

Introduction of Deep Generative Models

Hao Dong

Peking University

Introduction

- What and Why
- Generative Models vs. Computer Graphics
- Discriminative vs. Generative
- Selected Generative Applications
- Selected Advanced Topics
- Challenges
- Syllabus
- Prerequisites
- Logistics
- Grading Policies

- What and Why
- Generative Models vs. Computer Graphics
- Discriminative vs. Generative
- Selected Generative Applications
- Selected Advanced Topics
- Challenges
- Syllabus
- Prerequisites
- Logistics
- Grading Policies

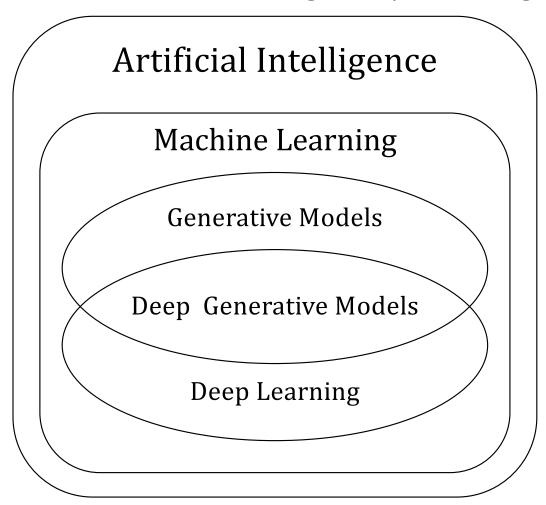
Speech

What and Why

"What I cannot create, I do not understand"
--- Richard Feynman

Understand the complex and unstructured data (image, text, speech, video ...)

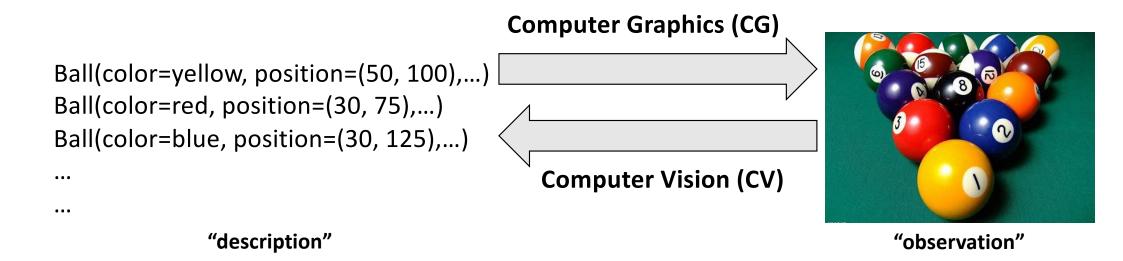
Artificial Intelligence, Machine Learning, Deep Learning ...



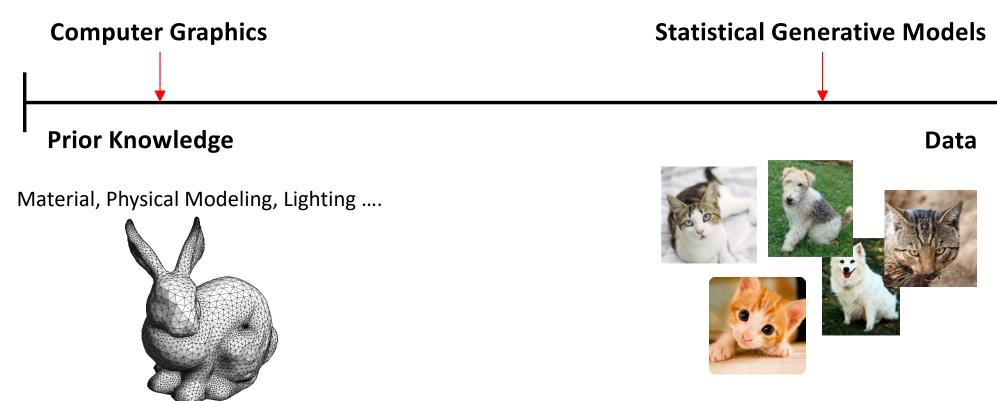
- What and Why
- Generative Models vs. Computer Graphics
- Discriminative vs. Generative
- Selected Generative Applications
- Selected Advanced Topics
- Challenges
- Syllabus
- Prerequisites
- Logistics
- Grading Policies

Computer Vision vs. Computer Graphics

• Generate data (e.g., image) in computer

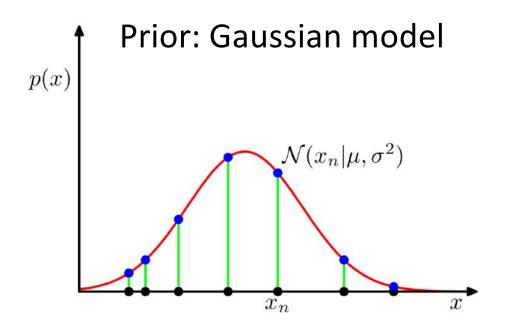


• Statistical Generative Models are data-driven methods



- Computer Graphics
 - Purely based on prior knowledge
 - Difficult to scale and generalise
 - Development is time-consuming
- Machine Learning/Deep Learning
 - Reduce the need of prior knowledge
 - Learn from data
- Statistical/Deep Generative Models still need some prior knowledge ...
 - loss function, learning method, architecture, prior distribution (e.g., Gaussian)

Statistical/Deep Generative Models



- Given data samples
- Learn the probability distribution p(x)

So that

• It is generative because new data samples can be sampled from p(x)

$$x_{new} \sim p_x$$

Statistical/Deep Generative Models

The data distribution can be high-dimensional, like images

- Given data samples
- Learn the probability distribution p(x)

So that

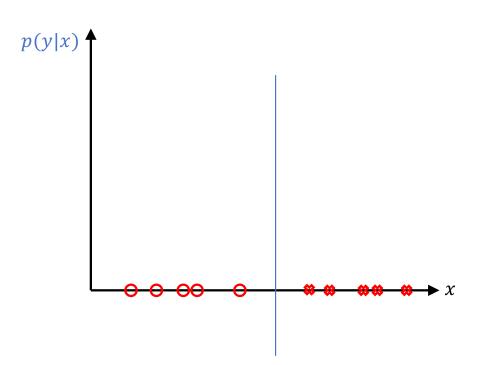
• It is generative because new data samples can be sampled from p(x)

$$x_{new} \sim p_x$$

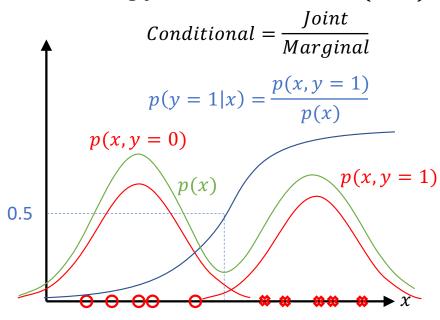
- What and Why
- Generative Models vs. Computer Graphics
- Discriminative vs. Generative
- Selected Generative Applications
- Selected Advanced Topics
- Challenges
- Syllabus
- Prerequisites
- Logistics
- Grading Policies

Discriminative vs. Generative

Discriminative models: classify data finding the **decision boundary** P(Y|X)

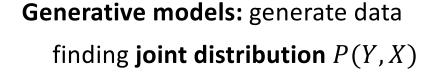


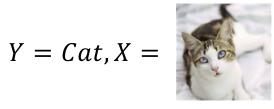
Generative models: generate data finding **joint distribution** P(Y, X)

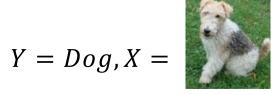


Discriminative models: classify data finding **conditional distribution** P(Y|X)

$$P(Y = Cat|X = \bigcirc) = 0.99$$







The data distribution can be high-dimensional, like images

Discriminative vs. Generative

- Discriminative models do not model/learn the probability distribution of data p(x) and find the decision boundary directly to form p(y|x)
- Generative models need to first model/learn the probability distribution of data p(x) and the joint probability distribution p(x,y) and the estimated the conditional probability $p(y|x) = \frac{p(x,y)}{p(x)}$

- What and Why
- Generative Models vs. Computer Graphics
- Discriminative vs. Generative
- Selected Generative Applications
- Selected Advanced Topics
- Challenges
- Syllabus
- Prerequisites
- Logistics
- Grading Policies


```
We usually study generative models with:
```

image

text

speech/music

• • •

or their combinations

Discriminative models

$$P(Y = Cat | X = \bigcirc)$$

"Unconditional" generative models: generate data from a prior distribution

$$P(X,Z) = P(X|Z)P(Z)$$

$$P(X = | Z = N(0,1))$$

"Class" conditional generative models

$$P(X = | Y = Cat)$$

"Text" conditional generative models

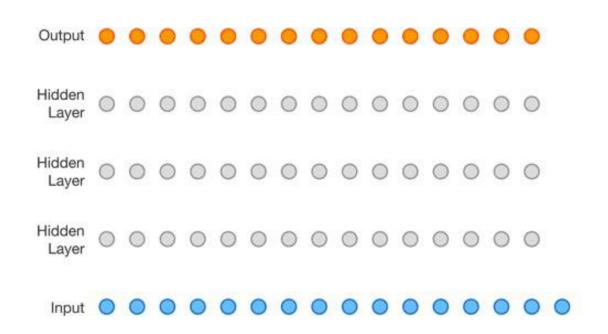
$$P(X = | Y = "a flower with white petals and yellow stamen")$$

"Text-image" conditional generative models

P(
$$X = |Y_1| = |Y_2| = "a yellow bird with grey wings")$$

Wavenet: Text to Speech

$$P(X = speech|Y = sentence)$$



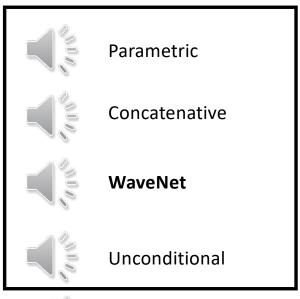


Image Super Resolution

 $P(High\ resolution\ image\ |\ Low\ resolution\ image)$

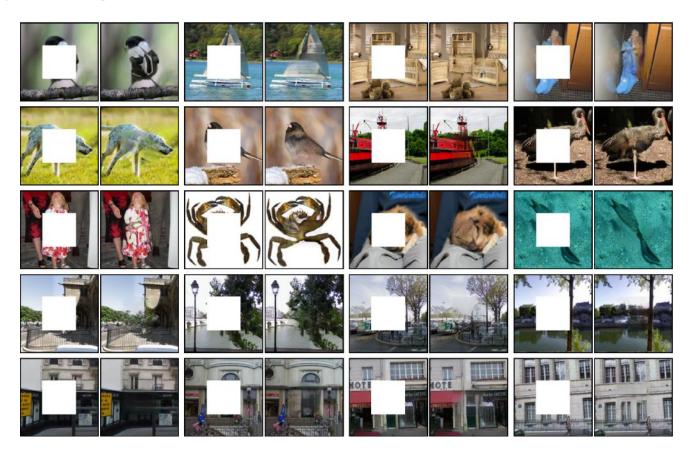
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. C. Ledig, L. Theis et al. CVPR 2017.

Image Super Resolution

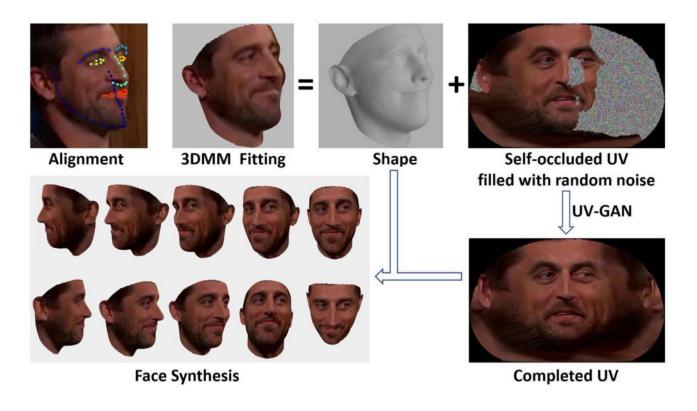
P(*High quality image* | *Low quality image*)

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. C. Ledig, L. Theis et al. CVPR 2017.

Image inpainting



• 2D→3D via Image Inpainting



UV-GAN: Adversarial Facial UV Map Completion for Pose-invariant Face Recognition. *J. Deng, S. Cheng et al. CVPR. 2018.*

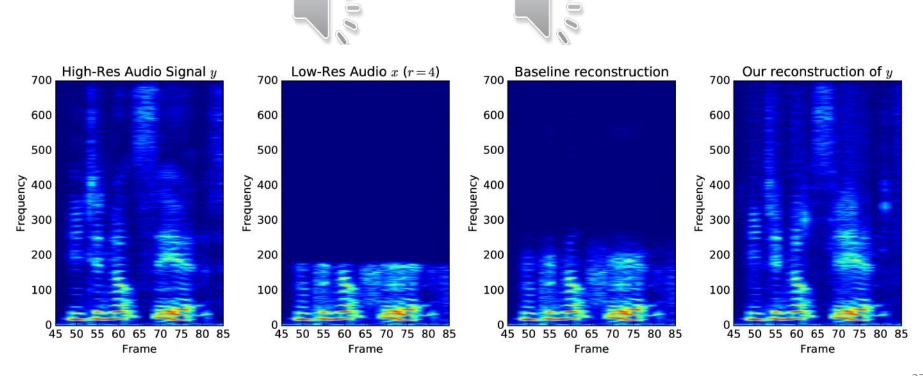
Image-to-Image Translation

$P(image\ from\ domain\ B\mid image\ from\ domain\ A)$

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. C. Ledig, L. Theis et al. CVPR 2017.

Audio Super Resolution

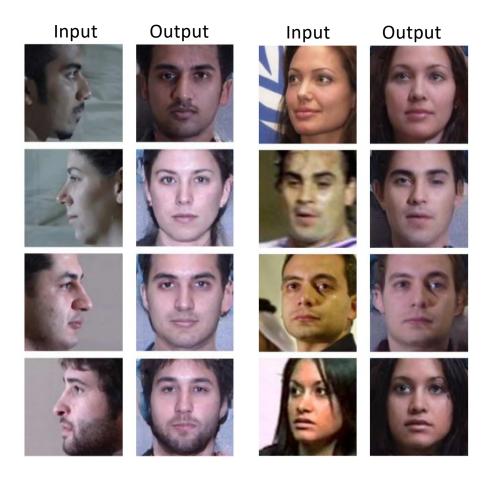
 $P(High\ resolution\ signal\ |\ Low\ resolution\ signal)$



DeepFake

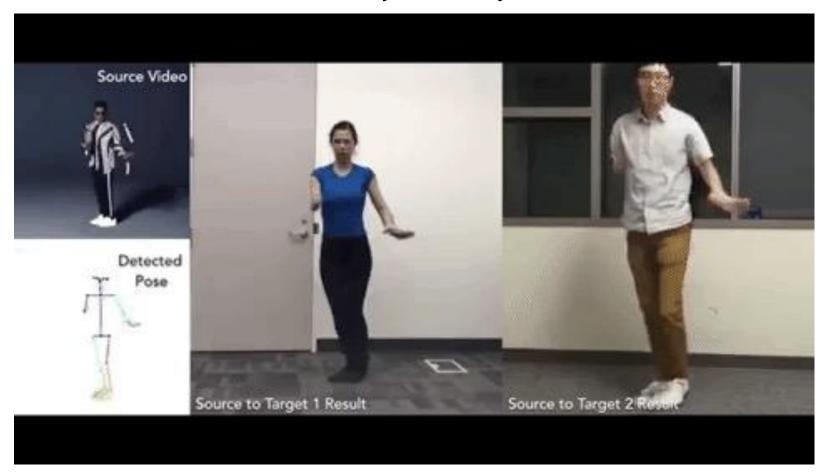
 $P(me \mid you)$

Face Rotation

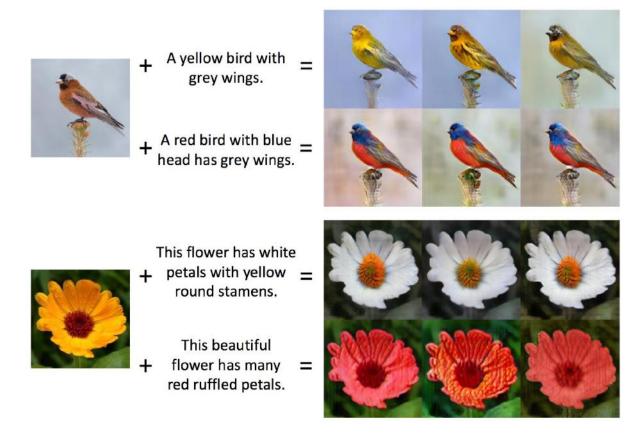


Everybody Dance Now

P(*my dance* | *your dance*)



Combine Image and Sentence: <u>Two Conditions</u>



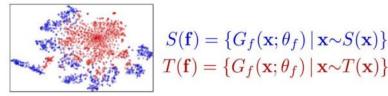
• 2D Video to 3D shape



- What and Why
- Generative Models vs. Computer Graphics
- Discriminative vs. Generative
- Selected Generative Applications
- Selected Advanced Topics
- Challenges
- Syllabus
- Prerequisites
- Logistics
- Grading Policies

Selected Advanced Topics

Domain Adaptation: Model the distribution



Domain shift among sources and target

Source: Labelled Target: Unlabelled

和京大学 PEKING UNIVERSITY

Selected Advanced Topics

Adversarial Attack

Fig. 4: An example of digital dodging. Left: An image of actor Owen Wilson, correctly classified by VGG143 with probability 1.00. Right: Dodging against VGG143 using AGN's output (probability assigned to the correct class: < 0.01).

Fig. 9: An illustrations of attacks generated via AGNs. Left: A random sample of digits from MNIST. Middle: Digits generated by the pretrained generator. Right: Digits generated via AGNs that are misclassified by the digit-recognition DNN.

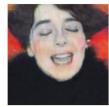
Sharif M, Bhagavatula S, Bauer L, et al. Adversarial generative nets: Neural network attacks on state-of-the-art face recognition[J]

Selected Advanced Topics

Meta Learning

face landmark tracks

source frame



target frame

Source

 $Target \rightarrow Landmarks \rightarrow Result$

Source

 $Target \rightarrow Landmarks \rightarrow Result$

extracted face landmark tracks from a different video sequence of the same person

The results are conditioned on the landmarks taken from the target frame, while the source frame is an example from the training set.

Zakharov E, Shysheya A, Burkov E, et al. Few-shot adversarial learning of realistic neural talking head models[C] Proceedings of the IEEE International Conference on Computer Vision

Selected Advanced Topics

Imitation Learning

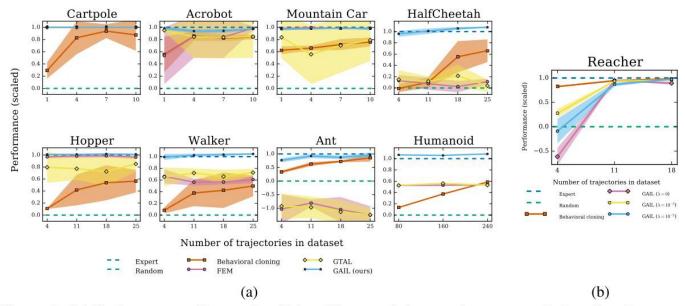


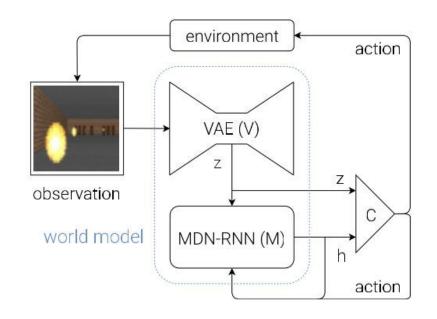
Figure 1: (a) Performance of learned policies. The y-axis is negative cost, scaled so that the expert achieves 1 and a random policy achieves 0. (b) Causal entropy regularization λ on Reacher. Except for Humanoid, shading indicates standard deviation over 5-7 reruns.

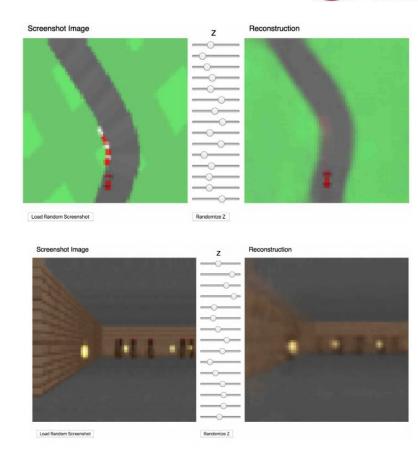
Ho J, Ermon S. Generative adversarial imitation learning[C] Advances in neural information processing systems.

北京大学 PEKING UNIVERSITY

Selected Advanced Topics

Reinforcement Learning: World Model





Selected Advanced Topics

Deep Generative Models relate to all the following topics:

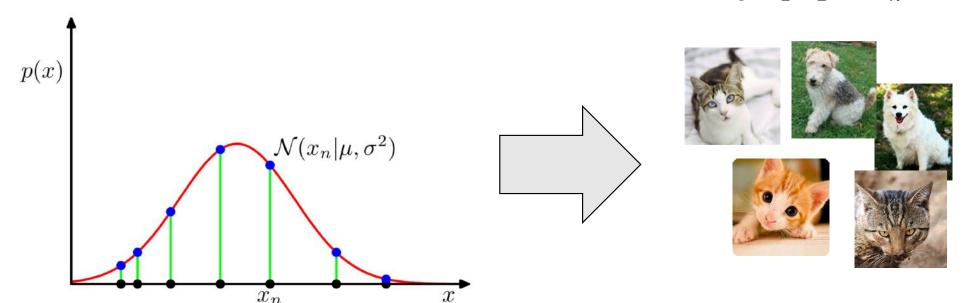
- Unsupervised Learning
- Semi-supervised Learning
- Weakly-supervised Learning
- Dual Learning
- Self-supervised Learning
- Self-augmented Learning
- ...
- ...
- ...

- What and Why
- Generative Models vs. Computer Graphics
- Discriminative vs. Generative
- Selected Generative Applications
- Selected Advanced Topics
- Challenges
- Syllabus
- Prerequisites
- Logistics
- Grading Policies

Challenges

Representation ability

For 1-D data x, the probability distribution p(x) is simple, e.g., Gaussian? For high-dimensional data $\mathbf{x}=(x_1,x_2,\ldots,x_n)$, e.g., n pixels how do we learn the joint distribution $p(x_1,x_2,\ldots,x_n)$?



Challenges

Learning method

If we can **represent** the p(x), the next question:

how do we **measure** and **minimise** the distance between the estimated distribution p(x) and the real distribution p_{data} ?

If we use a parametric model (e.g., Gaussian) to represent p(x), it can be an optimisation problem:

$$\min_{\theta \in \mathcal{M}} \mathcal{L}(p_{data}, p_{\theta}(x))$$

where the parameter heta is from the model ${\mathcal M}$

Challenges

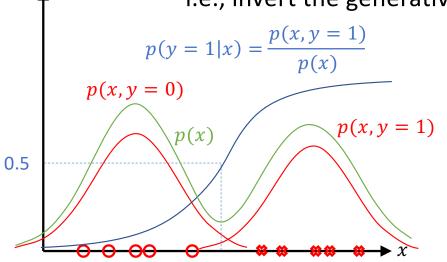
Inference

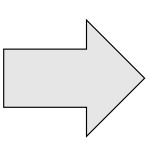
If we can represent the p(x) and successfully learn it, we now can:

- 1. Generative task (sampling): $\mathbf{x}_{new} \sim p(\mathbf{x})$
- 2. Density estimation: p(x) high if x looks like a real data sample

the final question: how do we perform discriminative task?

i.e., invert the generative process





- What and Why
- Generative Models vs. Computer Graphics
- Discriminative vs. Generative
- Selected Generative Applications
- Selected Advanced Topics
- Challenges
- Syllabus
- Prerequisites
- Logistics
- Grading Policies

Syllabus

- Week 1: Introduction (Today)
- Week 2: Autoregressive Models
- Week 3: Variational Autoencoders
- Week 4: Normalising Flow Models
- Week 5: Generative Adversarial Networks
- Week 6: Practice
- Week 7: Evaluation of Generative Models
- Week 8: Energy-based Models
- Week 9: Discreteness in Latent Variables
- Week 10: Challenges of Generative Models
- Week 11: Applications of Generative Models
- Week 12: Generative Model Variants
- Week 13-14: Paper Reading
- Week 15-16: Project Presentation

Foundation

might be changed later ...

Research

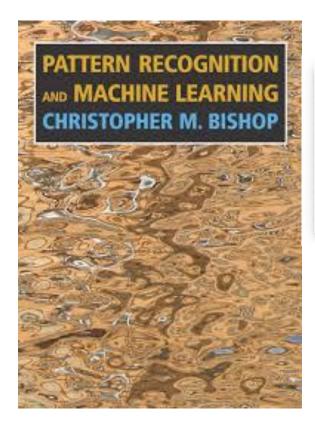
Practice

- What and Why
- Generative Models vs. Computer Graphics
- Discriminative vs. Generative
- Selected Generative Applications
- Selected Advanced Topics
- Challenges
- Syllabus
- Prerequisites
- Logistics
- Grading Policies

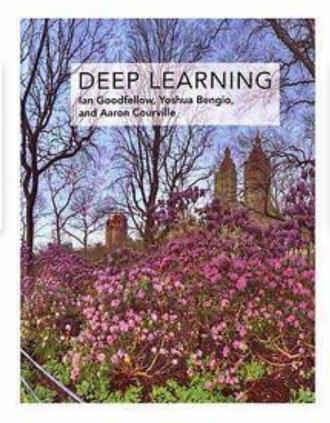
Prerequisites

- Basic knowledge of probabilities
 - Bayes rule, chain rule, probability distribution ...
- Basic knowledge of machine learning/deep learning
 - "Machine Learning", "Pattern Recognition and Machine Learning"
 - "Computer Vision", "Natural Language Processing" ...
- Basic programming language
 - Python

- What and Why
- Generative Models vs. Computer Graphics
- Discriminative vs. Generative
- Selected Generative Applications
- Selected Advanced Topics
- Challenges
- Syllabus
- Prerequisites
- Logistics
- Grading Policies



Free Download



Free Download

Deep Generative Models

Stefano Ermon, Aditya Grover https://deepgenerativemodels.github.io

Deep Generative Models

Rajesh Ranganath https://cs.nyu.edu/courses/spring18/CSCI-GA.3033-022/

- What and Why
- Generative Models vs. Computer Graphics
- Discriminative vs. Generative
- Selected Generative Applications
- Selected Advanced Topics
- Challenges
- Syllabus
- Prerequisites
- Logistics
- Grading Policies

Grading Policies

•	Paper	Readi	ng 40%
---	-------	-------	--------

•	Understanding	(Q/A)	20%
---	---------------	-------	-----

Presentation 20%

• Course Project 50%

- Proposal 10%
- Open-source quality 15%
- Report 15%

Others 10%

- Discussion
- Attendance

- 1~2 students/group
- Topic: application or theory
- Open source: Github repository
- 4 Pages Report
 - Motivation
 - Introduction
 - Related Work
 - Method
 - Evaluation
 - Conclusion

might be changed later ...

Thanks

https://deep-generative-models.github.io

https://zsdonghao.github.io

Thanks