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Introduction

Multiclass Setting

Input space: X
Ouput space: Y= {1, . . . ,k}

So far, our only approach to multiclass problems is to use trees.
(And by extension, random forests.)

Today we consider linear methods specifically designed for multiclass.
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Reduction to Binary Classification

One-vs-All / One-vs-Rest

Plot courtesy of David Sontag.
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Reduction to Binary Classification

One-vs-All / One-vs-Rest

Train k binary classifiers, one for each class.
Train ith classifier to distinguish class i from rest

Suppose h1, . . . ,hk : X→ R are our binary classifiers.

Can output hard classifications in {−1,1} or scores in R.

Final prediction is
h(x) = argmax

i∈{1,...,k}
hi (x)

Ties can be broken arbitrarily.
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Linear Classifers: Binary and Multiclass

Linear Binary Classifier Review

Input Space: X= Rd

Output Space: Y= {−1,1}

Linear classifier score function:

f (x) = 〈w ,x〉= wT x

Final classification prediction: sign(f (x))

Geometrically, when are sign(f (x)) = +1 and sign(f (x)) = −1?
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Linear Classifers: Binary and Multiclass

Linear Binary Classifier Review

Suppose ‖w‖> 0 and ‖x‖> 0:

f (x) = 〈w ,x〉= ‖w‖‖x‖cosθ
f (x)> 0 ⇐⇒ cosθ > 0 ⇐⇒ θ ∈ (−90◦,90◦)
f (x)< 0 ⇐⇒ cosθ < 0 ⇐⇒ θ 6∈ [−90◦,90◦]
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Linear Classifers: Binary and Multiclass

Three Class Example

Base hypothesis space H =
{
f (x) = wT x | x ∈ R2

}
.

Note: Separating boundary always contains the origin.
Example based on Shalev-Schwartz and Ben-David’s Understanding Machine Learning, Section 17.1
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Linear Classifers: Binary and Multiclass

Three Class Example: One-vs-Rest

Class 1 vs Rest:
f1(x) = wT

1 x
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Linear Classifers: Binary and Multiclass

Three Class Example: One-vs-Rest

Examine “Class 2 vs Rest”
Predicts everything to be “Not 2”.
If it predicted some “2”, then it would get many more “Not 2” incorrect.
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Linear Classifers: Binary and Multiclass

One-vs-Rest: Predictions

Score for class i is

fi (x) = 〈wi ,x〉= ‖wi‖‖x‖cosθi ,

where θi is the angle between x and wi .

Predict class i that has highest fi (x).
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Linear Classifers: Binary and Multiclass

One-vs-Rest: Class Boundaries

For simplicity, we’ve assumed ‖w1‖= ‖w2‖= ‖w3‖.
Then ‖wi‖ and ‖x‖ are equal for all scores.

=⇒ x is classified by whichever has largest cosθi (i.e. θi closest to 0)
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Linear Classifers: Binary and Multiclass

One-vs-Rest: Class Boundaries

This approach doesn’t work well in this instance.
Can we fix it by changing our base hypothesis space?
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Linear Classifers: Binary and Multiclass

The Linear Multiclass Hypothesis Space

Base Hypothesis Space: H =
{
x 7→ wT x | w ∈ Rd

}
.

Linear Multiclass Hypothesis Space (for k classes):

F =

{
x 7→ argmax

i
hi (x) | h1, . . . ,hk ∈H

}

What’s the action space here?
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Linear Classifers: Binary and Multiclass

One-vs-Rest: Class Boundaries

Is this a failure of the hypothesis space or the learning algorithm?

(A learning algorithm chooses the hypothesis from the hypothesis
space.)
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Linear Classifers: Binary and Multiclass

A Solution with Linear Functions

This works... so the problem is not with the hypothesis space.

How can we get a solution like this?
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Multiclass Predictors

Multiclass Predictors
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Multiclass Predictors

Multiclass Hypothesis Space

Base Hypothesis Space: H = {h : X→ R} (“score functions”).
Multiclass Hypothesis Space (for k classes):

F =

{
x 7→ argmax

i
hi (x) | h1, . . . ,hk ∈H

}

hi (x) scores how likely x is to be from class i .
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Multiclass Predictors

Multiclass Hypothesis Space: Reframed

A slight reframing turns out to be more convenient down the line
General Output Space: Y

e.g Y= {1, . . . ,k} for multiclass

Base Hypothesis Space: H = {h : X×Y→ R}

gives compatibility score between input x and output y

Multiclass Hypothesis Space

F =

{
x 7→ argmax

y∈Y
h(x ,y) | h ∈H

}

Now we’re back to a single score function.
Takes x and y and evalutes their compatibility.
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Multiclass Predictors

Learning in a Multiclass Hypothesis Space: In Words

Base Hypothesis Space: H = {h : X×Y→ R}
Training data: (x1,y1),(x2,y2), . . . ,(xn,yn)

Learning process chooses h ∈H.
What type of h do we want?
Want h(x ,y) to be large when x has label y , small otherwise.
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Multiclass Predictors

Learning in a Multiclass Hypothesis Space: In Math

h(x ,y) classifies(xi ,yi ) correctly iff

h(xi ,yi )> h(xi ,y)∀y 6= yi

h should give higher score for correct y than for all other y ∈ Y.
An equivalent condition is the following:

h(xi ,yi )>max
y 6=yi

h(xi ,y)

First idea for objective function:

min
h∈H

n∑
i=1

`

[
h(xi ,yi )−max

y 6=yi
h(xi ,y)

]
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Linear Hypothesis Space
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Linear Hypothesis Space

Linear Multiclass Prediction Function

A linear class-sensitive score function is given by

h(x ,y) = 〈w ,Ψ(x ,y)〉 ,

where Ψ(x ,y) : X×Y→ Rd is a class-sensitive feature map.

Linear Multiclass Hypothesis Space

F =

{
x 7→ argmax

y∈Y
〈w ,Ψ(x ,y)〉 | w ∈ Rd

}

Ψ(x ,y) is a feature vector representing how well y matches x .

Final compatibility score must be extracted linearly from Ψ(x ,y).
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Linear Hypothesis Space

Example: X= R2, Y= {1,2,3}

w1 =
(
−
√

2
2 ,
√

2
2

)
, w2 = (0,1), w3 =

(√
2

2 ,
√

2
2

)
Prediction function: (x1,x2) 7→ argmaxi∈{1,2,3} 〈wi ,(x1,x2)〉.

How can we get this into the form x 7→ argmaxy∈Y 〈w ,Ψ(x ,y)〉
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Linear Hypothesis Space

The Multivector Construction

What if we stack wi ’s together:

w =

−

√
2
2

,

√
2
2︸ ︷︷ ︸

w1

, 0,1︸︷︷︸
w2

,

√
2
2

,

√
2
2︸ ︷︷ ︸

w3


And then do the following:

Ψ(x ,1) := (x1,x2,0,0,0,0)
Ψ(x ,2) := (0,0,x1,x2,0,0)
Ψ(x ,1) := (0,0,0,0,x1,x2)

Then 〈w ,Ψ(x ,y)〉= 〈wy ,x〉, which is what we want.

David Rosenberg (New York University) DS-GA 1003 October 29, 2016 27 / 48



Linear Hypothesis Space

Natural Language Processing Example

X= {All possible words}.
Y= {NOUN,VERB,ADJECTIVE,ADVERB,ARTICLE,PREPOSITION}.
Features of x ∈ X:

F={[The word itself], ENDS_IN_ly, ENDS_IN_ness, ...}

Ψ(x ,y) = (ψ1(x ,y),ψ2(x ,y),ψ3(x ,y), . . . ,ψd(x ,y)):

ψ1(x ,y) = 1(x = apple AND y = NOUN)
ψ2(x ,y) = 1(x = run AND y = NOUN)
ψ3(x ,y) = 1(x = run AND y = VERB)
ψ4(x ,y) = 1(x ENDS_IN_ly AND y =ADVERB)

...
...

...

After training, what would corresponding w1,w2,w3,w4 would look?
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Linear Hypothesis Space

NLP Example: How does it work? (To be totally clear)

Ψ(x ,y) = (ψ1(x ,y),ψ2(x ,y),ψ3(x ,y), . . . ,ψd(x ,y)) ∈ Rd :

ψ1(x ,y) = 1(x = apple AND y = NOUN)
ψ2(x ,y) = 1(x = run AND y = NOUN)

...
...

...

After training, we’ve learned w ∈ Rd . Say w = (5,3,1,4, . . .)
To predict label for x = apple, we compute scores for each y ∈ Y:

〈w ,Ψ(apple,NOUN)〉
〈w ,Ψ(apple,VERB)〉
〈w ,Ψ(apple,ADVERB)〉

...

Predict class that gives highest score.
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Linear Hypothesis Space

TF-IDF Features for News Article Classification

X= {news articles}
Y= {politics, sports, entertainment, world news, local news} [TOPICS]
Want to use the words in article x to predict topic y .
The Term-Frequency of word w in document x , denoted

TF (w ,x),

is the numer of times word w occurs in document x .
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Linear Hypothesis Space

TF-IDF Features for News Article Classification

The Document-Frequency of word w in class y , denoted

DF (w ,y),

is the number of documents containing word w NOT in topic y .
The TF-IDF feature for word w is then defined as

ψw (x ,y) = TF (w ,x) log
(

m

DF (w ,y)

)
,

where m is the total number of documents in training set.
(NOTE: There are many other variations of TF-IDF).
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Linear Hypothesis Space

TF-IDF: Things to note

Suppose we have d words in our vocabulary and k topic classes.
Suppose we have a TF-IDF feature for each word (and no other
features).
What’s the dimension of Ψ(x ,y)?
We have one TF-IDF for each word.
Recall our multivector-style NLP features:

ψ2(x ,y) = 1(x = run AND y = NOUN)
ψ3(x ,y) = 1(x = run AND y = VERB)

If made this “TF-IDF” style, it would like

ψx=run(x ,y) = 1(x = run)× (compatibility of "run" with class y)
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Linear Hypothesis Space

Another Approach: Use Label Features

What if we have a very large number of classes?
Make features for the classes.
Common in advertising

X: User and user context
Y : A large set of banner ads

Suppose user x is shown many banner ads.
We want to predict which one the user will click on.
Possible features:

ψ1(x ,y) = 1(x interested in sports AND y relevant to sports)
ψ2(x ,y) = 1(x is in target demographic group of y)
ψ3(x ,y) = 1(x previously clicked on ad from company sponsoring y)

David Rosenberg (New York University) DS-GA 1003 October 29, 2016 33 / 48



Linear Multiclass SVM

Linear Multiclass SVM
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Linear Multiclass SVM

The Margin for Multiclass

Training set: (x1,y1) , . . . ,(xn,yn)

Define a “margin” between correct class and each other class:

Definition
The margin of score function h on the ith example (xi ,yi ) for class y is

mi ,y (h) = h(xi ,yi )−h(xi ,y).

Want mi ,y (h) to be large and positive for all y 6= yi .
For our linear hypothesis space, margin is

mi ,y (w) = 〈w ,Ψ(xi ,yi )〉− 〈w ,Ψ(xi ,y)〉
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Linear Multiclass SVM

Multiclass SVM with Hinge Loss

Recall binary SVM (without bias term):

min
w∈Rd

1
2
||w ||2+

c

n

n∑
i=1

1− yiw
T xi︸ ︷︷ ︸

margin


+

.

[Recall (x)+ =max(0,x).]
Multiclass SVM (Version 1):

min
w∈Rd

1
2
||w ||2+

c

n

n∑
i=1

max
y 6=yi

(1−mi ,y (w))+

where mi ,y (w) = 〈w ,Ψ(xi ,yi )〉− 〈w ,Ψ(xi ,y)〉.
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Linear Multiclass SVM

Class-Sensitive Loss

In multiclass, some misclassifications may be worse than others.
Rather than 0/1 Loss, we may be interested in a more general loss

∆ : Y×A→ R>0

We can use this ∆ as our target margin for multiclass SVM.
Multiclass SVM (Version 2):

min
w∈Rd

1
2
||w ||2+

c

n

n∑
i=1

max
y

(∆(yi ,y)−mi ,y (w))+

We can think of ∆(yi ,y) as the “target margin” for example i and
class y because if each margin mi ,y (w) meets or exceeds its
corresponding target ∆(yi ,y), then we don’t incur a loss on example i .
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Linear Multiclass SVM

Geometric Interpretation

Prediction is given by argmaxy∈Y 〈w ,Ψ(x ,y)〉.
Note it’s unchanged if we replace w by w/‖w‖.
For simplicity, let’s assume ‖w‖= 1.
Then score function〈w ,Ψ(x ,y)〉= ‖Ψ(x ,y)‖cosθ= ProjwΨ(x ,y).
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Linear Multiclass SVM

Geometric Interpretation

Ψ maps each x ∈ X to |Y| different vectors in Rd .
For example (x ,y), we want margins for all y ′ 6= y to exceed target
margin:

〈w ,Ψ(x ,y)〉−
〈
w ,Ψ(x ,y ′)

〉
> ∆(y ,y ′)

Figure from Section 17.2.4 from Shalev-Schwartz and Ben-David’s Understanding Machine Learning
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Introduction to Structured Prediction

Part-of-speech (POS) Tagging

Given a sentence, give a part of speech tag for each word:

x [START]︸ ︷︷ ︸
x0

He︸︷︷︸
x1

eats︸︷︷︸
x2

apples︸ ︷︷ ︸
x3

y [START]︸ ︷︷ ︸
y0

Pronoun︸ ︷︷ ︸
y1

Verb︸︷︷︸
y2

Noun︸ ︷︷ ︸
y3

V= {all English words}∪ {[START],”.”}
P= {START,Pronoun,Verb,Noun,Adjective}
X= Vn, n = 1,2,3, . . . [Word sequences of any length]
Y= Pn, n = 1,2,3, . . .[Part of speech sequence of any length]
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Introduction to Structured Prediction

Structured Prediction

A structured prediction problem is a multiclass problem in which Y

is very large, but has (or we assume it has) a certain structure.

For POS tagging, Y grows exponentially in the length of the sentence.

The structure in POS labels is that labels that are far apart in the
sentence are independent (we assume).
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Introduction to Structured Prediction

Local Feature Functions: Type 1

A “type 1” local feature only depends on

the label at a single position, say yi (label of the ith word) and
x at any position

Example:

φ1(i ,x ,yi ) = 1(xi = He)1(yi = Pronoun)
φ2(i ,x ,yi ) = 1(xi = eats)1(yi = Noun)
φ3(i ,x ,yi ) = 1(xi−1 = He)1(xi = eats)1(yi = Verb)
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Introduction to Structured Prediction

Local Feature Functions: Type 2

A “type 2” local feature only depends on

the labels at 2 consecutive positions: yi−1 and yi
x at any position

Example:

θ1(i ,x ,yi−1,yi ) = 1(yi−1 = Pronoun)1(yi = Verb)
θ2(i ,x ,yi−1,yi ) = 1(yi−1 = Verb)1(yi = Verb)
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Introduction to Structured Prediction

Local Feature Vector and Compatibility Score

At each position i in sequence, define the local feature vector:

Ψi (x ,yi−1,yi ) = (φ1(i ,x ,yi ),φ2(i ,x ,yi ), . . . ,

θ1(i ,x ,yi−1,yi ),θ2(i ,x ,yi−1,yi ), . . .)

Local compatibility score for (x ,y) at position i is
〈w ,Ψi (x ,yi−1,yi )〉.
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Introduction to Structured Prediction

Sequence Compatibility Score

The compatibility score for the pair of sequences (x ,y) is the sum of
the local compatibility scores:∑

i

〈w ,Ψi (x ,yi−1,yi )〉

=

〈
w ,
∑
i

Ψi (x ,yi−1,yi )

〉
= 〈w ,Ψ(x ,y)〉 ,

where we define the sequence feature vector by

Ψ(x ,y) =
∑
i

Ψi (x ,yi−1,yi ).

So we see this is a special case of linear multiclass prediction.
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Introduction to Structured Prediction

Sequence Target Loss

How do we assess the loss for prediction sequence y ′ for example
(x ,y)?

Hamming loss is common:

∆(y ,y ′) =
1
|y |

|y |∑
i=1

1(yi 6= y ′i )

Could generalize this as

∆(y ,y ′) =
1
|y |

|y |∑
i=1

δ(yi ,y
′
i )
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Introduction to Structured Prediction

What remains to be done?

To compute predictions, we need to find

argmax
y∈Y

〈w ,Ψ(x ,y)〉 .

This is straightforward for |Y| small.

Now |Y| is exponentially large.

Because Ψ breaks down into local functions only depending on 2
adjacent labels,

we can solve this efficiently using dynamic programming.
(Similar to Viterbi decoding.)

Learning can be done with SGD and a similar dynamic program.
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