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ABSTRACT

The density-based clustering is utilized for various applications
such as hot spot detection or segmentation. To serve those ap-
plications in real time, it is desired to update clusters incremen-
tally by capturing only the recent data. The previous incremental
density-based clustering algorithms often represent clusters as a
graph and suffer serious performance degradation. This is because
a costly graph traversal is required to check whether a cluster is
still connected whenever a point is removed. In order to address the
problem of slow deletion, this paper proposes a novel incremental
density-based clustering algorithm called DenForest. By maintaining
clusters as a group of spanning trees instead of a graph, DenForest
can determine efficiently and accurately whether a cluster is to
be split by a point removed from the window in logarithmic time.
With extensive evaluations, it is demonstrated that DenForest out-
performs the state-of-the-art density-based clustering algorithms
significantly and achieves the clustering quality comparable with
that of DBSCAN.
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1 INTRODUCTION

The density-based clustering method, which was pioneered by Es-
ter et al. [15], is one of the most popular clustering approaches
due to its unique characteristics. Applications that rely on density-
based clustering include the detection of hot spots or segmented
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Figure 1: Density-Based Clustering over Sliding Windows

regions [16, 41, 52], geo-social network analysis [1, 32], the clas-
sification of LiDAR point clouds [10, 17], and mining events by
clustering text messages [34]. The density-based clustering is, how-
ever, computationally intensive, and the execution of these analytic
tasks for time-varying or streaming data involves significant chal-
lenges for real-time clustering.

Consider, for example, a traffic monitoring system that periodi-
cally alerts the local public about congested regions. The congested
regions (or density-based clusters) are determined based on the
most recent ten-minute vehicular GPS data, which is updated every
30 seconds. The clusters will be reproduced periodically over the
sliding window of a 10-min duration that advances every 30s. (See
Figure 1 for illustration.) To perform this task in a timely manner,
the density-based clustering method would update the congested
regions incrementally rather than recomputing them from scratch
every 30s. Such incremental clustering must update the congested
regions efficiently by including new data points (AD;,) as well as
excluding the outdated ones (ADyy;) from the analysis.

The previous incremental density-based algorithms often man-
age clusters as a graph either physically or logically. Although
representing clusters as a graph is a popular approach, it suffers
serious performance degradation when a point is removed from
its cluster. This is because deleting a point requires a costly graph
traversal to check whether the cluster is still connected after the
deletion. For example, the Incremental DBSCAN algorithm [14]
requires numerous spatial range searches to traverse a graph when-
ever a point is removed. This task is essentially equivalent to the
problem of dynamic graph connectivity [42], and it becomes the
primary cause of the slow deletion by the incremental density-based
clustering algorithms [48].

A recent approach called DISC [31] alleviates the performance
degradation by minimizing the computational burden with batch
operations. Nonetheless, DISC has the same time complexity as
Incremental DBSCAN, and therefore it does not fundamentally ad-
dress the problem. Another approach called Extra-N [51] avoids
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Table 1: Time and Space Complexity

Method Deletion Insertion Space
IncDBSCAN[14]  O(N(N'"'9+k))  O(KkN'"Y4 + k2) O(N)
ExtraN [51] o'V sk(hgh?)  onlgh
pa-Approx [21] O(log?N) O(log?N) O(NlogN)
DISC [31] O(N(N'"Y4 1 k) O(kN'"Vd 4 k2) O(N)
DenForest O(logN) O(N'"14 4 klogN) O(N)

N is the number of points within a sliding window, k is the number of points retrieved
by a range search [2], and d is the dimensionality of data. [W| and |S| denote the size
of a sliding window and its stride, respectively.

the slow deletion problem by pre-computing clusters in future win-
dows, but it consumes memory too much and suffers from its own
slow insert operation when clusters need to be updated frequently.
Grid-based approximation methods have also been reported in
the literature [20, 21]. The p-double-approximate DBSCAN algo-
rithm [21] achieves poly-logarithmic time complexity for deletion
by adopting Holm et al. ’s data structure [26], which is proposed
for dynamic graph connectivity algorithms. However, this grid-
based algorithm requires a large number of approximate counting
and nearest neighbor queries to such an extent that its practical
performance becomes worse than the aforementioned approaches.
The performance degradation is even more aggravated when high-
resolution clusters are required [31, 40, 50].

The time and space complexity of the previous methods de-
scribed above are summarized in Table 1. The Incremental DBSCAN
and p-double-approximate DBSCAN algorithms are referred to as
IncDBSCAN and p;-Approx, respectively. Table 1 also includes the
time and space complexity of DenForest we propose to address the
problem of slow deletion squarely in this paper.

As an incremental density-based clustering algorithm, DenForest
is based on a novel idea that allows us to manage clusters as a group
of spanning trees of data points rather than a graph. In general, it is
far simpler to determine whether the removal of a point splits a tree
than a graph. However, a spanning tree being split does not always
imply the underlying graph is also split. Therefore, we design a new
data structure called DenTree, which can tell accurately whether
the underlying graph is being split or not. The DenTrees of a graph
can determine all by themselves whether the removal of a point
splits the graph (i.e., clusters). By managing clusters as DenTrees,
DenForest addresses the slow deletion problem and achieves fast
incremental density-based clustering.

The contributions of this work are summarized as follows.

e DenForest takes O(logN) amortized time to delete a point,
which is far faster than the other methods in comparison. Its
performance is less sensitive to the dimensionality of data
since it does not require range searches.

e DenForest takes O(Nl_l/d +klogN) amortized time to insert
apoint. Although it is asymptotically slower than p2-Approx,
DenForest yields much higher performance in most practical
settings.

o It is demonstrated through extensive experiments conducted
on various real-world datasets that DenForest outperforms
the currently available clustering methods considerably.

e It is confirmed by measuring the clustering quality in widely
used metrics that the clustering quality of DenForest is not
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compromised, and DenForest and the DBSCAN algorithm are
in fact comparable with respect to the clustering quality.

This paper is organized as follows. Section 2 presents the back-
ground of the traditional density-based clustering methods and
introduces the task of clustering over sliding windows. Sections 3-4
present the proposed method, DenForest, and its incremental opera-
tions based on the two novel ideas, nostalgic core and DenTree. Sec-
tion 5 analyzes the validity of the clusters from DenForest. The per-
formance of DenForest is evaluated with various real-world datasets
in Section 6. Lastly, some of the previous related studies are pre-
sented in Section 7.

2 BACKGROUND

2.1 Density-Based Clustering (DC)

The density-based clustering algorithm DBSCAN was invented by
Ester et al. a quarter century ago [15]. It detects clusters of arbitrary
shapes even in the presence of noise. For a given set of data points,
DBSCAN classifies them into three types, namely core, border and
noise based on density (r) and distance () thresholds. A point p
is classified as core if [N¢(p)| > 7, where Ne(p), known as the e-
neighbors of p, is the set of the neighboring points located within
the e-distance from p. A point q is classified as borderif |[Ne(q)| < T
but there is at least one core point in N¢(g). All the other points are
classified as noise.

DBSCAN defines a cluster as the maximal set of core and border
points that are density-reachable from any core point in the cluster.
A point p is said to be directly density-reachable from another point
qif q is coreand p € N¢(g). A point p is said to be density-reachable
from another point q if there is a chain of directly density-reachable
core points from g to p.

Reformulation of DC. Given the way clusters are defined by
DBSCAN, the density-based clustering (DC) can be reformulated as
the problem of finding the connected components in a graph [29, 35].
In the graph representation, each vertex corresponds to a data point
and an edge is added to a pair of data points if they are within the
e-distance from each other. Each vertex is then labeled with one
of core, border, or noise as described above. Finally, a connected
component of cores as well as the borders adjacent to the connected
component is identified as a cluster.

2.2 DC over Sliding Windows

The goal of this work is to find density-based clusters in streaming
data under the sliding window model. The sliding window model
is widely used to capture the recent state of streaming data, which
cannot be stored in its entirety by virtue of the large and ever-
increasing volume [11, 19].

2.2.1 Sliding Window Model. The sliding window model is
characterized by two parameters known as window and stride. They
are defined below for clarity.

Definition 1 (Window). The window W is a set of the latest data
points. The size of the window, |W|, can be bounded by either the
number of points in the window (count-based window) or the duration
of the window (time-based window).
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Definition 2 (Stride). The stride S is defined by an interval at which
the clustering result is updated while the window slides. The size of the
stride, |S|, is bounded by the number of points or by a time duration
depending on the type of the sliding window. The data points in the
same stride are processed together.

Suppose for example that the sliding window is time-based and
its stride is set to 30 seconds. (The window size can be any time
duration longer than 30 seconds.) Then, whenever the window
slides by 30s, a group of new points may be added to the window
during the period and they are processed together for updating
clusters. Similarly, a group of old points may be removed from
the window during the same period and they are also processed
together for updating clusters.

222 DC over Sliding Windows. Since we aim at finding clus-
ters in streaming data, we need to reproduce or update density-
based clusters for the most recent data points captured in the current
window, whenever the window strides. As is stated in Section 2.1,
this task is equivalent to the problem of finding the connected
components of cores and their adjacent borders continuously as the
window advances.

[ e >_§j h TN
Py te g °~
N . P e
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(a) Emergence (b) Expansion (c) Merge
I,/ X \‘ -
X N PR
(d) Dissipation (e) Shrink (f) Split

Figure 2: Cluster Evolution. Only the cores are shown in the
figure. The point p denotes a newly added core, and the point
q denotes a vanishing core.

There are six types of cluster evolution that can occur with a
sliding window: emergence, expansion, merge, dissipation, shrink
and split, as depicted in Figure 2. As new points are inserted into
the window, some of the existing points may become cores. Due to
those new cores, a new connected component (CC in short) may
emerge or an existing CC may expand. If any of those new cores
connects separate CCs, then they are merged into one. At the same
time, old points may be deleted from the window, and some of the
existing cores may become non-cores. Due to those vanishing cores,
existing CCs may shrink or dissipate. A vanishing core may also
split a CC into multiple CCs.

3 DENFOREST

This section presents a new incremental density-based clustering
algorithm DenForest to deal with the slow deletion problem. First, an
overview of the algorithm is given and the problem of slow deletion
is stated formally. Then, a few key ideas such as nostalgic cores and
DenTree are described in detail.
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3.1 Overview of DenForest

Suppose data points are generated from sources such as sensing
devices and are sent over for processing continuously. Each data
point is associated with a timestamp T that indicates the event time
or the ingestion time. The sliding window covers the most recent
data points in the stream at any moment in time.

Sliding Window

Past [

| —

Point Insertion and Deletion (Section 4.1 and 4.2)
Batch Insertion and Deletion (Section 4.3)

Future
Data Stream

Update Clusters
® Nostalgic core
© Border

Density-based Clusters (Section 3.3)
MST

Cluster2
H DenTree (Section 3.4)

Figure 3: Overview of DenForest

5

Clusterl

For the data points in the current window, DenForest produces
density-based clusters by detecting the connected components of
nostalgic cores (Section 3.3). The nostalgic cores are similar to the
cores defined by DBSCAN in that they are points found in the dense
region. But the nostalgic cores differ from DBSCAN’s cores in the
way they expire and become non-core points. Each density-based
cluster of nostalgic cores can be managed as a tree structure called
DenTree, which can expedite the deletion process significantly (Sec-
tion 3.4 and Theorem 1). When the window slides, DenForest up-
dates clusters by inserting and deleting points individually (Sec-
tions 4.1 and 4.2) or in batch (Section 4.3). We assume that data
points in the same stride are processed together, and data points in
different strides are processed strictly in the order of their times-
tamps. The overall clustering procedure by DenForest is illustrated
in Figure 3. The denotational symbols frequently used in the paper
are summarized in Table 2.

Table 2: Notation

Symbol Description
N the number of points in the current window
T,€ the density and distance thresholds
cc a connected component of cores
d-core the core point defined by DBSCAN

T the timestamp of a point

T the core-expiration time of a point
Ne(p) the neighboring points within e-distance from p
N.(p) the previously inserted points in N (p)
MST the maximum spanning tree of nostalgic cores
d the number of dimensions
k the number of points retrieved by a range query
M the number of nodes in the Link-Cut tree
SC a super nostalgic core
Be a d-dimensional ball (or hypersphere) with radius €
De the number of points in B¢

NCec(p) the nostalgic cores within e-distance from a d-core point p
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Supported Types of the Sliding Window Model. DenForest sup-
ports both the count-based and the time-based sliding window mod-
els. First, under the count-based sliding window model, the stride
size is one or greater. If the stride size is one, then a point insertion
and a point deletion are performed alternately. If the stride size is
greater than one, then a batch insertion and a batch deletion are
performed alternately. The arrival order of data points in the stream
can be used as the timestamp of an individual point. Second, under
the time-based sliding window model, the stride size is a fixed time
duration, and a batch insertion and a batch deletion are performed
alternately and periodically. The only limitation is that the window
size must be a multiple of the stride size for the batch-optimized
operations to be applicable.

3.2 Slow Deletion Problem

The incremental management of clusters involves processing ex-
piring (or vanishing) cores. This becomes a major bottleneck in
updating density-based clusters incrementally.

Problem 1 (Slow deletion). A cluster may be split by a vanishing
core. To determine whether the cluster is split or not, the remaining
cores need to be traversed to check the density-reachability from one
another. This traversal would require a number of range searches,
which is the main cause of the degraded performance of incremental
density-based clustering.

Example 1. Consider a core point q that expires to become a non-
core (either border or noise) point due to some other data points
leaving the window. The vanishing core q will trigger one of the three
types of evolution, namely dissipation, shrink, and split, as is shown
in Figures 2(d)-(f). Let CC denote the connected component of q’s
cluster. Then a graph traversal such as Breadth-First Search (BFS) can
be applied to check the connectedness of CC \ {q}. In Figures 2(e)
and 2(f), the density-reachability between the two adjacent cores A
and B need be checked when q vanishes. This will require visiting all
the points in the figure inevitably. In general, if a graph traversal is
initiated from one of the cores in N¢(q) and it can visit all the cores
in Ne(q), then the cluster shrinks but does not split.

This is equivalent to the dynamic connectivity problem, which
has been studied for decades [26, 42]. Due to the O(N?) memory
cost, the edges between core points are often maintained only
logically. Thus, density-based clustering algorithms generally rely
on a spatial index to discover a pair of adjacent cores. Hence, the
latency concern is further aggravated due to the increasing cost of
range searches, when the dimensionality of data points increases.

3.3 Nostalgic Core and Density-based Clusters

We come to realize that the slow deletion problem is caused in-
trinsically by the unpredictability of a vanishing core’s expiration
time. In this section, we present a novel approach that can precisely
predict the expiration time of a core when it enters the window.
Similarly to the DBSCAN algorithm, DenForest adopts two pa-
rameters, namely density and distance thresholds (r and €) to dis-
cover density-reachable cores and adjacent borders. Unlike DBSCAN,
however, DenForest relies on its own notion of a point being a core
called a nostalgic core rather than that of DBSCAN. (DBSCAN’s
cores are referred to as d-cores hereinafter to distinguish one from
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another.) DenForest can determine exactly when a nostalgic core p
will expire to become a non-core point, immediately after p enters
the sliding window. This is done by considering only the current
data points that entered the window earlier than p.

Definition 3 (Nostalgic core). A point p in the window W is a
nostalgic core if the number of e-neighbors of p that entered W no
later than p meets the density requirement. That is, p is a nostalgic core
if IN((p)| 2 7 where N{(p) ={q€ W | g€ Ne(p) Aq.T < p.T},
and p.T and q.T denote the timestamps of p and q, respectively.

Whether a point p is a nostalgic core or not is determined at the
insertion time solely by the existing points in the current window,
and the core status of p is not affected by the points inserted in the
future. Furthermore, when a nostalgic core p becomes a non-core
point is also determined at the insertion time. (Refer to Lemma 1
below.) Note that DBSCAN’s cores or d-cores do not possess any of
these properties. While a point p stays in the window, DBSCAN
allows p to gain or lose the core status at any time by pre-existing
and future points leaving or entering the window. Note also that
the set of nostalgic cores is always a subset of the set of d-cores.

Let p.T, denote the core-expiration time of p or the time when a
nostalgic core p loses its core status to become a non-core point.

Lemma 1. p.T; can be determined when p enters the window.

Proor. Consider a point p that is about to enter the window.
Assume [N/(p)| > 7 and p is determined as a nostalgic core. Let
q denote a point in N/(p) such that its timestamp q.T is the rth
largest (or youngest). Then, p loses its core status when q leaves
the window. Since g will leave the window at time ¢q.T + |W|, p will
become a non-core point at that time. That is, p.T. = ¢.T + |W/|.
Therefore, the core-expiration time of p can be determined right at
the moment when it enters the window. O

Lemma 2. Once a point is not determined as a nostalgic core, then it
can never become a nostalgic core until it leaves the window.

Proor. For any point p in the window, [N/(p)| can only decrease
as the window slides. Therefore, if p is not a nostalgic core at the
insertion time, it cannot become a nostalgic core until it leaves the
window. O

Since DenForest defines its own nostalgic cores, the definitions
of its border and noise points as well as its density-based clusters
need to be altered accordingly.

Definition 4 (Border and noise of DenForest). A point is a border
if it is not a nostalgic core but within the e-distance from any nostalgic
core. Otherwise, it is considered a noise point.

Definition 5 (Density-based cluster of DenForest). In the graph
representation (described in Section 2.1), a density-based cluster is
defined as a connected component of nostalgic cores as well as the
borders adjacent to the connected component.

Each density-based cluster is managed as a tree called DenTree
introduced in Section 3.4. It may appear that DenForest will produce
density-based clusters of poor quality because the nostalgic cores
are defined without considering the data points being inserted in
the future. We will demonstrate later in the paper that DenForest
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can produce clusters of comparable quality much more efficiently.
(See Sections 5 and 6.5 for the detailed evaluation.)

Cluster Membership of Border. Traditionally, the cluster mem-
bership of a border point is not decided deterministically. If a border
point is adjacent to two or more clusters, it can join any of the clus-
ters. This is the way DBSCAN decides the cluster membership
of a border point. In contrast, we adopt a deterministic heuristic.
DenForest attaches a border point p to a nostalgic core with the
largest T, among those in N¢(p), which in turn decides the cluster
membership of p. This approach is not in conflict with the defini-
tion of clusters and is in fact beneficial for performance, because
deletion of the nostalgic core that p is attached to always results in
p becoming noise, hence avoiding further reclassification effort.

3.4 DenTree

In order to process a point deletion efficiently, we maintain each
cluster as a tree structure called DenTree, which can be used as
an accurate barometer of a cluster split. A DenTree consists of a
maximum spanning tree (MS7 in short) of a DenGraph defined
below and border points associated with it.

Definition 6 (DenGraph). A DenGraph G(V,E,'W) is an undi-
rected edge-weighted graph where each vertex in V corresponds to a
nostalgic core in the window, each edge in E corresponds to a pair of
vertices within the e-distance from each other, and each weight in ‘W
is set to the smaller T of the two adjacent vertices, namely

)

A DenGraph may have one or more MS7s, each of which cor-
responds to a connected component of the DenGraph. For a pair of
nostalgic cores in the same connected component, there may exist
multiple paths between them. Thus, just a path being split does not
always make them disconnected in the graph. However, if the path
being split is the one on the MS7 of the connected component,
then the two nostalgic cores are no longer connected in the graph.
This property of the MSTs is the key to addressing the slow dele-
tion problem. Hereinafter, we refer to a maximum spanning tree of
a DenGraph simply as an MST for brevity.

Vpq € E, wyg = min{p.Tc,q.Tc}.

Theorem 1. Consider two nostalgic cores p and q in an MST of
a DenGraph. If another nostalgic core x on the path of the MST
between p and q becomes a non-core point and is removed from the
graph, then p and q are no longer connected not only in the MST™
but also in the graph.

ProOF. (By contradiction). Consider the moment when x is
about to become a non-core point and be removed from the graph.
Suppose the path on the MS7 passing through x is not the only
path between p and q in the graph. Then there must be another
path between them, and these two paths form a cycle. Since x is the
one that is about to expire, all the points in the cycle have a core-
expiration time greater than x’s. Consider now a point y directly
adjacent to x on the path of the MS7 . Then, the edge xy must
have the smallest weight among all the edges in the cycle, because
wxy = min{x.Te, y.Tc} = x.Tc. This implies that the edge Xy must
not have been chosen for the MS7, and therefore contracts the
assumption that Xy is in the MS7T". O
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Figure 4: Example of DenTree

The implication of Theorem 1 is that when an MST is split by
a vanishing nostalgic core, the underlying connected component
(and its corresponding cluster) is also split. In general, a tree is split
to non-empty subtrees when a node with two or more adjacent
nodes is removed. Hence, to determine whether a cluster will be
split by a vanishing nostalgic core p, it will be enough to check
whether p is adjacent to two or more nostalgic cores in the MST".
Below we define DenTree that represents a cluster of nostalgic cores
and border points.

Definition 7 (DenTree). A DenTree is a tree composed of an MST
and the border points associated with the MST . If a border is adja-
cent to more than one nostalgic core, it is attached to the one of those
that has the largest core-expiration time Tg.

Example 2. Figure 4 illustrates how a density-based cluster is rep-
resented by a DenTree, which consists of an MST™ of nostalgic cores
and the border points associated with it. In the figure, the red points
(A ~ K) and the white points (L ~ N) denote nostalgic cores and
border points, respectively. An edge in the graph indicates that its
two adjacent vertices (nostalgic cores or borders) are within the e-
distance from each other. Nostalgic cores are annotated with their
core-expiration times. Unlike the traditional approaches, graph traver-
sals are not required to determine whether a cluster is split or not by a
vanishing core. For example, at timet = 5, point A becomes a non-core,
and the cluster shrinks but is still connected because the DenTree is
not split. On the other hand, at time t = 6, points B and I become
non-cores, and the DenTree is split by point I, and consequently, the
cluster is also split by point I.

4 OPERATIONS OF DENFOREST

This section presents the detailed procedures of DenForest’s Insert
and Delete operations. These procedures ensure that clusters pro-
duced by DenForest are always valid with respect to Definition 5,
while the window slides.

4.1 Insertion

The Insert operation is responsible for updating clusters when
new data points are added to the window. In particular, it ensures
that M ST s are updated incrementally and remain valid even when
the underlying graph of nostalgic cores changes over time by the
sliding window. The overall procedure is composed of four steps as
follows. (Refer to Algorithm 1 for details.)
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Algorithm 1: Insert a point p and update the clusters
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Table 3: Link-Cut Tree Operations

Insert (Point : p)
1 Insert p into the Spatiallndex
2 if |N.(p)| = 7 then

3 mst < 0 // The number of MSTs connected to p
4 p.Tc « Core-Expiration-Time(p)
5 foreach n € N/(p) do

// The Connect function returns true if it
combines two disjoint MSTs.

6 if n.T, > currentTime and Connect(p, n) then
7 mst ++
end
end
8 Determine the type of cluster evolution by the mst value
end
9 Process the noise/borders

STEP 1 (Point Classification) First, it determines whether a
new point p is a nostalgic core by counting the number of its e-
neighbors in the current window. If the count is no less than the
density threshold 7, then p is classified as a nostalgic core. Other-
wise, it is classified as a border or noise point.

STEP 2 (Determination of T;) If p is classified as a nostalgic
core, the core-expiration time p.T, is computed by its e-neighbors
(Line 4). This step involves sorting the e-neighbors in the order of
their timestamps.

STEP 3 (Adding Links to MSTs) If p is a nostalgic core, the
maximum spanning trees (MS7s) are updated by adding p and
new edges adjacent to it. The point p is connected to each of the
nostalgic cores within the e-distance by an edge whose weight is
set by Equation (1). If a cycle is formed by adding a new edge, an
edge with the smallest weight is removed from the cycle by the
Connect(p,n) function (Line 6), which is described in Algorithm 2.
Three types of cluster evolution can result by updating the MST"s
(Line 7 and Line 8):

(a) A cluster emerges if there is no MST near p (mst = 0).

(b) A cluster expands if p is connected to one MST (mst = 1).

(c) More than two clusters are merged when p is connected to
multiple MST s (mst > 2).

STEP 4 (Updating Borders) If p is a nostalgic core, then an ex-
isting border point (say x) within the e-distance from p may be
reconnected to p, if T, of p is greater than that of x’s adjacent
nostalgic core. For p that is not a nostalgic core, if there exists a
nostalgic core in N¢(p), then p becomes a border point and p is con-
nected to a nostalgic core in N¢(p) with the largest Tc. Otherwise,
p becomes a noise.

The following lemma proves the validity of the Insert operation.

Lemma 3. Insert(p) of Algorithm 1 updates DenTrees correctly.

Proor. The MST s of a DenGraph remain cycle-free and max-
imally spanning because an edge with the smallest weight is re-
moved if a cycle is formed by p being inserted [8]. Every bor-
der point, either a new or existing one, remains attached to a
nostalgic core with the largest T, within the e-distance. Therefore,
the DenTrees are updated correctly by Insert(p). O
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APIs Description
Link(n,m) Link nodes n and m in different trees.
Cut(n,m) Cut a link between nodes n and m.

Connected(n,m)  Check if a path exists between nodes n and m.
Find the minimum weighted edge on the path

FindMinE(n,m) between nodes n and m (added for DenForest).

4.1.1 MST based on Link-Cut Tree. DenForest relies on a data
structure called Link-Cut Tree [44] to efficiently detect and break
a cycle in the MSTs. The Link-Cut tree represents a set of trees
and is often used to solve the dynamic connectivity problem for an
acyclic graph. The trees in a Link-Cut tree are divided into disjoint
paths, and each path is represented by a Splay tree. By managing
a set of trees with a path-based structure, the Link-Cut tree can
support its key operations in the amortized O(log M) time, where
M is the total number of nodes in the trees. See Table 3 for the list
of supported operations as well as a new one added for DenForest.
DenForest maintains its MS7 s in the Link-Cut tree and up-
dates them whenever the underlying graph changes by a new
point added to the window. For efficient updates, we design a new
function called FindMinE(n,m) in addition to the traditional op-
erations of the Link-Cut tree. FindMinE (n,m) finds the minimum
weighted edge on the path between two nodes n and m in a tree.
FindMinE(n,m) also runs in the amortized O(log M) time.

Algorithm 2: Connect two points in the Link-Cut tree

Connect (Point : p, Point : q)

1 wpq — min{p.Tc.q.Tc }
2 if Connected(p,q) then
// If a cycle is formed, cut the minimum weighted edge
3 7s « FindMinE(p, q)
4 if wrs < wgg then
5 ‘ Cut(r, s) and Link(p, q)
end
6 return False // No merge
else
7 Link(p, q)
8 return True // Potential merge
end

Algorithm 2 presents the Connect algorithm that links two
nostalgic cores p and q in the Link-Cut tree. The weight of the edge
pq is set by the smaller of the core-expiration times of p and q
(Line 1). If there already exists a path between them (Line 2), adding
pq would create a cycle. Thus, the algorithm finds an edge with the
smallest weight, say 7s, on the path between p and q (Line 3). If the
weight of 7s is smaller than the weight of pq, then 7s is removed and
replaced by pq (Lines 4-5). Otherwise, pq is simply dropped without
altering the Link-Cut tree (Line 6). If there is no path between p
and g, the two separate MS7 s they belong to are linked together
by adding pq (Line 7). The Connect algorithm returns a Boolean
flag to indicate the type of cluster evolution.
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4.1.2 Time Complexity of Insert Operation. The runtime of
the Insert algorithm is given by the formula below.

Ci+ Cr + Ppe X (Cs + INZ|Cc) + Cp

C; is the cost of inserting a point into the spatial index, C, is the
cost of a range search, Py, is the probability of an inserted point
being a nostalgic core, Cs is the cost of sorting N/ to compute the
core-expiration time, C. is the cost of the Connect operation, and
Cp is the cost of processing a border.

Lemma 4. Insert runs in amortized O(Nl_l/d + klog N) time.

ProOF. Assume that the balanced k-d tree [2] is used as a spatial
index. Then, C; and C, are O(log N) and O(N'1dyp), respectively,
where k is the number of points retrieved by a range query. Cs and
Cp are O(|N/| xlog |N/|) and O(|N{|), respectively. C is amortized
O(log M) because all of its sub-algorithms take amortized O(log M)
time. Then, since M < N, the amortized time complexity of the
Insert operation is bounded by O(N'-1/d 4k log N). O

DenForest can work with many spatial indexes such as R-tree [24]
and range tree [3] as well. We only assume the balanced k-d tree in
the proof for its well known upperbound analysis.

4.2 Deletion

The Delete operation is responsible for updating clusters when ex-
isting data points are removed from the sliding window. Theorem 1
enables it to quickly determine whether a cluster will be split or not
just by counting the links adjacent to each vanishing nostalgic core
in the MS7 . The Delete algorithm depicted in Algorithm 3 runs
in two main steps.

Algorithm 3: Delete a point g and update the clusters

Delete (Point : q)
1 E(q) : a set of nostalgic cores expired by the deletion of g
2 foreach x € E(q) do

3 L « a set of nostalgic cores linked to x

4 Determine the type of cluster evolution by the |L| value

5 foreach y € L do Cut(x,y)

6 Reclassify x as either border or noise by the |L| value.
end

7 Delete g from the Spatiallndex

STEP 1 (Finding Expiring Nostalgic Cores) When a point q is
removed from the window, some of the nostalgic cores may become
non-cores. Unlike the traditional density-based methods, those ex-
piring nostalgic cores can be found without executing any range
search. Since the core-expiration time of a nostalgic core is deter-
mined at the insertion time and remains intact, all the nostalgic cores
in the current window can be indexed in a supplementary data struc-
ture such as hashmap with their core-expiration times as keys. When
q is removed from the window at time ¢, all the nostalgic cores be-
coming non-cores at time ¢ can be found in O(|E(q)|) time from
the supplementary data structure (Line 1).

STEP 2 (Cutting Links from MST s) All the expiring nostalgic
cores are examined to determine whether any MST is to be split.
For each expiring nostalgic core x, all the adjacent links are found
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(Line 3) and removed (Line 5). Then x is reclassified as follows
(Line 6). If |L| > 1, then x becomes a border point and is attached
to a nostalgic core in L with the largest T. If |L| = 0, then there is
no nostalgic core adjacent to it and x becomes a noise. Three types
of cluster evolution can result from each expiring nostalgic core x
(Lines 4):

(a) If |[L| = 0, the cluster containing x dissipates.

(b) If |L| = 1, the cluster containing x shrinks.

(c) If |L| > 2, the cluster containing x is split.

Theorem 1 guarantees that the clusters updated by the Delete
operation are valid. Note also that Algorithm 3 does not involve
any range search. Consequently, the performance of the Delete
operation is less sensitive to the dimensionality of data points,
and is not overly affected by the distance threshold e. This will be
corroborated by the experimental evaluation in Section 6.4.

4.2.1 Time Complexity of Delete Operation. The asymptotic
runtime of the Delete algorithm is given by the formula below.

@)

|E| is the number of nostalgic cores expired by the deletion of a
point, and |L| is the degree (i.e., the number of adjacent links) of an
expiring nostalgic core. The terms log M and log N denote the cost
of a Cut operation in the Link-Cut tree and the cost of a deletion in
the spatial index, respectively.

In the following theorem that bounds the runtime of the Delete
algorithm, we assume that an unbounded number of data points
can take up exactly the same location in space. We then determine
the maximum number of nostalgic cores that can expire by a single
point being removed from the sliding window.

O(|E| X |L| x log M +log N)

Theorem 2. The amortized runtime of the Delete algorithm is
O(log N) where N is the number of points in the sliding window.

PROOF. Suppose a point p is about to be removed from the win-
dow and a nostalgic core x is about to become a non-core by that.
First, x must be in Ne(p). Otherwise, x would not be affected by
the deletion of p. Second, the number of points that exist at exactly
the same location as x must be no more than 7 — 1. Otherwise, x
would still be a nostalgic core after the deletion. Third, if there are
7 — 1 points at the location of x, then there must be no more point
within the e-distance from x. Otherwise, again, x would still be
a nostalgic core after the deletion. That is, if 7 — 1 nostalgic cores
at the same location are about to expire, there must be no other
point within the e-distance. Hence, the number of those locations
where groups of 7 — 1 expiring nostalgic cores coexist is bounded
by a constant. In a 2-dimensional space, the maximum number of
such locations is six, which is known as a kissing number [9].! In a
d-dimensional space, the kissing number is bounded by ¢, where
c is a small constant. Thus, the number of nostalgic cores expired
by the deletion of p is bounded by (7 — 1) x ¢?, which is O(1). This
implies that |E| is O(1) in Equation (2). Besides, in Equation (2),
the average of |L| is less than two (just like the average degree of
a vertex in any tree or acyclic graph), and M < N because M is

! The kissing number is defined as the maximal number of non-overlapping unit spheres
that can touch a common sphere of the same size. For DenForest, the radius of the
spheres is €/2.
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the number of nodes in the Link-Cut tree. Therefore, the amortized
runtime of the Delete algorithm is O(log N). m]

Lemma 5. DenForest consumes O(N) space.

Proor. The main data structures DenForestrelies on are DenTrees,
a spatial index and a hashmap. DenTrees including the Link-Cut
tree use O(N) space, and the spatial index and the hashmap both
use O(N) space. O

Cluster Membership. DenForest does not store the cluster identi-
fication of an individual point. If it did, then the cost of updating
the cluster identifications would be non-trivial. Instead, upon re-
quest, DenForest assigns a unique ID to the points belonging to each
cluster by traversing the corresponding DenTree. This procedure
requires O(N) time, which is no worse than any existing method.

4.3 Batch-Optimized Update

The Insert and Delete operations can be further optimized by
exploiting the locality of the data points in the same stride. By
consolidating nearby nostalgic cores to fewer meta-objects called
super nostalgic cores, DenForest can make the MS7 s smaller and
reduce the overhead of updating clusters.

Definition 8 (Super nostalgic core, SC). The super nostalgic core
is a connected component of nostalgic cores in the same stride that
become non-cores together when the window slides by a single stride.

Definition 9 (e-Neighbors of a super nostalgic core). Two super
nostalgic cores sc; and scy are said to be e-neighbors if there are a
pair of points p € sc1 and q € scy such that distance(p, q) < e.
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Figure 5: Example of Super Nostalgic Cores

In the following example of super nostalgic cores, we assume that
the window and the stride are 20 seconds long and 5 seconds long,
respectively, and the sliding window is currently anchored at time
25 covering a time interval (5,25]. This is illustrated in Figure 5,
where each point is annotated with the timestamp (T) and the core-
expiration time (T;). For example, point A(26, 38) will be ingested
at time 26 and will become a non-core at time 38. Non-cores are not
shown in the figure.

Example 3. In Figure 5, the four stars (sc1 ~ scq) represent super
nostalgic cores in the current window. When the window advances
by a stride, six new points (A ~ F) in the stride S6 are added to the
window, and they all become nostalgic cores. Among those six points,
F is separate from the others by a nostalgic core not in stride S6, and it
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alone forms a super nostalgic core {F}. The other points A ~ E are in
a connected component of nostalgic cores in the same stride, but they
form two separate super nostalgic cores {A, B,C} and {D, E}. This is
because points A, B, and C will become non-cores at time 40, while
points D and E will become non-cores at time 45. The super nostalgic
cores {A, B,C} and {D, E} are said to be e-neighbors because C and
D are within the e-distance from each other.

The batch-optimized Insert algorithm replaces a group of con-
nected nostalgic cores with a super nostalgic core so that DenForest
can update clusters more efficiently without compromising the
clustering result. The detailed procedure is given below.

STEP 1 (Finding SCs) When the window slides by a stride
and new data points are added, new nostalgic cores are found from
the data points, and new super nostalgic cores are formed from the
nostalgic cores. The core-expiration time of a super nostalgic core is
set to the time interval of a stride that covers all the core-expiration
times of its nostalgic cores. For example, T of the super nostalgic core
{A, B,C} is set to the time interval (35,40]. Besides, each nostalgic
core maintains a pointer to the adjacent nostalgic core with the
largest T for the batch-optimized deletion. For example, point C
maintains a pointer to D, which has the largest T, among N¢(C).

STEP 2 (Updating MST s with SCs) Each super nostalgic core
is collapsed to a single vertex in the MS7s. A new edge is in-
troduced to each pair of the e-neighbors of super nostalgic cores,
and the weight of the new edge is set to the smaller of their core-
expiration times. For example, the weight of the edge between two
super nostalgic cores {A, B,C} and {D, E} is set to the time interval
(35, 40]. If a cycle is formed, then an edge with the smallest weight
is removed from the cycle. Borders are updated the same way as
the Insert algorithm.

The batch-optimized Delete algorithm works similarly. When
the window slides by a stride and old data points are removed, some
of the super nostalgic cores may become non-cores. For example,
when the window slides from a time interval (15, 35] to a time
interval (20, 40], super nostalgic cores {A, B,C} and {F} become
non-cores. The expired super nostalgic cores are removed from the
MSTs. For each point p that has become a non-core, the adjacent
nostalgic core g with the largest T is examined, which is found by
following the pointer established in the batch insertion algorithm. If
q is still a nostalgic core, then p becomes a border point. Otherwise,
it becomes a noise.

5 CLUSTERING QUALITY OF DENFOREST

Two aspects should be considered in evaluating the effectiveness
of a clustering method for streaming data over the sliding window.
The first is the capability to produce high-quality clusters from
the current window, and the second is the capability to sustain
the quality efficiently while the window moves forward. This sec-
tion evaluates the first aspect of DenForest. The second aspect of
DenForest will be evaluated in Section 6.

5.1 Clustering Quality for Static Data

A variety of synthetically generated labeled datasets were used
for the evaluation of clustering quality. For each dataset, it was
assumed that the entire set of data points were contained in the
current window from which density-based clusters were produced
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Table 4: Clustering quality on various datasets

DenForest DBSCAN DenForest
Dataset vs. Label vs. Label vs. DBSCAN
ARI | AMI| NMI| ARI | AMI| NMI| ARI | AMI | NMI
Spiral [6] 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 [ 1.00 | 1.00
R15 [47] 098 | 098 | 098 | 0.99 | 0.99 | 0.99 | 0.98 | 0.98 | 0.98

Aggr. [22] 097 | 0.96 | 097 | 0.99 | 0.99 | 0.99 | 0.97 | 0.96 | 0.97
Comp. [53] 094 | 0.87 | 090 | 094 | 085 | 091 | 0.98 | 0.88 | 0.94
G2-2-30 [18] 095 ] 0.88 | 0.90 | 0.96 | 0.93 | 093 | 0.96 | 0.92 | 0.94
G2-4-30 [18] 0.99 | 0.97 | 099 | 1.00 | 1.00 | 1.00 | 0.99 | 0.97 | 0.99
G2-8-30 [18] 0.99 ] 0.99 | 099 | 1.00 | 1.00 | 1.00 | 0.99 | 0.99 | 0.99

Average 0.97 | 0.95| 096 | 0.98 | 0.96| 0.97 | 0.98 | 0.95| 0.97

by DenForest as well as DBSCAN for comparison. DenForest pro-
duces clusters of nostalgic cores, while DBSCAN produces clusters
of d-cores (i.e., cores in DBSCAN’s own definition). Although they
define cores in their own ways, both DenForest and DBSCAN define
clusters the same way.

We adopted three metrics called Adjusted Rand Index (ARI) [27],
Adjusted Mutual Information (AMI) [49], and Normalized Mutual
Information (NMI) [33] to measure the clustering quality quanti-
tatively. These metrics have been used widely in various studies
to compute the similarity between two cluster memberships (or
partitions) [5, 30]. The ARI values range from -1 to 1, with 1 indicat-
ing two identical clustering results and -1 indicating no similarity
between them. The AMI and NMI are similar to ARI, but their val-
ues range from 0 to 1. For each clustering method, we attempted
to obtain the best achievable quality by tuning the density (r) and
the distance (¢) thresholds. The clustering results of DenForest may
vary depending on the ingestion order of data points owing to
the way nostalgic cores are defined. Thus, for each metric, we ran
DenForest one hundred times for each dataset each with a random
ingestion order and took the average.

Table 4 summaries the clustering quality of DenForest and DB-
SCAN tested on seven labeled datasets, which are listed in the first
column of the table. In the first and second groups of three columns
are the quality measurements computed with respect to the given
labels (i.e., ground truth), which measure the ability of DenForest
and DBSCAN to produce accurate clustering results. In the third
group of three columns are the quality measurements computed
with respect to the clustering results from DBSCAN, which mea-
sures the ability of DenForest to produce the same clustering results
as those of DBSCAN. On average, DenForest achieved 0.97 (ARI),
0.95 (AMI), and 0.96 (NMI) clustering quality with respect to the
given true labels, and achieved 0.98 (ARI), 0.95 (AMI) and 0.97 (NMI)
clustering quality with respect to the clustering results from DB-
SCAN. This demonstrates that considering only the pre-existing
data points in the current window does not overly compromise
the quality of clusters and helps expedite the clustering process
significantly, which will be shown in Section 6.

5.2 Replaceability

The number of nostalgic cores within the distance threshold is criti-
cal to the quality of clustering result. This section provides further
analysis on the relationship among the density of a region, the num-
ber of nostalgic cores, and the clustering quality. We will first show
that the number of nostalgic cores in a region is linearly correlated
with the density of the region (Section 5.2.1). We will then show that
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DenForest and DBSCAN would produce similar clustering results if
the region was dense enough (Section 5.2.2).

5.2.1 Nostalgic Cores and Density. Imagine a set of points scat-
tered in the space and time. The number of points in a space V and
a time-interval (#1, 2] can be calculated by the equation below with
continuous density assumed for simplicity.

/tl " /V D(Z t)dvdt (3)

where D(X, t) denotes the density function of space (¥) and time (t).
Below we define a locally stable subspace whose number of nostalgic
cores can be determined with respect to the density of the subspace.

Definition 10 (Locally stable). A subspace is said to be locally
stable iffBe ) D(X,t)dV = Vol(Be) - D(p, t) for any point p in the
subspace. B¢ and B¢ (p)denote a ball of radius € and a ball of radius
€ centered at p, respectively. Vol (Be) denotes the volume of Be.

Lemma 6. In a locally stable subspace, the number of nostalgic cores
in any Be is D¢ — 7, where D denotes the number of points in Be.

ProoF. Let the time interval of the window be (ty, tyy]. De is
equal to /tjw /B D(X, t)dVdt by Equation (3). For a position y
in the locally stable space, define a function T(3) such that 7 =
ftOT( ) /B @ D(X, t)dVdt. T (%) is a time threshold for nostalgic core
classification. Among those at the same location as #, the points
inserted after the T(%) time are classified as nostalgic cores, while
the points inserted before that time are not. The number of nostalgic

. tw -
cores in B can then be defined as fBe ./T(y?) D(x, t)dtdV. Therefore,
the lemma is proved as follows.

tw T()?)
/ / D(X,t)dtdV = D, — / / D(X, t)dtdV
B. JT(X) Be Jity

=D¢ — / 7/Vol(Be)dV  (by the locally stable condition)

=D¢ — 7. O
This lemma indicates that in the region with a sufficiently high
density (D¢ > 1), there will be many nostalgic cores in any Be.

5.2.2 Nostalgic Cores and Quality. The d-cores of DBSCAN
play two important roles : (1) spatially covering the clustered region
and (2) connecting the neighboring points. If nostalgic cores com-
pletely replace d-cores playing these roles, DenForest and DBSCAN
will produce an identical result. This replaceability is correlated
with the number of nostalgic cores in Be.

For a d-core point p, let NCc(p) be a set of nostalgic cores in
Be(p). Recall that nostalgic cores are a subset of d-cores.

Definition 11 (Completely replaceable). A d-core p is said to be
completely replaceable by NC¢(p), if the following conditions are
satisfied.

Be(p) € U Be(q) (Coverage)
qENCe(p)
A DenGraph’s subgraph whose (Connectivity)

vertex set is NCe (p) is connected.
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Theorem 3. For any d-core p, if it can be completely replaced by
NCe(p), then both DenForest and DBSCAN produce an identical clus-
tering result.

Proor. The Coverage condition guarantees that the area cov-
ered by nostalgic cores contains all the borders and d-cores of DB-
SCAN. The Connectivity condition guarantees that all the d-cores
in a cluster of DBSCAN are included in a cluster of DenForest. O

This theorem clearly states that the two conditions of Defi-
nition 11 are relevant to clustering quality. Now, let us find out
how they are correlated with the cardinality of NCe(p). Figure 6
shows the coverage ratio of a point p and the probability of the
subgraph composed of NC¢ (p) being connected, with respect to the
INCe(p)| and the dimensionality of space. We adopted the Monte
Carlo method [36], and NC¢(p) is populated uniformly around p.
The coverage ratio is calculated by the following equation.

Vol(Be(p) N (Ugenc, (p) Be(9)))
Vol(Be)

The general trend is that, as [INC¢(p)| increases, both the coverage
and the connectivity increase. For example, in a 2D space, if D¢ —7 >
16, then the clustering result of DenForest will be nearly identical to
that of DBSCAN. This is because 16 or more nostalgic cores around
a d-core p can replace it completely.
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Figure 6: Coverage and Connectivity w.r.t. [NC¢|

In interior regions of a cluster where the density is sufficiently
high (D¢ > 1), there would be many nostalgic cores within the e-
distance. Thus, the nostalgic cores would replace d-cores well with
the high coverage ratio and the high probability of being con-
nected. In boundary regions of a cluster where the density is not
so high (D¢ = 7), there might not be enough points in NC¢, and
the nostalgic cores would not replace d-cores so well. However, the
boundary regions are fundamentally unstable, and they seldom
affect the quality of clustering result.

6 EVALUATION

This section analyzes the performance of DenForest by comparing
it with the existing incremental density-based clustering methods.

Competing Methods. DenForest is compared with three incre-
mental methods that can produce exactly the same clustering result
as that of DBSCAN : Incremental DBSCAN, Extra-N, and DISC.
Incremental DBSCAN (or IncDBSCAN in short) is an incremental
version of DBSCAN that supports the insertion and deletion of an
individual data point [14]. We used its version optimized with MS-
BFS [31]. Extra-N [51] is another clustering method that supports
incremental updates under the sliding window model. DISC [31]
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is a recent one that can expedite the processing of incremental
operations by performing them in batch.

DenForest s also compared with p-double-approximate DBSCAN
that produces an approximate clustering result [21]. Two approxi-
mation parameters were chosen in the experiments, p=0.001 and
p=0.1, for nearly accurate and less accurate clusters, respectively.
The clustering results produced with these two parameters are de-
noted by Approx-High (p=0.001) and Approx-Low (p=0.1). Finally,
the clustering results produced by DenForest without the batch-
optimization (presented in Section 4.3) is denoted by DenForest-NO.

Environment. All the experiments were conducted on a stand-
alone machine with a Ryzen 7 1700 8-Core Processor, 64 GB RAM,
and a 256 GB solid-state drive, running Ubuntu 18.04 LTS. We
implemented all the clustering methods in comparison as well as
the R-tree spatial index in Java with JDK 1.8.0. The elapsed times
were measured using the System.nanoTime function. Since each
dataset was preloaded into the memory, the disk did not affect the
performance during the experiments.

Real-World Datasets. In the experiments, the following four real-
world datasets were used to evaluate the proposed method.

DTG is a dataset collected from digital tachograph devices at-
tached to commercial vehicles in a metropolitan city [12]. A record
was generated from each vehicle every 10 seconds, and each record
included the time, location, speed, and acceleration of the vehi-
cle. The 2D coordinates (pjqs, Pion) Were used in the experiments,
where pj,; and pj,,, are the latitude and the longitude fields, respec-
tively. The total number of records is approximately 300 million.

GeolLife is a GPS trajectory dataset collected from 182 users
over a period of four years [54]. Each record includes the time
and the location of each user. The 3D normalized coordinates
(Prats Plons Pair /300, 000) were used in the experiments, where p,;;
is the altitude field. The total number of records is approximately
24.8 million.

IRIS is a dataset of earthquake events that occurred around
the world from 1960 to 2019 [28]. The 4D normalized coordinates
(P1at> Plons Pdep /10, Pmagx10) were used in the experiments, where
Pdep and pmag are the depth and the magnitude fields, respectively.
The total number of records is approximately 1.8 million.

Household is a dataset of the electric energy consumption in a
household over a period of four years [13]. Each record includes
seven fields related to the power and voltage information. The 7D
coordinates normalized by the variance of the fields were used in
the experiment. The total number of records is approximately 2
million.

6.1 Evaluation Settings

Sliding window model. The clustering methods were evaluated
under the count-based sliding window model, where the window and
the stride are sized by the number of data points. This is because the
count-based model is easier to control the workloads. Nonetheless,
the ingestion order of data points still follows their timestamps. The
default window size was set to a fraction of each dataset, roughly
corresponding to a chosen time duration.

Parameters. The density (7) and the distance (¢) thresholds of
all the methods were set according to the following scheme. For
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Figure 7: Update Latency (|Stride|/[Window|=5%)

the DTG and GeolLife datasets, a traffic monitoring example was
adopted to set the thresholds. The distance threshold was set to 0.002
degrees (or approximately 222 meters) so as to be small enough to
distinguish two close but separate roads. The density threshold was
set to the average number of points within the distance threshold
to identify congested regions. For the other datasets, a heuristic
scheme was adopted based on the K-distance graph used in the
previous studies [15, 40]. The default settings of the density and
distance thresholds as well as the window size for each dataset are
summarized in Table 5.

Table 5: Threshold values and window sizes

Dataset dim || density (z) | distance (€) |window|
DTG 2D 372 0.002 2M (~10 min)
GeolLife 3D 765 0.002 0.1M (~ week)
IRIS 4D 8 2 0.2M (~ decade)
Household | 7D 14 0.3 0.5M (~ year)

6.2 Baseline Evaluation

For the baseline performance evaluation, the update latency of each
clustering method under the sliding window model is presented
in Figure 7. For each dataset, the time taken to update clusters
was measured when the window advanced by a single stride. The
stride size was set to 5% of the window size, whose default settings
are given in Table 5. The update latency is broken down to the
insertion and deletion latency, and each measurement is the average
of five runs. Since Extra-N does not support insertion and deletion
operations separately, only a combined latency is shown in the
figure.

DenForest and its non-optimized version (DenForest-NO) outper-
formed all the other methods. DenForest was up to 3.5 times faster
than the second-best performer (DISC in the case of Household).
IncDBSCAN yielded poor performance particularly for the Geo-
Life dataset. The reason is the GeoLife dataset is highly skewed in
certain areas, which elongates the time taken for range searches
significantly. DISC also relies on range searches but it is less af-
fected by the skewedness of the dataset. This is because it takes
advantage of optimized range searches such as epoch-based probes
that reduce the redundant retrieval of data points.

Approx-Low and Approx-High showed poor performance for
all the datasets. To determine whether a point is a core or not,
the approximate method invokes a number of approximate range
counting queries. Not only is it a major bottleneck but also it is
aggravated as 7 gets larger or as the number of dimensions increases.
For the Household dataset, it did not even terminate within the
allotted time of ten hours.
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Figure 8: Speedup of Delete

For all the datasets, the deletion latency of DenForest was much
lower than the other methods. Except for the DTG dataset, the
cost of deletion of DenForest was almost negligible. Figure 8 shows
the speedup ratio of the deletion operation by DenForest when
compared to the second-best performer in the log scale. The deletion
time taken for processing a single stride was measured with the
stride size set to 5% of the default window size. For the GeoLife
dataset, the measurement of the third best performer (DISC) was
used because the second best performer (Extra-N) does not support
the insert and delete operations separately.

For a vanishing core, DenForest simply cuts the links incident to
the vanishing core in MST to update the connectedness of the
cluster, while DISC (second best performer) and IncDBSCAN in-
voke consecutive range searches in a BFS way. This contributes to
the major performance improvement by DenForest over the other
methods. Furthermore, it is less affected by the dimensionality,
since the deletion by DenForest does not involve any range search.
Consequently, the performance gap in the deletion operations in-
creased with the increase of dimensionality. For the 7-dimensional
Household dataset, DenForest achieved 56 times higher deletion
speed than DISC.

6.3 Varying Size of Window/Stride

The window size and the stride size can vary depending on the
applications. Thus, the update latency was measured under various
window sizes (Figure 9) and various stride sizes (Figure 10). The
density (r) and distance (€) thresholds were set to the values in
Table 5. Both DenForest and DenForest-NO outperformed the other
clustering methods significantly with a wide margin for all the
window sizes and for all the stride sizes. For some of the datasets,
Extra-N and Approx-Low/High did not terminate with ten hours.

DenForest outperformed DenForest-NO across the entire spec-
trum of the window sizes and the stride sizes. The batch optimiza-
tion of DenForest effectively lowered the cost of updating clusters by
keeping the MS7 s smaller. On the other hand, the batch optimiza-
tion incurs an additional overhead for managing super nostalgic
cores and their neighbors. The amount of improvement by the batch
optimization is also affected by the locality of data points in the
same stride. The higher locality results in the more improvement.
Therefore, increasing the stride size does not always contribute to
performance gain by the batch optimization. On average, the batch
optimization improved the performance about 25%.

6.4 Effect of Density and Distance Thresholds

In this section, we used the DTG dataset to measure the effect of the
density and distance thresholds on the performance. The insertion
and deletion times taken to process a single stride were measured
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for each clustering method. The window size was set to two million
points, and the stride size was set to 5% of the window size.

Figure 11 shows the insertion and deletion latency with a varying
distance threshold (€). The density threshold was set to the default
value in Table 5. The larger € value generally requires the more
time for range searches. Thus, the insertion and deletion latency
increased as the € threshold increased for all the clustering methods
except for deletion by DenForest and DenForest-NO. The reason is
of course they do not require any range search for deletion.

A similar experiment was conducted by varying the density
threshold (r) with the distance threshold fixed to the default value.
Figure 12 shows that the density threshold hardly affected the per-
formance except for Approx-High and Approx-Low, which slowed
down as the density threshold increased. The reason is that the
approximate method takes more time to determine whether a point
is a core or not as the density threshold increases. A similar trend
was also observed in the previous study [50].

1
p k
0.8 .Ei & ﬁ ﬁl
) E 0.6
< < 04 DTG >
GeoLife
02 IRIS -o-
0 Houschold 0 Household
0 20 40 60 0 20 40 60
#Slides (|Stride|=5%) #Slides (|Stride|=5%)
(a) ARI values (b) AMI values
14 R 1 =380 %
B N-B i =372 &
0.8 098 12360 -0
s 06 z 096 \*W_.‘:E?_._‘
Z 04 DTG %] < 094 h-\'\-\./-fr*-—r._.
GeoLife -# M
02 RIS o 0.92
0 Household 0.9
0 20 40 60 0 20 40 60

#Slides (|Stride|=5%) #Slides (|Stride|=5%)

(c) NMI values (d) DTG with varying 7

Figure 13: Clustering quality over sliding windows

Latency (s)

307

10* 10"

I e e s s PR TEe=—=
3 %

& 70

Rl SE—— i 210
2 H T

j 1 j 1
10" i ——— 0 [ —a—a—a—a—a—1=

5% 10%

|Stridel /| Window! 10° 10°

180 240 300 360 420 480 540 180 240 300 360 420 480 540
Density threshold (1) Density threshold (1)
(d) Household ¥

(a) Insertion Latency  (b) Deletion Latency

Figure 12: Varying 7 for the DTG dataset

6.5 Clustering Quality over Sliding Windows

The clustering quality of DenForest was measured for each dataset.
The true cluster labels are not available for the datasets. So we used
the clustering results from DBSCAN as the ground truth. Three
metrics ARI [27], AMI [49], and NMI [33] were used to measure
the quality.

Figures 13a to 13c show how the clustering quality changes over
time while the sliding window advances. The stride size was set to
5% of the window size. DenForest achieved clustering quality mea-
surements close to one (or 100%) for all the datasets and sustained
its quality as the window slid. The average measurements of qual-
ity were 0.96 (ARI), 0.91 (AMI) and 0.93 (NMI). We also observed
the tendency that DenForest could improve its quality of cluster-
ing by choosing slightly lower density thresholds (7) than those
chosen for DBSCAN. This is shown in Figure 13d that measures
the quality of clusters produced for the DTG dataset. DenForest
and DenForest-NO produce the same clustering results. Thus, their
quality measurements are identical.

HIGH

LOW

(a) Heatmap (b) DBSCAN
Figure 14: Clusters found in DTG

(c) DenForest

Figure 14 shows the heatmap and the examples of clusters de-
tected by DBSCAN and DenForest for a snapshot (or window) of the
DTG dataset. DenForest produced the result nearly identical to the
result of DBSCAN, and DenForest detected dense areas matching
well the heatmap that visualized the congested regions.
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6.6 Comparison with Summarization-Based
Methods

DenForest was also compared with the summarization-based meth-
ods. DBSTREAM [25] is chosen because it is shown to achieve
high quality in the previous study [5]. EDMStream [23] is a stream-
ing version of the static density peak clustering algorithm [39].
SDStream [38] and StreamSW [43] are designed for the sliding
window model based on EHCF [55] and grids [46], respectively. 2

The unlabeled real DTG and the labeled synthetic Maze [31]
datasets were used in the evaluation, and three metrics (ARL, AM],
and NMI) were applied to measure the quality with various win-
dow sizes. For the unlabeled DTG dataset, the clusters produced
by DBSCAN were used as the ground truth. The parameters for
EDMStream, DBSTREAM, SDStream, and StreamSW were tuned so
as to achieve the highest quality for each window size. The update
latency of one stride was also measured when the stride size was set
to 5% of the window size. Only the insertion latency was included
in the measurements for EDMStream and DBSTREAM, because
they do not support a deletion operation.

The summarization-based methods assume an infinite length of
data streams and summarize a group of data points into a micro-
cluster. Since they only maintain coarse-grained information, qual-
ity of these methods decreased steeply as the window size increased
as is shown in Figures 15 and 16. Although SDStream and StreamSW
achieved relatively higher quality than other summarization meth-
ods for the DTG dataset, their quality was still lower than that of
DenForest. Moreover, they were far slower than DenForest due to the
high cost of maintaining a number of micro-clusters (in Figure 17).
Conversely, DenForest attained high quality based on all the data

2The Java code for EDMStream is available in https://github.com/ShufengGong/
EDMStream. We implemented DBSTREAM, SDStream, and StreamSW in Java.
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summarization-based approaches taken to deal with density-based
clustering over streaming data [4, 7, 23, 25, 37, 38, 43]. They assume
a finite memory capacity for an infinite length of data streams. Thus,
they maintain the summary of data points as micro-clusters instead
of individual data points. These methods are good at discovering
clusters quickly from the infinite data streams; they consume less
memory and generally show low latency. However, they cannot
capture the clusters accurately in real time and cannot achieve high
clustering quality enough to replace the exact approaches such as
DBSCAN.

It is also worth noting that parallelization of the DBSCAN algo-
rithm has been studied actively in the past few years. NG-DBSCAN
is one of the early work developed on the Spark framework as a
scalable solution to density-based clustering [35]. RP-DBSCAN is
a parallel DBSCAN algorithm that takes advantage of the random
split strategy [45]. Wang et al. have proposed several exact and
approximate DBSCAN algorithms based on grid construction and
solving the bichromatic closest pairs problem in parallel [50].

8 CONCLUSION

This paper proposes a novel incremental density-based clustering
algorithm called DenForest in order to address the slow deletion
problem, which is inherent in the state-of-the-art clustering ap-
proaches. DenForest is based on a new notion of cores, namely
nostalgic cores, proposed in this paper and achieves substantially
higher performance by maintaining clusters as a group of DenTrees
rather than a graph. The efficiency of DenForest is demonstrated
by an extensive comparative evaluation conducted with the state-
of-the-art clustering algorithms. Furthermore, it is observed that
DenForest achieves high-quality clusters, comparable with that of
DBSCAN, for numerous labeled synthetic and unlabeled real-world
datasets. DenForest is expected to support many data analytic tasks
in the streaming environment by clustering time-varying data effi-
ciently at low computational cost.


https://github.com/ShufengGong/EDMStream
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