

Normalising Flow Models (Part 2)

Hao Dong

Peking University

Normalising Flow Models (Part 2)

Hao Dong

Peking University

So far

Learning via maximum likelihood over the dataset D

$$\max_{\theta} log p(D; \theta) = \sum_{x \in D} log \pi \left(G_{\theta}^{-1}(x) \right) + log \left| det \left(\frac{\partial G_{\theta}^{-1}(x)}{\partial x} \right) \right|$$

inverted function

determinant of Jacobian

- What we need?
 - 1) Prior $z \sim \pi(z)$ easy to sample
 - 2) Invertible transformations
 - 3) Determinants of Jacobian Efficient to compute

Reference slides

- Hung-yi Li. Flow-based Generative Model
- Stanford "Deep Generative Models". Normalising Flow Models

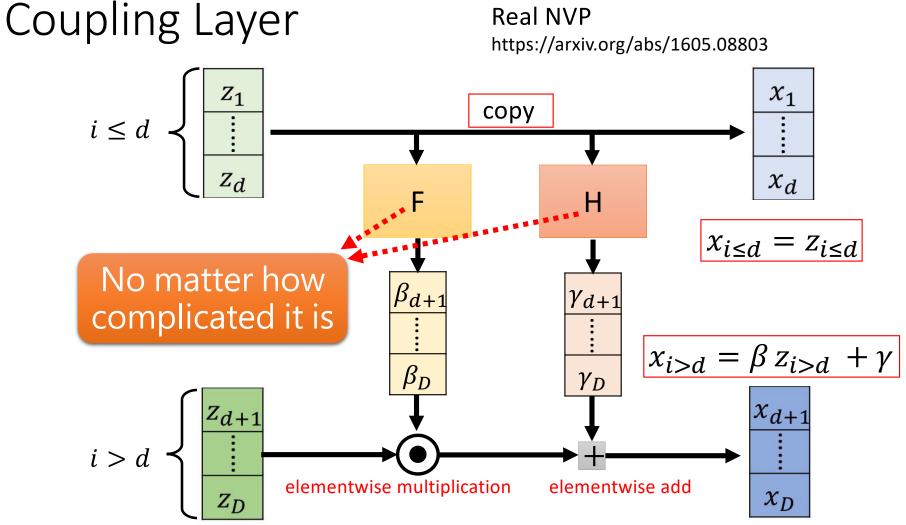
- Coupling layer based normalising flow models
 - Coupling layer
 - NICE
 - Real NVP
 - Glow
- Autoregressive models as flow models
 - MAF
 - IAF
 - Parallel Wavenet

- Coupling layer based normalising flow models
 - Coupling layer
 - NICF
 - Real NVP
 - Glow
- Autoregressive models as flow models
 - MAF
 - IAF
 - Parallel Wavenet

NICE

https://arxiv.org/abs/1410.8516

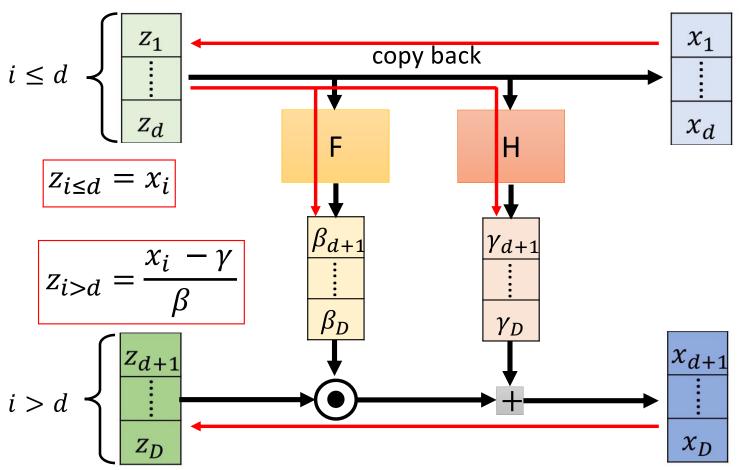
https://arxiv.org/abs/1605.08803



NICE

https://arxiv.org/abs/1410.8516

https://arxiv.org/abs/1605.08803



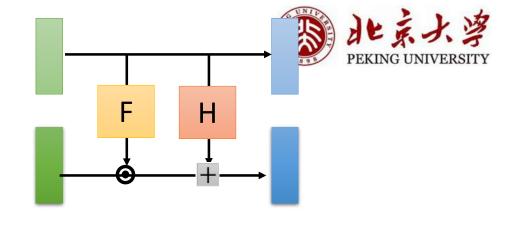
自北京大学

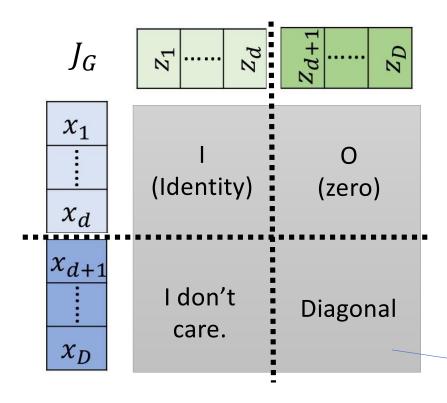
Coupling Layer

Learning via maximum likelihood over the dataset D

$$\max_{\theta} log p(D; \theta) = \sum_{x \in D} log \pi \left(G_{\theta}^{-1}(x) \right) + log \left| det \left(\frac{\partial G_{\theta}^{-1}(x)}{\partial x} \right) \right|$$
Jacobian

Coupling Layer





$$det(J_G)$$

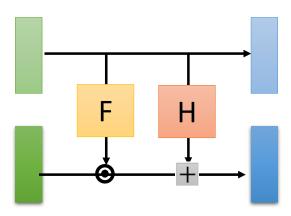
$$= \frac{\partial x_{d+1}}{\partial z_{d+1}} \frac{\partial x_{d+2}}{\partial z_{d+2}} \cdots \frac{\partial x_{D}}{\partial z_{D}}$$

$$=\beta_{d+1}\beta_{d+2}\cdots\beta_{D}$$

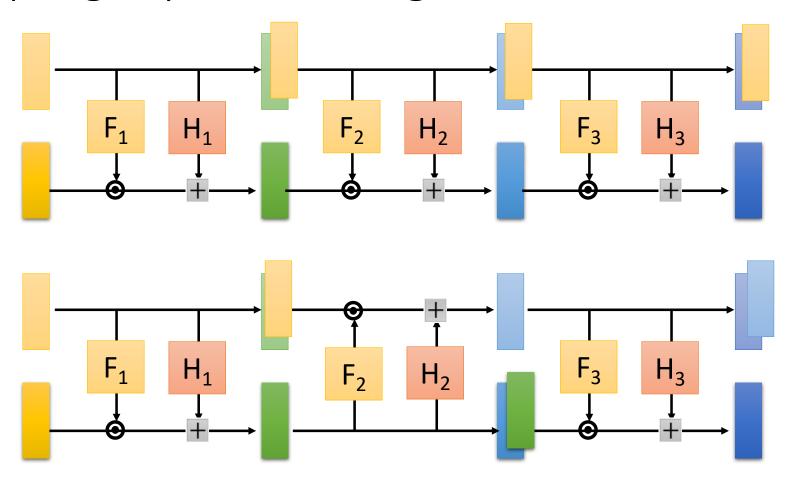
$$x_{i>d} = \beta z_{i>d} + \gamma$$

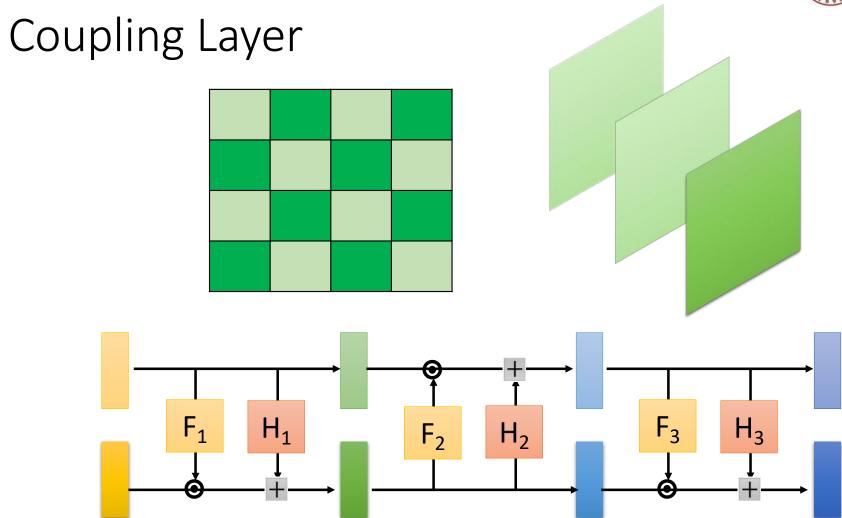
Coupling Layer

 We can use coupling layer to design invertible function and calculate the determinant of Jacobian efficiently!



Coupling Layer - Stacking

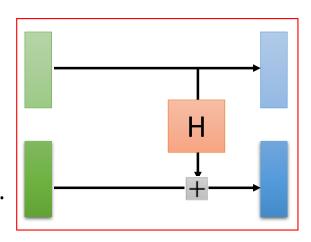




- Coupling layer based normalising flow models
 - Coupling layer
 - NICE
 - Real NVP
 - Glow
- Autoregressive models as flow models
 - MAF
 - IAF
 - Parallel Wavenet

NICE: Nonlinear Independent Components Estimation

- Additive coupling layers
 - Partition the variables **z** into two disjoint subsets
 - $x_{1:d} = z_{1:d}$
 - $x_{d+1:n} = z_{d+1:n} + H(z_{1:d})$
 - Volume preserving transformation since determinant is 1.



- Additive coupling layers are composed together (with arbitrary partitions of variables in each layer)
- Final layer of NICE applies a rescaling transformation

NICE - Rescaling layers

- Rescaling layers
 - Forward:
 - $x_i = beta_i z_i$, where $s_i > 0$ is the scaling factor for the i-th dimension.
 - Inverse:
 - $z_i = x_i/beta_i$
 - Jacobian:
 - J = diag(beta)

Samples generated via NICE

(a) Model trained on MNIST

(b) Model trained on TFD

Samples generated via NICE

(c) Model trained on SVHN

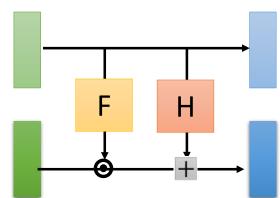
(d) Model trained on CIFAR-10

- Coupling layer based normalising flow models
 - Coupling layer
 - NICE
 - Real NVP
 - Glow
- Autoregressive models as flow models
 - MAF
 - IAF
 - Parallel Wavenet

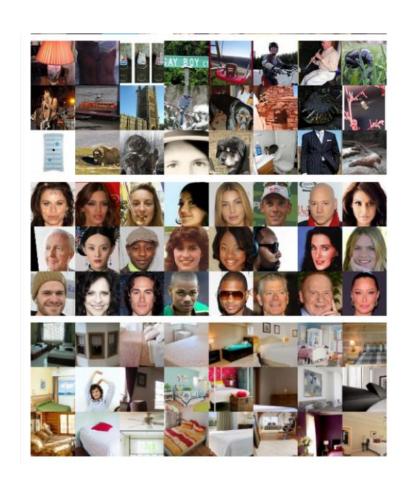
Real NVP

- Coupling layers
 - Partition the variables **z** into two disjoint subsets
 - $x_{1:d} = z_{1:d}$
 - $x_{d+1:n} = z_{d+1:n} \odot F(z_{1:d}) + H(z_{1:d})$

 Coupling layers are composed together (with arbitrary partitions of variables in each layer)

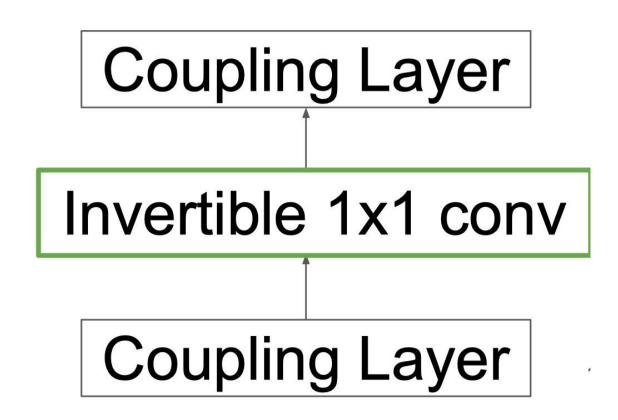


Samples generated via Real-NVP

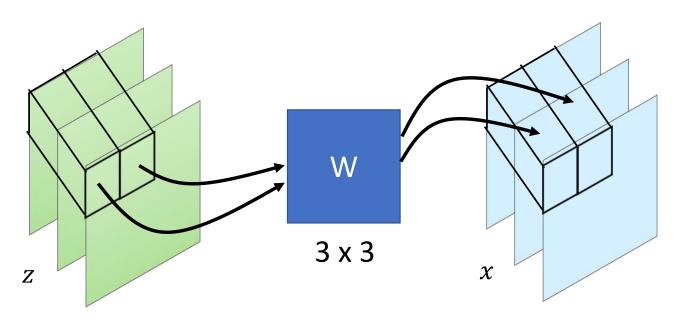


- Coupling layer based normalising flow models
 - Coupling layer
 - NICE
 - Real NVP
 - Glow
- Autoregressive models as flow models
 - MAF
 - IAF
 - Parallel Wavenet

Glow: Generative Flow with Invertible 1 Convolutions



1x1 Convolution



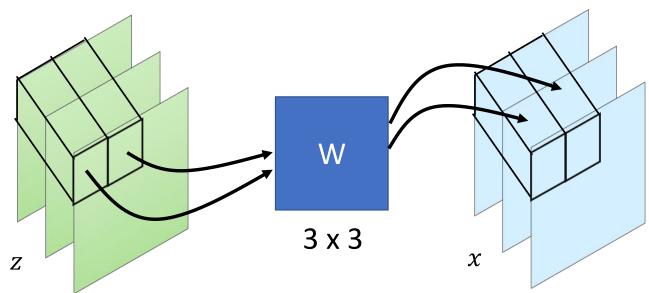
W can shuffle the channels. If W is invertible, it is easy to compute W^{-1} .

3	П	0	0	1	1
1		1	0	0	2
2		0	1	0	3

$\begin{bmatrix} W_{11} & W_{12} & W_{13} \end{bmatrix}$

1x1 Convolution

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix}$$

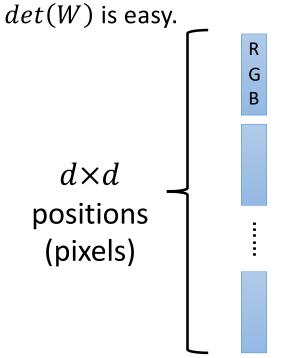


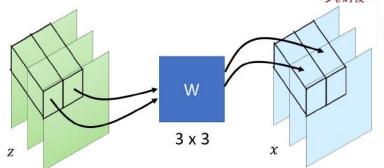
$$x = f(z) = Wz$$

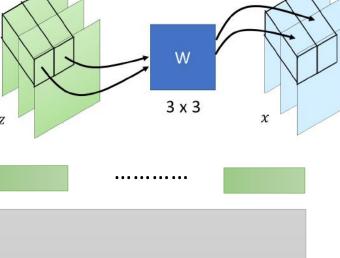
$$J_f = \begin{bmatrix} \partial x_1/\partial z_1 & \partial x_1/\partial z_2 & \partial x_1/\partial z_3 \\ \partial x_2/\partial z_1 & \partial x_2/\partial z_2 & \partial x_2/\partial z_3 \\ \partial x_3/\partial z_1 & \partial x_3/\partial z_2 & \partial x_3/\partial z_3 \end{bmatrix} = \begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \end{bmatrix} = W$$

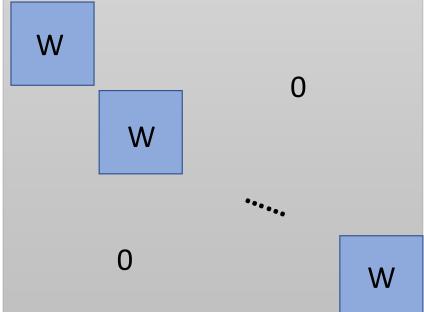
1x1 Convolution

 $(det(W))^{d\times d}$ If W is 3x3, computing







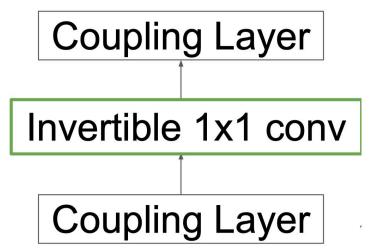


R G B

Image results: Glow



Figure 5: Linear interpolation in latent space between real images

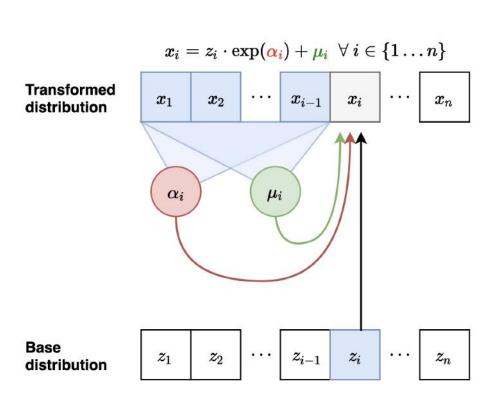


- Coupling layer based normalising flow models
 - Coupling layer
 - NICE
 - Real NVP
 - Glow
- Autoregressive models as flow models
 - MAF
 - IAF
 - Parallel Wavenet

Autoregressive models as flow models

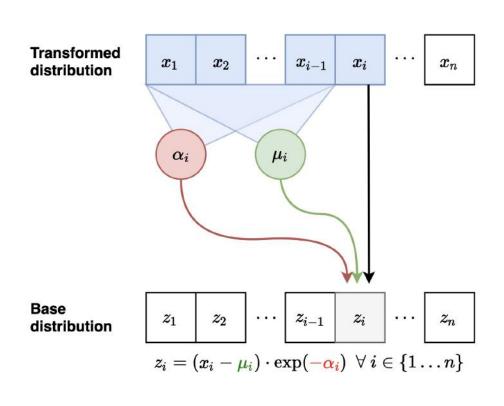
- Consider a Gaussian autoregressive model:
 - $p(\mathbf{x}) = \prod_{i=1}^{n} p(x_i | \mathbf{x}_{< i})$
 - Such that $p(x_i|x_{< i}) = N(\mu_i(x_1, \dots, x_{i-1}), \exp(\alpha_i(x_1, \dots, x_{i-1}))^2)$, μ_i, α_i are neural networks.
- Sampler for this model:
 - Sample $z_i \sim N(0,1)$
 - Let $x_i = \exp(\alpha_i) z_i + \mu_i \leftarrow \text{look like coupling layer }^{\sim}$
- Flow interpretation: transform \mathbf{z} to \mathbf{x} via invertible transformation (parameterised by μ_i , α_i)

Masked Autoregressive Flow (MAF)



- Forward: (z to x)
 - $x_i = z_i \exp(\alpha_i) + \mu_i$
 - Then calculate α_{i+1} , μ_{i+1}
- Sampling is sequential and slow (like autoregressive)

Masked Autoregressive Flow (MAF)



- Inverse (x to z)
 - $z_i = (x_i \mu_i) \exp(-\alpha_i)$
- can be done in parallel.
- Jacobian is lower diagonal; hence determinant can be computed efficiently
- Likelihood evaluation is easy and parallelisable

•
$$\max_{\theta} logp(D; \theta) = \sum_{x \in D} log\pi \left(G_{\theta}^{-1}(x) \right) + log \left| det \left(\frac{\partial G_{\theta}^{-1}(x)}{\partial x} \right) \right|$$

- MAF can calculate $G_{\theta}^{-1}(x)$ parallel.
- MAF: Fast likelihood evaluation (parallel), slow sampling (sequential)

- Coupling layer based normalising flow models
 - Coupling layer
 - NICE
 - Real NVP
 - Glow
- Autoregressive models as flow models
 - MAF
 - IAF
 - Parallel Wavenet

Inverse Autoregressive Flow (IAF)



- Forward: (z to x)
 - $x_i = z_i \exp(\alpha_i) + \mu_i$
 - parallel
- Inverse (x to z)
 - $z_i = (x_i \mu_i) \exp(-\alpha_i)$
 - Then compute μ_i , α_i
 - sequential

Figure adapted from Eric Jang's blog

Kingma et al. Improving Variational Inference with Inverse Autoregressive Flow

Inverse Autoregressive Flow (IAF)

- Fast to sample (parallel)
- Slow to evaluate likelihoods of data points during training (sequential)
- Fast to evaluate likelihoods of a generated point (we only need to cache $z_1, z_2, ..., z_n$)

IAF is inverse of MAF

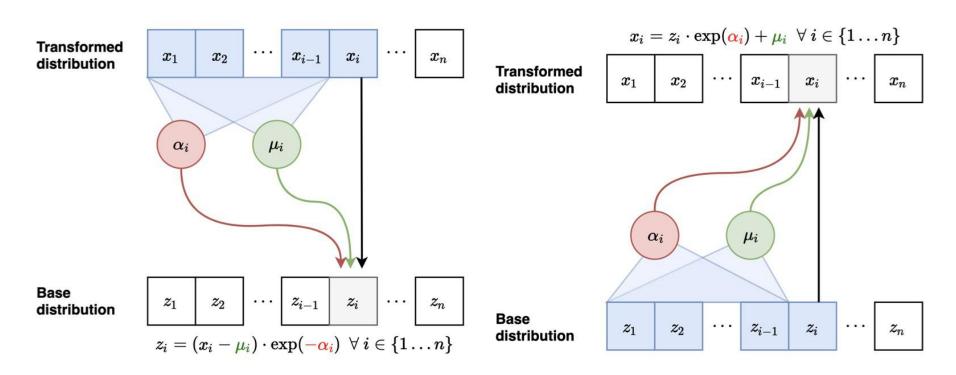


Figure: Inverse pass of MAF (left) vs. Forward pass of IAF (right)

IAF vs. MAF

- Computational tradeoffs
 - MAF: Fast likelihood evaluation, slow sampling
 - IAF: Fast sampling, slow likelihood evaluation
- MAF more suited for training based on MLE, density estimation
- IAF more suited for real-time generation
- Can we get the best of both worlds?

- Coupling layer based normalising flow models
 - Coupling layer
 - NICE
 - Real NVP
 - Glow
- Autoregressive models as flow models
 - MAF
 - IAF
 - Parallel Wavenet

Parallel Wavenet

MAF: $x \mapsto z$ parallel

IAF: $z \mapsto x$ parallel

- Two part training with a teacher (MAF) and student model (IAF)
- Teacher can be efficiently trained via MLE.
- Once teacher is trained, initialise a student model parameterised by IAF. Student model cannot efficiently evaluate density for external data points but allows for efficient sampling
- **Key observation:** IAF can also efficiently evaluate densities of its own generations (via caching the noise variates $z_1, z_2, ..., z_n$)

Parallel Wavenet

MAF: $x \mapsto z$ parallel IAF: $z \mapsto x$ parallel

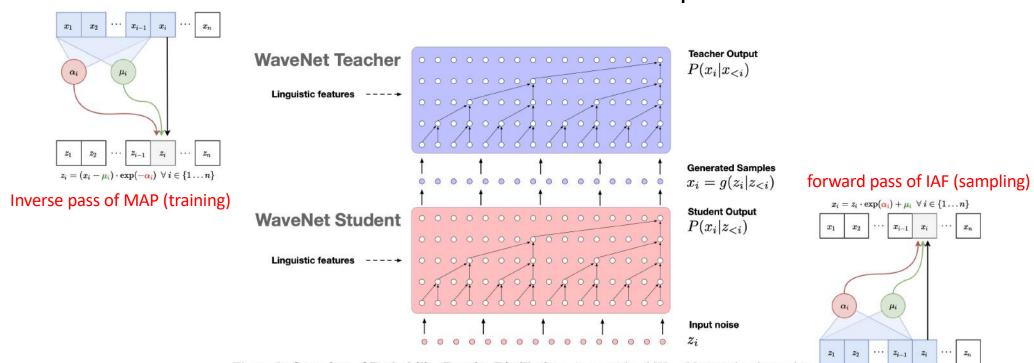


Figure 2: Overview of Probability Density Distillation. A pre-trained WaveNet teacher is used to score the samples x output by the student. The student is trained to minimise the KL-divergence between its distribution and that of the teacher by maximising the log-likelihood of its samples under the teacher and maximising its own entropy at the same time.

Parallel Wavenet

MAF: $x \mapsto z$ parallel

IAF: $z \mapsto x$ parallel

• **Probability density distillation**: Student distribution is trained to minimise the KL divergence between student (s) and teacher (t) $D_{KL}(s,t) = E_{x \sim s}[\log(s(x)) - \log(t(x))]$

- Evaluating and optimising Monte Carlo estimates of this objective requires:
 - Samples x from student model (IAF)
 - Density of x assigned by student model (IAF)
 - Density of x assigned by teacher model (MAF)
- All operations above can be implemented efficiently!

Parallel Wavenet: Overall algorithm

- Training
 - Step 1: Train teacher model (MAF) via MLE
 - Step 2: Train student model (IAF) to minimize KL divergence with teacher
- Test-time: Use student model for testing
- Improves sampling efficiency over original Wavenet (vanilla autoregressive model) by 1000x!
- Useful in speech synthesis

- Coupling layer based normalising flow models
 - Coupling layer
 - NICE add only
 - Real NVP add+mul
 - Glow conv 1x1
- Autoregressive models as flow models
 - MAF fast train, slow test
 - IAF fast test, slow train
 - Parallel Wavenet fast train, fast test

Summary of Normalising Flow Models

- Transform simple distributions into more complex distributions via change of variables
- Jacobian of transformations should have tractable determinant for efficient learning and density estimation
- Computational tradeoffs in evaluating forward and inverse transformations

Thanks