DISC: Density-Based Incremental Clustering by
Striding over Streaming Data

Bogyeong Kim

Kyoseung Koo

Juhun Kim Bongki Moon

Department of Computer Science and Engineering
Seoul National University, Seoul, Korea
{bgkim, koo, johnjhkim}@dbs.snu.ac.kr, bkmoon@snu.ac.kr

Abstract—Given the prevalence of mobile and IoT devices, con-
tinuous clustering against streaming data has become an essential
tool of increasing importance for data analytics. Among many
clustering approaches, the density-based clustering has garnered
much attention due to its unique advantages. The main drawback
is, however, the limited scalability attributed to its relatively high
computational cost, which is further aggravated when it has to
update clusters continuously along with evolving data. In this
paper, we present a new incremental density-based clustering
algorithm called DISC optimized for the sliding window model.
DISC is capable of producing exactly the same clustering results
as existing methods such as Incremental DBSCAN for streaming
data much more quickly and efficiently.

I. INTRODUCTION

Clustering is one of the common methods of unsupervised
learning, which discovers the natural groupings in the unla-
beled data. Since K-means [1] was proposed more than a half
century ago, clustering has been studied extensively (publish-
ing thousands of clustering algorithms in the literature [2])
and applied widely to many data analysis tasks in various
fields. Recently, the interest in clustering has been revived
particularly for data streams [3]-[8]. Given the prevalence
of IoT devices, for example, continuous clustering against
streaming data has become an essential tool of increasing
importance for data analytics such as traffic monitoring [9],
[10], community tracking over social networks [11], and
outlier detection in network communication [12].

Among many clustering approaches, the density-based clus-
tering, pioneered by Ester et al. [13], has garnered much at-
tention due to some of its unique advantages. Unlike K-means
(and another well known BIRCH algorithm [14] as well for
that matter) that discovers spherical clusters, the density-based
approach can identify clusters of an arbitrary shape without
requiring the pre-set number of labels, and can determine
which cluster each non-noise data object belongs to.

The hardly unnoticeable drawback of the density-based
clustering, however, is the limited scalability attributed to its
relatively high computational cost. While clustering is already
a challenging problem, the scalability concern becomes further
aggravated when the clusters need to be updated continuously
along with an evolving input data set. The main reason is that

This work was partly supported by the National Research Foundation of
Korea (2020R1A2C1010358 and 2016M3C4A7952633). The authors assume
all responsibility for the content of the paper.

updating the clusters even for a single data object inserted to
or deleted from the data set may require exploring a large
number of its surrounding objects.

Since the incremental version of the DBSCAN algorithm
was proposed [15], many studies have been conducted to
address the problem of updating clusters efficiently. Most
of them attempt to address it by taking approximation or
summarization one way or another [4], [6], [16]-[18]. These
clustering methods lower the computational complexity of
density-based clustering and hence may be well poised to
deal with frequent updates. However, they may not achieve
the desired level of resolution, for example, to avoid falsely
detecting the congested roads among those located in close
proximity. They could adopt a minuscule distance threshold for
high resolution but, as is demonstrated by Schubert ez al. [19],
that could actually make them run much more slowly, which
will be confirmed once again in this paper.

The goal of this work is to address the limitation of density-
based clustering squarely so that the clustering tasks for
streaming data can be carried out in a timely manner without
compromising the quality of clustering results or consuming
an excessive amount of computational resources. Achieving
this goal is not an easy challenge to tackle, which we believe
has been confirmed repeatedly by the previous studies [9],
[15], [17], [20]. Therefore, we focus our effort narrowly on
developing a new incremental clustering method optimized
under the sliding window model. We adopt the sliding window
model as a general framework for processing streaming data
because it is an effective tool for capturing the recent state of
streaming data, which cannot be stored in its entirety by virtue
of their sheer volume.

The density-based clustering algorithm we present in this
paper is called Density-based Incremental Striding Cluster
(DZSC in short). It is capable of producing exactly the same
clustering results as existing methods such as Incremental DB-
SCAN much more quickly and efficiently. The contributions
of this work are summarized as follows.

o The elaborate design of DZSC, based on the novel ideas
for the minimal bonding cores of ex-cores and neo-cores,
enables it to avoid a considerable amount of redundant
work by checking the density-connectedness only for the
minimal bonding cores.

o The MS-BFS strategy and the epoch-based R-tree index
probing method are proposed to further reduce the cost

of checking density-connectedness.

o Through an extensive evaluation carried out under var-
ious configurations, we have demonstrated that DZSC
is highly effective especially when clusters need to be
updated frequently with a small stride. In most practical
settings, DZSC outperformed all the exact clustering
methods in comparison.

o For detecting clusters of high resolution, DZSC out-
performed significantly all the approximate clustering
methods in comparison in both speed and quality.

This paper is organized as follows. Section II briefly covers
the background of the density-based clustering and the sliding
window model. Section IIl presents the minimal bonding
cores and the detailed description of the DZSC algorithm.
Further optimizations for checking density-reachability are
presented subsequently in Section IV. Section V describes the
procedure for updating labels. Finally, we evaluate the DZSC
algorithm with real datasets in Section VI, and summarize the
contributions of this paper in Section VIII.

II. BACKGROUND

This section provides readers with the background in-
formation of density-based clustering methods and the key
characteristics of sliding window models commonly adopted
for streaming data processing. The DZSC algorithm proposed
in this paper leverages the sliding window model innovatively
and overcomes the critical weaknesses of the existing density-
based clustering methods.

A. Density-Based Clustering

The density-based clustering was pioneered by Es-
ter et al. more than two decades ago [13]. In this seminal
work, the density of a point is defined by the number of
neighbors that are within a given distance threshold denoted
by a parameter €. It is the density that determines the status
of a point as one of core, border, and noise. (See Figure 1
for illustration.) Such classification of points is done by
introducing another parameter called MinPts. If a point has
its density no less than MinPts, it is labeled as core. If a point
has its density less than MinPts but is within the threshold
distance € from at least one other core point, it is labeled as
border. Otherwise, the point is labeled as noise. For example,
in Figure 1, points X, Y, Z are a core point, a border point and
a noise, respectively, assuming the density threshold is four.

Ester et al.’s DBSCAN algorithm defines a cluster as a
set of core and border points that are density-reachable from
an arbitrary core point of the cluster. Let N,(p) denote a set
of points within the threshold distance € from p. A point ¢
is said to be directly density-reachable from p if ¢ € N¢(p)
and p is a core. Note that ¢ does not have to be a core point.
The direct density-reachability is a symmetric relation for core
points, although it is not when a border point is involved. In
general, a point ¢ is said to be density-reachable from p if
there is a chain of directly density-reachable cores from p to
q. In Figure 1, border Y is directly density-reachable from core
X, but not vice versa. Cores A and B are density-reachable

from each other, whereas cores A and X are not. The density-
reachability is a transitive but asymmetric relation.

‘ > cluster

® core ® border O noise ‘

epsilon (c)

Fig. 1: Density-based clustering

Based on the density-reachability relation of cores and
borders, the DBSCAN algorithm attempts to find density-
based clusters. Specifically, for each core point p found in
the seeding phase, a singleton cluster, say C, containing p is
created. Then, in the growing phase, all the directly density-
reachable points from any ¢ € C are added to C. This process
is repeated until C does not grow any more. Therefore, when
it terminates, the DBSCAN algorithm returns density-based
clusters, each of which is a maximally connected component
of core points and border points.

B. Sliding Windows

The fundamental premise of computations over data streams
is that the streaming data cannot be stored and processed in
its entirety by virtue of their sheer volume. One of the popular
models for streaming data analytics is the sliding window
model, which is typically characterized by two parameters
known as window and stride [21]-[25]. The size of the
window defines the range of streaming data to be analyzed,
and the stride defines the interval at which the result of the
analysis is updated.

In this model, the one end of the window is assumed to be
anchored to the current time or the current data item. This
model thus allows us to analyze and understand the most
recent data within the current window. Whenever the sliding
window advances, some of the existing older data objects (in
the oldest stride) will leave the window while newer data
objects (in the new stride) will enter it.

From the computational point of view, it is important to
understand that a multitude of data objects enter or leave the
window at once when the window advances and there is no
particular order of processing among the data points in the
same stride. Furthermore, unlike a decaying data model [26]
where the influence of each data object wanes over time, all
the data objects in the current window are assumed to carry
the same influence or weight.

Note that the sliding window model can be either time-
based or count-based depending on how the two parameters,
window and stride, are interpreted. While the parameters are
measured in time duration under the former model, they are
measured in the number of data objects under the latter. The

Symbol Description
€ distance threshold

T density threshold
Weuwrr points in the current window
Worev points in the previous window
Nin points entering the window (Weyrr — Wprew)
Aout points exiting the window (Wprev — Wewurr)
Ne(p) points within e distance from p
ne(p) cardinality of Ne(p)

i(p) category label of p

pP~=q q is retro-reachable from p
pEaq q is nascent-reachable from p
M~ minimal bonding cores for ex-cores
MT minimal bonding cores for neo-cores

TABLE I: Notations

clustering algorithm proposed in this paper is not subject to
how those parameters are measured and will work with either
of the two model types.

III. THE DZSC ALGORITHM

This section presents a new incremental clustering algo-
rithm, DZSC, we propose to deal with the problem of clus-
tering large-scale streaming data under the sliding window
model. We first give an overview of the algorithm and then
describe its two primary steps, COLLECT and CLUSTER.

A. Overview of DISC

DISC is no different from DBSCAN in that it assigns
each individual data point to one of the three categories, core,
border, and noise. Besides, by the time clustering is completed,
a cluster id (or cid in short) will have been assigned to every
data point except for those in the noise category.

Let N.(p) denote a set of data points within the threshold
distance € from p. The cardinality of N(p), denoted by n.(p),
is maintained up-to-date for each data point p. Whenever the
sliding window advances by a stride, new data points may
enter the window while some of the existing ones may leave it.
DZSC will then take the changes in the data population within
the sliding window into account and will bring the clusters up
to date by updating the n.(p) value and the category label,
denoted by [(p), of each point p in the current window. (Refer
to Table I for more symbols adopted to describe DZSC in
this paper.) Apparently, recomputing n.(p) and I(p) values
for every point p in the current window is the primary task
for DZSC to update clusters. This will be carried out in two
separate steps called COLLECT and CLUSTER, which are
summarized in Figure 2.

The COLLECT step updates n.(p) for every point p in the
current window, and resets or initializes (g) of every point
q leaving or entering the sliding window. It then identifies
ex-cores and neo-cores among the points that remain in the
current window, and updates a spatial R-tree index accordingly
for the changes. The notions of ex-cores and neo-cores are the
cornerstone of DZSC and will be defined in Section III-B.

The CLUSTER step finds the minimal bonding cores of each
ex-core and each neo-core, determines the types of cluster
evolution by checking reachability, and finally recomputes
the cluster labels for every point in the current window.

Aoyr Sliding Window A

Past (] (oo} Future

2) Find Neo-cores / Ex-cores

1) Update n values
1

3) Update Retree

STEP 1.
COLLECT

-Bout +Am

Neo-cores Ex-cores

1) Find Minimal bonding cores 2) Check Reachability of Minimal bonding cores

s
\% Bst é »«»w/ ‘mew
BFS! —

Multi-Starter BFS Epoch-based Probe

STEP 2.
CLUSTER

Fig. 2: Overview of DZSC

The minimal bonding cores are the key idea that enables
DISC to update clusters efficiently. They will be defined in
Section III-C.

B. COLLECT

When a point p enters or exits the sliding window, it changes
the number of e-neighbors for all the e-neighbors of p. In
other words, for any point ¢ € N(p) in the current window,
the nc(q) value needs to be updated. Let A,,; and A;,
denote the set of points exiting the window and the set of
points entering the window, respectively. Then, for any point
q € Nc(p), nc(q) will decrease if p € A,y (Line 6 of
Algorithm 1), and it will increase if p € A, (Line 12). At
the end of the COLLECT step, every data point in the current
window will have an up-to-date n. value.

Algorithm 1: COLLECT (Ain, Aout)
// Cout

1 Coup < @5
2 foreach p € A,,; do
if I(p) = core then C,yup <+ Cour U {p}
else delete p from the R-tree index
foreach ¢ € N.(p) do

L if 1(q) # deleted then n.(q)--

7 | l(p) « deleted, n.(p) « 0

: ex—-cores in Aout

[N7 I)

8 foreach p € A;,, do

9 Insert p into the R-tree index

10 l(p) « unclassified, n.(p) < 1

1 foreach ¢ € N.(p) do

12 | if I(q) # deleted then n(q)++, nc(p)++

13 Compute the sets {ex-cores} and {neo-cores}
14 return ({ex-cores}, {neo-cores}, Cout)

Another major work to be done in this step is to identify
a set of ex-cores and a set of neo-cores defined below. Let
Wewurr denote the set of points in the current window, and let
Wprev denote the set of points in the previous window.

Definition 1: (Ex-core) A data point p that was a core in
the previous window is called an ex-core if it already exited
the current window (i.e., p € Ayyy) or it is still in the current
window but no longer a core (i.e., p € Wyrey N Weyrr). <

Definition 2: (Neo-core) A data point that is a core in the
current window is called a neo-core if it just entered the current

window (i.e., p € A;y,) or it was not a core in the previous
window (i.e., p € Wyrey N Weyrr). <

In the next CLUSTER step, these two mutually exclusive
sets of ex-cores and neo-cores will play a critical role in
determining the types of cluster evolution such as split and
merger among others.

Note that the COLLECT algorithm uses an R-tree index
to facilitate the retrieval of e-neighbors of a given point.
Obviously, whenever the sliding window advances, it has to
maintain the R-tree index up to date by adding and removing
entries as data points enter and leave the window. However,
the ex-cores in A,y will not be removed from the R-tree index
until both the COLLECT and CLUSTER steps are completed.
This is because the CLUSTER step will have to access ex-cores
in A,y as well as those in Wy, N Wey,r. For the reason,
all the ex-cores that exited the window are collected (Line 3
of Algorithm 1) and passed to the CLUSTER step in a set
denoted by C,,:. Note that the set C,,; is equivalent to
{ex-cores} N Aoyt

Algorithm 2: CLUSTER (ex-cores, neo-cores, Coyt)
// {ex-cores}, {neo-cores}, Cout from COLLECT
1 E « {ex-cores}
2 while £ # & do
3 Compute R~ (p) and M~ (p) forp € E
4 nec < MS-BFS(M™(p))
// ncc: # of connected components in M7 (p)
if ncc > 1 then a cluster splits
else a cluster shrinks or dissipates
E+ E—-R (p)

8 Remove C,,; from the R-tree index

9 N < {neo-cores}

10 foreach p € N do

1 if M™(p) is disconnected then clusters merge
12 else a cluster grows or emerges

13 | N«N-R"(p)

N S W

// Avoid redundant work

// Avoid redundant work

C. CLUSTER

The ex-cores and neo-cores defined in the previous section
determine collectively whether a cluster should be split and
whether clusters should be merged. Besides, the other types
of cluster evolution such as emergence, dissipation, expansion,
and shrink can also be determined solely by the ex-cores and
neo-cores.

The CLUSTER step presented in this section provides a
sophisticated but highly efficient procedure to expedite the
processing of cluster evolution. The high-level description
of the procedure is given in Algorithm 2. As can be seen
in the pseudocode, ex-cores are used to process splitting
clusters while neo-cores are used to process merging clusters.
Between these two main operations, splitting a cluster is
computationally much more intensive for updating clusters
incrementally. Each of the sub-procedures of the algorithm
will be described in detail in this section.

Splitting a Cluster

A cluster split involves a breakup of density-reachability
between core points. When a core point loses its status
to become an ex-core, it may cut a density-reachable path
between the cores in the same cluster, which in turn may
contribute to a cluster split event. Essentially, a cluster can
only be split when ex-cores break up a density-reachable path
between two core points in the same cluster and there is no
more path left between them.

In fact, we can expedite splitting a cluster by consolidating
all the ex-cores turned up when the sliding window advances.
We can avoid a considerable amount of redundant work by
checking the density connectedness only for the minimal
bonding cores (that will be defined below) and by minimizing
the number of range searches required.

In an attempt to clearly specify the minimal set of cores
to examine, we define below the notions of retro-reachability
(Definition 3) and minimal bonding cores of an ex-core
(Definition 4).

Definition 3: For a pair of ex-cores p and q, p is directly
retro-reachable to q if p was directly density-reachable to ¢
with respect to the previous window Wp,..,,. More generally, p
is retro-reachable to q (denoted by p & ¢) if there is a chain
of directly retro-reachable ex-cores from p to q. <

Unlike density-reachability, the retro-reachability is transitive
and symmetric because this relation is defined for ex-cores
only. That is, p < ¢ is equivalent to g ~ p. For an ex-core
p, let R™(p) denote a set of ex-cores that are retro-reachable
from p. Formally,

R™(p) ={q € Wprev | p = ¢}

Note that p € R~ (p) and retro-reachability is reflexive.

Now we define the minimal bonding cores of an ex-core,
which will be used to pose a necessary condition for the
ex-core to trigger splitting a cluster. Note that not every ex-core
necessarily splits a cluster.

Definition 4: For an ex-core p, the set M~ (p) of its minimal
bonding cores is defined to be
M~ (p) ={q| (q is a core in both Wy, and Weyyr)

A (q € N(r) for some r € R (p))} 4

The second half of the condition, namely “q € N,(r) for some
r € R (p)” requires that ¢ must be among the e-neighbors
of a certain ex-core that is retro-reachable from p. It is
this condition which the minimality of M~ (p) comes from.
Among the cores that are density-reachable to the ex-cores in
R~ (p), only those directly density-reachable to some ex-core
are included in M~ (p).

For example, in Figure 3, border P; and core P» are about
to exit the current window. Exiting P; turns its adjacent cores,
B and K, to ex-cores. Exiting P, also turns its adjacent
cores, D and F, as well as itself to ex-cores. The set
of ex-cores that are retro-reachable from B is R™(B) =
{B,D, F,K, Py}, and the minimal bonding cores of B is
M~(B)={A,C,E,G,H, J}.

O ex-core @ core X deleted — e-neighbor --- directly retro-reachable

Fig. 3: Cluster evolution by sliding window

Combined with the minimality of M~ (p), the following
lemmas and theorem allow us to focus on the minimal set of
core points when determining whether any cluster would be
split by an ex-core p or any of its retro-reachable ex-cores.

Lemma 1: For ex-cores p and ¢, M~ (p) = M~ (q) if
R™=(p) =R (q).

Proof. For Yz € M~ (p), was and is a core in Wy,ey
and Wiy, such that x € N.(r) for some r € R~ (p). If
R~ (p) = R~ (q), then it holds that z € M~ (q). Therefore,
M~ (p) € M~ (q). It can be shown that M~ (q) C M~ (p)
in the same way. |

Lemma 2: An ex-core p does not split the cluster it belongs
to if M~ (p) is density-connected.

Proof. (By contradiction.) Suppose a cluster C containing
p in the previous window is being split to two non-empty
separate clusters C; and Co. Any point x € C; was density-
reachable to p in the previous window because both x and
p were in C. So there must exist 2’ € C; that was on the
density-reachable path and closest to p. This implies that z’
is an e-neighbor of p or one of R~ (p). Thus, by definition,
' € M~ (p). Similarly, there must exist ¥’ € Co such that
y' € M~ (p). Since M~ (p) is density-connected, =’ and y’
are density-reachable from each other. This is a contraction to
the assumption that C; and Cy are two separate clusters. [

Theorem 1: For an ex-core p, if M™(p) is density-
connected, none of the ex-cores in R~ (p) splits a cluster.

Proof. For any ex-core x € R™(p), R~ () = R~ (p) be-
cause the retro-reachability is symmetric and transitive. Then,
it follows that M~ (z) = M~ (p) by Lemma 1. Therefore, by
Lemma 2, z does not split the cluster it belonged to in the
previous window.]

The implication of Theorem 1 is that examining any one
of the ex-cores in R~ (p) will obviate the need for all the
other ex-cores in R~ (p) (Line 7 of Algorithm 2). This will
let us avoid redundant work and reduce the number of range
searches significantly.

Now let us turn our attention to cluster evolution caused
by ex-cores. For each ex-core p, all ex-cores in R~ (p) can
be discovered by executing |R~(p)| range searches. Since
all the cores in M~ (p) are e-neighbors of an ex-core in
R~ (p), they will also be discovered with no additional search.
Once the set M~ (p) of minimal bonding cores is computed

for each ex-core p, we are ready to determine the types of
cluster evolution caused by them. If M~ (p) is not density-
connected (i.e., there is more than one connected component),
then the cluster from the previous window will be split in
the current window (Line 5 of Algorithm 2). If M™(p)
is density-connected, the cluster will be simply shrunk in
size (Line 6). If M~ (p) is empty, then the cluster will be
dissipated completely.

Checking the connectedness of M~ (p) can be done by a
BFS traversal, which requires executing a number of range
searches against the R-tree index. When M~ (p) is large,
this overhead may become significant and warrant careful
coordination and optimization. In order to do it efficiently,
we propose a variant of breadth-first search called Multi-
Starter BF'S (invoked in Line 4 of Algorithm 2) and an Epoch-
Based probing method for the R-tree index. The number of
range searches to execute can be considerably reduced by the
former, and the individual range searches can be performed
more quickly by the latter. They will be described in detail in
Section IV.

The following examples illustrate how DBSCAN and the
proposed DZSC algorithm deal with cluster evolution caused
by ex-cores and compare these methods with respect to the
minimum number of range searches required by each method.

Example 1: Consider the evolving cluster shown in Fig-
ure 3. DBSCAN performs the clustering procedure from
scratch. Specifically, when each of P; and P is excluded from
the window, a BFS traversal is performed for every point in
the window. At least 19 range searches are required, and the
number of range searches would be higher if noise and border
points were taken into account. O

Example 2: Consider again the same scenario given in
Example 1. After the exclusion of P, and P, there are five
ex-cores, B, D, F, K, and P», which turned up in the current
window. The CLUSTER algorithm of DZSC finds R~ (p) and
M~ (p) foreachp € {B, D, F, K, P,} by executing five range
searches. Then, a BFS traversal is performed for each of the
five minimal bonding core sets. Although more work appears
to be required with an increased number of BFS traversals,
the opposite is true. This is because all the five ex-cores are
retro-reachable from one another, and hence

R=(B) =R~ (D) =R~ (F) = R~ (K) = R~ (Py).

Thus, once M~ (B) is processed and all the ex-cores in
R~ (B) are excluded from further consideration (by Line 7
of Algorithm 2 that will make the set E' empty in this case),
there will be no more ex-cores left to process the minimal
bonding core sets for. A BFS traversal will only be performed
for M—(B) ={A,C,E,G, H, J} by executing no more than
six range searches. Therefore, the minimum number of range
searches is reduced further down to eleven. O

Merging Clusters

After all ex-cores are processed, the CLUSTER algorithm
starts examining neo-cores to see whether existing clusters

would have to be merged (Lines 9-13 of Algorithm 2). Clusters
are merged when cores from different clusters become density-
reachable. Since only a neo-core can contribute to creating a
new density-reachable path, existing clusters can be merged
only when an existing point gains the core status or a new
core enters the current window.

Much the similar way done for ex-cores, below we define
the nascent-reachability (Definition 5) and the minimal bond-
ing cores of a neo-core (Definition 6).

Definition 5: For a pair of neo-cores p and q, p is directly
nascent-reachable to q if p is directly density-reachable to ¢
with respect to the current window W¢,,,. In general, p is
nascent-reachable to ¢ (denoted by p & ¢) if there is a chain
of directly nascent-reachable neo-cores from p to q. <

For a neo-core p, let R™(p) denote a set of neo-cores that are
nascent-reachable from p. Formally,

RJr(p) = {q € Wcu7'7' ‘ p d‘—* CI}

Like the retro-reachability, the nascent-reachability is reflexive,
symmetric and transitive. Therefore, p & ¢ is equivalent to
q % p, and p € R (p).

Definition 6: For a neo-core p, the set M ™ (p) of its minimal
bonding cores is defined to be
M™*(p) ={q| (q is a core in both Wyye, and W)

A (g € Nc(r) for some r € R*(p))} 4

The minimal bonding cores of neo-cores defined above
enable us to determine the types of cluster evolution caused
by them. For a neo-core p, ift M™(p) is empty, then a new
cluster emerges, which consists solely of the neo-cores in
R*(p). If all the cores in M™(p) belong to one cluster, then
all the neo-cores in R*(p) are added to that cluster and let
it grow in size (expansion). If the cores in M™(p) are spread
over more one cluster, say Cy,...,Cy, then all the cores in
Cy,...,Cy are merged into a single cluster together with the
neo-cores in R (p).

Despite all the similarities between M~ (g) of an ex-core
q and M™(p) of a neo-core p, there is a striking difference
between them. While the connectedness of the cores in M~ (q)
must be checked for each ex-core q by executing a number of
range searches (Line 4 of Algorithm 2), it is not necessary
to do that for the cores in M™(p) of any neo-core p. We
have only to find out whether M (p) is empty or how many
clusters the cores in M ™ (p) are spread over (Line 11), which
can be done quickly just by examining the labels of the cores.
Therefore, the cluster evolution caused by neo-cores will be
handled with much more ease than the cluster evolution caused
by ex-cores.

IV. CHECKING REACHABILITY

Whether a cluster is split by an ex-core is determined by
the density-reachability among the minimal bonding cores of
the ex-core. For a given pair of cores, the density-reachability
can be checked by executing a series of range searches
against the R-tree index starting from either core. Only when

the search encounters the other core before exhausting all
reachable cores, the pair will be declared density-reachable.
This procedure is essentially a variant of breadth-first search
(BFS) commonly used for graph traversal. Considering the
potentially high cost of reachability checks requiring a number
of range searches, we propose Multi-Starter BFS and Epoch-
Based probing strategy for the R-tree index.

Note that range searches against the R-tree index could be
avoided entirely if the e-neighbor relations between cores were
materialized in a graph. Then the reachability checks could
be done more quickly by traversing the materialized graph.
However, we choose not to do that because the O(n?) cost
of maintaining a materialized graph can be too high with n
being the number of cores in the graph.

A. Multi-Starter BFS

In order to check the density-connectedness of M~ (p) for
an ex-core p efficiently, we have developed a new search pro-
cedure called Multi-Starter Breadth-First Search (MS-BFS).
This is an extension of the traditional breadth-first search.

Algorithm 3: MS-BFS (M~ (p))

1 ncc+0

2 M+ M~ (p)
3 Qsem — EmptyQueue

4 foreach s € M do Q.enque(s)
5 while |[M] > 1 do

// # of connected components

// Run BFSs for each s € M simultaneously
6 | if Qs is empry then nce++, M «— M — {s}
7 else
8 r < Qs.deque
9 foreach core x© € N.(r) unvisited by BF'S, do
10 if x is visited by BF'S; then
1 | Qs+ QsUQs, M+ M — {t}
12 else Qg.enque(x)

13 return ncc

Imagine a (non-materialized) graph G(V, E)) whose vertex
set V' consists of core points and whose edge set F consists
of pairs of cores that are e-neighbors to each other. The MS-
BFS initiates a breadth-first search starting from each vertex
in M~ (p) of G simultaneously. When two searches meet at
a certain vertex, they merge their queues of vertices into one
and restart as a single search with the merged queue (Line 11
of Algorithm 3). If all those searches are combined into one,
then the graph G is connected, which indicates that all the
cores in M~ (p) are density-connected. Otherwise, the graph
G has more than one connected component and M~ (p) is
not density-connected. Specifically, as shown in Line 6, if one
of the queues becomes empty before all the vertices in G are
visited, that thread of the MS-BFS terminates with its own
connected component. In this case, the connected component
does not cover the entire set of vertices in G. Thus the graph

G is not connected, and neither is the set M~ (p) of minimal
bonding cores. That is, a cluster split happens.

It should be noted that the MS-BFS presented in this
paper is completely different from Then et al. ’s Multi-Source
BFS [27]. The Multi-Source BFS executes multiple indepen-
dent BFS traversals over the same graph simultaneously and
focuses on reducing the memory accesses when every vertex is
visited multiple times. On the other hand, our MS-BFS aims
at reducing the scope of exploration by starting BFSs from
multiple starters concurrently thereby reducing the number of
range searches made against the R-tree index.

B. Epoch-Based Probing of R-tree Index

In the conventional BFS graph traversal, an array of Boolean
flags is used to separate visited vertices from unvisited ones.
Such an array of Boolean flags, however, does not help us
reduce the cost of checking density-reachability because those
flags will be referenced only after the e-neighbors of a certain
core are identified by a complete range search. Consequently,
the cost of avoiding an already visited core (as much as visiting
an unvisited one) would remain as high as (d), where d is
the depth of the R-tree index.

An easy fix to this problem is to store the Boolean flags in
the R-tree index itself instead of a separate array. If an entry
in a leaf node is marked as visited, then the corresponding
core will be ignored. If an entry in an internal node is
marked as visited, then all the cores indexed in the subtree
rooted at the entry will be ignored altogether. Unfortunately,
however, this approach introduces another problem. Whenever
another density-reachability checking MS-BFS is initiated, all
the Boolean flags of the R-tree index must be reset beforehand,
and this overhead may not be trivial.

Algorithm 4: Epoch_Based_Probe(range, node, tick)

1 foreach entry in node do

2 if range covers entry and entry.epoch < tick
then
3 if node is a leaf then entry.epoch < tick

4 else
Epoch_Based_Probe(range, entry, tick)

5 node.epoch < min(entries.epoch)

We address this concern by adopting an epoch-based method
that stores epochs of a visiting history rather than just Boolean
visited-or-not flags in the R-tree index. This method can
be implemented efficiently with a monotonically increasing
counter. When a density-reachability checking MS-BFS begins
anew, a fick value is assigned from the counter so that each
individual MS-BFS instance is given a distinct tick value.

An entry in a leaf node takes the current fick value as
its epoch when the entry (and its core) is visited (Line 3 of
Algorithm 4). Thus, an epoch value smaller than the current
tick implies that the core referenced by the leaf entry has
not been visited by the current instance of MS-BFS. On the
backtracking, the range search adjusts the epoch of a parent

entry such that it is always equal to the minimum of all epochs
in its child entries (Lines 5). Thus, the epoch of an internal
entry smaller than the current tick implies that there exists at
least one child entry that has not been visited by the current
instance of MS-BFS. The checking procedure can ignore a core
or a group of cores altogether if an index entry encountered
has an epoch equal to the current tick.

Note that even with this epoch-based method, the cost of
finding unvisited e-neighbors will remain as 2(d). Nonethe-
less, this method can reduce the cost of probing the R-tree
index quite considerably by pruning out any unnecessary
portion of the index each range search has to probe.

V. UPDATING LABELS

The ultimate goal of DZSC is to label each core or border
point in the current window correctly with the id of the cluster
(or cid) it belongs to. Since the cluster membership of points
may change as the sliding window advances, the CLUSTER
algorithm of DZSC handles it by updating the labels for
ex-cores, neo-cores and any point which is affected by ex-cores
and neo-cores.

The labels of ex-cores may change to border or noise,
and the labels of cores affected by ex-cores may change to
a different cid due to the splits caused by ex-cores. These
labels of ex-cores and cores are updated when a M™ set
is processed by the MS-BFS procedure. Similarly, the labels
of neo-cores and cores affected by them are updated so that
they have the same cid when a M™ set is processed. Besides,
non-core points near ex-cores and neo-cores can also change
their labels. Labels of these points are instantly updated if
they are visited while minimal bonding cores are processed.
Otherwise, they will be updated later by examining labels of
their e-neighbors. Eventually, all the core and border points
of the same connected component will share the same cid, and
this guarantees a set of clusters identical to what DBSCAN
would produce.

VI. EVALUATION

We analyze the performance characteristics of DZSC in
comparison with existing density-based clustering methods,
DBSCAN [13], IncDBSCAN [15], and EXTRA-N [9]. All
of them produce the same clustering results without any
approximation. The EXTRA-N method is included because it
takes a unique approach based on consolidating multiple sub-
windows to avoid costly range searches. In addition, we also
compare DZSC with DBSTREAM [8], EDMSTREAM [7]
and p-double-approximate DBSCAN [17], which produce ap-
proximate or summarized clustering results.

A. Experimental Settings

Except for EDMSTREAM!', we implemented all the afore-
mentioned clustering algorithms as well as an in-memory
version of the R-tree index in Java with JDK 1.8.0-121. All the
experiments were carried out on an AMD-based stand-alone

The Java code is available in https://github.com/ShufengGong/EDMStream.

[IncDBSCAN

Il EXTRA-N

00

o

Speedup Ratio

Speedup Ratio

e
S

10% 5% 1%
|Stridel /|Windowl

(a) DTG

25% 10% 5% 1%
|Stridel /1 Windowl

(b) GeoLife
Fig. 4: Relative speedup over DBSCAN with a varying size of stride

=3

Speedup Ratio

o

25% 10% 5% 25% 1% T25% 10% 5% 1%
|Stridel /1Windowl |Stridel /|1 Windowl
(c) COVID-19 (d) IRIS

20

=)
O

Speedup Ratio
ES
Speedup Ratio
S

S}
w

Out of Memory
Out of Memory

‘imeout
'Timeout

=)

g
050K 100K 200K 400K 800K

|Windowl

05M IM 2M 4M 8SM
|Windowl

(a) DTG (|Stride| = 100K)
Fig. 5: Relative speedup over DBSCAN with a varying size of window

machine with Ryzen 7 1700 8-Core Processor, 64GB RAM,
and a 256GB solid-state drive, running Ubuntu 18.04 LTS.

Throughout the experimental evaluation, we adopted the
count-based sliding window model where its parameters, win-
dow size and stride, are measured in terms of the number of
data points rather than time duration. This model enables us to
control the amount of workload and calibrate the experimental
settings with more ease. The ingestion order of data points still
follows strictly the time stamp of the data records.

Each input dataset was preloaded into memory-resident data
structures so that no disk activity would affect the performance
of any clustering method. Elapsed times were measured by the
System.nanoTime function. Each of all the measurements
presented in this section is the average of five runs.

B. Real-World Datasets

We used four real-world datasets to evaluate DZSC in
comparison with existing density-based clustering algorithms.
The datasets used in the experiments are briefly depicted
below.

DTG is a dataset obtained from digital tachograph devices
attached to commercial vehicles in a metropolitan city [28].
Each record includes the time, location, speed and acceleration
of a vehicle. The 2D coordinates (piat, Pion) Were used to
denote the spatial location of each record, where p;,+ and p;on,
are the latitude and longitude fields, respectively. The total
number of records is 300 million.

GeoLife is a set of GPS trajectories obtained from 182 user
over a period of four years [29]. Each record includes the time
and location of each user. The 3D normalized coordinates
(Piats Pion, Pait/300,000) were used to denote the spatial
location, where pg;; is the altitude field. The total number
of records is 24.8 million.

COVID-19 consists of geo-tagged tweets about the novel
coronavirus from March to September 2020 [30]. Each record

(b) GeoLife (|Stride| = 10K) (c) COVID-19 (|Stride| = 750)

20 35

815 225
£ 2
Z 0 %20
g g
3 $1s
& &0

[Timeout

07375K 75K 15K 30K 60K 0

|Windowl

50K 100K 200K 400K 800K
|Windowl

(d) IRIS (|Stride| = 10K)

includes the time and location of a tweet around the world.
The 2D coordinates (piaz, Pron) Were used to denote the spatial
location. The total number of records is 210 thousand.

IRIS is a dataset of earthquake events around the world
from 1960 to 2019 [31]. The 4D normalized coordinates
(Piat, Pion, Pdep/10, Pmag % 10) were used to denote the spatial
location, where pge, and pp,q4 are the depth and magnitude
fields, respectively. The total number of records is 1.8 million.

C. Baseline Evaluation

This section compares the overall performance of DZSC
with such exact clustering methods as DBSCAN, IncDB-
SCAN, and EXTRA-N with respect to elapsed time. The
IncDBSCAN code we implemented ran with our MS-BFS
algorithm in its own favor. Since DBSCAN is a clustering
algorithm designed for a static database, we used it as the
baseline method rather than a target of direct comparison in
our experiments, and measured the performance of the other
methods in relation to that of DBSCAN.

Figures 4 and 5 show the relative speedup of DZSC,
IncDBSCAN and EXTRA-N over DBSCAN for the four real-
world datasets, with a varying size of stride and window,
respectively. (As for the absolute performance measurements,
the average elapsed times taken by DBSCAN were 102s,
523s, 496ms, and 533s for the four datasets, respectively, in
Figure 4.) Table II summarizes the threshold values and the
default window sizes chosen for each dataset. For the DTG
dataset, we adopted the ground traffic monitoring example to
set the distance (¢) and density (7) thresholds. The distance
threshold was set to be small enough to distinguish roads
in close proximity, and the density threshold was set to the
average number of points within the distance threshold. For
the other datasets, we adopted the parameter settings used by
the previous work based on a K-distance graph [13], [19]. The

sliding window sizes were set to a fraction of each dataset,
roughly corresponding to a chosen time duration.

Dataset density (7) | distance (€) [window]
DTG 372 0.002 2M (~10 min)
GeolLife 7 0.01 200K (~fortnight)
COVID-19 5 1.2 15K (~fortnight)
IRIS 9 2 200K (~decade)

TABLE II: Threshold values and window sizes

For each of the four clustering methods including DBSCAN,
we measured the average elapsed time taken to update clusters
when the sliding window advanced by a single stride. The
execution time of DBSCAN remained unaffected by a varying
ratio of stride to window, because it recomputed clusters from
scratch whenever the sliding window advanced. In contrast,
the execution time of the other three methods was affected
significantly by the ratio. In particular, IncDBSCAN and
DISC updated clusters incrementally focusing on the data
points leaving and entering the sliding window. Consequently,
their execution time tended to decrease as the stride shrank
smaller.

In the case of EXTRA-N, however, its speedup over DB-
SCAN started being saturated earlier as the stride shrank
smaller or the window grew larger. As is shown in Figure 5,
when the sliding window was large, EXTRA-N exceeded the
memory capacity or was terminated forcefully after ten hour
execution. This is because EXTRA-N maintains as many sub-
windows as the number of strides fitting in a single window so
that it can keep track of the local neighbors of individual data
points. Thus, when the ratio of stride to window was too high,
it suffered from the steep increase of memory consumption,
and the cost of maintaining too many sub-windows outweighed
the benefit from avoiding range searches.

When the stride was no larger than 10 percent of the
sliding window, DZSC was the best performer among all the
clustering methods compared including DBSCAN. In Figure 4,
for example, the speedup of DZSC over the second-best
performer ranged from 27% (in IRIS with a 10% stride) to
318% (in GeoLife with a 0.1% stride). There was no clear
second-best performer in this range of stride sizes for the
datasets.

The most noteworthy feature of DZSC observed from this
set of experiments was that its benefit is amplified particularly
when applied to finer-grained incremental clustering with the
sliding window advancing frequently in a small stride. On the
other hand, when the stride was as large as 25 percent of the
sliding window, all the three incremental methods performed
poorly. Their execution times were comparable to that of
DBSCAN at best or even worse than that. Given that an
efficient method is desired more for finer-grained incremental
clustering, it clearly attests that DZSC is an effective tool for
the task of clustering fast evolving streaming data.

D. Drilled-Down Evaluation

Having presented the baseline evaluation of DZSC, we
provide further analyses to understand its performance char-

acteristics in more detail under various parameter settings and
the effects of the proposed optimization techniques. Unless
stated otherwise, the experiments were carried out under the
same default settings as shown in Table II.

1) Effects of threshold values: The density-based clustering
is governed by two thresholds, density (7) and distance (¢),
as they determine which points are cores. Therefore, these
parameters inherently have a critical influence over not only
the quality of clustering results but also the cost of cluster
discovery.

‘ -~ DISC IncDBSCAN —@— EXTRA-N
140 ; 90
_ 120 _ 80
) <7
1
e £
E g0 =)
3 7 5
& 60 g 4
=40 a0
20
0.001 0.002 0.003 700 600 500 400 300 200 100

Distance threshold () Density threshold (1)

(a) 7 fixed to 372 (b) € fixed to 0.002
Fig. 6: Threshold effects : distance (¢) and density (7)

Figures 6(a) and 6(b) show the elapsed times taken by the
three incremental clustering methods for the DTG dataset with
a varying distance threshold (¢) and with a varying density
threshold (7), respectively. The stride size was fixed to 5%
of the window size. The elapsed times of all three methods
were elongated as the value of e increased or the value
of 7 decreased. This is because a longer distance threshold
allowed data points to have more e-neighbors and a lower
density threshold produced a larger population of core points.
However, the impact of 7 on the elapsed time was not as
significant as we anticipated. Note that the performance of
DZISC was much more stable and efficient than the others
over the entire spectrum of e values and 7 values tested. The
same trend was observed from the other datasets as well.

2) Range searches: We counted the number of range
searches executed by IncDBSCAN and DZSC in order to
understand how much the clustering algorithms were affected
by the costly search operations. Unlike DBSCAN, as a static
approach, that always invokes as many range searches as the
number of data points in the current sliding window, the
number of range searches required by IncDBSCAN and DZSC
is dependent on the stride sizes.

Il Disc [IncDBSCAN
0.8M 10

Range Searches
e I <
2 B

2 =

Range Searches

o

0.01

25% 10% 5% 25% 1%
|Stridel /1Window!

(b) DTG with varying ratio
Fig. 7: Range searches executed

DTG GeoLife COVID-19 IRIS

(a) |Stride| / |Window| = 5%

Figure 7(a) shows the number of range searches carried
out by DZSC and IncDBSCAN with the ratio of stride to
window fixed to 5%. DZSC invoked a smaller number of
range searches than IncDBSCAN across all the four datasets.
Figure 7(b) compares the two methods relatively in compari-
son with DBSCAN for the DTG dataset. DZSC was superior
to IncDBSCAN as well as DBSCAN in the number of range
search invocations consistently across all the stride-to-window
ratios tested. Figure 7(b) coupled with Figure 4(a) clearly
indicates that the number of range searches has a direct impact
on the performance of DBSCAN, IncDBSCAN, and DZSC.

3) MS-BFS and Epoch-based probing: The MS-BFS and
epoch-based probing presented in Section IV are optimization
techniques proposed for DZSC so that the cost of checking
the density-connectedness of minimal bonding cores can be
further reduced. These two techniques can be applied inde-
pendently of each other, and so can their effect be evaluated
separately. Figure 8 shows the elapsed times taken by DZSC
for each dataset, when neither optimization was applied, only
the epoch-based probing was applied, only the MS-BFS was
applied, and both were applied. The elapsed times were
measured with the stride size fixed to 5% of the window size.

[NoOpt mmm Epoch mEEE MS-BFS EEE DISC |
10000
2 1000
g
E 100
=
2 10
g
m 1

0.1

DTG GeoLife COVID-19 IRIS

Fig. 8: Effects of optimizations

Each of the two optimization techniques achieved substan-
tial reduction in the elapsed times even when they are applied
alone separately. Between the two, the MS-BFS was slightly
more effective than the epoch-based probing consistently over
all the datasets. Apparently, the best performance was attained
when both the optimization techniques were applied together,
yielding more than an order of magnitude speedup in the case
of the IRIS dataset.

E. Comparison with Summarization/Approximation-Based

DBSTREAM [8] and EDMSTREAM [7] are the state of the
art summarization-based methods known for the low latency
and high quality of clustering. The p-double-approximate
DBSCAN (or p2-DBSCAN in short) is another approxi-
mate clustering method, which is the dynamic version of
p-approximate DBSCAN [17], [32]. We compared DZSC
with these three clustering methods to evaluate the trade-off
between the processing speed and the quality of clustering.
We focused on their capability of capturing the detailed shape
of clusters by adopting rather small values for the distance
threshold e.

Two datasets, DTG and Maze, were used for this evaluation.
For the real dataset DTG, we used the clustering results from

‘ —- DISC —@® EDM —& DBS p2-DBSCAN (p =0.1) p2-DBSCAN (p =0.001)

2

1 pEm o B

0.8

]
@ S
S S

0.6

ARI
S
=

0.4

v
S

0.2

Avg. Update Latency (us)

o o VY

0 ®
SK 160K 320K 480K 5K 160K 320K 480K
[Window| [Window|

Fig. 9: Maze: ARI and Update Latency

0

1 PER——
0.8
0.6

ARI

0.4

0.2

Avg. Update Latency (ms)

0 =
0.0IM 0.64M 1.28M 2.56M 0.0IM 0.64M 1.28M 2.56M
|[Window| |Window|

Fig. 10: DTG: ARI and Update Latency

DBSCAN as the true labels. The synthetic dataset Maze was
created by placing 100 random seeds in the 2-dimensional
space. They spread out over time such that the trajectory of
each seed was mapped to a single cluster. When the window
size increased, trajectories became longer and closer to one
another, and consequently the shape of clusters grew more
complicated. We manually labeled each point in the Maze
dataset so that each trajectory could be identified clearly as
a separate cluster.

To evaluate the quality of clustering results, we measured
the Adjusted Rand Index (ARI) [33] with a varying size of
sliding window. The ARI measures how close the clustering
results from different methods are to the true labels, and the
measurements are in the range of —1 (lowest) to 1 (highest).

Figure 9 shows the quality measurements and the per-point
update latency observed in the Maze dataset. The stride was
5% of the window size. (Since no deletion was supported by
the summarization-based methods, only the insertion latency
was measured for DBSTREAM and EDMSTREAM.) DB-
STREAM and EDMSTREAM were evaluated with parameter
settings that helped them achieve the best ARI. The same
thresholds, 7 and ¢, were used for both po-DBSCAN and
DZSC. The approximation parameter (p) of po-DBSCAN was
set to 0.1 and 0.001 for low and high accuracy, respectively.

The summarization-based methods, EDMSTREAM and
DBSTREAM, were much faster than the others but their
clustering quality (measured in ARI) deteriorated very quickly
as the sliding window grew larger. To achieve high ARI for a
large window, summarization-based methods need to connect
micro-clusters correctly.? EDMSTREAM connected them well
when it dealt with a small number of large micro-clusters, but
it did not do so well for a large number of small micro-clusters.
DBSTREAM achieved better ARI than EDMSTREAM by
utilizing additional information about the connectivity among
micro-clusters, although that was not enough to sustain its
ARI level. Both p;-DBSCAN and DZSC were able to detect

2Micro-cluster is a summarized representation of a set of adjacent points.

—&- DISC p2-DBSCAN (p =0.1) p,-DBSCAN (p :0.001)‘
=10’ = 10°
2 S
20t Z 107
g0 & -
3 510
e 3
g 10 g 3
3 210
5100 g 5,
o 107
A >
< 1 < 1

10 0.001 0.01 0.1 1 10

1
Distance threshold (¢) Distance threshold (g)

(a) Maze (|Window| = 480K) (b) DTG (|Window| = 160K)
Fig. 11: Update Latency with varying e

accurate clusters but po-DBSCAN was up to five times slower
than DZSC.

Similar trends were observed in the DTG dataset as shown
in Figure 10 except for DBSTREAM, which was consider-
ably slower than DZSC across all the window sizes tested.
This is because it has to manage a large number of micro-
clusters to catch the details of fine-grained clusters. Although
p2-DBSCAN vyielded high ARI comparable with that of
DISC, p:-DBSCAN was much slower than all the other
methods. With a larger approximation parameter (p), it ran
faster but it was still slower than all the other methods.

Figure 11 compares DZSC and po-DBSCAN with a varying
distance threshold ¢. We measured the cluster update latency
when the stride was 5% of the window size. The overall trends
were similar to those reported by Schubert et al. [19] about
the static version of po-DBSCAN. For both datasets, DZSC
outperformed p2-DBSCAN considerably with smaller € values.
DISC was outperformed by po-DBSCAN only when € > 3.2
for Maze and € > 0.512 for DTG. Beyond those crossover
points, however, the clustering results were completely mean-
ingless. Those distance thresholds were simply too large and
only one huge cluster was detected covering all or almost all
the data points in the window.

(a) DISC (b) EDM (c) DBS (d) DISC (e) EDM (f) DBS
Maze (|IW|=480K) DTG (|W|=2.56M)

+ 5 NN

Fig. 12: Illustration of clusters found in Maze and DTG

Figure 12 illustrates the clusters discovered by different
methods. Since p2-DBSCAN and DZSC produced the same
(or almost the same) clusters, we omit the results from
p2-DBSCAN in the figure. Figures 12 (a)-(c) show clus-
ters (in different colors) found in Maze by DZSC, EDM-
STREAM, and DBSTREAM, respectively. Only DZSC de-
tected a connected component as a separate cluster correctly.
Figures 12 (d)-(f) show clusters (marked in red color) found
in DTG by the three methods. Only DZSC detected the same
clusters that matched those found by DBSCAN.

The experiments above confirm that DZSC can detect
clusters of high resolution with relatively low cost. Although
the summarization-based methods can process streaming data
at high speed, the quality of clustering results deteriorates
significantly when the sliding window becomes large. The
experiments also demonstrate that po-DBSCAN, the dynamic
version of approximate DBSCAN, consumes an exceedingly
high amount of computing time to detect clusters of high
resolution, which was confirmed for its static version by
the previous work [19]. p2-DBSCAN was outperformed by
DZISC significantly for any practically useful range of distance
thresholds.

VII. RELATED WORK

Although a plethora of research has been conducted for
various aspects of density-based clustering in the past (e.g.,
parallel processing [34], [35], and parameter estimation [36]),
this section focuses on briefly reviewing the existing work on
density-based clustering for time-evolving data.

A. Incremental Approaches

Since the DBSCAN algorithm was proposed more than
two decades ago, much research has been conducted to make
the density-based clustering a viable option even for time-
evolving or streaming data. The first one to note is Incremental
DBSCAN [15], which updates existing clusters upon each
individual data point being inserted to or deleted from the
database.

The EXTRA-N method was proposed to address the slow
deletion problem of density-based clustering [9]. It maintains
multiple sub-windows to avoid processing a large number of
range searches required for dealing with deleted data points.
Maintaining many sub-windows, however, incurs high memory
consumption and high computational overhead. This will lead
to serious performance degradation when the clusters within
the sliding window are updated frequently with a relatively
small stride.

Recently, approximate versions of DBSCAN were proposed
for both static and dynamic datasets [17], [32]. The approxi-
mation strategy enables them to update clusters incrementally.
As is demonstrated in Section VI-E, however, these approxi-
mate algorithms consume computing resources excessively for
detecting clusters of high resolution. In contrast, DZSC can
produce exact clusters of high resolution incrementally and
more efficiently than the approximate algorithms.

B. Summarization-Based Approaches

Given the relatively high cost of density-based clustering for
both static and streaming datasets, many summarization-based
approaches have been proposed to expedite the continuous
re-discovery of clusters for streaming data [6], [8], [16],
[37]. In the summarization phase, they compute micro-clusters
(or summarized objects) from streaming data with decaying
density. Then, in the clustering phase, a clustering algorithm
(e.g., DBSCAN) is applied to the micro-clusters. Among
them, DBSTREAM [8] achieves the better performance and

higher quality by considering shared density among micro-
clusters [38]. EDMStream [7] is another summarization-based
method. It detects splitting clusters incrementally by construct-
ing a tree of micro-clusters with the density peaks [39].

VIII. CONCLUSIONS

In this paper, we study the problem of incremental clustering
for streaming data and propose a new density-based incremen-
tal strategy called DZSC optimized under the sliding window
model. DZSC is an elaborate algorithm based on novel ideas
we define such as ex-cores, neo-cores, and their minimal
bonding cores. The experimental evaluation corroborates the
effectiveness of DZSC in alleviating the computational burden
of updating clusters frequently even in the presence of many
deletions. This is a significant contribution given that the slow
deletion problem has been a notoriously difficult challenge
for density-based clustering algorithms since DBSCAN was
introduced a quarter century ago.

REFERENCES

[1] J. MacQueen, “Some Methods for Classification and Analysis of Multi-
variate Observations,” in the 5th Berkeley Symposium on Mathematical
Statistics and Probability Data Mining, Berkeley, CA, USA, 1965, pp.
281-297.

[2] A. K. Jain, “Data clustering: 50 Years Beyond K-means,” Pattern
Recognition Letters, vol. 31, no. 8, pp. 651 — 666, 2010.

[3] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A Framework for
Clustering Evolving Data Streams,” in Proceedings of the 29th VLDB
Conference, Berlin, Germany, 2003, pp. 81-92.

[4] J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. P. L. E. d.
Carvalho, and J. a. Gama, “Data Stream Clustering: A Survey,” ACM
Comput. Surv., vol. 46, no. 1, pp. 13:1-13:31, 2013.

[5] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan,
“Clustering Data Streams: Theory and Practice,” IEEE Transactions on
Knowledge and Data Engineering, vol. 15, no. 3, pp. 515-528, 2003.

[6] F. Cao, M. Ester, W. Qian, and A. Zhou, “Density-Based Clustering over

an Evolving Data Stream with Noise,” in Proceedings of the 2006 SIAM

International Conference on Data Mining, Bethesda, MD, USA, 2006,

pp. 328-339.

S. Gong, Y. Zhang, and G. Yu, “Clustering Stream Data by Exploring

the Evolution of Density Mountain,” Proc. VLDB Endow., vol. 11, no. 4,

pp. 393405, 2017.

M. Hahsler and M. Bolaiios, “Clustering Data Streams Based on Shared

Density between Micro-Clusters,” IEEE Transactions on Knowledge and

Data Engineering, vol. 28, no. 6, pp. 1449-1461, 2016.

D. Yang, E. A. Rundensteiner, and M. O. Ward, “Neighbor-based Pattern

Detection for Windows over Streaming Data,” in Proceedings of the

12th International Conference on Extending Database Technology, Saint

Petersburg, Russia, 2009, pp. 529-540.

[10] Yang, Di and Rundensteiner, Elke A. and Ward, Matthew O., “Summa-
rization and Matching of Density-based Clusters in Streaming Environ-
ments,” Proc. VLDB Endow., vol. 5, no. 2, pp. 121-132, 2011.

[11] P. Lee, L. V. S. Lakshmanan, and E. E. Milios, “Incremental Cluster
Evolution Tracking from Highly Dynamic Network Data,” in 30th IEEE
ICDE Conference, Chicago, IL, USA, 2014, pp. 3-14.

[12] J. Dromard, G. Roudiere, and P. Owezarski, “Online and Scalable
Unsupervised Network Anomaly Detection Method,” IEEE Transactions
on Network and Service Management, vol. 14, no. 1, pp. 3447, 2017.

[13] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with
Noise,” in Proceedings of the 2nd KDD Conference, Portland, Oregon,
1996, pp. 226-231.

[14] T. Zhang, B. Ramakrishnan, and M. Livny, “BIRCH: An Efficient Data
Clustering Method for Very Large Databases,” in Proceedings of the
1996 ACM SIGMOD Conference, Montreal, Canada, 1996, pp. 103—
114.

17

—

[8

—

[9

—

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, and X. Xu, “Incremental
Clustering for Mining in a Data Warehousing Environment,” in Proceed-
ings of the 24th VLDB Conference, San Francisco, CA, USA, 1998, pp.
323-333.

Y. Chen and L. Tu, “Density-based Clustering for Real-time Stream
Data,” in Proceedings of the 13th ACM SIGKDD Conference, San Jose,
California, USA, 2007, pp. 133-142.

J. Gan and Y. Tao, “Dynamic Density Based Clustering,” in Proceedings
of the 2017 ACM SIGMOD Conference, Chicago, Illinois, USA, 2017,
pp. 1493-1507.

S. Lithr and M. Lazarescu, “Incremental Clustering of Dynamic Data
Streams Using Connectivity Based Representative Points,” Data &
Knowledge Engineering, vol. 68, no. 1, pp. 1 — 27, 2009.

E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “DBSCAN
Revisited, Revisited: Why and How You Should (Still) Use DBSCAN,”
ACM Transactions on Database Systems, vol. 42, no. 3, Jul. 2017.

S. Venkatasubramanian, “Clustering on Streams,” in Encyclopedia of
Database Systems, L. Liu and M. T. Ozsu, Eds. Springer, 2009, pp.
378-383.

B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models
and Issues in Data Stream Systems,” in Proceedings of the 21st ACM
PODS Conference, Madison, Wisconsin, 2002, pp. 1-16.

J. Gama, Knowledge Discovery from Data Streams, lst ed.
Portugal: Chapman & Hall/CRC, 2010.

K. Tangwongsan, M. Hirzel, S. Schneider, and K.-L. Wu, “General
Incremental Sliding-window Aggregation,” Proc. VLDB Endow., vol. 8,
no. 7, pp. 702-713, 2015.

M. Datar, A. Gionis, P. Indyk, and R. Motwani, “Maintaining Stream
Statistics over Sliding Windows (Extended Abstract),” in Proceedings
of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, San
Francisco, California, 2002, pp. 635-644.

Y. Zhu and D. Shasha, “StatStream: Statistical Monitoring of Thousands
of Data Streams in Real Time,” in Proceedings of the 28th VLDB
Conference, Hong Kong, China, 2002, pp. 358-369.

E. Cohen and M. J. Strauss, “Maintaining Time-Decaying Stream
Aggregates,” in Proceedings of the 22nd ACM PODS Conference, San
Diego, California, 2003, p. 223-233.

M. Then, M. Kaufmann, F. S. Chirigati, T.-A. Hoang-Vu, K. Pham,
A. Kemper, T. Neumann, and H. T. Vo, “The More the Merrier: Efficient
Multi-Source Graph Traversal,” Proc. VLDB Endow., vol. 8, no. 4, pp.
449-460, 2014.

S. Optac, “How to Use a Digital Tachograph,” https://www.optac.info/
uk/digital-tachograph/, Stoneridge.

Y. Zheng, H. Fu, X. Xie, W.-Y. Ma, and Q. Li, Geolife GPS trajectory
dataset - User Guide, Microsoft, July 2011, https://www.microsoft.com/
en-us/research/publication/geolife- gps-trajectory-dataset-user- guide/.

R. Lamsal, “Coronavirus (COVID-19) Geo-tagged Tweets Dataset,” http:
/ldx.doi.org/10.21227/fpsb-jz61, 2020.

IRIS, Incorporated Research Institutions for Seismology, http://service.
iris.edu/fdsnws/event/1/.

J. Gan and Y. Tao, “DBSCAN Revisited: Mis-Claim, Un-Fixability, and
Approximation,” in Proceedings of the 2015 ACM SIGMOD Conference,
Melbourne, Victoria, Australia, 2015, pp. 519-530.

L. Hubert and P. Arabie, “Comparing Partitions,” Journal of Classifica-
tion, vol. 1, pp. 193-218, 1985.

H. Song and J.-G. Lee, “RP-DBSCAN: A Superfast Parallel DBSCAN
Algorithm Based on Random Partitioning,” in Proceedings of the 2018
ACM SIGMOD Conference, Houston, TX, USA, 2018, pp. 1173-1187.
Y. Wang, Y. Gu, and J. Shun, “Theoretically-Efficient and Practical Par-
allel DBSCAN,” in Proceedings of the 2020 ACM SIGMOD Conference,
Portland, OR, USA, 2020, p. 2555-2571.

J. Hou, H. Gao, and X. Li, “DSets-DBSCAN: A Parameter-Free Cluster-
ing Algorithm,” IEEE Transactions on Image Processing, vol. 25, no. 7,
pp. 3182-3193, 2016.

I. Ntoutsi, A. Zimek, T. Palpanas, P. Kroger, and H.-P. Kriegel, “Density-
based Projected Clustering over High Dimensional Data Streams,”
in Proceedings of the 2012 SIAM International Conference on Data
Mining, Miinchen, Germany, 2012, pp. 987-998.

M. Carnein, D. Assenmacher, and H. Trautmann, “An Empirical Com-
parison of Stream Clustering Algorithms,” in Proceedings of the Com-
puting Frontiers Conference, Siena, Italy, 2017, p. 361-366.

A. Rodriguez and A. Laio, “Clustering by fast search and find of density
peaks,” Science, vol. 344, no. 6191, pp. 1492-1496, 2014.

Porto,

