turn out endless otherwise).

It comes at no surprise that the `<` operator has been found in the base package.

Note On a side note, the reason why this operation failed:

e2 <- as.environment(list(x="spam")) # to recall
eval(expr_comp, envir=e2)
Error in x < "eggs": could not find function "<"

is because as.environment sets the enclosing environment to:

parent.env(e2)
<environment: R_EmptyEnv>

See also list2envwhich gives greater control over this (cf. its parent argument).

16.2.6 Attaching to and detaching from the search path
In Section 7.3.1, we mentioned that we can access the objects exported by a package
without attaching them to the search path by using the pkg::object syntax, which
loads the package if necessary. For instance:

tools::toTitleCase("`tools` not attached to the search path")
[1] "`tools` not Attached to the Search Path"

16 ENVIRONMENTS AND EVALUATION (*) 387

However:

toTitleCase("nope")
Error in toTitleCase("nope"): could not find function "toTitleCase"

It did not work because toTitleCase is not reachable from the current environment.

Let’s inspect the current search path:

search()
[1] ".GlobalEnv" ".marekstuff" "package:stats"
[4] "package:graphics" "package:grDevices" "package:utils"
[7] "package:datasets" "package:methods" "Autoloads"
[10] "package:base"

Some might find writing “pkg::” inconvenient. Thus, we can call library to attach
the package to the search path immediately below the global environment.

library("tools")

The search path becomes (see Figure 16.3 for an illustration):

search()
[1] ".GlobalEnv" "package:tools" ".marekstuff"
[4] "package:stats" "package:graphics" "package:grDevices"
[7] "package:utils" "package:datasets" "package:methods"
[10] "Autoloads" "package:base"

Therefore, what follows, now works as expected:

toTitleCase("Nobody expects the Spanish Inquisition")
[1] "Nobody Expects the Spanish Inquisition"

We can use detach10 to remove an item from the search path.

head(search()) # before detach
[1] ".GlobalEnv" "package:tools" ".marekstuff"
[4] "package:stats" "package:graphics" "package:grDevices"
detach("package:tools")
head(search()) # not there anymore
[1] ".GlobalEnv" ".marekstuff" "package:stats"
[4] "package:graphics" "package:grDevices" "package:utils"

Note We can also plug arbitrary environments11 and named lists into the search path.

10Which does not unload the package from memory, though; see unload (possibly combined with
library.dynam.unload).

11 Or we should rather say, environment frames. When an environment is attached to the search path,
it is duplicated so that the changes made to the original environment are not reflected in the copy. Then,
its previous enclosure is discarded. After all, we want a series of recursive calls to parent.env to form the
whole search path.

388 III DEEPEST

packages attached by the user

default packages

package:tools

...

.marekstu�f

...

package:stats

...

package:graphics

...

package:grDevices

...

package:utils

...

package:datasets

...

package:methods

...

global

...

Autoloads

...

package:base

...

Figure 16.3.The search path after attaching the tools package.

Recalling that data frames are built on the latter (Section 12.1.6), some users rely on
this technique save a few keystrokes.

attach(iris)
head(search(), 3)
[1] ".GlobalEnv" "iris" ".marekstuff"

The iris list was converted to an environment, and the necessary enclosures were set
accordingly:

str(parent.env(globalenv()))
<environment: 0x55a8fafa2330>
- attr(*, "name")= chr "iris"
str(parent.env(parent.env(globalenv())))

(continues on next page)

16 ENVIRONMENTS AND EVALUATION (*) 389

(continued from previous page)

<environment: 0x55a8fb4ce798>
- attr(*, "name")= chr ".marekstuff"

We can nowwrite:

head(Petal.Width/Sepal.Width) # iris[["Petal.Width"]]/iris[["Sepal.Width"]]
[1] 0.057143 0.066667 0.062500 0.064516 0.055556 0.102564

Overall, attaching data frames is discouraged, especially outside the interactivemode.
Let’s not be too lazy.

detach(iris) # such a relief

16.2.7 Masking (shadowing) objects fromdown under
Anassignment via `<-` creates a binding in the current environment.Therefore, even if
thename tobind exists somewhere on the searchpath, itwill not bemodified. Instead,
a new name will be created.

eval(quote("spam" < "eggs"))
[1] FALSE

Here,we rely on `<` from the base environment.Withal, we can create an object of the
same name in the current (global) context:

`<` <- function(e1, e2)
{

warning("This is not the base `<`, mate.")
NA

}

Nowwe have two different functions of the same name.When we evaluate an expres-
sion within the current environment or any of its descendants, the new name shadows
the base one:

"spam" < "eggs" # evaluate in the global environment
Warning in "spam" < "eggs": This is not the base `<`, mate.
[1] NA
eval(quote("spam" < "eggs"), envir=e5) # its enclosure's enclosure is global
Warning in "spam" < "eggs": This is not the base `<`, mate.
[1] NA

But we can still call the original function directly:

base::`<`("spam", "eggs")
[1] FALSE

390 III DEEPEST

It is also reachable fromwithin the current environment’s ancestors:

eval(quote("spam" < "eggs"), envir=parent.env(globalenv()))
[1] FALSE

Before proceeding any further, we should clean up after ourselves. Otherwise, we will
be asking for trouble.

rm("<") # removes `<` from the global environment

An attached package may introduce some object names that are also available else-
where. For instance:

library("stringx")
Attaching package: 'stringx'
The following objects are masked from 'package:base': casefold, chartr,
endsWith, gregexec, gregexpr, grep, grepl, gsub, ISOdate, ISOdatetime,
nchar, nzchar, paste, paste0, regexec, regexpr, sprintf, startsWith,
strftime, strptime, strrep, strsplit, strtrim, strwrap, sub, substr,
substr<-, substring, substring<-, Sys.time, tolower, toupper, trimws,
xtfrm, xtfrm.default

Therefore, in the current context, we have what follows:

toupper("Groß") # stringx::toupper
[1] "GROSS"
base::toupper("Groß")
[1] "GROß"

Sometimes12, we can use assign(..., inherits=TRUE) or its synonym, `<<-`, to
modify the existing binding. A new binding is only created if necessary.

Note Let’s attach the iris data frame (named list) to the search path again:

attach(iris)
Sepal.Length[1] <- 0

We did not modify the original iris nor its converted-to-an-environment copy that
we can find in the search path. Instead, a new vector named Sepal.Length was cre-
ated in the current environment:

12We normally cannot modify package namespaces. As we will mention in Section 16.3.5, they are auto-
matically locked.

16 ENVIRONMENTS AND EVALUATION (*) 391

exists("Sepal.Length", envir=globalenv(), inherits=FALSE) # it is in global
[1] TRUE
Sepal.Length[1] # global
[1] 0

We can verify the preceding statement as follows:

rm("Sepal.Length") # removes the one in the global environment
Sepal.Length[1] # `iris` from the search path
[1] 5.1
iris[["Sepal.Length"]][1] # the original `iris`
[1] 5.1

However, we can write:

Sepal.Length[1] <<- 0 # uses assign(..., inherits=TRUE)

We changed the state of the environment on the search path.

exists("Sepal.Length", envir=globalenv(), inherits=FALSE) # not in global
[1] FALSE
Sepal.Length[1] # `iris` from the search path
[1] 0

Yet, the original iris object is left untouched. There is no mechanism in place that
would synchronise the original data frame and its independent copy on the search path.

iris[["Sepal.Length"]][1] # the original `iris`
[1] 5.1

It is best to avoid attach to avoid confusion.

16.3 Closures
So far, we have only covered the rules of evaluating standalone R expressions. In this
section, we look at what happens inside the invoked functions.

16.3.1 Local environment
When we call a function, a new temporary environment is created. It is where all ar-
gument values13 and local variables are emplaced.This environment is the current one
while the function is being evaluated. After the call, it ceases to exist, andwe return to
the previous environment from the call stack.

13 Function arguments are initially unevaluated; see Chapter 17.

392 III DEEPEST

Consider the following function:

test <- function(x)
{

print(ls()) # list object names in the current environment
y <- x^2 # creates a new variable
print(sys.frame(sys.nframe())) # get the ID of the current environment
str(as.list(sys.frame(sys.nframe()))) # display its contents

}

First call:

test(2)
[1] "x"
<environment: 0x55a8fade3d98>
List of 2
$ y: num 4
$ x: num 2

Second call:

test(3)
[1] "x"
<environment: 0x55a8fb195678>
List of 2
$ y: num 9
$ x: num 3

Each time, the current environment is different.This is whywe do not see the variable
y at the start of the second call. It is a brilliantly simple implementation of the storage
for local variables.

16.3.2 Lexical scope and function closures
Wewere able to access the print function (amongst others) in the preceding example.
This should make us wonder what the enclosing environment of that local environ-
ment is.

print_enclosure <- function()
print(parent.env(sys.frame(sys.nframe())))

print_enclosure()
<environment: R_GlobalEnv>

It is the global environment. Let’s invoke the same function from another one:

call_print_enclosure <- function()
print_enclosure()

(continues on next page)

16 ENVIRONMENTS AND EVALUATION (*) 393

(continued from previous page)

call_print_enclosure()
<environment: R_GlobalEnv>

It is the global environment again. If R used the so-called dynamic scoping, we would
see the local environment of the function that invoked the one above. If this was true,
we would have access to the caller’s local variables from within the callee. But this is
not the case.

Important Objects of the typeclosure, i.e., user-defined14 functions, consist of three
components:

• a list of formal arguments (compare formals in Section 15.4.1);

• an expression (see body in Section 15.4.1);

• a reference to the associated environment where the function might store data for
further use (see environment).

By default, the associated environment is set to the current environment where the
function was created.

A local environment created during a function’s call has this associated environment
as its closure.

Due to this, we say that R has lexical (static) scope.

Thence, in the foregoing example, we have:

environment(print_enclosure) # print the associated environment
<environment: R_GlobalEnv>

Example 16.7 Consider a function that prints out x defined outside of its scope:

test <- function() print(x)

Now:

x <- "x in global"
test()
[1] "x in global"

It printed out x from the user workspace as it is precisely the environment associated with the
function.However, setting the associated environment to another one that also happens to define
xwill give a different result:

14There are twoother types of functions: aspecial is an internal function that doesnot necessarily evalu-
ate its arguments (e.g., switch, if, or quote; compare also Chapter 17), whereas a builtin always evaluates
its actual parameters, e.g., sum.

394 III DEEPEST

environment(test) <- e3 # defined some time ago
test()
[1] "bacon"

Example 16.8 Consider the following:

test <- function()
{

cat(sprintf("test: current env: %s\n", format(sys.frame(sys.nframe()))))

subtest <- function()
{

e <- sys.frame(sys.nframe())
cat(sprintf("subtest: enclosing env: %s\n", format(parent.env(e))))
cat(sprintf("x = %s\n", x))

}

x <- "spam"
subtest()
environment(subtest) <- globalenv()
subtest()

}

x <- "bacon"
test()
test: current env: <environment: 0x55a8faf416a0>
subtest: enclosing env: <environment: 0x55a8faf416a0>
x = spam
subtest: enclosing env: <environment: R_GlobalEnv>
x = bacon

Here is what happened.

1. A call to test creates a local function subtest, whose associated environment is set to the
local frame of the current call. It is precisely the current environment where subtest was
created (because R has lexical scope).

2. The above explains why subtest can access the local variable x inside its maker.

3. Thenwe change the environment associated with subtest to the global one.

4. In the next call to subtest, unsurprisingly, we gain access to x in the user workspace.

Note In lexical (static) scoping,which variables a function refers to can be deduced by
reading the function’s body only and not how it is called in other contexts. This is the
theory. Nevertheless, the fact that we can freely modify the associated environment
anywhere can complicate the program analysis greatly.

If we find the rules of lexical scoping complicated, we should refrain from referring to
objects outside of the current scope (“global” or “non-local” variables”) except for the

16 ENVIRONMENTS AND EVALUATION (*) 395

functions defined as top-level ones or imported from external packages. It is what we
have been doing most of the time anyway.

16.3.3 Application: Function factories
As closures are functionswith associated environments, and the role of environments
is to store information, we can consider closures = functions + data. We have already
seen that in Section 9.4.3, where wementioned approxfun. To recall:

x <- seq(0, 1, length.out=11)
f1 <- approxfun(x, x^2)
print(f1)
function (v)
.approxfun(x, y, v, method, yleft, yright, f, na.rm)
<environment: 0x55a8fb45ecd0>

The variables x, y, etc., that f1’s source code refers to, are stored in its associated en-
vironment:

ls(envir=environment(f1))
[1] "f" "method" "na.rm" "x" "y" "yleft" "yright"

Important Routines that return functions whose non-local variables are memorised
in their associated environments are referred to as function factories.

Example 16.9 Consider a function factory:

gen_power <- function(p)
function(x) x^p # p references a non-local variable

A call to gen_power creates a local environment that defines one variable, p, where the argu-
ment’s value is stored.Then, we create a function whose associated environment (remember that
R uses lexical scoping) is that local one. It is where the reference to the non-local p in its bodywill
be resolved.This new function is returned by gen_power to the caller. Normally, the local envir-
onment would be destroyed, but it is still used after the call.Thus, it will not be garbage-collected.

Example calls:

(square <- gen_power(2))
function (x)
x^p
<environment: 0x55a8f9484640>
(cube <- gen_power(3))
function (x)
x^p
<environment: 0x55a8f9e6ce30>

(continues on next page)

396 III DEEPEST

(continued from previous page)

square(2)
[1] 4
cube(2)
[1] 8

The underlying environment can, of course, be modified:

assign("p", 7, envir=environment(cube))
cube(2) # so much for the cube
[1] 128

Example 16.10 Negate is another example of a function factory.The function it returns stores
f passed as an argument.

notall <- Negate(all)
notall(c(TRUE, TRUE, FALSE))
[1] TRUE

Study its source code:

print(Negate)
function (f)
{
f <- match.fun(f)
function(...) !f(...)
}
<environment: namespace:base>

Example 16.11 In [38], the following example is given:

account <- function(total)
list(

balance = function() total,
deposit = function(amount) total <<- total+amount,
withdraw = function(amount) total <<- total-amount

)

Robert <- account(1000)
Ross <- account(500)
Robert$deposit(100)
Ross$withdraw(150)
Robert$balance()
[1] 1100
Ross$balance()
[1] 350

We can now fully understand why this code does what it does. The return list consists of three
functionswhose enclosing environment is the same.account somewhat resembles the definition

16 ENVIRONMENTS AND EVALUATION (*) 397

of a class with threemethods and one data field.Nowonderwhy reference classes (Section 16.1.5)
were introduced at some point: they are based on the same concept.

Exercise 16.12 Write a function factory named gen_counter which implements a simple
counter that is increased by one on each call thereto.

gen_counter <- function() ...to.do...
c1 <- gen_counter()
c2 <- gen_counter()
c(c1(), c1(), c2(), c1(), c2())
[1] 1 2 1 3 2

Moreover, compose a function that resets a given counter to zero.

reset_counter <- function(counter_fun) ...to.do...
reset_counter(c1)
c1()
[1] 1

16.3.4 Accessing the calling environment
We know that the environment associated with a function is not necessarily the same
as the environment from which the function was called, sometimes confusingly re-
ferred to as the parent frame.

R maintains a whole frame stack. The global environment is assigned the number 0.
Each call to a function increases the stack by one frame, whereas returning from a call
decreases the counter. To get the current frame number, we call sys.nframe. This is
why sys.frame(sys.nframe()) returns the current environment.

We can fetch the calling environment by referring to parent.frame() or sys.
frame(sys.parent()), amongst others15. Thanks to parent.frame, we may evaluate
arbitrary expressions in (on behalf of) the calling environment. Normally, we should
never be doing that. However, a few functions rely on this feature, hence our avid in-
terest in this possibility.

16.3.5 Package namespaces (*)
An R package pkg defines two environments:

• namespace:pkg is where all objects are defined (functions, vectors, etc.); it is the
enclosing environment of all closures in the package;

• package:pkg contains selected16 objects from namespace:pkg that can be ac-
cessed by the user; it can be attached to the search path.

15 In help("sys.parent"), we read that the parent frame number, as returned by sys.parent(), is not
necessarily equal to sys.nframe()-1. It is certainly true if we are at the top (global) level.

16 Exported using the export or exportPattern directive in the package’s NAMESPACE file; see Section 1
of [66].

398 III DEEPEST

As an illustration, we will use the example package discussed in Section 7.3.1.

library("rpackagedemo") # https://github.com/gagolews/rpackagedemo/
Loading required package: tools

Here is its DESCRIPTION file:

Package: rpackagedemo
Type: Package
Title: Just a Demo R Package
Version: 1.0.2
Date: 1970-01-01
Author: Anonymous Llama
Maintainer: Unnamed Kangaroo <roo@inthebush.au>
Description: Provides a function named bamboo(), just give it a shot.
License: GPL (>= 2)
Imports: stringx
Depends: tools

TheImport andDependsfields specifywhichpackages (apart from base) ours depends
on. As we can see above, all items in the latter list are attached to the search path on a
call to library.

The NAMESPACE file specifies the names imported from other packages and those that
are expected to be visible to the user:

importFrom(stringx, sprintf)
importFrom(tools, toTitleCase)
S3method(print, koala)
S3method(print, kangaroo, .a_hidden_method_to_print_a_roo)
export(bamboo)

Thus, our package exports one object, a function named bamboo (we will discuss the
S3methods in the next section). It is included in the package:rpackagedemo environ-
ment attached to the search path:

ls(envir=as.environment("package:rpackagedemo")) # ls("package:rpackagedemo")
[1] "bamboo"

Let’s give it a shot:

bamboo("spanish inquisition") # rpackagedemo::bamboo
G'day, Spanish Inquisition!

We did not expect this at all, nor that its source code looks like:

print(bamboo)
function (x = "world")
cat(prepare_message(toTitleCase(x)))
<environment: namespace:rpackagedemo>

16 ENVIRONMENTS AND EVALUATION (*) 399

We see a call to toTitleCase (most likely from tools, and this is indeed the case).
Also, prepare_message is invoked but it is not listed in the package’s imports (see the
NAMESPACE file). We definitely cannot access it directly:

prepare_message
Error: object 'prepare_message' not found

It is thepackage’s internal function,which is included in thenamespace:rpackagedemo
environment.

(e <- environment(rpackagedemo::bamboo)) # or getNamespace("rpackagedemo")
<environment: namespace:rpackagedemo>
ls(envir=e)
[1] "bamboo" "prepare_message" "print.koala"

We can fetch it via the `:::` operator:

print(rpackagedemo:::prepare_message)
function (x)
sprintf("G'day, %s!\n", x)
<environment: namespace:rpackagedemo>

All functions defined in a package have the corresponding namespace as their associ-
ated environment. As a consequence, bamboo can refer to prepare_message directly.

It will be educative to inspect the enclosure of namespace:rpackagedemo:

(e <- parent.env(e))
<environment: 0x55a8fb02ff50>
attr(,"name")
[1] "imports:rpackagedemo"
ls(envir=e)
[1] "sprintf" "toTitleCase"

It is the environment carrying the bindings to all the imported objects.This is why our
package can also refer to stringx::sprintf and tools::toTitleCase. Its enclosure
is the namespace of the base package (not to be confused with package:base):

(e <- parent.env(e))
<environment: namespace:base>

The next enclosure is, interestingly, the global environment:

(e <- parent.env(e))
<environment: R_GlobalEnv>

Then, of course, the whole search path follows; see Figure 16.4 for an illustration.

Note (**) All environments related to packages are locked, whichmeans that we can-

400 III DEEPEST

(user's) search path

global

...

package:rpackagedemo

bamboo

package:base

...

namespace:stringx

sprintf
...

imports:rpackagedemo

sprintf
toTitleCase

namespace:base

cat
...

namespace_rpackagedemo

bamboo
prepare_message
...

namespace:tools

toTitleCase
...

imports:stringx

...

imports:tools

...

... and many more ...

Figure 16.4. A search path for an example package. Dashed lines represent envir-
onments associated with closures, whereas solid lines denote enclosing environ-
ments. References to objects within each package are resolved inside their respective
namespaces.

16 ENVIRONMENTS AND EVALUATION (*) 401

not change any bindings inside their frames; compare help("lockEnvironment"). In
the extremely rare event of our needing to patch an existing functionwithin an already
loaded package, we can call unlockBinding followed by assign to change its defini-
tion.

new_message <- function (x) sprintf("Nobody expects %s!\n", x)
e <- getNamespace("rpackagedemo")
environment(new_message) <- e # set enclosing environment (very important!)
unlockBinding("prepare_message", e)
assign("prepare_message", new_message, e)
rm("new_message")
bamboo("the spanish inquisition")
Nobody expects The Spanish Inquisition!

R is indeed a quite hackable language (except in the cases where it is not).

Exercise 16.13 (**)A functionorapackagemight register certain functions (hooks) tobe called
on various events, e.g., attaching a package to the search patch; see help("setHook") and
help(".onAttach").

1. Inspect the source code ofplot.new andnotice a reference to a hook named"before.plot.
new". Try setting such a hook yourself (e.g., one that changes some of the graphics paramet-
ers discussed in Section 13.2) and see what happens on each call to a plotting function.

2. Define the .onLoad, .onAttach, .onUnload, and .onDetach functions in your own R
package and take note of when they are invoked.

Exercise 16.14 (**) For the purpose of this book, we have registered a custom "before.plot.
new" hook that sets our favourite graphics parameters that we listed in Section 13.2.3.Moreover,
to obtain a white grid on a grey background, e.g., in Figure 13.13, we modified plot.window
slightly. Apply similar hacks to the graphics package so that its outputs suit your taste better.

16.3.6 S3method lookup by UseMethod (*)
Inspecting the NAMESPACE file in rpackagedemo, we see that the package defines two
printmethods for objects of the classes koala and kangaroo. As the package is still at-
tached to the search path, we can access thesemethods via a call to the corresponding
generic:

print(structure("Tiny Teddy", class="koala"))
This is a cute koala, Tiny Teddy
print(structure("Moike", class="kangaroo"))
This is a very naughty kangaroo, Moike

Thepackage does notmake the definitions of these S3methods available to the user, at
leastnotdirectly. It is not thefirst timewhenwehaveexperienced suchanobscuration.
In thefirst case, themethod is simply hidden in the packagenamespace because itwas
not marked for exportation in the NAMESPACE file. However, it is still available under
the expected name:

402 III DEEPEST

rpackagedemo:::print.koala
function (x, ...)
cat(sprintf("This is a cute koala, %s\n", x))
<environment: namespace:rpackagedemo>

In the second case, the method appears under a very different identifier:

rpackagedemo:::.a_hidden_method_to_print_a_roo
function (x, ...)
cat(sprintf("This is a very naughty kangaroo, %s\n", x))
<environment: namespace:rpackagedemo>

Since the base UseMethod is still able to find them, we suspect that there must be a
global register of all S3methods. And this is indeed the case.We can use getS3method
to get access to what is available via UseMethod:

getS3method("print", "kangaroo")
function (x, ...)
cat(sprintf("This is a very naughty kangaroo, %s\n", x))
<environment: namespace:rpackagedemo>

Important Overall, the search for methods is performed in two places:

1. in the environment where the generic is called (the current environment); this is
why defining print.kangaroo in the current scopewill use thismethod instead of
the one from the package:

print.kangaroo <- function(x, ...) cat("Nobody expects", x, "\n")
print(structure("the Spanish Inquisition", class="kangaroo"))
Nobody expects the Spanish Inquisition

2. in the internal S3 methods table (registration database).

See help("UseMethod") for more details. Also, recall that in Section 10.2.3, we said
that UseMethod is not the only way to performmethod dispatching. There are also in-
ternal generics and group generic functions.

Exercise 16.15 (*) Study the source code of getS3method. Note the reference to the base::`.
__S3MethodsTable__.` object which is for R’s internal use (we ought not to tinker with it dir-
ectly). Moreover, study the .S3method function with which we can define new S3 methods not
necessarily following the generic.classname convention.

16 ENVIRONMENTS AND EVALUATION (*) 403

16.4 Exercises
Exercise 16.16 Asking too many questions is not very charismatic, but challenge yourself by
finding the answer to the following.

• What is the role of a frame in an environment?

• What is the role of an enclosing environment? How to read it or set it?

• What is the difference between a named list and an environment?

• What functions and operators work on named lists but cannot be applied on environments?

• What do wemean by saying that environments are not passed by value to R functions?

• What do wemean by saying that objects are sometimes copied on demand?

• What happens if a name listed in an expression to be evaluated is not found in the current
environment?

• How and what kind of objects can we attach to the search path?

• What happens if we have two identical object names on the search path?

• What do wemean by saying that package namespaces are locked when loaded?

• What is the current environment when we evaluate an expression “on the console”?

• What is the difference between `<-` and `<<-`?

• Do packages have their own search paths?

• What is a function closure?

• What is the difference between the dynamic and the lexical scope?

• When evaluating a function, how is the enclosure of the current (local) environment determ-
ined? Is it the same as the calling environment? How to get it/them programmatically?

• How and why function factories work?

• (*)What is the difference between the package:pkg and namespace:pkg environments?

• Howdowe fetch the definition of an S3method that does not seem to be available directly via
the standard accessor generic.classname?

• (*)base::print.data.frame callsbase::format.data.frame (directly).Will the in-
troduction of print.data.frame in the current environment affect how data frames are
printed?

• (*) On the other hand, base::format.data.frame calls the generic base::format on
all the input data frame’s columns.Will the overloading of the particularmethods affect how
data frames are printed?

Exercise 16.17 Calling:

404 III DEEPEST

pkg <- available.packages()
pkg[, "Package"] # a list of the names of available packages
pkg[, "Depends"] # dependencies

gives the list of available packages and their dependencies. Convert the dependency lists to a list
of character vectors (preferably using regular expressions; see Section 6.2.4).

Then, generate a list of reverse dependencies: what packages depend on each given package.

Use an object of the type environment (a hash table) to map the package names to numeric
IDs (indexes). It will significantly speed up the whole process (compare it to a named list-based
implementation).

Exercise 16.18 According to [70], compare also Section 9.3.6, a call to:

add(x, f(x)) <<- v

translates to:

`*tmp*` <- get(x, envir=parent.env(), inherits=TRUE)
x <<- `add<-`(`*tmp*`, f(x), v) # note: not f(`*tmp*`)
rm(`*tmp*`)

Given:

`add<-` <- function(x, where=TRUE, value)
{

x[where] <- x[where] + value
x # the modified object that will replace the original one

}

y <- 1:5
f <- function() { y <- -(1:5); add(y, y==-3) <<- 1000; y }

explain why we get the following results:

f()
[1] -1 -2 -3 -4 -5
print(y)
[1] 1 2 1003 4 5

17
Lazy evaluation (**)

The ability to create, store, and manipulate unevaluated expressions so that they can
be computed later is not particularly special. Many languages enjoy such metapro-
gramming (computing on the language, reflection) capabilities, e.g., Lisp, Scheme,
Wolfram, Julia, amongstmany others. However, R inherited from its predecessor, the
S language, a variation of lazy1 (nonstrict, noneager, delayed) evaluation of function
arguments.They are only computedwhen their values are first needed. As we can take
the expressions used to generate them (via substitute; see Section 15.4.2), we shall
see that we can ignore their meaning in the original (caller’s) context and compute
them in a very different one.

17.1 Evaluation of function arguments
We know that calls such as `if`(test, ifyes, ifno), `||`(mustbe, maybe), or
`&&`(mustbe, maybe) do not have to evaluate all their arguments.

{cat(" first "); FALSE} && {cat(" second "); FALSE}
first
[1] FALSE
{cat(" first "); TRUE } && {cat(" Spanish Inquisition "); FALSE}
first Spanish Inquisition
[1] FALSE

We can compose such functions ourselves. For instance:

test <- function(a, b, c) a + c # b is not used
test({cat("spam\n"); 1}, {cat("eggs\n"); 10}, {cat("salt\n"); 100})
spam
salt
[1] 101

The second argument was not referred to in the function’s body.Therefore, it was not
evaluated (no printing of eggs occurred).

1 Call-by-need but without the memoisation of results generated by expressions which is available, e.g.,
in Haskell. In other words, in an expression like c(f(x), f(x)), the call f(x)will still be performed twice.

406 III DEEPEST

Example 17.1 Study the following very carefully.

test <- function(a, b, c)
{

cat("Arguments passed to `test` (expressions): \n")
cat("a = ", deparse(substitute(a)), "\n")
cat("b = ", deparse(substitute(b)), "\n")
cat("c = ", deparse(substitute(c)), "\n")

subtest <- function(x, y, z)
{

cat("Arguments passed to `subtest` (expressions): \n")
cat("x = ", deparse(substitute(x)), "\n")
cat("y = ", deparse(substitute(y)), "\n")
cat("z = ", deparse(substitute(z)), "\n")
cat("Using x and z... ")
retval <- x + z # does not refer to `y`
cat("Cheers!\n")
retval

}

cat("Using c... ")
c # force evaluation; we do not even have to be particularly creative

subtest(a, ~!~b*2 := headache ->> ha@x$y, c*10) # no evaluation yet!
}

environment(test) <- new.env() # to spice things up

test(
{testx <- "goulash"; cat("spam\n"); 1},
{testy <- "kabanos"; cat("eggs\n"); MeAn(egGs+whatever&!!weird[stuff])},
{testx <- "kransky"; cat("salt\n"); 100}

)
Arguments passed to `test` (expressions):
a = { testx <- "goulash" cat("spam\n") 1 }
b = { testy <- "kabanos" cat("eggs\n") MeAn(egGs + whatever …
c = { testx <- "kransky" cat("salt\n") 100 }
Using c... salt
Arguments passed to `subtest` (expressions):
x = a
y = `:=`(~!~b * 2, ha@x$y <<- headache)
z = c * 10
Using x and z... spam
Cheers!
[1] 1001
print(testx)
[1] "goulash"
print(testy)
Error: object 'testy' not found

17 LAZY EVALUATION (**) 407

Ona sidenote, the `~` (formula) operatorwill be discussed inSection 17.6. Furthermore, the `:=`
operatorwasused inanancient version ofR for assignments.Theparser still recognises it, yet now
it has no associatedmeaning.

Important We note what follows.

• Either the evaluation of an argument does not happen, or is triggered only once
(in which case the result is cached).

This is why, in our example, salt was printed once.

• Evaluation is delayed until the very first request for the underlying value.We call it
lazy evaluation.

It can be delayed forever; eggs is never printed and testy is undefined.

• Evaluation takes place in the calling environment (parent frame).

testx is equal to goulash after all.

• Merely passing arguments further to another function usuallydoes not trigger the
evaluation.

We wrote usually because functions of the type builtin (e.g., c, list, sum, `+`,
`&`, and `:`) always evaluate the arguments. There is no lazy evaluation in the
case of the arguments passed to group generics; see help("groupGeneric")
and Section 10.2.6. Furthermore, replacement functions’ values arguments (Sec-
tion 9.3.6) are computed eagerly.

• Fetching the expression passed as an argument using substitute (Section 15.4.2)
or checking if an argument was provided with missing (Section 15.4.3) does not
trigger the evaluation.

We see spam printed much later.

Exercise 17.2 Study the source code of system.time and notice the use of delayed evaluation
tomeasure the duration of the execution of a given expression. Note that on.exit (Section 17.4)
reacts to possible exceptions.

Example 17.3 The role of substitute is broader than just getting the expression passed as
an argument. We can actually replace each occurrence of every name from a given dictionary
(a named list or an environment). For instance:

test <- function(x)
{

subtest <- function(y)
{

ex <- substitute(x, env=parent.frame()) # substitute(x) is just `x`
ey <- substitute(y)
cat("ex =", deparse(ex), "\n")
cat("ey =", deparse(ey), "\n")

(continues on next page)

408 III DEEPEST

(continued from previous page)

not: eval(substitute(ey, list(x=ex)))
eval(as.call(list(substitute, ey, list(x=ex))))

}

subtest(spam(!xx))
}

test(eels@hovercraft)
ex = eels@hovercraft
ey = spam(!xx)
spam(!eels@hovercrafteels@hovercraft)

We fetched the expression passed as the x argument to the calling function. Then, we replaced
every occurrence of x in the expression ey. On a side note, as substitute does not evaluate its
first argument, ifwe calledsubstitute(ey, ...) in the last expression ofsubtest, wewould
treat ey as a quoted name.

Exercise 17.4 Study the source code of replicate:

print(replicate)
function (n, expr, simplify = "array")
sapply(integer(n), eval.parent(substitute(function(...) expr)),
simplify = simplify)
<environment: namespace:base>

It creates a function that evaluates expr inside its local environment, which is new every time.
Note that eval.parent(expr) is a shorthand for eval(expr, parent.frame()).

Note (*) Internally, lazy evaluation of arguments is implemented using the so-called
promises, compare [70], which consist of:

• an expression (which we can access by calling substitute);

• an environment where the expression is to be evaluated (once this happens, it is
set to NULL);

• a cached value (computed on demand, once).

This interface is not really visible fromwithin R, but see help("delayedAssign").

Exercise 17.5 Inspect the definition of match.fun. Why is it called by, e.g., apply, Map, or
outer? Note that it uses eval.parent(substitute(substitute(FUN))) to fetch the ex-
pression representing the argument passed by the calling function (but it is probably very rarely
needed there). Compare:

test <- function(x)
{

subtest <- function(y)

(continues on next page)

17 LAZY EVALUATION (**) 409

(continued from previous page)

{
NOT: substitute(y)
NOT: eval.parent(substitute(y))
eval.parent(substitute(substitute(y)))

}

subtest(x*3)
}

test(1+2)
(1 + 2) * 3

Exercise 17.6 (*) Implement your version of the bquote function.

17.2 Evaluation of default arguments
Aswe know fromSection 9.4.4, default arguments are special expressions specified in
a function’s parameter list.

Important When a function’s body requires the value of an argument that the caller
didnot provide, the default expressionwill be evaluated in the current (local) environment
of the function.

It is thus different from the case of normally passed arguments,which are interpreted
in the context of the calling environment.

Example 17.7 Study the following very carefully.

x <- "banana"

test <- function(y={cat("spam\n"); x})
{

cat(deparse(substitute(y)), "\n")
cat("bacon\n")
x <- "rotten potatoes"
cat(y, y, "\n")

}

test({cat("spam\n"); x})
{ cat("spam\n") x }
bacon
spam
banana banana

410 III DEEPEST

As usual, the evaluation is triggered only once, where it was explicitly requested, and only when
needed. ywas bound to the value of x from the calling environment (banana in the global one).

test()
{ cat("spam\n") x }
bacon
spam
rotten potatoes rotten potatoes

The expression for the default y was evaluated in the local environment. It happened after the
creation of the local x.

Example 17.8 Consider the following example from [38]:

sumsq <- function(y, about=mean(y), na.rm=FALSE)
{

if (na.rm)
y <- y[!is.na(y)]

sum((y - about)^2)
}

y <- c(1, NA_real_, NA_real_, 2)
sumsq(y, na.rm=TRUE)
[1] 0.5

In the case where we rely on the default argument, the computation of the mean may take into
account the request for missing value removal. Still, the following will not work as intended:

sumsq(y, mean(y), na.rm=TRUE) # we should rather pass mean(y, na.rm=TRUE)
[1] NA

However, as the idea of lazy evaluation of arguments is alien to most programmers (especially
those coming from different languages), it might be better to rewrite the above using a call to
missing (Section 15.4.3):

sumsq <- function(y, about, na.rm=FALSE)
{

if (na.rm)
y <- y[!is.na(y)]

if (missing(about))
about <- mean(y)

sum((y - about)^2)
}

sumsq(y, na.rm=TRUE)
[1] 0.5

or better even:

17 LAZY EVALUATION (**) 411

sumsq <- function(y, about=NULL, na.rm=FALSE)
{

if (na.rm)
y <- y[!is.na(y)]

if (is.null(about))
about <- mean

sum((y - about(y))^2)
}

sumsq(y, na.rm=TRUE)
[1] 0.5

Exercise 17.9 Thedefault arguments to do.call, list2env, and new.env are set to parent.
frame.What does that mean?

Exercise 17.10 Study the source code of the local function:

print(local)
function (expr, envir = new.env())
eval.parent(substitute(eval(quote(expr), envir)))
<environment: namespace:base>

17.3 Ellipsis revisited
If our function has the dot-dot-dot parameter, `...`, whatever we pass through it is
packed into a pairlist of promise expressions. Thus, we can relish the benefits of lazy
evaluation. In particular, we can redirect all `...`-fed arguments to another call as-is.

test <- function(...)
{

subtest <- function(x, ...)
{

cat("x = "); str(x)
cat("... = "); str(list(...))

}

subtest(...)
}

test({cat("eggs! "); 1}, {cat("spam! "); 2}, z={cat("rice! "); 3})
x = eggs! num 1
... = spam! rice! List of 2
$: num 2
$ z: num 3

Exercise 17.11 In the documentation of lapply, we read that this function is called like lap-

412 III DEEPEST

ply(X, FUN, ...), where `...` are optional arguments to FUN. Verify that whatever is
passed via the ellipsis is evaluated only once and not on each application of FUN on the elements
of X.

Example 17.12 Weknow fromChapter 13 thatmany high-level graphics functions rely onmul-
tiple calls tomore primitive routines that allow for setting a variety of parameters (e.g., via par).
A common scenario is for a high-level function to pass all the arguments down. Each underlying
procedure can then decide by itself which items it is interested in.

test <- function(...)
{

subtest1 <- function(..., a=1) c(a=a)
subtest2 <- function(..., b=2) c(b=b)
subtest3 <- function(..., c=3) c(c=c)

c(subtest1(...), subtest2(...), subtest3(...))
}

test(a="A", b="B", d="D")
a b c
"A" "B" "3"

Here, for instance,subtest1 only consumes the value ofaand ignores all other argumentswhat-
soever. plot.default (amongst others) relies on such a design pattern.

`...length` fetches the number of items passed via the ellipsis, `...names` retrieves
their names (in the case they are given as keyword arguments), and `...elt`(i) gives
the value of the 𝑖-th element. Furthermore, `..1`, `..2`, and so forth are synonymous
with `...elt`(1), `...elt`(2), etc.

test <- function(...)
{

cat("length:", ...length(), "\n")
cat("names: ", paste(...names(), collapse=", "), "\n")
for (i in seq_len(...length()))

cat(i, ":", ...elt(i), "\n")
print(substitute(...elt(i)))

}

test(u={cat("honey! "); "a"}, {cat("gravy! "); "b"}, w={cat("bacon! "); "c"})
length: 3
names: u, , w
honey! 1 : a
gravy! 2 : b
bacon! 3 : c
...elt(3L)

Note that `...elt`(i) triggers the evaluation of the respective argument. Unfortu-
nately, we cannot use substitute to fetch the underlying expression. Instead, we can
rely on match.call discussed in Section 15.4.4:

17 LAZY EVALUATION (**) 413

test <- function(a, b, ..., z=1)
{

e <- match.call()[-1]
as.list(e[!(names(e) %in% names(formals(sys.function())))])

}

str(test(1+1, 2+2, 3+3, 4+4, a=2, z=8, w=4))
List of 4
$: language 2 + 2
$: language 3 + 3
$: language 4 + 4
$ w: num 4

Note Objects passed via `...`, even if they are specified as keyword arguments, can-
not be referred to by their name as if they were local variables:

test <- function(...) zzz
test(zzz=3)
Error in test(zzz = 3): object 'zzz' not found

In other words, no assignment in the local environment is triggered.

Exercise 17.13 Implement your version of the switch function.

Exercise 17.14 Write your version of the stopifnot function.

17.4 on.exit (*)
on.exit registers an expression to be evaluated at the very end of a call, regardless
of whether the function exited due to an error or not. It might be used to reset the
temporarily modified graphics parameters (see par) and system options (options) or
clean up the allocated resources (e.g., close all open file connections). For instance:

test <- function(reset=FALSE, error=FALSE)
{

on.exit(cat("eggs\n"))
on.exit(cat("bacon\n")) # replace
on.exit(cat("spam\n"), add=TRUE) # add

cat("roti canai\n")

if (reset)
on.exit() # cancels all (replace by nothing)

(continues on next page)

414 III DEEPEST

(continued from previous page)

if (error)
stop("aaarrgh!")

cat("end\n")
"return value"

}

test()
roti canai
end
bacon
spam
[1] "return value"
test(reset=TRUE)
roti canai
end
[1] "return value"
test(error=TRUE)
roti canai
Error in test(error = TRUE): aaarrgh!

We can always manage without on.exit, e.g., by applying exception handling tech-
niques; see Section 8.2.

Exercise 17.15 In the definition of scan, notice the call to:

on.exit(close(file))

Is its purpose to close the file on exit?

Exercise 17.16 Why does graphics::barplot.default call the following expressions?

dev.hold()
opar <- if (horiz) par(xaxs="i", xpd=xpd) else par(yaxs="i", xpd=xpd)
on.exit({

dev.flush()
par(opar)

})

17.5 Metaprogramming and laziness in action: Examples (*)
Due to lazy evaluation, we can define functions that permit any random yet syntactic-
ally valid gibberish to be fed as their arguments. Nothing but basic decency stops us
from interpreting them in any way we want. Each such function can become amicro-

17 LAZY EVALUATION (**) 415

verse (amicrolanguage?) by itself.This will surely confuse2 our users, as they will have
to analyse every procedure’s behaviour separately.

In this section, we extend on our notes from Section 9.4.7 and Section 12.3.9.We look
at a few functions relying on metaprogramming and laziness, mostly because study-
ing them is a good exercise. It can help extend our programming skills and deepen
our understanding of the concepts discussed in this part of the book. By no means is
it an invitation to use them in practice. Nevertheless, R’s computing on the language
capabilities might interest some advanced programmers (e.g., package developers).

17.5.1 match.arg

match.argwasmentioned in Section 9.4.7.When called normally, it matches a string
against a set of possible choices, similarly to pmatch:

choices <- c("spam", "bacon", "eggs")
match.arg("spam", choices)
[1] "spam"
match.arg("s", choices) # partial matching
[1] "spam"
match.arg("eggplant", choices) # no match
Error in match.arg("eggplant", choices): 'arg' should be one of "spam",
"bacon", "eggs"
match.arg(choices, choices) # match first
[1] "spam"

However, skipping the second argument, this function will fetch the choices from the
default argument of the function it is enclosed in!

test <- function(x=c("spam", "bacon", "eggs"))
match.arg(x)

test("spam")
[1] "spam"
test("s")
[1] "spam"
test("eggplant")
Error in match.arg(x): 'arg' should be one of "spam", "bacon", "eggs"
test()
[1] "spam"

Exercise 17.17 Inspect the source code of stats::binom.test, which looks like:

function(..., alternative = c("two.sided", "less", "greater"))
{

...

(continues on next page)

2 Novices are prone to overgeneralising when they learn new material that they are still far from com-
fortable with. Such exceptions go against this natural coping strategy of theirs.

416 III DEEPEST

(continued from previous page)

alternative <- match.arg(alternative)
...

}

Read the description of the alternative argument in the documentation.

Exercise 17.18 Study the source code of match.arg. In particular, notice the following frag-
ment:

if (missing(choices)) {
formal.args <- formals(sys.function(sysP <- sys.parent()))
choices <- eval(

formal.args[[as.character(substitute(arg))]],
envir=sys.frame(sysP)

)
}

17.5.2 curve

The curve function can be called, e.g., like:

curve(sin(1/x^2), 1/pi, 3, 1001, lty=2)

0.5 1.0 1.5 2.0 2.5 3.0

-1
.0

-0
.5

0.
0

0.
5

1.0

x

sin
(1

/x
^2

)

Figure 17.1. An example plot generated by calling curve.

It results in Figure 17.1. Wait a minute… We did not define x as a sequence ranging
between about 0.3 and 3!

Exercise 17.19 Study the source code of curve. Take note of the following code fragment:

17 LAZY EVALUATION (**) 417

function(expr, from=NULL, to=NULL, n=101, xlab="x", type="l", ...)
{

...
expr <- substitute(expr)
ylab <- deparse(expr)
x <- seq.int(from, to, length.out=n)
ll <- list(x=x)
y <- eval(expr, envir=ll, enclos=parent.frame())
plot(x=x, y=y, type=type, xlab=xlab, ylab=ylab, ...)
...

}

17.5.3 with and within
Environments and named lists (and hence data frames) are similar (Section 16.1.2).
Due to this, the envir argument to eval can be set to either.Therefore, for instance:

eval(quote(head(Sepal.Length)), envir=iris)
[1] 5.1 4.9 4.7 4.6 5.0 5.4

It evaluates the given expression in something like list2env(iris, parent=parent.
frame()). Thus, even though Sepal.Length is not a standalone variable, it is treated
as one inside the iris data frame.

Moreover, the enclosure is set to the calling frame. Hence, we can successfully refer to
the head function located somewhere on the search path.This is somewhat similar to
attach (Section 16.2.6) but without modifying the search path.

The with function does exactly the above:

print(with.default)
function (data, expr, ...)
eval(substitute(expr), data, enclos = parent.frame())
<environment: namespace:base>

Example use:

with(iris, {
mean(Sepal.Length) # `Sepal.Length` is in `iris`

})
[1] 5.8433

As we evaluate it in the local (temporary) environment, we cannotmodify the existing
columns of the data frame this way. However, the within function includes a way to
detect and apply any changes made.

within(iris, {
Sepal.Length <- Sepal.Length/1000
Spam <- "yum!"

(continues on next page)

418 III DEEPEST

(continued from previous page)

}) -> iris2
head(iris2, 3)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species Spam
1 0.0051 3.5 1.4 0.2 setosa yum!
2 0.0049 3.0 1.4 0.2 setosa yum!
3 0.0047 3.2 1.3 0.2 setosa yum!

Exercise 17.20 Study the source code of within:

print(within.data.frame)
function (data, expr, ...)
{
parent <- parent.frame()
e <- evalq(environment(), data, parent)
eval(substitute(expr), e)
l <- as.list(e, all.names = TRUE)
l <- l[!vapply(l, is.null, NA, USE.NAMES = FALSE)]
nl <- names(l)
del <- setdiff(names(data), nl)
data[nl] <- l
data[del] <- NULL
data
}
<environment: namespace:base>

Note that evalq(expr, ...) is equivalent to eval(quote(expr), ...). Also, vapply(X,
FUN, NA, ...) is like a call to sapply, but it guarantees that the result is a logical vector.

17.5.4 transform

We can call transform to modify/add columns in a data frame using vectorised func-
tions. For instance:

head(transform(mtcars, log_hp=log(hp), am=2*am-1, hp=NULL), 3)
mpg cyl disp drat wt qsec vs am gear carb log_hp
Mazda RX4 21.0 6 160 3.90 2.620 16.46 0 1 4 4 4.7005
Mazda RX4 Wag 21.0 6 160 3.90 2.875 17.02 0 1 4 4 4.7005
Datsun 710 22.8 4 108 3.85 2.320 18.61 1 1 4 1 4.5326

If we suspect that this function evaluates all expressions passed as `...` within the
data frame,wearebrilliantly right. Furthermore, theremustbeamechanismtodetect
newly created variables so that new columns can be added.

Exercise 17.21 Study the source code of transform:

print(transform.data.frame)
function (`_data`, ...)
{

(continues on next page)

17 LAZY EVALUATION (**) 419

(continued from previous page)

e <- eval(substitute(list(...)), `_data`, parent.frame())
tags <- names(e)
inx <- match(tags, names(`_data`))
matched <- !is.na(inx)
if (any(matched)) {
`_data`[inx[matched]] <- e[matched]
`_data` <- data.frame(`_data`, check.names = FALSE)
}
if (!all(matched)) {
args <- e[!matched]
args[["check.names"]] <- FALSE
do.call("data.frame", c(list(`_data`), args))
}
else `_data`
}
<environment: namespace:base>

In particular, note that e is a named list.

17.5.5 subset

The subset function selects rows and columns of a data frame that meet certain cri-
teria. For instance:

subset(airquality, Temp>95 | Temp<57, -(Month:Day))
Ozone Solar.R Wind Temp
5 NA NA 14.3 56
120 76 203 9.7 97
122 84 237 6.3 96

The second argument, the row selector, must definitely be evaluated within the data
frame.We expect it to reduce itself to a logical vector which can then be passed to the
index operator.

The “select all columns except those between the given ones” part can be implemented
by assigning each column a consecutive integer and then treating them as numeric
indexes.

Exercise 17.22 Study the source code of subset:

print(subset.data.frame)
function (x, subset, select, drop = FALSE, ...)
{
chkDots(...)
r <- if (missing(subset))
rep_len(TRUE, nrow(x))
else {
e <- substitute(subset)

(continues on next page)

420 III DEEPEST

(continued from previous page)

r <- eval(e, x, parent.frame())
if (!is.logical(r))
stop("'subset' must be logical")
r & !is.na(r)
}
vars <- if (missing(select))
rep_len(TRUE, ncol(x))
else {
nl <- as.list(seq_along(x))
names(nl) <- names(x)
eval(substitute(select), nl, parent.frame())
}
x[r, vars, drop = drop]
}
<environment: namespace:base>

17.5.6 Forward pipe operator
Section 10.4mentioned the pipe operator, `|>`.We can compose its simplified version
manually:

`%>%` <- function(e1, e2)
{

e2 <- as.list(substitute(e2))
e2 <- as.call(c(e2[[1]], substitute(e1), e2[-1]))
eval(e2, envir=parent.frame())

}

This function imputes e1 as the first argument in a call e2 and then evaluates the new
expression.

Example calls:

x <- c(1, NA_real_, 2, 3, NA_real_, 5)
x %>% mean # mean(x)
[1] NA
x %>% `-`(1) # x-1
[1] 0 NA 1 2 NA 4
x %>% na.omit %>% mean # mean(na.omit(x))
[1] 2.75
x %>% mean(na.rm=TRUE) # mean(x, na.rm=TRUE)
[1] 2.75

Moreover, we can memorise the value of e1 so that it can be referred to in the expres-
sion on the right side of the operator.This comes at a cost of forcing the evaluation of
the left-hand side argument and thus losing the potential benefits of laziness, includ-
ing access to the generating expression.

17 LAZY EVALUATION (**) 421

`%.>%` <- function(e1, e2)
{

env <- list2env(list(.=e1), parent=parent.frame())
e2 <- as.list(substitute(e2))
e2 <- as.call(c(e2[[1]], quote(.), e2[-1]))
eval(e2, envir=env)

}

This way, we can refer to the value of the left side multiple times in a single call. For
instance:

runif(5) %.>% `[`(.>0.5) # x[x>0.5] with x=runif(5)
[1] 0.78831 0.88302 0.94047

This is crazy, I know. I made this. Your author. Onemore then:

x[x >= 0.5 & x <= 0.9] <- NA_real_ with x=round(runif(5), 2):
runif(5) %.>% round(2) %.>% `[<-`(.>=0.5 & .<=0.9, value=NA_real_)
[1] 0.29 NA 0.41 NA 0.94

I cannot wait for someone to put this operator into a new R package (it is a brilliant
idea, by the way, isn’t it?) and then confuse thousands of users (“What is this thing?”).

17.5.7 Other ideas (**)
Whystopourselveshere?Wecan createwaymore invasive functions that read the local
variables in the calling functions (unless they are primitive; in R, there are often excep-
tions to general rules…). Here is an operator which helps select a range of columns in
a data frame between two given labels:

`%:%` <- function(e1, e2)
{

get the `x` argument in the caller (hoping its `[`)
x <- get("x", envir=sys.frame(sys.nframe()-1))
n <- names(x)
from <- pmatch(substitute(e1), n)
to <- pmatch(substitute(e2), n)
from:to

}

head(iris[, Sepal.W%:%Petal.W])
Sepal.Width Petal.Length Petal.Width
1 3.5 1.4 0.2
2 3.0 1.4 0.2
3 3.2 1.3 0.2
4 3.1 1.5 0.2
5 3.6 1.4 0.2
6 3.9 1.7 0.4

422 III DEEPEST

This operator relies on the assumption that it is called in the expression passed as an
argument to a non-primitive function which also takes a named vector x as an actual
parameter. So ugly, but saves a few keystrokes.Wewill not be using it because it is not
good for us.

Exercise 17.23 Make the foregoingmore foolproof:

• if `%:%` is used outside of `[` or `[<-`, raise a polite error,

• permit x to be amatrix (is it possible?),

• prepare better for the case of less expected inputs.

Exercise 17.24 Modify the definition of the aforementioned operator so that both:

iris[, -Sepal.W%:%Petal.W]
iris[, -(Sepal.W%:%Petal.W)]

mean “select everything except”.

Exercise 17.25 Define `%:%` for data frames so that:

• x[%:%3,]means “select the first three rows”,

• x[3%:%,]means “select from the third to the end”,

• x[-3%:%,]means “select from the third last to the end”,

• x[%:%-10,]means “select all but the last nine”.

You can go one step further and redefine `[` entirely to support such kinds of indexers.

The ceiling is the limit. Please, do not use it in production.

17.6 Processing formulae, `~` (*)
Formulaewere introduced toS in theearly 1990s [14].Their original raisond’êtrewas to
specify statistical models; compare Section 10.3.4. From the language perspective, they
are merely unevaluated calls to the `~` (tilde) operator. When creating them, we do
not even have to apply quote explicitly. For instance:

f <- (y ~ x1 + x2) # or: `~`(y, x1+x2)
mode(f)
[1] "call"
class(f)
[1] "formula"

Hence, formulae are compound objects in the sense given in Chapter 10. Usually, they
are equipped with an additional attribute:

17 LAZY EVALUATION (**) 423

attr(f, ".Environment") # environment active when the formula was created
<environment: R_GlobalEnv>

Exercise 17.26 Write a function that generates a list of formulae of the form “y ~ x1+x2+...
+xk”, for all possible combinations x1, x2, …, xk (of any cardinality) of elements in a given set of
xs. For instance:

formula_allcomb <- function(y, xs, env=parent.frame()) ...to.do...
str(formula_allcomb("len", c("supp", "dose")))
List of 3
$:Class 'formula' language len ~ supp + dose
.. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
$:Class 'formula' language len ~ dose
.. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
$:Class 'formula' language len ~ supp
.. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
str(formula_allcomb(

"y",
c("x1", "x2", "x3"),
env=NULL

))
List of 7
$:Class 'formula' language y ~ x1 + x2 + x3
$:Class 'formula' language y ~ x2 + x3
$:Class 'formula' language y ~ x1 + x3
$:Class 'formula' language y ~ x3
$:Class 'formula' language y ~ x1 + x2
$:Class 'formula' language y ~ x2
$:Class 'formula' language y ~ x1

As they are unevaluated calls, functions can assign any fantasticmeaning to formulae.
We cannot really do anything about this freedom of expression. However, many func-
tions, especially in thestats andgraphicspackages, rely ona call tomodel.frame and
related routines.Thanks to this, we can at least find a fewbehavioural patterns. In par-
ticular, help("formula") lists the typical meanings of operators that can be used in a
formula.

Example 17.27 Here are a few examples (executing these expressions is left as an exercise).

• Draw a box plot for iris[["Sepal.Width"]] split by iris[["Species"]]:

boxplot(Sepal.Width~Species, data=iris)

• Draw a box plot for ToothGrowth[["len"]] split by a combination of levels in Tooth-
Growth[["supp"]] and ToothGrowth[["dose"]]:

boxplot(len~supp:dose, data=ToothGrowth)

• Split the given data frame by a combination of values in two specified columns therein:

424 III DEEPEST

split(ToothGrowth, ~supp:dose)

• Order a data frame with respect to one or more columns:

sort_by(mtcars, ~list(am, -mpg))

• Fita linear regressionmodel of the form𝑦 = 𝑎+𝑏𝑥,where𝑦 isiris[["Sepal.Length"]]
and 𝑥 is iris[["Petal.Length"]]:

lm(Sepal.Length~Petal.Length, data=iris)

• Fit a linear regressionmodel without the intercept term of the form 𝑧 = 𝑎𝑥 + 𝑏𝑦, where 𝑧 is
iris[["Sepal.Length"]], 𝑥 is iris[["Petal.Length"]], and 𝑦 is iris[["Sepal.
Width"]]:

lm(Sepal.Length~Petal.Length+Sepal.Width+0, data=iris)

• Fit a linear regressionmodel of the form 𝑧 = 𝑎+𝑏𝑥+𝑐𝑦+𝑑𝑥𝑦, where 𝑧 isiris[["Sepal.
Length"]]+e (with e fetched from the associated environment), and 𝑥 and 𝑦 are like above:

e <- rnorm(length(iris[["Sepal.Length"]]), 0, 0.05)
lm(I(Sepal.Length+e)~Petal.Length*Sepal.Width, data=iris)

• Draw scatter plots of warpbreaks[["breaks"]] vs their indexes for data grouped by a
combination of warpbreaks[["wool"]] and warpbreaks[["tension"]]:

Index <- seq_len(NROW(warpbreaks))
coplot(breaks ~ Index | wool * tension, data=warpbreaks)

From the perspective of this book, which focuses on more universal aspects of the R
language, formulae are not interesting enough to describe them in any more detail.
However, the tender-hearted reader is nowequippedwith all thenecessary knowledge
to solve the following very educative exercises.

Exercise 17.28 Study the source code of graphics:::boxplot.formula, stats::lm, and
stats:::t.test.formulaandnoticehowtheyprepareandprocess the calls tomodel.frame,
model.matrix, model.response, model.weights, etc. Note that their main aim is to pre-
pare data to be passed to boxplot.default, lm.fit (it is just a functionwith such a name, not
an S3method), and t.test.default.

Exercise 17.29 Write a function similar to curve, but one that lets us specify the function to
plot using a formula.

17.7 Exercises
Exercise 17.30 Answer the following questions.

17 LAZY EVALUATION (**) 425

• What is the role of promises?

• Why do we generally discourage the use of functions relying onmetaprogramming?

• How are default arguments evaluated?

• Is there anything special about formulae from the language perspective?

• Wesaid thatRevaluates functionarguments lazily.Does itmean that “y[c(length(y)+1,
length(y)+1, length(y)+1)] <- list(1, 2, 3)” extends a listyby three elements?
Or are there cases where evaluation is eager?

Exercise 17.31 Why the two following calls yield different results?

test <- function(x, y=deparse(substitute(x)), force_first=FALSE)
{

if (force_first) y # just force the evaluation of `y` here
x <- x**2
print(y)

}

test(1:5)
[1] "c(1, 4, 9, 16, 25)"
test(1:5, force_first=TRUE)
[1] "1:5"

17.8 Outro
Recall our first approximation to the classification of R data types that we presented
in the Preface. To summarise what we have covered in this book, let’s contemplate Fig-
ure 17.2, which gives a much broader picture.

If we omitted something, it wasmost likely on purpose: either we can now study it on
our own easily, it is not really worth our attention, or it violates ourminimalist design
principles that we set forth in the Preface.

Now that we have reached the end of this course, wemight be interested in reading:

• R Language Definition [70],

• R Internals [69],

• Writing R Extensions [66],

• R’s source code available at https://cran.r-project.org/src/base.

What is more, the NEWS files available at https://cran.r-project.org/doc/manuals/
r-release will keep us updated with fresh features, bug fixes, and newly deprecated
functionality; see also the news function.

https://cran.r-project.org/src/base
https://cran.r-project.org/doc/manuals/r-release
https://cran.r-project.org/doc/manuals/r-release

426 III DEEPEST

R Data Types

Basic

Atomic

NULL
logical
raw

numeric
integer
double

complex
character

Recursive

list
pairlist

function
closure
primitive:
special/builtin

environment

Language Objects
symbol (name)
call
expression

Internal

promise
externalptr
S4
...

Compound

factor
matrix
array
data.frame
formula
Date
kmeans
...

Figure 17.2. R data types.

Please spread the news about this book. Also, check out another open-access work by
yours truly,Minimalist DataWrangling with Python3 [28].Thank you.

Good luck with your further projects!

3 https://datawranglingpy.gagolewski.com/

https://datawranglingpy.gagolewski.com/

Changelog

Important Any bug/typo reports/fixes4 are appreciated.Themost up-to-date version
of this book can be found at https://deepr.gagolewski.com/.

Below is the list of the most noteworthy changes:

• under development (v1.0.1.9xxx):

– (…) to do (…) work in progress (…) more to come (…)

– Sections on the QR and SVD decompositions of matrices (Section 11.4) and
permutations (Section 5.4.4) were expanded.

– Minor extensions and bug fixes.

– Updated to R 4.5.2.

• 2024-08-27 (v1.0.1):

– Updated to R 4.4.1.

– Minor extensions and bug fixes.

• 2023-06-28 (v1.0.0):

– Final proofreading and copyediting.

– Minor extensions.

• 2023-05-19 (v0.9.0):

– Chapter on interfacing compiled code drafted.

– Minor extensions.

• 2023-04-27 (v0.2.1):

– Chapter on graphics drafted.

• 2023-04-09 (v0.2.0):

– NewHTML theme (with light and dark modes).

– Chapter on unevaluated expressions drafted.

4 https://github.com/gagolews/deepr

https://github.com/gagolews/deepr
https://deepr.gagolewski.com/

428 CHANGELOG

– Chapter on environments and evaluation drafted.

– Chapter on lazy evaluation drafted.

• 2022-12-29 (v0.1.12):

– The first public release at https://deepr.gagolewski.com/.

– Chapters 1–12 (basic and compound types, functions, control flow, etc.) draf-
ted.

– Preface drafted.

– ISBN 978-0-6455719-2-9 reserved.

– Cover.

https://deepr.gagolewski.com/

References

[1] Abelson, H., Sussman, G.J., and Sussman, J. (1996). Structure and Interpretation of
Computer Programs. MIT Press.

[2] Abramowitz, M. and Stegun, I.A. (1972). Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. Dover. URL: http://people.math.sfu.ca/
~cbm/aands.

[3] Becker, R.A. (1994). A Brief History of S. URL: https://sas.uwaterloo.ca/~rwoldfor/
software/R-code/historyOfS.pdf.

[4] Becker, R.A. and Chambers, J.M. (1984). Design of the S system for data analysis.
Communications of the ACM, 27(5):486–495. DOI: 10.1145/358189.358078.

[5] Becker, R.A. and Chambers, J.M. (1984). S: An Interactive Environment for Data Ana-
lysis and Graphics. Wadsworth.

[6] Becker, R.A. and Chambers, J.M. (1985). Extending the S System. Wadsworth.

[7] Becker, R.A., Chambers, J.M., and Wilks, A.R. (1988). The New S Language: A Pro-
gramming Environment for Data Analysis and Graphics. Chapman &Hall.

[8] Blum, A., Hopcroft, J., and Kannan, R. (2020). Foundations of Data Science. Cam-
bridge University Press. URL: https://www.cs.cornell.edu/jeh/book.pdf.

[9] Burns, P. (2011).TheR Inferno. URL: https://www.burns-stat.com/pages/Tutor/R_
inferno.pdf.

[10] Chambers, J.M. (1998). ProgrammingwithData. AGuide to the S Language. Springer.

[11] Chambers, J.M. (2008). Software for Data Analysis. Programming with R. Springer.

[12] Chambers, J.M. (2016). Extending R. Chapman &Hall.

[13] Chambers, J.M. (2020). S, R, and data science.The R Journal, 12(1):462–476. DOI:
10.32614/RJ-2020-028.

[14] Chambers, J.M. and Hastie, T.J. (1991). StatisticalModels in S. Chapman &Hall.

[15] Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C. (2009). Introduction to
Algorithms. MIT Press andMcGraw-Hill.

[16] Crawley, M.J. (2007).TheRBook. JohnWiley & Sons.

[17] Date, C.J. (2003). An Introduction to Database Systems. Pearson.

http://people.math.sfu.ca/~cbm/aands
http://people.math.sfu.ca/~cbm/aands
https://sas.uwaterloo.ca/~rwoldfor/software/R-code/historyOfS.pdf
https://sas.uwaterloo.ca/~rwoldfor/software/R-code/historyOfS.pdf
https://www.cs.cornell.edu/jeh/book.pdf
https://www.burns-stat.com/pages/Tutor/R_inferno.pdf
https://www.burns-stat.com/pages/Tutor/R_inferno.pdf

430 REFERENCES

[18] Davis, M. and Whistler, K. (2021). Unicode Standard Annex #15: Unicode Normaliza-
tion Forms. URL: http://www.unicode.org/reports/tr15.

[19] Davis,M.,Whistler, K., andScherer,M. (2021).UnicodeTechnical Standard#10:Uni-
code Collation Algorithm. URL: http://www.unicode.org/reports/tr10.

[20] Deisenroth, M.P., Faisal, A.A., and Ong, C.S. (2020). Mathematics for Machine
Learning. Cambridge University Press. URL: https://mml-book.com/.

[21] DeMichiel, L.G. and Gabriel, R.P. (1987). The Common Lisp Object System: An
overview. ECOOP. URL: https://www.dreamsongs.com/Files/ECOOP.pdf.

[22] Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer. URL: https:
//luc.devroye.org/rnbookindex.html.

[23] Fog, A. (2018). NaN Payload Propagation – Unresolved Issues. URL: https:
//grouper.ieee.org/groups/msc/ANSI_IEEE-Std-754-2019/background/
nan-propagation.pdf.

[24] Forbes, C., Evans, M., Hastings, N., and Peacock, B. (2010). Statistical Distribu-
tions. Wiley.

[25] Friedl, J.E.F. (2006).Mastering Regular Expressions. O'Reilly.

[26] Gagolewski, M. (2016). Programowanie w języku R. Analiza danych, obliczenia,
symulacje (R Programming. Data Analysis, Computing, Simulations). Wydawnictwo
Naukowe PWN, 2nd edition. In Polish (1st edition published in 2014).

[27] Gagolewski, M. (2022). stringi: Fast and portable character string processing in
R. Journal of Statistical Software, 103(2):1–59. URL: https://stringi.gagolewski.com/,
DOI: 10.18637/jss.v103.i02.

[28] Gagolewski, M. (2026). Minimalist Data Wrangling with Python. URL: https://
datawranglingpy.gagolewski.com/, DOI: 10.5281/zenodo.6451068.

[29] Galassi, M.,Theiler, J., and others. (2021). GNUScientific Library ReferenceManual.
URL: https://www.gnu.org/software/gsl.

[30] Gentle, J.E. (2003). RandomNumber Generation andMonte Carlo methods. Springer.

[31] Gentle, J.E. (2009). Computational Statistics. Springer.

[32] Gentle, J.E. (2024).MatrixAlgebra:Theory,Computations andApplications inStatistics.
Springer.

[33] Goldberg, D. (1991). What every computer scientist should know about floating-
point arithmetic. ACMComputing Surveys, 21(1):5–48. URL: https://perso.ens-lyon.
fr/jean-michel.muller/goldberg.pdf.

[34] Hankin, R.K.S. (2006). Special functions in R: Introducing the gsl package.
RNews, 6:24–26. URL: https://cran.r-project.org/web/packages/gsl/vignettes/gsl.
pdf.

[35] Harris, C.R. and others. (2020). Array programming with NumPy. Nature,
585(7825):357–362. DOI: 10.1038/s41586-020-2649-2.

http://www.unicode.org/reports/tr15
http://www.unicode.org/reports/tr10
https://mml-book.com/
https://www.dreamsongs.com/Files/ECOOP.pdf
https://luc.devroye.org/rnbookindex.html
https://luc.devroye.org/rnbookindex.html
https://grouper.ieee.org/groups/msc/ANSI_IEEE-Std-754-2019/background/nan-propagation.pdf
https://grouper.ieee.org/groups/msc/ANSI_IEEE-Std-754-2019/background/nan-propagation.pdf
https://grouper.ieee.org/groups/msc/ANSI_IEEE-Std-754-2019/background/nan-propagation.pdf
https://stringi.gagolewski.com/
https://datawranglingpy.gagolewski.com/
https://datawranglingpy.gagolewski.com/
https://www.gnu.org/software/gsl
https://perso.ens-lyon.fr/jean-michel.muller/goldberg.pdf
https://perso.ens-lyon.fr/jean-michel.muller/goldberg.pdf
https://cran.r-project.org/web/packages/gsl/vignettes/gsl.pdf
https://cran.r-project.org/web/packages/gsl/vignettes/gsl.pdf

REFERENCES 431

[36] Higham, N.J. (2002). Accuracy and Stability of Numerical Algorithms. SIAM. DOI:
10.1137/1.9780898718027.

[37] Hughes, J., van Dam, A., McGuire, M., Sklar, D., Foley, J., Feiner, S., and Akeley,
K. (2013). Computer Graphics: Principles and Practice. Addison-Wesley, 3rd edition.

[38] Ihaka, R. and Gentleman, R. (1996). R: A language for data analysis and
graphics. Journal of Computational and Graphical Statistics, 5(3):299–314. URL:
https://www.stat.auckland.ac.nz/~ihaka/downloads/R-paper.pdf, DOI:
10.1080/10618600.1996.10474713.

[39] Kernighan, B.W. and Ritchie, D. (1988). The C Programming Language. Prentice
Hall.

[40] Knuth, D.E. (1974). Computer programming as an art. Communications of
the ACM, 17(12):667–673. URL: https://www.cs.tufts.edu/~nr/cs257/archive/
don-knuth/as-an-art.pdf.

[41] Knuth, D.E. (1992). Literate Programming. CSLI.

[42] Knuth, D.E. (1997). The Art of Computer Programming III: Sorting and Searching.
Addison-Wesley.

[43] Knuth, D.E. (1997). The Art of Computer Programming II: Seminumerical Algorithms.
Addison-Wesley.

[44] Knuth, D.E. (1997). The Art of Computer Programming I: Fundamental Algorithms.
Addison-Wesley.

[45] Marschner, S. and Shirley, P. (2021). Fundamentals of Computer Graphics. AK
Peters/CRC Press, 5th edition.

[46] Matloff, N.S. (2011).The Art of R Programming: A Tour of Statistical Software Design.
No Starch Press.

[47] Matsumoto, M. and Nishimura, T. (1998). Mersenne Twister: A 623-
dimensionally equidistributed uniform pseudo-random number generator.
ACMTransactions onModeling and Computer Simulation, 8:3–30.

[48] McKinney, W. (2022). Python for Data Analysis. O'Reilly. URL: https:
//wesmckinney.com/book.

[49] Murrell, P. (2011). RGraphics. Chapman &Hall/CRC.

[50] Nelsen, R.B. (1999). An Introduction to Copulas. Springer.

[51] Okabe, M. and Ito, K. (2002). Color Universal Design (CUD): How to make figures
and presentations that are friendly to Colorblind people. URL: https://jfly.uni-koeln.de/
color.

[52] Olver, F.W.J. and others. (2021). NIST Digital Library of Mathematical Functions.
NIST. URL: https://dlmf.nist.gov/.

[53] Rahlf, T. (2019). Data Visualisation with R: 111 Examples. Springer Nature, 2nd edi-
tion. URL: http://www.datavisualisation-r.com/.

https://www.stat.auckland.ac.nz/~ihaka/downloads/R-paper.pdf
https://www.cs.tufts.edu/~nr/cs257/archive/don-knuth/as-an-art.pdf
https://www.cs.tufts.edu/~nr/cs257/archive/don-knuth/as-an-art.pdf
https://wesmckinney.com/book
https://wesmckinney.com/book
https://jfly.uni-koeln.de/color
https://jfly.uni-koeln.de/color
https://dlmf.nist.gov/
http://www.datavisualisation-r.com/

432 REFERENCES

[54] Sarkar, D. (2008). Lattice: Multivariate Data Visualization with R. Springer. URL:
http://lmdvr.r-forge.r-project.org/.

[55] Tierney, L. (1990). LISP-STAT: An Object-Oriented Environment for Statistical Comput-
ing andDynamic Graphics. Wiley.

[56] Tierney, L., Becker, G., and Kalibera, T. (2018). ALTREP: Alternative Representations
for RObjects. URL: https://svn.r-project.org/R/branches/ALTREP/ALTREP.html.

[57] Tufte, E.R. (2001).TheVisual Display of Quantitative Information. Graphics Press.

[58] Venables, W.N. and Ripley, B.D. (2000). S Programming. Springer.

[59] Venables,W.N., Smith,D.M., andRDevelopmentCore Team. (2025).AnIntroduc-
tion to R. URL: https://CRAN.R-project.org/doc/manuals/r-release/R-intro.html.

[60] Wainer, H. (1997). Visual Revelations: Graphical Tales of Fate andDeception fromNapo-
leon Bonaparte to Ross Perot. Copernicus.

[61] Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer, 2nd edi-
tion.

[62] Wickham, H. (2019). Advanced R. Chapman&Hall/CRC, 2nd edition. URL: https:
//adv-r.hadley.nz/.

[63] Wickham, H., Çetinkaya-Rundel, M., and Grolemund, G. (2023). R for Data Sci-
ence. O'Reilly. URL: https://r4ds.hadley.nz/.

[64] Wilkinson, L. (2005).TheGrammar of Graphics. Springer.

[65] Xie, Y. (2015).Dynamic Documents with R and knitr. Chapman and Hall/CRC.

[66] R Development Core Team. (2025). Writing R Extensions. URL: https://CRAN.
R-project.org/doc/manuals/r-release/R-exts.html.

[67] R Development Core Team. (2025). R Data Import/Export. URL: https://CRAN.
R-project.org/doc/manuals/r-release/R-data.html.

[68] R Development Core Team. (2025). R Installation and Administration. URL: https:
//CRAN.R-project.org/doc/manuals/r-release/R-admin.html.

[69] R Development Core Team. (2025). R Internals. URL: https://CRAN.R-project.
org/doc/manuals/r-release/R-ints.html.

[70] R Development Core Team. (2025). R Language Definition. URL: https://CRAN.
R-project.org/doc/manuals/r-release/R-lang.html.

[71] R Development Core Team. (2025). R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing. URL: https://www.R-project.
org/.

http://lmdvr.r-forge.r-project.org/
https://svn.r-project.org/R/branches/ALTREP/ALTREP.html
https://CRAN.R-project.org/doc/manuals/r-release/R-intro.html
https://adv-r.hadley.nz/
https://adv-r.hadley.nz/
https://r4ds.hadley.nz/
https://CRAN.R-project.org/doc/manuals/r-release/R-exts.html
https://CRAN.R-project.org/doc/manuals/r-release/R-exts.html
https://CRAN.R-project.org/doc/manuals/r-release/R-data.html
https://CRAN.R-project.org/doc/manuals/r-release/R-data.html
https://CRAN.R-project.org/doc/manuals/r-release/R-admin.html
https://CRAN.R-project.org/doc/manuals/r-release/R-admin.html
https://CRAN.R-project.org/doc/manuals/r-release/R-ints.html
https://CRAN.R-project.org/doc/manuals/r-release/R-ints.html
https://CRAN.R-project.org/doc/manuals/r-release/R-lang.html
https://CRAN.R-project.org/doc/manuals/r-release/R-lang.html
https://www.R-project.org/
https://www.R-project.org/

	Preface
	To R, or not to R
	R (GNU S) as a language and an environment
	Aims, scope, and design philosophy
	Classification of R data types and book structure
	About the author
	Acknowledgements
	You can make this book better

	I Deep
	Introduction
	Hello, world!
	Setting up the development environment
	Installing R
	Interactive mode
	Batch mode: Working with R scripts (**)
	Weaving: Automatic report generation (**)
	Semi-interactive modes (Jupyter Notebooks, sending code to the associated R console, etc.)

	Atomic vectors at a glance
	Getting help
	Exercises

	Numeric vectors
	Creating numeric vectors
	Numeric constants
	Concatenating vectors with c
	Repeating entries with rep
	Generating arithmetic progressions with seq and `:`
	Generating pseudorandom numbers
	Reading data with scan

	Creating named objects
	Vectorised mathematical functions
	abs and sqrt
	Rounding
	Natural exponential function and logarithm
	Probability distributions (*)
	Special functions (*)

	Arithmetic operations
	Vectorised arithmetic operators
	Recycling rule
	Operator precedence
	Accumulating
	Aggregating

	Exercises

	Logical vectors
	Creating logical vectors
	Comparing elements
	Vectorised relational operators
	Testing for NA, NaN, and Inf
	Dealing with round-off errors (*)

	Logical operations
	Vectorised logical operators
	Operator precedence revisited
	Dealing with missingness
	Aggregating with all, any, and sum
	Simplifying predicates

	Choosing elements with ifelse
	Exercises

	Lists and attributes
	Type hierarchy and conversion
	Explicit type casting
	Implicit conversion (coercion)

	Lists
	Creating lists
	Converting to and from lists

	NULL
	Object attributes
	Developing perceptual indifference to most attributes
	But there are a few use cases
	Special attributes
	Labelling vector elements with the names attribute
	Altering and removing attributes

	Exercises

	Vector indexing
	head and tail
	Subsetting and extracting from vectors
	Nonnegative indexes
	Negative indexes
	Logical indexer
	Character indexer

	Replacing elements
	Modifying atomic vectors
	Modifying lists
	Inserting new elements

	Functions related to indexing
	Matching elements in another vector
	Assigning numbers into intervals
	Splitting vectors into subgroups
	Ordering elements
	Identifying duplicates
	Counting index occurrences

	Preserving and losing attributes
	c
	as.something
	Subsetting
	Vectorised functions

	Exercises

	Character vectors
	Creating character vectors
	Inputting individual strings
	Many strings, one object
	Concatenating character vectors
	Formatting objects
	Reading text data from files

	Pattern searching
	Comparing whole strings
	Partial matching
	Matching anywhere within a string
	Using regular expressions (*)
	Locating pattern occurrences
	Replacing pattern occurrences
	Splitting strings into tokens

	Other string operations
	Extracting substrings
	Translating characters
	Ordering strings

	Other atomic vector types (*)
	Integer vectors (*)
	Raw vectors (*)
	Complex vectors (*)

	Exercises

	Functions
	Creating and invoking functions
	Anonymous functions
	Named functions
	Passing arguments to functions
	Grouping expressions with curly braces, `{`

	Functional programming
	Functions are objects
	Calling on precomputed arguments with do.call
	Common higher-order functions
	Vectorising functions with Map

	Accessing third-party functions
	Using R packages
	Default packages
	Source vs binary packages (*)
	Managing dependencies (*)

	Calling external programs
	Interfacing C, C++, Fortran, Python, Java, etc. (**)

	Exercises

	Flow of execution
	Conditional evaluation
	Return value
	Nested ifs
	Condition: Either TRUE or FALSE
	Short-circuit evaluation

	Exception handling
	Repeated evaluation
	while
	for
	break and next
	return
	Time and space complexity of algorithms (*)

	Exercises

	II Deeper
	Designing functions
	Managing data flow
	Checking input data integrity and argument handling
	Putting outputs into context

	Organising and maintaining functions
	Function libraries
	Writing R packages (*)
	Package structure (*)
	Building and installing (*)
	Documenting (*)

	Writing standalone programs (**)
	Assuring quality code
	Managing changes and working collaboratively
	Test-driven development and continuous integration
	Debugging
	Profiling

	Special functions: Syntactic sugar
	Backticks
	Dollar, `$` (*)
	Curly braces, `{`
	`if`
	Operators are functions
	Calling built-in operators as functions
	Defining binary operators

	Replacement functions
	Creating replacement functions
	Substituting parts of vectors
	Replacing attributes
	Compositions of replacement functions (*)

	Arguments and local variables
	Call by “value”
	Variable scope
	Closures (*)
	Default arguments
	Lazy vs eager evaluation
	Ellipsis, `...`
	Metaprogramming (*)

	Principles of sustainable design (*)
	To write or abstain
	To pamper or challenge
	To build or reuse
	To revolt or evolve

	Exercises

	S3 classes
	Object type vs class
	Generics and method dispatching
	Generics, default, and custom methods
	Creating generics
	Built-in generics
	First-argument dispatch and calling S3 methods directly
	Multi-class-ness
	Operator overloading

	Common built-in S3 classes
	Date, time, etc.
	Factors
	Ordered factors
	Formulae (*)

	(Over)using the forward pipe operator, `|>` (*)
	S4 classes (*)
	Defining S4 classes
	Accessing slots
	Defining methods
	Defining constructors
	Inheritance

	Exercises

	Matrices and other arrays
	Creating arrays
	matrix and array
	Promoting and stacking vectors
	Simplifying lists
	Beyond numeric arrays
	Internal representation

	Array indexing
	Arrays are built on basic vectors
	Selecting individual elements
	Selecting rows and columns
	Dropping dimensions
	Selecting submatrices
	Selecting elements based on logical vectors
	Selecting based on two-column numeric matrices
	Higher-dimensional arrays
	Replacing elements

	Common operations
	Matrix transpose
	Vectorised mathematical functions
	Aggregating rows and columns
	Binary operators

	Numerical matrix algebra (*)
	Matrix multiplication
	Solving systems of linear equations
	Norms and metrics
	Eigenvalues and eigenvectors
	QR decomposition
	SVD decomposition
	A note on the Matrix package

	Exercises

	Data frames
	Creating data frames
	data.frame and as.data.frame
	cbind.data.frame and rbind.data.frame
	Reading data frames
	Interfacing relational databases and querying with SQL (*)
	Strings as factors?
	Internal representation

	Data frame subsetting
	Data frames are lists
	Data frames are matrix-like

	Common operations
	Ordering rows
	Handling duplicated rows
	Joining (merging) data frames
	Aggregating and transforming columns
	Handling missing values
	Reshaping data frames
	Aggregating data in groups
	Transforming data in groups
	Metaprogramming-based techniques (*)
	A note on the dplyr (tidyverse) and data.table packages (*)

	Exercises

	Graphics
	Graphics primitives
	Symbols (points)
	Line segments
	Polygons
	Text
	Raster images (bitmaps) (*)

	Graphics settings
	Colours
	Plot margins and clipping regions
	User coordinates and axes
	Plot dimensions (*)
	Many figures on one page (subplots)
	Graphics devices

	Higher-level functions
	Scatter and function plots with plot.default and matplot
	Bar plots and histograms
	Box-and-whisker plots
	Contour plots and heat maps

	Exercises

	III Deepest
	Interfacing compiled code (**)
	C and C++ code in R
	Source files for compiled code in R packages
	R CMD SHLIB

	Handling basic types
	SEXPTYPEs
	Accessing elements in simple atomic vectors
	Representation of missing values
	Memory allocation
	Lists
	Character vectors and individual strings (*)
	Calling R functions from C (**)
	External pointers (**)

	Dealing with compound types
	Reading and setting attributes
	Factors
	Matrices
	Data frames

	Using existing function libraries
	Checking for user interrupts
	Generating pseudorandom numbers
	Mathematical functions from the R API
	Header files from other R packages (*)
	Specifying compiler and linker flags (**)

	Exercises

	Unevaluated expressions (*)
	Expressions at a glance
	Language objects
	Calls as combinations of expressions
	Browsing parse trees
	Manipulating calls

	Inspecting function definition and usage
	Getting the body and formal arguments
	Getting the expression passed as an actual argument
	Checking if an argument is missing
	Determining how a function was called

	Exercises

	Environments and evaluation (*)
	Frames: Environments as object containers
	Printing
	Environments vs named lists
	Hash maps: Fast element lookup by name
	Call by value, copy on demand: Not for environments
	A note on reference classes (**)

	The environment model of evaluation
	Getting the current environment
	Enclosures, enclosures thereof, etc.
	Missing names are sought in enclosing environments
	Looking for functions
	Inspecting the search path
	Attaching to and detaching from the search path
	Masking (shadowing) objects from down under

	Closures
	Local environment
	Lexical scope and function closures
	Application: Function factories
	Accessing the calling environment
	Package namespaces (*)
	S3 method lookup by UseMethod (*)

	Exercises

	Lazy evaluation (**)
	Evaluation of function arguments
	Evaluation of default arguments
	Ellipsis revisited
	on.exit (*)
	Metaprogramming and laziness in action: Examples (*)
	match.arg
	curve
	with and within
	transform
	subset
	Forward pipe operator
	Other ideas (**)

	Processing formulae, `~` (*)
	Exercises
	Outro

	Changelog
	References

