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ABSTRACT
The density-based clustering is utilized for various applications

such as hot spot detection or segmentation. To serve those ap-

plications in real time, it is desired to update clusters incremen-

tally by capturing only the recent data. The previous incremental

density-based clustering algorithms often represent clusters as a

graph and suffer serious performance degradation. This is because

a costly graph traversal is required to check whether a cluster is

still connected whenever a point is removed. In order to address the

problem of slow deletion, this paper proposes a novel incremental

density-based clustering algorithm calledDenForest. Bymaintaining

clusters as a group of spanning trees instead of a graph, DenForest
can determine efficiently and accurately whether a cluster is to

be split by a point removed from the window in logarithmic time.

With extensive evaluations, it is demonstrated that DenForest out-
performs the state-of-the-art density-based clustering algorithms

significantly and achieves the clustering quality comparable with

that of DBSCAN.
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1 INTRODUCTION
The density-based clustering method, which was pioneered by Es-

ter et al. [15], is one of the most popular clustering approaches

due to its unique characteristics. Applications that rely on density-

based clustering include the detection of hot spots or segmented
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Figure 1: Density-Based Clustering over Sliding Windows

regions [16, 41, 52], geo-social network analysis [1, 32], the clas-

sification of LiDAR point clouds [10, 17], and mining events by

clustering text messages [34]. The density-based clustering is, how-

ever, computationally intensive, and the execution of these analytic

tasks for time-varying or streaming data involves significant chal-

lenges for real-time clustering.

Consider, for example, a traffic monitoring system that periodi-

cally alerts the local public about congested regions. The congested

regions (or density-based clusters) are determined based on the

most recent ten-minute vehicular GPS data, which is updated every

30 seconds. The clusters will be reproduced periodically over the

sliding window of a 10-min duration that advances every 30s. (See

Figure 1 for illustration.) To perform this task in a timely manner,

the density-based clustering method would update the congested

regions incrementally rather than recomputing them from scratch

every 30s. Such incremental clustering must update the congested

regions efficiently by including new data points (Δ𝐷𝑖𝑛) as well as

excluding the outdated ones (Δ𝐷𝑜𝑢𝑡 ) from the analysis.

The previous incremental density-based algorithms often man-

age clusters as a graph either physically or logically. Although
representing clusters as a graph is a popular approach, it suffers

serious performance degradation when a point is removed from

its cluster. This is because deleting a point requires a costly graph

traversal to check whether the cluster is still connected after the

deletion. For example, the Incremental DBSCAN algorithm [14]

requires numerous spatial range searches to traverse a graph when-

ever a point is removed. This task is essentially equivalent to the

problem of dynamic graph connectivity [42], and it becomes the

primary cause of the slow deletion by the incremental density-based

clustering algorithms [48].

A recent approach called DISC [31] alleviates the performance

degradation by minimizing the computational burden with batch

operations. Nonetheless, DISC has the same time complexity as

Incremental DBSCAN, and therefore it does not fundamentally ad-

dress the problem. Another approach called Extra-N [51] avoids
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Table 1: Time and Space Complexity

Method Deletion Insertion Space

IncDBSCAN [14] 𝑂 (𝑁 (𝑁 1−1/𝑑 +𝑘)) 𝑂 (𝑘𝑁 1−1/𝑑 + 𝑘2) 𝑂 (𝑁 )
ExtraN [51] - 𝑂 (𝑁 1−1/𝑑 +𝑘 ( |𝑊 ||𝑆 | )

2) 𝑂 (𝑁 |𝑊 ||𝑆 | )
𝜌2-Approx [21] 𝑂 (𝑙𝑜𝑔2𝑁 ) 𝑂 (𝑙𝑜𝑔2𝑁 ) 𝑂 (𝑁𝑙𝑜𝑔𝑁 )
DISC [31] 𝑂 (𝑁 (𝑁 1−1/𝑑 +𝑘)) 𝑂 (𝑘𝑁 1−1/𝑑 + 𝑘2) 𝑂 (𝑁 )
DenForest 𝑶 (𝒍𝒐𝒈𝑵 ) 𝑶 (𝑵 1−1/𝒅 + 𝒌𝒍𝒐𝒈𝑵 ) 𝑶 (𝑵 )

𝑁 is the number of points within a sliding window,𝑘 is the number of points retrieved

by a range search [2], and 𝑑 is the dimensionality of data. |W| and |S| denote the size

of a sliding window and its stride, respectively.

the slow deletion problem by pre-computing clusters in future win-

dows, but it consumes memory too much and suffers from its own

slow insert operation when clusters need to be updated frequently.

Grid-based approximation methods have also been reported in

the literature [20, 21]. The 𝜌-double-approximate DBSCAN algo-

rithm [21] achieves poly-logarithmic time complexity for deletion

by adopting Holm et al. ’s data structure [26], which is proposed

for dynamic graph connectivity algorithms. However, this grid-

based algorithm requires a large number of approximate counting

and nearest neighbor queries to such an extent that its practical

performance becomes worse than the aforementioned approaches.

The performance degradation is even more aggravated when high-

resolution clusters are required [31, 40, 50].

The time and space complexity of the previous methods de-

scribed above are summarized in Table 1. The Incremental DBSCAN

and 𝜌-double-approximate DBSCAN algorithms are referred to as

IncDBSCAN and 𝜌2-Approx, respectively. Table 1 also includes the

time and space complexity of DenForest we propose to address the

problem of slow deletion squarely in this paper.

As an incremental density-based clustering algorithm, DenForest
is based on a novel idea that allows us to manage clusters as a group

of spanning trees of data points rather than a graph. In general, it is

far simpler to determine whether the removal of a point splits a tree

than a graph. However, a spanning tree being split does not always

imply the underlying graph is also split. Therefore, we design a new

data structure called DenTree, which can tell accurately whether

the underlying graph is being split or not. The DenTrees of a graph
can determine all by themselves whether the removal of a point

splits the graph (i.e., clusters). By managing clusters as DenTrees,
DenForest addresses the slow deletion problem and achieves fast

incremental density-based clustering.

The contributions of this work are summarized as follows.

• DenForest takes 𝑂 (𝑙𝑜𝑔𝑁 ) amortized time to delete a point,

which is far faster than the other methods in comparison. Its

performance is less sensitive to the dimensionality of data

since it does not require range searches.

• DenForest takes𝑂 (𝑁 1−1/𝑑 +𝑘𝑙𝑜𝑔𝑁 ) amortized time to insert

a point. Although it is asymptotically slower than 𝜌2-Approx,

DenForest yields much higher performance in most practical

settings.

• It is demonstrated through extensive experiments conducted

on various real-world datasets that DenForest outperforms

the currently available clustering methods considerably.

• It is confirmed by measuring the clustering quality in widely

used metrics that the clustering quality of DenForest is not

compromised, and DenForest and the DBSCAN algorithm are

in fact comparable with respect to the clustering quality.

This paper is organized as follows. Section 2 presents the back-

ground of the traditional density-based clustering methods and

introduces the task of clustering over sliding windows. Sections 3-4

present the proposed method, DenForest, and its incremental opera-

tions based on the two novel ideas, nostalgic core and DenTree. Sec-
tion 5 analyzes the validity of the clusters from DenForest. The per-
formance of DenForest is evaluated with various real-world datasets
in Section 6. Lastly, some of the previous related studies are pre-

sented in Section 7.

2 BACKGROUND
2.1 Density-Based Clustering (DC)
The density-based clustering algorithm DBSCAN was invented by

Ester et al. a quarter century ago [15]. It detects clusters of arbitrary
shapes even in the presence of noise. For a given set of data points,

DBSCAN classifies them into three types, namely core, border and
noise based on density (𝜏) and distance (𝜖) thresholds. A point 𝑝

is classified as core if |𝑁𝜖 (𝑝) | ≥ 𝜏 , where 𝑁𝜖 (𝑝), known as the 𝜖-

neighbors of 𝑝 , is the set of the neighboring points located within

the 𝜖-distance from 𝑝 . A point 𝑞 is classified as border if |𝑁𝜖 (𝑞) | < 𝜏
but there is at least one core point in 𝑁𝜖 (𝑞). All the other points are
classified as noise.

DBSCAN defines a cluster as the maximal set of core and border
points that are density-reachable from any core point in the cluster.

A point 𝑝 is said to be directly density-reachable from another point

𝑞 if 𝑞 is core and 𝑝 ∈ 𝑁𝜖 (𝑞). A point 𝑝 is said to be density-reachable
from another point 𝑞 if there is a chain of directly density-reachable
core points from 𝑞 to 𝑝 .

Reformulation of DC. Given the way clusters are defined by

DBSCAN, the density-based clustering (DC) can be reformulated as

the problem of finding the connected components in a graph [29, 35].

In the graph representation, each vertex corresponds to a data point

and an edge is added to a pair of data points if they are within the

𝜖-distance from each other. Each vertex is then labeled with one

of core, border, or noise as described above. Finally, a connected

component of cores as well as the borders adjacent to the connected
component is identified as a cluster.

2.2 DC over Sliding Windows
The goal of this work is to find density-based clusters in streaming

data under the sliding window model. The sliding window model

is widely used to capture the recent state of streaming data, which

cannot be stored in its entirety by virtue of the large and ever-

increasing volume [11, 19].

2.2.1 Sliding Window Model. The sliding window model is

characterized by two parameters known as window and stride. They
are defined below for clarity.

Definition 1 (Window). The window𝑊 is a set of the latest data
points. The size of the window, |𝑊 |, can be bounded by either the
number of points in the window (count-based window) or the duration
of the window (time-based window).
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Definition 2 (Stride). The stride 𝑆 is defined by an interval at which
the clustering result is updated while the window slides. The size of the
stride, |𝑆 |, is bounded by the number of points or by a time duration
depending on the type of the sliding window. The data points in the
same stride are processed together.

Suppose for example that the sliding window is time-based and

its stride is set to 30 seconds. (The window size can be any time

duration longer than 30 seconds.) Then, whenever the window

slides by 30s, a group of new points may be added to the window

during the period and they are processed together for updating

clusters. Similarly, a group of old points may be removed from

the window during the same period and they are also processed

together for updating clusters.

2.2.2 DC over Sliding Windows. Since we aim at finding clus-

ters in streaming data, we need to reproduce or update density-

based clusters for themost recent data points captured in the current

window, whenever the window strides. As is stated in Section 2.1,

this task is equivalent to the problem of finding the connected

components of cores and their adjacent borders continuously as the

window advances.

(a) Emergence (b) Expansion (c) Merge

(d) Dissipation (e) Shrink (f) Split

A Bq
A B

q
q

p
p

p

Figure 2: Cluster Evolution. Only the cores are shown in the
figure. The point 𝑝 denotes a newly added core, and the point
𝑞 denotes a vanishing core.

There are six types of cluster evolution that can occur with a

sliding window: emergence, expansion, merge, dissipation, shrink
and split, as depicted in Figure 2. As new points are inserted into

the window, some of the existing points may become cores. Due to
those new cores, a new connected component (CC in short) may

emerge or an existing CC may expand. If any of those new cores

connects separate CCs, then they are merged into one. At the same

time, old points may be deleted from the window, and some of the

existing cores may become non-cores. Due to those vanishing cores,
existing CCs may shrink or dissipate. A vanishing core may also

split a CC into multiple CCs.

3 DENFOREST
This section presents a new incremental density-based clustering

algorithmDenForest to deal with the slow deletion problem. First, an

overview of the algorithm is given and the problem of slow deletion

is stated formally. Then, a few key ideas such as nostalgic cores and
DenTree are described in detail.

3.1 Overview of DenForest
Suppose data points are generated from sources such as sensing

devices and are sent over for processing continuously. Each data

point is associated with a timestamp𝑇 that indicates the event time

or the ingestion time. The sliding window covers the most recent

data points in the stream at any moment in time.

Point Insertion and Deletion (Section 4.1 and 4.2)

Batch Insertion and Deletion (Section 4.3)

Data Stream

Sliding Window 

Old Stride New Stride
Past Future

Density-based Clusters (Section 3.3)

DenTree (Section 3.4)

Update Clusters

Cluster1

Cluster2

Nostalgic core

Border

MST

Figure 3: Overview of DenForest

For the data points in the current window, DenForest produces
density-based clusters by detecting the connected components of

nostalgic cores (Section 3.3). The nostalgic cores are similar to the

cores defined by DBSCAN in that they are points found in the dense

region. But the nostalgic cores differ from DBSCAN’s cores in the

way they expire and become non-core points. Each density-based

cluster of nostalgic cores can be managed as a tree structure called

DenTree, which can expedite the deletion process significantly (Sec-

tion 3.4 and Theorem 1). When the window slides, DenForest up-
dates clusters by inserting and deleting points individually (Sec-

tions 4.1 and 4.2) or in batch (Section 4.3). We assume that data

points in the same stride are processed together, and data points in

different strides are processed strictly in the order of their times-

tamps. The overall clustering procedure by DenForest is illustrated
in Figure 3. The denotational symbols frequently used in the paper

are summarized in Table 2.

Table 2: Notation

Symbol Description

𝑁 the number of points in the current window

𝜏, 𝜖 the density and distance thresholds

𝐶𝐶 a connected component of cores
𝑑-𝑐𝑜𝑟𝑒 the 𝑐𝑜𝑟𝑒 point defined by DBSCAN

𝑇 the timestamp of a point

𝑇𝑐 the core-expiration time of a point

𝑁𝜖 (𝑝) the neighboring points within 𝜖-distance from 𝑝

𝑁 ′𝜖 (𝑝) the previously inserted points in 𝑁𝜖 (𝑝)
MST the maximum spanning tree of nostalgic cores
𝑑 the number of dimensions

𝑘 the number of points retrieved by a range query

𝑀 the number of nodes in the Link-Cut tree

𝑆𝐶 a super nostalgic core
𝐵𝜖 a 𝑑-dimensional ball (or hypersphere) with radius 𝜖

𝐷𝜖 the number of points in 𝐵𝜖

𝑁𝐶𝜖 (𝑝) the nostalgic cores within 𝜖-distance from a d-core point 𝑝
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SupportedTypes of the SlidingWindowModel. DenForest sup-
ports both the count-based and the time-based sliding windowmod-

els. First, under the count-based sliding window model, the stride

size is one or greater. If the stride size is one, then a point insertion

and a point deletion are performed alternately. If the stride size is

greater than one, then a batch insertion and a batch deletion are

performed alternately. The arrival order of data points in the stream

can be used as the timestamp of an individual point. Second, under

the time-based sliding window model, the stride size is a fixed time

duration, and a batch insertion and a batch deletion are performed

alternately and periodically. The only limitation is that the window

size must be a multiple of the stride size for the batch-optimized

operations to be applicable.

3.2 Slow Deletion Problem
The incremental management of clusters involves processing ex-

piring (or vanishing) cores. This becomes a major bottleneck in

updating density-based clusters incrementally.

Problem 1 (Slow deletion). A cluster may be split by a vanishing
core. To determine whether the cluster is split or not, the remaining
cores need to be traversed to check the density-reachability from one
another. This traversal would require a number of range searches,
which is the main cause of the degraded performance of incremental
density-based clustering.

Example 1. Consider a core point 𝑞 that expires to become a 𝑛𝑜𝑛-
𝑐𝑜𝑟𝑒 (either border or noise) point due to some other data points
leaving the window. The vanishing core 𝑞 will trigger one of the three
types of evolution, namely dissipation, shrink, and split, as is shown
in Figures 2(d)-(f). Let CC denote the connected component of 𝑞’s
cluster. Then a graph traversal such as Breadth-First Search (BFS) can
be applied to check the connectedness of CC \ {𝑞}. In Figures 2(e)
and 2(f), the density-reachability between the two adjacent cores 𝐴
and 𝐵 need be checked when 𝑞 vanishes. This will require visiting all
the points in the figure inevitably. In general, if a graph traversal is
initiated from one of the cores in 𝑁𝜖 (𝑞) and it can visit all the cores
in 𝑁𝜖 (𝑞), then the cluster shrinks but does not split.

This is equivalent to the dynamic connectivity problem, which

has been studied for decades [26, 42]. Due to the 𝑂 (𝑁 2) memory

cost, the edges between core points are often maintained only

logically. Thus, density-based clustering algorithms generally rely

on a spatial index to discover a pair of adjacent cores. Hence, the

latency concern is further aggravated due to the increasing cost of

range searches, when the dimensionality of data points increases.

3.3 Nostalgic Core and Density-based Clusters
We come to realize that the slow deletion problem is caused in-

trinsically by the unpredictability of a vanishing core’s expiration

time. In this section, we present a novel approach that can precisely

predict the expiration time of a core when it enters the window.

Similarly to the DBSCAN algorithm, DenForest adopts two pa-

rameters, namely density and distance thresholds (𝜏 and 𝜖) to dis-

cover density-reachable cores and adjacent borders. Unlike DBSCAN,
however, DenForest relies on its own notion of a point being a core

called a nostalgic core rather than that of DBSCAN. (DBSCAN’s

cores are referred to as d-cores hereinafter to distinguish one from

another.) DenForest can determine exactly when a nostalgic core 𝑝
will expire to become a 𝑛𝑜𝑛-𝑐𝑜𝑟𝑒 point, immediately after 𝑝 enters

the sliding window. This is done by considering only the current

data points that entered the window earlier than 𝑝 .

Definition 3 (Nostalgic core). A point 𝑝 in the window𝑊 is a
nostalgic core if the number of 𝜖-neighbors of 𝑝 that entered𝑊 no
later than 𝑝 meets the density requirement. That is, 𝑝 is a nostalgic core
if |𝑁 ′𝜖 (𝑝) | ≥ 𝜏 where 𝑁 ′𝜖 (𝑝) = {𝑞 ∈𝑊 | 𝑞 ∈ 𝑁𝜖 (𝑝) ∧ 𝑞.𝑇 ≤ 𝑝.𝑇 },
and 𝑝.𝑇 and 𝑞.𝑇 denote the timestamps of 𝑝 and 𝑞, respectively.

Whether a point 𝑝 is a nostalgic core or not is determined at the

insertion time solely by the existing points in the current window,

and the core status of 𝑝 is not affected by the points inserted in the

future. Furthermore, when a nostalgic core 𝑝 becomes a non-core

point is also determined at the insertion time. (Refer to Lemma 1

below.) Note that DBSCAN’s cores or d-cores do not possess any of

these properties. While a point 𝑝 stays in the window, DBSCAN

allows 𝑝 to gain or lose the core status at any time by pre-existing

and future points leaving or entering the window. Note also that

the set of nostalgic cores is always a subset of the set of d-cores.
Let 𝑝.𝑇𝑐 denote the core-expiration time of 𝑝 or the time when a

nostalgic core 𝑝 loses its core status to become a non-core point.

Lemma 1. 𝑝.𝑇𝑐 can be determined when 𝑝 enters the window.

Proof. Consider a point 𝑝 that is about to enter the window.

Assume |𝑁 ′𝜖 (𝑝) | ≥ 𝜏 and 𝑝 is determined as a nostalgic core. Let
𝑞 denote a point in 𝑁 ′𝜖 (𝑝) such that its timestamp 𝑞.𝑇 is the 𝜏𝑡ℎ

largest (or youngest). Then, 𝑝 loses its core status when 𝑞 leaves

the window. Since 𝑞 will leave the window at time 𝑞.𝑇 + |𝑊 |, 𝑝 will

become a non-core point at that time. That is, 𝑝.𝑇𝑐 = 𝑞.𝑇 + |𝑊 |.
Therefore, the core-expiration time of 𝑝 can be determined right at

the moment when it enters the window. □

Lemma 2. Once a point is not determined as a nostalgic core, then it
can never become a nostalgic core until it leaves the window.

Proof. For any point 𝑝 in thewindow, |𝑁 ′𝜖 (𝑝) | can only decrease
as the window slides. Therefore, if 𝑝 is not a nostalgic core at the
insertion time, it cannot become a nostalgic core until it leaves the
window. □

Since DenForest defines its own nostalgic cores, the definitions
of its border and noise points as well as its density-based clusters

need to be altered accordingly.

Definition 4 (Border and noise ofDenForest). A point is a border
if it is not a nostalgic core but within the 𝜖-distance from any nostalgic
core. Otherwise, it is considered a 𝑛𝑜𝑖𝑠𝑒 point.

Definition 5 (Density-based cluster of DenForest). In the graph
representation (described in Section 2.1), a density-based cluster is
defined as a connected component of nostalgic cores as well as the
borders adjacent to the connected component.

Each density-based cluster is managed as a tree called DenTree
introduced in Section 3.4. It may appear that DenForestwill produce
density-based clusters of poor quality because the nostalgic cores
are defined without considering the data points being inserted in

the future. We will demonstrate later in the paper that DenForest
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can produce clusters of comparable quality much more efficiently.

(See Sections 5 and 6.5 for the detailed evaluation.)

Cluster Membership of Border. Traditionally, the cluster mem-

bership of a border point is not decided deterministically. If a border

point is adjacent to two or more clusters, it can join any of the clus-

ters. This is the way DBSCAN decides the cluster membership

of a border point. In contrast, we adopt a deterministic heuristic.

DenForest attaches a border point 𝑝 to a nostalgic core with the

largest 𝑇𝑐 among those in 𝑁𝜖 (𝑝), which in turn decides the cluster

membership of 𝑝 . This approach is not in conflict with the defini-

tion of clusters and is in fact beneficial for performance, because

deletion of the nostalgic core that 𝑝 is attached to always results in

𝑝 becoming 𝑛𝑜𝑖𝑠𝑒 , hence avoiding further reclassification effort.

3.4 DenTree
In order to process a point deletion efficiently, we maintain each

cluster as a tree structure called DenTree, which can be used as

an accurate barometer of a cluster split. A DenTree consists of a
maximum spanning tree (MST in short) of a DenGraph defined

below and border points associated with it.

Definition 6 (DenGraph). A DenGraph 𝐺 (𝑉 , 𝐸,W) is an undi-
rected edge-weighted graph where each vertex in 𝑉 corresponds to a
nostalgic core in the window, each edge in 𝐸 corresponds to a pair of
vertices within the 𝜖-distance from each other, and each weight inW
is set to the smaller 𝑇𝑐 of the two adjacent vertices, namely

∀ 𝑝𝑞 ∈ 𝐸, 𝑤𝑝𝑞 = min{𝑝.𝑇𝑐 , 𝑞.𝑇𝑐 }. (1)

A DenGraph may have one or moreMST 𝑠 , each of which cor-

responds to a connected component of the DenGraph. For a pair of
nostalgic cores in the same connected component, there may exist

multiple paths between them. Thus, just a path being split does not

always make them disconnected in the graph. However, if the path

being split is the one on theMST of the connected component,

then the two nostalgic cores are no longer connected in the graph.

This property of theMST 𝑠 is the key to addressing the slow dele-

tion problem. Hereinafter, we refer to a maximum spanning tree of

a DenGraph simply as anMST for brevity.

Theorem 1. Consider two nostalgic cores 𝑝 and 𝑞 in anMST of
a DenGraph. If another nostalgic core 𝑥 on the path of the MST
between 𝑝 and 𝑞 becomes a non-core point and is removed from the
graph, then 𝑝 and 𝑞 are no longer connected not only in theMST
but also in the graph.

Proof. (By contradiction). Consider the moment when 𝑥 is

about to become a non-core point and be removed from the graph.

Suppose the path on theMST passing through 𝑥 is not the only

path between 𝑝 and 𝑞 in the graph. Then there must be another

path between them, and these two paths form a cycle. Since 𝑥 is the

one that is about to expire, all the points in the cycle have a core-
expiration time greater than 𝑥 ’s. Consider now a point 𝑦 directly

adjacent to 𝑥 on the path of theMST . Then, the edge 𝑥𝑦 must

have the smallest weight among all the edges in the cycle, because

𝑤𝑥𝑦 = min{𝑥 .𝑇𝑐 , 𝑦.𝑇𝑐 } = 𝑥 .𝑇𝑐 . This implies that the edge 𝑥𝑦 must

not have been chosen for theMST , and therefore contracts the

assumption that 𝑥𝑦 is in theMST . □

DenTree

Density-based cluster
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Figure 4: Example of DenTree

The implication of Theorem 1 is that when anMST is split by

a vanishing nostalgic core, the underlying connected component

(and its corresponding cluster) is also split. In general, a tree is split

to non-empty subtrees when a node with two or more adjacent

nodes is removed. Hence, to determine whether a cluster will be

split by a vanishing nostalgic core 𝑝 , it will be enough to check

whether 𝑝 is adjacent to two or more nostalgic cores in theMST .
Below we define DenTree that represents a cluster of nostalgic cores
and border points.

Definition 7 (DenTree). A DenTree is a tree composed of anMST
and the border points associated with theMST . If a 𝑏𝑜𝑟𝑑𝑒𝑟 is adja-
cent to more than one nostalgic core, it is attached to the one of those
that has the largest core-expiration time 𝑇𝑐 .

Example 2. Figure 4 illustrates how a density-based cluster is rep-
resented by a DenTree, which consists of anMST of nostalgic cores
and the border points associated with it. In the figure, the red points
(𝐴 ∼ 𝐾) and the white points (𝐿 ∼ 𝑁 ) denote nostalgic cores and
border points, respectively. An edge in the graph indicates that its
two adjacent vertices (nostalgic cores or borders) are within the 𝜖-
distance from each other. Nostalgic cores are annotated with their
core-expiration times. Unlike the traditional approaches, graph traver-
sals are not required to determine whether a cluster is split or not by a
vanishing core. For example, at time 𝑡 = 5, point𝐴 becomes a non-core,
and the cluster shrinks but is still connected because the DenTree is
not split. On the other hand, at time 𝑡 = 6, points 𝐵 and 𝐼 become
non-cores, and the DenTree is split by point 𝐼 , and consequently, the
cluster is also split by point 𝐼 .

4 OPERATIONS OF DENFOREST
This section presents the detailed procedures of DenForest’s Insert
and Delete operations. These procedures ensure that clusters pro-

duced by DenForest are always valid with respect to Definition 5,

while the window slides.

4.1 Insertion
The Insert operation is responsible for updating clusters when

new data points are added to the window. In particular, it ensures

thatMST 𝑠 are updated incrementally and remain valid even when

the underlying graph of nostalgic cores changes over time by the

sliding window. The overall procedure is composed of four steps as

follows. (Refer to Algorithm 1 for details.)
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Algorithm 1: Insert a point 𝑝 and update the clusters

Insert (Point : p)
1 Insert 𝑝 into the SpatialIndex

2 if |𝑁 ′𝜖 (𝑝) | ≥ 𝜏 then
3 𝑚𝑠𝑡 ← 0 // The number of MST𝑠 connected to 𝑝

4 𝑝.𝑇𝑐 ← Core-Expiration-Time(p)
5 foreach 𝑛 ∈ 𝑁 ′𝜖 (𝑝) do

// The 𝐶𝑜𝑛𝑛𝑒𝑐𝑡 function returns true if it

combines two disjoint MST𝑠.
6 if 𝑛.𝑇𝑐 ≥ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 and Connect(𝑝,𝑛) then
7 𝑚𝑠𝑡 + +

end
end

8 Determine the type of cluster evolution by the𝑚𝑠𝑡 value

end
9 Process the noise/borders

STEP 1 (Point Classification) First, it determines whether a

new point 𝑝 is a nostalgic core by counting the number of its 𝜖-

neighbors in the current window. If the count is no less than the

density threshold 𝜏 , then 𝑝 is classified as a nostalgic core. Other-
wise, it is classified as a 𝑏𝑜𝑟𝑑𝑒𝑟 or 𝑛𝑜𝑖𝑠𝑒 point.

STEP 2 (Determination of 𝑇𝑐 ) If 𝑝 is classified as a nostalgic
core, the core-expiration time 𝑝.𝑇𝑐 is computed by its 𝜖-neighbors

(Line 4). This step involves sorting the 𝜖-neighbors in the order of

their timestamps.

STEP 3 (Adding Links toMST 𝑠) If 𝑝 is a nostalgic core, the
maximum spanning trees (MST 𝑠) are updated by adding 𝑝 and

new edges adjacent to it. The point 𝑝 is connected to each of the

nostalgic cores within the 𝜖-distance by an edge whose weight is

set by Equation (1). If a cycle is formed by adding a new edge, an

edge with the smallest weight is removed from the cycle by the

Connect(p,n) function (Line 6), which is described in Algorithm 2.

Three types of cluster evolution can result by updating theMST 𝑠
(Line 7 and Line 8):

(a) A cluster 𝑒𝑚𝑒𝑟𝑔𝑒𝑠 if there is noMST near 𝑝 (𝑚𝑠𝑡 = 0).

(b) A cluster 𝑒𝑥𝑝𝑎𝑛𝑑𝑠 if 𝑝 is connected to oneMST (𝑚𝑠𝑡 = 1).

(c) More than two clusters are𝑚𝑒𝑟𝑔𝑒𝑑 when 𝑝 is connected to

multipleMST 𝑠 (𝑚𝑠𝑡 ≥ 2).

STEP 4 (Updating Borders) If 𝑝 is a nostalgic core, then an ex-

isting border point (say 𝑥) within the 𝜖-distance from 𝑝 may be

reconnected to 𝑝 , if 𝑇𝑐 of 𝑝 is greater than that of 𝑥 ’s adjacent

nostalgic core. For 𝑝 that is not a nostalgic core, if there exists a

nostalgic core in 𝑁𝜖 (𝑝), then 𝑝 becomes a border point and 𝑝 is con-

nected to a nostalgic core in 𝑁𝜖 (𝑝) with the largest 𝑇𝑐 . Otherwise,

𝑝 becomes a 𝑛𝑜𝑖𝑠𝑒 .

The following lemma proves the validity of the Insert operation.

Lemma 3. Insert(p) of Algorithm 1 updates DenTrees correctly.

Proof. TheMST 𝑠 of a DenGraph remain cycle-free and max-

imally spanning because an edge with the smallest weight is re-

moved if a cycle is formed by 𝑝 being inserted [8]. Every bor-

der point, either a new or existing one, remains attached to a

nostalgic core with the largest 𝑇𝑐 within the 𝜖-distance. Therefore,

the DenTrees are updated correctly by Insert(𝑝). □

Table 3: Link-Cut Tree Operations

APIs Description

Link(n,m) Link nodes 𝑛 and𝑚 in different trees.

Cut(n,m) Cut a link between nodes 𝑛 and𝑚.

Connected(n,m) Check if a path exists between nodes 𝑛 and𝑚.

FindMinE(n,m)
Find the minimum weighted edge on the path

between nodes 𝑛 and𝑚 (added for DenForest).

4.1.1 MST based on Link-Cut Tree. DenForest relies on a data

structure called Link-Cut Tree [44] to efficiently detect and break

a cycle in theMST 𝑠 . The Link-Cut tree represents a set of trees
and is often used to solve the dynamic connectivity problem for an

acyclic graph. The trees in a Link-Cut tree are divided into disjoint

paths, and each path is represented by a Splay tree. By managing

a set of trees with a path-based structure, the Link-Cut tree can
support its key operations in the amortized 𝑂 (log𝑀) time, where

𝑀 is the total number of nodes in the trees. See Table 3 for the list

of supported operations as well as a new one added for DenForest.
DenForest maintains its MST 𝑠 in the Link-Cut tree and up-

dates them whenever the underlying graph changes by a new

point added to the window. For efficient updates, we design a new

function called FindMinE(n,m) in addition to the traditional op-

erations of the Link-Cut tree. FindMinE(n,m) finds the minimum

weighted edge on the path between two nodes 𝑛 and𝑚 in a tree.

FindMinE(n,m) also runs in the amortized 𝑂 (log𝑀) time.

Algorithm 2: Connect two points in the Link-Cut tree

Connect (Point : p, Point : q)
1 𝑤𝑝𝑞 ←𝑚𝑖𝑛{𝑝.𝑇𝑐 , 𝑞.𝑇𝑐 }
2 if Connected(p,q) then

// If a cycle is formed, cut the minimum weighted edge

3 𝑟𝑠 ← FindMinE(𝑝,𝑞)
4 if 𝑤𝑟𝑠 ≤ 𝑤𝑝𝑞 then
5 Cut(r, s) and Link(p, q)

end
6 return False // No merge

else
7 Link(p, q)

8 return True // Potential merge

end

Algorithm 2 presents the Connect algorithm that links two

nostalgic cores 𝑝 and 𝑞 in the Link-Cut tree. The weight of the edge
𝑝𝑞 is set by the smaller of the core-expiration times of 𝑝 and 𝑞

(Line 1). If there already exists a path between them (Line 2), adding

𝑝𝑞 would create a cycle. Thus, the algorithm finds an edge with the

smallest weight, say 𝑟𝑠 , on the path between 𝑝 and 𝑞 (Line 3). If the

weight of 𝑟𝑠 is smaller than the weight of 𝑝𝑞, then 𝑟𝑠 is removed and

replaced by 𝑝𝑞 (Lines 4-5). Otherwise, 𝑝𝑞 is simply dropped without

altering the Link-Cut tree (Line 6). If there is no path between 𝑝

and 𝑞, the two separateMST 𝑠 they belong to are linked together

by adding 𝑝𝑞 (Line 7). The Connect algorithm returns a Boolean

flag to indicate the type of cluster evolution.
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4.1.2 Time Complexity of Insert Operation. The runtime of

the Insert algorithm is given by the formula below.

𝐶𝑖 +𝐶𝑟 + 𝑃𝑛𝑐 × (𝐶𝑠 + |𝑁 ′𝜖 |𝐶𝑐 ) +𝐶𝑝
𝐶𝑖 is the cost of inserting a point into the spatial index, 𝐶𝑟 is the

cost of a range search, 𝑃𝑛𝑐 is the probability of an inserted point

being a nostalgic core, 𝐶𝑠 is the cost of sorting 𝑁 ′𝜖 to compute the

core-expiration time, 𝐶𝑐 is the cost of the Connect operation, and
𝐶𝑝 is the cost of processing a 𝑏𝑜𝑟𝑑𝑒𝑟 .

Lemma 4. Insert runs in amortized 𝑂 (𝑁 1−1/𝑑 + 𝑘 log𝑁 ) time.

Proof. Assume that the balanced k-d tree [2] is used as a spatial
index. Then,𝐶𝑖 and𝐶𝑟 are𝑂 (log𝑁 ) and𝑂 (𝑁 1−1/𝑑+𝑘), respectively,
where 𝑘 is the number of points retrieved by a range query. 𝐶𝑠 and

𝐶𝑝 are𝑂 ( |𝑁 ′𝜖 | × log |𝑁 ′𝜖 |) and𝑂 ( |𝑁 ′𝜖 |), respectively.𝐶𝑐 is amortized

𝑂 (log𝑀) because all of its sub-algorithms take amortized𝑂 (log𝑀)
time. Then, since 𝑀 < 𝑁 , the amortized time complexity of the

Insert operation is bounded by 𝑂 (𝑁 1−1/𝑑 + 𝑘 log𝑁 ). □

DenForest can work with many spatial indexes such as R-tree [24]
and range tree [3] as well. We only assume the balanced k-d tree in
the proof for its well known upperbound analysis.

4.2 Deletion
The Delete operation is responsible for updating clusters when ex-

isting data points are removed from the sliding window. Theorem 1

enables it to quickly determine whether a cluster will be split or not

just by counting the links adjacent to each vanishing nostalgic core
in theMST . The Delete algorithm depicted in Algorithm 3 runs

in two main steps.

Algorithm 3: Delete a point 𝑞 and update the clusters

Delete (Point : q)
1 𝐸 (𝑞) : a set of nostalgic cores expired by the deletion of 𝑞

2 foreach 𝑥 ∈ 𝐸 (𝑞) do
3 𝐿 ← a set of nostalgic cores linked to 𝑥

4 Determine the type of cluster evolution by the |𝐿 | value
5 foreach 𝑦 ∈ 𝐿 do Cut(x,y)

6 Reclassify 𝑥 as either 𝑏𝑜𝑟𝑑𝑒𝑟 or 𝑛𝑜𝑖𝑠𝑒 by the |𝐿 | value.
end

7 Delete 𝑞 from the SpatialIndex

STEP 1 (Finding Expiring Nostalgic Cores)When a point 𝑞 is

removed from the window, some of the nostalgic coresmay become

𝑛𝑜𝑛-𝑐𝑜𝑟𝑒𝑠 . Unlike the traditional density-based methods, those ex-

piring nostalgic cores can be found without executing any range

search. Since the core-expiration time of a nostalgic core is deter-
mined at the insertion time and remains intact, all the nostalgic cores
in the current window can be indexed in a supplementary data struc-

ture such as hashmapwith their core-expiration times as keys. When

𝑞 is removed from the window at time 𝑡 , all the nostalgic cores be-
coming non-cores at time 𝑡 can be found in 𝑂 ( |𝐸 (𝑞) |) time from

the supplementary data structure (Line 1).

STEP 2 (Cutting Links fromMST 𝑠) All the expiring nostalgic
cores are examined to determine whether anyMST is to be split.

For each expiring nostalgic core 𝑥 , all the adjacent links are found

(Line 3) and removed (Line 5). Then 𝑥 is reclassified as follows

(Line 6). If |𝐿 | ≥ 1, then 𝑥 becomes a 𝑏𝑜𝑟𝑑𝑒𝑟 point and is attached

to a nostalgic core in 𝐿 with the largest 𝑇𝑐 . If |𝐿 | = 0, then there is

no nostalgic core adjacent to it and 𝑥 becomes a 𝑛𝑜𝑖𝑠𝑒 . Three types

of cluster evolution can result from each expiring nostalgic core 𝑥
(Lines 4):

(a) If |𝐿 | = 0, the cluster containing 𝑥 dissipates.

(b) If |𝐿 | = 1, the cluster containing 𝑥 shrinks.

(c) If |𝐿 | ≥ 2, the cluster containing 𝑥 is split.

Theorem 1 guarantees that the clusters updated by the Delete
operation are valid. Note also that Algorithm 3 does not involve

any range search. Consequently, the performance of the Delete
operation is less sensitive to the dimensionality of data points,

and is not overly affected by the distance threshold 𝜖 . This will be

corroborated by the experimental evaluation in Section 6.4.

4.2.1 Time Complexity of DeleteOperation. The asymptotic

runtime of the Delete algorithm is given by the formula below.

𝑂 ( |𝐸 | × |𝐿 | × log𝑀 + log𝑁 ) (2)

|𝐸 | is the number of nostalgic cores expired by the deletion of a

point, and |𝐿 | is the degree (i.e., the number of adjacent links) of an

expiring nostalgic core. The terms log𝑀 and log𝑁 denote the cost

of a Cut operation in the Link-Cut tree and the cost of a deletion in

the spatial index, respectively.

In the following theorem that bounds the runtime of the Delete
algorithm, we assume that an unbounded number of data points

can take up exactly the same location in space. We then determine

the maximum number of nostalgic cores that can expire by a single

point being removed from the sliding window.

Theorem 2. The amortized runtime of the Delete algorithm is
𝑂 (log𝑁 ) where 𝑁 is the number of points in the sliding window.

Proof. Suppose a point 𝑝 is about to be removed from the win-

dow and a nostalgic core 𝑥 is about to become a non-core by that.

First, 𝑥 must be in 𝑁𝜖 (𝑝). Otherwise, 𝑥 would not be affected by

the deletion of 𝑝 . Second, the number of points that exist at exactly

the same location as 𝑥 must be no more than 𝜏 − 1. Otherwise, 𝑥
would still be a nostalgic core after the deletion. Third, if there are
𝜏 − 1 points at the location of 𝑥 , then there must be no more point

within the 𝜖-distance from 𝑥 . Otherwise, again, 𝑥 would still be

a nostalgic core after the deletion. That is, if 𝜏 − 1 nostalgic cores
at the same location are about to expire, there must be no other

point within the 𝜖-distance. Hence, the number of those locations

where groups of 𝜏 − 1 expiring nostalgic cores coexist is bounded
by a constant. In a 2-dimensional space, the maximum number of

such locations is six, which is known as a kissing number [9].1 In a

𝑑-dimensional space, the kissing number is bounded by 𝑐𝑑 , where

𝑐 is a small constant. Thus, the number of nostalgic cores expired
by the deletion of 𝑝 is bounded by (𝜏 − 1) × 𝑐𝑑 , which is𝑂 (1). This
implies that |𝐸 | is 𝑂 (1) in Equation (2). Besides, in Equation (2),

the average of |𝐿 | is less than two (just like the average degree of

a vertex in any tree or acyclic graph), and 𝑀 ≤ 𝑁 because 𝑀 is

1
The kissing number is defined as themaximal number of non-overlapping unit spheres

that can touch a common sphere of the same size. For DenForest, the radius of the
spheres is 𝜖/2.
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the number of nodes in the Link-Cut tree. Therefore, the amortized

runtime of the Delete algorithm is 𝑂 (log𝑁 ). □

Lemma 5. DenForest consumes O(N) space.

Proof. Themain data structuresDenForest relies on areDenTrees,
a spatial index and a hashmap. DenTrees including the Link-Cut
tree use 𝑂 (𝑁 ) space, and the spatial index and the hashmap both

use 𝑂 (𝑁 ) space. □

Cluster Membership. DenForest does not store the cluster identi-
fication of an individual point. If it did, then the cost of updating

the cluster identifications would be non-trivial. Instead, upon re-

quest, DenForest assigns a unique ID to the points belonging to each

cluster by traversing the corresponding DenTree. This procedure
requires 𝑂 (𝑁 ) time, which is no worse than any existing method.

4.3 Batch-Optimized Update
The Insert and Delete operations can be further optimized by

exploiting the locality of the data points in the same stride. By

consolidating nearby nostalgic cores to fewer meta-objects called

super nostalgic cores, DenForest can make theMST 𝑠 smaller and

reduce the overhead of updating clusters.

Definition 8 (Super nostalgic core, SC). The super nostalgic core
is a connected component of nostalgic cores in the same stride that
become 𝑛𝑜𝑛-𝑐𝑜𝑟𝑒𝑠 together when the window slides by a single stride.

Definition 9 (𝜖-Neighbors of a super nostalgic core). Two super
nostalgic cores 𝑠𝑐1 and 𝑠𝑐2 are said to be 𝜖-neighbors if there are a
pair of points 𝑝 ∈ 𝑠𝑐1 and 𝑞 ∈ 𝑠𝑐2 such that 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝, 𝑞) ≤ 𝜖 .
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Figure 5: Example of Super Nostalgic Cores

In the following example of super nostalgic cores, we assume that

the window and the stride are 20 seconds long and 5 seconds long,

respectively, and the sliding window is currently anchored at time

25 covering a time interval (5,25]. This is illustrated in Figure 5,

where each point is annotated with the timestamp (𝑇 ) and the core-

expiration time (𝑇𝑐 ). For example, point 𝐴(26, 38) will be ingested
at time 26 and will become a 𝑛𝑜𝑛-𝑐𝑜𝑟𝑒 at time 38. Non-cores are not
shown in the figure.

Example 3. In Figure 5, the four stars (𝑠𝑐1 ∼ 𝑠𝑐4) represent super
nostalgic cores in the current window. When the window advances
by a stride, six new points (𝐴 ∼ 𝐹 ) in the stride 𝑆6 are added to the
window, and they all become nostalgic cores. Among those six points,
F is separate from the others by a nostalgic core not in stride S6, and it

alone forms a super nostalgic core {𝐹 }. The other points 𝐴 ∼ 𝐸 are in
a connected component of nostalgic cores in the same stride, but they
form two separate super nostalgic cores {𝐴, 𝐵,𝐶} and {𝐷, 𝐸}. This is
because points A, B, and C will become non-cores at time 40, while
points D and E will become non-cores at time 45. The super nostalgic
cores {𝐴, 𝐵,𝐶} and {𝐷, 𝐸} are said to be 𝜖-neighbors because C and
D are within the 𝜖-distance from each other.

The batch-optimized Insert algorithm replaces a group of con-

nected nostalgic cores with a super nostalgic core so that DenForest
can update clusters more efficiently without compromising the

clustering result. The detailed procedure is given below.

STEP 1 (Finding SCs) When the window slides by a stride

and new data points are added, new nostalgic cores are found from

the data points, and new super nostalgic cores are formed from the

nostalgic cores. The core-expiration time of a super nostalgic core is
set to the time interval of a stride that covers all the core-expiration
times of its nostalgic cores. For example,𝑇𝑐 of the super nostalgic core
{𝐴, 𝐵,𝐶} is set to the time interval (35,40]. Besides, each nostalgic
core maintains a pointer to the adjacent nostalgic core with the

largest 𝑇𝑐 for the batch-optimized deletion. For example, point 𝐶

maintains a pointer to 𝐷 , which has the largest 𝑇𝑐 among 𝑁𝜖 (𝐶).
STEP 2 (UpdatingMST 𝑠 with SCs) Each super nostalgic core

is collapsed to a single vertex in the MST 𝑠 . A new edge is in-

troduced to each pair of the 𝜖-neighbors of super nostalgic cores,
and the weight of the new edge is set to the smaller of their core-
expiration times. For example, the weight of the edge between two

super nostalgic cores {𝐴, 𝐵,𝐶} and {𝐷, 𝐸} is set to the time interval

(35, 40]. If a cycle is formed, then an edge with the smallest weight

is removed from the cycle. 𝐵𝑜𝑟𝑑𝑒𝑟𝑠 are updated the same way as

the Insert algorithm.

The batch-optimized Delete algorithm works similarly. When

the window slides by a stride and old data points are removed, some

of the super nostalgic cores may become 𝑛𝑜𝑛-𝑐𝑜𝑟𝑒𝑠 . For example,

when the window slides from a time interval (15, 35] to a time

interval (20, 40], super nostalgic cores {𝐴, 𝐵,𝐶} and {𝐹 } become

𝑛𝑜𝑛-𝑐𝑜𝑟𝑒𝑠 . The expired super nostalgic cores are removed from the

MST 𝑠 . For each point 𝑝 that has become a non-core, the adjacent
nostalgic core 𝑞 with the largest 𝑇𝑐 is examined, which is found by

following the pointer established in the batch insertion algorithm. If

𝑞 is still a nostalgic core, then 𝑝 becomes a 𝑏𝑜𝑟𝑑𝑒𝑟 point. Otherwise,

it becomes a 𝑛𝑜𝑖𝑠𝑒 .

5 CLUSTERING QUALITY OF DENFOREST
Two aspects should be considered in evaluating the effectiveness

of a clustering method for streaming data over the sliding window.

The first is the capability to produce high-quality clusters from

the current window, and the second is the capability to sustain

the quality efficiently while the window moves forward. This sec-

tion evaluates the first aspect of DenForest. The second aspect of

DenForest will be evaluated in Section 6.

5.1 Clustering Quality for Static Data
A variety of synthetically generated labeled datasets were used

for the evaluation of clustering quality. For each dataset, it was

assumed that the entire set of data points were contained in the

current window from which density-based clusters were produced
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Table 4: Clustering quality on various datasets

Dataset

DenForest
vs. Label

DBSCAN

vs. Label

DenForest
vs. DBSCAN

ARI AMI NMI ARI AMI NMI ARI AMI NMI

𝑆𝑝𝑖𝑟𝑎𝑙 [6] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

𝑅15 [47] 0.98 0.98 0.98 0.99 0.99 0.99 0.98 0.98 0.98

𝐴𝑔𝑔𝑟 . [22] 0.97 0.96 0.97 0.99 0.99 0.99 0.97 0.96 0.97

𝐶𝑜𝑚𝑝. [53] 0.94 0.87 0.90 0.94 0.85 0.91 0.98 0.88 0.94

𝐺2-2-30 [18] 0.95 0.88 0.90 0.96 0.93 0.93 0.96 0.92 0.94

𝐺2-4-30 [18] 0.99 0.97 0.99 1.00 1.00 1.00 0.99 0.97 0.99

𝐺2-8-30 [18] 0.99 0.99 0.99 1.00 1.00 1.00 0.99 0.99 0.99

Average 0.97 0.95 0.96 0.98 0.96 0.97 0.98 0.95 0.97

by DenForest as well as DBSCAN for comparison. DenForest pro-
duces clusters of nostalgic cores, while DBSCAN produces clusters

of d-cores (i.e., cores in DBSCAN’s own definition). Although they

define cores in their own ways, both DenForest and DBSCAN define

clusters the same way.

We adopted three metrics called Adjusted Rand Index (ARI) [27],

Adjusted Mutual Information (AMI) [49], and Normalized Mutual

Information (NMI) [33] to measure the clustering quality quanti-

tatively. These metrics have been used widely in various studies

to compute the similarity between two cluster memberships (or

partitions) [5, 30]. The ARI values range from -1 to 1, with 1 indicat-

ing two identical clustering results and -1 indicating no similarity

between them. The AMI and NMI are similar to ARI, but their val-

ues range from 0 to 1. For each clustering method, we attempted

to obtain the best achievable quality by tuning the density (𝜏) and

the distance (𝜖) thresholds. The clustering results of DenForest may

vary depending on the ingestion order of data points owing to

the way nostalgic cores are defined. Thus, for each metric, we ran

DenForest one hundred times for each dataset each with a random

ingestion order and took the average.

Table 4 summaries the clustering quality of DenForest and DB-

SCAN tested on seven labeled datasets, which are listed in the first

column of the table. In the first and second groups of three columns

are the quality measurements computed with respect to the given

labels (i.e., ground truth), which measure the ability of DenForest
and DBSCAN to produce accurate clustering results. In the third

group of three columns are the quality measurements computed

with respect to the clustering results from DBSCAN, which mea-

sures the ability of DenForest to produce the same clustering results

as those of DBSCAN. On average, DenForest achieved 0.97 (ARI),

0.95 (AMI), and 0.96 (NMI) clustering quality with respect to the

given true labels, and achieved 0.98 (ARI), 0.95 (AMI) and 0.97 (NMI)

clustering quality with respect to the clustering results from DB-

SCAN. This demonstrates that considering only the pre-existing

data points in the current window does not overly compromise

the quality of clusters and helps expedite the clustering process

significantly, which will be shown in Section 6.

5.2 Replaceability
The number of nostalgic cores within the distance threshold is criti-

cal to the quality of clustering result. This section provides further

analysis on the relationship among the density of a region, the num-

ber of nostalgic cores, and the clustering quality. We will first show

that the number of nostalgic cores in a region is linearly correlated

with the density of the region (Section 5.2.1). We will then show that

DenForest and DBSCAN would produce similar clustering results if

the region was dense enough (Section 5.2.2).

5.2.1 Nostalgic Cores andDensity. Imagine a set of points scat-

tered in the space and time. The number of points in a space 𝑉 and

a time-interval (𝑡1, 𝑡2] can be calculated by the equation below with

continuous density assumed for simplicity.∫ 𝑡2

𝑡1

∫
𝑉

𝐷 ( ⃗⃗⃗𝑥, 𝑡)d𝑉 d𝑡 (3)

where 𝐷 ( ⃗⃗⃗𝑥, 𝑡) denotes the density function of space (

⃗⃗⃗
𝑥 ) and time (𝑡 ).

Belowwe define a locally stable subspace whose number of nostalgic
cores can be determined with respect to the density of the subspace.

Definition 10 (Locally stable). A 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒 is said to be locally
stable if

∫
𝐵𝜖 (𝑝) 𝐷 (

⃗⃗⃗
𝑥, 𝑡)d𝑉 = 𝑉𝑜𝑙 (𝐵𝜖 ) · 𝐷 (𝑝, 𝑡) for any point 𝑝 in the

subspace. 𝐵𝜖 and 𝐵𝜖 (𝑝)denote a ball of radius 𝜖 and a ball of radius
𝜖 centered at 𝑝 , respectively. 𝑉𝑜𝑙(𝐵𝜖 ) denotes the volume of 𝐵𝜖 .

Lemma 6. In a locally stable subspace, the number of nostalgic cores
in any 𝐵𝜖 is 𝐷𝜖 − 𝜏 , where 𝐷𝜖 denotes the number of points in 𝐵𝜖 .

Proof. Let the time interval of the window be (𝑡0, 𝑡𝑊 ]. 𝐷𝜖 is

equal to

∫ 𝑡𝑊
𝑡0

∫
𝐵𝜖
𝐷 ( ⃗⃗⃗𝑥, 𝑡)d𝑉 d𝑡 by Equation (3). For a position

⃗⃗
𝑦

in the locally stable space, define a function 𝑇 ( ⃗⃗𝑦) such that 𝜏 =∫ 𝑇 ( ⃗⃗𝑦)
𝑡0

∫
𝐵𝜖 (
⃗⃗
𝑦) 𝐷 (

⃗⃗⃗
𝑥, 𝑡)d𝑉 d𝑡 .𝑇 ( ⃗⃗𝑦) is a time threshold for nostalgic core

classification. Among those at the same location as

⃗⃗
𝑦, the points

inserted after the 𝑇 ( ⃗⃗𝑦) time are classified as nostalgic cores, while
the points inserted before that time are not. The number of nostalgic
cores in 𝐵𝜖 can then be defined as

∫
𝐵𝜖

∫ 𝑡𝑊
𝑇 ( ⃗⃗𝑥) 𝐷 (

⃗⃗⃗
𝑥, 𝑡)d𝑡d𝑉 . Therefore,

the lemma is proved as follows.∫
𝐵𝜖

∫ 𝑡𝑊

𝑇 ( ⃗⃗𝑥)
𝐷 ( ⃗⃗⃗𝑥, 𝑡)d𝑡d𝑉 = 𝐷𝜖 −

∫
𝐵𝜖

∫ 𝑇 ( ⃗⃗𝑥)

𝑡0

𝐷 ( ⃗⃗⃗𝑥, 𝑡)d𝑡d𝑉

=𝐷𝜖 −
∫
𝐵𝜖

𝜏/𝑉𝑜𝑙 (𝐵𝜖 )d𝑉 (by the locally stable condition)

=𝐷𝜖 − 𝜏 . □

This lemma indicates that in the region with a sufficiently high

density (𝐷𝜖 ≫ 𝜏), there will be many nostalgic cores in any 𝐵𝜖 .

5.2.2 Nostalgic Cores and Quality. The d-cores of DBSCAN
play two important roles : (1) spatially 𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔 the clustered region

and (2) 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 the neighboring points. If nostalgic cores com-

pletely replace d-cores playing these roles, DenForest and DBSCAN

will produce an identical result. This replaceability is correlated

with the number of nostalgic cores in 𝐵𝜖 .
For a d-core point 𝑝 , let 𝑁𝐶𝜖 (𝑝) be a set of nostalgic cores in

𝐵𝜖 (𝑝). Recall that nostalgic cores are a subset of d-cores.

Definition 11 (Completely replaceable). A d-core 𝑝 is said to be
completely replaceable by 𝑁𝐶𝜖 (p), if the following conditions are
satisfied.

𝐵𝜖 (𝑝) ⊆
⋃

𝑞∈𝑁𝐶𝜖 (𝑝 )
𝐵𝜖 (𝑞) (𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒)

A DenGraph’s subgraph whose
vertex set is 𝑁𝐶𝜖 (𝑝) is connected.

(𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦)
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Theorem 3. For any d-core p, if it can be completely replaced by
𝑁𝐶𝜖 (𝑝), then both DenForest and DBSCAN produce an identical clus-
tering result.

Proof. The 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 condition guarantees that the area cov-

ered by nostalgic cores contains all the borders and d-cores of DB-
SCAN. The 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 condition guarantees that all the d-cores
in a cluster of DBSCAN are included in a cluster of DenForest. □

This theorem clearly states that the two conditions of Defi-

nition 11 are relevant to clustering quality. Now, let us find out

how they are correlated with the cardinality of 𝑁𝐶𝜖 (𝑝). Figure 6
shows the coverage ratio of a point 𝑝 and the probability of the

subgraph composed of𝑁𝐶𝜖 (𝑝) being connected, with respect to the
|𝑁𝐶𝜖 (𝑝) | and the dimensionality of space. We adopted the Monte
Carlo method [36], and 𝑁𝐶𝜖 (𝑝) is populated uniformly around 𝑝 .

The coverage ratio is calculated by the following equation.

Coverage Ratio =
𝑉𝑜𝑙 (𝐵𝜖 (𝑝) ∩ (

⋃
𝑞∈𝑁𝐶𝜖 (𝑝) 𝐵𝜖 (𝑞)))

𝑉𝑜𝑙 (𝐵𝜖 )
The general trend is that, as |𝑁𝐶𝜖 (p)| increases, both the coverage

and the connectivity increase. For example, in a 2D space, if𝐷𝜖−𝜏 ≥
16, then the clustering result of DenForest will be nearly identical to
that of DBSCAN. This is because 16 or more nostalgic cores around
a d-core 𝑝 can replace it completely.
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Figure 6: Coverage and Connectivity w.r.t. |𝑁𝐶𝜖 |

In interior regions of a cluster where the density is sufficiently

high (𝐷𝜖 ≫ 𝜏), there would be many nostalgic cores within the 𝜖-

distance. Thus, the nostalgic cores would replace d-cores well with
the high coverage ratio and the high probability of being con-

nected. In boundary regions of a cluster where the density is not

so high (𝐷𝜖 ≈ 𝜏), there might not be enough points in 𝑁𝐶𝜖 , and

the nostalgic cores would not replace d-cores so well. However, the

boundary regions are fundamentally unstable, and they seldom

affect the quality of clustering result.

6 EVALUATION
This section analyzes the performance of DenForest by comparing

it with the existing incremental density-based clustering methods.

Competing Methods. DenForest is compared with three incre-

mental methods that can produce exactly the same clustering result

as that of DBSCAN : Incremental DBSCAN, Extra-N, and DISC.

Incremental DBSCAN (or IncDBSCAN in short) is an incremental

version of DBSCAN that supports the insertion and deletion of an

individual data point [14]. We used its version optimized with MS-

BFS [31]. Extra-N [51] is another clustering method that supports

incremental updates under the sliding window model. DISC [31]

is a recent one that can expedite the processing of incremental

operations by performing them in batch.

DenForest is also compared with 𝜌-double-approximate DBSCAN

that produces an approximate clustering result [21]. Two approxi-

mation parameters were chosen in the experiments, 𝜌=0.001 and

𝜌=0.1, for nearly accurate and less accurate clusters, respectively.

The clustering results produced with these two parameters are de-

noted by 𝐴𝑝𝑝𝑟𝑜𝑥-𝐻𝑖𝑔ℎ (𝜌=0.001) and 𝐴𝑝𝑝𝑟𝑜𝑥-𝐿𝑜𝑤 (𝜌=0.1). Finally,

the clustering results produced by DenForest without the batch-

optimization (presented in Section 4.3) is denoted by DenForest-NO.

Environment. All the experiments were conducted on a stand-

alone machine with a Ryzen 7 1700 8-Core Processor, 64 GB RAM,

and a 256 GB solid-state drive, running Ubuntu 18.04 LTS. We

implemented all the clustering methods in comparison as well as

the R-tree spatial index in Java with JDK 1.8.0. The elapsed times

were measured using the System.nanoTime function. Since each
dataset was preloaded into the memory, the disk did not affect the

performance during the experiments.

Real-World Datasets. In the experiments, the following four real-

world datasets were used to evaluate the proposed method.

DTG is a dataset collected from digital tachograph devices at-

tached to commercial vehicles in a metropolitan city [12]. A record

was generated from each vehicle every 10 seconds, and each record

included the time, location, speed, and acceleration of the vehi-

cle. The 2D coordinates (𝑝𝑙𝑎𝑡 , 𝑝𝑙𝑜𝑛) were used in the experiments,

where 𝑝𝑙𝑎𝑡 and 𝑝𝑙𝑜𝑛 are the latitude and the longitude fields, respec-

tively. The total number of records is approximately 300 million.

GeoLife is a GPS trajectory dataset collected from 182 users

over a period of four years [54]. Each record includes the time

and the location of each user. The 3D normalized coordinates

(𝑝𝑙𝑎𝑡 , 𝑝𝑙𝑜𝑛, 𝑝𝑎𝑙𝑡/300, 000) were used in the experiments, where 𝑝𝑎𝑙𝑡
is the altitude field. The total number of records is approximately

24.8 million.

IRIS is a dataset of earthquake events that occurred around

the world from 1960 to 2019 [28]. The 4D normalized coordinates

(𝑝𝑙𝑎𝑡 , 𝑝𝑙𝑜𝑛, 𝑝𝑑𝑒𝑝/10, 𝑝𝑚𝑎𝑔×10) were used in the experiments, where

𝑝𝑑𝑒𝑝 and 𝑝𝑚𝑎𝑔 are the depth and the magnitude fields, respectively.

The total number of records is approximately 1.8 million.

Household is a dataset of the electric energy consumption in a

household over a period of four years [13]. Each record includes

seven fields related to the power and voltage information. The 7D

coordinates normalized by the variance of the fields were used in

the experiment. The total number of records is approximately 2

million.

6.1 Evaluation Settings
Sliding window model. The clustering methods were evaluated

under the count-based sliding windowmodel, where thewindow and

the stride are sized by the number of data points. This is because the

count-based model is easier to control the workloads. Nonetheless,

the ingestion order of data points still follows their timestamps. The

default window size was set to a fraction of each dataset, roughly

corresponding to a chosen time duration.

Parameters. The density (𝜏) and the distance (𝜖) thresholds of

all the methods were set according to the following scheme. For
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the DTG and GeoLife datasets, a traffic monitoring example was

adopted to set the thresholds. The distance thresholdwas set to 0.002

degrees (or approximately 222 meters) so as to be small enough to

distinguish two close but separate roads. The density threshold was

set to the average number of points within the distance threshold

to identify congested regions. For the other datasets, a heuristic

scheme was adopted based on the K-distance graph used in the

previous studies [15, 40]. The default settings of the density and

distance thresholds as well as the window size for each dataset are

summarized in Table 5.

Table 5: Threshold values and window sizes

Dataset dim density (𝜏 ) distance (𝜖) |𝑤𝑖𝑛𝑑𝑜𝑤 |
𝐷𝑇𝐺 2D 372 0.002 2M (∼10 min)

𝐺𝑒𝑜𝐿𝑖 𝑓 𝑒 3D 765 0.002 0.1M (∼ week)

𝐼𝑅𝐼𝑆 4D 8 2 0.2M (∼ decade)

𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 7D 14 0.3 0.5M (∼ year)

6.2 Baseline Evaluation
For the baseline performance evaluation, the update latency of each

clustering method under the sliding window model is presented

in Figure 7. For each dataset, the time taken to update clusters

was measured when the window advanced by a single stride. The

stride size was set to 5% of the window size, whose default settings

are given in Table 5. The update latency is broken down to the

insertion and deletion latency, and eachmeasurement is the average

of five runs. Since Extra-N does not support insertion and deletion

operations separately, only a combined latency is shown in the

figure.

DenForest and its non-optimized version (DenForest-NO) outper-
formed all the other methods. DenForest was up to 3.5 times faster

than the second-best performer (DISC in the case of Household).

IncDBSCAN yielded poor performance particularly for the Geo-

Life dataset. The reason is the GeoLife dataset is highly skewed in

certain areas, which elongates the time taken for range searches

significantly. DISC also relies on range searches but it is less af-

fected by the skewedness of the dataset. This is because it takes

advantage of optimized range searches such as epoch-based probes

that reduce the redundant retrieval of data points.

Approx-Low and Approx-High showed poor performance for

all the datasets. To determine whether a point is a 𝑐𝑜𝑟𝑒 or not,

the approximate method invokes a number of approximate range

counting queries. Not only is it a major bottleneck but also it is

aggravated as 𝜏 gets larger or as the number of dimensions increases.

For the Household dataset, it did not even terminate within the

allotted time of ten hours.

For all the datasets, the deletion latency of DenForest was much

lower than the other methods. Except for the DTG dataset, the

cost of deletion of DenForest was almost negligible. Figure 8 shows

the speedup ratio of the deletion operation by DenForest when
compared to the second-best performer in the log scale. The deletion

time taken for processing a single stride was measured with the

stride size set to 5% of the default window size. For the GeoLife

dataset, the measurement of the third best performer (DISC) was

used because the second best performer (Extra-N) does not support

the insert and delete operations separately.

For a 𝑣𝑎𝑛𝑖𝑠ℎ𝑖𝑛𝑔 core, DenForest simply cuts the links incident to

the 𝑣𝑎𝑛𝑖𝑠ℎ𝑖𝑛𝑔 core inMST to update the connectedness of the

cluster, while DISC (second best performer) and IncDBSCAN in-

voke consecutive range searches in a BFS way. This contributes to

the major performance improvement by DenForest over the other
methods. Furthermore, it is less affected by the dimensionality,

since the deletion by DenForest does not involve any range search.

Consequently, the performance gap in the deletion operations in-

creased with the increase of dimensionality. For the 7-dimensional

Household dataset, DenForest achieved 56 times higher deletion

speed than DISC.

6.3 Varying Size of Window/Stride
The window size and the stride size can vary depending on the

applications. Thus, the update latency was measured under various

window sizes (Figure 9) and various stride sizes (Figure 10). The

density (𝜏) and distance (𝜖) thresholds were set to the values in

Table 5. Both DenForest and DenForest-NO outperformed the other

clustering methods significantly with a wide margin for all the

window sizes and for all the stride sizes. For some of the datasets,

Extra-N and Approx-Low/High did not terminate with ten hours.

DenForest outperformed DenForest-NO across the entire spec-

trum of the window sizes and the stride sizes. The batch optimiza-

tion ofDenForest effectively lowered the cost of updating clusters by
keeping theMST 𝑠 smaller. On the other hand, the batch optimiza-

tion incurs an additional overhead for managing super nostalgic
cores and their neighbors. The amount of improvement by the batch

optimization is also affected by the locality of data points in the

same stride. The higher locality results in the more improvement.

Therefore, increasing the stride size does not always contribute to

performance gain by the batch optimization. On average, the batch

optimization improved the performance about 25%.

6.4 Effect of Density and Distance Thresholds
In this section, we used the DTG dataset to measure the effect of the

density and distance thresholds on the performance. The insertion

and deletion times taken to process a single stride were measured
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Figure 9: Varying size of window (|Stride|/|Window|=5%)
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Figure 10: Varying size of stride
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Figure 11: Varying 𝜖 for the DTG dataset
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Figure 12: Varying 𝜏 for the DTG dataset

for each clustering method. The window size was set to two million

points, and the stride size was set to 5% of the window size.

Figure 11 shows the insertion and deletion latency with a varying

distance threshold (𝜖). The density threshold was set to the default

value in Table 5. The larger 𝜖 value generally requires the more

time for range searches. Thus, the insertion and deletion latency

increased as the 𝜖 threshold increased for all the clustering methods

except for deletion by DenForest and DenForest-NO. The reason is

of course they do not require any range search for deletion.

A similar experiment was conducted by varying the density

threshold (𝜏) with the distance threshold fixed to the default value.

Figure 12 shows that the density threshold hardly affected the per-

formance except for Approx-High and Approx-Low, which slowed

down as the density threshold increased. The reason is that the

approximate method takes more time to determine whether a point

is a core or not as the density threshold increases. A similar trend

was also observed in the previous study [50].
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Figure 13: Clustering quality over sliding windows

6.5 Clustering Quality over Sliding Windows
The clustering quality of DenForest was measured for each dataset.

The true cluster labels are not available for the datasets. So we used

the clustering results from DBSCAN as the ground truth. Three

metrics ARI [27], AMI [49], and NMI [33] were used to measure

the quality.

Figures 13a to 13c show how the clustering quality changes over

time while the sliding window advances. The stride size was set to

5% of the window size. DenForest achieved clustering quality mea-

surements close to one (or 100%) for all the datasets and sustained

its quality as the window slid. The average measurements of qual-

ity were 0.96 (ARI), 0.91 (AMI) and 0.93 (NMI). We also observed

the tendency that DenForest could improve its quality of cluster-

ing by choosing slightly lower density thresholds (𝜏) than those

chosen for DBSCAN. This is shown in Figure 13d that measures

the quality of clusters produced for the DTG dataset. DenForest
and DenForest-NO produce the same clustering results. Thus, their

quality measurements are identical.

(a) Heatmap (b) DBSCAN (c) DenForest

Figure 14: Clusters found in DTG

Figure 14 shows the heatmap and the examples of clusters de-

tected by DBSCAN and DenForest for a snapshot (or window) of the
DTG dataset. DenForest produced the result nearly identical to the

result of DBSCAN, and DenForest detected dense areas matching

well the heatmap that visualized the congested regions.
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Figure 15: Quality of DTG clusters
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Figure 16: Quality of MAZE clusters

10
2

10
3

10
4

10
5

10
6

10
7

0.01M 0.64M 1.28M 2.56M

L
at

en
cy

 (
m

s)

|Window|

(a) DTG

10
0

10
1

10
2

10
3

10
4

5K 160K 320K 480K

L
at

en
cy

 (
m

s)

|Window|

(b) MAZE

Figure 17: Latency with DTG and MAZE

6.6 Comparison with Summarization-Based
Methods

DenForest was also compared with the summarization-based meth-

ods. DBSTREAM [25] is chosen because it is shown to achieve

high quality in the previous study [5]. EDMStream [23] is a stream-

ing version of the static density peak clustering algorithm [39].

SDStream [38] and StreamSW [43] are designed for the sliding

window model based on EHCF [55] and grids [46], respectively.
2

The unlabeled real DTG and the labeled synthetic Maze [31]

datasets were used in the evaluation, and three metrics (ARI, AMI,

and NMI) were applied to measure the quality with various win-

dow sizes. For the unlabeled DTG dataset, the clusters produced

by DBSCAN were used as the ground truth. The parameters for

EDMStream, DBSTREAM, SDStream, and StreamSW were tuned so

as to achieve the highest quality for each window size. The update

latency of one stride was also measured when the stride size was set

to 5% of the window size. Only the insertion latency was included

in the measurements for EDMStream and DBSTREAM, because

they do not support a deletion operation.

The summarization-based methods assume an infinite length of

data streams and summarize a group of data points into a micro-
cluster. Since they only maintain coarse-grained information, qual-

ity of these methods decreased steeply as the window size increased

as is shown in Figures 15 and 16. Although SDStream and StreamSW

achieved relatively higher quality than other summarization meth-

ods for the DTG dataset, their quality was still lower than that of

DenForest. Moreover, they were far slower thanDenForest due to the
high cost of maintaining a number of micro-clusters (in Figure 17).

Conversely, DenForest attained high quality based on all the data

2
The Java code for EDMStream is available in https://github.com/ShufengGong/

EDMStream. We implemented DBSTREAM, SDStream, and StreamSW in Java.

points without approximation, and achieved the best performance

among the methods whose quality was higher than 0.9.

7 RELATEDWORKS
In addition to the incremental clustering algorithms such as In-

cremental DBSCAN [14], Extra-N [51], 𝜌-double-approximate DB-

SCAN [21] and DISC [31] described in Section 1, there are numerous

summarization-based approaches taken to deal with density-based

clustering over streaming data [4, 7, 23, 25, 37, 38, 43]. They assume

a finite memory capacity for an infinite length of data streams. Thus,

they maintain the summary of data points as micro-clusters instead
of individual data points. These methods are good at discovering

clusters quickly from the infinite data streams; they consume less

memory and generally show low latency. However, they cannot

capture the clusters accurately in real time and cannot achieve high

clustering quality enough to replace the exact approaches such as

DBSCAN.

It is also worth noting that parallelization of the DBSCAN algo-

rithm has been studied actively in the past few years. NG-DBSCAN

is one of the early work developed on the Spark framework as a

scalable solution to density-based clustering [35]. RP-DBSCAN is

a parallel DBSCAN algorithm that takes advantage of the random

split strategy [45]. Wang et al. have proposed several exact and

approximate DBSCAN algorithms based on grid construction and

solving the bichromatic closest pairs problem in parallel [50].

8 CONCLUSION
This paper proposes a novel incremental density-based clustering

algorithm called DenForest in order to address the slow deletion

problem, which is inherent in the state-of-the-art clustering ap-

proaches. DenForest is based on a new notion of cores, namely

nostalgic cores, proposed in this paper and achieves substantially

higher performance by maintaining clusters as a group of DenTrees
rather than a graph. The efficiency of DenForest is demonstrated

by an extensive comparative evaluation conducted with the state-

of-the-art clustering algorithms. Furthermore, it is observed that

DenForest achieves high-quality clusters, comparable with that of

DBSCAN, for numerous labeled synthetic and unlabeled real-world

datasets. DenForest is expected to support many data analytic tasks

in the streaming environment by clustering time-varying data effi-

ciently at low computational cost.
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