

Understanding Generative Adversarial Networks

Hao Dong

Peking University

Understanding Generative Adversarial Networks

Hao Dong

Peking University

So far

- GAN is a couple of Generator and Discriminator; its training process is a min-max game as follows:
 - $\min_{G} \max_{D} V(D, G) = \min_{G} \max_{D} \mathbb{E}_{\boldsymbol{x} \sim p_{data}} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{z}} [\log (1 D(G(\boldsymbol{z}))]$ i.e., p_{r}
 - Theoretical guarantee: This min-max game has a global optimum for $p_g=p_{data}$
 - However there remains some fundamental problems of GAN training.
- Note that when we say "manifold P" where P is indeed a probability distribution, we actually refer to the support set of distribution P.
- This lecture: Towards a solid understanding of GAN training.

Understanding Generative Adversarial Networks

Part 1:

problems: what and why • background knowledge • some solutions

Solid Understanding of GAN Training

- Improved Technique for Generator Loss
- Fundamental Problems of Two Types of GAN
- Wasserstein Distance
- A Temporal Solution

Part2:

a super solution

- Solid Understanding of GAN Training
 - Improved Technique for Generator Loss
 - Fundamental Problems of Two Types of GAN
 - Wasserstein Distance
 - A Temporal Solution
- Wasserstein GAN

Improved Technique for Generator Loss

- Vanilla Generator Loss:
 - Given $\min_{G} \max_{D} V(D, G) = \min_{G} \max_{D} \mathbb{E}_{x \sim p_{data}} [\log D(x)] + \mathbb{E}_{z \sim p_z} [\log(1 D(G(z)))]$
 - If we deduce \mathcal{L}_D and \mathcal{L}_G directly from min-max equation, then we get:

•
$$\mathcal{L}_D = -\mathbb{E}_{\boldsymbol{x} \sim p_{data}}[\log D(\boldsymbol{x})] - \mathbb{E}_{\boldsymbol{z} \sim p_z}[\log(1 - D(G(\boldsymbol{z})))]$$

•
$$\mathcal{L}_G = E_{z \sim p_z}[\log(1 - D(G(z)))]$$
 (Vanilla GAN)

- In early training stage: Vanishing Gradient
 - D is easy to distinguish generated sample G(z) from real images x

6

- Improved Technique for Generator Loss
- If we deduce \mathcal{L}_G directly from min-max equation, then we get:

•
$$\mathcal{L}_G = E_{z \sim p_z}[\log(1 - D(G(z)))]$$
 (Vanilla GAN)

Improved Generator Loss:

- Known $|\nabla \log(A)| = |\frac{1}{A}|$ is significantly larger than $|\nabla \log(1-A)| = |\frac{1}{A-1}|$
- It is the same: $\mathcal{L}_{G}' = -E_{z \sim p_{z}}[\log(D(G(z)))]$ (Improved GAN)
 - Minimising \mathcal{L}_G is equivalent to minimise \mathcal{L}_G , while providing larger gradient for the generator in early-stage training.

$$G^* = \max_{G} \mathbb{E}_{\mathbf{z} \sim p_z} [\log D(G(\mathbf{z}))]$$
$$= \min_{G} \mathbb{E}_{\mathbf{z} \sim p_z} [\log(1 - D(G(\mathbf{z})))]$$

- Solid Understanding of GAN Training
 - Improved Technique for Generator Loss
 - Fundamental Problems of Two Types of GAN
 - Wasserstein Distance
 - A Temporal Solution
- Wasserstein GAN

- In the following slides, we denote GAN with improved generator loss as Improved GAN.
- Then we claim that these two types of GAN suffer from some fundamental problems respectively:
 - Vanilla GAN: Vanishing Gradient
 - Improved GAN: Mode collapse and Oscillations

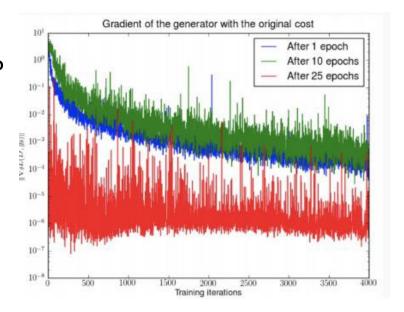
- Vanilla GAN: Vanishing Gradient
- Improved GAN: Oscillations and Model Collapse
- An Empirical Observation v.s. Theoretical Induction:
 - What would happen if we just train D till converge?
 - Theoretically:

$$D^* = \frac{p_r}{p_g + p_r}$$

•
$$L_G = -log4 + 2JS(p_r||p_g)$$

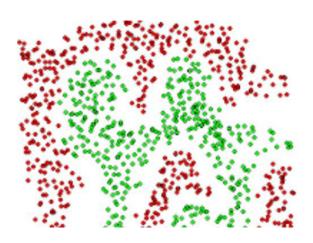
Empirically, no gradient for G: Why?

•
$$D^*(x) = \begin{cases} 0 \text{ if } x \text{ sampled from } P_r \\ 1 \text{ if } x \text{ sampled from } P_g \end{cases}$$



• $\nabla_x E_{z \sim p_z}[\log(1 - D^*(G(z)))] \approx 0$ (Gradient Vanishing)

- Vanilla GAN: Vanishing Gradient
- Improved GAN: Oscillations and Mode Collapse
- Based on empirical observations, we can intuitively thinking:
 - In what case can we classify two manifolds totally?
 - Two manifolds can be separated?
 - Consider the extreme case:
 - When support sets of P_r , P_g can be separated:
 - Then for any $x \in P_r \cup P_g$, there're only 2 cases:
 - Case 1: $P_r(x) = 0$, $P_q(x) \neq 0$
 - Case 2: $P_r(x) \neq 0$, $P_q(x) = 0$
 - In both case the $JS(P_r||P_g) = 2 * \frac{1}{2} * log2 = log2$
 - So $L_G = 2JS(P_r | | P_g) log 4 = 0$



- Vanilla GAN: Vanishing Gradient
- Improved GAN: Oscillations and Mode Collapse
- Under the assumption that P_r and P_g can be separated, we can explain the reason.
 - But why?
- Firstly, it's reasonable to assume that P_r and P_g are low-dimension manifolds.
 - **Lemma 1.** Let $g: \mathbb{Z} \to \mathcal{X}$ be a function composed by affine transformations and pointwise nonlinearities, which can either be rectifiers, leaky rectifiers, or smooth strictly increasing functions (such as the sigmoid, tanh, softplus, etc). Then, $g(\mathbb{Z})$ is contained in a countable union of manifolds of dimension at most dim \mathbb{Z} . Therefore, if the dimension of \mathbb{Z} is less than the one of \mathbb{X} , $g(\mathbb{Z})$ will be a set of measure 0 in \mathbb{X} .
 - So P_g is low-dimension manifold.
 - There is strong.
- Empirical and theoretical evidence to believe that P_r is indeed extremely concentrated on a low dimensional manifold

和桌大学 PEKING UNIVERSITY

Fundamental Problems of Two Types of GAN

- Vanilla GAN: Vanishing Gradient
- Improved GAN: Oscillations and Mode Collapse
- Intuitively, when P_r and P_g are both low-dimensional, then they have "nearly no intersection" with a probability of 1.
 - The following lemma claim the same idea.
 - **Lemma 2.** Let \mathcal{M} and \mathcal{P} be two regular submanifolds of \mathbb{R}^d that don't have full dimension. Let η, η' be arbitrary independent continuous random variables. We therefore define the perturbed manifolds as $\tilde{\mathcal{M}} = \mathcal{M} + \eta$ and $\tilde{\mathcal{P}} = \mathcal{P} + \eta'$. Then

 $\mathbb{P}_{\eta,\eta'}(\tilde{\mathcal{M}} \text{ does not perfectly align with } \tilde{\mathcal{P}}) = 1$

- Vanilla GAN: Vanishing Gradient
- Improved GAN: Oscillations and Mode Collapse
- Just as last section, we analyse the case when D is trained to optimum:

• 1)
$$L_D = E_{x \sim P_r} [log(D^*(x))] + E_{x \sim P_g} [log(1 - D^*(x))] = 2JS(P_r | P_g) - log 4$$

• 2)
$$KL(P_g||P_r) = E_{P_g} \left[log \frac{\frac{P_g}{P_g + P_r}}{\frac{P_r}{P_g + P_r}} \right] = E_{x \sim P_g} \left[log \frac{1 - D^*(x)}{D^*(x)} \right]$$

= $E_{x \sim P_g} [1 - D^*(x)] - E_{x \sim P_g} [D^*(x)]$

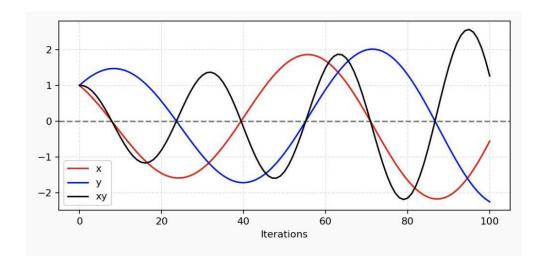
Then implied by 1) and 2):

•
$$L_G = E_{x \sim P_g}[-log D^*(x)] = KL(P_g||P_r) - E_{x \sim P_g}log(1 - D^*(x))$$
 [implied by 2.]
= $KL(P_g||P_r) - 2JS(P_g||P_r) + log 4 + E_{x \sim P_r}log D^*(x)$ [implied by 1.]

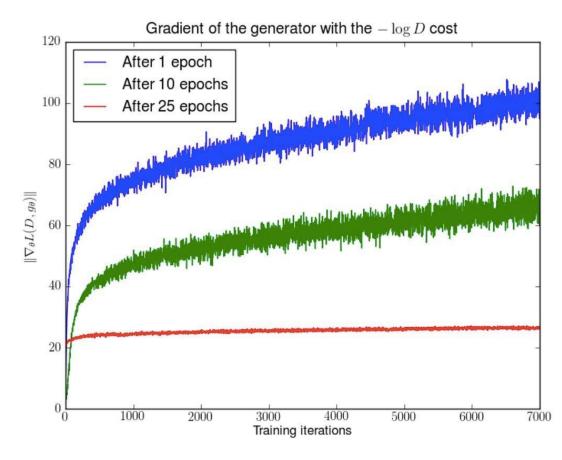
• $min L_G = min KL(P_g||P_r) - 2JS(P_g||P_r)$

前后优化目标矛盾!

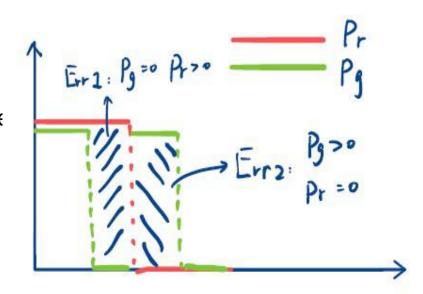
- Vanilla GAN: Vanishing Gradient
- Improved GAN: Oscillations and Mode Collapse
- $min L_G = min KL(P_g||P_r) 2JS(P_g||P_r)$
 - Rediculous? Note that if we want to minimise L_G , then we are "pulling" P_r and P_g closer and farther at the same time
 - This leads to the gradient oscillations



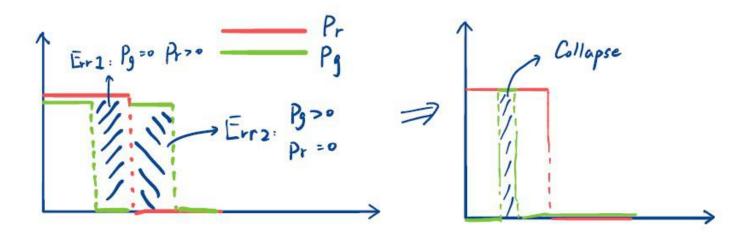
- Vanilla GAN: Vanishing Gradient
- Improved GAN: Oscillations and Mode Collapse



- Vanilla GAN: Vanishing Gradient
- Improved GAN: Oscillations and Mode Collapse
- $min L_G = min KL(P_g||P_r) 2JS(P_g||P_r)$
- $KL(P_g||P_r) = \int P_g(x)log\frac{P_g(x)}{P_r(x)}dx$, there're two types of "error".
 - Err i. $P_g(x) \rightarrow 0$, $P_r(x) > 0$, lack of "diversity"
 - Err ii. $P_g(x) > 0$, $P_r(x) \to 0$, generate "fake" image
- Obviously, KL "punishes" type ii. more than type i.



- Vanilla GAN: Vanishing Gradient
- Improved GAN: Oscillations and Mode Collapse
- $min L_G = min KL(P_g||P_r) 2JS(P_g||P_r)$
- Further, to minimise $-2JS(P_g||P_r)$, Err i. is "encouraged" to be more severe.



- Vanilla GAN: Vanishing Gradient
- Improved GAN: Oscillations and Mode Collapse
- $min L_G = min KL(P_g||P_r) 2JS(P_g||P_r)$
- Mode collapse examples ...

- Vanilla GAN: Vanishing Gradient
- Improved GAN: *Mode collapse and Oscillations*

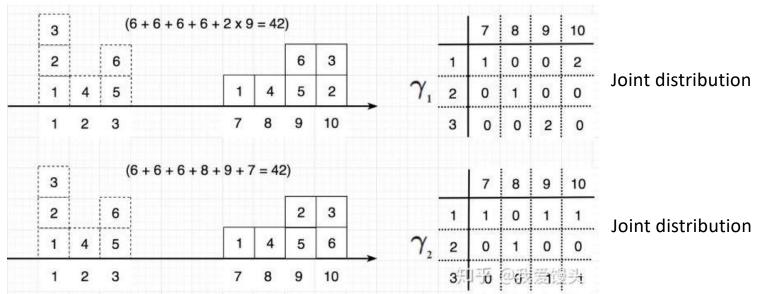
- Solid Understanding of GAN Training
 - Improved Technique for Generator Loss
 - Fundamental Problems of Two Types of GAN
 - Wasserstein Distance background for Wassertein GAN
 - A Temporal Solution
- Wasserstein GAN

Wasserstein Distance

- As we seen, the fundamental problem of (vanilla) GAN is due to the defects of JSD. Now
 we introduce a new distance.
- $W(P_r||P_g) = \inf_{\gamma \in \prod (P_g, P_r)} \mathbb{E}_{(x,y) \sim \gamma}[||x y||]$

where $\prod(Pr,Pg)$ denotes all possible joints distributions that have marginals P_r and P_g

 Wasserstein distance also goes by "earth mover's distance", the amount of "dirt" that needs to be moved to transport one distribution to the other.



Wasserstein Distance

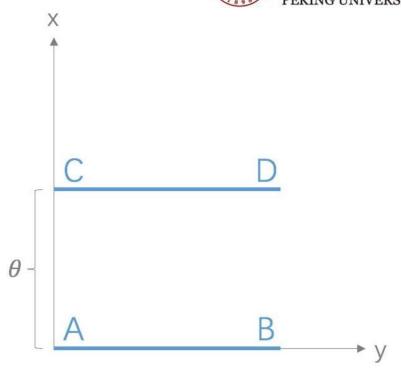
γ_1	(1 + 1	= 2)		
1	1	2	2	
3	4	6	7	
γ_2	(3 + 3	= 6)		
2	1	2	1	
3	4	6	7	

Wasserstein Distance

$$KL(P_1||P_2) = egin{cases} +\infty & ext{if } heta
eq 0 \ 0 & ext{if } heta = 0 \end{cases}$$

$$JS(P_1||P_2) = egin{cases} \log 2 & ext{if } heta
eq 0 \ 0 & ext{if } heta = 0 \end{cases}$$

$$W(P||Q) = \inf_{\gamma \in \prod(P,Q)} \mathbb{E}_{(x,y) \sim \gamma}[||x - y||] = |\theta|$$

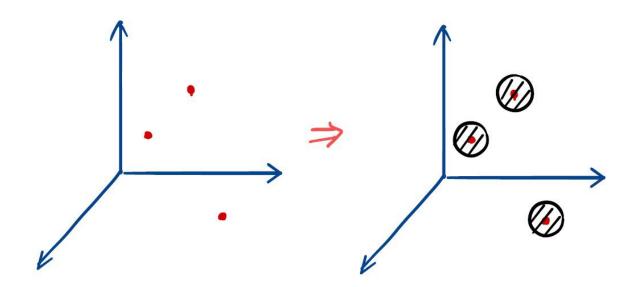


- W-distance is "better" than JSD, and JSD is "better" than KLD.
- W-distance is a better way to measure the distance between two distributions when their support sets hardly have intersection.

- Solid Understanding of GAN Training
 - Improved Technique for Generator Loss
 - Fundamental Problems of Two Types of GAN
 - Wasserstein Distance
 - A Temporal Solution
- Wasserstein GAN

A Temporal Solution: Before Wasserstein GAN

- Considering how to solve the gradient vanishing problem of Vanilla GAN
 - The problem comes from their having "nearly no intersection", due to low-dimension.
 - Idea: Add a " ϵ -ball" to each point in manifold, then a low-dimensional manifold "level-up" to full-dimensional manifold!
 - Method: Add a random vector with mean 0 and variance ϵ to each point of P_r and P_g



A Temporal Solution: Before Wasserstein GAN

- Relationship with Wasserstein distance
 - Let $P_{r+\epsilon}$ and $P_{g+\epsilon}$ denote the resulting manifolds respectively. Then by bounding the ϵ and $JS(P_{r+\epsilon}||P_{g+\epsilon})$, we can bound $W(P_r||P_g)$:

Theorem 3.3. Let \mathbb{P}_r and \mathbb{P}_g be any two distributions, and ϵ be a random vector with mean 0 and variance V. If $\mathbb{P}_{r+\epsilon}$ and $\mathbb{P}_{g+\epsilon}$ have support contained on a ball of diameter C, then $\boxed{6}$

$$W(\mathbb{P}_r, \mathbb{P}_g) \le 2V^{\frac{1}{2}} + 2C\sqrt{JSD(\mathbb{P}_{r+\epsilon}||\mathbb{P}_{g+\epsilon})}$$
(6)

- Solid Understanding of GAN Training
 - Improved Technique for Generator Loss
 - Fundamental Problems of Two Types of GAN
 - Wasserstein Distance
 - A Temporal Solution
- Wasserstein GAN

- Kantorovich-Rubinstein duality
- Lipschitz Continuity
- Wasserstein GAN
- Now we attempt to design a method to minimize the W-distance between P_r and P_g

•
$$W(P_r||P_g) = \inf_{\gamma \in \Pi(P_r, P_g)} \mathbb{E}_{(x,y) \sim \gamma}[||x - y||]$$

Obviously, calculating the above estimation is an intractable problem.

- Kantorovich-Rubinstein duality
- Lipschitz Continuity
- Wasserstein GAN
- Now we attempt to design a method to minimize the W-distance between P_r and P_g
 - Kantorovich-Rubinstein duality:

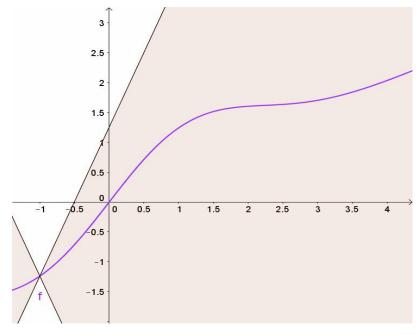
•
$$W(P_r||P_g) = \frac{1}{K} \max_{||f||_L \le K} \mathbb{E}_{x \sim P_r} f(x) - \mathbb{E}_{x \sim P_g} f(x)$$

• For function f, $||f||_L$ denotes its Lipschitz-constant.

- Kantorovich-Rubinstein duality
- Lipschitz Continuity
- Wasserstein GAN
- In particular, a real-valued function $f: \mathbb{R}^n \to \mathbb{R}$ is called Lipschitz continuous if there exists a positive real constant K such that, for all $x_1, x_2 \in \mathbb{R}^n$:

•
$$|f(x_1) - f(x_2)| \le K ||x_1 - x_2||$$

- If a function is derivable and its gradient is bounded
 - Then it is Lipschitz continuous



- Kantorovich-Rubinstein duality
- Lipschitz Continuity
- Wasserstein GAN
- Further, consider two functions f_1 , f_2 are both Lipschitz continuous, say with constants K_1 , K_2 , then the composition is also Lipschitz:

•
$$||f_1(f_2(x)) - f_1(f_2(y))|| \le K_1|f_2(x) - f_2(y)| \le K_1K_2||x - y||$$

 So if a neural network is composed of layers that Lipschitz continuous, then the network is Lipschitz continuous.

- Kantorovich-Rubinstein duality
- Lipschitz Continuity
- Wasserstein GAN
- Now we introduce our new objective
 - To minimise $W(P_r||P_g) = \frac{1}{K} \max_{||f||_L \le K} \mathbb{E}_{x \sim P_r} f(x) \mathbb{E}_{x \sim P_g} f(x)$
 - Equivalent to $\min_{G} W(P_r || P_g) = \frac{1}{K} \min_{G} \max_{||f||_{L} \le K} \mathbb{E}_{x \sim P_r} f(x) \mathbb{E}_{x \sim P_g} f(x)$
 - Equivalent to $\min_{G} W(P_r | | P_g) = \min_{G} \max_{||D||_L \le K} \mathbb{E}_{x \sim P_r} D(x) \mathbb{E}_{x \sim P_g} D(x)$

- Kantorovich-Rubinstein duality
- Lipschitz Continuity
- Wasserstein GAN
- How to optimise this objective: $\min_{G} W(P_r||P_g) = \min_{G} \max_{||D||_L \le K} \mathbb{E}_{x \sim P_r} D(x) \mathbb{E}_{x \sim P_g} D(x)$
 - First step, fix G update D: $\max_{|D||_{L} \le K} \mathbb{E}_{x \sim P_r} D(x) \mathbb{E}_{x \sim P_g} D(x)$
 - Second step, fix D update G: $\min_{G} \mathbb{E}_{x \sim P_r} D(x) \mathbb{E}_{x \sim P_g} D(x)$
 - Obviously , the key is the first step: maximise $\mathbb{E}_{x\sim P_r}D(x) \mathbb{E}_{x\sim P_g}D(x)$, while keeping the condition that $\big||D|\big|_L \leq K$

- Kantorovich-Rubinstein duality
- Lipschitz Continuity
- Wasserstein GAN
- Idea: Updating D with $\mathbb{E}_{x\sim P_r}D(x)-\mathbb{E}_{x\sim P_g}D(x)$, then clip every weight in D to [-c,c] where c is a constant e.g. c=1
 - After clipping, as each weight in D's each layer is bounded, then there's theorem claim that each layer is Lipschitz continuous.
 - Since each layer of D is Lipschitz continuous, then there always exists a K, such that $||f||_L \leq K$

和京大学 PEKING UNIVERSITY

- Kantorovich-Rubinstein duality
- Lipschitz Continuity
- Wasserstein GAN
- Algorithm:
 - 1. Sample a batch $\{x_1, x_2 ... x_n\}, \{z_1, z_2 ... z_n\}$
 - 2. fix G , update D with objective: $\max_{D} \mathbb{E}_{x \sim P_r} D(x) \mathbb{E}_{x \sim P_g} D(x)$
 - 3.Clip every weight of *D* to [-1, 1]
 - 4. fix D, update G with objective: $\min_{G} \mathbb{E}_{x \sim P_r} D(x) \mathbb{E}_{x \sim P_g} D(x)$
- Note that, we estimates $\mathbb{E}_{x \sim P_g} D(x) \approx \frac{1}{n} \sum_{i=1}^n D(G(z_i))$, $\mathbb{E}_{x \sim P_r} D(x) \approx \frac{1}{n} \sum_{i=1}^n D(x_i)$

- So ... WGAN is all you need?
- In practice ...
- LSGAN, WGAN-GP ...

Summary: Understanding GANs

- Solid Understanding of GAN Training
 - Improved Technique for Generator Loss
 - Fundamental Problems of Two Types of GAN
 - Wasserstein Distance
 - A Temporal Solution
- Wasserstein GAN

Thanks