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ABSTRACT

Researchers suffer from two problems while building a data pro-
cessing pipeline for atmospheric scanning LiDAR. First, they must
build an entire system that handles collecting signals, processing
data, and visualizing the results. Second, they should support fast
data processing to expand and deploy their system. In this paper, we
introduce MISE, a fast integrated system that handles atmospheric
scanning LiDAR data. MISE provides end-to-end processing, con-
figuration options, and predefined signal-processing methods. In
addition, the system uses an efficient chunking approach for fast
processing with an array database. We demonstrate the construc-
tion and operation of a fine-dust particle monitoring system (based
on a real-world scenario) using MISE. This demonstration demon-
strates the usability and fast performance of MISE.
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1 INTRODUCTION

Atmospheric Light Detection and Ranging (LiDAR) is a LIDAR class
used to study atmospheric properties. It is used to observe the prop-
erties of a wide area by combining it with a scanning mechanism.
Wind movement measurements on the sea [8] and air pollution
detection over a city [10] are examples of using atmospheric Li-
DAR. To perform such experiments, researchers need to construct a
pipeline by fetching the signal data of the hardware, processing the
data, and visualizing the atmospheric properties on their computer
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screen. They used a geographic information system (GIS) or built
customized software to implement the data processing pipeline.

There are two problems with previous settings. First, the previous
solutions are not integrated systems. Researchers need to put in
additional efforts to complete pipelines. When using a GIS, they
must move data from one or more hardware and save it to a database.
In addition, they should build a program to process signal data to
atmospheric values. If researchers choose to make a customized
data processing program, they should implement many things,
including preprocessing methods, utilities, and a visualization tool.
Second, improving the processing speed is difficult owing to the
absence of appropriate database technology. Research covering a
broad area by constructing a LIDAR network [6] implies that a
system is required to handle fast and big data generation. However,
a relational database system (RDBMS), which is widely used to
manage LiDAR data, cannot deal with this situation. Efficient LIDAR
data processing using an appropriate data model is required. Studies
that compensate for the first problem [4, 9] and the second one
[5, 7] exist, but these cannot address the problems exactly.

In this demonstration, we introduce MISE, an array-based inte-
grated system processing atmospheric scanning LiDAR data. This
provides the following key features:

e End-to-end data processing: MISE handles data processing
pipelines without installing other systems.

e Easy to update: The system provides flexible configuration
options. It also provides predefined methods commonly used
in signal processing so that a researcher can easily update
its algorithm.

o Fast data processing: A researcher can access the processing
results quickly with the benefit of an array database.

We demonstrate the operation of a fine-dust particle monitoring
system using MISE in a real-world scenario. This includes configur-
ing the system, automatic data processing, and visualization of the
results. Through the demonstration, we show that MISE is conve-
nient to use and outperforms other systems made for comparison.

2 MISE

To minimize a researcher’s effort to build a data analysis pipeline, we
provide MISE as an integrated system. In addition, MISE uses SciDB
to support fast data processing. The integrated components and
their usability are discussed in Section 2.1. We show the chunking
approach in Section 2.2. Furthermore, we explain our empirical
implementation issues in Section 2.3.

2.1 Integrated System

To measure atmospheric properties, researchers must handle a data-
processing pipeline that comprises three steps. First, the researchers
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Figure 1: Overview of MISE. MISE consists of Collector, Processor, Visualizer, and SciDB. The entities on the left side of MISE are
sources providing data to MISE. The red-colored arrows indicate the flow of data processing from the sources. A user on the
right side is who wants to explore the data (e.g., a researcher). The blue-colored ones also indicate the flow of data processing.

copied the signal data from one or more LiDAR hardware to their
workstations. Fetching of additional reference data is also required.
Second, they wrote a program that processed raw data. Finally, they
visualized the processed data using GIS or an written program.

Without using any system, too much manual work is required.
If they try a new measurement, they must redo the first step. When
they want to update their algorithm or visualization program, they
must update their program and build them again. Even if they use
GIS or previous solutions, they are still required to put in additional
efforts to build the pipeline. For example, they should make loading
and visualization components when using the earth observation
system [9] and write a whole processing code from scratch to
process signal data when using a web-based visualization platform
[4].

We designed MISE to avoid these cumbersome works and make
measurements possible after configuring it. Details of the system
components are described in Section 2.1.1. In addition, Section 2.1.2
shows user experiences and MISE-providing features that a re-
searcher can use when they change their measurement.

2.1.1 System Components. MISE comprises three modules and
SciDB instances. Each module handles the corresponding pipeline
step. The modules receive requests or interact with the SciDB to
handle the data. Figure 1 shows an overview of MISE. The details
of each module are as follows.

Collectorloads the signal and reference data to SciDB. It watches
a directory connected to a LIDAR through the network or waits for
a file transmission request made from the hardware. When the data
accumulated enough, the collector imports the data to SciDB. It also
obtains reference data (e.g., the concentration of particulate matter)
from external sources (e.g., sensors and open database), if needed.
After loading all data, it triggers the processor to process raw data.

Processor processes and analyzes the signal data. The processor
simply submits queries to SciDB. Depending on what kind of request
is received, it submits processing or analysis queries. As a result,
the processor generates a new array.
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Visualizer visualizes the processed and analyzed data to the
user. Once it receives a request from a user, the visualizer fetches
the processed array from SciDB. When the user requests an analy-
sis result, the visualizer triggers the processor to obtain the result.
the visualizer finally returns the arrays when they are ready to
serve. If the user requests values of a specific time or coordinate,
the visualizer outputs a version for the time or values for the cor-
responding dimensions. the visualizer also caches the results to
compensate for the fetching time. The built-in visualization tool
provided by us is shown in Figure 2.

SciDB is used to manage and process all data in MISE. All data
are stored in an array format in the database. To consider the time
information of the data, we manage arrays with versioning.

2.1.2  Usability. MISE was designed for easy of use. To start MISE,
a researcher is required to configure the options for their measure-
ment. After running, the system automatically handles the pipeline.
Once LiDAR starts a measurement and generates files, MISE au-
tomatically ingests, processes, and manages data. The researcher
can see the processing result by accessing the visualizer (such as
visiting the website in Figure 2).

MISE provides a Javascript Object Notation (JSON) configura-
tion file with over 50 options including preprocessing parameters,
debugging, reference data sources, etc. Users can customize the
modules by modifying the file. By doing so, the user does not need
to rebuild the system in such a case of changing trivial parameters
or considering a geometric environment. We are currently adding
more options to support more usability.

Although MISE provides several configuration options, researchers
may need to update their processing algorithms. They may add
a new preprocessing step, change the order of processing meth-
ods, or even implement a new processing algorithm. MISE provides
Python-based and SciDB-based processing backends with prede-
fined methods. Researchers can update the processor by using one of
them. Python-based processing backend is researcher-friendly, but
it has poor performance compared to the other. Thus, the choice is
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Figure 2: Built-in visualization tool. The circle in the cen-
ter indicates the range of scanning LiDAR. The heat map
layer inside the circle shows processed atmospheric values.
If users click a specific point, the popup showing the value
and coordinates is opened. On the upper side, the location of
LiDAR hardware (left) and the legend (right) are displayed.
At the bottom, the time travel scroll bar is presented. The
play button automatically shows the results in 24 hours.
Users can move and scroll in and out to explore.

recommended when researchers develop a new algorithm or debug
the system. To use Python as a processing backend, a user should
change the setting to use it. Subsequently, the user can update
the algorithm by modifying the Python baseline implementation
provided. If the user wants to deploy the algorithm to serve, we rec-
ommend using the SciDB-based backend. The user should modify
the provided SciDB UDO source code to implement an algorithm.
After building them and loading the builded file to SciDB, MISE will
use it.

We provide the following predefined methods that both backends
(Python and C++) can be used:

o Interpolation: bilinear, bicubic, delaunay, and linear.

e Preprocessing: moving average, range correction, noise re-
duction, window summation, and integration by parts.

o Geospatial: coordinates conversion.

2.2 Chunking Approach

Improving the performance of atmospheric LiDAR data processing
without considering the data characteristics is challenging. For ex-
ample, a previous setting with RDBMS [5] is not appropriate for
handling large scanning LiDAR datasets owing to the data’s multidi-
mensional features. Relational data models do not work well when
processing geometric data with spatial and temporal dimensions
[2]. As increasingly more LiDAR hardware is installed for atmo-
spheric scanning and sending big data at once, these approaches
make it difficult to achieve high performance.

MISE addresses this problem by managing scanning LiDAR data
as an array model. There are several reasons why LiDAR data fit
the array model. First, the raw and processed data have multidi-
mensional features such as hardware, angle, distance, latitude, and
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Figure 3: Example of the chunk processing. Each chunk is
processed in parallel but should be processed as a batch unit.
Chunks are distinguished by color. The float numbers in
cells of preprocessed array are examples of the two param-
eters. The numbers in parentheses indicate the size of the
dimension. The circled numbers show the order of three pro-
cessing steps: preprocessing, main-processing, and postpro-
cessing.

longitude. Second, LiDAR data processing such as interpolation
can benefit from utilizing locality between adjacent cells in the
array. Third, we can utilize the architectural features of SciDB for
performance. SciDB manages the array by each chunk, which is a
part of the entire array [1]. This saves chunks distributed in several
instances. When the operator runs for the array, each chunk inside
the instances is processed in parallel. Therefore, we designed array
schemas for efficient chunk processing by considering the LIDAR
data properties.

We provide four different arrays for processing: initial signal
array, preprocessed array, main-processed array, and postprocessed
array. These arrays are the inputs and outputs of three processing
steps: preprocessing (D), main-processing (), and postprocessing
(®). The first three arrays comprise three dimensions: hardware,
angle, and distance indices. After the (3) is completed, the output
postprocessed array comprises three dimensions: hardware, lati-
tude, and longitude indices. For the chunk size, we use the entire
size of each LiDAR hardware observation, the angle size multiplied
by the distance size or the latitude size multiplied by the longitude
size. There are no dependencies between observations of differ-
ent LiDAR hardware. This implies the benefits of our chunking
approach.

As an example, let us suppose an expanded situation based on
real observations held in Siheung. (The number of the hardware
increases from 1 to N.) Figure 3 shows the array schema and how
the chunk processing works in parallel. One LiDAR hardware sends
17 directions’ scanned results at once. There are 4096 distance points
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for each direction. Therefore, we define the chunk size as 1 X 17 X
4096 at first. After the @) and (2), the chunk size became 1 X 17 X
175 and 1 X 17 X 173, respectively. The reason of shrinking distance
size from 4096 to 173 depends on processing algorithms. After the
@), the chunk size changes to 1 X 522 X 522. By considering the
distance interval, 522 is the chosen number that does not damage
the visualization resolution. The parallelism between hardware is
protected, even if the chunk size is changed.

2.3 Implementation Issues

We face several issues while implementing MISE. In this section, we
explain how we solved these problems based on our experiences.
First, we handle missing files transmitted from the LIDAR hardware
by waiting until the end of the scanning phase. Second, we utilize
caching to avoid the slow fetching time of the SciDB array. Finally,
we pass the intermediate results of the previous operator to the
next operator by recording them at the output array of the previous
operator.

2.3.1 Handling Missing Files. LIDAR is generally installed outside
the building and frequently causes file transmission failures. Re-
transmitting the file is one of the solutions, but it is difficult in the
real-world situation for several reasons (e.g., unifying the proto-
cols of many vendors is difficult, and the complexity of protocols
increases). Thus, signal processing should be performed without
missing files.

One concern is that we cannot determine whether the missing file
is missing or has not arrived. In the latter case, file receiver should be
waiting for a while. A simple approach is to set a timeout for each file
that MISE should receive. However, this approach cannot be used
because low latency is preferred in real-time analysis situations.
Instead, MISE waits for all missing files for the scanning phase until
the end of the phase. Data processing of scanning LiDAR can start
after the end of the scanning phase. This means that the processing
can wait for the not-receiving files until receiving the signal files
of the last angle. One exception exists: the last files are missing. In
this case, MISE starts processing the scanning phase after receiving
at least one signal file from the next scanning phase.

2.3.2  Caching Visualization Results. MISE caches a rendering result
of the visualizer as an image. Scanning and fetching a SciDB array is
slow because it manages a large multidimensional array. The latency
of visualizing the 2 megabytes 522 X 522 array is approximately
1776 ms. We solved this slow latency issue by introducing a cache
holding rendered visualization results. This is reasonable because
the LiDAR measurement only creates a new array (i.e. it does not
affect the old arrays). After introducing a cache, we minimized the
latency to approximately 120 ms.

2.3.3  Passing Parameter. When we execute two sequential opera-
tors, we often pass the output parameters of the previous one to
the next one. For example, the signal-to-noise (S/N) ratio index is
calculated during background noise removal, but it can be used as
an input to the mass conversion equation later. A similar process is
shown in Figure 3. We need to pass the output parameters of the 1)
to the (. As the input and output of the UDO are arrays, the only
way to pass the parameters is to utilize them. We implemented this
in a naive manner by recording the parameters at the end of the
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distance dimension. Therefore, the distance size of the preprocessed
array is 175, not 173.

3 DEMONSTRATION

We demonstrate MISE in a realistic scenario. We illustrate the user
interactions and automatic processes of MISE through this scenario.
In addition, we conducted several experiments to determine that
MISE is faster than the other systems. During the demonstration,
we demonstrate the usability and performance of MISE.

3.1 Scenario

We built a system to analyze and visualize particulate matter levels
from data collected by LiDAR in Siheung and Gimje, South Korea.
Our demonstration scenario is based on this experience.

Dataset. The dataset we used is three-dimensional data compris-
ing signal powers for the hardware, angle, and distance indices. The
number of angles and distances were 17 and 4096, respectively. We
set the hardware size to one to simplify the scenario. The dataset is
obtained from real observations held in Siheung.

Figure 4 shows how the user utilizes MISE. First, the user changes
the configuration file to set parameters such as the number of an-
gles, location of the LiDAR hardware, observation range distance,
atmospheric algorithm’s parameters, among others. Subsequently,
the user runs MISE to be ready for real-time analysis. Second, scan-
ning LiDAR hardware starts observation, and data are transmitted
to MISE. Third, when one scan of the area is completed and a certain
amount of data accumulated, MISE starts the processing, and results
are stored in SciDB. Fourth, MISE provides visualization results as
a user requests them.

3.2 Experimental Results

We tested the performance of MISE compared to the Python baseline
(with Numpy) and the analytic queries of the RDBMS.

Environment. The environment comprised three workstations
that installed Ubuntu 16.04.6 LTS. Each workstation had an 17-4790S
CPU with 8GB of memory and a 128GB SSD. They were connected
through a gigabit network. We used SciDB 19.11, with four instances
on each workstation. The Python and Numpy versions were 3.5
and 1.11, respectively. The version of PostgreSQL was 13.2. For
a multi-node environment, we used postgres_fdw to shard the
tables. The dataset was the same as that used in Section 3.1, except
for the number of hardware which is 4 or 1200 depending on the
comparisons.
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Table 1: Evaluation Results.

(a) The processing time (second) of the (D) + (2) + @) with single node
and four hardware dimensions.

Python MISE
86.16 19.63

(b) The processing time (second) of the (D) + (2) with 1200 hardware
dimensions.

# of nodes PostgreSQL PostgreSQL (P4) MISE

1 1920.11 551.91 3.43
3 3344.09 1018.59 1.17

To show that our chunking approach is fast, we measured the
performance of MISE by testing the third step in Figure 4. All pro-
cesses comprised (D, @), or (3), as shown in Figure 3. We evaluated
the performance of the system in two ways. First, we measured the
runtime of the @) + @ + 3 for MISE and Python (Numpy-based).
Second, we compared PostgreSQL with MISE by testing the (D + @)
in a single- and multi-node environment (we omitted (3) because
no appropriate function exists for PostgreSQL). We selected Python
with Numpy, the most popular combination to develop scientific op-
erations, and RDBMS, used in most previous approaches to handle
LiDAR data, for comparison systems.

For SciDB, we defined an array raw having the same data schema
described in Section 3.1. In addition, we implemented three UDOs
for data processing in Figure 3. The (D changes raw to apply a con-
version equation. It includes a summation for every certain point,
background noise removal, moving average, and range correction.
The (2) transforms preprocessed data to a concentration level using
the Klett formula [3]. The result is the concentration levels of the
17 directions. The () interpolates the outputs of the (2). After ap-
plying the UDOs for data processing, the final result is saved as an
array with latitude and longitude indices for the dimensions and
two particulate matter concentrations (PM10 and PM2.5) for the
attributes.

For PostgreSQL, we created a raw table comprising four columns
(hardware, angle, distance indices, and value) and a res table com-
prising five columns (similar to raw but having two values). We
wrote analytic queries to output the same results as the SciDB UDOs.
To compare parallel processing of SciDB, we also evaluated another
PostgreSQL setting that executes queries in parallel (P4). We split
the analytic query into four queries by hardware and execute the
queries simultaneously (the P4 is the best-performing one).

Table 1 shows the results of two comparisons that evaluated the
runtime of MISE in the scenario. MISE is approximately four times
faster than the Python baseline implementation in processing the
@ + @ + (@ (see Table 1a). Although the Python baseline is as
fast as native languages (because it is powered by Numpy), MISE’s
parallel chunk processing is faster than the Python baseline. MISE
also outperform both PostgreSQL in a multi-node environment (see
Table 1b). The SciDB chunk processing is performed in parallel for
each instance, and it performs well in a multi-node environment. On
the contrary, PostgreSQL obtains slow results because it requires
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frequent scans and joins to perform analytics queries. Interestingly,
the multi-node PostgreSQL is slower than the single node. The main
reason is that the analysis queries were mainly executed in the node
receiving the query. The database did not push down operations to
the other nodes, so the nodes only perform scans and insertion.

4 CONCLUSION

We introduce MISE that efficiently manages the atmospheric scan-
ning LiDAR data. Our system provides end-to-end data processing,
thereby helping researchers minimize their efforts while building a
complete system. By using an array-based chunking approach, we
benefit from processing and analyzing the data. In this demonstra-
tion, we construct and operate an MISE-based system for a scenario
that mimics South Korean cases. MISE exhibits high usability and
fast performance in a series of scenario steps.

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation of
Korea (2020R1A2C1010358 and 2016M3C4A7952633).

REFERENCES

[1] Paul G Brown. 2010. Overview of SciDB: large scale array storage, processing
and analysis. In Proceedings of the 2010 ACM SIGMOD International Conference
on Management of data. 963-968.

Philippe Cudre-Mauroux, Hideaki Kimura, Kian-Tat Lim, Jennie Rogers, Samuel
Madden, Michael Stonebraker, Stanley B Zdonik, and Paul G Brown. 2010. SS-DB:
A Standard Science DBMS Benchmark. Extremely Large Databases Conference
(2010).

[3] James D Klett. 1981. Stable analytical inversion solution for processing lidar
returns. Applied optics 20, 2 (1981), 211-220.

[4] Paul Lewis, Conor P Mc Elhinney, and Timothy McCarthy. 2012. Lidar data
management pipeline; from spatial database population to web-application vi-
sualization. In Proceedings of the 3rd International Conference on Computing for
Geospatial Research and Applications. 1-10.

[5] Lubo§ Matéjicek, Pavel Engst, and Zbynék Jatiour. 2006. A GIS-based approach
to spatio-temporal analysis of environmental pollution in urban areas: A case
study of Prague’s environment extended by LIDAR data. Ecological Modelling
199, 3 (2006), 261-277.

[6] Gelsomina Pappalardo, Aldo Amodeo, Arnoud Apituley, Adolfo Comeron,
Volker Freudenthaler, Holger Linné, Albert Ansmann, Jens Bosenberg, Giuseppe
D’Amico, Ina Mattis, et al. 2014. EARLINET: towards an advanced sustainable
European aerosol lidar network. Atmospheric Measurement Techniques 7, 8 (2014),
2389-2409.

[7] Gary Planthaber, Michael Stonebraker, and James Frew. 2012. EarthDB: scalable
analysis of MODIS data using SciDB. In Proceedings of the 1st ACM SIGSPATIAL
International Workshop on Analytics for Big Geospatial Data. 11-19.

[8] Susumu Shimada, Jay Prakash Goit, Teruo Ohsawa, Tetsuya Kogaki, and Satoshi
Nakamura. 2020. Coastal Wind Measurements Using a Single Scanning LiDAR.
Remote Sensing 12, 8 (2020). https://doi.org/10.3390/rs12081347

[9] Zhenyu Tan, Peng Yue, and Jianya Gong. 2017. An array database approach for
earth observation data management and processing. ISPRS International Journal
of Geo-Information 6, 7 (2017), 220.

[10] Jinhong Xian, Dongsong Sun, Wenjing Xu, Yuli Han, Jun Zheng, Jiancao Peng,
and Shaochen Yang. 2020. Urban air pollution monitoring using scanning Lidar.
Environmental Pollution 258 (2020), 113696.

2


https://doi.org/10.3390/rs12081347

	Abstract
	1 Introduction
	2 MISE
	2.1 Integrated System
	2.2 Chunking Approach
	2.3 Implementation Issues

	3 Demonstration
	3.1 Scenario
	3.2 Experimental Results

	4 Conclusion
	Acknowledgments
	References

