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Multiclass Setting

Input space: X
Ouput space: Y={1,...,k}

So far, our only approach to multiclass problems is to use trees.

(And by extension, random forests.)

Today we consider linear methods specifically designed for multiclass.
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Reduction to Binary Classification
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One-vs-All / One-vs-Rest
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One-vs-All / One-vs-Rest

Train k binary classifiers, one for each class.

Train jth classifier to distinguish class i from rest

Suppose hi, ..., hg : X — R are our binary classifiers.

o Can output hard classifications in {—1,1} or scores in R.

Final prediction is
h(x) = argmax h;(x)
ie(l,... .k}

Ties can be broken arbitrarily.
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Linear Classifers: Binary and Multiclass
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Linear Classifers: Binary and Multiclass

Linear Binary Classifier Review

o Input Space: X =RY
@ Output Space: Y ={-1,1}
@ Linear classifier score function:
flx) = (w,x)=w'x
e Final classification prediction: sign (f(x))
e Geometrically, when are sign(f(x)) =+1 and sign(f(x)) =—17
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Linear Classifers: Binary and Multiclass

Linear Binary Classifier Review

Suppose ||w| >0 and ||x|| > 0:

flx) = (w,x)=|wllx]cos6
f(x) >0 <= cosf >0 <= 0¢€(—90°90°)
f(x)<0 <= cosf<0 < 0¢&[—-90°,90°]
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Linear Classifers: Binary and Multiclass

Three Class Example
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o Base hypothesis space H = {f(x) =w'x|x € R?}.
o Note: Separating boundary always contains the origin.

Example based on Shalev-Schwartz and Ben-David's Understanding Machine Learning, Section 17.1
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Linear Classifers: Binary and Multiclass

Three Class Example: One-vs-Rest

o Class 1 vs Rest:

f(x) = WlTX
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Linear Classifers: Binary and Multiclass

Three Class Example: One-vs-Rest

/N

@ Examine “Class 2 vs Rest”

e Predicts everything to be “Not 2".
o If it predicted some “2", then it would get many more “Not 2" incorrect.
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Linear Classifers: Binary and Multiclass

One-vs-Rest: Predictions

@ Score for class i/ is
fi(x) = (wi, x) = || wil|[[ x|| cos 6,
where 0; is the angle between x and w;.
@ Predict class i that has highest f;(x).
DS-GA 1003 October 29, 2016
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Linear Classifers: Binary and Multiclass

One-vs-Rest: Class Boundaries

e For simplicity, we've assumed ||wy || = ||wal| = ||ws]|.
@ Then ||w;| and ||x|| are equal for all scores.

= x is classified by whichever has largest cos; (i.e. 0; closest to 0)
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Linear Classifers: Binary and Multiclass

One-vs-Rest: Class Boundaries

@ This approach doesn't work well in this instance.

@ Can we fix it by changing our base hypothesis space?
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The Linear Multiclass Hypothesis Space

o Base Hypothesis Space: H = {x— w'x|w € R?}.

e Linear Multiclass Hypothesis Space (for k classes):

F= {XHargmaxh;(x) | ht,...,hg € U—C}

]

@ What's the action space here?

David Rosenberg (New York University)| DS-GA 1003 October 29, 2016 16 / 48



Linear Classifers: Binary and Multiclass

One-vs-Rest: Class Boundaries

N

e

@ Is this a failure of the hypothesis space or the learning algorithm?

o (A learning algorithm chooses the hypothesis from the hypothesis
space.)
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Linear Classifers: Binary and Multiclass

A Solution with Linear Functions

@ This works... so the problem is not with the hypothesis space.

@ How can we get a solution like this?
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Multiclass Predictors

Multiclass Predictors
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Multiclass Hypothesis Space

e Base Hypothesis Space: 3 ={h: X — R} (“score functions”).
e Multiclass Hypothesis Space (for k classes):

F = {X»—>argmaxh;(x) | hi,... he € IH}

1

@ h;(x) scores how likely x is to be from class i.
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Multiclass Hypothesis Space: Reframed

A slight reframing turns out to be more convenient down the line

General Output Space: Y
o egY={1,..., k} for multiclass
Base Hypothesis Space: H={h: X xY — R}

e gives compatibility score between input x and output y

Multiclass Hypothesis Space

F=<x—argmaxh(x,y) | he H
y€Y

Now we're back to a single score function.

Takes x and y and evalutes their compatibility.
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Learning in a Multiclass Hypothesis Space: In Words

Base Hypothesis Space: H={h: X xY — R}

Training data: (x1,y1), (%2, ¥2), ..., (Xn, ¥n)

Learning process chooses h € H.

What type of h do we want?

Want h(x,y) to be large when x has label y, small otherwise.
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Learning in a Multiclass Hypothesis Space: In Math

@ h(x,y) classifies(x;, y;) correctly iff

h(xi,yi) > h(xi, y)Vy # yi

An equivalent condition is the following:

h(xi,yi) > maxh(x;,y)
Y#£Yi

First idea for objective function:

mmZE[ X, yi) —maxh(x;,y)

hedH Y#Yi
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Linear Hypothesis Space

Linear Hypothesis Space
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Linear Hypothesis Space

Linear Multiclass Prediction Function

@ A linear class-sensitive score function is given by

h(x,y) = (w,¥(x,y)),
where W(x,y): X xY — R is a class-sensitive feature map.

o Linear Multiclass Hypothesis Space

F =< x—argmax(w,¥Y(x,y)) |we R
yeY

@ Y¥(x,y) is a feature vector representing how well y matches x.

@ Final compatibility score must be extracted linearly from ¥(x,y).
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Example: X =R?, Y ={1,2,3}

o Prediction function: (x1,x2) = argmax;c(q 2 33 (Wi, (x1,x2)).
@ How can we get this into the form x — argmax ¢y (w,¥(x, y))
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Linear Hypothesis Space

The Multivector Construction

@ What if we stack w;'s together:

_| Y22, V2 V2
2 2 \Wj 22
wi w3
@ And then do the following:
Y(x,1) = (x1,x,0,0,0,0)
\P(X,z) = (0101X11X21010)
Y(x,1) := (0,0,0,0,x1,x2)

@ Then (w,¥(x,y)) = (w,,x), which is what we want.
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Linear Hypothesis Space

Natural Language Processing Example

o X ={All possible words}.
o Y={NOUN,VERB,ADJECTIVE,ADVERB,ARTICLE,PREPOSITION}.
o Features of x € X:

o F={[The word itself], ENDS IN ly, ENDS IN ness, ...}

o W(x,y)=(1lx,y) b2(x,y) W3(x,y)...., balx,y)):

VPi1(x,y) = 1(x =apple AND y =NOUN)
Po(x,y) = 1(x=run AND y = NOUN)

P3(x,y) = 1(x=run AND y =VERB)

Pa(x,y) = 1(x ENDS_IN_ly AND y =ADVERB)

o After training, what would corresponding wy, ws, w3, ws would look?
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NLP Example: How does it work? (To be totally clear)

o Y(x,y)=(W1(x,y), W2lx,¥) W3(x,y),.... ¥a(x,y)) € R

Pi(x,y) = 1(x =apple AND y =NOUN)
Po(x,y) = 1(x=run AND y = NOUN)

o After training, we've learned w € RY. Say w = (5,3,1,4,...)

@ To predict label for x = apple, we compute scores for each y € Y:

(w,¥(apple, NOUN))
(w,¥(apple, VERB))
(w,¥(apple, ADVERB))

@ Predict class that gives highest score.
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TF-IDF Features for News Article Classification

@ X ={news articles}
e Y ={politics, sports, entertainment, world news, local news} [TOPICS]
@ Want to use the words in article x to predict topic y.

@ The Term-Frequency of word w in document x, denoted
TF(w,x),

is the numer of times word w occurs in document x.
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Linear Hypothesis Space

TF-IDF Features for News Article Classification

@ The Document-Frequency of word w in class y, denoted

DF(w,y),

is the number of documents containing word w NOT in topic y.

@ The TF-IDF feature for word w is then defined as

m
DF(W,)/)> '

where m is the total number of documents in training set.
@ (NOTE: There are many other variations of TF-IDF).

Yu(x,y) = TF(w,x) |og<
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TF-IDF: Things to note

@ Suppose we have d words in our vocabulary and k topic classes.

@ Suppose we have a TF-IDF feature for each word (and no other
features).

@ What's the dimension of ¥(x, y)?
@ We have one TF-IDF for each word.

@ Recall our multivector-style NLP features:

Po(x,y) = 1(x=run AND y =NOUN)
P3(x,y) = 1(x=run AND y =VERB)

o If made this “TF-IDF" style, it would like

WPx—run(x,y) = 1(x = run) x (compatibility of "run" with class y)
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Another Approach: Use Label Features

What if we have a very large number of classes?

Make features for the classes.

o Common in advertising

o X: User and user context
o Y: A large set of banner ads

Suppose user x is shown many banner ads.

We want to predict which one the user will click on.

Possible features:

P1(x,y) = 1(x interested in sports AND y relevant to sports)
Po(x,y) = 1(xis in target demographic group of y)
P3(x,y) = 1(x previously clicked on ad from company sponsoring y)
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Linear Multiclass SVM

Linear Multiclass SVM
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The Margin for Multiclass

@ Training set: (x1,y1),...,(Xn, ¥n)
@ Define a “margin” between correct class and each other class:

Definition

The margin of score function h on the ith example (x;,y;) for class y is

mj ., (h) = h(x;,yi) —h(xi,y).

e Want m; ,(h) to be large and positive for all y # y;.
@ For our linear hypothesis space, margin is

miy(w) = (w,¥(x;,yi)) — (w,¥(xi,y))
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Multiclass SVM with Hinge Loss

@ Recall binary SVM (without bias term):

N o 7 T
min =||wl||*+ — 1—yiw' x;
weRd 2 n; \)L/—L

margin/

o [Recall (x), =max(0,x).]

e Multiclass SVM (Version 1):
min 1||w||2+5imax(1—m- (w))
weRd 2 n = y#yi i +

where m; ,(w) = (w,¥(x;,yi)) — (W, ¥Y(x;, y)).
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Linear Multiclass SVM

Class-Sensitive Loss

In multiclass, some misclassifications may be worse than others.

Rather than 0/1 Loss, we may be interested in a more general loss

A:YxA— RO

We can use this A as our target margin for multiclass SVM.
Multiclass SVM (Version 2):

2
min > L wli2+ Zmax (i, y) = miy (W),

We can think of A(y;,y) as the “target margin” for example i and
class y because if each margin m; ,(w) meets or exceeds its
corresponding target A(y;,y), then we don't incur a loss on example /.
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Linear Multiclass SVM

Geometric Interpretation

Prediction is given by argmax,cy (w,¥(x,y)).
Note it's unchanged if we replace w by w/||wl.

For simplicity, let's assume [|w| = 1.

Then score function{w,¥(x,y)) = |[¥(x,y)| cos® = Proj,, ¥(x, y).

T "W”‘\)fﬁ -
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Linear Multiclass SVM

Geometric Interpretation

@ ¥ maps each x € X to |Y| different vectors in RY.
@ For example (x,y), we want margins for all y’ # y to exceed target
margin:

!/ /
(W ¥(x,y)—(w,¥(x,y)) = Aly,y")
Figure from Section 17.2.4 from Shalev-Schwartz and Ben-David's Understanding Machine Learning
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Introduction to Structured Prediction
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Part-of-speech (POS) Tagging

@ Given a sentence, give a part of speech tag for each word:
x | [START] He eats | apples
N——— ~~ N~ | ~——
X0 X1 X2 X3
y | [START] | Pronoun | Verb | Noun
—— |~ | —~~
Yo Y1 y2 y3

V ={all English words} U{[START],"."}
P ={START, Pronoun,Verb,Noun,Adjective}
X=V" n=1,23,... [Word sequences of any length]

Y=P" n=1,2,3,...[Part of speech sequence of any length]
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Structured Prediction

@ A structured prediction problem is a multiclass problem in which Y
is very large, but has (or we assume it has) a certain structure.

@ For POS tagging, Y grows exponentially in the length of the sentence.

@ The structure in POS labels is that labels that are far apart in the
sentence are independent (we assume).
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Introduction to Structured Prediction

Local Feature Functions: Type 1

@ A “type 1" local feature only depends on

o the label at a single position, say y; (label of the ith word) and
@ x at any position

o Example:
$1(i,x,yi) = 1(x; =He)1(y; = Pronoun)
$2(i,x,yi) = 1(x; =eats)1(y; = Noun)
$3(i,x,yi) = 1(x;—1=He)l(x; =eats)1(y; = Verb)
DS-GA 1003 October 29, 2016
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Introduction to Structured Prediction

Local Feature Functions: Type 2

o A "type 2" local feature only depends on

o the labels at 2 consecutive positions: y; 1 and y;
e x at any position

o Example:

01(/,x,yi-1,yi) = 1(yi—1 = Pronoun)1(y; = Verb)
02(i,x,yi-1,yi) = 1(yj—1 = Verb)1(y; = Verb)
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Introduction to Structured Prediction

Local Feature Vector and Compatibility Score

@ At each position i in sequence, define the local feature vector:

\yi(XvYI—lv)’i) = ((bl(ivxvyi)vd)zurx'yi)r---y
01(/,x,¥i—1,¥i), 020i, %, yi—1,yi), - ..)

@ Local compatibility score for (x,y) at position i is
(w,¥i(x,yi—1,yi))-
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Sequence Compatibility Score

@ The compatibility score for the pair of sequences (x, y) is the sum of
the local compatibility scores:

D> (W, ¥ilx,yio1.yi)

i

= <W,Z‘1’,‘(X,Yi—1,)’i)>
= (w,¥Y(x,y)),

where we define the sequence feature vector by

Yix,y) =) Vilx,yi-1.i)-

@ So we see this is a special case of linear multiclass prediction.
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Introduction to Structured Prediction

Sequence Target Loss

@ How do we assess the loss for prediction sequence y’ for example

(x,y)7?
@ Hamming loss is common:

Iyl

1
Aly,y) == 1yi#y)
vl =
o Could generalize this as
1 Iyl
vy =) 8y
Iyl =
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Introduction to Structured Prediction

What remains to be done?

@ To compute predictions, we need to find

argmax (w,¥(x,y)).
yeY

@ This is straightforward for |Y| small.
@ Now |Y| is exponentially large.

@ Because ¥ breaks down into local functions only depending on 2
adjacent labels,

e we can solve this efficiently using dynamic programming.
o (Similar to Viterbi decoding.)

@ Learning can be done with SGD and a similar dynamic program.
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